PH-Lecture notes 02/03/11

ACIDOSIS - production of H+

- TISSUE METABOLISM...12 500meq/d CO₂
- LIVER utilization of AMA for gluconeogenesis H₂SO₄, H₃PO₄ a major H⁺ load 50 meq/day
- STRENUOUS EXERCISElactic acid
- · DIABETES MELLITUS ketoacidosis
- · INGESTION OF ACIDS, DIARRHOEA
- · FAUILURE OF KIDNEY

ALKALOSIS

- ·Fruits, vegetables

Consequence of pH disturbances

- · Change of tertiary and quaternary structure of proteins
- I of activity of enzymes
- changes in permeability of membranes
- changes in distribution of electrolytes

Regulation of pH of body fluids

- · Buffer systems... immediately, small capacity
- Lungs... co₂ ...quickly, limited capacity
- Kidney...+, HCO₃ .slowly, high capacity

BUFFERS - BUFFER CAPACITY OF BLOOD

- · BUFFER- weak acid
- · The Henderson-Hasselbalch equation

HA <=> H+ + A

<= + H+ added strong acid

=> + OH- added strong base (H+ bound to water)

Relative acidity of weak acids is expressed by dissoc. constant

 Negative logarithm of d.const. is pK ...it is pH, at which concentration of H⁺ and undissociated molecules equals $pH = pK + log [A^-]/[AH]$

The highest buffering capacity if pH =pK

buffer capacity of blood - 48mmol/l

BUFFERS IN BLOOD

· Plasma proteins dissociate

Free carboxyl: R-COOH <=> R-COO+ H* Free aminogroups: R-NH3+ <=>R-NH2+ H+

· Hemoglobin (histidin residua)

Buffering capacity 6x 1 than that of proteins

Hb is weaker acid than HbO₂=>
Hb is better buffer than HbO₂ (4buffering capacity in lungs – easier release of CO₂...opposite effect in tissue helps binding

- Phosphates H₂PO₄ <=> HPO₄²+ H+
- Bicarbonate system HCO₃ + H⁺

 $CO_2 + H_2O \Longrightarrow H_2CO_3 \Longrightarrow H^- + IICO_3$ CO2 + H2O € H- + IICO3

Moreover, we can define a dissociation constant for this pseudo-equilibrium:

Equation 27-16 $K = \frac{[H^+][]IICO_3]}{[CO_2]}$

In logarithmic form, this equation becomes:

Equation 27-17 $pH = pK + \log \frac{||HCO_3||}{|CO_2|}$

Finally, we may express [CO₂] in terms of PCO₂, recalling from Henry's Law that [CO₂] = $s \cdot PCO_2$;

Equation 27-18

 $pH = pK + log \frac{[HCO_3]}{s \cdot PCO_2}$

This is the Henderson-Hasselbalch equation, a loga-

COMPENSATION OF ACIDOSIS

- NEAD OF NaHCO₃ mmol/l: BE*0,3*WEIGHT
- · Isotonic solution 1,39 % (0,167mol/l)
- ½ of amount needed, new measurement, (examination of K+)

Dependence of kaliemie on pH - at a constant total content of K+ 7.6 7.4 7.2 pH 3.2 mmol/l 4.9 4.0 5.0 3.8 6.2 4.5 7.3 6.0 Physiologic PLASMATIC CONCENTRATION 3.5 - 5.3 mmol/l

METABOLIC ACIDOSIS

- · CAUSES
- 1Production of acids (diabetes, loss of weight, anaerobic glycolysis)

Loss of bicarbonate (diarrhea, inhibitors of carbonic anhydrase)

Intake of acids

Renal failure of acid secretion

- · RESPIRATORY COMPENSATION
- H* is bound (H* + HCO₂ → H₂O + CO₂) EXSPIRATION (Kussmaul respiration)— ALKALIC RESERVE DECREASES

METABOLIC ALKALOSIS

- · CAUSES
- Loss of H+ (vomit, deficiency of K+)

Intake of bases

Production of bases (oxidation of lactate)

- RESPIRATORY COMPENSATION is limited hypoventilation hypoxia + CO₂ – stim of respiration
- · EXCRETION of BICARBONATE by KIDNEY
- ↑pH→↓Ca⁺⁺→tetany

RESPIRATORY ACIDOSIS

- CAUSES
 Ventilation (barbiturates)
 Reduction of lung's tissue
- H⁺ BUFFERED BY NONBICARBONATE BUFFERS
- EXCRETION of H⁺ (NH4⁺) by KIDNEY lag by 1-2 days

RESPIRATORY ALKALOSIS

- CAUSES hyperventilation (hypoxia, psychiatric)
- H+ RELEASED BY NONBICARBONATE BUFFERS
- EXCRETION of BIKARBONATE by KIDNEY
- · First aid quieting, rebreathing