
Platforma průmyslové spolupráce

CZ.1.07/2.4.00/17.0041

Název

Drools Fusion and Utilization of Complex Event Processing in Web Applications

Popis a využití

• studijní materiál pro platformu Drools, komplexní zpracování událostí (CEP)

• use case pro využití CEP v oblasti webových aplikací

• výuka: pokročilá Java

Jazyk textu

• anglický

Autor (autoři)

• Iva Žáková

Oficiální stránka projektu:

• http://lasaris.fi.muni.cz/pps

Dostupnost výukových materiálů a nástrojů online:

• http://lasaris.fi.muni.cz/pps/study-materials-and-tools

http://lasaris.fi.muni.cz/pps
http://lasaris.fi.muni.cz/pps/study-materials-and-tools

Contents

1 Introduction . 1
2 Drools Expert and Drools Fusion 3

2.1 Overview of Drools . 3
2.1.1 Introduction and history 3
2.1.2 Drools projects 3
2.1.3 Alternatives to Drools 5

2.2 Rule engine . 6
2.2.1 Production and Hybrid Rule Systems 6
2.2.2 Working memory and agenda 8
2.2.3 Advantages and disadvantages of using a rule

engine . 9
2.3 Rete Algorithm . 10

2.3.1 Introduction . 10
2.3.2 Rete network . 11
2.3.3 Optimization and effectiveness 15

2.4 Constructing the rules 16
2.4.1 Assembling resources 16
2.4.2 Drools Rule Language 18

2.5 Drools Fusion . 21
2.5.1 Complex event processing 21
2.5.2 Event definition 22
2.5.3 Clocks . 23
2.5.4 Temporal operators 24
2.5.5 Sliding windows 25
2.5.6 Entry points . 26
2.5.7 Event processing modes 27

2.6 Drools 6 . 27
3 Motivation to include CEP in web applications 29

3.1 The role of the user in the aims of websites 29
3.2 Benefits of incorporating Complex Event Processing . . 30
3.3 Existing solutions . 32

4 The application . 33
4.1 Overview . 33
4.2 Analysis and design . 34

4.2.1 Roles . 34

vi

4.2.2 Data model . 36
4.2.3 Plugging Drools in 37

4.3 Implementation . 38
4.3.1 Java EE . 38
4.3.2 Drools assembly at the start of the application . 40
4.3.3 Overview of generating and processing events . 42
4.3.4 Firing the rules 44
4.3.5 Use cases of Complex Event Processing utiliza-

tion . 46
4.3.6 Testing of the rules 51

4.4 Deployment . 52
4.4.1 OpenShift . 52
4.4.2 An application server 53

5 Conclusion . 54
Bibliography . 56

A Events diagram . 61
B Deploying the application to JBoss Application Server 7 . 62

vii

1 Introduction

As the impact of information technologies on society increases every
year, constructing more and more complex and sophisticated sys-
tems is inevitable. The automation of human processes or appropri-
ate computer assistance combined with monitoring and accountabi-
lity is one of contemporary concerns. There are also frequent require-
ments not to only enhance an already established system, but to ex-
tend it in ways that enable the utilization of present logic and data
for different purposes such as additional processing, data mining or
fraud detection.

The difficulties with imperative languages and the traditional ap-
proaches to building such a system and augmenting it in the way
previously mentioned reside in the middle layer. A complex system
is usually comprised of at least persistence, logic and presentation
layers, whereas each can represent more layers, views or compo-
nents. The logic layer is the critical scope of several matters such
as processes in general, decision making, current aspects evolving
or reusing, and adding additional features. Using an imperative lan-
guage in a classical way in a complicated system might eventually
lead to unnecessary long and chaotic code, performance decrease
and the introduction of new bugs [1].

One of the possible solutions is to use a rule engine, which can
separate the appointed logic into more understandable, maintain-
able and reusable rules, which can be also maintained and verified
by domain experts. This goal of this thesis is to describe the core of
the Drools engine, as well as its module called Drools Fusion ena-
bling Complex Events Processing capabilities, and explore the possi-
ble utilization of Complex Event Processing within web applications.
The practical conclusions are demonstrated in a Java web application
using Drools, which handles the user actions as events and processes
them in rules.

The structure of the thesis text is separated into several chapters,
where the first part covers the description of technologies and moti-
vation concerning the topic, and the second part describes the com-
posed application. The first chapter represents the introduction and
the last one the conclusion.

1

1. INTRODUCTION

The second chapter focuses on the Drools engine and its essential
components utilized to develop this thesis. This chapter commences
with an overview of the Drools project and the platform. After the
introduction to rule engines, it pursues the explication of the Drools
core by describing the employed algorithm. Following sections tar-
get the composition of rules and the module for event processing.
The chapter is concluded with a description of the upcoming version
of Drools.

The third chapter examines the motivation of including Complex
Event Processing into the scope of web applications. It discuss the
importance and role of a user in this area, the benefits that the inclu-
sion might provide and the existing solutions.

The fourth chapter describes the developed application. It dis-
cusses the analysis and design of the application, the implementation
and deployment. The characterization and description of the imple-
mentation is focused on the components regarding rules and event
processing, and applied use cases.

2

2 Drools Expert and Drools Fusion

2.1 Overview of Drools

2.1.1 Introduction and history

Drools is an open source project written in Java, licensed under the
Apache License, Version 2.01. The current fifth version of Drools re-
leased in May 2009 introduced the Business Logic integration Plat-
form (BLiP), which provides a unified and integrated platform for
rules, workflow, event processing and automated planning optimiza-
tion. The project as such is maintained by the community, providing
a new release every couple of months that includes new features and
bug fixes. A productized version involving sanitized community re-
leases and support called JBoss Enterprise Business Rules Manage-
ment System (BRMS) is offered by Red Hat, Inc [2].

First work on the rule engine of Drools began in 2001; this first
version was never released due to constraints engendered by the
brute force linear search approach. In Drools 2.0, the concept was
changed to be loosely based on the Rete algorithm, and the federa-
tion into JBoss in 2005 enabled the development of enhanced Rete im-
plementation [3]. The performance was significantly improved and
the community started to emerge. As the development of Drools
gradually progressed through the versions, Drools specific aspects
were introduced such as Drools Rule Language, more performance
improvements of the algorithm were accomplished and several other
projects were incorporated into Drools [1]. The latest version is cur-
rently 5.5, released in November 2012; it is this version which is ex-
plicated following. Drools 6 is currently being developed, which will
present not only new features, but also a new algorithm as well.

2.1.2 Drools projects

The platform is currently composed of five main modules:
Drools Expert represents the rule engine itself. It is the declara-

tive, rule based coding environment, which is used to define, execute

1. See http://www.apache.org/licenses/LICENSE-2.0.html.

3

 http://www.apache.org/licenses/LICENSE-2.0.html

2. DROOLS EXPERT AND DROOLS FUSION

and maintain the rules. Thus it can be considered as the core of the
platform [4]. In a simplified way, it is not possible to use, for instance,
only Drools Fusion per se. To develop correct and efficient rules, it is
also advisable to comprehend how the rule engine works.

Drools Fusion represents the module enabling the event model-
ling capabilities. Data processed by the rule engine can consequently
be perceived as events and not only as the simple facts. The ability to
identify temporal relationships between events, to compose and ag-
gregate them, and other aspects discussed further, make it possible
to implement standard Complex Event Processing scenarios such as
fraud detection or automatic trading. However, the application of a
rule engine can facilitate creating them, produce another perspective
on the subject, or assist in tackling entirely new problems.

jBPM engine enables the modelling and design of the business
processes by means of BPMN 2.0 specification. Furthermore it pro-
vides the executional environment for processes and makes it possi-
ble to describe them in a formal language [5]. The current jBPM5 re-
sulted from the merger of the original jBPM with the project Drools
Flow. That enabled easy integration of rules into business processes.
Moreover, there are multiple tools available in the form of Eclipse
plugin or web editor to easily model and visualize the processes.

Drools Guvnor represents a centralized repository for keeping
various knowledge assets such as business processes, models or rules,
with a web graphical user interface also able to be used by domain
experts, analysts or users with no programming experience. It con-
tains a set of process-oriented tools and also tools for the authoring
phase of created assets. The storing of rules and other assets is man-
aged by a Java Content Repository (JCR) [6], which supports version
and access control.

Drools Planner, renamed OptaPlanner in the upcoming version,
represents the module for optimization and solving discrete opti-
mization problems. It uses a system of efficient score calculation com-
bined with optimization heuristics and metaheuristics. Because of
this, it can explore solutions during an established amount of time
and solve any NP-complete problem in a reasonable period of time
[7]. Frequent use cases are, for instance, resource scheduling, queue
planning or traveling salesman problem.

Another valuable component is the Drools and jBPM plugin for

4

2. DROOLS EXPERT AND DROOLS FUSION

Eclipse IDE. It facilitates writing and debugging rules and processes
with syntax assistance or visualization.

To conclude, the platform provides the means to model complex
behaviour of a broad spectrum of problem situations. The flow of
data, information or logic can be decomposed into processes, per-
ceived as - or transformed into - events, solved and optimized, or
only processed by the rule engine. This thesis focuses on the core of
the platform - the rule engine itself (Drools Expert) and the module
enabling the event modelling capabilities (Drools Fusion).

2.1.3 Alternatives to Drools

Owing to the multiple area specializations of the platform, alterna-
tives to Drools vary according to the purpose of use.

The noted paid option for a rule engine is WebSphere ILOG JRules
BRMS from IBM. In comparison with Drools Expert, it supports Java,
.NET and COBOL environments and contains a richer feature set for
business analysts to be included more in the rule development and
management lifecycle [8]. Other rule engine options are, for instance,
Microsoft InRule, FICO Blaze Advisor Business Rules Management
or Decision Management System [1].

A great deal of both paid and open source workflow and process
engines can be found, the most popular open source options are as
follows: Activiti, Bonita Open Solution, or ActiveBPEL [9].

The range of Complex Event Processing (CEP) solutions is also
quite large. The Forrester Research2 evaluation of CEP platforms from
2009 [10] established 114 criteria to compare ten vendors offering
commercial solutions and Progress Software and Aleri came out as
the strongest. The only vendor in this evaluation also offering an
open source version of the product was EsperTech with Esper. Esper
in comparison with Drools Fusion uses SQL-like syntax, which can
be easier for programmers to learn, contains fewer temporal opera-
tors and may have better performance results within a short period
of time [11].

Overall, there are a great deal of other options, which can be more
effective or appropriate for certain problems where only one Drools

2. See http://www.forrester.com/.

5

 http://www.forrester.com/

2. DROOLS EXPERT AND DROOLS FUSION

module is required or the financial aspect is not an issue. The key
factors of Drools are the facts that it is an open source solution and
a unified platform, which enables it to combine several modules to
create complex behavioural modelling.

2.2 Rule engine

2.2.1 Production and Hybrid Rule Systems

The term rule engine can cover a broad variety of systems, from ones
using rules in the most simple form for instance for validation, to
the complex systems where the logic processed by the rule engine is
quite essential [12].

The Drools rule engine originated as a special type of rule engine
known as a Production Rule System (PRS). A Production Rule Sys-
tem is often considered to be at the centre of an expert system, or
is directly interchanged with the term. Since an expert system is a
system that applies knowledge in the form of ontological model and
declared rules defined by domain experts for the purpose of solving
problem in a particular field [13], it would be misleading to describe
the Drools rule engine as an expert system. To be accurate, it is a
device to build expert systems.

The computational model of Product Rule System specifies the
set of rules, where each rule is comprised of a condition and a conse-
quential action. During the run of the system, the conditions are eval-
uated following the processed data and the consequential actions are
executed. Therefore, each rule is in the following format:

when
// condition

then
// action

The important aspect to comprehend is the difference between
the imperative if... then in the sequential code and the declarative
when... then in rules. The rules do not specify a detailed sequence of
steps. The rules declare the conditions specifying when the actions
should be performed; the rule engine takes the rules, the data and

6

2. DROOLS EXPERT AND DROOLS FUSION

evaluates them in the most efficient way. Those rules with the condi-
tion evaluated to true have their action executed.

The data matched against the rules reside in memory in the form
of facts. The matching itself is called pattern matching and is per-
formed by an inference engine. The pattern matching can result in
scheduling the executions - called the firing - of the rule actions by
the agenda, and as a consequence, firing of rules can conclude in
matching against other rules and engender firing those. This mecha-
nism is referred to as forward chaining [12].

Figure 2.1 indicates the high-level view of a Production Rule Sys-
tem. The rules stored in Production Memory are matched against
the facts that reside in Working Memory by the Inference Engine via
pattern matching and can result in executions administered by the
Agenda.

Figure 2.1: High-level view of a Production Rule System [12]

The described forward chaining could be characterized as reac-
tionary and data-driven, as the asserting of facts into working me-
mory results in executions. Another approach is called the backward
chaining, which is goal-driven. The engine starts with a conclusion,
which it tries to satisfy. If it cannot, it attempts to satisfy a subgoal
conclusion, which would assist in satisfying an unknown part of the
current goal. This activity then can continue recursively and ends

7

2. DROOLS EXPERT AND DROOLS FUSION

when the initial conclusion is proved or no other subgoals exist. An
example of backward chaining system is, for instance, Prolog.

More reasoning techniques such as imperfect reasoning or defea-
sible logic exist [12]. Systems combining more types of these capabil-
ities are referred to as Hybrid Reasoning Systems (HRS). Since Drools
5 also introduced backward chaining into its engine in the form of
derivation queries, the current preferences incline to describe it as
the Hybrid Reasoning System.

2.2.2 Working memory and agenda

The data and information in the object-oriented environment are rep-
resented by the object instances. When these instances are inserted
into the Working Memory of the engine, in Drools terminology they
become facts and henceforth can be evaluated against the declared
conditions of the rules. In consequence of the insertion, a wrapper to
the fact is created, which can be onwards used as the reference to up-
date it or retract it. If a fact is modified, the update is required to be
called tor the engine to re-evaluate the rules against the altered fact.
A retract should be called provided that the information is no longer
needed or would cause undesired behaviour.

When facts are inserted, updated or retracted from the Working
Memory, the engine identifies the corresponding rules by means of
pattern matching and creates the activations for the matching rules.
The Agenda represents the list of all these activations, in other words
of all the rules prepared to fire. It is important to note that the act
of generating the activations does not execute the rules action conse-
quences, nor that all the rules prepared to fire must necessarily do so.
The activation list does not start firing until the appropriate method
is called.

When this method is called and the agenda contains more than
one activation, the engine needs to determine which activation should
fire first. This decision is based on the conflict resolution strategy of
the engine. The result of conflict resolution strategy can be based on
many factors such as the attributes of the rule, the rule recency, which
declares how many times has the rule fired, the complexity of the rule
or the rules load order [14]. The selected activation is subsequently
executed, which can result in altering some facts, re-evaluating the

8

2. DROOLS EXPERT AND DROOLS FUSION

rules against the new Working Memory state and as consequence
creating new activations or removing the present ones.

After the process of the execution is finished, if the Agenda still
holds some activations, the procedure continues with determining
new rule activations to fire. This cycle carries on until there are no
more activations. The whole process is outlined in the following Fi-
gure 2.2.

Figure 2.2: The outline of rules execution cycle [6]

The rule attributes provide additional impact on the Agenda be-
haviour such as avoidance of circular reactivations or assembling the
rules into activation groups.

2.2.3 Advantages and disadvantages of using a rule engine

Many advantages result from the declarative approach. The main-
tainability is improved as the time can be allocated to what needs
to be accomplished instead of how [15]. Furthermore, decomposing

9

2. DROOLS EXPERT AND DROOLS FUSION

the logic into rules may decrease the subsequent complexity and in-
crease the flexibility owing to easy modification of the rules. The rule
language can also enable the domain experts to be originators of the
written logic and control its evolution.

However, switching to rule engine does not always have to be the
right decision. To shift the thinking paradigm to a declarative rules
style and to learn how to write the rules properly and effectively can
be time consuming, which is not suitable for small projects where
logic is not going to change in the future. Apart from this, the com-
plex rules are more difficult to debug than traditional lines of codes,
in the absence of highly advanced debuggers. In addition, it is not
the best solution for situations where memory is the crucial factor,
since a lot of calculations are stored for the engine to be efficient [1].

2.3 Rete Algorithm

2.3.1 Introduction

The speed efficiency and scalability of the Drools rule engine is en-
gendered by the Rete algorithm on which it is based. The Rete al-
gorithm [16], the name of which originates from the Latin word for
‘net’, represents a pattern matching algorithm for implementing pro-
duction systems. The algorithm was designed by Dr Charles L. Forgy
and first published in 1974. Since then, it has been modified and aug-
mented by Dr Forgy himself and also many rule engines established
on its basis [17].

The Drools rule engine uses the enhanced Rete algorithm called
Rete-OO. It is an optimized implementation for object oriented sys-
tems including several types of schemes for reasoning with imperfect
information and enables the architecture to be influenced by configu-
ration parameters [18]. Whereas it has been mathematically proved
to be faster and more scalable than the traditional if... then solution
[14], the price for efficiency is in the higher memory consumption
and usage due to a high amount of caching in order not to evaluate
the conditions multiple times.

The inference engine applies the algorithm for pattern matching.
In other words, the algorithm is responsible for matching the facts
against rules and determining for which rules activations should be

10

2. DROOLS EXPERT AND DROOLS FUSION

created.

2.3.2 Rete network

The algorithm transforms the conditions of the rules into the Rete
network. This discrimination network is represented by a rooted,
acyclic and directed graph and is modified whenever a rule is al-
tered, added or removed from the knowledge base. Its purpose is to
efficiently filter data passing down the network.

The network is comprised of various node types. Suppose that
the rule base consists only of the subsequent rule:

rule "Person older than 18."
when

Person(age > 18)
then

// consequence
end

This rule executes its consequence for a Person fact, where the
fact has the attribute age greater than number 18 (the rules and their
description are covered in section 2.4.2). The Rete network would be
composed as depicted in Figure 2.3.

Figure 2.3: The Rete network for a simple rule.

11

2. DROOLS EXPERT AND DROOLS FUSION

A visualization graph representing the Rete network comprising
of coloured nodes determined by their type can be generated by the
Drools Eclipse plugin.

The root of each Rete network is represented by the node called
the ReteNode. It can be perceived as the entrance to the network,
and all the objects inserted to the memory must enter it.

Then follows the first level of discrimination, portrayed by one
or many nodes of EntryPointNode type. The entry point mecha-
nism enables the abstraction in the form of partitioning the working
memory for facts and more importantly for event streams, which is
covered in 2.5.6. In other words, objects entering the memory can
be inserted either into the default entry point, or into a named one,
which is reflected in the Rete network.

The ensuing level of discrimination is provided by at least one
node of type ObjectTypeNode. This node performs filtering based
on the fact type, which means that nothing but the facts of correspon-
ding type are allowed to pass through. In this instance only objects
of the type Person continue further down the network. Furthermore,
following nodes will apply the constraints regarding the Person type.

The first level of matching is represented by the nodes of Al-
phaNode type. They have one input and define intra-element con-
ditions, meaning that they evaluate constraints on single facts. The
constraints may have various forms, such as literals, variables, inline
evaluations or return values. Multiple constraints on the same type
are expressed by more alpha nodes, each representing a single con-
straint. The order of the constraints in the rule is important.

Figure 2.4: Rete network of transposing the constraints in the rule.

Transposing the constraints in the rule influences the concluding
appearance of the Rete network, see Figure 2.4. For one thing, the
more restrictive constraint should precede the less restrictive for the

12

2. DROOLS EXPERT AND DROOLS FUSION

rules to be efficient. More importantly, the order can affect re-usability
of the rules in the more complex rule set.

The penultimate node in the Figure 2.3 is LeftInputAdapter-
Node. These nodes are used to create a tuple from single fact in order
to enter some type of nodes.

The leaves of Rete networks are represented by nodes of Ter-
minalNode type. They correspond to the action parts of rules, or to
be more precise, to the activations of these rules, which should be
assigned to agenda for future execution. Each rule introduces at least
one TerminalNode, whereas a complex rule using the conditional
disjunctive ‘or’ can have more than one of these nodes.

To conclude, if a Person fact was inserted into a default entry
point, it would enter the Rete network in ReteNode, then it would
continue through EntryPointNode and ObjectNodeType to Al-
phaNode. The AlphaNode would evaluate its constraint. Thereafter
the situation would depend on the age attribute of the fact. If the age
was less or equal to 18, the fact would not be propagated further and
the insertion method would be finished. Otherwise the fact would
pass through to the LeftInputAdaptedNode, where it would be
transformed into a tuple and then reach the TerminalNode, which
would result in placing the “Person older than 18.” rule on the agenda.
If the fact was inserted into another entry point or was of another
type, the advancement would end at the relevant node. The intro-
duction of more convoluted aspects uses a rule base comprising of
two the following rules:

rule "Person living in Brno."
when
Person(city == "Brno")

then
// consequence

end

rule "Young person owns an accommodation in Brno."
when
$person: Person(city == "Brno", age < 30)
Accommodation(owner == $person)

then

13

2. DROOLS EXPERT AND DROOLS FUSION

// consequence
end

The first rule executes its action for Person fact, where attribute
city is equal to literal ‘Brno’. The second rule requires a couple of
Person facts with the city attribute equal to ‘Brno’, age less than 30
and an Accommodation fact with the owner attribute equal to the
prior Person fact. The Rete network of this rule base is depicted in
Figure 2.5.

Figure 2.5: More complex Rete network.

Another important node type is BetaNode. These nodes have
two inputs: one for tuples, one for facts, and define inter-element
conditions. They enable comparison of facts or their attributes with
each other.

The mentioned inputs are associated with memories which keep
information about facts that have arrived. Later the facts can be eval-
uated against facts coming to the other input and the result propa-
gated further.

There are various types of beta nodes. In the Figure 2.5 JoinNode
is used, which is responsible for joining and evaluating a tuple and a

14

2. DROOLS EXPERT AND DROOLS FUSION

fact. The other types of BetaNode represent various rule constructs,
the most used are NotNode, ExistsNode, AccumulateNode and
CollectNode. More complex rules or rules using different constructs
can also apply other types of nodes such as EvalNode or FromNode.

If a Person fact is inserted into the default entry point of the afore
described rule base, it will pass through ReteNode, EntryPoint-
Node, ObjectTypeNode for Person type to the first AlphaNode.
If the constraint evaluation is successful, it will propagate to both
the successor nodes. Within the left flow (in Figure 2.5) it continues
through LeftInputAdapterNode to TerminalNode,which results
in placing the activation of the first rule to agenda. Along the right
flow it is evaluated in another AlphaNode. Supposing the evalua-
tion of the constraint is successful, the fact is wrapped into a tuple
in LeftInputAdapterNode and reaches the JoinNode. This tuple
is added to the memory for tuple inputs of JoinNode and its fact
memory is examined in order to find a match. Provided that there
is no match, the proceeding is finished. If an Accommodation fact is
inserted then, it passes through the ReteNode, EntryPointNode
and ObjectTypeNode for Accommodation type to the JoinNode.
There it is added to the memory for facts and the tuple memory is
examined to find a match and evaluate constraints. If the process is
successful, a tuple consisting of both the Person and Accommoda-
tion fact is constructed and continues to the TerminalNode, where
it creates an activation of the second rule.

2.3.3 Optimization and effectiveness

It have been established and demonstrated in Figure 2.4 that the
structure of the Rete network eminently depends on the order of con-
ditions and constraints in the rule. As a consequence, the composi-
tion of the rules has a direct impact on the node sharing in the Rete
network. The rules from previous example having their Rete net-
work depicted in Figure 2.5 have except ReteNode, EntryPoint-
Node and ObjectTypeNode also in common the AlphaNode. If the
constraints for Person fact in the second rule were transposed, the
network would contain an AlphaNode for each rule instead of one
shared alpha node for both the rules. The node sharing enables the
minimization of the size of the Rete network. For the algorithm to

15

2. DROOLS EXPERT AND DROOLS FUSION

be truly effective, the rules should share as many nodes as possi-
ble, making it possible to minimize the evaluations of the same con-
ditions. Also in general, the condition and constraints of the rules
should start with the more restrictive ones. Overall, the phase of de-
signing the rules should not be rushed.

The aforementioned cases focus on inserting the facts. The activa-
tions of the rules are also re-evaluated in the case of modifying and
retracting facts. The modification of a fact is achieved by a combi-
nation of retracting and inserting the fact. The technique called the
asymmetrical Rete [1], which uses the tuple related to the fact to re-
trace the steps and retracts it from corresponding nodes, has been
used for retraction since Version 5.

For the correct and effective functioning of the application it is
important to emphasize the difference between insertion (or modi-
fying and retraction) and firing the rules. Unless the firing the rules
engenders in insertion, modifying or retraction, the utmost condi-
tions processing occurs before the rules firing is even executed. The
firing is responsible only for executing the actions of the activated
rules in the agenda.

Whereas the original Rete algorithm started with only four basic
types of nodes, the advanced Drools algorithm employs many node
categories. To achieve a commendable performance the implemen-
tation uses techniques such as hashmap lookups for objects, caching
results or indexing [12].

In conclusion, the algorithm provides an efficient way of evalu-
ating the rules. As a real complex application can contain hundreds
or thousands of rules, the network would be indubitably wide, but
comparatively flat.

2.4 Constructing the rules

2.4.1 Assembling resources

In order to commence composing the rules and building the basis of
Drools application, it is essential to comprehend the assembling of
the resources. That is associated with three conceptions: Knowledge
Builder, Knowledge Base and Knowledge session.

Knowledge Builder comprises parsers and semantic modules.

16

2. DROOLS EXPERT AND DROOLS FUSION

These elements enable the building of the binary representation of
defined knowledge models. To put it in another way, the builder re-
sponsible for forming the knowledge packages from given resources.
At present, it is possible to apply about a dozen of different resource
types, such as types supporting processes, xml based documents or
decision tables, which enable managing rules in a spreadsheet for-
mat. The discussed aspects focus on Drools Rule Language (DRL),
where rules are usually stored in the .drl files.

Knowledge Base represents the container for compiled know-
ledge assets, such as rules, internal types or processes, which are
grouped into knowledge packages. It allows not only their storage,
but also their reuse in order to save computing time, since their cre-
ation is expensive [1]. To be more precise, it enables to establish the
sessions, where their creation is in comparison inexpensive.

Knowledge Session represents the place where the rules run. By
its means happens the interacting with the engine, such as inserting,
updating or retracting facts and firing the rules. There are two types
of session: stateless and stateful. The stateless session does not main-
tain the state between interactions. It is used for situations where a
particular result needs to be computed. The stateful session main-
tains the state and is required where some previous information is
necessary.

The detailed creation of the Knowledge Session is depicted in Fi-
gure 2.6.

Figure 2.6: Thorough illustration of creating a Knowledge Session [1].

There are two possible ways of firing the rules. The first is by
calling a fireAllRules method on a session, which results in im-

17

2. DROOLS EXPERT AND DROOLS FUSION

mediate firing of the activations placed on the agenda and poten-
tial activations created by them, followed by further continuation of
the program. The second possibility is through the fireUntilHalt
method, which fires an activation when it is created. The possible
disadvantages of this solution are that it needs to be executed in a
separate thread and is not recommended for certain scenarios.

2.4.2 Drools Rule Language

Rule files are represented by text files with .drl extension and they
have usually following structure [12]:

package package-name

imports

globals

type declarations

functions

queries

rules

The structure of the file is not completely fixed. The file should
start with package and imports; type declarations ought to precede
their use, but functions, queries and rules can permeate. The ele-
ments are also not required to be in only one file. They can be spread
across multiple files, for instance one holding only imports and dec-
larations and one rules, or be separated into multiple rule files de-
pending on logic. The important aspect is the order of their feeding
into the Knowledge Builder.

Package represents the namespaces that are able to group ele-
ments from multiple files. In other words, all rule files appertaining
to the same package are required to share the same package name.

package cz.example.pkg.first;

18

2. DROOLS EXPERT AND DROOLS FUSION

Import statements operate on the same basis as standard Java im-
ports. Objects within the declared package are imported automati-
cally. Objects from other packages must be imported or accessed by
their fully qualified names.

import cz.example.pkg.second.Person;
import java.util.List;

Global variables enable objects to be reached within rules with-
out insertion into session as facts. They are used in rule consequences
for techniques such as logging, reporting or returning values. Their
use in rule conditions is discouraged due to the fact that the engine
is not notified about their modification.

global List results;

Type declaration has dual purpose. The first is declaration of
metadata for already existing types. These metadata are used for rea-
soning process of the engine regarding the type. Metadata concern-
ing Complex Event Processing are discussed in 2.5.2. The second pur-
pose is to define new types. Metadata can be applied there as well,
especially for achieving certain characteristics, such as the equality
principle. Defining new types can be desirable in situations where
there are reasons not to interfere with an already created domain
model, or for types used only in rules and not much elsewhere.

declare Cat
name : String
owner : Person
registrationNumber : int @key

end

Functions are used either in order to avoid code duplication or
to separate some logic to a certain place. They can be used in both
condition and consequence of the rule. The static methods of classes
can be also imported to serve as functions.

function String greeting(String name) {
return "Welcome "+ name + "!";

}

19

2. DROOLS EXPERT AND DROOLS FUSION

Query represents a simple way to obtain facts complying with
defined conditions from code. Furthermore, a combination of queries
can be used to solve tasks.

query "Adults."
person : Person(age > 18)

end

Rules possess the following structure:

rule "name"
// attributes
when
// condition

then
// action

end

There is approximately a dozen rule attributes. They influence
the position of the rule on the agenda, assemble rules into groups,
enable activation of the timer for regular rule execution or prevent
the recursive firing.

The conditional part of the rule is sometimes referred to as LHS
(Left Hand Side) and can be composed of multiple conditions. These
conditions are represented by patterns which can match facts in-
serted into the session. Patterns can contain constraints related to the
inspected type, such as:

Person (age > 18)

The attributes are retrieved through the getters. The facts and
their attributes can be bound to a variable and used later in the rule.
The conditions support logical operators such as or, not or exists. The
facts can be gathered into collections, processed and evaluated by
means of great deal of operators. Their thorough description can be
found in Drools Expert documentation [12].

The action part of the rule is sometimes referred to as the conse-
quence or RHS (Right Hand Side) and can contain any Java code. The
amount of code should not be large. It is possible to insert, modify

20

2. DROOLS EXPERT AND DROOLS FUSION

and retract the facts here and also to use a technique called logical
insert, which ensures the automatic retraction of the inserted fact, in
the case that the condition of the rule is no longer true.

To conclude, Drools Rule Language provides a wide variety of
components to express the desired logic. The best practices [19] de-
termine that each rule should describe one scenario and nested con-
ditional logic and loops in the action part should be avoided.

2.5 Drools Fusion

2.5.1 Complex event processing

The matter of processing events in intuitive form is not recent. Wea-
ther prediction, network monitoring or information gathering have
been based on assembling and processing events for decades. How-
ever, the forming of event processing theory and principles did not
commence until the late nineties. The first book presenting concepts
and applications in this area was The Power of Events by David
Luckham, published in 2002 [20]. Since then, a great deal of both
theoretical research and commercial applications has been produced
and presented.

Even though the literature offers various definitions of the term
event, it can be generally described as an occurrence within a partic-
ular system or domain [21]. To put it in other words, it signifies a
change of state that happened. This abstraction enables the model-
ling of a broad variety of situations by means of events. The event
can represent a human action, such as a door opening or order place-
ment, an environment change like a rise in sea level or temperature,
or any occurring issue in a system. Furthermore, the processing of
several events can result in the composition of one or many high-
level events.

The Complex Event Processing allows operating with events in
a meaningful and sophisticated way, including their creation, read-
ing, transformation, abstraction, and discarding [22]. The utilization
of Complex Event Processing can be applied in various areas. Com-
mon scenarios are: monitoring, detection, dynamic behaviour and
predictive processing, performed individually or combined. An ex-
ample of monitoring and detection in the public sector is patient

21

2. DROOLS EXPERT AND DROOLS FUSION

monitoring, where the nurse is alerted when a certain combination
of events is recognized; as for commercial scenarios, one frequent ap-
plication is fraud detection, where a combination of seemingly un-
related events signify suspicious behaviour. Another important re-
quirement in many systems is to perform a problem analysis which
can be achieved by a combination of searching through logged data
and observing the events. One application of dynamic behaviour and
predictive processing is, for instance, the stock trading system.

Drools fusion is the module enabling the event modelling capa-
bilities to the Drools rule engine, such as defining facts as events,
event cycle management, temporal reasoning and sliding windows.
Since the traditional Rete algorithm does not support temporal re-
striction on nodes, the Drools algorithm had to be enhanced [23] to
provide features such as aggregation of values in time-based win-
dows.

2.5.2 Event definition

Event represent a special type of fact. An important requirement for
events is that they are supposed to be immutable. They represent a
change of state that happened, and therefore should not be redefined.
The engine applies this fact in event lifecycle definition and opti-
mizations. However, this does not determine the immutability of the
event object. Event data enrichment is one of the possible use cases.
To put it in another way, it is possible to enrich the event with ad-
ditional data, but already established attributes should not be modi-
fied.

The declaration of facts as events is performed by using metadata
tag @role. The events can be created from imported types, as well
as new ones defined in drl:

import cz.example.Person;

declare Person
@role(event)

end

declare InnerPerson

22

2. DROOLS EXPERT AND DROOLS FUSION

@role(event)
name: String
age: int

end

The @role tag is necessary for the fact to be considered as an
event, moreover the event can employ additional metadata tags:

declare PowerBlackout
@role(event)
@timestamp(blackoutStart)
@duration(blackoutDuration)
@expires(3h)

end

Each event is automatically assigned with the start timestamp
corresponding with the time of insertion into the session. The tag
@timestamp determines, that for this timestamp is used the class
attribute blackoutStart instead of the time of the insertion.

There are two types of events: point-in-time and interval-based.
The point-in-time can be perceived as interval-based with duration
equal to zero. All events are implicitly considered as point-in-time.
The @duration tag labels the event as interval-based, where the
duration is read from the blackoutDuration class attribute. As
a matter of fact, each event has two timestamps, determining start
and end of the event, where the end timestamp is constructed from
the start timestamp and the duration.

The automatic life cycle of events enables the removal of events
that are no longer relevant to rules from the session. This expiration
is calculated from temporal constraints and sliding windows. The
@expires tag should override this calculation.

2.5.3 Clocks

The assertion of the timestamp and temporal reasoning over the facts
require the system to acquire the time from somewhere. The desired
time can differentiate due to environment the system is running in.
The time conditions for standard system operation differ from rules
testing and simulations, or running in a special environment, such as

23

2. DROOLS EXPERT AND DROOLS FUSION

a cluster. As a consequence, the engine is enabled to employ different
clock implementations.

The engine provides two clock implementations. The first is real
time clock, which uses the Java Virtual Machine implementation and
represents the option for standard use and flow. The second is pseudo
clock, where the flow of time is easily manipulated. Without this op-
tion, scenarios using long time intervals would be difficult to simu-
late. The clock can be set for each session creation.

2.5.4 Temporal operators

The events in Complex Event Processing based systems are required
to have temporal attributes which enable the definition of their tem-
poral relationships and temporal operation amongst them. Drools
Fusion defines 13 temporal operators outlined by James F. Allen in
[24] to determine all possible relationships between two events. The
temporal operators are as follows: after, before, coincides, during,
finishes, finished by, includes, meets, met by, overlaps, overlapped
by, starts and started by. Some of them require interval-based events
to be applicable. An example of after operator application in a rule
condition:

$sea1: SeaReport($shoreId : shoreId,
$temp : temperature)

SeaReport(shoreId = $shoreId,
temperature > ($temp + 2),
this after[1h, 2h] $sea1)

A rule with such a condition will be activated if two events with
same identification, and difference in temperature of at least 3, also
meet the after operator.

Figure 2.7: Illustration of using after operator in the rule.

24

2. DROOLS EXPERT AND DROOLS FUSION

The operator determines that the difference between end time-
stamp of the first event and start timestamp of the second one is be-
tween one and two hours as it is depicted in Figure 2.7.

This operator can be also defined using negative parameters for
negative distance, or fewer parameters, where only one value would
be coupled with positive infinity and no value generates an interval
with 1ms and positive infinity.

The other operators allow the determination of different temporal
relationships between events and are thoroughly described in Drools
Fusion documentation [25].

2.5.5 Sliding windows

The concept of sliding windows enables restriction of the stream of
events to a defined and moving interval. There are two types of sli-
ding windows: time based window and length based window.

The time sliding window is a constantly moving time interval
that takes into consideration only the events within the defined in-
terval in terms of time.

Figure 2.8: Time sliding window of three time units [6].

The Figure 2.8 illustrates an example of a time sliding window of

25

2. DROOLS EXPERT AND DROOLS FUSION

three time units. Time units support milliseconds, seconds, minutes,
hours and days. The following condition would apply only to events
happening in the last thirty minutes.

WarningEvent() over window : time (30m)

The essential variable for length sliding window is the order of
events insertion. The window takes into account not more than the
defined number of inserted events. The following example applies
the window for the last fifty inserted events.

WarningEvent() over window : length (50)

2.5.6 Entry points

The entry points introduce abstraction over streams. The system can
have various event streams, for example each for differen source of
events. The engine enables objects to be inserted either into the de-
fault entry point or to a named one. To put it another way, each entry
point represents a different stream of events.

There can be various motivations for the separation of events into
streams. The streams can be homogeneous and contain only one type
of events to increase the abstraction or the same types of events ar-
riving from different sources might require being processed in a dif-
ferent way. In general, multiple entry points are used for partitioning
the memory by the character and purpose of facts, and for decreasing
cross products that can degrade the pattern matching performance.

A simple example of entry points utilization in rules:

rule "Passenger checks in at airport counter."
when
CheckIn($passenger : passenger)
from entry-point "Airport Counter Stream"

then
// the passenger’s luggage is processed

end

26

2. DROOLS EXPERT AND DROOLS FUSION

rule "Passenger checks in from home"
when
CheckIn($passenger : passenger)
from entry-point "Online System Stream"

then
// the passenger’s luggage is added
// to automatic drop-off list

end

The checking in of the passenger is handled differently depen-
ding on the entry point where the checking event was inserted. Each
event stores the information of the entry point it was inserted into.
The Rete network containing these rules would have the ReteNode
root followed by multiple nodes of EntryPointNode type.

2.5.7 Event processing modes

The engine provides two modes of processing: cloud and stream
mode. The processing mode defines the behaviour including time
and temporal aspects.

The default processing mode is cloud mode. There is no concept
of time and its flow in this mode. As a consequence, it does not pro-
vide sliding windows, event life cycle, event ordering and clocks.
In other words, all events are perceived as an unordered cloud. This
mode is mostly targeted to be used with objects defined as facts, but it
can also be employed for some scenarios including events that have
no temporal relationships.

The stream mode enables the processing of streams of events
with the concept of time. Since it is not the default processing mode,
it has to be established in the Knowledge Base configuration. The
requirements for it to work correctly are the time ordering of events
within a stream and time synchronization of streams through the ses-
sion clock.

2.6 Drools 6

The next version of Drools predicted to be released in the second
quarter of 2013 is going to introduce a great deal of changes. It is go-

27

2. DROOLS EXPERT AND DROOLS FUSION

ing to be based on a new algorithm which merges concepts of mul-
tiple algorithms such as Leaps, Collection Oriented Match and Left
and Right Unlinking. It targets the better use of parallelism and run-
ning in more constrained environments, for instance mobile devices
[26].

Drools 6 is going to present context dependency injection and an-
notation driven development enabling sessions and bases to be in-
jected. Furthermore, it allows the publishing of rules and processes
as maven artifacts. Other innovations include the extension of Drools
Knowledge Language in order to increase its expressiveness and po-
wer [27].

28

3 Motivation to include Complex Event Pro-
cessing in web applications

3.1 The role of the user in the aims of websites

The growth and progress of the Internet is inseparably associated
with evolution and advancement of websites. There are many types
of them. Content-based websites profit from subscribed customers,
sold pieces of content, or advertising. The scope for product-based
and service-based websites is also quite large, from e-commerce and
auction sites to cloud solutions. The common objective for these and
a great deal of other types is represented by the user.

The potential capabilities of websites increase every year. The
first websites were static and offered the same content for every vis-
itor. As the technology progressed, the content commenced to dif-
fer for logged users. Following advancements introduced techniques
using identification of the user by storing information in the cache
of the browser, dynamic web pages processing user data or storing
and analysing the actions of the user. Further improvements are con-
stantly being developed to ensure better attracting, profiling and pre-
dicting of the user and his or her actions.

One of the companies pursuing the goal of the exceptional cus-
tomer tracking is Amazon. With servers storing terabytes of data and
millions of back-end operations every day it attempts to analyse the
user data and recommend suitable products based on information in
cache, searched products or reviews. The company also owns several
patents regarding content personalization and use of product view-
ing histories [28].

However, aspects concerning the content adaptation are not the
only ones to follow. Another appreciable aspect is detection of un-
solicited behaviour. This can include various fields of interest where
the apparent one is security. Each decade since the inception of net-
works, a new security focus has been introduced, namely risk assess-
ment, securing of data centres, enterprise networks and the begin-
ning of 21st century electronic commerce [29]. A great deal of present
threats relate to the user. Misusing the sensitive data gathered from

29

3. MOTIVATION TO INCLUDE CEP IN WEB APPLICATIONS

social networks or exploitation of computational power to create bots
to impersonate the user are just examples of current concerns. Detect-
ing the suspicious behaviour commence to be necessary.

3.2 Benefits of incorporating Complex Event
Processing

As has been established in the introduction to Complex Event Pro-
cessing 2.5.1, an event can be described as an occurrence within a
particular system or domain. This enables the perception and defi-
nition of any incident that occurred or action that was performed as
an event. Even though the scope of the utilization of Complex Event
Processing incessantly widens, so far there have not been many em-
ployments of it in web applications. This thesis considers the actions
of users in web applications as events and explores their potential
processing in order to enrich the web applications.

One of the most important augmentation that Complex Event
Processing provides is the temporal reasoning. The definition of a
temporal relationship over the events and the means to accumulate
them easily in a meaningful way enable new or more easily per-
formed use cases in various areas to be embraced. It enables the
owner of the web application, or the application itself, not only to
monitor the behaviour of visitors, but also to react quickly to specific
situations. The unanticipated attendance of an article published long
ago in the last ten minutes could indicate some affairs just happen-
ing. The accumulation of negative rating in the previous hour should
be further investigated and engender appropriate reaction, such as
retracting the rated element.

Due to the pace of nowaday life and the amount of competition
on the Internet, the ability to recognize such situations and to re-
spond to them promptly may account for the success or the failure
of the website, in other words the profit or loss. For instance, recent
considerable unsuccessful search on the website of an unknown Ap-
ple product might indicate a fresh announcement of it by the com-
pany and should result in immediate incorporation of the product
and launching its pre-orders.

The automation of the reaction can vary from the one handled by

30

3. MOTIVATION TO INCLUDE CEP IN WEB APPLICATIONS

the person responsible responding to the created notification to fully
automatic. An example of latter one can be the composition of main
page. A disinterested or dissatisfied visitor is said to leave a page
in 10-20 seconds, while the subconscious impression can be created
in even shorter time [30]. The layout and content of the page can be
established on various aspects, for example of what is currently hap-
pening, such as viewed, bought or discussed elements. Another ex-
ample is creating heuristics for recommending products. The streams
of events represented by such as the website itself, social networks,
or review and benchmark magazines, could influence the recommen-
dation list, for instance in terms of what other users of the same age
bought in last hour.

Fraud detection is one of the common scenarios of Complex Event
Processing utilization. Seemingly unrelated events are identified in
patterns, which can uncover a sophisticated fraud or another type of
deception occurring in the system. The same techniques are needed
in websites where the exact application depends on the nature of
the website. It can be particularly used to detect the suspicious be-
haviour and then further analysed to determine the origin and char-
acter of it, whether it is deliberate action, an error or false alarm. This
can be specially combined with temporal reasoning in consequence
of the fact that the events can be relevant or appealing for only cer-
tain period of time.

There are many advantages of using Complex Event Processing
instead of performing code with same purpose over data in a stan-
dard way. Not all events are of interest to the system. As a matter of
fact, the system might actually use only a small amount of events. As
the events are represented by objects and expire after the time win-
dow employing them passes or by another expiration policy, they do
not require being stored in a database of another storage to be pro-
cessed. The traditional process would have to store all the data that
events represent and then apply some enquiries over them, not to
mention the management of their deleting or keeping. This has even
greater impact in situations where the storage access is one of the
restricting aspects.

The advantage of employing Drools Fusion to be the place for
Complex Event Processing capabilities is in the rule engine. The logic
represented by rules can be easily modified and broadened. Further-

31

3. MOTIVATION TO INCLUDE CEP IN WEB APPLICATIONS

more, it can be managed by the domain experts and not only by the
programmers.

3.3 Existing solutions

Although the number of vendors offering solutions based on Com-
plex Event Processing is increasing, the quantity of areas they have
successfully penetrated is quite limited so far. The most frequent uti-
lizations can be found in fields of algorithmic trading, financial fraud
detection or network monitoring.

The only company found acknowledging the use of CEP in the
scope of web applications is SeeWhy, which specializes in e-commerce
analysis. They use this technology to ameliorate shopping cart aban-
donments. According to their statement, up to 70% of customers aban-
don their shopping cart before the completion and their service can
assist in resolving 30% of it [31].

32

4 The application

4.1 Overview

As a consequence of the Drools being a project written in Java, the
application exploring and demonstrating the possible utilization of
Complex Event Processing encompassing actions of the user in web
environment is a Java EE application. Generally, an application desir-
ing the same functionality might employ different technologies and
be based for example on C# or PHP, as event processing engines for
these languages can be found.

The type and specialization of the application has been selected as
product-based, as e-commerce is one of the significant areas of user
processing. Owing to the fact that the purpose of the application is
exploratory and demonstrational, the feature set is not required to be
as broad as of a real one. However, it should provide a considerable
amount of functions to develop various scenarios.

Basic functionality is represented by browsing and buying prod-
ucts which reside in separate categories. This is associated with man-
aging shopping cart and checkout proceedings. Additional features
include functions such as searching amongst the products or simple
discussion of each product.

Most of these features are available to any visitor. Apart from
this type of user, the application distinguishes users logged in for
customers and administrators, each with different possibilities and
rights.

On the whole, as unregistered visitors and registered customers
browse the website, put products into the shopping cart, buy prod-
ucts or perform different actions, events are generated and inserted
into the engine. The events are processed by the rule engine, which
may result in activating rules. After the rules are fired, their conse-
quences are performed and that results in influencing the web appli-
cation itself or presenting the outcome to the administrator.

The application possess the prosaic name FusionWeb. It is com-
posed as a Maven project and its sources are available at GitHub3.

3. See https://github.com/IxiCZ/fusionweb.

33

 https://github.com/IxiCZ/fusionweb

4. THE APPLICATION

As it is a Java EE application, it requires an application server to run,
nevertheless it has been deployed to a Platform as a Service solution4

as is described in chapter 4.4.1, where it can be easily explored as it
contains a description in the About page and direct logging links.

Figure 4.1: Application screenshot of browsing products.

4.2 Analysis and design

4.2.1 Roles

Users are classified into three different groups. Each group is rep-
resented by a separate role and each role is associated with diverse

4. See https://fusionweb-ixi.rhcloud.com.

34

 https://fusionweb-ixi.rhcloud.com

4. THE APPLICATION

feature set and security realm. The use case diagram depicting the
interaction of the users in roles with the application is delineated in
Figure 4.2.

Figure 4.2: Use case diagram of roles interacting with the application.

Any user not logged in is represented by the Anonymous user
role. They are allowed to performed actions associated with brows-
ing products, such as paging through the categories, displaying de-
tails or searching the product by keywords, and also managing their
shopping cart. However to complete the checkout and create the
order the user is required to log in as a Customer. Customers can
perform additional actions such as commenting on products and in-
specting their orders. All the steps carried out by these two roles are
transformed to events and inserted to the Drools engine.

35

4. THE APPLICATION

Administrator represents the user responsible for managing the
application content and responding to any issues happening. In other
words, an administrator can operate with the application in a stan-
dard custodian way and perform for instance managing orders, but
can also benefit from the outcome of the event processing engine.

4.2.2 Data model

Figure 4.3: Entity-relationship diagram.

Figure 4.3 depicts the entity-relationship model employed by the
application. Most entities are used for describing products, orders
and users. However, there are two entities which store results from
event processing. This does not imply the necessity of the outcome
to be in a form of stored records. The rule consequence may have
various forms, from sending a notification email to influencing the
application.

36

4. THE APPLICATION

The design of events represents different levels of data modelling.
Drools rule language enables the definition of events either as stan-
dard Java classes or directly in drl files. The latter option has been se-
lected for facts and events assisting in the correct rule firing, but not
representing the user actions in the application itself. Useful cases of
those, contributing to explored scenarios have been depicted as java
classes. Their simple class diagram is in Appendix A.

4.2.3 Plugging Drools in

One of the essential decision at the beginning of constructing the ap-
plication was generating events in a manner of tier location, to put
it in another way, where the standard Java EE components will in-
teract with Drools and feed it with events. This resolution influences
not only the possible ways of implementation, but also the amount
and character of potential actions that can be processed and trans-
formed into events, not to mention other aspects, such as simplicity
of future modifications, further reusability or greater adjustments.

As one might expect, the business and persistence tiers weren’t
taken into bigger consideration, as they considerably reduce the in-
formation regarding the action origin, in other words, they wouldn’t
be easily able to determine by whom and how is a specific operation
initiated.

Another possibility was to link it by means of backing beans for
the user interface. This could be realized not only by ponderous place-
ment of the code within methods, but for example by annotating
the methods with their own appropriate annotations. This approach
brings several drawbacks. The purpose of beans is to execute and
control the operation through reasonable amount of methods and at-
tributes. Merging them with the Drools part would result in more
complicated code handling, as any refactoring, modification or ex-
tension could project also into the necessary adjustments in Drools
components. In a more important manner, beans would lack some
interesting information such as which part of the page initiated the
action.

Therefore, the final conclusion determined to realize the connec-
tion as far “up” in the tier terminology as possible, to be more precise,
in the user interface components. This has not only enabled the fine

37

4. THE APPLICATION

distinction between different situations, but also easier plugging in,
with the meaning that any not yet considered link can be enriched
with the apposite listener. The type of the listener and passed on
parameters subsequently determine the events that should be gen-
erated.

To conclude, the overall majority of the elements generating the
events listens to actions in user interface components. The outcome
of rule consequences and other mechanisms such as monitoring and
layout configuration communicate with various tiers. Figure 4.4 out-
lines this in a simple view.

Figure 4.4: Simple illustration of situating Drools into architecture.

4.3 Implementation

4.3.1 Java EE

The prerequisite for composing and building the Drools components
was to develop a simple Java EE application representing the place
of origin for generating events. The application employs the tech-
nologies of Java Enterprise Edition platform version 6 and follows
the guiding techniques for developing enterprise applications from
Oracle [32].

38

4. THE APPLICATION

The web tier is composed by means of JavaServer Faces (JSF)
technology. It a is server-side component framework which is prima-
rily composed of API for constructing components and tag libraries
for integrating the components into web pages. The tag elements
in web pages are essential for generating the events as that is the
place where events originate. To be more precise, the JSF part consists
of descriptor configuration files, tagged web pages, custom compo-
nents such as converters or validators and managed beans that repre-
sent container-managed objects applying techniques such as depen-
dency injection or lifecycle callbacks.

The business tier and logic are encapsulated by Enterprise Ja-
vaBeans (EJB) technology. Beans represent server-side components
which facilitate transaction management and scaling. The applica-
tion employs for the most part two types of them: stateless and sin-
gleton. The hierarchy of stateless beans is used for enquiring and
handling the data model stored in the database. Singletons with a
combination of application post construction are applied for creating
and filling up the tables in database, or establishing the Drools ses-
sion.

The persistence tier is provided by Java Persistence API (JPA). It
enables the management of relational data by means of object/rela-
tional mapping capabilities, where class entities correspond to the
tables in the database and their instances to rows in the tables. Apart
from the annotations to determine the mapping of entities and en-
tity relationships to relational data, the entity classes in the applica-
tion also employ mechanisms for validating data called JavaBeans
Validation, and Named Queries. Managing entities is administered
through Java Persistence Query Language (JPQL) and Criteria API.
The targeted database is set in the descriptor file.

The security of the application is achieved by means of both de-
clarative and programmatic security aspects. The scope of user capa-
bilities is determined by his or her role. Administrator and Customer
roles are assigned to users at the end of the authorization mecha-
nism of logging in with username and password. The resources are
declaratively labelled in a descriptor file to be available only to a cer-
tain role. That means, that if users not logged in attempt to reach
the resource they are redirected to the login page and if users in an
incorrect role try to reach it, they are prevented to do so.

39

4. THE APPLICATION

To conclude, applying the afore described technologies forms a
fundamental point for further enriching and adapting for the pur-
pose of incorporating event processing. The application was devel-
oped also considering other aspects such as design employing CSS
or internationalization using a resource bundle for messages.

4.3.2 Drools assembly at the start of the application

At the start of the application it is necessary to assemble the Drools
session, in other words, to create a proper Rete network and environ-
ment from resources, configuration and various components for it to
be able to receive events and commence firing rules. This is achieved
in an init method of EJB bean, heading of which is in Figure 4.5.

@Singleton
@Startup
@Lock (LockType .READ)
@DependsOn ({ " StartupDBConfigBean " })
public c l a s s DroolsResourcesBean {

@PostConstruct
public void i n i t () {

. . .

Figure 4.5: Heading of the bean responsible for Drools assembly.

The @Singleton annotation determines the bean type to be a
singleton session bean. Singleton session beans are instantiated only
once and exist for the lifecycle of the application. The @Startup an-
notation dictates this creation to occur upon application deployment.
Subsequently the dependency injection (not depicted in the example)
is performed and then the @PostConstruct method is invoked.

The @DependsOn annotation is used in situations where more
singleton session beans require being initialized in a specific order.
The usage in the example specifies that another bean needs to be
constructed first. The purpose of this initial bean is to establish the
tables in the database and to fill them with starting data such as a

40

4. THE APPLICATION

considerable amount of products or users in roles. The bean outlined
in the example does not only assemble the Drools session, but also
afterwards serves as an access point to it. The @LockOn annotation
is used for influencing the container-managed concurrency, as the
EJB container controls the access to the methods. As a whole, the
bean is labelled by the read type, which means that its methods can
be concurrently accessed or shared by various clients. However, to
preserve the consistency, some methods modifying the state are an-
notated with the LockType.WRITE, which locks the bean while the
method is called.

The detailed diagram of the Drools session assembly is depicted
in Figure 4.6.

Figure 4.6: Detailed Drools session assembly.

The KnowledgeBuilder is configured to also be constructed with
integration of own accumulate functions. Accumulate functions en-
able the rule to easily iterate over collection of objects, apply them to

41

4. THE APPLICATION

achieve the result and return the result object. The engine contains
predefined functions such as sum or count, and enable to compose
own by implementing appropriate interface. The example of its own
accumulate function is the function for iterating over set of events
representing visited products and returning the most frequent one.

After KnowledgeBuilder is created, the resources represented by
drl files are fed into it. The rules and other elements are divided into
multiple files to facilitate the process of their maintaining and testing.

To be aware of the concept of time, KnowledgeBase requires to be
constructed in stream mode. Subsequently, the knowledge packages
from KnowledgeBuilder are added into it and it creates the Stateful-
KnowledgeSession. The session is then enriched by channels and lis-
teners. Employment of channels is one of the possible ways to prop-
agate the information from rule consequence. The listeners are used
for logging as they invoke methods relating to the activations and
rule firing, such as after each fired rule.

4.3.3 Overview of generating and processing events

The generation of the majority of events originates in the user inter-
face JSF command links and buttons. In other words, they result from
the user navigating through the website and performing actions. An
example of such component is illustrated in Figure 4.7.

<h:commandButton
action="#{shoppingCart.addItem(
productController.selected)}"
actionListener=
"#{shoppingCartListener.productAddedIntoCart(

productController.selected,
userController.user)}"

value="#{bundle.AddToCart}"
styleClass="addToCartDetail"

/>

Figure 4.7: Example of a command button with listener producing
events.

42

4. THE APPLICATION

The attributes value and styleClass determine the appear-
ance of the button. The attribute action specifies the bean and its
method processing the input, and resulting in navigation. The ele-
ment applied for generating events is actionListener. It defines
a bean method which processes an action event (not to confuse the
term with the discussed events) invoked by the component tag. To
put it in another way, this attribute registers when a component is
activated and executes appropriate method, which creates an event
and inserts it into the session. There are two arguments in this ex-
ample from which the event is constructed, the user and product,
nevertheless, more of them can be applied to compose even more
detailed events.

After composing the event, the listener inserts it into the session.
There it passes through the Rete network and might create activa-
tions of one or more rules. When the rules are fired, their conse-
quences are executed. The form of rule consequences can be diverse.
Some of them are applied to compose different types of events or
perform other actions considering only the engine and its elements,
such as updates or retraction of events. Other rules need to propagate
an acquired result or piece of information outside the session. There
are various ways to achieve this. A component capable of invoking
some desired method can be inserted into the session as a fact; how-
ever, this brings a disadvantage of blending these components with
processed data. Therefore, a more appropriate option is to employ
globals or channels. Globals are named objects which require being
set on the session and declared in the rule file to be used. Channels
are instances of classes implementing the appropriate Drools inter-
face for receiving objects, and also needs to be registered to the ses-
sion.

The general overview of the process resulting in the storing of
notification is outlined in Figure 4.8. When a user uses the relevant
component in the page, the listener generates an event and inserts it
into the session, where it might activate a rule. After the rule is fired,
its consequence employing a channel is executed and it creates an
apposite notification and stores it into the database.

43

4. THE APPLICATION

Figure 4.8: Overview of user action resulting in notification.

4.3.4 Firing the rules

As it has been established, the insertion of the fact into the session
only creates the activations of the rules. To execute the consequential
parts of rules, the rules need to be fired.

Drools enable the firing of rules in two general ways. The first is
one-time firing by means of fireAllRules method on the session
and the second is managing of different threads with fireUntil-
Halt method execution on the session, which fires a rule when it is
activated. Due to the fact that managing a own threads in applica-
tions is strongly discouraged within Java EE container [33], the first
way is employed.

The appropriate approach to this depends on the character of the
rules. If the rules can be activated only by event insertion and it is im-
portant to execute the rule consequence as soon as possible after the
activation, the firing method can directly follow the act of insertion.
However, if rules contain constraints dependent not only on event

44

4. THE APPLICATION

insertions, for example when the application should evaluate the ab-
sence of certain facts over last hour, or if the reaction rate is not es-
sential, an automatic timer can be applied. The application currently
applies the combination of both approaches.

The EJB container constructs the automatic timer when a properly
annotated enterprise bean is deployed. The Figure 4.9 depicts a bean
used for firing rules.

@Startup
@Singleton
@DependsOn ({ " StartupDBConfigBean " ,

" DroolsResourcesBean " })
public c l a s s FireRulesScheduler {

@ I n j e c t
private DroolsResourcesBean drools ;

@PostConstruct
@Schedule (hour=" ∗ " , minute=" ∗/5 " , second=" 0 " ,
p e r s i s t e n t = f a l s e)
public void i n i t () {

drools . f i r e A l l R u l e s () ;
}

}

Figure 4.9: Bean used for firing rules every five minutes.

The bean is created at startup after the completion of table cre-
ation and constructing the session. The bean representing the access
point to the Drools session is injected and an automatic timer is con-
structed by the container. The character of the timer is determined
by the @Schedule annotation, where the frequency is defined by an
expression with similar syntax to the unix cron utility. This example
specifies the rules to fire every five minutes.

As the use of the timer is combined with the firing rule after every
event insertion, this method requires annotation with the LockTy-
pe.WRITE to prevent concurrency problems.

45

4. THE APPLICATION

4.3.5 Use cases of Complex Event Processing utilization

The application illustrates four general use cases of Complex Event
Processing utilization implemented by means of Drools. They are as
follows: notifications, statistics, layout adjustment and monitoring.

Notifications represent immediate reaction when an application
reaches a state defined in rules and reports it, in other words, when
something is happening that administrator should know about and
presumably react to. This does not necessarily imply an undesired
state, as the administrator might for instance want to be aware of the
situation where price of a product can be raised.

The application differentiates four types of notification: severe,
warning, info and good. The example of a severe notification is the
one composed when there is a product visited a lot, but not bought
much in the last hour. The condition of the rule responsible for this
calculates the difference between the sum of all visiting events for
each visited product event from the last hour and sum of all events
representing the buying of the product from the last hour, and if the
result is greater that the set number, the rule is activated and the con-
sequence of the rule creates the notification. An example of a good
notification is one reporting a greatly bought product in the last hour.

Although some notifications can be composed with the applica-
tion of a single rule, some requires the cooperation of more rules to
achieve this result. Following example depicts three rules employed
for creating notifications when there is a lot of unsuccessful product
search events with the same searched text in the last hour.

rule "Insert searched text event"
when

ProductSearchUnsuccessfulEvent($searchedText:
searchedText)
not SearchedText(text == $searchedText)

then
insert(new SearchedText($searchedText));

end

rule "Retract searched text event"
when

46

4. THE APPLICATION

$searched : SearchedText($text : text)
not ProductSearchUnsuccessfulEvent(

searchedText == $text)
then

retract($searched);
end

rule "Create notification if too many unsuccessful
seach events"
no-loop
when

$searchedText: SearchedText($text: text)
not SearchedTextReported(text == $text)
over window:time(1h)

ArrayList(size >= 10) from collect(
ProductSearchUnsuccessfulEvent(searchedText
== $text) over window:time(1h))

then
channels["productSearchUnsuccessful"]
.send($text);

insert(new SearchedTextReported($text));
end

This collection of rules employs not only the events generated
by the UI component listener, but also a supporting fact and event
declared in rules. The first two rules manage insertion and retrac-
tion of the supporting fact SearchedText used for easy grouping
of events in the rule creating the notification by searched text. The
first rule inserts this fact if it does not exist, and the second rule re-
tracts it when there is not a corresponding event anymore, in other
words, if all events of this kind with this searched text have expired.
The third rule calculates the count of corresponding events for each
such searched text and compares it to the set number. This rule also
uses a supporting event to report this kind of behaviour not more
than once per hour.

The channel applied in the third rule in the example is the spe-
cific channel created for this situation, expecting the searched text.
The channel creates the notification object and sets a proper mes-

47

4. THE APPLICATION

sage to it. This has the advantages of detailed channel differentiation
and uncomplicated rule consequences, however the notification at-
tributes such as severity level or text cannot be easily altered in rules.
Folowing example depicts a simple rule employing another channel
of a general character which expects notifications.

rule "Create notification when discussion entry
contains help"

when
$event: DiscussionEntryEvent(
text.toLowerCase().contains("help"))

then
channels["notificationsGeneral"].send(new
Notification(NotificationSeverity.WARNING,
new Date(), "The discussion entry created
by user ’" + $event.getUsername() +
"’ by ’" + $event.getProductName() +
"’ product contains ’help’."));

end

As the channel expects the already composed notification, it has
to be created in the rule. This can impede the transparency of the
rule, but facilitate its customization. Also a hybrid approach could
be applied, where only a text, severity level, or their tuple could be
sent. Namely this rule could be easily implemented using the stan-
dard techniques in the code as its condition could be rewritten to a
simple if statement. However, the separation of this logic from the
rule enables the easy construction of dozens of similar conditions
without the necessity of altering the code and it can be achieved by
even a non-programmer familiar with the rules.

Statistics are generated results from rules every established pe-
riod of time. The application possesses two types of them, hourly
and daily, where the difference is only in the frequency of their exe-
cution and therefore the amount of time they take into consideration.
The example of a rule generating a statistic:

rule "Report how many customers logged in
in the last day"
timer (cron:0 0 0 */1 * ?)

48

4. THE APPLICATION

no-loop
when
$total: Number() from accumulate(
$e: CustomerLogInEvent() over
window:time(24h), count($e))

then
channels["statisticsDaily"].send("In the
last day logged in "+ $total +
" customers.");

end

The rule applies the accumulated count function to all events
from the last day and sends the result message through the appro-
priate channel. The timer element is employed to achieve regular
execution. It can be defined either using the standard Unix cron ex-
pression, or by the interval expression described in the Drools Expert
documentation [12]. Only initial firing of the rules is required for the
timer to be activated.

The purpose of layout adjustment can be various, from attracting
new visitors to recommending products to familiar users. However,
to achieve that properly, the presentation components have to be de-
signed with this purpose in mind. The example of this is that the
most visited product in the last hour is established as the main prod-
uct on the home page, where this alternation is executed every hour.
The rule responsible for this is in the folowing example:

rule "Change main product if there is a better
one."
timer (cron:0 0 */1 * * ?)
no-loop
when

exists(ProductNavigationEvent()
over window:time(1h))

$current: CurrentMainProduct()
$mostVisitedProductEvent:
ProductNavigationEvent() from accumulate
($PNEventMain: ProductNavigationEvent()
over window:time(1h),

49

4. THE APPLICATION

mostVisitedProduct($PNEventMain))
eval ($current.getId() !=
$mostVisitedProductEvent.getProductId())

then
modify ($current) {
setId($mostVisitedProductEvent.

getProductId());
}
channels["defaultLayout"].send(
$mostVisitedProductEvent.getProductId());

end

This rule employs a supporting fact representing the current main
product. This fact is inserted in another rule possessing a simple
condition based on non-existence of this fact. The rule also utilizes
its own accumulate function mostVisitedProduct, which iterates
over collection of events and returns the most frequent one. The con-
dition of the rules also requires the new main product to be different
from the last one. In other words, if the same product is the most vis-
ited again, the rule is not activated. If the rule is activated, the current
main product fact is altered and the id is sent through the channel re-
sponsible for setting of the main product.

Furthermore, it would not be difficult to modify the rule to in-
spect other elements to set the main product, so it could be for in-
stance based on the most bought or the most visited product. The
more sophisticated version could alternate these options in a defined
pattern and then automatically set the most successful one depen-
ding on the time of day, user category or different aspects.

Monitoring in the application represents a scenario where events
in the session can be examined to determine what is currently hap-
pening. Administrators can choose a user recently logged in and see
what the user is presently doing. This is implemented by the means
of Drools object filters. The session is capable of returning the col-
lection of events meeting the defined condition. This condition is
represented by the implementation of the specific interface. The ad-
ministrator can utilize such information for example to inspect the
navigation through the website or series of steps leading to buying a
product.

50

4. THE APPLICATION

4.3.6 Testing of the rules

Testing of the rules is achieved by means of unit testing each rule or a
couple of rules representing a certain scenario. Each such test case is
covered by several unit tests attempting to evaluate a different situa-
tion. The tests comprising these unit tests are grouped in compliance
with the separation of the rules into drl files, in other words, a test
may add into Knowledge Builder only the drl file holding the decla-
rations and the drl file representing the tested logic.

Each test is composed of unit tests and a before and after method.
The before method is responsible for composing the session before
each unit test and the after method for correct disposal of it. The con-
structing of the session is performed in the similar way as in the init
phase of the application with the exception of resources, channels
and clock. Only the resources necessary for the scenario are used for
creating knowledge packages. The mock objects are substituted for
actual channels as they require the application server to operate.

Figure 4.10: The two Drools clock implementations [6].

Due to the fact that many of the rules employs the temporal rea-

51

4. THE APPLICATION

soning aspects, the clock implementation in the tests must be diffe-
rent. Drools provides two clock implementations, demonstrated in
Figure 4.10, where the Real Time Clock applies the JVM clock and
Pseudo Clock enables the application to control the flow of time in
all different ways. In order for the real-time clock to be the default
option, the setting of the pseudo-clock has to be configured during
creating the session.

4.4 Deployment

4.4.1 OpenShift

Openshift is a Cloud Computing Platform as a Service (PaaS) solu-
tion built on open source technologies managed by RedHat. It of-
fers built-in support for Java, Ruby, Python, PHP, Perl, and Node.js
and customizable cartridge functionality for adding any other lan-
guage, for instance Cobol. Furthermore, it provides both automatic
and manual scaling of the resources. Deploying the application on
Openshift is associated with selecting and applying present cartrid-
ges such as server or database, or building one’s own [34].

Managing the application on Openshift can be achieved either
through the command line or Eclipse IDE with the appropriate plu-
gin installed. The security is provided by means of SSH as the public
SSH key needs to be provided by the user to use the account.

The application has been deployed to Openshift in order to be
easily demonstrated and explored. It uses the following cartridges:
JBoss Application Server 7.1 to be the server, MySQL Database 5.1 for
the relational database and phpMyAdmin 3.4 to easily inspect the da-
tabase. The configuration for the openshift profile is similar to the
one of local server and can be found at the github repository for the
application3. The url through which the application can be reached
is:

https://fusionweb-ixi.rhcloud.com/

3. See https://github.com/IxiCZ/fusionweb.

52

https://fusionweb-ixi.rhcloud.com/
 https://github.com/IxiCZ/fusionweb

4. THE APPLICATION

4.4.2 An application server

For deployment to an application server the required elements are a
properly configured Java application server and a database system
capable of communicating with it, in other words, for which the ap-
propriate driver exists.

The database system only needs to contain a corresponding da-
tabase to the one defined in server configuration. Tables are created
and filled during the deployment of the application.

The configuration of the application server must set the database
as data source and establish the security domain. The guide how
to install the application to the JBoss Application Server is in Ap-
pendix B.

53

5 Conclusion

This thesis presents the introduction to Drools project and focuses
on explicating the core of the engine, the employed algorithm, rule
language and module for event processing capabilities. It also dis-
cuss the motivation of incorporating Complex Event Processing into
the scope of web applications and demonstrates the conclusions in
practical solution applying Drools.

The application was designed and implemented as a multi-tier
Java EE application capable of generating events as users browse,
navigates or perform various actions by means of it, where different
ways of realizing the event generation had been considered. To pro-
vide the sufficient base for the event processing, the application was
developed to contain the appropriate features such as user logging
in, product ordering or administration, and to offer more interest-
ing types of events, features such as product discussion or search-
ing amongst the products. The uppermost endeavour was given to
linking the Drools with the application and processing the events by
apposite rules.

The application presents various scenarios of utilization of Com-
plex Event Processing in this scope. For ease of demonstration the ap-
plication has been deployed to Platform as a Service solution, where
it can be explored and the instances of use cases are documented.

The application is a prototype of a possible solution. As a conse-
quence, it does not cover all possible use cases which could be ap-
plied in this area. For instance, the distinguishing of events could
contain more attributes such as exact element and position on the
page generating it or detailed information about the user. In addi-
tion, many additional types of events might be defined and a great
deal of rules considering the events could be composed. A real com-
plex solution would also require to consider other aspects, such as
caching or clustering.

To conclude, the area of Complex Event Processing can be uti-
lized in the scope of web applications providing various benefits of
analysing the events and reactions of their processing. The incorpo-
ration of such a mechanism is currently required to be handled in-
dividually and for the proliferation of this approach, advanced tech-

54

5. CONCLUSION

niques and frameworks should be developed.

55

Bibliography

[1] Bali, M. (2009). Drools JBoss Rules 5.0 Developer’s Guide. Bir-
mingham: Packt Publishing.

[2] Drools - The Business Logic integration Platform. (n.d.).
Retrieved March 6, 2013, from
http://www.jboss.org/drools/

[3] Meeks, K. (2008, January 26). Introduction to Drools.
Retrieved from
http://www.readbag.com/intltechventures-
presentations-2008-01-26-introduction-to-drools

[4] Amador, L. (2012). Drools Developer’s Cookbook. Birmingham:
Packt Publishing.

[5] Salatino, M. (2009). JBPM Developer Guide. Birmingham: Packt
Publishing.

[6] Aliverti, E. & Salatino, M. (2012). jBPM5 Developer Guide. Bir-
mingham: Packt Publishing.

[7] Drools Planner. (n.d.).
Retrieved March 8, 2013, from
http://www.jboss.org/drools/drools-planner.html

[8] Sandeep, J. (2012, August 6). Comparison between Websphere
ILOG JRules and JBoss Drools BRMS.
Retrieved March 8, 2013, from
http://www.javagenious.com/ilog/WebSphere_ILOG_
JRules_BRMS_vs_JBoss_Drools.html

[9] Open Source Workflow Engines in Java. (n. d.).
Retrieved March 8, 2013, from
http://java-source.net/open-source/workflow-
engines

[10] Gualtieri, M. & Rymer, R. R.. (2009, August 4). The Forrester
WaveTM: Complex Event Processing (CEP) Platforms, Q3 2009.

56

http://www.jboss.org/drools/
 http://www.readbag.com/intltechventures-presentations-2008-01-26-introduction-to -drools
 http://www.readbag.com/intltechventures-presentations-2008-01-26-introduction-to -drools
http://www.jboss.org/drools/drools-planner.html
 http://www.javagenious.com/ilog/WebSphere_ILOG_JRules_BRMS_vs_JBoss_Drools.html
 http://www.javagenious.com/ilog/WebSphere_ILOG_JRules_BRMS_vs_JBoss_Drools.html
http://java-source.net/open-source/workflow-engines
http://java-source.net/open-source/workflow-engines

BIBLIOGRAPHY

Retrieved from
ftp://ftp.software.ibm.com/itsolutions/SOA/
wave_complex_event_processing_cep_platforms.pdf

[11] Mijović, V. & Vraneš, S. (2011). A survey and evaluation of CEP
tools.
Retrieved from
http://www.e-drustvo.org/proceedings/
YuInfo2011/html/pdf/165.pdf

[12] The JBoss Drools team. Drools Expert User Guide Version
5.5.0.Final. (2012, November 13).
Retrieved March 9, 2013, from
http://docs.jboss.org/drools/release/5.5.0.
Final/drools-expert-docs/pdf/drools-expert-
docs.pdf

[13] Agüero, M., Esperon, G., Lopez De Luise, D. & Madou, F.
(2010). Enhancing Source Code Metrics Scope Through Artificial
Intelligence.
Retrieved from
http://www.iiis.org/cds2010/cd2010sci/citsa_
2010/paperspdf/ia292nw.pdf

[14] Browne, P. (2009). JBoss Drools Business Rules. Birmingham:
Packt Publishing.

[15] Lloyd, J. W. (1994). Practical Advantages of Declarative Pro-
gramming. University of Bristol.

[16] Forgy, Ch. (1974). A network match routine for production sys-
tems. Working paper.

[17] Doorenbos, R. B. (1995, January 31). Production Matching for
Large Learning Systems.
Retrieved from
http://reports-archive.adm.cs.cmu.edu/anon/
1995/CMU-CS-95-113.pdf

[18] Mello, P., Proctor, M. & Sottara D. (2010, September 16). A Con-
figurable Rete-OO Engine for Reasoningwith Different Types of

57

 ftp://ftp.software.ibm.com/itsolutions/SOA/wave_complex_event_processing_cep_pla tforms.pdf
 ftp://ftp.software.ibm.com/itsolutions/SOA/wave_complex_event_processing_cep_pla tforms.pdf
http://www.e-drustvo.org/proceedings/YuInfo2011/html/pdf/165.pdf
http://www.e-drustvo.org/proceedings/YuInfo2011/html/pdf/165.pdf
 http://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-docs/pdf/drools-e xpert-docs.pdf
 http://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-docs/pdf/drools-e xpert-docs.pdf
 http://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-docs/pdf/drools-e xpert-docs.pdf
http://www.iiis.org/cds2010/cd2010sci/citsa_2010/paperspdf/ia292nw.pdf
http://www.iiis.org/cds2010/cd2010sci/citsa_2010/paperspdf/ia292nw.pdf
http://reports-archive.adm.cs.cmu.edu/anon/1995/CMU-CS-95-113.pdf
http://reports-archive.adm.cs.cmu.edu/anon/1995/CMU-CS-95-113.pdf

BIBLIOGRAPHY

Imperfect Information. IEEE Transactions on Knowledge and
Data Engineering, Vol. 22.

[19] Tirelli, E. (2011, October). BRMS: Best (and worst) Practices and
Real World Examples.
Retrieved March 24, 2013, from
http://www.slideshare.net/etirelli/brms-best-
practices2011octfinal

[20] Luckham, D. (2002). The Power of Events: An Introduction to
Complex Event Processing in Distributed Enterprise Systems.
Boston: Addison-Wesley Longman Publishing.

[21] Etzion, O. & Niblett, P. (2011). Event Processing in Action.
Greenwich: Manning Publications.

[22] Luckam, D. (2012). Event Processing for Business. New Jersey:
John Wiley & Sons.

[23] Breddin, T., Groch, M. & Walzer, K. (2008). Supporting Tem-
poral Reasoning in the Rete Algorithm for Complex Event
Processing.
Retrieved from
http://www.rn.inf.tu-dresden.de/uploads/
dexaPaper.pdf

[24] Allen, F. J. (1981). An Interval-Based Representation of Tempo-
ral Knowledge.
Retrieved from
http://www.ijcai.org/PastProceedings/IJCAI-81-
VOL1/PDF/045.pdf

[25] The JBoss Drools team. Drools Fusion User Guide Version
5.5.0.Final. (2012, November 13).
Retrieved March 25, 2013, from
http://docs.jboss.org/drools/release/5.5.0.
Final/drools-fusion-docs/pdf/drools-fusion-
docs.pdf

[26] Proctor, M. Life Beyond Rete - R.I.P Rete 2013 :). (2013, January
02).

58

http://www.slideshare.net/etirelli/brms-best-practices2011octfinal
http://www.slideshare.net/etirelli/brms-best-practices2011octfinal
http://www.rn.inf.tu-dresden.de/uploads/dexaPaper.pdf
http://www.rn.inf.tu-dresden.de/uploads/dexaPaper.pdf
http://www.ijcai.org/PastProceedings/IJCAI-81-VOL1/PDF/045.pdf
http://www.ijcai.org/PastProceedings/IJCAI-81-VOL1/PDF/045.pdf
 http://docs.jboss.org/drools/release/5.5.0.Final/drools-fusion-docs/pdf/drools-f usion-docs.pdf
 http://docs.jboss.org/drools/release/5.5.0.Final/drools-fusion-docs/pdf/drools-f usion-docs.pdf
 http://docs.jboss.org/drools/release/5.5.0.Final/drools-fusion-docs/pdf/drools-f usion-docs.pdf

BIBLIOGRAPHY

Retrieved March 30, 2013, from
http://blog.athico.com/2013/01/life-beyond-
rete-rip-rete-2013.html

[27] Fusco, M. Drools 6: News & Noteworthy. (n. d.).
Retrieved March 30, 2013, from
http://2013.33degree.org/talk/show/20

[28] Layton, J. How Amazon Works. (n. d.).
Retrieved April 2, 2013,
http://money.howstuffworks.com/amazon.htm

[29] Lacey, D. (2009). Managing the Human Factor in Information
Security. New Jersey: John Wiley & Sons.

[30] Nielsen, J. How Long Do Users Stay on Web Pages? (2011,
September 11).
Retrieved April 4, 2013, from
http://www.nngroup.com/articles/how-long-do-
users-stay-on-web-pages/

[31] Gonsalves, A. SeeWhy Takes Complex Event Processing To
Web Analytics (2009, May 8).
Retrieved April 6, 2013, from
http://www.informationweek.com/software/
business-intelligence/seewhy-takes-complex-
event-processing-to/217400025

[32] Cervera-Navarro, R., Evans, I., Haase, K., Gollapudi, D., Jen-
drock, E., Markito, W. & Srivathsa, C. The Java EE 6 Tutorial
(2013, Jabuary).
Retrieved April 10, 2013, from
http://docs.oracle.com/javaee/6/tutorial/doc/

[33] EJB 3.0 Expert Group. JSR-000220 Enterprise JavaBeans 3.0
(n.d.).
Retrieved April 20, 2013, from
http://jcp.org/aboutJava/communityprocess/
final/jsr220/index.html

59

http://blog.athico.com/2013/01/life-beyond-rete-rip-rete-2013.html
http://blog.athico.com/2013/01/life-beyond-rete-rip-rete-2013.html
http://2013.33degree.org/talk/show/20
http://money.howstuffworks.com/amazon.htm
http://www.nngroup.com/articles/how-long-do-users-stay-on-web-pages/
http://www.nngroup.com/articles/how-long-do-users-stay-on-web-pages/
 http://www.informationweek.com/software/business-intelligence/seewhy-takes-compl ex-event-processing-to/217400025
 http://www.informationweek.com/software/business-intelligence/seewhy-takes-compl ex-event-processing-to/217400025
 http://www.informationweek.com/software/business-intelligence/seewhy-takes-compl ex-event-processing-to/217400025
http://docs.oracle.com/javaee/6/tutorial/doc/
http://jcp.org/aboutJava/communityprocess/final/jsr220/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr220/index.html

BIBLIOGRAPHY

[34] Red Hat, Inc. OpenShift Platform as a Service (n.d.).
Retrieved April 30, 2013, from
https://www.openshift.com/paas

60

https://www.openshift.com/paas

A Events diagram

Figure A.1: Simple class diagram of significant events.

61

B Deploying the application to JBoss Appli-
cation Server 7

1. Download the latest final version of JBoss Application Server 7
(currently it is 7.1.1 from http://www.jboss.org/jbossas/
downloads).

2. Extract the downloaded archive to the destined folder.

3. Create the database for the application in the database system.

4. Copy the driver for the database to the standalone/deploy-
ments folder (for example the apropriate JDBC Driver for MySQL
is called Connector/J and can be obtained at http://www.
mysql.com/products/connector/. The file
mysql-connector-java-5.1.22-bin.jar would then be
copied to server-folder/standalone/deployments)

5. Configure the server:

(a) Open file
server-folder/standalone/configuration/
standalone.xml

(b) Add the appropriate data source (inside the datasources
xml element), example:

<datasource jta="false"
jndi-name="java:jboss/datasources/

mysqlfusionweb"
pool-name="FusionWeb" enabled="true"
use-ccm="false">

<connection-url>jdbc:mysql://localhost:
3306/fusionweb?zeroDateTimeBehavior=
convertToNull

</connection-url>
<driver-class>
com.mysql.jdbc.Driver

</driver-class>
<driver>

62

http://www.jboss.org/jbossas/downloads
http://www.jboss.org/jbossas/downloads
http://www.mysql.com/products/connector/
http://www.mysql.com/products/connector/

B. DEPLOYING THE APPLICATION TO JBOSS APPLICATION SERVER 7

mysql-connector-java-5.1.22-bin.jar
</driver>
<security>

<user-name>root</user-name>
<password>1234</password>

</security>
<validation>

<validate-on-match>
false

</validate-on-match>
<background-validation>
false

</background-validation>
</validation>
<statement>

<share-prepared-statements>
false

</share-prepared-statements>
</statement>

</datasource>

The jndi-name must correspond to the one in persis-
tence.xml file (default is this). The connection-url
must correspond to the relevant url for connecting to the
database. The driver must be the same as the defined
driver (in the next step). The security element repre-
sents the credentials for logging into the database.

(c) Add the corresponding driver (inside the drivers xml
element), for example:

<driver
name="mysql-connector-java-5.1.22-bin.jar"
module="com.mysql">
<driver-class>

com.mysql.jdbc.Driver
</driver-class>
</driver>

63

B. DEPLOYING THE APPLICATION TO JBOSS APPLICATION SERVER 7

(d) Add the security domain (inside the security-domains
xml element). Example:

<security-domain name="fusionweb">
<authentication>
<login-module code="Database"

flag="required">
<module-option name="dsJndiName"

value="java:jboss/datasources/
mysqlfusionweb"/>

<module-option name="principalsQuery"
value="select password from User where
username=?"/>

<module-option name="rolesQuery"
value="select role,’Roles’
from UserRoles where User_username=?"/>

<module-option name="hashAlgorithm"
value="SHA-256"/>

<module-option name="hashEncoding"
value="base64"/>

<module-option
name="unauthenticatedIdentity"
value="guest"/>

<module-option name="allowEmptyPasswords"
value="false"/>

</login-module>
</authentication>

</security-domain>

The security domain specifies the authentication of the
users. The value of dsJndiNamemust be same as the data-
source.

(e) Increase the timeout for the deployment - as during the
time the deployment is created, the tables filled and the
session constructed, it might not meet the default timeout
for the deployment. To the deployment-scanner xml
element add attribute deployment-timeout="600".

(f) Save and close the file. The configuration can also be man-

64

B. DEPLOYING THE APPLICATION TO JBOSS APPLICATION SERVER 7

aged through the administration console of the server.

6. Start the server. It can be achieved through IDE or the execution
of the appropriate file in the server-folder/bin folder (for
Linux based operating systems standalone.sh).

7. Deploy the application - either through IDE, console or copy
the FusionWeb.war file into
server-folder/standalone/deployments. Explore the
application on: http://localhost:8080/FusionWeb/

65

http://localhost:8080/FusionWeb/

