Biotransformation of xenobioticsBiotransformation of xenobiotics Biochemistry II Lecture 5 2008 (J.S.) Xenobiotics are compounds present in the environment thatXenobiotics are compounds present in the environment that cannot be used in normal biological processes – that are foreign to the body. Humans are subjected to exposure to various xenobiotics continually.Humans are subjected to exposure to various xenobiotics continually. The principal classes of xenobiotics are drugs, food additives, polycyclic aromatic hydrocarbons (PAH) formed by incomplete combustion of organic compounds, or by smoking and roasting ofcombustion of organic compounds, or by smoking and roasting of food, various pollutants – products of chemical industry (halogenderivatives of organic compounds, pesticides), and some naturalderivatives of organic compounds, pesticides), and some natural compounds of plant origin that are strange for animals (e.g. alkaloids, spices).alkaloids, spices). They enter the body usually by ingestion, inhalation, or penetrate occasionally through the skin, sometimes inadvertently, or may beoccasionally through the skin, sometimes inadvertently, or may be taken deliberately as drugs. 2 Most xenobiotics are hydrophobic (lipophilic) compoundsMost xenobiotics are hydrophobic (lipophilic) compounds and this property enables their nonspecific penetration across the phospholipid dilayer of plasmatic membranes.the phospholipid dilayer of plasmatic membranes. The elimination of xenobiotics from the body depends on their transformation to more hydrophilic compounds.transformation to more hydrophilic compounds. The most hydrophobic xenobiotics, called persistent organic pollutants, once they are released into the environment remain intact for long periods of time. For example, polychlorinated biphenyls (PCBs), dioxins, insecticidestime. For example, polychlorinated biphenyls (PCBs), dioxins, insecticides DDT, and dieldrin accumulate in the adipose tissue of living organisms, cannot be excreted from the bodies, and are found at higher concentrations in thebe excreted from the bodies, and are found at higher concentrations in the food chain. The overall purpose of the biotransformation of xenobiotics is to reduce their nonpolar character as far as possible. The products of transformation are more polar, many of them are soluble in water.are soluble in water. Their excretion from the body is thus facilitated. 3 Under certain conditions, some cell-types become resistant to drugs that were initially toxic to them. This phenomenon is called multidrug resistance,were initially toxic to them. This phenomenon is called multidrug resistance, such cells are able to extrude drugs out of the cell before the drug can exert its effects.exert its effects. Those cells express a membrane protein that acts as and ATP-dependent transporter of small molecules out of the cell. The protein is called MDR protein (multidrug resistance protein) and it belongs to the family of proteins that have(multidrug resistance protein) and it belongs to the family of proteins that have two characteristic ATP-binding domains (ATP-binding cassettes, ABCs). Excretion of xenobiotics from the body After chemical modification, the more hydrophilic compounds are excreted into the urine, bile, sweat. They can also occur in the milk. Excretion of xenobiotics from the body excreted into the urine, bile, sweat. They can also occur in the milk. Volatile products are breathed forth. Under certain conditions, compounds excreted into the bile can undergo deconjugation and absorption (the enterohepatic circulation). 4 Biotransformation of xenobioticsBiotransformation of xenobiotics is located mostly in the liver It proceeds in two phases: Phase I - the polarity of the compound is increased by introducing aPhase I - the polarity of the compound is increased by introducing a polar group (hydroxylation is a typical reaction), increase in polarity by another way, or demasking a polar group (e.g., by hydrolysis of an ester or dealkylation of an amide or ether).or dealkylation of an amide or ether). The reactions take place predominantly on the membranes of endoplasmic reticulum, some of them within the cytoplasm.endoplasmic reticulum, some of them within the cytoplasm. The first phase reactions may convert some xenobiotics to the compounds that are more biologically active than the xenobiotic itself. Phase II – Cytoplasmic enzymes catalyze conjugation of the functional groups introduced in the first phase reactions with a polar component (glucuronate, sulfate, glycine, etc.). These products are mostly less biologically active than the substrate drug, the xenobiotic is detoxified. 5 Example: Biotransformation of amphetamineBiotransformation of amphetamine amphetamine Phase I reaction Phase II reaction Phase I reaction 4-hydroxyamphetamine 4-hydroxyamphetamine 4-O-glucosiduronate Phase II reaction 4-hydroxynorephedrine 4-hydroxynorephedrine Phase II reaction 6 4-hydroxynorephedrine 4-O-glucosiduronate Reactions of biotransformation – phase I Reaction Xenobiotic types Hydroxylation Dehydrogenation aromatic systems (even heterocyclic) alcohols, aldehydesDehydrogenation Sulfooxidation Reduction alcohols, aldehydes dialkyl sulfides (to sulfoxides)) nitro compounds (to amines)Reduction O- and N-dealkylation nitro compounds (to amines) ethers (to hemiacetals), sec. amines (to N-hemiacetals) Hydrolysis sec. amines (to N-hemiacetals) esters and others.and others. 7 The liver microsomal monooxygenases,The liver microsomal monooxygenases, called also hydroxylating monooxygenases or mixed-function oxidasesor mixed-function oxidases are prominent enzymes catalyzing reactions of the phase I. They act on an infinite range of different molecular types because ofThey act on an infinite range of different molecular types because of having low substrate specificity. There are two major groups of monooxygenases:There are two major groups of monooxygenases: – monooxygenases that contain cytochrome P450, and – flavin monooxygenases.– flavin monooxygenases. Flavin monooxygenases are important in biotransformation of drugs containing sulfurous andare important in biotransformation of drugs containing sulfurous and nitrogenous groups on aromatic rings or heteroatoms (namely antidepressants and antihistaminics), and of alkaloids.antidepressants and antihistaminics), and of alkaloids. Typical products of the reactions catalyzed by flavin monooxygenases are sulfoxides and nitroxides. 8 Cytochrome P450 monooxygenases are the major monooxygenases of endoplasmic reticulum. The abbreviation P450 is used because those enzymes can be recognized, if they bind carbon monoxide, as pigments that have Approximately 400 isoforms of these enzymes have been found in the nature, over 30 isoforms in humans. recognized, if they bind carbon monoxide, as pigments that have a distinct band at 450 nm in their absorption spectra. nature, over 30 isoforms in humans. These haemoproteins are the most versatile biocatalysts known. In addition to their high activity in the liver cells, they occur in nearly allIn addition to their high activity in the liver cells, they occur in nearly all tissues, except for skeletal muscles and erythrocytes. 2 H+ FAD haem Fe2+NADPH + H+ 2 H substrate RH O NADP+ FADH2 R–OH O2 H2Ohaem Fe3+ flavoprotein NADP FADH2 cytochrome P450 reductase cytochrome P450 R–OH hydroxylated product haem Fe 9 Cytochrome P450 monooxygenases transform also a large number of compounds that are natural components of the body. Let us recall hydroxylation of cholesterol, calciols, steroid hormones, haemoxygenase in the haem catabolism, and also desaturation of fatty acids. Many of cytochrome P450 monooxygenases are inducible. The hepatic synthesis of cyt P450 monooxygenases is increased by of fatty acids. The hepatic synthesis of cyt P450 monooxygenases is increased by certain drugs and other xenobiotic agents. If another xenobiotic, which is metabolized by the same isoform of the enzymeIf another xenobiotic, which is metabolized by the same isoform of the enzyme and induces its synthesis, appears together with a needed drug in the body, the rate of phase I reactions transforming the needed drug can be many times higher during few days. Consequently, the biological effect of the drug is lower.higher during few days. Consequently, the biological effect of the drug is lower. Some xenobiotics act as inhibitors of cyt P450 monooxygenases. If an inhibitor is applied with a needed drug, the drug concentration in plasma is higher than the usual one. The patient may be overdosed or unwanted side effects can appear. 10 can appear. Genetic polymorphism of cyt P450 monooxygenases Allelic variation that effects the catalytic activity of monooxygenases will Genetic polymorphism of cyt P450 monooxygenases Allelic variation that effects the catalytic activity of monooxygenases will also affect the pharmacologic activity of drugs. Example of such polymorphism is that of the isoform CYP 2D6: there areExample of such polymorphism is that of the isoform CYP 2D6: there are extensive metabolizers (most of normal population), poor metabolizers (5 – 10 % of normal individuals), and rapid metabolizers (individuals who rapidly metabolize debrisoquine as well as a significant number of other commonly used drugs). In the group of rapid metabolizers – the plasma levels of drugs are higherIn the group of rapid metabolizers – the plasma levels of drugs are higher than expected, unwanted side effects are oft. In the group of rapid metabolizers – lower drug plasma levels thanIn the group of rapid metabolizers – lower drug plasma levels than expected after usual doses, the treatment is ineffective. To obtain satisfactory results, the drug doses have to be higher than those used insatisfactory results, the drug doses have to be higher than those used in extensive or poor metabolizers. 11 The most important human cyt P450 monooxygenasesThe most important human cyt P450 monooxygenases Selected examples of substrates and effectors: CYP Typical substrate Inducer – example Inhibitor – example Selected examples of substrates and effectors: CYP 1A2 theophylline tobacco smoke erythromycin CYP 2A6 CYP 2C9/19 methoxyflurane ibuprofen phenobarbital phenobarbital - sulfaphenazole CYP 2D6 CYP 2E1 codeine alcohols, ethers phenobarbital rifampicin ethanol quinidine disulfiramCYP 2E1 CYP 3A4 alcohols, ethers diazepam ethanol phenobarbital disulfiram furanocoumarins (in grapefruits) Approximate fraction of total CYP activity: CYP 2C9/19 10 % CYP 2D6 30 % CYP 3D4 50 % (25 – 70 %) 12 CYP 3D4 50 % (25 – 70 %) Reactions of biotransformation – phase II The reactionsThe reactions – render xenobiotics even more water-soluble enabling excretion of them into the urine or bile,into the urine or bile, – convert the biologically active products of phase I reactions into less active or inactive species. Transferases (cytosolic or bound in membranes of ER) catalyze conjugation, acetylation or methylation of the polar groups in products of phase I reactions with another and mostly polar component.of phase I reactions with another and mostly polar component. The reactions are endergonic, one of the reactants have to be activated. Reaction type Reagent Group of the xenobiotic Bond type Glucuronidation UDP-glucuronate -OH, -COOH, -NH2, -SH glycoside Sulfation Formation of sulfide Formation of amide PAPS glutathione glycine, taurine -OH, -NH2 ester electrophilic carbon sulfide -COOH amideFormation of amide Methylation Acetylation glycine, taurine S-AM acetyl-CoA -COOH amide phenolic -OH ether -NH amide 13 Acetylation acetyl-CoA -NH2 amide ● Glucuronidation● Glucuronidation A variety of UDP-glucuronosyltransferases are present in both cytosol andA variety of UDP-glucuronosyltransferases are present in both cytosol and membranes of endoplasmic reticulum. O-, N-, or S-glycosides are formed in the reaction of UDP-glucuronateO-, N-, or S-glycosides are formed in the reaction of UDP-glucuronate with phenols, phenolic and benzoic acids, flavonoids, alcohols, amphetamines, primary aromatic amines, thiophenols, as well as endogenous bilirubin, many steroid compounds, catecholamines, etc.endogenous bilirubin, many steroid compounds, catecholamines, etc. Example:Example: phenol UDP-glucuronate UDP phenyl ββββ-D-glucosiduronatephenol UDP-glucuronate UDP phenyl ββββ-D-glucosiduronate 14 ● Sulfation● Sulfation Sulfotransferases bound in the membranes of endoplasmic reticulum transfer the sulfate group from the universal sulfate donor 3‘-phosphoadenosyl-5‘-phosphosulfate (PAPS, "active sulfate") to all types of phenols forming so sulfate esters orto all types of phenols forming so sulfate esters or to aryl amines forming so N-sulfates (amides). Steroid hormones and catecholamines are also Example: inactivated by sulfation. Example: phenol PAPS phenyl sulfate PAPS phenol PAPS phenyl sulfate Ado-3´,5´,-bisphosphate 15 Glutathione is an important intracellular ● Conjugation with glutathione Glutathione is an important intracellular reductant (antioxidant) and takes part in transfer of amino acids acrossin transfer of amino acids across plasmatic membranes. GSH-transferases catalyze the transfer of glutathione to a number xenobiotics glutathione (GSH) γ-glutamyl-cysteinyl-glycine of glutathione to a number xenobiotics (e.g. epoxides of aromatic hydrocarbons, aryl halides, electrophilic carcinogens), which results in formation of aryl sulfides of glutathione. γ-glutamyl-cysteinyl-glycine carcinogens), which results in formation of aryl sulfides of glutathione. Glutamyl and glycyl residues are removed from these conjugates by hydrolysis, and the remaining cysteinyls are N-acetylated. The resulting conjugates of N-acetylcysteine called mercapturic acids are excreted into the urine. CoA-SH Example: MOS GSH acetyl-S-CoA CoA-SH mercapturic acid (N-acetyl-S-substituted cysteine) Glu + Gly epoxide 16 (N-acetyl-S-substituted cysteine) ● Conjugation with glycine Arenecarboxylic acids, namely substituted benzoic acids, after activation to acyl-CoAs give amides with glycine. The reaction is catalyzed by cytosolic glycine-N-acyltransferases.cytosolic glycine-N-acyltransferases. N-benzoylglycines are called hippuric acids. Unsubstituted hippuric acid is present in the urine of healthy individuals –Unsubstituted hippuric acid is present in the urine of healthy individuals – benzoic acid is a normal constituent of vegetables and also an additive (fungicidal agent) to some foodstuffs. High urinary excretion of hippurate is a marker of exposition to toluene, which undergoes oxidation to benzoate. benzoic acid benzoyl-CoA hippuric acid (N-benzoylglycine) glycine (N-benzoylglycine) CoA-SHCoA-SH ATP AMP PPi Bile acid, before secreted from the liver cells, are conjugated with glycine in the same way (conjugated bile acids – glycocholate, chenodeoxycholate, etc.) Taurine H N–CH -CH –SO – may also serve in conjugation, however 17 Taurine H2N–CH2-CH2–SO3 – may also serve in conjugation, however conjugation of bile acids with taurine is of minor importance in humans. ● Acetylation is the reaction, by which the biological effects of aromatic amines and similar compounds are diminished. Acetyl-CoA is the donor of acetyl. Isoniazid (INH, isonicotinic acid hydrazide) is an effective chemotherapeutic agent used in the Example: chemotherapeutic agent used in the treatment of tuberculosis). The genetic disposition to acetylate thisThe genetic disposition to acetylate this type of xenobiotics with different rates exists (slow and rapid acetylators). acetyl-CoA CoA-SH ● Methylation of phenolic groups occurs oft in phase II of biotransformation.of phenolic groups occurs oft in phase II of biotransformation. In spite a slight decrease in hydrophilicity of the products, the biological effects that depend on the phenolic groups are supressed in this way. The donor of methyl group is S-adenosyl methionine (S-AM), the reaction is catalyzed by O-methyltransferases. 18 Catecholamines and estrogens are inactivated by O-methylation. Benzene and other aromatic hydrocarbons Biotransformation of selected compounds - examples Benzene and other aromatic hydrocarbons cyt P450 conjugation phase I cyt P450 phase II conjugation and When the hydroxylating system is overloaded, increased amounts of reactive metabolites are formed: High urinary excretion of phenol conjugates at high professional exposition to benzene.of reactive metabolites are formed: + at high professional exposition to benzene. covalent linking to cell macromolecules • + GSH GSH-transferase covalent linking to cell macromolecules – cell injury – haptens → immune reaction – cell injury – carcinogens, DNA mutations epoxide hydrolase GSH acetyl-S-CoA CoA-SH – carcinogens, DNA mutations Glu + Gly 19mercapturic acids Polycyclic aromatic hydrocarbons (PAH)Polycyclic aromatic hydrocarbons (PAH) Sources of PAH: – industrial combustion of fossil fuels, production of coke, asphalt,– industrial combustion of fossil fuels, production of coke, asphalt, – combustion of wood (forest fires) and household rubbish, – singed bread and pastry, smoking, grilling, barbecuing, and roasting of foodstuffs, overheated fats and oils,foodstuffs, overheated fats and oils, – soot, tobacco smoke. Biotransformation of PAH is similar to simple aromatic hydrocarbons, e.g.:Biotransformation of PAH is similar to simple aromatic hydrocarbons, e.g.: hydroxylation hydroxy derivatives that are mostly non-toxic benzo[a]pyrene hydroxylation cyt P450 hydroxy derivatives that are mostly non-toxic and eliminated after conjugation in phase II reactions benzo[a]pyrene epoxides that can give dihydrodiols and, after a further epoxidation,further epoxidation, carbanion ions interacting with DNA – carcinogens. 20 Acetaminophen (p-acetaminophenol, paracetamol) was prepared in 1893. Since approx. 1975, when it turned out that acetylsalicylic acid may have some unwanted side-effects, serves acetaminophen as common analgetic-antipyretic of the first choice.analgetic-antipyretic of the first choice. Biotransformation: The amide bond is not hydrolyzed!The amide bond is not hydrolyzed! oxidation of only a small part to N-acetyl-p-benzoquinoneimide (NAPQI),cyt P450 ~ 3 % excreted unchanged into the urine N-acetyl-p-benzoquinoneimide (NAPQI), unless the conjugating capacity is exhausted cyt P450 if conjugation capacityinto the urine CONJUGATION if conjugation capacity is limited, unwanted side effects: – covalent bonding GSH – covalent bonding to proteins, – oxidation of –SH groups in enzymes, GSH 60 % as glucosiduronate 30 % as sulfate ester mercapturic acid in enzymes, – depletion of GSH, – hepatotoxicity at overdosing 21 30 % as sulfate ester mercapturic acid overdosing Acetylsalicylic acid (aspirin) is an analgetic-antipyretic with antiinflammatory effect; minute doses inhibit aggregation of blood platelets. Biotransformation: acetylation of macromoleculesBiotransformation: acetylation of macromolecules (acetylation of COX inhibits the synthesis of prostaglandins) UDP-glucuronate esterase UDP-glucuronate salicyl glucosiduronate salicyloyl glucosiduronate and UDP glycine salicylate cyt P450 salicyl glucosiduronate salicyloyl glucosiduronateUDP glycine cyt P450 o-hydroxyhippurate (salicyloylglycine, salicyluric acid) glycine 2,5-dihydroxyhippurate (gentisoylglycine, gentisuric acid) gentisate quinone (and products of its oxidn. salicyluric acid) 22 glycine gentisuric acid)(and products of its polymerization) Bromohexin is the prodrug of an expectorant ambroxol:Bromohexin is the prodrug of an expectorant ambroxol: N-demethylation hydroxylation bromohexin (prodrug) ambroxol (expectorant) Antitussic codeine (3-O-methylmorphine) is transformed in part and slowly into morphine: (prodrug) (expectorant) morphine: O-demethylation morphine (analgesic, an addictive drug) codeine (antitussic) 23 (analgesic, an addictive drug)(antitussic) It is proper to avoid application of too many different remedies together,It is proper to avoid application of too many different remedies together, though their expected effects can be viewed as useful. – Interactions between different drugs or their metabolites might– Interactions between different drugs or their metabolites might cause enhancement or inhibition of pharmacological effects, – the mixed type hydroxylases (cyt P450) are inducible, their activities may increase many times in several days, so that the remediesmay increase many times in several days, so that the remedies are less efficient, – if the load of the detoxifying system is high, minor pathways of– if the load of the detoxifying system is high, minor pathways of transformation can be utilized and produce unwanted side-effects due to the formation of toxic metabolites, – intensive conjugation with glutathione might result in depletion of this important reductant in the cells, etc. 24 Biotransformation of ethanolBiotransformation of ethanol occurs mainly in the liver. Ethanol is oxidized to acetaldehyde and then to acetic acid. There are three reactions that give acetaldehyde from ethanol. – Cytosolic NAD+-dependent alcohol dehydrogenase is the most– Cytosolic NAD+-dependent alcohol dehydrogenase is the most important, it functions even at low concentrations of ethanol (Km = 2 mmol/l, i.e. 0,1 ‰): CH3-CH2OH + NAD+ alcohol DH CH3-CH=O + NADH + H+ acetaldehyde (Km = 2 mmol/l, i.e. 0,1 ‰): – Microsomal ethanol oxidizing system (MEOS, which contains CYP 2E1) is effective preferably at excess alcohol intake (at blood concentrations higher than 0.2 - 0.5 ‰; K = 10 mmol/l):concentrations higher than 0.2 - 0.5 ‰; Km = 10 mmol/l): CH3-CH2OH + O2 + NADPH + H+ CH3-CH=O + 2 H2O + NADP+ – In peroxisomes, catalase can catalyze oxidation of ethanol by hydrogen peroxide: CH -CH OH + H O CH -CH=O + 2 H O 25 CH3-CH2OH + H2O2 CH3-CH=O + 2 H2O Aldehyde dehydrogenase catalyzes oxidation of acetaldehyde to OH aldehyde DH Aldehyde dehydrogenase catalyzes oxidation of acetaldehyde to acetic acid: OH OH acetaldehyde hydrate CH3-CH=O + H2O CH3-CH CH3-COOH acetate aldehyde DH NAD+ NADH + H+acetaldehyde acetateNAD NADH + H Acetate is activated to acetyl-CoA. In excessive alcohol intake, NAD+ is spent for dehydrogenation of ethanol preferentially so that excess lactate (from pyruvate) is formed. In the liver cells lacking in NAD+,In the liver cells lacking in NAD+, gluconeogenesis is decreased (resulting in hypoglycaemia), β-oxidation of fatty acids inhibited (liver steatosis),β-oxidation of fatty acids inhibited (liver steatosis), increased ketogenesis (from acetate), and because the rate of acetaldehyde oxidation is reduced, the toxic effects of acetaldehyde are more pronounced.the toxic effects of acetaldehyde are more pronounced. 26 Consequences of drinking ETHANOL ADH / MEOS ADH + AldDH acetaldehyde (hangover) interpolates into membranes, increased high NADH/NAD+ ratio increased membrane fluidity various adducts acetate reoxidation of NADH by pyruvate AldDH various adducts with proteins, nucleic acids. biogenic amines acetate lactacidaemia hypoglycaemia CNS immediate toxic effects biogenic amines (alkaloids?) acetyl-CoA hypoglycaemia (inhibition of gluconeogenesis and β-oxidation of FA)toxic effects fatty acid synthesis (fatty liver) and β-oxidation of FA) social consequences of chronic alcoholism 27 (fatty liver)of chronic alcoholism Tests for detection of ethanol intake Elevated blood levels of ethanol decrease due to its oxidation, ethanol is eliminated from the body during several hours. γ-Glutamyltransferase (γγγγGT) in serum is increased in chronic alcoholism oft, but this test is not specific. New tests have been developed (unfortunately, they are not yet used commonly in increased in chronic alcoholism oft, but this test is not specific. New tests have been developed (unfortunately, they are not yet used commonly in routine laboratory practice), which are able to detect not only when a person drank last time, but also if the doses taken were moderate or excessive. Ethyl glucosiduronate (EtG) increases in the blood synchronously with the decreaseEthyl glucosiduronate (EtG) increases in the blood synchronously with the decrease of blood ethanol and can be detected (in the urine, too) after few days, even up to 5 days. Fatty acids ethyl esters (FAEE) appear in the blood in 12 – 18 h after drinking and can be detected even 24 h after alcohol in blood is no more increased. However, traces ofbe detected even 24 h after alcohol in blood is no more increased. However, traces of FAEEs are deposited in hair for months and may serve as a measure of alcohol intake. Phosphatidyl ethanol (PEth) is present in the blood of individuals, who have beenPhosphatidyl ethanol (PEth) is present in the blood of individuals, who have been drinking moderate ethanol doses daily, in even 3 weeks after the last drink. Carbohydrate-deficient transferrin (CDT). In the saccharidic component of each transferrin molecules, there are 4 – 6 molecules of sialic acid. Drinking to excess disturbestransferrin molecules, there are 4 – 6 molecules of sialic acid. Drinking to excess disturbes the process of transferrin glycosylation so that less sialylated forms of transferrin (with only two or less sialyl residues per molecule, CDT) are detected in blood during approximately 4 weeks after substantial alcohol intake. 28 approximately 4 weeks after substantial alcohol intake.