
Platforma průmyslové spolupráce

CZ.1.07/2.4.00/17.0041

Název

Azure logging

Popis a využití

• use case logování na Windows Azure

• výuka: cloudové platformy

Jazyk textu

• anglický

Autor (autoři)

• Pavel Smolka

• Martin Novák

• Petr Kunc

Oficiální stránka projektu:

• http://lasaris.fi.muni.cz/pps

Dostupnost výukových materiálů a nástrojů online:

• http://lasaris.fi.muni.cz/pps/study-materials-and-tools

http://lasaris.fi.muni.cz/pps
http://lasaris.fi.muni.cz/pps/study-materials-and-tools

vi

Contents

Introduction ... 1

1.1 Background and motivation .. 1

1.2 Aim of the thesis ... 1

1.3 Thesis outline .. 1

State of the art ... 3

2.1 On-premises ... 3

2.2 Server housing .. 3

2.3 Cloud computing .. 3

2.3.1 Infrastructure as a service (IaaS) .. 4

2.3.2 Platform as a service (PaaS) .. 4

2.3.3 Software as a service (SaaS) .. 4

Context ... 5

3.1 Windows Azure... 5

3.1.1 Overview .. 5

3.1.2 Compute ... 5

3.1.3 Database and storages ... 5

3.1.4 Other services .. 6

3.2 Celebrio Kernel ... 6

Analysis .. 7

4.1 Single server against distributed environment ... 7

4.1.1 Dynamic number of distributed servers ... 7

4.1.2 Data persistency and data centralization ... 8

4.1.3 Caching ... 8

4.2 Local development and development process .. 9

4.3 Security ... 10

4.4 Availability and failovers ... 11

vii

4.5 Backups ... 11

4.6 Testing ... 11

Diagnostics .. 13

5.1 Celebrio Kernel .. 13

5.2 Performance Logging Module for Celebrio Kernel ... 13

5.2.1 Non-functional Requirements .. 13

5.2.2 Functional Requirements ... 13

5.3 Apache log4php ... 14

5.3.1 Windows Azure support... 14

5.3.2 Extending log4php for performance logging ... 15

5.4 Diagnostics Tool .. 17

5.5 Performance Overview ... 17

5.5.1 Performance logs processing ... 17

5.5.2 Celebrio Kernel integration ... 19

5.6 Next development ... 20

Evaluation .. 21

6.1 Performance Evaluation .. 21

6.1.1 Local on-premises server ... 21

6.1.2 Local Windows Azure emulator .. 21

6.1.3 Cloud Windows Azure ... 22

Conclusion ... 23

7.1 Learning and development ... 23

7.2 Solution advantages ... 23

7.3 Cost efficiency ... 23

7.4 Performance .. 24

Bibliography .. 25

1

Chapter 1

Introduction

1.1 Background and motivation

Cloud computing is a large datacenter computing power offered as a service through its

resources being shared among a number of consumers and available over a network. Cloud

computing offers infrastructure, platform and/or software as a service. Companies which were

developing their web systems on-premises can be in many cases more cost effective by moving

their systems to the cloud and reaching for seemingly unlimited resources available on-demand.

Although the cloud computing providers claim that a common web system can be moved to a

cloud nearly without any changes in its code, the real-life experience shows that to be able to

fully exploit its advantages, the web system must be designed or modified for the specific

environment.

1.2 Aim of the thesis

The thesis aims to analyze the differences between the development of a common web system

on-premises and cloud computing with the focus on local development, data backup,

performance diagnostics, testing, security, data persistence and connection among subservices.

As cloud computing services are being paid on demand it is very important for the web

system designers to be able to analyze it through various diagnostics. The thesis takes Windows

Azure platform as a service to demonstrate a web system design for cloud computing.

Celebrio Kernel is a free software technology used to test the thesis conclusions in real life

through a new diagnostics module usable in both on-premises and cloud computing

environment.

1.3 Thesis outline

The thesis consists of seven chapters.

The original work of the thesis is contained in chapters 4-7.

Chapter 1 Introduction describes background and motivation of the work, introduces goals

and shortly discusses the thesis outline.

Chapter 2 State of the art covers the current on-premises options and technology available

in cloud computing.

Chapter 3 Context outlines the Windows Azure platform technology including services such

as Compute, SQL Azure, storage and others.

2

Chapter 4 Analysis discusses the differences between on-premises and cloud computing

environments covering server distribution, development process, security, availability, failovers,

backups and testing.

Chapter 5 Diagnostics describes the requirements and development of a performance

logging module for an open-source system Celebrio Kernel.

Chapter 6 Evaluation covers the results of performance testing of an on-premises server,

Windows Azure emulator and Windows Azure cloud.

Chapter 7 Conclusion summarizes an analysis of various features of on-premises and cloud

computing environments.

3

Chapter 2

State of the art

2.1 On-premises

On-premises web systems run on the premises (in the building) of the company or organization

it belongs to. The company usually manages everything itself including the hardware,

connectivity, security, operating system, storage, database, backup, updating and failovers.

These solutions typically include only one server and are not expected to deal with a

distribution among higher number of instances.

The lasting advantage of such approach is a total control over the whole hardware and

software environment.

2.2 Server housing

In this case the company or organization has its servers in a building of a server-housing

provider. The advantage lies in an absence of the need to deal with the hardware but still having

total control over the software.

The company has to handle itself the software environment security and manage operating

system, storage, database and usually also the backups and failovers.

The service user pays full price for all of the used commercial server software.

Server housing has very limited options of scaling compared to cloud computing.

2.3 Cloud computing

Cloud computing is a form of distributed computing introducing

utilization for remote provisioning of scalable resources with main

benefits of reduced investment and proportional costs, increased

scalability, availability and reliability. [1]

Cloud references to abstraction and virtualization. Abstraction

hides the details of system specifications from users and developers.

Virtualization pools and shares scalable resources than can be

provisioned with enabled multi-tenancy. [2]

By a service model cloud computing solutions are divided into

“infrastructure as a service”, “platform as a service” or “software as

a service”. [2]

Cloud Computing

Infrastructure
as a Service

Platform
as a Service

Software
as a Service

Figure 1: Cloud computing
service model

4

2.3.1 Infrastructure as a service (IaaS)

The provider offers computing power, storage, basic solution for backup, server failovers, load

balancing and various additional services.

The service user manages all the software themselves which makes this service similar to

server housing approach including an obligation to pay for software licenses. [2]

Examples: Amazon Web Services1, Rackspace2

2.3.2 Platform as a service (PaaS)

The service provider offers similar services as in the case of IaaS but everything comes

preconfigured as a whole platform so the developers need only to make their own software

system compatible with the target platform. [2]

In this approach the development can be much faster and easier without the need of own

server specialist but the user has less control over the environment. Also all of the server

software is a part of the service and there is no need to pay any software licenses.

Also some PaaS can be built on top of IaaS, for example Red Hat’s OpenShift3 runs on top of

Amazon Web Services.

Examples: Google App Engine4, Windows Azure5

2.3.3 Software as a service (SaaS)

The service provider rents its software as a service rather than as a product so the user pays

only for the usage without any long-term commitment and doesn’t need to care about anything

but the software itself.

Examples: Google Docs6, Windows Live7

1 http://aws.amazon.com/
2 http://www.rackspace.com/
3 https://openshift.redhat.com/
4 https://developers.google.com/appengine/
5 http://www.windowsazure.com/
6 https://docs.google.com/
7 https://home.live.com/

5

Chapter 3

Context

3.1 Windows Azure

3.1.1 Overview

Windows Azure is a cloud computing platform as a service from Microsoft, offering their

common on-premises server software through the cloud. Microsoft itself uses Windows Azure to

run its solutions such as Office 3658, Bing9, Windows Live and others. [3]

Windows Azure is convenient especially for .NET programming framework10 developers used

to Microsoft Windows Server11 and Microsoft SQL Server12 but it also allows development using

programming languages supported by Internet Information Services13 such as Java14 or PHP15.

3.1.2 Compute

Compute16 is a Windows Azure hosted service that runs the developer’s code on virtual

machines of three types called “roles”. [4]

 A Web role provides Internet Information Services to run a web system based for

example on ASP.NET17 or PHP.

 A Worker role runs a .NET framework code in a cycle to run backend applications for

example for processing data retrieved through a web role.

 A Virtual Machine role allows deploying Windows Server image to Windows Azure to

allow a higher level of server customization.

3.1.3 Database and storages

Windows Azure offers database server, local storage and centralized storages. [4]

 SQL Azure18 is a database server as a service based on MS SQL Server

8 http://office365.microsoft.com
9 http://www.bing.com/
10 http://www.microsoft.com/net
11 http://www.microsoft.com/windowsserver/
12 http://www.microsoft.com/sql/
13 http://www.iis.net/
14 http://www.java.com/
15 http://php.net/
16 http://www.windowsazure.com/en-us/home/features/compute/
17 http://www.asp.net/
18 http://www.windowsazure.com/en-us/home/features/sql-azure/

6

 Local storage allows developers to save their data locally on the server instance in a case

that you can handle that the data will not be fully persistent and will not be distributed

among instances.

 Centralized storages19 are Tables, Queue, BLOB storage and Windows Azure Drive:

o Tables store structured data without relations organized into partitions and

rows

o Queue is a simple queue storage designed mainly for communication among web

and worker roles

o BLOB storage is designed to store large digital data from documents to

multimedia

o Windows Azure Drive allows roles to mount NTFS Virtual Hard Drive

3.1.4 Other services

Windows Azure offers many other services such as caching shared among Compute roles,

content delivery network, identity, access control and others20. [5]

3.2 Celebrio Kernel

Celebrio Kernel is free software that is being actively developed by Celebrio Software, s.r.o. and

Lab Software Architectures and Information Systems at Faculty of Informatics at Masaryk

University.

Celebrio Kernel is a general web system modular core that provides platform-independent

modules for example for database, storages, logging, user management and full access control

list. It can run all on-premises on GNU Linux or Windows server or in cloud computing

environment of Windows Azure.

19 http://www.windowsazure.com/en-us/home/features/storage/
20 http://www.windowsazure.com/en-us/home/features/overview/

7

Chapter 4

Analysis

4.1 Single server against distributed environment

On-premises system is usually developed for a single server that provides both the computing

power and storage space. It is easy to develop as the developers have full control over server

customization and everything is available at one place.

In the cloud there is a distributed scaling environment of variable number of virtual server

machines and developers have to deal with data centralization and persistency. The

characteristics of design needs of server clusters come down to relatively small web systems.

One physical server

Windows Azure Fabric Controller

Compute web role

Load
Balancer

Instance 1Instance 1

Instance 2Instance 2 Azure storageAzure storage

Figure 2: On-premises Environment & Cloud Windows Azure Environment

4.1.1 Dynamic number of distributed servers

The outside world accesses servers always through a load balancer and never directly, therefore

it is unpredictable where the next request is going and the system has to be prepared for that by

data centralization. [4]

In a common web systems development a server is seen as an environment where everything

is stored but in cloud you have to see instances purely only as a compute power. That means that

instances cannot store any data that may be needed between two server request and that

includes user sessions and error reports.

The server instances are organized by Windows Azure Fabric Controller that manages load

balancing, resource allocation and complete application lifecycle. It can also shut any server

instance anytime there is something wrong or for example interrupt the request if there is no

output from the web role instance for more than 60 seconds (which is important if the

developed system is using output buffering and does not send out data during request

processing).

8

Microsoft provides a 99.95% monthly service level agreement21 for Compute services if the

web role uses two or more instances which means high standard of availability for small

companies running their software on Windows Azure. But there were cases when Windows

Azure ran into serious trouble such as for example on February 29, 2012 when its software did

not anticipate a leap year. [6] [7]

4.1.2 Data persistency and data centralization

In the distributed environment of cloud computing all the data must be centralized in order to

be available for all server instances. No data is persistent on instance level and one instance does

not have access to files stored on other instances. It is possible to require local disc space on

instances which is permanent for the one instance and can be used for local-file designed

caching or storing temporary files. [4]

For storing sessions there is a solution based on Azure storage Table. It is important that the

developed system has to manage both session storing and erasing all data. [4] There can be also

used Windows Azure Caching22 service to provide faster access. [8]

Error logs cannot be stored on local file system of instances as the system manager would

never see the full report. The Windows Azure SDK uses Table for storing logs [9] and there is

Windows Azure Diagnostics service that manages low level errors and saves them into a BLOB

storage. [10]

On-premises data is stored usually on the same server as the application using common file

system and small companies do not have available resources to purchase servers for live

replication. In case of scaling the data would have to be moved to some central storage and there

would be a problem with migrating. But a small application has much easier data management.

4.1.3 Caching

Windows Azure applications can use caching on instance level using common server tools (local

file system to store processed data or in memory cache using IIS) or use Azure Caching service

among instances. [8]

21 http://www.windowsazure.com/en-us/support/sla/
22 http://www.windowsazure.com/en-us/home/features/caching/

9

Not Persistent

Persistent

Local File System
Cache

Web Role
Instance 1

In Memory
Cache

In Memory
Azure Cache

Local File System
Cache

Web Role
Instance 2

In Memory
Cache

Figure 3: Caching on Windows Azure

Azure Caching is in memory solution that provides faster access then using slower disk based

storages which can be taken advantage of especially for “write once read many” scenarios such

as various catalog data. Microsoft offers cache size from 128 MB to 4 GB. [8]

For example Celebrio Kernel uses file based cache for automatic class loading and storing

processed views (from MVC model23). On an instance level there is an IIS extension for PHP that

allows in memory cache of optcode24 and files. And Azure Caching is used for fast access to

sessions and configuration. With every software upgrade, cache stored on instances is erased

and only Azure Caching data remains. The data stored in Azure Caching would need to be placed

on-premises in the IIS extension in memory cache. The advantage of Azure Caching lies only in

its availability among more server instances.

4.2 Local development and development process

Windows Azure
Compute
Staging

Azure StorageSQL Azure

Windows Azure
Compute

Production

Local
Development

Storage

Local
Compute
Emulator

Switch Storages

Local
SQL

Server

Azure Storage Local
Compute
Emulator

SQL Azure

Upload Swap VIP

Azure StorageSQL Azure

Figure 4: Windows Azure Development Steps

Windows Azure Compute roles can be developed using local emulators. There is a compute

emulator, storage emulator and one can use Microsoft SQL Server Express (which is also used by

the storage emulator) to emulate SQL Azure.

23 Model-View-Controller, a design pattern dividing an application into three levels
24 Processed byte-code of PHP scripts

10

Microsoft Visual Studio and Eclipse have extensions that allow easy deployment to both

emulators and cloud.

Deploying to a local emulator usually takes only few seconds. Deploying to cloud takes up to

half an hour as one has to wait for the deployment package to be created, uploaded and then for

the instances to be started by Windows Azure Fabric Controller.

The best practice is to develop the application using local emulators and then test it by

switching from local storages to cloud storages and then upload it to cloud. In cloud the upload

should be made into staging environment for testing and if no errors or issues occur it can be

switched to production which shows on the application domain (through virtual IP address

swapping). Always the whole deployment package has to be created and uploaded for updates

and there is no direct access to files unless a Virtual Machine Compute role is used and set up to

be accessible directly.

On-premises the system is developed on a local test server running usually on the developer’s

computer and then files are uploaded to the live server typically using FTP25 or similar service.

The development is faster and easier but more prone to errors.

4.3 Security

Windows Azure datacenters and systems are highly secured and certified or compliant with:

 Safe Harbor26

 ISO 2700127

 SAS70 Type II28

 FISMA29

Companies running their software on top of Windows Azure may take advantage of these

certificates that a small company would usually not be able to obtain.

It is important to take into consideration a law in a country where the business is made with

Windows Azure based solution. For example the law of the Czech Republic prohibits storing

bank account data or credit card data on any server situated outside of the country.

The access to Azure Management Portal which allows complete control over an Azure

account including erasing all data is secured only by a Live ID login which is based on a user

name and password.

25 File Transfer Protocol – protocol used for uploading and/or downloading data on web
26 http://safeharbor.export.gov/companyinfo.aspx?id=12409
27 http://go.microsoft.com/fwlink/?LinkId=213084&clcid=0x409
28 http://cdn.globalfoundationservices.com/documents/InformationSecurityMangSysforMSCloudInfra

structure.pdf
29 http://blogs.technet.com/b/gfs/archive/2010/12/02/microsoft-s-cloud-infrastructure-receives-

fisma-approval.aspx

11

Common on-premises system made by a small company does not achieve such level of

security.

4.4 Availability and failovers

Data saved in Azure storage and SQL Azure is considered safe as the platform uses triple

replication of all storages. Additionally Tables and BLOBS have replication between two

datacenters at least 100 miles away from each other to be immune even against major natural

disasters. SQL Azure can be also replicated by using Data Sync service. [11]

Windows Azure Fabric Controller monitors the environment and in case of a failure starts

an automatic recovery process.

The service level agreement ensures for example: [12]

 external connectivity at least 99.95 % of the time to the Compute roles

 99.9 % of detecting Compute role process inactivity

 99.9 % successfully processing actions on Azure storage

 99.9 % availability of SQL Azure

Common on-premises solutions do not have failover processes and do not offer such level

of availability.

4.5 Backups

Compute roles have failover processes ensured by Windows Azure Controller Fabric and there is

no need for backing up the data. Failover is also ensured for storages and SQL Azure.

SQL Azure can be backed up using Data Sync service so you can have your own safe

differential time backup of the database. [13]

Azure storage BLOB has own solution for differential time backup based on changed blocks

or pages but it is saved together with the BLOB and there has to be created own usage method.

There are no official tools for Azure storage local backup and Microsoft itself promotes

backing up the data into separate Azure account in a different geo location. But the REST API

makes it easy to develop own backup solution for Windows Azure if needed.

On-premises there are standard tools developed for data backed up but small companies

usually do not have failover processes or live replication.

4.6 Testing

Standard application testing tools can be used for testing cloud systems regarding unit testing

and behavioral testing. In case of Windows Azure environment it can be tested using local

emulators but they do not cover all features and do not fully emulate Azure server. The Main

differences are:

12

 A local emulator does not lock files against changes as a Compute service

 Cloud runs in 64 bit environment with modified Windows Azure server [14]

 Windows Azure Fabric Controller is not locally fully emulated

 Load balancer behaves differently in cloud

 Latency among Compute instances and storages is bigger in cloud

 Local emulator does not emulate Compute performance

 SQL Azure has different rules than Microsoft SQL Server [15]

13

Chapter 5

Diagnostics

5.1 Celebrio Kernel

Celebrio Kernel is a general web system core for building web applications. It provides database

module supporting Microsoft SQL Server, Azure SQL, MySQL, Postgre SQL, contains user

management module providing full access control list and Celebrio Virtual File System that

enables simple work with various types of storages such as local file systems and Windows

Azure storage BLOB.

The system was chosen because of its support of both on-premises and Windows Azure

environments and open source free license.

Celebrio Kernel was used to build Celebrio30, computer system for the elderly, by Celebrio

Software, s.r.o. and Celebrio was used for testing the developed diagnostics tools in real-life

environment.

5.2 Performance Logging Module for Celebrio Kernel

There was a need to create a new logging module for Celebrio Kernel in order to be able to easily

monitor, log and view performance time indicators.

5.2.1 Non-functional Requirements

 Use standard PHP logging framework Apache log4php

 Extend log4php to log performance data

 Integrate performance overview in Celebrio Kernel logging module

Performance module is required to gather time based information about processing duration

anywhere in Celebrio Kernel to be able to answer questions such as how it takes to create a new

user or which pages are generated slowly.

5.2.2 Functional Requirements

 Support Windows Azure storage

 Support local file system storage

 Optimization for large amount of data

30 http://www.celebriosoftware.com/

14

5.3 Apache log4php

Apache log4php31 is a standard PHP logging framework similar to log4j (Java) or log4net (.NET)

which is integrated into Celebrio Kernel as a main logging tool.

Example of error logging code in Celebrio Kernel:

\Celebrio\Logging\Logger::getLogger("errors")->error("test error - nothing actually happened",

new \Exception("testing exception"));

5.3.1 Windows Azure support

Apache log4php does not include any support for the Windows Azure platform so there was a

need to create new logger appender class as a descendant of log4php LoggerAppender class.

There were two options for target storage: Table or BLOB. BLOB storage is used by standard

Windows Azure diagnostics [10] to store IIS logs and Compute instance performance logs and

Table is used by standard logging class in Windows Azure PHP SDK [9]. Developed log4php

appender Celebrio\Diagnostics\LoggerAppenderAzureTable uses Table and its implementation is

inspired by Windows Azure PHP SDK logger and log4php MongoDB appender. The

implementation directly uses Windows Azure PHP SDK to handle Windows Azure storage.

Appender was designed to store logged events in memory and commit them to Azure Table

using batch processing at the end of web request processing. Advantage is in performance gain

as direct writing per log would deal with a big amount of added up latency. Every target

appender can specific its target table within storage so error logs do not mix with debug logs,

etc. There cannot be used a different approach based for example on indexes as Azure storage

tables do not support relationships and are designed for fast retrieval based on partition and

row key combination but are slow on every kind of direct search within the logs data.

The developed appender supports exceptions logging and inner exceptions logging.

Azure storage table entities are structured by a partition key and a row key as indexes.

Partition key optimizes data and load distribution, row key is the unique index within a partition

and a combination of partition key and row is unique for every entity. The developed appender

uses date YYYYmmdd as a partition key and a UNIX microtime for a row key. This allows

appropriate load balancing and index uniqueness optimized for log reading per day ordered by a

time.

31 http://logging.apache.org/log4php/

15

Azure
Storage
Table

20120528

20120529

20120530

1335712528.9031 | log data

1335712522.4352 | log data

1335712232.3553 | log data

1335712634.3632 | log data

1335712326.3366 | log data

1335712225.3622 | log data

1335712266.2525 | log data

1335712253.1463 | log data

1335712925.2421 | log data

1335712144.6356 | log data

1335712252.2525 | log data

1335712144.3522 | log data

Figure 5: Azure storage Table structure for log4php logs

Figure 6: Windows Azure Storage Explorer in Eclipse showing log4php logs

5.3.2 Extending log4php for performance logging

Performance logging and diagnostics are expected to process a large amount of data and

therefore it was decided to use optimized log formatting and appending to meet requirements.

Using standard general logging would mean storing large amount of redundant data which is not

optimal as performance diagnostics are based on a large number of separate logs. Partition key

and row key in Azure storage tables needed to be optimized by storing per request and

measured blocks to allow search based on those two variables which would not be possible with

the standard log appender.

Logs contain unique web request UNIX microtime identification, measured processing time

and measured block name including a class identification of measured block placement if

available.

There was created a new class Celebrio\Diagnostics\LoggerLayoutTimer that extends

standard log4php LoggerLayout class to format layout for local files logging using log4php class

LoggerAppenderFile.

16

Example logged line:

1335712526.4229 - 1.9279341697693 – Performance logs processing

(KernelModule/LogsModule/PerformanceModule/DisplayPresenter)

LoggerLayout

+__construct()
+setThreadPrinting()
+getThreadPrinting()
+setCategoryPrefixing()
+getCategoryPrefixing()
+setContextPrinting()
+getContextPrinting()
+setMicroSecondsPrinting()
+getMicroSecondsPrinting()
+setDateFormat()
+getDateFormat()
+format()
+ignoresThrowable()

LoggerLayoutTimer LoggerAppenderFile

+initialize()
+getLogger()
+__callStatic()

Logger

Figure 7: Class diagram for file based performance logging

A new logger appender class Celebrio\Diagnostics\LoggerAppenderAzureTimer was created

extending Celebrio\Diagnostics\LoggerAppenderAzureTable to optimize logs for a different

structure using web request identification as a partition key and measured block identification

as a row key to empower diagnostics based on both particular web request and blocks.

+initialize()
+getLogger()
+__callStatic()

Logger

+__construct()
+activateOptions()
+format()
+formatThrowable()
+append()
+addEvent()
+getEvents()
+close()
+setTable()
+getTable()

LoggerAppenderAzureTable

LoggerAppender

+__construct()
+append()
+formatTimer()

LoggerAppenderAzureTimer

Figure 8: Class diagram for Windows Azure storage table based performance logging

17

Figure 9: Windows Azure Storage Explorer in Eclipse showing performance logs

5.4 Diagnostics Tool

There was a need for a simple class designed to measure various blocks of code with different

features. Class Celebrio\Diagnostics\Timer uses static methods to start and stop measuring and

log final data using performance logging and supports three types of details: REQUEST,

OVERVIEW and DETAILED; so the system administrator can control the amount of logged data.

Example of class usage:

Celebrio\Diagnostics\Timer::start(“Module loading”,

Celebrio\Diagnostics\TimerLevel::OVERVIEW);

// time consuming operation

Celebrio\Diagnostics\Timer::stop(“Module loading”);

5.5 Performance Overview

A performance log module was created for Celebrio Kernel to process and show diagnostics for

created performance logs supporting both local file logs and Windows Azure storage Table logs.

5.5.1 Performance logs processing

A log processing on local files uses Celebrio\FileSystem\TextFile class to simplify work with files.

Windows Azure processing uses Windows Azure SDK for PHP to handle storage.

During the processing we measure consumed time with limit of 50 seconds (divided into

logical blocks) to ensure that the processing time will not overflow Windows Azure Fabric

Controller time limit.

18

Reading
Performance

logs

Reading old
statistics

Updating old
statistics

Performance
logs

Performance
logs

Adding new
unique

statistics

Statistics
logs

Statistics
logs

Statistics
logs

Statistics
logs

Statistics
logs

Statistics
logs

Figure 10: Performance logs processing

At the beginning new logs are read beginning from the last read byte in a file or from the last

processed partition. Number of read bytes or last processed partition is stored using standard

Celebrio Kernel configuration method. At the beginning the number is set to zero so in case of an

error the next processing will start from total beginning effectively avoiding data corruption.

In the next step old diagnosed statistics are read in memory to update them and count

average measured processing time based on total time and number of measurements.

In the last step there are new unique diagnosed blocks added.

On Windows Azure a batch processing is used to optimize performance and an entity number

limit is watched to ensure seamless processing. If processing time limit is reached, the algorithm

stores last processed logs position and starts from the point in next processing request.

During the development there a bug in Windows Azure PHP SDK was found and reported to

its developers: http://phpazure.codeplex.com/workitem/6901

http://phpazure.codeplex.com/workitem/6901

19

5.5.2 Celebrio Kernel integration

Celebrio
Kernel

Celebrio

Logs Modules

Database

MS SQL
Server

Postgre SQLMySQL

Azure SQL

Access
Control List

Virtual File
System

Virtual File
System
Drivers

Local File
System

Windows
Azure

Storage

Error Logs Security Logs

Performance
Logs

Library

Celebrio
Library

Third Party
Libraries

Diagnostics

Other parts

Logging

Figure 11: Celebrio Kernel diagram

The created tools are divided between Celebrio Kernel itself and Celebrio Library. Celebrio

Library contains all the tools that are used through the code for logging and measuring blocks of

code and the Performance Logs module (orange in the figure 11) that processes and displays

data.

The module (Performance Logs in the figure 11) was designed using Model-View-Controller

method as a new part of Celebrio Kernel Logs Module.

ViewController

Model

+processLogs()

«interface»
IPerformaceLogsProcessor

+processLogs()

PerformanceLogsProcessorAzure

+processLogs()

PerformanceLogsProcessorFile

+getBlocksList()

«interface»
IPerformanceLogs

+getBlocksList()

PerformanceLogsAzure

+getBlocksList()

PerformanceLogsFile

+renderDefault()

DisplayPresenter
default.phtml

Figure 12: Celebrio Kernel Performance Logs Module diagram

20

Model uses an algorithm to process performance logs and retrieve statistics.

Controller controls data processing and retrieval from module and creates output for view.

View presents output data in a form of a Celebrio Kernel template.

5.6 Next development

The work was focused on working with performance data and diagnostics but although there

were created general logging tools as well, at the moment there is no native Celebrio Kernel

module that would read them and they have to be accessed through the Windows Azure Storage

Explorer or read opened as a file on the local file system.

21

Chapter 6

Evaluation

6.1 Performance Evaluation

All diagnostics were made on fully installed Celebrio system with permission from Celebrio

Software, s.r.o.

1,000 performance logs are used for diagnostics.

6.1.1 Local on-premises server

Tested on machine: Intel Core i5 processor, 2.3 GHz with 4 CPU cores, 4 GB RAM.

Local on-premises server shows to be the most efficient solution.

Block Average Microtime

/kernel/ 0.45298890272776

/kernel/modules/ 0.65337546666464

/kernel/performance-logs/?process=1 0.99005603790284

Application run 0.17181092930823

/ 1.0223519076472

/app/chat/ 0.36315298080444

Table 1: Performance statistics on local on-premises server

6.1.2 Local Windows Azure emulator

Using 2 small instances in emulator tested on machine: Intel Centrino Duo processor, 2.0 GHz

with 2 CPU cores, 4 GB RAM.

Locally emulated Windows Azure shows to be slower than a local on-premises server.

Block Average Microtime

/kernel/ 0.47446888371518

/kernel/modules/ 0.95292387406033

/kernel/performance-logs/?process=1 2.9037259022395

Application run 0.414773345987

/ 2.4059007228949

/app/chat/ 0.70887640118599

Table 2: Performance statistics on local Windows Azure Emulator

22

6.1.3 Cloud Windows Azure

Using 2 small instances in cloud in a datacenter placed in Dublin, Ireland. One small instance

configuration: 1 CPU core 1.6 GHz, 1.75 GB RAM.

Performance of cloud Windows Azure solution seems to be comparable with tested locally

emulated Windows Azure.

Block Average Microtime

/kernel/ 1.6157951116562

/kernel/modules/ 1.7324267625809

/kernel/performance-logs/?process=1 4.2073950767517

Application run 0.58849500150097

/ 1.8688276368518

/app/chat/ 1.3217213153839

Table 3: Performance statistics on cloud Windows Azure

23

Chapter 7

Conclusion

7.1 Learning and development

It is easier to stay with common on-premises system development and use well known practices

to develop small systems. Cloud computing builds on a foundation of on-premises solutions but

adds other elements such as various new storages, distributed environment, etc.

It might be discussed when it is the right moment to start focusing on cloud development and

when an on-premises system is sufficient enough. The trend seems to be moving all web

applications to the cloud and common on-premises systems might slowly retire. [2] There is a

free offering for Windows Azure testing and companies in Microsoft BizSpark32 program that

gives access to free Windows Azure services sufficient for uninterrupted run of two small

Compute instances.

7.2 Solution advantages

Cloud computing has an advantage in providing a more long term sustainable solution. Once the

system is developed and becomes optimized for the target cloud platform it becomes very

predictable and thanks to scaling capabilities it can easily grow.

Fast developed on-premises systems are usually not optimized for high performance and

large number of users and therefore once they reach their performance limit, scaling the

solution to meet higher needs can be very difficult.

7.3 Cost efficiency

For a very small system with low number of users an on-premises system can run on a cheap

server with a low cost investment but if the developers want to achieve higher standard that

would include high security, data safety and availability the upfront expenses will become

consuming and not easily predictable.

Cloud system acquires high level of data safety, availability and certified security from the

service provider without any expenses and there are no upfront payments.

Cost is also influenced by software licenses which have to be paid on on-premises solution for

commercial software but cloud platform comes without such costs.

32 http://www.microsoft.com/bizspark/default.aspx

24

7.4 Performance

On-premises solution works faster thanks to low latency even without high level of optimization.

Optimized cloud solution usually runs slower.

Very important fact is that cloud solution keeps the same level of performance as it grows

and is not as prone to slowing down as on-premises solutions. Once current hardware

configuration is insufficient in the cloud it is possible to just obtain faster machine or balance the

load among higher number of instances. On-premises solutions are more difficult to scale

because obtaining more server power is connected to data and software migration and

operations with the hardware. Once one server is not enough, the on-premises software must be

rewritten for distributed environment.

25

Bibliography

1. ERL, T. SOA Governance: Governing Shared Services On-Premise and in the Cloud. SOA Systems

Inc. 2011. 978-0-13-8156675-6.

2. SOSINSKY, B. Cloud Computing Bible. Wiley Publishing, Inc. 2011. ISBN 978-0-470-90356-8.

3. MICROSOFT. Cloud Resources. In: Microsoft Global Foundation Services [online]. 2012 [cit.

2012-05-07]. http://www.globalfoundationservices.com/cloud-resources.aspx

4. BETTS, D. Moving Applications to the Cloud: on the Microsoft Windows Azure Platfom.

Microsoft, 2010. ISBN 9780735649675.

5. MICROSOFT. Features. Windows Azure [online]. 2012 [cit. 2012-05-07]. http://

www.windowsazure.com/en-us/home/features/overview/

6. LAING, B. MSDN Blogs. In: Windows Azure Service Disruption Update [online]. 29. 2. 2012 [cit.

2012-05-06]. http://blogs.msdn.com/b/windowsazure/archive/2012/03/01/windows-

azure-service-disruption-update.aspx

7. LAING, B. Windows Azure Service Disruption Resolved. MSDN Blogs [online]. 1. 3. 2012 [cit.

2012-05-07]. http://blogs.msdn.com/b/windowsazure/archive/2012/03/01/window-

azure-service-disruption-resolved.aspx

8. MICROSOFT. Windows Azure Caching. Windows Azure [online]. 2012 [cit. 2012-05-07].

http://www.windowsazure.com/en-us/home/features/caching/

9. CENTRE, R. M. C. Source Code. PHPAzure: Windows Azure SDK for PHP [online]. 2012 [cit.

2012-05-07]. http://phpazure.codeplex.com/SourceControl/changeset/view/

67037#1056744

10. CENTRE, R. M. C. Diagnostics. PHPAzure: Windows Azure SDK for PHP [online]. 2012 [cit.

2012-05-07]. http://phpazure.codeplex.com/

wikipage?title=Diagnostics&referringTitle=Documentation

11. MICROSOFT. Introducing Geo-replication for Windows Azure Storage. MSDN Blogs [online].

2011 [cit. 2012-05-07]. http://blogs.msdn.com/b/windowsazurestorage/archive/2011/

09/15/introducing-geo-replication-for-windows-azure-storage.aspx

12. MICROSOFT. Service Level Agreements. Windows Azure [online]. 2012 [cit. 2012-05-07].

http://www.windowsazure.com/en-us/support/legal/sla/

13. MICROSOFT. SQL Azure. Windows Azure [online]. 2012 [cit. 2012-05-07]. http://

www.windowsazure.com/en-us/home/features/sql-azure/

26

14. MICROSOFT. Virtual Machine Role in Windows Azure. Windows Azure [online]. 2012 [cit.

2012-05-07]. http://www.windowsazure.com/en-us/home/features/virtual-machines/

15. MICROSOFT. Compare SQL Server with SQL Azure. Microsoft TechNet [online]. 2011 [cit.

2012-05-07]. http://social.technet.microsoft.com/wiki/contents/articles/996.compare-sql-

server-with-sql-azure.aspx#Similarities_and_Differences

