2 2 X\X2 \ X-yXry \ X%i X\X% ~r X-yXo ~r X2-, (-L) ry ry ry JL\Jb2'L?j- \begin{gather} x_{l} x_{2} + x_{ir{2} x_{2K{2} + x_{3},\notag\\ x_{l} x_{3} + x_{lK{2} x_{3K{2} + x_{2},\label{E:ml9}\\| x_{l} x_{2} x_{3}. \notag \end{gather} l ry ry ry ry ry I ry ry ry ry ry I ry ry ry ry ry I ry ry ry ry ry \ I i X1X2X3X4X5 -\- 0,1X3X4X5X5 ~r x^X2X4X5X5 ~r XxX2XßX5Xg 1 ~r (xix2x3x4 + X1X2X3X5 + X1X2X4X5 + X1X3X4X5 + X2X3X4X5)2 (2) \ b e g i n { m u l t l i n e } \ l a b e l { E : m l l 3 } (x_{l} x_{2} x_{3} x_{4} x_{5} x_{6})^{2} + \ \ (x_{l} x_{2} x_{3} x_{4} x_{5} + x_{l} x_{3} x_{4} x_{5} x_{6} + x_{l} x_{2} x_{4} x_{5} x_{6} + x_{l} x_{2} x_{3} x_{5} x _ { 6 } r { 2 } + \ \ (x_{l} x_{2} x_{3} x_{4} + x_{l} x_{2} x_{3} x_{5} + x_{l} x_{2} x_{4} x_{5} + x_{l} x_{3} x_{4} x_{5} + x_{2} x_{3} x_{4} x_{5})~{2} \ e n d { m u l t l i n e } x = y +z, u = v + w. \begin{align} \label{E:mll} x &= y + z,\\ u &= v + w.\label{E:mlla} \end{align} 'First Prev Next Last Go Back Full Screen Close Quit hix }{x) + g{x) 1 + }{x)g{x) 1+ P{x V^ sinx 1 + g[x dx -- 2 tan" x 2 dx \begin{align} \label{E h(x) &= \int \left( ml2} \frac{f(x) + g(x)Hl + f~{2}(x)}+ \frac{ 1 + f(x)g(x) }{ \sqrt{l - \sin x} } \right)\,\dx\\ &= \int \frac{ 1 + f(x) }{ 1 + g(x) }\,\dx -2 \tan~{-l}(x - 2) \notag \end{align} x = x A (y V z) (by distributivity) (6) = (x A y) V (x A z) (by condition (M)) = 2/V z. \begin{align} x &= x \ wedge (y \vee z) k &\text{(by distributiv k= (x \wedge y) \vee (x \wedge z) k &\text{(by condition ( k= y \vee z. \notag \end{align} f(x) = x + yz g(x) = x + y + z (7) h(x) = xy + xz + yz k(x) = (x + y)(x + z) (2/ + 2) \begin{align}\label{E:mm3} f(x) &= x + yz & g(x) &= x + y + z\\ h(x) &= xy + xz + yz & k(x) &= (x + y)(x + z)(y + z) \notag \end{align} f(x) = x + yz g(x) = x + y + z (8) h(x) = xy + xz + yz k(x) = (x + y)(x + z) (2/ + 2) \begin{flalign}\label{E:mm3f1} f(x) &= x + yz & g(x) &= x + y + z\\ h(x) &= xy + xz + yz & k(x) &= (x + y)(x + z)(y + z) \notag \end{flalign} x = 17y y > a+b+c x = 17y y > a + b+ c \begin{eqnarray} x k = k 17y \ \ y & > & a + b + c \end{eqnarray} \begin{align} x k = 17y \\ y k > a + b + c \end{align} X\ \i<5 + ď i<5 + ď \begin{align} x_{l} + y_{l} + \left( \sum_{i < 5} \binom{5}{i} &+ a~{2} \right)^{2}\\ \left( \sum_{i < 5} \binom{5}{i} k+ \alpha~{2} \right)~{2} \end{align} X\ \ í<5 í<5 + ď + ď f(x) = x + yz g (x) = x + y + z (13) h(x) = xy + xz + yz k (x) = (x + y)(x + z) (2/ + 2) \begin{alignat}{2} \label{E:ml3} f(x) &= x + yz & \qquad g(x) k= x + y + z\\ h(x) &= xy + xz + yz k \qquad k(x) k= (x + y)(x + z) (y + z)\notag \end{alignat} x = x A (y V z) , by distributivity, = (x A y) V (x A z) , by Condition (M), = yV z \begin{alignat}{2} \label{E:ml3a} x k= x \wedge (y \vee z) k &\quad\text{, by distributivity,}\\ k= (x \wedge y) \vee (x \wedge z) k &\quad\text{, by Condition (M),} \notag\\ k= y \vee z \notag \end{alignat} JL -- O. y = 4, z = 5; \begin{aligned} x k= 3,\\ y &= 4,\\ z &= 5; \end{aligned} \text{\qquad or \qquad} \begin{aligned} x &= 5,\\ y &= 12,\\ z &= 13. \end{aligned} h(x f(x) + g(x) 1 + f{x)g(x] 1 + P{x y/1 -- sinx 1 + f(x) , T , ^ ^ dx - 2 tan"1 (x - 2 1 + g(:r áx 15 \begin{equation} \begin{aligned} \label{E:longInt2} h(x) &= \int \left( [x)g(x) R\s\frac{l+ f(: rac{f(x) + g(x)Hl+ f~{2}(x)} qrt{l - \sin x}} \right)\,\dx &= \int \frac{ 1 + f(x) }{ 1 + g(x) } \,\dx - 2 \taiT{-l} (x-2) \end{aligned} \end{equation} JL -- O. y = 4, z = 5; \begin{aligned}[b] x k= 3 , \ \ y &= 4 , \ \ z &= 5; \end{aligned} \text{\qquad or \qquad} \begin{aligned} [b] x &= 5,\\ y &= 12,\\ z &= 13. \end{aligned} í ry ry ry ry ry ry l -- 1X1X2X3X4X5X5 J í ry ry ry ry ry I ry ry ry ry ry I ry ry ry ry ry I ry ry ry ry ry \ í \ ľ\ \ -- 1 X1X2X3X4X5 -\- 0,1X3X4X5X5 ~r X^X2X4X5Xg ~r X^X2X3X5Xg 1 v y = (xiX2X3X4 + X1X2X3X5 + X1X2X4X5 + X1X3X4X5 + X2X3X4X5)2 \begin{equation} \label{E:ml5} \begin{split} f &= (x_{l} x_{2} x_{3} x_{4} x_{5} x_{6})^{2}\\ &= (x_{l} x_{2} x_{3} x_{4} x_{5} + x_{l} x_{3} x_{4} x_{5} x_{6} + x_{l} x_{2} x_{4} x_{5} x_{6} + x_{l} x_{2} x_{3} x_{5} x_{6})^{2}\\ &= (x_{l} x_{2} x_{3} x_{4} + x_{l} x_{2} x_{3} x_{5} + x_{l} x_{2} x_{4} x_{5} + x_{l} x_{3} x_{4} x_{5} + x_{2} x_{3} x_{4} x_{5})^{2} \end{split} \end{equation} í ry ry ry ry ry ry \ - \X\X2X2,X^X§XQ\ = (X1X2X3X4X5 + X1X3X4X5XQ + XIX2X^X^XQ + X1X2X3X5XQ)2 I f~Y* f~Y* f~Y* f~Y* I ry* ry* ry* /y I ry* ry* f~y* f~Y* I ry* ry* ry* ry* I ry* ry* ry* ry* \ -- I Xx^2^3^4 ~r~ ^ l ^ 2 ^ 3 ^ 5 ~r~ ^ l ^ 2 ^ 4 ^ 5 "I^ l ^ 3 ^ 4 ^ 5 \ d^2^3^A^5) 1 g = 2/12/22/3\begin{align} \label{E:ml6} \begin{split} f k= (x_{l} x_{2} x_{3} x_{4} x_{5} x_{6})^{2}\\ &= (x_{l} x_{2} x_{3} x_{4} x_{5} + x_{l} x_{3} x_{4} x_{5} x_{6} + x_{l} x_{2} x_{4} x_{5} x_{6} + x_{l} x_{2} x_{3} x_{5} x_{6})^{2}\\ &= (x_{l} x_{2} x_{3} x_{4} + x_{l} x_{2} x_{3} x_{5} + x_{l} x_{2} x_{4} x_{5} + x_{l} x_{3} x_{4} x_{5} + x_{2} x_{3} x_{4} x_{5})^{2}, \end{split}\\ g &= y_{l} y_{2} y_{3}. \label{E:ml7} \end{align} hi x f (x) + g (x) + 1 + f{x)g(x) ( ^ 1 + /2 (x VT^ 19 srna; The reader may find the following form easier to read: / 1 + / / W dx-2tan-1 X 2 \begin{align} \label{E:ml8} h(x) &= \int \left(\frac{f(x) + g(x)}{l + f~{2}(x)} + \frac{l + f (x)g(x)H\sqrt{l - \sin x}}\right)\,\dx\\ \intertext{The reader may find the following form easier to read:} k= \int \frac{l + f(x)}{l + g(x)}\,\dx 2 \tan~{-l}(x - 2) \notag \end{align} f (x) = x + yz g{x) = x + y + z The reader also may find the following polynomials useful: h(x) = xy + xz + yz k(x) = (x + y)(x + z)(?/ + 2) \begin{alignat*}{2} f(x) k= x + yz & \qquad g(x) &= x + y + z \\ \intertext{The reader also may find the following polynomials useful:} h(x) k= xy + xz + yz & \qquad k(x) &= (x + y)(x + z)(y + z) \end{alignat*} f (x -x2 , if x < 0; 0 + x, i f 0 < z < l ; 20 x" otherwise. \begin{equation} \label{E:mllO} f (x) = \begin{cases} -x~{2}, &\text{if $x \leq 0$;}\\ 0 + x, &\text{if $ 0 \leq x \leq 1$;}\\ x~{2}, &\text{otherwise.} \end{cases} \end{equation} í f~Y* f~Y* f~Y* f~Y* f~Y* f~Y* \ -- I Xx^2^3^4^5^6y I f~Y* f~Y* f~Y* f~Y* f~Y* I /y /y /y /y /y I /y /y /y /y /y I /y /y /y /y /y \ ^ -- I Xx^2^3^4^5 ~r~ ^ l ^ 3 ^ 4 ^ 5 ^ 6 "I^ l ^ 2 ^ 4 ^ 5 ^ 6 ~r~ ^ l ^ 2 ^ 3 ^ 5 ^ 6 y I f~Y* f~Y* f~Y* f~Y* I /y /y /y /y I /y /y /y /y I /y /y /y /y I /y /y /y /y \ -- I Xx^2^3^4 "I^ l ^ 2 ^ 3 ^ 5 "I^ l ^ 2 ^ 4 ^ 5 "I^ l ^ 3 ^ 4 ^ 5 ~r d^2^3^A^5) 9 = 2/12/22/3 (21) /l = ^ ^ (22) \begin{gather} \label{E:mlll} \begin{split} f k= (x_{l> x_{2} x_{3} x_{4} x_{5} x _ { 6 } r { 2 } \ \ &= (x_{l} x_{2} x_{3} x_{4} x_{5} + x_{l} x_{3} x_{4} x_{5} x_{6} + x_{l} x_{2} x_{4} x_{5} x_{6} + x_{l} x_{2} x_{3} x_{5} x_{6})^{2}\\ &= (x_{l} x_{2} x_{3} x_{4} + x_{l} x_{2} x_{3} x_{5} + x_{l} x_{2} x_{4} x_{5} + x_{l} x_{3} x_{4} x_{5} + x_{2} x_{3} x_{4} x_{5})~{2} \ e n d { s p l i t } \ \ \begin{align*} g &= y_{l} y_{2} y_{3}\\ h k= z_{lK{2} z_{2K{2} z_{3K{2} \end{align*} \end{gather} a = b + c, d = e +/, x = 2/ + z, w = v + w. {\allowdisplaybreaks \begin{align} \label{E:mll4} \allowdisplaybreaks a &= b + c,\\ d &= e + f,\\ x &= y + z,\\ u &= v + w.\notag \end{align} }