
Platforma průmyslové spolupráce

CZ.1.07/2.4.00/17.0041

Název

Effective Testing of Local Git Branches Using Remote Execution

Popis a využití

• efektivnější spouštění automatizovaných testů (méně vytěžující server) při výuce

• výuka: pokročilá Java

Jazyk textu

• anglický

Autor (autoři)

• Jakub Senko

Oficiální stránka projektu:

• http://lasaris.fi.muni.cz/pps

Dostupnost výukových materiálů a nástrojů online:

• http://lasaris.fi.muni.cz/pps/study-materials-and-tools

http://lasaris.fi.muni.cz/pps
http://lasaris.fi.muni.cz/pps/study-materials-and-tools

Contents

1 Introduction . 1
2 Project Automation . 3

2.1 Configuration Management 3
2.2 Project Automation Tools . 5

2.2.1 Project automation types 6
2.3 GNU Make . 7
2.4 Apache Ant . 8
2.5 Apache Maven . 9

2.5.1 Basic principles . 10
2.5.2 Project Object Model 11
2.5.3 Build Lifecycle . 13

2.6 Jenkins CI . 13
2.6.1 Jenkins Job . 14
2.6.2 Job configuration . 15

2.7 Git . 16
3 Analysis and Design . 18

3.1 Requirements . 18
3.2 Existing solutions . 19
3.3 Maven Plugin Goals . 20
3.4 Local Code Changes . 20
3.5 Patch file . 23
3.6 Jenkins Job Configuration . 23
3.7 Retrieving results . 23
3.8 Remote Jenkins API . 24
3.9 Representational State Transfer 24
3.10 Jenkins RESTful API . 25
3.11 Job Reuse . 26

4 Implementation and Tools . 28
4.1 GitTools . 28
4.2 Job Configurator . 30
4.3 Jenkins RESTful API Client 32
4.4 Result processors . 34
4.5 Data storage . 35
4.6 Maven Mojos . 36

5 Conclusion . 37
A Archive Content . 42

v

1 Introduction

Most software developers work on multiple tasks at the same time, espe-
cially in large companies. Programmer may be a member of more than one
project team or multiple new features require his attention. Additionally,
one of the tasks may have higher priority than others and must be resolved
immediately – if a customer reports a problem, the bug must be fixed as
soon as possible. When working on these features, developers should per-
form intermediate testing to make sure they did not introduce inadvertent
errors. Often, changes are published in the source code repository before
verifying that everything works. They can contain broken code which may
cause complications for other developers before the problem is fixed. There-
fore, each change should be tested locally on the developer’s machine, be-
fore the solution is ready to be shared with other team members or made
public. This practice, commonly known as pre-commit testing, however
consumes not only developer’s time, but also his computer’s resources,
particularly if it is done for every feature he is working on. It is especially
noticeable if the projects are large and have an extensive test suite.

Fortunately, most of the tasks that are associated with project develop-
ment, including compilation and test execution can be automated using
various tools. The goal of this thesis is to investigate these tools and use
them to make pre-commit testing more effective. This can be achieved by
offloading the build and test execution from the developer’s machine to
a remote server using a convenient automated tool. The topic of this the-
sis has been provided by Red Hat, the world’s leading provider of open
source solutions1, so the result must be specific to the processes and tools
that are used to develop Java software there. Projects are assumed to use
Apache Maven, which is a very popular open-source project management
tool. Moreover, the source code is stored in a git repository and the solution
may take advantage of the internal continuous integration server running
a popular Jenkins CI software.

All these tools are properly presented in the second chapter of this the-
sis, Project Automation, after an introduction to the software configuration
management is provided. In the following chapter, Analysis and Design,
existing solutions are discussed and requirements for the application are
listed. Subsequently, they are analyzed to determine the best way to im-
plement the tool. The fourth chapter, Implementation and Tools contains

1. http://www.redhat.com/about

1

http://www.redhat.com/about

1. INTRODUCTION

description of the technologies used during the development, as well as
the structure and internals of the program itself. Finally, in the Conclu-
sion chapter, short summary and several options for future development
are presented.

2

2 Project Automation

In order to solve the problem presented in the introductory chapter, more
detailed understanding of processes and tools that are used to develop
software is required. The goal of this thesis is development of an automa-
tion tool, this chapter therefore provides an introduction to project automa-
tion, which is a concept of using automated tools to perform configura-
tion management. Additionally, it is important to describe existing automa-
tion software that is relevant to the implementation part of the thesis - git,
Apache Maven and Jenkins CI and to compare them to other similar tools.

2.1 Configuration Management

„Configuration management (CM)1 is concerned with the policies, processes,
and tools for managing changing software systems.“[2, chap. 25] The au-
thors of the Configuration Management Best Practices identified several
key areas of CM[1]:

• Change control

• Source code management

• Environment configuration

• Build engineering

• Release engineering

• Deployment

Software development is a very dynamic process. At any point, project re-
quirements can change or a bug may be reported. The goal of change con-
trol (CC) is to „ensure that the evolution of the system is a managed process
and that priority is given to the most urgent and cost-effective changes.“[2,
chap. 25.1] The most common tool to facilitate CC is an issue tracker2.

Source Code Management (SCM) „is responsible for keeping track of
different versions of software components or configuration items and the

1. Configuration management is a more general engineering term. In the context of soft-
ware development, Software Configuration Management is usually used. However, to
avoid confusion with Source Code Management, the general term is used in this thesis.
2. According to a book about a commercial issue tracker: „Issue in JIRA can be anything in
the real world to represent a problem domain. It can be a software bug, a help desk ticket,
or a customer request.“[3, chap. 3]

3

2. PROJECT AUTOMATION

systems in which these components are used.“[2, chap. 25.2] The main pur-
pose of SCM is to monitor each code modification using various metadata.
As a result, developers are able to view project history, revert changes or
work on isolated lines of development (branches), depending on the spe-
cific tool used.

Environment Configuration (EC) „refers to identifying, modifying, and
managing the interface dependencies required for the system to success-
fully progress from development to QA 3 to production.“[1, chap. 3] In other
words, every system interacts with various software and hardware. EC
makes sure that these dependencies are properly set up. Environment con-
figuration must be coordinated with other areas of configuration manage-
ment, especially build engineering, release management and deployment
to be effective.

Software build can be defined as a process of translating human-readable
source code into an executable program (compilation) or a result of such
procedure. In a broader sense, it is a series of steps that transforms cre-
ative artifacts4 into a software deliverable[5, chap. 2.1]. The goal of build
engineering is to reliably perform build in the shortest possible time. The
authors of Configuration Management Best Practices also emphasizes im-
portance of the role that build engineers play in software development: „[...]
the build engineering team should consider themselves to be a service func-
tion with the development team as their primary customers. [...] As build
engineers, we provide a service to support the development effort, but our
primary goal is to help secure the assets of the firm that are built and re-
leased through the build engineering function.”[1, chap. 2]

Purpose of the software development is to deliver programs to cus-
tomers. The build that is being delivered is called a release. Ian Somerville
states that „Release management involves making decisions on system re-
lease dates, preparing all information for distribution, and documenting
each system release.“ [2, chap. 25].

„The main goal of deployment is to promote a release into production
without any possible problem occurring.”[1, chap. 6] Moreover, it is impor-
tant that in case of a problem, the release can be rolled back as quickly and
easily as possible to ensure unhindered operation of the service[1, chap. 6].

3. Quality Assurance
4. In this context, „artifact is the specification of a physical piece of information that is
used or produced by a software development process, or by deployment and operation of a
system“[4, sec. 10.3.1]. It is not limited to source files, but it can include scripts, documents,
or a mail message[4, sec. 10.3.1].

4

2. PROJECT AUTOMATION

To sum up, all these areas of CM are overlapping and it is hard to cat-
egorize all actions that are often performed during the development, such
as writing or generating documentation. Additionally, they often depend
on each other. For example, to build a program, engineer must have access
to the source code managed by an SCM tool. In the following text, several
tools that facilitate configuration management are introduced. They cannot
be usually classified into a single CM type. For example, Apache Maven
can both build and release software artifacts.

2.2 Project Automation Tools

During software development, developers have to perform various tasks
related to the configuration management, such as:

• Creating documentation

• Compilation

• Testing

• Verification

• Deployment

In the past, programmers had to execute these steps manually, which pre-
vented them from focusing on creative tasks and problem solving. This of-
ten led to frustration and consequently to a decrease in developer produc-
tivity. Build automation tools originated as a solution to these problems. By
letting the computer do the tedious and repeating work, programmers are
able to work more effectively. The author of Pragmatic Project Automation
states the following criteria of a good build system[5, chap. 2.1]:

• Complete – all data that the build system requires to perform a build
must be available, so the build can be automated and self-contained.

• Repeatable – the build system must produce consistent results every
time. In addition, it must be able to reproduce builds of previous
releases. This requires that the build artifacts are stored in a version
control system.

• Informative – developers must be able to receive useful information
about the build process. Part of this information should be the results
of automated tests.

• Schedulable – the build can be executed automatically, without hu-
man intervention and in regular intervals.

5

2. PROJECT AUTOMATION

• Portable – developers may require that the project is built in a spe-
cific hardware and software environment. Build systems must be as
platform-independent as possible to enable these builds.

Peter Smith states three additional requirements[6, chap. 1]:

• Correctness – the tool should perform the build according to our re-
quirements, automatically making best decisions, such as choosing
correct dependency version.

• Convenience – to fulfill its purpose to save developer time and effort,
it must be as easy-to-use as possible.

• Performance – correspondingly to the previous requirement, the tool
should be fast so it programmers do not need to wait in order to
continue working.

2.2.1 Project automation types

The tools that enable project automation can be divided into three cate-
gories, based on how are they executed[5, chap. 1.2]:

• Commanded automation

• Scheduled automation

• Triggered automation

Commanded automation tools run on-demand and automatically perform
steps that the programmer would otherwise do manually. Developer selects
a high-level task, such as „run integration tests“, optionally providing pa-
rameters, and the tool will execute it by following instructions specified in
a build file. GNU Make and Apache Maven belong to this category.

Scheduled automation is a practice of performing builds regularly. Most
software companies perform nightly builds. „The idea is that a batch pro-
cess will compile and integrate the codebase every night when everybody
goes home.“[7, chap. 3] Each morning the developers have the latest de-
velopment release ready for testing, information collected during the build
and confidence that everything works as expected. Additionally, this feed-
back is available even if developers have forgot to use a commanded au-
tomation tool. On the other hand the authors of Continuous Delivery state
that „this is a step in the right direction, but it isn’t very helpful when the
team arrives the next morning only to find that the code didn’t compile. The
next day they make new changes – but are unable to verify if the system in-
tegrates until the next night. [...] In addition, this strategy is less than useful

6

2. PROJECT AUTOMATION

when you have a geographically dispersed team working on a common
codebase from different time zones.“[7, chap. 3]

Triggered automation is an improvement of the scheduled automation.
The tool is waiting for some specified event to commence a build. Note that
this is not limited to timer events. It is a very common practice to check
a source code repository and wait for a programmer’s commit. If a code
change is detected, new build is scheduled. This technique provides faster
feedback to developers and, in case of problems, the automation software
can even contact the developer who broke the build. This is the basic idea
of the continuous integration technique.

In this section we have provided theoretical introduction to project au-
tomation tools. In the next, we will explore a few commonly-used build
tools and introduce Apache Maven and Jenkins CI.

2.3 GNU Make

GNU Make5 was created by Dr. Stuart I. Feldman in 1977. Since then it
has become one of the most famous and influential build tools[8]. It has
introduced important concepts that were used to develop other build au-
tomation software, therefore it is useful to provide a quick overview.

Despite its age it is still widely used and is included in most Linux dis-
tributions so we can rely on manual pages6 for a brief introduction: „The
purpose of the make utility is to determine automatically which pieces of a
large program need to be recompiled, and issue the commands to recompile
them. [...] make is not limited to programs. You can use it to describe any
task where some files must be updated automatically from others whenever
the others change.“ [9] Make accomplishes this goal by using a file with
a description of the build process, called makefile which is written using
a special-purpose scripting language. From a high-level point of view the
makefile consists of rules[10]:

targets : prerequisites
recipe # this is a comment,

rule steps must be tab-indented

Figure 2.1: GNU Make rules format.

5. http://www.gnu.org/software/make
6. They can be accessed on most UNIX-type systems using man make command. In addi-
tion, citation of an online version is provided.

7

http://www.gnu.org/software/make

2. PROJECT AUTOMATION

Each target is an action that needs to be performed. Commonly, the
name of the action is a file being updated. Prerequisites are rule names
that have to be performed before the current rule, effectively defining a
dependency graph. The rules are comprised of a sequence of steps, such as
running a compiler, and are executed when the rule is invoked. To do this,
user specifies the name of the rule and additional parameters as arguments
to the make executable in the command line. The tool then resolves rule de-
pendencies and executes the steps. It no target is specified, the first defined
in the file is used.

The make tool and language provides more features than simple rule
definition[10]:

• Variables

• Implicit rules – are predefined rules included in the tool, such as
updating a .o file from a correspondingly named .c file using a
cc -c (C compiler) command. These rules are applied automatically
if make determines they are needed[10, sec. 10.1] and can be config-
ured by modifying specific predefined variables.

• Functions – enable the definition of more complex rules. They pro-
vide control flow, string manipulation capabilities and file manage-
ment.

• Inclusion of another makefile

• Comments

Despite being popular, make has been criticized for inconsistent language
design resulting in a more difficult learning process and challenging debug-
ging[6, chap. 6].

To sum up, GNU Make is a widespread build system providing the user
with rich functionality using build files written in an imperative language.

2.4 Apache Ant

Ant7 (Another Build Tool, formerly Another Neat Tool) is open source com-
manded automation utility inspired by GNU Make. While written in Java
and primarily aimed to build software for the same platform, it can also
be used for other types of projects. Analogously to Make, the build steps
are defined in a build.xml file. Although the chosen language is based
on XML, it uses the same concept of targets, which are comprised of tasks.

7. http://ant.apache.org/

8

http://ant.apache.org/

2. PROJECT AUTOMATION

These are again sequences of instructions, so the language can be catego-
rized as procedural[6, chap. 7]. The tasks themselves are implemented as
Java classes and the developers are encouraged to create their own in ad-
dition to the built-in ones, therefore tasks for most purposes are already
available for other users[11].

Considering the clear inspiration by make, it is important to state the
reasons that led to its creation as described in one of Ant’s mailing list posts:
„The core functionality [of Make] is not optimized for any language in par-
ticular, and make often makes developers uncomfortable because it is un-
like most languages and therefore carries its own learning curve. [...] The
language of task abstraction for ant is Java. The core functionality imple-
ments the bare basics needed for Java-based projects, and the whole sys-
tem is very appealing to developers of Java/Web-based projects because it
works within the same framework (Java/XML) that those developers use
daily.“[12] In addition to convenience, Ant is able to manage project depen-
dencies using integration with Apache Ivy8[13] and because it is written in
Java, it is portable.

While Ant is a powerful build tool, it still uses concepts of GNU Make
and as a result inherits some of its problems. In the past, many projects
lacked common approach to compilation, distribution, and web site gener-
ation and their build systems gradually become complex and unmaintain-
able [15, chap. 1.1.2]. Eventually, other approaches to project management
led to development of Apache Maven.

2.5 Apache Maven

The official web page9 contains a concise description of what Apache Maven
is – „a software project management and comprehension tool. Based on the
concept of a project object model (POM), Maven can manage a project’s
build, reporting and documentation from a central piece of information.“
However, this definition is not very clear. As a result of a requirement (1
on page 18) for the implementation part of this thesis, a more comprehen-
sive introduction to Maven and its core ideas is provided in the following
sections.

8. http://ant.apache.org/ivy
9. http://maven.apache.org/

9

http://ant.apache.org/ivy
http://maven.apache.org/

2. PROJECT AUTOMATION

2.5.1 Basic principles

The most prominent idea that its authors incorporated into Maven is con-
vention over configuration (CoC). It states that an application should use
reasonable default values for its configuration options whenever possible.
„Without requiring unnecessary configuration, systems should ’just work’.“
[14, chap. 1.2].

The best way to illustrate this principle is to use an example. Maven pro-
vides an option to generate the initial project structure from a predefined
template, called an archetype. This is done using Maven Archetype Plu-
gin, which can be used to both create and apply the template[16]. Maven
is a command line tool, therefore, provided we have successfully installed
and configured it, following command has to be executed to create a simple
„Hello World“ Java project in the current directory:

mvn archetype:generate
-DarchetypeGroupId=org.apache.maven.archetypes
-DarchetypeArtifactId=maven-archetype-quickstart
-DgroupId=net.jsenko -DartifactId=hello-project
-DinteractiveMode=false

Figure 2.2: Maven Archetype Plugin execution.

The command consists of the Maven executable name, mvn, followed by
the plugin name, goal and configuration parameters. Usually Apache Maven
must run in the context of some existing project. For some use cases, such
as this, plugins may choose to allow to be executed without the pom.xml
present. As a result, its name must be specified directly.

Plugin goal, generate is a name of the specific functionality. As men-
tioned, archetype plugin can also create new templates, which can be ac-
complished using archetype:create-from-project[17].

The parameters are prefixed with -D and are used to identify which
template to use and to specify the coordinates of the resulting project. Addi-
tionally, the goal execution is interactive by default, but to avoid the need to
confirm default choices, the last parameter is used. The ability of Apache Maven
to create a working sample project using just a single command is a great
example of Maven’s adherence to the CoC principle.

Figure 2.3 shows the resulting project directory tree. This basic direc-
tory structure is the same for most Maven projects, therefore it is very easy
for other developers to familiarize with the project and start contributing.

10

2. PROJECT AUTOMATION

hello-project
|-- pom.xml
‘-- src

|-- main
| ‘-- java
| ‘-- net
| ‘-- jsenko
| ‘-- App.java
‘-- test

‘-- java
‘-- net

‘-- jsenko
‘-- AppTest.java

Figure 2.3: Standard directory structure for Java-based Maven projects.

The sources are in the src directory and net/jsenko corresponds to the
package name. Maven version of a build file, pom.xml, in located in the
project’s root directory and contains the Project Object Model.

2.5.2 Project Object Model

Project Object Model (POM) is an „XML file that contains information about
the project and configuration details used by Maven to build the project.“[18]
This is done in a declarative way, so the developers do not define instruc-
tions on how to perform a task, they express what the task is. Additionally,
the POM contains description of the project in the sense that it contains
comprehensive information, that can be used for all areas of configuration
engineering – SCM, release engineering, deployment, even the list of project
contributors and means to contact them. This notion of conceptual model
of a project is explained by the authors of Maven – “Maven is more than
just a build tool, it is more than just an improvement on tools like make and
Ant, it is a platform that encompasses a new semantics related to software
projects and software development.“[14, chap. 1.5]

Each Maven project and the artifact it produces has an unique identifier.
This is a consequence of the release management features of Maven, that
requires identifiable releases, such as dependency management and pub-
lishing of the released artifact. This identifier consists of five text strings,
however only four are commonly used[19]:

11

2. PROJECT AUTOMATION

• groupId – represents namespace in which the artifact resides. It is
conventionally a reversed domain name that belongs to the organi-
zation or individual that produced the release.

• artifactId – meaningful name for the artifact in the group namespace.
Commonly it is a compact version of the project name.

• version – to distinguish different releases of the same project. Usually
it is a one or more numbers concatenated by a period, but additional
information, such as development stage (alpha, beta, release candi-
date) or nightly build number can be also added.

• packaging – this piece of information represent a form in which the
artifact is stored. The default value of this attribute is „jar“ (java
archive).

This identifier is used to specify in the pom.xml that the project gener-
ated by the archetype plugin depends on junit:junit:3.8.110, which
is a framework for testing. Moreover it is used to identify plugins. The
full identifier of the archetype plugin is org.apache.maven.plugins:
maven-archetype-plugin:2.211 but in this case, an alias is defined by
default, so full coordinates are not required.

The identificator is only one of the prerequisites for the automatic de-
pendency management. The second is a storage of artifacts accessible to
Maven called a repository12. This concept is very similar to software repos-
itories used to distribute software packages in Linux. There is a main pub-
lic repository, called Maven Central13, which is by default available to all
projects. The ability to define additional repository locations has impor-
tant positive consequences for release management - development team
can store internal builds in a private repository and make releases available
to customers via a public repository.

Finally, the POM usually contains property definitions. They are the
most important tool for making the project build customizable and flexi-
ble14, and can be defined in several ways:

• automatically by Maven – these predefined properties include project
root directory (where pom.xml is located), and a place where data

10. The parts of the identifier are connected by : when representing it as a simple string. In
this format – groupId:artifactId:version.
11. Latest version in the time of writing.
12. Not to confuse with SCM repository.
13. http://search.maven.org
14. The other being profiles – http://maven.apache.org/guides/introduction/
introduction-to-profiles.html

12

http://search.maven.org
http://maven.apache.org/guides/introduction/introduction-to-profiles.html
http://maven.apache.org/guides/introduction/introduction-to-profiles.html

2. PROJECT AUTOMATION

generated during the build are stored.

• via command line interface (CLI) – used in the example.

2.5.3 Build Lifecycle

In figure 2.2 on page 10, the generate goal of the Archetype plugin is ex-
ecuted directly, and it represents a single task. On the other hand, build
process involves execution of many different steps. In case of GNU Make
or Ant, these steps are grouped together to form high-level targets defined
and named by the programmer, based on the specific project requirements.
However, most projects share common actions that developers want to per-
form (as mentioned in 2.2 on page 5). Consequently, the authors of Maven
introduced concept of a build lifecycle.

„A build lifecycle is an organized sequence of phases that exist to give
order to a set of goals.“[14, chap. 10.1] Each phase represents an action that
should be performed during the build process. The phases are ordered and
executed sequentially. For example, in order to run the test phase, previ-
ous phases, including validate, generate-resources and compile have to be
executed first. „Lifecycle phases are intentionally vague, [...] and they may
mean different things to different projects.“[14] As a result, the lifecycle de-
fines a process that has to be followed in order to accomplish some high-
level objective. The previously mentioned phases belong to the default (or
build) lifecycle, but there are others available15.

If user wants to execute a phase, Apache Maven by itself does not know
what to do. The functionality is provided by the plugins that can assign
their goals to some specific lifecycle phase. For many of these phases, Maven
provides default plugins that work for most use cases and require mini-
mal configuration. As a result, in order to create a „jar“ file of the example
hello-project, the user just has to execute mvn package command.
During the appropriate phases, maven-compiler-plugin and maven-
jar-plugin will automatically run and perform the required tasks.

2.6 Jenkins CI

Jenkins CI 16 is an open source continuous integration server software, writ-
ten in Java and with built-in support for maven-based projects. The project

15. For more details, see http://maven.apache.org/guides/introduction/
introduction-to-the-lifecycle.html#Lifecycle_Reference
16. http://jenkins-ci.org

13

http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html##Lifecycle_Reference
http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html##Lifecycle_Reference
http://jenkins-ci.org

2. PROJECT AUTOMATION

is in active development and has a large number of contributors[25], in-
cluding it’s original author, Kohsuke Kawaguchi. Among the most impor-
tant features are easy installation and configuration, intuitive user interface,
powerful machine interface, extensibility using over 700 official plugins[27],
and ability to perform distributed builds.

2.6.1 Jenkins Job

Job represents a task that can be executed and managed by the CI server in
response to some event, usually performing an action on a project’s source
code. This may include „running your integration tests, measuring code
coverage or code quality metrics, generating technical documentation, or
even deploying your application to a web server. A real project usually re-
quires many separate but related build jobs.“[26, chap. 2] There are several
basic types of jobs available:

• Free-style project

• Maven 2/3 project

• Multi-configuration project

• Monitor external job

The first is a general-purpose job type that enables the user to select from
almost all available configuration options and thus provides the most flex-
ibility.

The second type of job is specifically designed to build maven-based
projects. Because the Jenkins understands the Project Object Model, it can
provide maven-specific build options and retrieve build results and other
information.

Multi-configuration project provides the feature of “matrix builds”. It is
very common that a project needs to be tested under various conditions,
such as multiple versions of the JDK, different database versions, operat-
ing systems and so on. Without the matrix build, user has to create new job
for each possible combination of the parameters, but with otherwise iden-
tical configuration. This can result in a large number of jobs which quickly
become very difficult to manage. This can be solved by adding a build ma-
trix to a job. It consists of axes which are parameters with corresponding
possible values. These parameters that can be used as variables in the job
configuration, and Jenkins will take care of running the job for each of the
possible parameter combinations.

14

2. PROJECT AUTOMATION

Monitor external job feature enables Jenkins to monitor a process that
was not originally executed from Jenkins. For example, this can be a legacy
bash script that executes nightly builds.

2.6.2 Job configuration

Before a Jenkins job can be executed, user must provide it with some config-
uration options. In the following list we provide general types of settings:

• General options

• Parameters

• Source Code Management

• Triggers

• Build steps

• Post build actions

General options include the name of the job and its description.
Parameters provide a way to pass information to the job before it starts

and are subsequently available as named variables. Among default types
of parameters are string, boolean, choice and a file.

„In its most basic role, a Continuous Integration server monitors your
version control system, and checks out the latest changes as they occur.
The server then compiles and tests the most recent version of the code.“[26,
chap. 5] As a result, Jenkins must be able to work with various SCM tools.
By default, CVS17, Subversion18 and git are available.

Triggers are events that cause the job to be scheduled for execution.
There are several basic types of events – the job may run at periodical inter-
vals, wait for another one to finish, or check the project’s source code repos-
itory for changes. Moreover, thanks to the plugin ecosystem, new triggers
can be easily created, such as an ability to perform builds using interactive
IRC19 bot20.

Builds steps do the actual work. They can be used to execute a shell
command, invoke a build tool or trigger another build.

Main reason for using the continuous integration technique is to receive
feedback as soon as a problem occurs. This is provided by the post-build

17. http://www.nongnu.org/cvs
18. http://subversion.apache.org
19. Internet Relay Chat
20. https://wiki.jenkins-ci.org/display/JENKINS/IRC+Plugin

15

http://www.nongnu.org/cvs
http://subversion.apache.org
https://wiki.jenkins-ci.org/display/JENKINS/IRC+Plugin

2. PROJECT AUTOMATION

actions, which can range from a simple email message to the developer
who broke the build or a more aggressive physical response[28].

2.7 Git

Git21 is a free and open source distributed version control system (VCS)22

tool[20]. It is used to manage most projects at Red Hat, therefore the pre-
commit testing solution must be able to interact with it. In the following
text, an introduction to the important concepts of git are presented.

Git was created by Linus Torvalds in 2005 after a decision to stop using
a proprietary source code management system, for the Linux kernel project.
Torvalds started the development of Git because none of the existing tools
at the time satisfied his requirements for a good version control system[21]:

• Distributed repositories

• Effective branching

• Good performance

• Reliability

Git is a distributed version control system. This is in contrast to a more tra-
ditional approach that uses a central server to keep track of the changes,
which clients access over a network. This architecture has several advan-
tages. Author of Pro Git states that „everyone knows to a certain degree
what everyone else on the project is doing. Administrators have fine-grained
control over who can do what; and it’s far easier to administer a [central-
ized VCS] than it is to deal with local databases on every client.“[24, chap.
1.1.2] On the other hand, it is not suitable for large open-source projects
because they are inherently decentralized. Most contributors do not know
each other and they might be untrustworthy. Moreover, the central server
must be able to handle every collaborator and as a result represents a single
point of failure.

In case of the distributed VCSs, every repository contains all data about
the underlying project. There is no central place and each repository acts
as a peer. The owners can subsequently transfer changes to and from other
remote repositories (performing push and pull), provided they have been
given access. Moreover, the distributed nature of git allow many different

21. http://git-scm.com
22. „Version control combines procedures and tools to manage different versions of config-
uration objects that are created during the software process.“[22, chap. 22.3.2]. This term is
used interchangeably with SCM in practice.[23]

16

http://git-scm.com

2. PROJECT AUTOMATION

workflows[24, chap. 5.1], which allows for various organizational struc-
tures.

Another of Linus’s requirements, performance and reliability comes from
the amount of data that users contribute to the Linux Kernel Project, so git
was designed to be extremely fast.

Generally, VCS repository contains revisions, representing a point in the
history of the project, and additional metadata. Because a new revision is
created by making a change upon some existing state and then commit-
ting (saving) the changes, the revisions (or commits) constitute a directed
graph structure. Each commit points to the previous state, usually repre-
sented by a single commit, but in some cases, multiple lines of development
(branches) may be merged together. In case of traditional version control
systems, such as the Apache Subversion, revisions are stored as differences
containing only changes made since the previous commit. On the other
hand, git stores snapshots of the project at the time of commit in a very
efficient key-value data store[24, chap. 1.3.1]. Keys are generated by apply-
ing SHA-123 on the change and the related metadata, including a pointer to
the previous commit(s). This hash is then used as an unique revision iden-
tifier. As a result of the chaining, user just has to know the hash of the latest
commit to verify integrity of the entire project history.

Open source projects are by nature very dynamic, at any point a group
of developers may be working on a separate feature that may or may not be
eventually accepted. This places requirements for easy branching. Because
of the way revisions are stored, branches in git are just named pointers to
the top commit. This results in a very inexpensive and, more importantly,
local branching and merging. Additionally, in order to work with changes
in the remote repositories, there is a special type of branches – „Remote
branches are references to the state of branches on your remote repositories.
They’re local branches that you can’t move; they’re moved automatically
whenever you do any network communication.“[24, chap. 3.5]

23. Secure Hash Algorithm version 1

17

3 Analysis and Design

The goal of this chapter is to identify and analyze requirements for a solu-
tion to the problem presented in the Introduction and choose the best way
to implement it.

3.1 Requirements

There are two types of requirements. „Functional requirements are state-
ments of services the system should provide [...] and how the system should
behave in particular situations. In some cases, the functional requirements
may also explicitly state what the system should not do.“[2, chap. 4.1] Non-
functional requirements impose constraints on the overall functionality of
the system[2, 4.1]. Meticulously composed list of requirements is essential
to avoid problems during implementation and evolution of the software.

Following list contains initial functional requirements for the solution:

1. The tool must support Maven projects.

2. It should be used locally from the developer’s computer.

3. The tool should be invoked by an user from the command line.

4. Source code of the target project1 must be stored in a git repository.

5. The tool must gather local code changes not yet pushed to a remote
repository.

6. Project with these local changes must be built on a remote machine.

7. Application must be able to retrieve results of the build and present
them to the user.

8. User must provide necessary configuration options for the applica-
tion.

9. In order to archieve speed and efficiency, the program will reuse ex-
isting resources when possible.

10. The tool must provide a way to clean up unneeded data and re-
sources.

Additionally, the program is designed to make testing of small local changes
in the code faster so one of the most important non-functional requirements
is that it must be easy to use and reasonably fast. Consequently, the author

1. Project on which the tool is used.

18

3. ANALYSIS AND DESIGN

decided to follow the convention over configuration principle. In addition,
users must have access to help information and documentation and the re-
sulting solution must be released under an open source license, which is in
accordance with Red Hat’s principles and values.

3.2 Existing solutions

There are several existing options for doing pre-commit testing and all use
a continuous integration server to perform the build.

Team City2, a CI software from JetBrains, can commit the changes after
they were succesfully tested[32]. However, it requires a support from an
IDE3 to communicate with the server and send the code to be tested. This
solution is inacceptable for two reasons:

• Requires IDE support

• It is specific to Team City, while at RedHat, Jenkins is used.

As a result, I have investigated an existence of similar solution for Jenkins.
There is a article on Jenkins Wiki that mentions the Team City functionality
and considers possible solutions for Jenkins[29]. It was created in december
2009, however no final method is currently4 described. In addition, there
is an unresolved item in Jenkins’s issue tracker and the related comments
express that there is a demand for such feature[30]. However, author of
the latest comment (september 2013) states that he implemented a partial
solution in a form of a Jenkins plugin called the Pretested Integration Plu-
gin. It works by implementing one of the approaches described in the wiki
page. It assumes there exists a special branch for each developer, where they
commit their code, and an integration branch where the code is merged by
Jenkins after it is verified[31]. This approach requires that developers agree
on a special branching model, and prevents the untested changes to appear
only in the integration branch so it is not very user friendly. Moreover, the
current version does not support git.

Another approach that I have found combines git, Jenkins and Gerrit5, a
code review tool[33]. Gerrit works as a wrapper around a git repository to
which the developers push their changes. These changes can be optionally
submitted for code review, which means that they must be aproved before

2. http://www.jetbrains.com/teamcity
3. Integrated Development Environment
4. December 2013
5. http://code.google.com/p/gerrit

19

http://www.jetbrains.com/teamcity
http://code.google.com/p/gerrit

3. ANALYSIS AND DESIGN

they can be accepted into the repository. The reviewer does not have to be
a human. There is a Jenkins plugin available, called Gerrit Trigger that can
execute a build and verify the submitted change, effectively performing a
pre-commit testing[34]. While this existing solution works, it is not always
easy to use. If a change is approved and other developer has updated the
same parts of the code, merge conflict arise that require user to manually
resolve them[35]. Moreover, this method requires additional configuration
before it can be used which takes time.

Consequently, I have decided to implement a tool that does not require
any additional setup besides a functional Jenkins server and works with
plain git repositories. It is inspired by the Team City solution, but does not
depend on the IDE and is in form of a simple command line tool. As a result
of it using Jenkins CI, following requirements have been added:

11. The local changes must be transfered to a remote Jenkins server.

12. The resulting code must be built and tested on Jenkins.

3.3 Maven Plugin Goals

The requirements do not specify how the tool should be implemented, only
that it must support Maven (1) and be executed locally (2), preferably using
CLI (3). In the previous chapter it was established that core Maven is in
fact a lightweight framework for executing plugins, which do the actual
build tasks. They are easy to implement and use, therefore it is beneficial to
develop the application as a plugin for Apache Maven.

The requirements contain two basic tasks, which can be assigned to the
following corresponding goals:

• run represents the main tool functionality.

• clean to fulfill requirement 10. The purpose of the plugin is to quickly
test features during development, so it is reasonable to assume that
it is not desirable to keep the Jenkins jobs and test results for a long
time.

3.4 Local Code Changes

In this section, we analyze how the plugin fits in with a developer’s usage
of git and examine the notion of local code changes that the tool must be
able to work with according to the requirement 5.

20

3. ANALYSIS AND DESIGN

There are several model git workflows[36], but most of them incorporate
following steps:

1. A copy of code of the target project is available in one or more shared
remote repositories.

2. Contributor creates a local repository by cloning the remote to work
with the code.

3. User makes changes on top of the working branch. This can be one
of the existing branches, or he may create a new local feature branch.

4. User transfers the changes back to the shared repository after (a por-
tion of) the work is done.

For our purposes, the local changes are represented by a series of commits
that are on the top of a working branch, but are not present in the remote
repository. In order to create an algorithm to identify these commits, it is
useful to visualize the aforementioned concepts:

Figure 3.1: General git workflow.

In the figure we see a graph of commits in the remote an the local repos-
itory. Each commit identifier also represents order in which the commits
have been created (starting with 1). Blue color represent commits that were
present in both repositories at the moment of cloning and orange color de-
notes consequent changes:

1. Developer has an idea for a new feature and creates new feature
branch, and makes first commit (6).

21

3. ANALYSIS AND DESIGN

2. Then he decides to make some unrelated changes on top of the master
branch (7).

3. Meanwhile, other developer updates the master branch in the re-
mote repository (8). The local tracking branch remote/master points
to the old commit (local repository does not know about it yet).

4. Developer continues work on the new idea (9).

From this example scenario, several observations can be made:
Firstly, there may be multiple sets of changes in the local repository that

the developer might want to test. Every feature has its own branch (new
feature, master) so the developer just needs to specify the branch con-
taining the changes to be tested. User can specify the working branch di-
rectly, but is is very probable that the changes are in the active (checked out)
branch. Git provides a special HEAD reference, that points to this branch.
This is great way for the plugin to determine default configuration and fol-
low convention over configuration principle.

Secondly, the remote repository can be updated by other users but as
mentioned, the goal of the plugin is not to merge the changes, so it does not
present a problem.

Thirdly, the remote repository contains commits (2 and 5) on top of
which the local changes (6, 9 and 7, respectively) were made. To test code
in the local new feature branch for example, the problem of transfering
modified source code to Jenkins can be easily solved by letting the Jenkins
download the unchanged original code from the remote repository (com-
mits, 1 and 2) and then only the changes (commits 6 and 9) need to be
transfered and applied to get the entire source code for testing. To do this,
the plugin must be able to identify the base commit, in this case 2, which
is the latest commit available in both new feature branch and remote
repository. To determine if the commit exists in a specific remote repository,
it is sufficient that it is available from one of the remote tracking branches
(either remote/master or remote/branch1).

As a result, the following informal algorithm to find a base commit is
provided:

1. Input is the name of the working branch and a list of tracking branches
for some specific remote repository.

2. Create a set S of all commits in the working branch.

3. For each of these branches, traverse the commit graph until a com-
mit that is also present in S is found. Add it to a base commit
candidates list and continue to the next branch.

22

3. ANALYSIS AND DESIGN

4. Find the latest commit in this list to minimize the size of changes that
must be tranfered. This is the result.

5. Output is the ID of the base commit (2 in the example).

This way we have identified commits that contain the local changes.

3.5 Patch file

Given a of sequence commits, the changes they represent can be conve-
niently stored using a patch file. In general, it is used to represent a dif-
ference between two (sets of) files. In other words, given two files, or two
versions of a file, it constains instructions that can be used to transform one
version of a file into the other. Git supports both generation and application
of patch files. Once the base commit is identified, this provides a convenient
way to transfer the changes to the Jenkins server, as described in require-
ment 11 on page 20.

3.6 Jenkins Job Configuration

In accordance with the requirement 12, the tool must be able to create and
execute Jenkins jobs. In section 2.6.1, we have described four basic types
of Jobs that Jenkins supports. The plugin is designed to test maven-based
projects, so the Maven 2/3 project job type is the most suitable. In order to
determine how the job will be configured it is useful to list how its execution
on Jenkins should look like:

• Checkout base commit from the remote repository.

• Apply patch file to obtain local version of the code.

• Execute user-defined pre-build steps if available.

• Execute maven goals provided by the user.

• Run optional post-build steps.

Specific details are provided in the Implementation and Tools chapter.

3.7 Retrieving results

After the job execution, the plugin must retrieve the results and present
them to the user (7). Jenkins provides following basic types of information
about the build:

23

3. ANALYSIS AND DESIGN

• Console output of the build process

• Simple test summary (number of passed/failed tests)

• Individual tests reports

3.8 Remote Jenkins API

The plugin must be able to communicate with Jenkins in order to create,
execute and delete jobs. Moreover, various information, including list of
jobs, list of builds and their results must be accessed. There are currently
two options for interacting with Jenkins remotely (without the using web
based interface):

• Jenkins CLI tool

• Jenkins RESTful6 API7

Jenkins CLI tool comes as a part of Jenkins distribution and in a form of
a standalone java „jar“ application 8. It has a basic set of features and is
suitable for small utilities because it is easily invoked from shell scripts.

Jenkins RESTful API offers comprehensive access to Jenkins features for
machine clients. Every important page of the web interface that represents
some Jenkins object or functionality has a corresponding URL where the
resource can be accessed in a RESTful way.

A decision to use RESTful interface to communicate with Jenkins was
made because it provides all required features and the alternative is a stan-
dalone application intended to be executed from the command line.

In the next section, a brief introduction to the REST is provided so we
can consequently present the Jenkins API itself.

3.9 Representational State Transfer

Representational State Transfer (REST) is an architectural style for distributed
systems. It is a set of constraints that are imposed on design of the these sys-
tems. It was first introduced and described by Roy Fielding in his doctoral
dissertation[37]. It is now widely used to design APIs for web services. The
reason for this is that although it is independent of the underlying protocol,
it can be easily used over HTTP9, to the development of which Fielding also

6. Conforming to the Representational State Transfer architectural style.
7. Application Programming Interface
8. https://wiki.jenkins-ci.org/display/JENKINS/Jenkins+CLI
9. Hypertext Transfer Protocol

24

https://wiki.jenkins-ci.org/display/JENKINS/Jenkins+CLI

3. ANALYSIS AND DESIGN

contributed. It is stateless, which correspond to the stateless nature of HTTP.
Additionally, it is used for client-server communication, where server holds
a resource accessed by a client.

Resource is a key REST concept. It is an object that the service exposes
via the API. To be able to manipulate this object, each resource must have an
unique identifier, such as the URL in case of a web resource. Using the iden-
tifier, the server presents the client with a representation of the resource. It
can take any form, however a structured data, such as an XML document,
is used when machine readability is required.

The client then invokes operations on the resource. In case of the HTTP,
accessing the representation is a matter of invoking a HTTP GET request on
the resource URL. Basic operations that can be executed on data stored in a
database are known under the CRUD acronym: create, read (retrieve), up-
date and delete. These operations have their counterparts as HTTP methods
which are used to work with web-based RESTful resources:

Operation HTTP SQL
Create POST CREATE
Read GET SELECT

Update PUT UPDATE
Delete DELETE DELETE

Table 3.1: Operations on RESTful resources and their HTTP and SQL coun-
terparts.

There are also other methods that can be used for specialized cases, such
as PATCH used for partial updates[38], but these cases can be solved by
good API design - the representation of a resource must have adequate
granularity (details about book author should not be part of the book rep-
resentation).

Finally, in case of web-based resources, only GET and POST methods
are often used, because the delete operation, for example, can be simu-
lated by sending a GET (or POST) request with a special parameter (e.g.
...url/to/a/book/42?action=delete).

3.10 Jenkins RESTful API

Jenkins provides a simple way to discover URL of a REST resource and
access documentation about it. Each page of the Jenkins web interface can
be used to access to a particular object or feature. For example, the dash-

25

3. ANALYSIS AND DESIGN

board, which provides general overview and list of the Jobs, is a page that
is located at the root of the Jenkins server. From this address we can get the
related documentation by concatenating "/api" to the URL. This is available
for all resource access points. It states that there are three types of represen-
tation available for each resource:

• Python10 representation consists of a python code containing infor-
mation in a form of python data structures.

• JSON 11 is a lightweight data-interchange format inspired by JavaScript.

• XML is a popular markup language that can be used to represent in-
formation in a structured way that is suitable for machine-processing,
while being relatively human-readable.

Finally, I have decided to use the third option because XML documents .

3.11 Job Reuse

We can assume that the plugin will be often invoked multiple times for
a specific branch of the project, after the developer makes another code
change he wants to test. Therefore it is reasonable to support reuse of Jenk-
ins jobs, provided that the plugin is able to check that the job configuration
has not changed.

To archieve this, we first consider situations that do not require creation
of another job:

• User commits additional changes locally, resulting in a different patch
file. However, it can be provided as build parameter and configura-
tion stays the same.

• Invocation of different Maven goals. This can be parametrized as
well.

On the other hand, job should not be reused if:

• Some part of the configuration that cannot be parametrized changes.
User can add a new parameter or entire build step.

• User invokes the plugin for a different working branch. This results
in a different patch and a base commit, which can be sent as a build
argument, but it would result in unrelated builds grouped in the
same job.

10. http://www.python.org
11. http://www.json.org

26

http://www.python.org
http://www.json.org

3. ANALYSIS AND DESIGN

As a result, exactly one job for each local working branch is a good com-
promise and its default name can be the same as the name of the branch.
However the job with that name might already exist, created either by the
previous plugin invocation or by some unrelated user for completely dif-
ferent purposes. Therefore, the tool must determine if the reuse is possible,
and if not, permit the user to provide alternative job name.

27

4 Implementation and Tools

The Jenkins pre-commit test maven plugin implementation consists of sev-
eral components:

• Maven Mojos – represent Maven goals and are responsible for pro-
viding main functionality. These are RunMojo and CleanMojo classes.

• Git API – is used to interact with git repository of the target project.
This task is implemented in the GitTools class.

• Job Configurator – consists of several classes responsible for gener-
ating Jenkins job configuration file.

• Jenkins RESTful Client – is used to communicate with Jenkins1 via
its RESTful interface.

• Data storage – is responsible for saving several pieces of data for each
job to facilitate easy job reuse.

• Result processors – are a collection of classes that retrieve various
information from Jenkins after the build is finished and present them
to the user.

In this chapter, implementation details of these parts are described.

4.1 GitTools

Git stores data in a .git directory located in the repository root. GitTools
must have a reference to this file, but Maven only provides location of the
pom.xml file, which is not necessary located there. As a result, construc-
tor of this class is private, and instances are created by a factory method
lookup instead. It will search for the .git not only in the specified direc-
tory, but also in its parents.

User provides a reference to the working branch by specifying its name
as a string argument. The getRef method is used to parse this string and
return its object representation (containing an identifier of the tip commit),
which is then used to work with the branch in other methods.

Another argument that is provided by the user is name of the remote
repository to be used in the base commit algorithm. This repository con-
tains project code on top of which the patch with the local changes is ap-
plied. Jenkins must know its URL so it can download the code before it can

1. Current version of Jenkins CI is 1.544, but the plugin should work for older versions.

28

4. IMPLEMENTATION AND TOOLS

GitTools

 -GitTools(gitDir : File, log : Log)

+lookup(dir: File, log: Log) : GitTools

 +getRef(ref : String) : Ref

 +getRemoteUrl(remoteName : String) : String

 -getAllBranches() : Set<Ref>

 +createPatch(out : File, from : ObjectId, to : ObjectId, includeStaged : boolean) : boolean

 -findBase(start : ObjectId, others : Set<ObjectId>) : ObjectId

 +findBase(startBranchRef : String, remoteName : String) : ObjectId

Figure 4.1: GitTools class diagram.

be patched. Method getRemoteUrl is used to retrieve this URL so it can
be used to properly configure the Jenkins job.

The algorithm itself is implemented in the private findBase(ObjectId,
Set<ObjectId>): ObjectId method. It takes a commit id of the work-
ing branch tip and a set of commits on top of the remote branches. The algo-
rithm then finds suitable base commit and returns its ID. This method is pri-
vate, because a wrapper method that takes string arguments received from
the user, findBase(String, String): ObjectId is used instead. In-
ternally, it uses the previously mentioned method, getRef and a private
getAllBranches to parse argument strings and call the underlying method.

Finally, the patch is created using createPatch function. It takes the
base commit and a commit on top of the working branch to create the patch.
The last argument enables the user to test changes even before committing
locally. If it is set to true, changes staged 2 for commit are also included in
the patch.

These functions are implemented using JGit3, a git client written en-
tirely in Java. It is lightweight and provides all services that the application
needs:

• Working with references.

• Determining URL of remote repositories.

• Ability to iterate over commits in selected branches.

2. This is a git feature. User must first select changes to be committed by adding them to
an intermediate staging area (also called „index“).
3. http://www.eclipse.org/jgit

29

http://www.eclipse.org/jgit

4. IMPLEMENTATION AND TOOLS

• performing a git diff analog to create a patch file.

4.2 Job Configurator

Jenkins uses XML files to store job configuration. To create a job using the
RESTful interface, client must provide this configuration file using HTTP
POST method. Therefore, the plugin must be able to generate such file from
parameters provided by the user. This is the task of Job Configurator com-
ponent.

Job Model

To create this configuration, Jenkins pre-commit test maven plugin must
work with a representation of the Jenkins job.

Core part of the Jenkins architecture are model classes, located in the
hudson.model package4. They represent core concepts such as Project,
Job, Build or Result and contain their state. Most of them have an associ-
ated URL and are viewable via HTML web interface are exposed via REST-
ful API. They are serialized into XML using XStream5, a tool that enables
a conversion of an object graph into a human-readable XML document. It
used in Jenkins to persist the state of these classes and generate XML repre-
sentation for the RESTful API.

Similar solution is used to generate this configuration by the plugin. Job
is represented by a collection of model classes located in net.jsenko.jpct.
configurator.model package.

JobModel class represents a maven-based job. In addition to the name,
description and goal fields, it contains a list of ParameterModelwhich
enables the plugin to define job parameters. Additionally, GitModel is
used to configure the job to retrieve base commit from the correct remote
repository. It contains values computed by GitTools. Finally, BuildStepModel
can be used to define additional build steps either before or after the main
maven goal is executed. This is important, because one of the „before“ build
steps is tasked with applying the patch.

JobConfigurator

JobConfigurator provides methods that work with the model and im-
plement its conversion to the XML file. Because the JobModel has many

4. http://javadoc.jenkins-ci.org/hudson/model/package-summary.html
5. http://xstream.codehaus.org

30

http://javadoc.jenkins-ci.org/hudson/model/package-summary.html
http://xstream.codehaus.org

4. IMPLEMENTATION AND TOOLS

JobModel

 - name : String

 - description : String

 - parameters : List<ParameteModel>

 - git : GitModel

 - before : List<BuildStepModel>

 - goals : String

 - pomPath : String

 - after : List<BuildStepModel>

GitModel

 -name : String

 -url : String

 -branchspec : String

ParameterModel

 -type : String

 -name: String

 -description: String

BuildStepModle

 -shell: String

 -pom : String

 -goals : String

Figure 4.2: Job Model classes, fields only (getters, setters, hashCode and
toString are omitted).

fields, it is not convenient to set them directly in the RunMojo and then
pass it to JobConfigurator to be converted. As a result, a builder design
pattern is used to provide configuration received from the user or provided
by other components. This includes the name, description, git remote URL
and the builder will set the remaining configuration options. Note that the
builder does not have methods to set the maven goals or patch file. This is
because in order for the job to be as reusable as possible, these values are
provided as parameters when the job is executed on Jenkins. Therefore, the
builder is also responsible for automatically adding these parameters to the
model:

• path – file parameter containing the changes.

• commitID – ID of the base commit. Because this value might change,
it it provided as a parameter.

• nonce – pseudorandom string to uniquely identify the build so we
can retrieve the correct results.

• goals – maven goals to be executed.

In addition, the builder adds another BuildStepModel to the JobModel::
before list. It is responsible for applying the patch using following shell
commands:

• git reset -hard – Jenkins keeps sources of the project being
built in a workspace directory. If multiple builds are executed and

31

4. IMPLEMENTATION AND TOOLS

the git settings have not changed (commitID stays the same) its con-
tent is reused. Therefore the changes made by previous patch appli-
cations are preserved. This may cause another patching to fail. As a
result, this command resets the changes made by the previous patch-
ing.

• git apply $patch – apply the path file given as a parameter. The
location of the file is stored in the $patch variable.

Note that the getBuilder(JobModel, Log) : Builder method al-
ready takes a JobModel instance as an argument. This is because user can
set complex object properties by specifying them in pom.xml as a part of
plugin configuration. Maven is then able to create instances of these objects
with the specified data and provide them to the plugin as another argu-
ment. Therefore, in addition to the -Dgoals CLI property, user can add
custom build steps and other settings via POM. The resulting model objects
are used as template by the builder and are combined with other configu-
ration.

After the job model is set up, createJobConfig(File) : boolean
is called to marshal the data into an XML file. This serialization is also im-
plemented using XStream. The result must have a specific format to be
understood by Jenkins , which can not be produced from the JobModel
without additional configuration. To solve these types of issues, XStream
provides custom serialization strategies using converters. As a result, the
net.jsenko.jpct.configurator.converter package contains con-
verters that transform the model classes into the XML with required format.

4.3 Jenkins RESTful API Client

The Jenkins pre-commit test maven plugin communicates with the Jenkins
server using a Jenkins RESTful Client. It a collection of interfaces and their
implementations located in the net.jsenko.jpct.Jenkins.client pack-
age and developed specifically for the use in this plugin.

Most of them represent a RESTful resource and define methods that
work with them. The operations are implemented using Jersey by send-
ing HTTP requests and processing responses. „Jersey RESTful Web Services
framework is open source, production quality, framework for developing
RESTful Web Services in Java that provides support for JAX-RS APIs and
serves as a JAX-RS (JSR 311 & JSR 339) Reference Implementation.“6. In

6. http://jersey.java.net

32

http://jersey.java.net

4. IMPLEMENTATION AND TOOLS

<<interface>>
Job

 +getName() : String

 +getAllBuilds() : List<Build>

 +getRunBuilder() : RunBuilder

 +getJobConfigFile(File) : boolean

 +delete() : boolean

<<interface>>
JenkinsClient

 +createJob(name : String, configFile : File) : Job

 +getJobByName(name : String) : Job

 +getAllJobs() : List

<<interface>>
Build

 +isBuilding() : boolean

 +isSuccess() : boolean

 +getResult() : String

 +getModules() : List<Module>

 +getStringParameterValue(name : String) : String

 +getConsoleOutput(consoleFile: File) : boolean

<<interface>>
Resource

+getURI() : URI

 +valid() : boolean

JenkinsClienFactory

+createClient(url: String, log: Log): JenkinsClient

 +createClient(url: String, user: String, token: String, log: Log): JenkinsClient

Figure 4.3: Several of Jenkins RESTful Client interfaces (some methods and
classes omitted for brevity).

addition to the server-side part of the framework, Jersey provides a „flu-
ent Java based API for communication with RESTful Web services.“[39] It
is simple to use yet powerful, so it was chosen to implement this client.
Common methods are extracted to a generic Resource interface. It con-
tains a method to get the resource URI and an operation to check that
the class represents a valid (accessible) resource. The implementation of
this interface, AbstractResource contains a reference to WebResource
class which is a part of Jersey and enables invocation of HTTP methods on
it. There are also several protected utility methods, most important being

33

4. IMPLEMENTATION AND TOOLS

apiGetRequest(xpath: String, depth: int, wrapper: String,
type: Class<T>): T. Jenkins supports filtering of the resource repre-
sentation by executing an XPath expression provided as an URL parameter.
Another argument, depth is also a Jenkins feature, enabling user to limit
the amount of provided information. Finally, type is passed to the Jersey
which will attempt to convert the receive data and return an object of the
requested type. This is usually the java.lang.String class in order to
read, or the java.io.File to download the resource. However, it can also
be used to unmarshal the XML into any suitable object using JAXB7.

The other interfaces form a hierarchy, a consequence of relationships be-
tween the resources. For example, Build represent an execution of a spe-
cific Job . The root of this structure is a JenkinsClient interface which
acts as an entry point representing the entire Jenkins server. Its implementa-
tion instance is provided by one of two possible methods in a JenkinsClientFactory
class, depending on whether authentication is required to access the server.

The most important task for the client is to create and execute a new
job, so description other functions is omitted. The creation is performed by
invoking the JenkinsClient::createJob method. The XML configu-
ration file is supplied as the second argument. To invoke the job, a builder
design pattern is used for conveniently providing job arguments. As an ex-
ample, following code is a snippet from the RunMojo:

boolean result = job.getRunBuilder()
.setParameter("commitID", patchCommitId)
.setParameter("nonce", nonce)
.setParameter("goals", getGoals())
.setParameter("patch", patchFile)
.run();

Figure 4.4: Job execution example using a convenient fluent interface.

4.4 Result processors

As described in the analysis section 3.7, Retrieving results, there are sev-
eral pieces of information available about the build that has been executed.
To fulfill the requirements, each of them has an associated result proces-
sor, a class responsible for their retrieval and presentation. After a job is

7. Java Architecture for XML Binding, http://www.oracle.com/technetwork/
articles/javase/index-140168.html

34

http://www.oracle.com/technetwork/articles/javase/index-140168.html
http://www.oracle.com/technetwork/articles/javase/index-140168.html

4. IMPLEMENTATION AND TOOLS

started using the Jenkins RESTful client, RunMojo retrieves the associated
build with the correct nonce value. Subsequently, the client is used to peri-
odically poll Jenkins until the build finishes, marking the plugin execution
successful or not according to the build result.

Each result processor extends an abstract class, net.jsenko.jpct.
result.ResultProcessorwhich defines methods called in the RunMojo
during the build execution, ensuring that the processors have common in-
terface so new ones can be easily created. The start(Build, Config,
Log) method is called once at the beginning of the build so the proces-
sor can be properly initialized and has access to the available information.
Method run() is invoked periodically and finish() once the building is
done.

Currently the Jenkins pre-commit test maven plugin contains three im-
plementations of the ResultProcessor, but more can be added in the
future:

• ProgressRP – print „.“ character regularly to indicate that the plu-
gin is waiting. Uses run().

• TestSummaryRP – display test statistics such as the number of passed
and failed tests for each maven module. Uses finish().

• ConsoleOutputFileRP – Jenkins provides an option to view con-
sole output of the build process. This processor saves it to a file for
detailed examination in case of problems. This happens in finish()
method.

4.5 Data storage

In order to make the Jenkins pre-commit test maven pluginmore convenient
to use and facilitate job reuse, as described in 3.7, there must be a way to
store some data on a per-job basis. This is implemented by net.jsenko.
jpct.Config class. The data are stored in a private Map with String
keys and values. This map is then serialized using XStream and stored in
data.xml file, located in each job’s data directory. These directories are
also used by other parts of this plugin, to store generate job configuration
or patch files. The following pieces of information are saved to the file:

• jenkinsUrl, jenkinsUser, jenkinsToken – so the user does not
have to provide them multiple times as a command line arguments,
an so the CleanMojo can delete the job on the Jenkins server without
asking for its URL.

35

4. IMPLEMENTATION AND TOOLS

• goals – similarly, this property is automatically reused and does not
have to be specified again.

• jobModelHashCode – the plugin must be able to verify that it can
reuse an existing job. To make sure that the job configuration repre-
sented by the model has not changed, the hash code of the previously
used JobModel is stored and compared to the currently generated
one.

4.6 Maven Mojos

„A Maven Plugin is a Maven artifact which contains a plugin descriptor
and one or more Mojos.“[14, chap. 17.2.4] Mojo8 is a Java class that repre-
sents a single Maven goal. It implements a org.apache.maven.plugin.
Mojo interface, which defines methods required for interaction with Maven
infrastructure. The most important are execute(), containing the main
code, and getLog(): Log, providing access to the logger object. The de-
scriptor can be generated automatically by another plugin, maven-plugin-
plugin from annotations that can be used directly in the Mojo class. In ad-
dition, this plugin is able to generate standard HelpMojo to display sim-
ple documentation, which is also present in the Jenkins pre-commit test
maven plugin. The properties can be injected into a specific field of the Mojo
marked with a org.apache.maven.plugins.annotations.Parameter
annotation.

8. „The word mojo is defined as ’a magic charm or spell ’[...]. Maven uses the term Mojo
because it is a play on the word Pojo (Plain-old Java Object).“[14, chap. 17.2.4]

36

5 Conclusion

The goal of this thesis was to create a tool that helps developers to conve-
niently perform pre-commit testing of maven-based projects. The key idea
is to perform the build on a remote continuous integration server, rather
than locally, to decrease load on the developer’s machine, especially in case
of large projects with extensive test suite.

In order to properly approach this task, I had to become familiar with
project automation tools, including Apache Ant, Apache Maven, Jenkins CI
and git, and study software configuration management. As a result, I have
gained valuable knowledge and experience not only to complete this thesis,
but also to use for development of my future projects.

I believe that the resulting tool provides software developers with a
good solution to the problem and fulfills all functional and non-functional
requirements that have been identified in the Analysis and Design chapter.

The Jenkins pre-commit test maven plugin has been released under
open source license together with documentation and usage examples. I
hope that people will find it useful and contribute to its further improve-
ment, particularly in the following areas:

• Add support for additional build tools in addition to Maven, includ-
ing Apache Ant.

• Currently, user does not have many options to configure Jenkins jobs
that are being generated in more detail. Therefore, job model should
be extended to support more customization in the POM.

• Efficiency of some parts of the plugin, such as the base commit find-
ing algorithm, could be further improved.

37

Bibliography

[1] AIELLO, Bob a Leslie A SACHS. Configuration Management Best
Practices: Practical Methods that Work in the Real World. Upper Sad-
dle River, NJ: Addison-Wesley, c2011, xxxvii, 229 p. ISBN 03-216-8586-
5.

[2] SOMMERVILLE, Ian. Software engineering. 9th ed. Boston: Addison-
Wesley, c2011. ISBN 978-0-13-703515-1.

[3] LI, Patrick. JIRA 5. 2 Essentials. Birmingham: Packt Publishing, Lim-
ited, 2013. ISBN 978-178-2179-993.

[4] OMG Unified Modeling Language (OMG UML), Superstructure,
V2.1.2. 2007. [visited 2014-01-02] Available at: http://www.omg.
org/spec/UML/2.1.2/Superstructure/PDF

[5] CLARK, Mike. Pragmatic project automation: how to build, deploy,
and monitor Java applications. Raleigh: The pragmatic Bookshelf,
c2004, xiv, 161 s. ISBN 09-745-1403-9.

[6] SMITH, Peter. Software Build Systems: Principles and Experience. Up-
per Saddle River, NJ: Addison Wesley, c2011, xxxv, 583 p. ISBN 03-217-
1728-7.

[7] HUMBLE, Jez a David FARLEY. Continuous Delivery: Reliable Soft-
ware Releases through Build, Test, and Deployment Automation. Up-
per Saddle River, NJ: Addison-Wesley, 2010, xxxiii, 463 p. ISBN 978-
032-1601-919.

[8] ACM HONORS CREATOR OF LANDMARK SOFTWARE TOOL.
In: ACM - Association for Computing Machinery [online]. New
York, 2004 [visited 2013-12-09]. Available at: http://www.acm.org/
announcements/softwaresystemaward.3-24-04.html

[9] Make(1). The FreeBSD Project: FreeBSD Man Pages [online]. 2013
[visited 2013-12-09]. Available at: http://www.freebsd.org/
cgi/man.cgi?query=make&sektion=1&manpath=Red+Hat+
Linux%2fi386+9

[10] RICHARD M. STALLMAN, Richard M.Roland McGrath. GNU Make:
A Program for Directing Recompliation; GNU Make Version 4.0.
Boston, MA: Free Software Foundation, 2013. ISBN 18-821-1483-3.

38

http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF
http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF
http://www.acm.org/announcements/softwaresystemaward.3-24-04.html
http://www.acm.org/announcements/softwaresystemaward.3-24-04.html
http://www.freebsd.org/cgi/man.cgi?query=make&sektion=1&manpath=Red+Hat+Linux%2fi386+9
http://www.freebsd.org/cgi/man.cgi?query=make&sektion=1&manpath=Red+Hat+Linux%2fi386+9
http://www.freebsd.org/cgi/man.cgi?query=make&sektion=1&manpath=Red+Hat+Linux%2fi386+9

5. CONCLUSION

[11] Overview of Apache Ant Tasks. The Apache Ant Project [online].
2013 [visited 2013-12-09]. Available at: http://ant.apache.org/
manual/tasksoverview.html

[12] Peter Vogel. MARC: Mailing list ARChives [online]. 2001 [visited
2013-12-09]. Available at: http://marc.info/?l=ant-user&m=
98152914819125&w=2

[13] Features | Apache Ivy. The Apache Ant Project [online]. 2013
[visited 2013-12-09]. Available at: http://ant.apache.org/ivy/
features.html

[14] SONATYPE COMPANY. Maven: The Definitive Guide. 1st ed. Se-
bastopol, California: O’Reilly, c2008. ISBN 978-0-596-51733-5.

[15] CASEY, John, Vincent MASSOL, Brett PORTER, Carlos
SANCHEZ a Jason VAN ZYL. Better Builds with Maven:
The How-to Guide for Maven 2.0. 2008. Available at: http:
//www.maestrodev.com/wp-content/uploads/2012/03/
betterbuildswithmaven-2008.pdf

[16] Maven Archetype Plugin. Apache Maven Project [online]. 2011
[visited 2013-12-16]. Available at: http://maven.apache.org/
archetype/maven-archetype-plugin

[17] Maven Archetype Plugin Documentation. Apache Maven
Project [online]. 2011 [visited 2013-12-16]. Available at: http://
maven.apache.org/archetype/maven-archetype-plugin/
plugin-info.html

[18] Introduction to the POM. Apache Maven Project [online]. 2013 [visited
2013-12-12]. Available at: http://maven.apache.org/guides/
introduction/introduction-to-the-pom.html

[19] POM Reference. Apache Maven Project [online]. 2013 [visited 2013-12-
12]. Available at: http://maven.apache.org/pom.html#Maven_
Coordinates

[20] Git [online]. 2013 [visited 2014-01-02]. Available at: http://
git-scm.com

[21] TORVALDS, Linus. Linus Torvalds on git. 2007. [visited 2014-01-
02] Available at: http://git.wiki.kernel.org/index.php/
LinusTalk200705Transcript

39

http://ant.apache.org/manual/tasksoverview.html
http://ant.apache.org/manual/tasksoverview.html
http://marc.info/?l=ant-user&m=98152914819125&w=2
http://marc.info/?l=ant-user&m=98152914819125&w=2
http://ant.apache.org/ivy/features.html
http://ant.apache.org/ivy/features.html
http://www.maestrodev.com/wp-content/uploads/2012/03/betterbuildswithmaven-2008.pdf
http://www.maestrodev.com/wp-content/uploads/2012/03/betterbuildswithmaven-2008.pdf
http://www.maestrodev.com/wp-content/uploads/2012/03/betterbuildswithmaven-2008.pdf
http://maven.apache.org/archetype/maven-archetype-plugin
http://maven.apache.org/archetype/maven-archetype-plugin
http://maven.apache.org/archetype/maven-archetype-plugin/plugin-info.html
http://maven.apache.org/archetype/maven-archetype-plugin/plugin-info.html
http://maven.apache.org/archetype/maven-archetype-plugin/plugin-info.html
http://maven.apache.org/guides/introduction/introduction-to-the-pom.html
http://maven.apache.org/guides/introduction/introduction-to-the-pom.html
http://maven.apache.org/pom.html#Maven_Coordinates
http://maven.apache.org/pom.html#Maven_Coordinates
http://git-scm.com
http://git-scm.com
http://git.wiki.kernel.org/index.php/LinusTalk200705Transcript
http://git.wiki.kernel.org/index.php/LinusTalk200705Transcript

5. CONCLUSION

[22] PRESSMAN, Roger S. Software engineering: a practitioner’s approach.
7th ed. New York: McGraw-Hill Higher Education, c2010, xxviii, 895
p. ISBN 00-733-7597-7.

[23] What’s the difference between VCS and SCM?. Stack
Overflow [online]. 2010 [visited 2013-12-28]. Available at:
http://stackoverflow.com/questions/4127425/
whats-the-difference-between-vcs-and-scm

[24] CHACON, Scott. Pro Git. New York: Apress, c2009, xxi, 265 s. ISBN
978-1-4302-1833-3.

[25] GitHub. Contributors to jenkinsci/jenkins [online]. 2013 [visited 2014-
01-02]. Available at: http://github.com/jenkinsci/jenkins/
graphs/contributors

[26] SMART, John Ferguson. Jenkins: the definitive guide. Beijing: O’Reilly
Media, 2011, xxii, 380 pages. ISBN 14-493-0535-0.

[27] Plugins. Jenkins Wiki [online]. 2013 [visited 2014-01-02]. Available at:
http://wiki.jenkins-ci.org/display/JENKINS/Plugins

[28] Who broke the build?. PaperCut Blog / News [online]. 2011 [vis-
ited 2014-01-02]. Available at: http://www.papercut.com/blog/
chris/2011/08/19/who-broke-the-build

[29] Designing pre-tested commit. Jenkins Wiki [online]. 2009 [visited 2013-
12-28]. Available at: http://wiki.jenkins-ci.org/display/
JENKINS/Designing+pre-tested+commit

[30] Pre-tested commit feature. Jenkins JIRA [online]. 2013 [visited 2013-12-
28]. Available at: https://issues.jenkins-ci.org/browse/
JENKINS-1682

[31] Pretested Integration Plugin. Jenkins Wiki [online]. 2013 [visited 2013-
12-28]. Available at: https://wiki.jenkins-ci.org/display/
JENKINS/Pretested+Integration+Plugin

[32] Pre-Tested Commit: No broken code in your version control.
Ever. TeamCity [online]. 2013 [visited 2013-12-28]. Available at:
http://www.jetbrains.com/teamcity/features/delayed_
commit.html

40

http://stackoverflow.com/questions/4127425/whats-the-difference-between-vcs-and-scm
http://stackoverflow.com/questions/4127425/whats-the-difference-between-vcs-and-scm
http://github.com/jenkinsci/jenkins/graphs/contributors
http://github.com/jenkinsci/jenkins/graphs/contributors
http://wiki.jenkins-ci.org/display/JENKINS/Plugins
http://www.papercut.com/blog/chris/2011/08/19/who-broke-the-build
http://www.papercut.com/blog/chris/2011/08/19/who-broke-the-build
http://wiki.jenkins-ci.org/display/JENKINS/Designing+pre-tested+commit
http://wiki.jenkins-ci.org/display/JENKINS/Designing+pre-tested+commit
https://issues.jenkins-ci.org/browse/JENKINS-1682
https://issues.jenkins-ci.org/browse/JENKINS-1682
https://wiki.jenkins-ci.org/display/JENKINS/Pretested+Integration+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Pretested+Integration+Plugin
http://www.jetbrains.com/teamcity/features/delayed_commit.html
http://www.jetbrains.com/teamcity/features/delayed_commit.html

5. CONCLUSION

[33] Git, Jenkins, Gerrit, Code Review and pre-tested commits.
Knowledge Is Everything [online]. 2013 [visited 2013-12-
28]. Available at: http://www.halyph.com/2013/08/
git-jenkins-gerrit-code-review-and-pre.html

[34] Gerrit Trigger. Jenkins Wiki [online]. 2013 [visited 2013-12-28]. Avail-
able at: http://wiki.jenkins-ci.org/display/JENKINS/
Gerrit+Trigger

[35] Resolving a merge conflict on gerrit. Blog of Jeroen
De Dauw [online]. 2013 [visited 2013-12-28]. Avail-
able at: http://www.bn2vs.com/blog/2013/07/01/
resolving-a-merge-conflict-on-gerrit

[36] Git Workflows and Tutorials. Atlassian [online]. 2013 [visited 2013-12-
28]. Available at: http://www.atlassian.com/git/workflows

[37] FIELDING, Roy Thomas. Architectural Styles and the Design of
Network-based Software Architectures. Irvine, 2000. Doctoral disser-
tation. University of California.

[38] Why PATCH is Good for Your HTTP API. In: Mnot’s blog [on-
line]. 2012 [visited 2013-12-28]. Available at: http://www.mnot.
net/blog/2012/09/05/patch

[39] Chapter 5. Client API. Jersey 2.5 User Guide [online]. 2013
[visited 2013-12-28]. Available at: http://jersey.java.net/
documentation/latest/client.html

41

http://www.halyph.com/2013/08/git-jenkins-gerrit-code-review-and-pre.html
http://www.halyph.com/2013/08/git-jenkins-gerrit-code-review-and-pre.html
http://wiki.jenkins-ci.org/display/JENKINS/Gerrit+Trigger
http://wiki.jenkins-ci.org/display/JENKINS/Gerrit+Trigger
http://www.bn2vs.com/blog/2013/07/01/resolving-a-merge-conflict-on-gerrit
http://www.bn2vs.com/blog/2013/07/01/resolving-a-merge-conflict-on-gerrit
http://www.atlassian.com/git/workflows
http://www.mnot.net/blog/2012/09/05/patch
http://www.mnot.net/blog/2012/09/05/patch
http://jersey.java.net/documentation/latest/client.html
http://jersey.java.net/documentation/latest/client.html

Appendix A
Archive Content

This archive contains contents of the project’s git repository, currently hosted
on GitHub:

• Name: jpct-maven-plugin

• The repository is accessible via web browser or git clone at
http://github.com/jsenko/jpct-maven-plugin.git.

• Released under Apache License v. 2.0, text included in the LICENSE
file.

• Documentation available in README.md (markdown file).

In addition, compiled plugin (target/jpct-maven-plugin-1.0.jar)
and documentation (README.html) are included.

42

http://github.com/jsenko/jpct-maven-plugin.git

