
Deployment to an application server

For deployment to an application server the required elements are a properly configured
Java application server and a database system capable of communicating with it, in other
words, for which the appropriate driver exists.

The database system only needs to contain a corresponding database to the one
defined in server configuration. Tables are created and filled during the deployment of
the application.

The configuration of the application server must set the database as data source
and establish the security domain. The guide how to install the application to the JBoss
Application Server.:

1. Download the latest final version of JBoss Application Server 7 (currently it is 7.1.1
from http :// www . jboss . org / jbossas / downloads).
2. Extract the downloaded archive to the destined folder.
3. Create the database for the application in the database system.
4. Copy the driver for the database to the standalone/deployments folder (for
example the apropriate JDBC Driver for MySQL is called Connector/J and can be
obtained at http :// www . mysql . com / products / connector / .
The file mysql-connector-java-5.1.22-bin.jar would then be copied to
server-folder/standalone/deployments)
5. Configure the server:

a) Open file
server-folder/standalone/configuration/standalone.xml
b) Add the appropriate data source (inside the datasources xml
element), example:

<datasource jta="false"
jndi-name="java:jboss/datasources/mysqlfusionweb"
pool-name="FusionWeb" enabled="true" use-ccm="false">
<connection-url>jdbc:mysql://localhost:3306/fusionweb?
zeroDateTimeBehavior=convertToNull</connection-url>
<driver-class>com.mysql.jdbc.Driver</driver-class>
<driver>mysql-connector-java-5.1.22-bin.jar</driver>
<security>

<user-name>root</user-name>
<password>1234</password>

</security>
<validation>

<validate-on-match>false</validate-on-match>
<background-validation>false</background-
validation>

</validation>
<statement>

<share-prepared-statements>false</share-prepared-
statements>

</statement>
</datasource>

http://www.mysql.com/products/connector/
http://www.mysql.com/products/connector/
http://www.mysql.com/products/connector/
http://www.mysql.com/products/connector/
http://www.mysql.com/products/connector/
http://www.mysql.com/products/connector/
http://www.mysql.com/products/connector/
http://www.mysql.com/products/connector/
http://www.mysql.com/products/connector/
http://www.mysql.com/products/connector/
http://www.mysql.com/products/connector/
http://www.mysql.com/products/connector/
http://www.jboss.org/jbossas/downloads
http://www.jboss.org/jbossas/downloads
http://www.jboss.org/jbossas/downloads
http://www.jboss.org/jbossas/downloads
http://www.jboss.org/jbossas/downloads
http://www.jboss.org/jbossas/downloads
http://www.jboss.org/jbossas/downloads
http://www.jboss.org/jbossas/downloads
http://www.jboss.org/jbossas/downloads
http://www.jboss.org/jbossas/downloads
http://www.jboss.org/jbossas/downloads

The jndi-name must correspond to the one in persistence.xml
file (default is this). The connection-url must correspond to the relevant
url for connecting to the database. The driver must be the same as the
defined driver (in the next step). The security element represents the
credentials for logging into the database.
c) Add the corresponding driver (inside the drivers xml element), for
example:

<driver name="mysql-connector-java-5.1.22-bin.jar"
module="com.mysql">

<driver-class>com.mysql.jdbc.Driver</driver-
class>
</driver>

d) Add the security domain (inside the security-domains xml
 element). Example:

<security-domain name="fusionweb">
<authentication>

<login-module code="Database" flag="required">
<module-option name="dsJndiName"
value="java:jboss/datasources/mysqlfusionweb
"/>
<module-option name="principalsQuery"
value="select password from User where
username=?"/>
<module-option name="rolesQuery"
value="select role,'Roles' from UserRoles
where User_username=?"/>
<module-option name="hashAlgorithm"
value="SHA-256"/>
<module-option name="hashEncoding"
value="base64"/>
<module-option
name="unauthenticatedIdentity"
value="guest"/>
<module-option name="allowEmptyPasswords"
value="false"/>

</login-module>
</authentication>

</security-domain>

The security domain specifies the authentication of the users. The value of
dsJndiName must be same as the datasource.

e) Increase the timeout for the deployment - as during the time the deployment is
created, the tables filled and the session constructed, it might not meet the default
timeout for the deployment. To the deployment-scanner xml element add attribute

deployment-timeout="600".
f) Save and close the file. The configuration can also be managed through the

administration console of the server.
6. Start the server. It can be achieved through IDE or the execution of the appropriate
file in the server-folder/bin folder (for Linux based operating systems
standalone.sh).
7. Deploy the application - either through IDE, console or copy the FusionWeb.war
file into server-folder/standalone/deployments.

8. Explore the application on: http :// localhost :8080/ FusionWeb /

http://localhost:8080/FusionWeb/
http://localhost:8080/FusionWeb/
http://localhost:8080/FusionWeb/
http://localhost:8080/FusionWeb/
http://localhost:8080/FusionWeb/
http://localhost:8080/FusionWeb/

