MASARYKOVA UNIVERZITA Přírodovědecká fakulta Jana Schenková Ekologie opaskovců: variabilita druhové skladby, habitatové preference a odpovědi na gradienty prostředí máloštětinatců a pijavic Habilitační práce Brno 2016 Poděkování Podklady pro tuto práci vznikly jako výsledek tvůrčí součinnosti se spoluautory, protože hydrobiologická práce není solitérní, ale většinou probíhá v úzce spolupracujícím týmu kolegů i studentů, jejichž činnosti jsou propojeny a za tuto spolupráci jim moc děkuju. Nikdy bych se taky neobešla bez kolegů zajišťujících technické zázemí pro jednotlivé výzkumy, Marcelky Růžičkové a Standy Němejce. Můj dík pak patří Světlaně Zahrádkové, která mi kdysi nabídla volnou „niku“ v podobě studia kroužkovců, Honzovi Helešicovi, jehož vedení projektů, na kterých jsem pracovala, podporovalo samostatnost a tvůrčí úsilí. Také všichni kolegové na ÚBZ, kteří se zde zasloužili o milou atmosféru, zahrnující i dnes už málo vídanou altruistickou pomoc, přispěli k pohodě na práci. A nakonec moc děkuju celé rodině, za vědeckou podporu tatínkovi, i novému členu rodiny Michalu Horsákovi, Verče za trpělivé přečtení celého textu a kritické připomínky a za všeobecnou podporu manželovi Michalovi (heslo: to dáš!), Robinovi, za to, že skládá krásnou hudbu, a mamince za vše. Obsah 1. Struktura a cíle habilitační práce 6 2. Shrnující komentář 7 2.1 Úvod do problematiky 7 2.2 Biologie sladkovodních opaskovců (Clitellata) 9 2.2.1 Biologie máloštětinatých opaskovců („Oligochaeta“) 9 2.2.2 Biologie pijavic (Hirudinida) 13 2.3 Druhová diverzita opaskovců a její změny podél gradientů prostředí 16 2.3.1 Druhová diverzita opaskovců (Clitellata) 16 2.3.1.1 Máloštětinatí opaskovci („Oligochaeta“) na území České republiky 16 2.3.1.2 Pijavice (Hirudinida) na území České republiky 18 2.3.2 Variabilita druhové skladby máloštětinatých opaskovců v tocích 21 2.3.3 Variabilita druhové skladby máloštětinatých opaskovců na prameništních slatiništích 24 2.3.4 Změny společenstva opaskovců v otepleném toku 27 2.3.5 Variabilita druhové skladby pijavic v tekoucích a stojatých vodách 29 2.4 Odpovědi vybraných druhů opaskovců na různé proměnné prostředí – malá a velká škála 31 3. Závěr 36 4. Literatura 37 5. Seznam publikovaných vědeckých prací v ISI časopisech k tématu habilitační práce 45 5.1 Druhová diverzita máloštětinatých opaskovců a její změny podél gradientů prostředí 45 [1] Schenková, J., O. Komárek & S. Zahrádková, 2001. Oligochaeta of the Morava and Odra River basins (Czech Republic): species distribution and community composition. Hydrobiologia, 463, 235–240. (IF 2,21) [2] Schenková, J. & J. Helešic, 2006. Habitat preferences of aquatic Oligochaeta (Annelida) in the Rokytná River, Czech Republic – a small highland stream. Hydrobiologia, 564, 117–126. (IF 2,21) [3] Schenková, J., J. Helešic & J. Jarkovský, 2006. Seasonal dynamics of Bythonomus lemani and Bothrioneurum vejdovskyanum (Oligochaeta, Annelida) in relation to environmental variables. Biologia, 61, 517–523. (IF 0,7) [4] Syrovátka, V., J. Schenková & K. Brabec, 2009. The distribution of chironomid larvae and oligochaetes within a stony-bottomed river stretch: the role of substrate and hydraulic characteristics. Fundamental and Applied Limnology, Archiv für Hydrobiologie, 174, 43–62. (IF 1,0) [5] Schenková, J., P. Pařil, K. Petřivalská & J. Bojková, 2010. Aquatic oligochaetes (Annelida: Clitellata) of the Czech Republic: check-list, new records, and ecological remarks. Zootaxa, 2676, 29–44. (IF 1,06) [6] Křoupalová, V., J. Bojková, J. Schenková, P. Pařil & M. Horsák, 2011. Small-scale distribution of aquatic macroinvertebrates in two spring fens with different groundwater chemistry. International Review of Hydrobiology, 96, 235–256. (IF 1,01) [7] Bojková, J., J. Schenková, M. Horsák & M. Hájek, 2011. Species richness and composition patterns of clitellate (Annelida) assemblages in the treeless spring fens: the effect of water chemistry and substrate. Hydrobiologia, 667, 159–171. (IF 2,21) [8] Růžičková, S., J. Schenková, V. Weissová & J. Helešic, 2014. Environmental impact of heated mining waters on clitellate (Annelida: Clitellata) assemblages. Biologia, 69(9), 1179–1189. (IF 0,70) [9] Schenková, J., M. Bílková & M. Horsák, accepted 27.1.2016. The response of Clitellata (Annelida) to environmental gradients in spring fens. Limnologica. (IF 1,80) 5.2 Druhová diverzita pijavic a její změny podél gradientů prostředí 186 [10]Schenková, J., J. Jarkovský & J. Helešic, 2007. Strategies of coexistence of two species: Erpobdella octoculata and E. vilnensis (Hirudinea: Erpobdellidae). International Review of Hydrobiology, 92(4–5), 527–538. (IF 1,013) [11]Schenková, J., J. Sychra, V. Košel, N. Kubová & J. Horecký, 2009. Freshwater leeches (Annelida: Clitellata: Hirudinida) of the Czech Republic (Central Europe): check-list, new records, and remarks on species distributions. Zootaxa, 2227, 32–52. (IF 1,06) [12] Kubová, N., J. Schenková & M. Horsák, 2013. Environmental determinants of leech assemblage patterns in lotic and lenitic habitats. Limnologica, 43, 516–524. (IF 1,66) [13]Kubová, N. & J. Schenková, 2014. Tolerance, optimum ranges and ecological requirements of free-living leech species (Clitellata: Hirudinida). Fundamental and Applied Limnology, Archiv für Hydrobiologie, 185(2), 167–180. (IF 1,00) 6. Seznam dalších publikací a vystoupení k tématu habilitační práce 247 6 1. Struktura a cíle habilitační práce Předkládaná habilitační práce se skládá z 12 vědeckých prací opublikovaných v ISI časopisech a jednoho rukopisu přijatého do ISI časopisu. Všechny jsou zaměřeny na studium ekologie dvou největších skupin opaskovců (Clitellata): máloštětinatých opaskovců „Oligochaeta“ a pijavic Hirudinida. Jde o významné zástupce bentické fauny obývající v našich podmínkách bahnité i kamenité substráty všech vodních ekosystémů od pramenišť, toků, rybníků, jezer a nádrží až po hyporeické vody. Široký rozsah citlivosti ke znečištění předurčuje tuto skupinu k využití jak v terénních výzkumech, tak v laboratorních pokusech. Výsledky studií máloštětinatých opaskovců a pijavic jsou v předkládané práci souhrnně představeny a doplněny současným fylogenetickým postavením studovaných skupin a úvodem k jejich biologii. Práce se zabývají odpovědí opaskovců na gradienty prostředí a pro konkrétní druhy vyhodnocují jejich ekologické valence. Rozšíření znalostí o této skupině přispívá k jejich základnímu poznání a posouvá hranice možností bioindikace stavu sladkovodních ekosystémů na základě jejich ekologických preferencí a umožňuje i lépe chránit druhy vzácné. Hlavní cíle habilitační práce: 1. Popsat diverzitu opaskovců na území České republiky a sestavit aktuální check-listy pro máloštětinaté opaskovce a pijavice. 2. Popsat variabilitu druhové skladby máloštětinatců a pijavic v různých akvatických biotopech, především v tekoucích vodách. 3. Najít hlavní gradienty prostředí, které ovlivňují tuto variabilitu a vyhodnotit indikační potenciál skupiny. 4. Zjistit odpověď společenstva máloštětinatců na antropogenní ovlivnění lokalit 5. Vyhodnotit habitatové preference vybraných druhů máloštětinatců a pijavic 7 2. Shrnující komentář 2.1 Úvod do problematiky Nejznámější skupiny opaskovců – máloštětinatci a pijavice nepatří mezi bezobratlými živočichy ke skupinám oblíbeným laickou veřejností, snad vyjma rybářů. Žížaly mohou vzbuzovat nepříjemné pocity, neboť vylučují na povrchu sliz a pijavic se lidé podvědomě bojí, neboť jim evoluční zkušenost říká, že by je mohly napadnout a přenášet choroby. Přesto představují fascinující skupiny kroužkovců (Annelida), které osídlily jak akvatické (sladkovodní a mořské), tak suchozemské biotopy a dosáhly zde vysoké diverzity. Skupina opaskovci (Clitellata) představuje druhově bohatý taxon, zahrnující téměř třetinu z 15000 druhů kroužkovců (Annelida) (Erséus 2005). Název opaskovci je odvozen od žláznaté epidermální struktury ve tvaru kruhu nebo sedla kolem těla nazývané opasek (clitellum), který se vytváří v době rozmnožování a napomáhá přenosu pohlavních buněk a později tvorbě kokonů. Jeho přítomnost je jedním z morfologických znaků potvrzujících monofylii tohoto taxonu kroužkovců (Ferraguti & Erséus 1999, Purschke 1999, Westheide et al. 1999), prokázanou i na základě sekvencí DNA (McHugh 1997, Siddall et al. 2001 a Erséus & Källersjö 2004). Pozice opaskovců uvnitř kroužkovců (Annelida) zůstává stále vysoce neurčitá, pravděpodobně leží někde mezi „mnohoštětinatci“ a stále není zcela jasná ani její sesterská skupina (Jördens et al. 2004, Rousset et al. 2006). Také fylogenetické vztahy uvnitř opaskovců jsou složitější, než by ukazovalo tradiční dělení opaskovců (Clitellata) na základě morfologických znaků na Oligochaeta a Hirudinea, které se dále dělily na pravé pijavice (Euhirudinea) a na pijavicím podobné („leech-like“) taxony štětinovky (Acanthobdellida) a potočnice (Branchiobdellida) (Sawyer 1986, Brusca & Brusca 1990, Rouse & Fauchald 1995). V současnosti, přesto že každá další molekulární analýza přináší odlišnosti v detailech, nastala zásadní shoda ve zjištění, že Hirudinida (pravé pijavice), Branchiobdellida (komenzálové nebo parazité raků) a Acanthobdellida (skupina představovaná jediným reliktním druhem Acanthobdella peledina Grube, 1851 parazitujícím na lososovitých rybách) představují samostatnou větev opaskovců, jejímž společným předkem byl máloštětinatý červ blízce příbuzný žížalicovitým Lumbriculidae (Martin 2001, Erséus 2005, Marotta et al. 2008). Složitost situace dokresluje, že existuje podpora i pro monofyletický taxon zařazující Lumbriculidae dovnitř tohoto taxonu společně s Acanthobdellida, Branchiobdellida a Hirudinida (Rousset et al. 2008). Nicméně máloštětinatci jako validní taxon definitivně zanikají a pro tuto parafyletickou část opaskovců 8 Clitellata se zavádí označení máloštětinatí opaskovci – „oligochaetous Clitellata“ či „Oligochaeta“ s použitím uvozovek. Studium evoluce habitatových preferencí skupiny Clitellata ukázalo, že společný předek obýval původně akvatické bitopy (Erséus & Källersjö 2004), přesněji řečeno sladkovodní biotopy (Rousset et al. 2008). Zástupci čeledi Naididae (sensu Erséus et al. 2008) s asi 800 popsanými druhy obývali nejprve sladké vody a sekundárně se pak rozšířili také do brakických a mořských. I o monofylii této skupiny dnes zahrnující podčeledi Naidinae, Pristininae, Tubificinae, Rhyacodrilinae (a Telmatodrilinae, Phallodrilinae a Limnodriloidinae, které se u nás nevyskytují) ovšem existují určité pochybnosti (Rousset et al. 2008). Část z nich pak opustila typický život v sedimentech dna a naučila se obývat jejich povrch a povrch vodních rostlin (podčeledi Naidinae a Pristininae). K takovému životnímu stylu jim napomáhá častá přítomnost očních skvrn a schopnost plavat. Někteří z nich (rody Dero a Ripistes) si navíc staví na povrchu substrátu tenké trubičky, kterými se chrání. Ve stojatých vodách s množstvím drobných bezobratlých se pak některé druhy z podčeledi Naidinae uchýlily k získávání potravy predací, jako např. rod Chaetogaster (Obr. 1a). Další skupina dnes především terestrických máloštětinatců skupiny Crassiclitellata zahrnující 3000 validních druhů, u nás zastoupených čeledí žížalovití Lumbricidae, měla pravděpodobně naopak předka terestrického. Jejich trávicí soustava je přizpůsobena ke zpracování organického materiálu pohlceného současně s částicemi půdy přítomností baktérií, hub a prvoků, které umožňují trávení celulózy a rozklad organické hmoty. Podle ekologie je můžeme rozdělit na epigeické (žijící na povrchu půdy a v listovém opadu), endogeické (žijí v půdě v horizontálních trubičkách) a anektické (žijící ve vertikálních trubičkách, do kterých si zatahují listy, které zpracovávají) (Bouché 1977). Druhá dnes převážně půdní skupina roupicovití Enchytraeidae čítající asi 650 druhů pak pochází z vodního prostředí a k osídlení půdy došlo až sekundární invazí (Rousset et al. 2008). Dnes obývají většinou svrchní vrstvu půdy, i když i mezi nimi najdeme sladkovodní (např. rod Cognettia) i mořské zástupce (např. někteří zástupci rodů Marionina a Lumbricillus). Pijavicím podobné skupiny (Acanthobdellida, Branchiobdellida a Hirudinida), ať už s čeledí Lumbriculidae nebo bez ní, dnes obývají sladkovodní biotopy stejně jako jejich předek (či předkové) (Rousset et al. 2008). Také v čeledi žížalicovití (Lumbriculidae) se objevily druhy, které osídlily rostlinné habitaty místo sedimentů dna (např. Lumbriculus variegatus (Müller, 1774) a i u nich se pak vyvinula schopnost plavat. Pijavicím podobné 9 skupiny se naopak přizpůsobily karnivornímu způsobu života. Vznikla u nich zadní přísavka, sloužící k přichycení k substrátu či kořisti, došlo k redukci štětin, vytvořil se svalnatý hltan a různý počet očních skvrn na přídě (předním konci těla), které umožňují orientaci (Obr. 1b). Obrázek 1. Příklad volně žijícího máloštětinatého opaskovce Chaetogaster diastrophus (Gruithuisen, 1828) (a), velikost 3 mm (preparát v Kanadském balzámu) a volně žijící pijavice Glossiphonia complanata (Linnaeus, 1758) (b), velikost 15 mm (živý jedinec). Foto J. Schenková 2.2 Biologie sladkovodních opaskovců (Clitellata) Přesto, že některé znaky skupiny Clitellata jako přítomnost opasku, nepřítomnost parapodií, omezení počtu gonád jen na několik článků a přímý vývoj juvenilních jedinců po uvolnění z kokonů jsou pro celou skupinu shodné, celková biologie dvou hlavních skupin – máloštětinatců a pijavic je natolik rozdílná, že si každá zaslouží samostatné pojednání. 2.2.1. Biologie máloštětinatých opaskovců („Oligochaeta“) Stavba těla máloštětinatých opaskovců skupiny „Oligochaeta“ se podobá typickému tělnímu plánu kroužkovců s homonomní segmentací těla. Odlišuje se jen první článek (peristomium) s ústním otvorem a čelním lalokem (prostomium) na předním konci těla, který se také nazývaná přída, a pygidium (poslední článek tvořený jedním nebo srůstem více a b 10 článků) na jeho zadním konci. Počet tělních článků je variabilní od 7 po asi 200, pro jednotlivé druhy je pak relativně stálý. Každý tělní článek kromě prvního je opatřen primárně 4 svazky chitinózních štětin, které napomáhají při pohybu. Máloštětinatci se vrtají v substrátu či pohybují po jeho povrchu peristaltickými kontrakcemi podkožní svaloviny s oporou o štětiny. Některé druhy mohou plavat (např. z rodu Stylaria a Pristina) hadovitým pohybem těla. „Oligochaeta“ se živí primárně jako neselektivní detritofágové, zpracovávají detrit spolu s bakteriemi a organickými zbytky, anorganické částice pak nestrávené odchází z těla análním otvorem. Ovšem mýtus, že máloštětinatci se živí jakoukoli potravou, se kterou se setkají, byl vyvrácen laboratorními pokusy na druhu Tubifex tubifex (Müller, 1774), který si dokáže selektivně vybírat potravu s částicemi menšími než 25 µm a z bahnitého substrátu vyžírá ten, který obsahuje nejvíce organické hmoty (Rodriguez et al. 2001). Některé druhy se živí na uhynulých tělech ryb (zástupci čeledi Enchytraeidae). Drobní máloštětinatci z podčeledí Naidinae a Pristininae žijící na rostlinách se živí detritem a nárostovými řasami, zejména rozsivkami. Pomocí svaloviny hltanu vysouvaného z dutiny ústní přichytávají podtlakem potravu a jejím zatažením zpět ji odtrhují od substrátu (Sperber 1948), takto dokážou do trávicího traktu vtáhnout i vláknitou řasu. Velmi drobní zástupci rodu Chaetogaster se živí jako predátoři, široce roztaženou přídou vychytávají z vody prvoky a drobné bezobratlé živočichy – vířníky, korýše a larvy hmyzu, v jejich trávicím traktu se nachází i zástupci „své skupiny“ tedy drobní máloštětinatci (Obr. 1a, v tělní dutině je vidět kořist, máloštětinatý opaskovec z podčeledi Naidinae). V České republice velmi vzácný druh Ripistes parasita (Schmidt, 1847) se živí jako pasivní filtrátor, který vychytává potravu z proudu vody pomocí svazku dlouhých a hustých štětin v VI.–VIII. segmentu. V pravidelných intervalech pak otáčí přídu k zadnímu konci těla a protaženým prostomiem vybírá nachytané částice potravy. Vzácně se vyvinul i parazitický způsob života: druh Chaetogaster limnaei Baer, 1827 žije na povrchu ulit a v plášťové dutině plovatek, kde se živí nejen drobnými prvoky a bezobratlými, ale může ožírat i epitel plášťové dutiny hostitele. Skupina máloštětinatí opaskovci („Oligochaeta“) vyvinula velmi úspěšné reprodukční strategie. U podčeledí Naidinae a Pristininae probíhá nepohlavní rozmnožování formou tzv. paratomie, kde mateřský jedinec na zadním konci tvoří řetízky dceřiných jedinců, tzv. zoidů, kteří ještě před oddělením mají plně vyvinuté prostomium, včetně např. chobotku (proboscis). Místa budoucího dělení jsou pevně dána a typická pro každý druh. Toto rozmnožování probíhá především v jarním období. U poměrně vzácného druhu Pristina bilobata (Bretscher, 1903), který žije spíše v podhorských oblastech, se pak asexuální reprodukce posouvá do 11 letního období (Obr. 2) a k sexuálnímu nemusí docházet vůbec, jak bylo pozorováno na řece Morávce (Schenková & Kroča 2007). Paratomické rozmnožování se může střídat s pohlavní reprodukcí, většinou před zimním obdobím. Obrázek 2. Sezonní změny abundance u druhu Pristina bilobata, reprodukujícího se paratomií. Mapa jeho nálezů v České republice. Více viz Schenková & Kroča (2007), odkud byl obrázek převzat a upraven; do mapy byly doplněny dva současné nálezy. Druhým typem asexuální reprodukce je architomické dělení, kdy nejprve dochází k fragmentaci dospělého jedince a teprve pak k diferenciaci koncových částí těla. Vyskytuje se např. u podčeledi Tubificinae, u rodu Aulodrilus, podčeledi Rhyacodrilinae, u druhu Bothrioneurum vejdovskyanum Štolc, 1886 a čeledi Lumbriculidae, kde je typické pro druh Lumbriculus variegatus. Nepohlavní architomické rozmnožování probíhá opět nejčastěji v jarním a na začátku letního období. Např. u druhu B. vejdovskyanum se mateřský jedinec s asi 140 segmenty rozpadá v průměru na šest částí v období od poloviny dubna a rozmnožování probíhá po celé letní období (Hrabě 1935). Podobně i v případové studii na řece Rokytné byl zaznamenán vývojový cyklus se zvyšováním denzity v průběhu května a Obrázek 3. Analýza časové řady průměrných denzit (a) a peridiogram, tj. graf počtu cyklů za rok (b) architomicky se množícího druhu Bothrioneurum vejdovskyanum. Blíže viz Schenková et al. 2006, odkud byly obrázky převzaty. Bothrioneurum vejdovskyanum V.99 VII.99 IX.99 XI.99 I.00 III.00 V.00 VII.00 IX.00 XI.00 I.01 III.01 0 20 40 60 80 100 120 18.4.03 16.5.03 8.6.03 11.7.03 2.8.03 1.9.03 22.9.03 20.10.03 20.11.03 12.03 12.1.04 17.2.04 3.04 6.4.04 1.5.04 9.6.04 16.7.04 -10 0 10 20 30 40 50 60 70 80 Průměrnáabundance(n)ateplota(°C) teplota Pristinella bilobata Loučka Morávka Jasénka Obidová Bothrioneurum vejdovskyanum 0 1 2 3 4 5 6 7 cycles/year 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0Bothrioneurum vejdovskyanum a Bothrioneurum vejdovskyanum b 12 maximem v červnu, ovšem jen v prvním roce pozorování (Obr. 3a), dvouleté období pozorování bylo pravděpodobně nedostatečné (Schenková et al. 2006). Pohlavně dospělí jedinci se vyskytovali jen zcela sporadicky; celkově byl u tohoto druhu vyhodnocen jednoletý vývojový cyklus (Obr. 3b) (Schenková et al. 2006). Architomické rozmnožování se opakuje pravidelně a nebylo prokázáno, že by jej ovlivňovaly některé z parametrů prostředí jako teplota vody, průtok, rozpuštěný kyslík nebo množství organické hmoty v toku (Schenková et al. 2006). U některých druhů se také vyvinulo partenogenetické rozmnožování, kdy juvenilní jedinci vznikají z neoplodněných vajíček, např. u čeledi Lumbricidae (Sims & Gerard 1999). Nejvýznamnější způsob reprodukce máloštětinatých opaskovců ovšem představuje rozmnožování pohlavní. Zástupci této skupiny jsou hermafrodité s přímým vývojem. Kopulace probíhá spojením dvou jedinců proti sobě v opačném směru, tj. přída jednoho ke kaudální části druhého. Opasky obou jedinců jsou přiloženy k sobě a sliz, který produkují, umožňuje přenos pohlavních buněk. Vývod chámovodu jednoho jedince ústí do chámových schránek (receptaculum seminis) druhého jedince (a naopak). Jedinci si předávají shluky spermií (spermatozeugma) nebo spermatofory (shluky spermií s obalovou vrstvou). Přenos je u některých druhů usnadněn přítomností různě dlouhých penisů, které mohou být vyztuženy peniálními trubkami, jejichž tvar je druhově specifický a představuje dobrý determinační znak. Obdobně štětiny, které mohou být v oblasti opasku u některých druhů upravené jako spermatekální, jsou často lopatkovitě zakončené a slouží k přenosu spermatozeugmat při kopulaci. K oplodnění vajíček dochází v hlenovém pouzdře, produkovaném buňkami opasku, do něhož se vajíčka uvolňují a posunují směrem k přednímu konci jedince, při průchodu kolem vývodu chámových schránek jsou oplodněna. Hlenové pouzdro s oplodněnými vajíčky se svléká přes přídu jedince a vytváří kokon, jehož tvar, struktura a počet vajíček uvnitř je specifický pro jednotlivé druhy/rody máloštětinatých opaskovců. V současnosti je problematika pohlavního rozmnožování mnoha druhů zejména z podčeledi Tubificinae, které se vyskytují ve znečištěných vodách, velmi dobře prostudována, např. Tubifex tubifex, Limnodrilus hoffmeisteri Claparède, 1862 a L. udekemianus Claparède, 1862, (Ladle 1971, Bonomi 1979, 1980, Pfannkuche 1981, Lazim & Learner 1986, Lazim et al. 1989). Také další běžné druhy z této podčeledi jsou z hlediska sezonní dynamiky dobře probádané: Potamothrix hammoniensis (Michaelsen, 1901) (Thorhauge 1976, Risnoveanu & Vadineanu 2002), Psammoryctides barbatus (Grube, 1861) and Spirosperma ferox Eisen, 1879 (Adreani et al. 1984). Podčeledi Naidinae a Prisitininae 13 jsou dobře zpracovány např. v rozsáhlé studii (Learner et al. 1978). Méně známé jsou reprodukční cykly u druhů, které se vyskytují buď vzácně, nebo je jejich determinace spojena s určitými obtížemi. U čeledi Lumbriculidae, kde je dobře prostudovaná sezonní dynamika u druhů Stylodrilus heringianus Claparède, 1862 a S. parvus (Hrabě-Černosvitov, 1927) (Dumnicka & Kukuła 1990, Petto & Humpesch 1992) najdeme i druhy z tohoto hlediska velmi málo prostudované, jako např. Stylodrilus lemani (Grube, 1879). Tento druh se množí pohlavně; v případové studii na řece Rokytné probíhal vývoj v jednoletém cyklu, kdy v jarním období vzrůstající teplota stimulovala vývoj pohlavních orgánů a následně kopulaci jedinců, v období srpna až listopadu narůstal počet juvenilních jedinců (Obr. 4) (Schenková et al. 2006). Byla nalezena pozitivní korelace abundance tohoto druhu s teplotou vody s dvou měsíčním posunem (lagem) a rozdílné habitatové preference juvenilních jedinců (příbřežní partie) a dospělců (proudnice toku) (Schenková et al. 2006). Obrázek 4. Analýza časové řady průměrných denzit (a) a peridiogram, tj. graf počtu cyklů za rok (b) pohlavně se množícího druhu Stylodrilus lemani. Blíže viz Schenková et al. 2006, odkud byly obrázky převzaty. 2.2.2 Biologie pijavic (Hirudinida) Tělo pijavic je dorzoventrálně zploštělé, výrazně uniformní, tvořené vždy 34 články, na předním konci je opatřeno menší přísavkou s ústním otvorem, na zadním konci větší přísavkou, vzniklou splynutím sedmi článků, sloužící k pohybu a přichycení k podkladu. Stavba těla pijavic odráží jejich dravý či parazitický způsob života. Měkké tělo máloštětinatých opaskovců, jehož oporou je hlavně hydrostatická kostra, je u této specializované skupiny zpevněno mohutným svalovým vakem, který spolu s parenchymatickou tkání zatlačil tělní dutinu. Pijavice ztratily přepážky mezi segmenty, štětiny a segmentovanou célomovou dutinu se změnou způsobu pohybu od peristaltického vrtání v substrátu k pohybu lezením a plaváním. Mohutná svalovina slouží ke kontrakci těla Stylodrilus lemani V.99 VII.99 IX.99 XI.99 I.00 III.00 V.00 VII.00 IX.00 XI.00 I.01 III.01 0 5 10 15 20 25 30 35 40 45 50 Stylodrilus lemani 0 1 2 3 4 5 6 7 cycles/year 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0Stylodrilus lemani a Stylodrilus lemani b 14 při pohybu po podkladu, který se děje píďalkovitým pohybem pomocí obou přísavek, a při plavání, které probíhá dorzoventrální undulací. Na rozdíl od máloštětinatých opaskovců, kde jsou oční skvrny přítomny jen u podčeledi Naidinae a nemají podstatný vliv na nacházení potravy, pijavice mají vždy na přídě několik párů očí sloužících k vyhledávání kořisti či hostitele. Pijavice se živí jako krevsající (hematofágní) parazité a predátoři. Ty, které se živí krví, mají buď kutikulární čelisti se zoubky, jako např. pijavka lékařská (Hirudo medicinalis Linnaeus, 1758) (Obr. 5) z řádu čelistnatky (Gnathobdellida) nebo sají krev z hostitele pomocí chobotku jako zástupci řádu chobotnatky (Rhynchobdellida). H. medicinalis, která se v České republice řadí ke kriticky ohroženým druhům (Schenková & Košel 2005), se živí krví obratlovců. Sání krve umožňuje pijavkám přítomnost protisrážlivého enzymu hirudinu. Drobné juvenilní pijavky nejsou schopny prokousnout kůži savců, proto se živí na obojživelnících (Sawyer 1986). Dospělci sají krev obojživelníků, ptáků, případně ryb, ale dominantním zdrojem potravy je savčí krev, kterou potřebují jakožto energeticky nejbohatší, aby mohly dosáhnout pohlavní dospělosti (Mann 1955). Pijavky se zdržují na hostiteli jen v době sání, kdy se jejich hmotnost zvýší až 9x, protože bez další potravy mohou vydržet až jeden rok (Davies & McLoughlin 1996). Z čeledi Piscicolidae se parazitické druhy náležících do rodů Piscicola a Caspiobdella živí krví ryb, kterou sají pomocí vysouvatelného chobotku. Zatímco zástupci rodu Piscicola tráví celý život přichycení na hostiteli, zástupci rodu Caspiobdella žijí na dně tekoucích vod a rybího hostitele navštěvují jen kvůli sání. V čeledi Glossiphoniidae se parazitické druhy živí ektoparaziticky sáním krve ryb – Hemiclepsis marginata (O. F. Müller, 1774) nebo ptáků – Theromyzon tessulatum (O. F. Müller, 1774), který parazituje v nosní dutině kachen. Ostatní zástupci pijavic naší fauny se živí jako predátoři bezobratlých. Haemopis sanguisuga (Linnaeus, 1758) z řádu Gnathobdellida se živí vodními bezobratlými živočichy, ale pomocí kutikulárních čelistí je schopna ulovit i rybí plůdek (osobní pozorování). Obrázek 5. Hirudo medicinalis, adultní a juvenilní jedinec, Foto J. Schenková. 15 Neparazitičtí zástupci čeledi Glossiphoniidae se živí likvidosomatofágní predací (sají tělní tekutiny a měkké části těl) především měkkýšů (Mollusca). Zástupci řádu hltanovky (Pharyngobdellida), u nás jen z čeledi Erpobdellidae se živí makrofágní predací, kořist polykají celou, což jim umožňuje svalnatý hltan opatřený třemi lištami k drcení potravy. Jejich kořistí jsou především zástupci máloštětinatých opaskovců („Oligochaeta“) a pakomárovitých (Chironomidae), přičemž velikost kořisti je přímo úměrná velikosti predátora (Schenková et al. 2007). Selektivní výběr potravy pro zástupce čel. Glossiphoniidae (Mollusca) ani pro zástupce Erpobdellidae („Oligochaeta“ a Chironomidae) však nebyl potvrzen na velké škále (studie na 109 lokalitách); na lokalitách s vyšším zastoupením měkkýšů, máloštětinatců a pakomárovitých nebyly signifikantně více zastoupeny pijavice, které se jimi živí (Kubová et al. 2013). Reprodukce pijavic probíhá výhradně pohlavně, kopulací, a nejen, že se nejsou schopny množit asexuálně, ale ani regenerovat poškozené články, což je u kroužkovců netypické. Pijavice jsou protandričtí (varlata se vyvíjejí dříve než vaječníky) hermafrodité, při kopulaci nalepují poblíž samičích pohlavních otvorů spermatofory. Vajíčka jsou odkládána v kokonech a u čeledi Glossiphoniiidae byla zaznamenána péče o potomstvo (kokony v tenkém obalu a následně juvenilní jedinci jsou nošeni na ventrální straně mateřského jedince). Většina pijavic má jedno až dvouletý vývojový cyklus začínající kopulací v jarním či letním období, líhnutím juvenilů během léta a dospíváním během dalšího roku (Ruppert et al. 2004). Reprodukční strategie koexistujících druhů pak může být využita i k dělení nik. Například sympatricky žijící druhy Erpobdella octoculata (Linnaeus, 1758) a Erpobdella vilnensis (Liskiewicz, Obrázek 6. Průměrné denzity (s 25 a 75% kvartily) jednotlivých ročních tříd (1998, 1999, 2000) druhu Erpobdella octoculata (a) a Erpobdlella vilnensis (b). Blíže viz Schenková et al. 2007, odkud byly obrázky převzaty. a b 16 1925) snižují vzájemný boj o potravu rozdílnou rychlostí vývojových cyklů (Obr. 6), kdy ačkoli se líhnou z kokonů téměř ve stejnou dobu, pomalejší nárůst váhy u E. octoculata umožní rozdělení potravních zdrojů, jak bylo zjištěno v případové studii na řece Rokytné (Schenková et al. 2007). 2.3 Druhová diverzita opaskovců a její změny podél gradientů prostředí 2.3.1Druhová diverzita opaskovců (Clitellata) 2.3.1.1 Máloštětinatí opaskovci („Oligochaeta“) na území České republiky Pro území České republiky je v aktuálním check-listu uvedeno 95 vodních, případně semiakvatických, druhů máloštětinatých opaskovců (Schenková et al. 2010). Check-list byl sestaven z publikovaných dat, především významných monografií Hraběte (1954, 1981), publikovaných nálezů druhů (Schenková 2005, Schenková & Kroča 2007) a pro čeleď žížalovití (Lumbricidae) byly zařazeny vodní a semiakvatické druhy z monografie Pižl (2002). V neposlední řadě pak zahrnuje současné nálezy všech spoluautorů. V České republice žije 12 druhů z čeledi žížalicovitých (Lumbriculidae), 72 druhů z čeledi Naididae sensu Erséus et al. (2008), které zahrnují 36 druhů z podčeledi naidkovití (Naidinae), osm druhů z podčeledi Pristininae, 22 druhů z podčeledi nitěnkovití (Tubificinae), šest druhů z podčeledi Rhyacodrilinae, po jednom druhu z čeledí Propappidae, kryodrilovití (Criodrilidae) a pastrunovcovití (Haplotaxidae) a osm vodních/semiakvatických druhů žížalovitých (Lumbricidae). Přesto, že je již známo, že někteří zástupci čeledi roupicovitých (Enchytraeidae) žijí spíše akvatickým způsobem života (např. rod Cognettia), nebyla tato čeleď vzhledem k obtížné dostupnosti ekologických údajů o druzích a celkově odlišné metodice determinace do check-listu vodních máloštětinatců České republiky zařazena. Většina máloštětinatých opaskovců představuje široce rozšířené euryvalentní druhy schopné vyrovnat se s různými podmínkami prostředí. Jde především o zástupce podčeledi Tubificinae, často až extrémně odolné k organickému znečištění. Do této kategorie náleží z naší fauny 44 druhů (Schenková et al. 2010). Řadíme sem i některé nepůvodní druhy jako Potamothrix moldaviensis Vejdovský & Mrázek, 1903 a Potamothrix bavaricus (Oschman, 1913) (Drake 2009). Ovšem vzhledem k jejich historickým nálezům, P. moldaviensis zaznamenal Hrabě na začátku 20. století ve Vltavě a P. bavaricus ve 30. letech v Labi (Hrabě 17 1939), by tyto druhy mohly být i na našem území původní. Třicet osm druhů naší fauny se jeví jako druhy vzácné (Schenková et al. 2010), neznamená to ovšem, že všechny jsou ohrožené, protože na svých specifických habitatech mohou dosahovat vysokých abundancí, jako např. Stylodrilus lemani, který dominuje v několika eutrofizovaných tocích jižní Moravy, např. v řece Rokytné (Schenková & Helešic 2006), jinde se s ním ale nesetkáme. Naopak nepůvodní teplomilný obyvatel velkých řek Branchiura sowerbyi Beddard, 1892, se zvolna šíří Evropou pravděpodobně s lodní dopravou (Lišková 1964, Gruszka 1999), avšak od prvního nálezu (Lišková 1964) byly získány pouze čtyři další. Třináct druhů historicky náležejících do fauny České republiky bohužel nebylo od roku 1996, kdy se autoři check-listu začali věnovat máloštětinatým opaskovcům, vůbec zaznamenáno (Schenková et al. 2010). Jde o druhy specifických habitatů, které nespadají do běžných výzkumů, jako např. jeskynní druh Stylodrilus absoloni (Hrabě, 1970), druh podzemních vod Trichodrilus pragensis Vejdovský, 1876 nebo parazit plžů (plovatek) Chaetogaster limnaei. Zaměření českých hydrobiologů na tekoucí vody, především jejich monitoring pak také snižuje pravděpodobnost nalezení některých vzácnějších druhů typických pro stojaté či dokonce vysychající vodní habitaty. Takto nám zmizel například specialista na temporální tůně Lamprodilus mrazeki Hrabě, 1929 a některé druhy stojatých vod, jako Dero dorsalis Ferronière, 1899, Dero nivea Aiyer, 1929, Dero obtusa Udekem, 1855 a Chaetogaster setosus Světlov, 1925. Jiné druhy zaznamenané jen jedenkrát jsou pravděpodobně nesmírně vzácné nebo vyhynulé: Pristina amphibiotica Lastočkin, 1927, Haber speciosus (Hrabě, 1931), Peipsidrilus pusillus Timm, 1977, Potamothrix bedoti (Piguet, 1913) a Tubifex nerthus Michaelsen, 1908. Tabulka 1. Seznam druhů máloštětinatých opaskovců navržených pro Červený seznam. Blíže viz Schenková et al. 2010, odkud byla tabulka převzata a upravena. Jednotlivé kategorie dle (IUCN 1994). ohrožený druh (EN) zranitelný druh (VU) Arcteonais lomondi (Martin, 1907) Amphichaeta leydigi Tauber, 1879 Criodrilus lacuum Hoffmeister, 1845 Aporrectodea limicola (Michaelsen, 1890) Haber speciosus (Hrabě, 1931) Pristina aequiseta Bourne, 1891 Lamprodrilus mrazeki Hrabě, 1929 Pristina bilobata (Bretscher, 1903) Peipsidrilus pusillus Timm, 1977 Pristina jenkinae (Stephenson, 1931) Piguetiella blanci (Piguet, 1906) Pristina longiseta Ehrenberg, 1828 Stylodrilus absoloni (Hrabě, 1970) Pristina osborni (Walton, 1906) Trichodrilus pragensis Vejdovský, 1876 Nais behningi Michaelsen, 1923 Trichodrilus strandi Hrabě, 1936 Nais christinae Kasprzak, 1973 Nais stolci Hrabě, 1981 Rhyacodrilus subterraneus Hrabě, 1963 Specaria josinae (Vejdovský, 1884) téměř ohrožený druh (NT) Stylodrilus lemani (Grube, 1879) Apporrectodea georgii (Michaelsen, 1890) Uncinais uncinata (Øersted, 1842) 18 Přesto, že se jedná o skupinu vodních bezobratlých, u nichž je nesmírně obtížné zjistit, z jakých příčin je její výskyt ojedinělý, některé druhy zasluhují ochranu. Tu je u máloštětinatých opaskovců možné realizovat pouze pomocí ochrany jejich stanovišť, proto byly některé druhy byly navrženy pro zařazení do Červeného seznamu, aby došlo k ochraně biotopů, na nichž se vyskytují. Dosud publikovaný seznam chráněných máloštětinatých opaskovců (Schenková 2005, Pižl 2005) byl modifikován a rozšířen (Tab. 1) (Schenková et al. 2010), ale brzká doba jistě přinese další změny. 2.3.1.2Pijavice (Hirudinida) na území České republiky Z taxonu pijavice (Hirudinida) je pro území České republiky v současnosti uváděno 24 druhů (Schenková et al. 2009). Data pro check-list byla získána z historických údajů, především z prací Hrabě 1954, Koubková & Vojtková 1973, Lucký & Dyk 1964 a Košel 1998, 1999a, dále z údajů z projektů monitoringu tekoucích vod a vlastních nálezů všech autorů. Nejbohatěji je v České republice zastoupena čeleď Glossiphoniidae, zahrnující 10 druhů převážně ze stojatých vod, většina z nich jsou predátoři, dva druhy jsou ektoparazité. Čeleď Erpobdellidae je druhá nejpočetnější se sedmi druhy, kteří jsou predátoři tekoucích i stojatých vod. V čeledi Piscicolidae, kde jsou všichni zástupci ektoparazité, je známo pět druhů, v čeledi Haemopidae jeden druh (predátor) a Hirudinidae jeden parazitický druh. Území České republiky je zajímavé tím, že jeho středoevropská poloha zahrnuje povodí tří významných evropských toků – Labe, Dunaje a Odry, po nichž se některé pijavice mohou šířit napříč Evropou. Z hlediska síly populací a původnosti pro naše území můžeme pijavice žijící u nás rozdělit do tří skupin: druhy původní se stabilními populacemi, druhy původní, jejichž populace jsou slabé a roztroušené a invazní druhy, nově se šířící našem území (Schenková et al. 2009). Do první skupiny řadíme evropské palearktické druhy, které historicky osidlují nejrůznější vodní tělesa na našem území s vysokou frekvencí i abundancemi – Alboglossiphonia heteroclita (Linnaeus, 1761), Glossiphonia complanata, Helobdella stagnalis (Linnaeus, 1758), Hemiclepsis marginata, Theromyzon tessulatum, Piscicola geometra (Linnaeus, 1758), Haemopis sanguisuga, Erpobdella octoculata a E. vilnensis. Tři další druhy, považované dříve za vzácné – Glossiphonia concolor (Apáthy, 1888), G. nebulosa Kalbe, 1964 a Erpobdella nigricollis (Brandes, 1900), byly pak do této skupiny přiřazeny nově vzhledem k vysoké četnosti současných nálezů. U prvních dvou druhů mohlo 19 v minulosti docházet k záměně s G. complanata. Celkem je u nás 12 druhů původních pijavic se stálými populacemi (Schenková et al. 2009). Druhá skupina, do které řadíme druhy se vzácným výskytem, nezahrnuje jen skutečně ohrožené druhy, ale i druhy, které jsou vzhledem k malé velikosti a nenápadnému vzhledu častěji přehlíženy, jako Alboglossiphonia hyalina (O. F. Müller, 1774) a Alboglossiphonia striata (Apáthy, 1888), které jsou velmi drobné (v prvním případě dokonce průsvitné) a obývají stojaté vody. Navíc jako druhy byly poměrně nedávno odděleny od druhu A. heteroclita (Trontelj 1997, Neubert & Nesemann 1999). K nejzáhadnějším druhům naší fauny patří Glossiphonia slovaca (Košel, 1973), zranitelný druh (VU) dle Schenková & Košel (2005), který byl nalezen pouze na území jižní Moravy v řece Dyji (Košel 1995, 1999b) a později již nebyl zaznamenán. Ovšem odlišení tohoto druhu od ostatních zástupců rodu pouze na základě počtu varlat a tvaru pohlavních vývodů činí determinaci velmi náročnou a přesto, že velmi podobná pijavice byla z jediné známé lokality výskytu opět nalezena (leg. L. Mikl, 2015, det. J. Schenková), nebylo možné ji spolehlivě určit. Další zajímavý druh pro naši faunu je Dina lineata (O. F. Müller, 1774), která žije sporadicky v drobných stojatých vodách, prameništích a potocích v nížinách. Tyto biotopy jsou citlivé k různým zásahům a malý počet nálezů vedl k návrhu zařadit tento druh mezi zranitelné VU (Schenková et al. 2009). Naprosto unikátní je také situace kolem našeho největšího druhu Trochaeta cylindrica Örley, 1886, jehož lokality jsou jak v tůních jižní Moravy, tak v prameništích a potocích v Beskydech, takže je i vzhledem ke zjištěným morfologickým rozdílům velká pravděpodobnost, že se zde mohou ukrývat druhy dva (Bílková & Schenková 2015). Nejvíce pozornosti ovšem přitahuje kriticky ohrožený druh CR Hirudo medicinalis (Schenková & Košel 2005), neboť se jedná o krevsajícího ektoparazita s možností lékařského využití, který měl rozsáhlý areál výskytu v povodí řeky Moravy i Labe (Hrabě 1936). Díky přítomnosti protisrážlivého enzymu hirudinu a řady dalších enzymů, které vypouští do rány při sání krve, byl v historických dobách využíván k „pouštění žilou“, dnes prožívá jeho příbuzný laboratorně chovaný druh Hirudo verbana Carena, 1820 renesanci a je používán v mikrochirurgii, k léčbě onemocnění lymfatického systému a řadě dalších chorob. Typickým biotopem H. medicinalis jsou mělké rozsáhlé mokřady v zátopovém území řek pravidelně zaplavované při jarních povodních, bohatě zarostlé makrovegetací, hojně osídlené obojživelníky (zdroj potravy pro juvenilní jedince) a neosídlené žádnou nebo jen minimální rybí obsádkou (Glombová & Schenková 2015). Takové biotopy jsou už dnes vzhledem k regulaci říční soustavy a intenzivnímu zemědělskému využití krajiny v povodí velkých řek 20 velmi vzácné a většina z 18 současných lokalit výskytu (15 lokalit uvedeno v Glombová & Schenková 2015, nově v roce 2015 Lesní tůň u Lanžhota, ústní sdělení J. Glombová a tůně Lesní herda a Háček u Nejdku, ústní sdělení E. Lorencová) leží v oblastech, které jsou do různé míry chráněné. Dalšími vzácně nacházenými druhy jsou rybí parazité Piscicola respirans Troschel, 1850 a Piscicola fasciata Kollar, 1842 (jediný záznam Lucký & Dyk 1964) žijící trvale přichycené na rybím hostiteli, což znemožňuje jejich nalezení během hydrobiologických výzkumů. Také jediný nález druhu Erpobdella testacea (Savigny, 1822) svědčí o jeho velké vzácnosti (Košel 1999b). Opět se jedná o druh obývající u nás ohrožené biotopy, jako bažiny v litorální zóně stojatých vod a velkých řek, který je navíc snadno zaměnitelný s E. nigricollis. Poslední skupina zahrnuje druhy, které se u nás úspěšně šíří. Pro rybí ektoparazity jako je druh ponto-kaspického původu Caspiobdella fadejewi (Epshtein, 1961), který se k nám rozšiřuje z řeky Dunaje, je rychlé šíření umožněno na těle hostitelských ryb. Od prvního výskytu v řece Moravě na soutoku s Dyjí (Košel 1998, 1999a) v devadesátých letech do dneška osídlil celé území České republiky, a dostal se do povodí řek Moravy, Odry a Labe. Z dalších druhů, jejichž počet nálezů postupně narůstá, lze uvést i druh Piscola haranti Jarry, 1960, který byl zaznamenán nejprve na třech (Schenková et al. 2009), následně na dalších dvou lokalitách (Kubová & Schenková 2014). Vzdálenost jednotlivých lokalit a jejich příslušnost k různým povodím (Labe, Morava) vedou ovšem i k alternativní hypotéze, že spíš než pomalé šíření tohoto parazitického druhu do České republiky se jedná o jeho stálý vzácný výskyt, který dříve nebyl zaznamenán vzhledem k jeho relativně nedávnému popisu a jeho snadné záměně s Piscicola geometra. Velmi řídké jsou také nálezy dalšího šířícího se druhu Dina punctata Johansson, 1927. Šíří se k nám z povodí Dunaje, kde je běžný, a takto se dostal proti proudu Dyje až do Vranova. Jeho další nálezy v jižních Čechách v povodí Vltavy jsou však těžko interpretovatelné. Vzhledem k tomu, že jde o druh semiakvatický, lze spekulovat o přenosu vodním ptactvem. Současný výzkum ukazuje, že oblast největší diverzity této skupiny se nachází na jižní Moravě, především v oblasti soutoku řeky Moravy a Dyje. Většina ohrožených druhů pijavic obývá nížinné mokřady v povodí velkých řek zarostlých vegetací a právě tyto jsou nejohroženější negativními dopady lidské činnosti. Stejně jako u jiných bezobratlých živočichů je péče o zachování přirozených habitatů a jejich zákonná ochrana jediným účinným mechanismem k zachování vzácných druhů. Proto si habitaty hostící silné populace 21 Tabulka 2. Seznam druhů pijavic navržených pro Červený seznam. Blíže viz Schenková et al. 2009, odkud byla data převzata a upravena. Jednotlivé kategorie dle (IUCN 1994). vzácných druhů, např. H. medicinalis, zasluhují přísnou a dobře promyšlenou ochranu. Na základě těchto zjištění byl proto seznam ohrožených druhů z roku 2005 (Schenková & Košel 2005) rozšířen o další druhy, takže určitá úroveň ochrany náleží celkem deseti druhům a potažmo i jejich biotopům (Tab. 2, Schenková et al. 2009). 2.3.2 Variabilita druhové skladby máloštětinatých opaskovců v tocích Máloštětinaté opaskovce nacházíme téměř ve všech akvatických biotopech, od pramenišť po veletoky, stojaté i podzemní vody nevyjímaje, od čistých oligotrofních až po vysoce eutrofizované. Tato skupina má vzhledem ke svému širokému zastoupení, vysokým denzitám a velkému rozsahu tolerance ke znečištění u některých druhů, významný potenciál z hlediska hodnocení kvality vod a jejich managementu, zejména vod tekoucích. Zatímco v minulosti se zájem soustředil na hodnocení různých biotických indexů (např. Sládeček 1973, Chapman et al. 1982, Milbrink 1983, Uzunov et al. 1988) se zaměřením především na vody znečištěné, dnes se studium rozšiřuje o poznání všech faktorů, které podmiňují ekologii této skupiny, o zjištění geografické distribuce, habitatových preferencí a požadavků na kvalitu vody nejen u běžných, ale i vzácných a ojediněle se vyskytujících druhů. Z hlediska významu pro člověka a zastoupení na našem území jsou středně velké tekoucí vody převažujícím biotopem, proto byla jejich studiu věnována největší pozornost. Nicméně v evropském měřítku nejsou studie máloštětinatých opaskovců tekoucích vod na velké škále (tedy z mnoha toků pokrývající větší geografické území) příliš frekventované (MartínezAnsemil & Collado 1996, Nijboer et al. 2004 a Verdonschot 2006). Na území České republiky byl výzkum zaměřen na menší, pokud možno neznečištěné toky z povodí řek Moravy a Odry (Schenková & Komárek 1999, Schenková et al. 2001a, Schenková et al. 2001b). Hlavním gradientem strukturujícím taxocen máloštětinatých opaskovců v tomto typu toků v České republice je gradient nadmořské výšky úzce svázaný s charakterem substrátu: skladba taxocenu máloštětinatých opaskovců se mění spolu se snižující se drsností dna kriticky ohrožený druh (CR) zranitelný druh (VU) Hirudo medicinalis Linnaeus, 1758 Alboglossiphonia hyalina (O. F. Müller, 1774) Dina lineata (O.F. Müller, 1774) ohrožený druh (EN) Glossiphonia slovaca (Košel, 1973) Alboglossiphonia striata (Apáthy, 1888) Piscicola respirans Troschel, 1850 Erpobdella testacea (Savigny, 1822) Trocheta cylindrica Örley, 1886 22 (přechod od kamenitého k bahnitému substrátu), které doprovází klesající nadmořskou výšku (Schenková et al. 2001a). Druhý gradient, který strukturuje skladbu a abundance máloštětinatých opaskovců, má komplexní charakter, neboť je představován koncentrací vápenatých a hořečnatých iontů, tedy chemismem a současně gradientem množství organické hmoty vyjádřené chemickou spotřebou kyslíku COD (Obr. 7, Schenková et al. 2001a). Velmi podobné výsledky s nejvýznamnějším gradientem přestavovaným substrátem a rychlostí proudění, následovaným gradientem mineralizace vody pro máloštětinaté opaskovce potvrzuje i práce z oblasti Pyrenejského poloostrova (Martínez-Ansemil & Collado 1996). Parametry vázané na řád toku jako např. průtok jsou rozhodující proměnné pro strukturu taxocenu máloštětinatí opaskovci, i v rovinatých oblastech Holandska, kde také reprezentují nejvýznamnější gradient, charakterizovaný hloubkou a šířkou toku, jeho stálostí (stálý/intermitentní); druhý gradient z hlediska vysvětlené variability představuje pH a další chemické proměnné (Nijboer et al. 2004). Proměnná průtok, která u českých řek nebyla měřena, byla zastoupena drsností dna a nadmořskou výškou, které klesají směrem od pramene a byly prokázány jako signifikantní, význam zaznamenané hloubky a šířky toku prokázán nebyl (Schenková et al. 2001a). Získaná databáze výskytu máloštětinatých opaskovců na 57 téměř neznečištěných tocích spolu s fyzikálně-chemickými parametry byla využita i k vyhodnocení kvality vody a nalezení indikátorových druhů, které ji v malých tocích charakterizují. Na základě analýzy hierarchické divizivní klasifikace TWINSPAN (Hill 1979) byly studované lokality rozděleny do dvou velkých skupin zahrnující lokality zcela neznečištěných toků s indikátorovými druhy Obrázek 7. Ordinační diagram kanonické korespondenční analýzy (CCA) první a druhé ordinační osy s pozicí všech druhů a proměnných prostředí vybraných v postupném výběru testovaným Monte Carlo permutačním testem na hladině významnosti P = 0,01 (999 permutací). Zkratky názvů druhů a další detaily viz Schenková et al. 2001a, odkud byl obrázek převzat. 23 Nais alpina Sperber, 1948, N. communis Piguet, 1906 a N. simplex Piguet, 1906 a toky se sníženou kvalitou vody, indikované druhem Tubifex tubifex. Skupinu čistých vod indikují druhy spásající řasové nárosty a obývající kamenitá dna čistých toků, toky s více organickou hmotou dobře indikoval nejodolnější euryvalentní druh T. tubifex (Obr. 8, Schenková et al. 2001b). Vodní máloštětinatí opaskovci pak mohou indikovat celkem čtyři skupiny čistých Obrázek 8. Divizivní hierarchická klasifikace lokalit TWINSPAN s indikátorovými druhy. Zkratky lokalit a druhů a další detaily viz Schenková et al. 2001b, odkud byl obrázek převzat. toků (z leva): čisté meandrující se štěrkovým dnem (Stylodrilus parvus, Nais pseudoobtusa Piguet, 1906), rychle tekoucí toky s vyšším sklonem (bez indikátoru), toky se štěrkopísčitým dnem (bez indikátoru) a chladné pomalu tekoucí toky v oblasti Hercynika (Nais simplex, Eiseniella tetraedra (Savigny, 1826), Stylodrilus parvus). A dále čtyři skupiny s různou mírou znečištění: zemědělsky ovlivněné toky (bez indikátoru), toky na flyšovém podloží s přirozeně vyšší konduktivitou (Tubifex tubifex), toky s vyšším obsahem organických látek COD (bez indikátoru) a toky s nejnižší kvalitou vody v rámci studovaného souboru (Nais elinguis Müller, 1774). Indikace malých čistých až mírně znečištěných toků pomocí máloštětinatých opaskovců je možná, přičemž úspěšnost klasifikace toků stoupá s mírou jejich znečištění. Avšak indikátorové druhy jsou často běžné a je známo, že stejné druhy jako např. Spirosperma ferox, Stylodrilus heringianus i Tubifex tubifex mohou charakterizovat jak oligotrofní podmínky, tak eutrofizaci např. jezer, záleží jen na jejich denzitách (Milbrink & Timm 2002). 24 2.3.3 Variabilita druhové skladby máloštětinatých opaskovců na prameništních slatiništích Dalším biotopem tekoucích vod, jehož studiu jsme se věnovali, byla prameništní slatiniště. Jedná se o jeden z nejohroženějších biotopů v Evropě, k jehož vymizení přispívají především antropogenní vlivy, jako je odvodňování, eutrofizace a změny managementu vedoucí k zarůstání a postupnému vysychání. Prameništní slatiniště představují roztroušené mokřady, které se nacházejí v bezlesých místech, jsou syceny podzemní vodu a hostí živinami limitovanou vegetaci. Většinou vyvěrají ve svažitém terénu, na našem území nejsou příliš rozsáhlá a vzájemně jsou izolovaná. Mnoho zachovalých pramenišť se nachází v oblasti Západních Karpat, proto byly naše výzkumy rozšířeny na Slovensko, kde se většina tohoto pohoří nachází. Studované území zahrnovalo tři oblasti: Moravsko-slovenské pomezí na flyšovém podloží (charakteristické střídajícími se vrstvami pískovce a jílovce), oblast Oravy, která představuje východní výběžek flyšové zóny a oblast vnitřních Západních Karpat, jejíž geologická struktura je složitější, tvořená jádrem paleozoických a krystalinních břidlic překrytých mezozoickými pískovci a karbonátovými litofaciemi (odlišitelnými částmi vrstevního sledu sedimentů). Vzhledem k různému podloží je chemismus prameništních slatinišť značně variabilní a vytváří tak gradient minerální bohatosti, který je pro ně typický, a byl popsán jako tzv. poorrich gradient (Malmer 1986, Hájek et al. 2006). Na základě změny chemismu vyvěrající vody a typu vegetace pak bylo možné klasifikovat pět základní typů prameništních slatinišť: typ 1 – vápnitá pěnovcová, v nichž dochází ke srážení uhličitanu vápenatého ve formě pěnovce a dominuje mech Cratoneuron commutatum; typ 2 – vápnitá bez srážení pěnovce, kde se v chladnějších oblastech pěnovec již nesráží, na povrchu je rašelina, obsah živin je nízký, dominují ostřice, suchopýry, mechy, zejména Drepanocladus revolvens agg.; typ 3 – mírně vápnitá mechová, kde je koncentrace vápníku nižší a reakce vody není zásaditá nebo je příjem vápníku snížen velkým obsahem železa, což umožňuje uchycení kalcitolerantních rašeliníků (Sphagnum warnstorfii); typ 4 – kyselá přechodová rašeliniště, kde na prameništi je voda spíše kyselá a mohou se zde vyskytnout i další druhy rašeliníků; typ 5 – druhově chudá kyselá slatiniště s rašeliníky rodu Sphagnum (podrobněji viz Hájek et al. 2006). Gradient minerální bohatosti, který významně strukturuje složení rostlinných společenstev, ovlivňuje i další skupiny organismů, jako druhovou skladbu a bohatost měkkýšů (Horsák & Hájek 2003), řas (Poulíčková et al. 2003, Fránková et al. 2009) nebo 25 krytenek (Opravilová & Hájek 2006). Situace u hmyzu je složitější, zatímco některé studie ukazují jen slabý vztah hmyzích skupin (Virtanen et al. 2009) nebo pošvatek (Bojková & Helešic 2009) k chemismu vody v silně mineralizovaných prameništích, u pakomárovitých na celém poor-rich gradientu prokázán byl (Omelková et al. 2013). Tato situace nabízela dosud nestudovanou otázku, zda skupina máloštětinatých opaskovců, která náleží k permanentní fauně a žije v nejtěsnějším spojení se substrátem, je také ovlivňována měnícím se chemismem vody. Odpověď opaskovců na hlavní gradienty prostředí v tomto částečně zjednodušeném systému (např. relativně malé kolísání průtoku a teploty vody) je však komplexnější. Studujeme-li lokality v oblasti moravsko-slovenského pomezí, kde se nachází všechny prameništní typy a jsou až na výjimky neovlivněné eutrofizací (17 lokalit), ukazuje se, že je taxocen Clitellata strukturován mírou mineralizace pramenící vody a charakterem substrátu (Bojková et al. 2011). Výměna druhů podél tohoto gradientu souvisí s měnícími se vlastnostmi („traits“) dominantních druhů: na minerálně bohatých slatiništích dominuje vzácný stygofilní (např. dle Dumnicka 2001) druh Trichodrilus strandi, který přímo preferuje slatiniště, kde dochází ke srážení pěnovce. S klesající minerální bohatostí nastupuje čeleď Enchytraeidae, která většinou zahrnuje půdní druhy schopné využívat i hlubších vrstev sedimentů a tolerovat jeho vysychání, ale i vodní druhy jako např. Cognettia sphagnetorum (Vejdovský, 1878) s širokou nikou, neboť se vyskytuje jak v minerotrofních rašeliništích (např. van Duinen et al. 2006), tak v jehličnatých lesích (např. Graefe & Schmelz 1999). Podobně vodní máloštětinatec Rhyacodrilus falciformis Bretscher, 1901 se kromě vodních habitatů může vyskytnout i na loukách a v listnatých lesích (Graefe & Schmelz 1999, Schlaghamerský & Kobetičová 2005). Minerálně chudá rašeliniště ležící na opačném konci gradientu jsou osídlena běžnými euryvalentními druhy, jako Limnodrilus hoffmeisteri, Tubifex tubifex, Stylodrilus heringianus a pijavicí Erpobdella vilnensis, která vyžaduje chladnější vodu, ale je velmi tolerantní k organickému znečištění (Kubová & Schenková 2014). Druhová bohatost opaskovců narůstá od minerálně bohatých směrem ke kyselým slatiništím, která obsahují větší množství nerozložené organické hmoty, tedy v opačném směru než u cévnatých rostlin, rozsivek nebo měkkýšů (Hájek et al. 2002, Horsák & Hájek 2003, Fránková et al. 2009). Ovšem odpověď opaskovců bude pravděpodobně spíše unimodální, neboť na ombrotrofních vrchovištích, která nebyla předmětem našeho zkoumání, nalézáme v nejkyselejších rašeliništích jen jediný acidotolerantní druh (van Duinen et al. 2006). Druhý nejvýznamnější gradient strukturující opaskovce představuje gradient hydrologického režimu spojený s produktivitou lokalit (více živin na jedné stran vegetace na straně druhé) (Bojková Jak ale reaguje tato skupina na mineráln širokou geografickou oblast, s různou mírou eutrofizace a rů Moravsko-slovenského pomezí, Oravy a vnit accepted). Výběr lokalit byl skupiny, jsou silně ovlivňováni omezenou možností disperze na nové 2014a), která probíhá jen pasivním zp polovinu lokalit starších než 2 daného typu prameniště mě opaskovců na této škále, je PCoA, Obr. 9a). Skladba opaskovc s množstvím nerozložené organické hmoty uhlíku – TOC), až po lokality s vyvěrající vody. Nicméně shluková Obrázek 9. (a) Analýza hlavních koordinát PCoA 54 lokalit s do prostoru 1. a 2. osy, fit P < 0,05. druhy frekventované (na 15ti lokalitách a více) kolečka, skupina B; trojúhelníky, skupina C. (b) Shluková analýza Wardovou metodou na Bray vzdálenostech. Čísla lokalit označ 2006). Zkratky názvů druhů a další deta Obr. 9b) nám jednotlivé lokality uspo prameništních slatinišť (oproti p 26 produktivitou lokalit (více živin na jedné straně, více vlhka (Bojková et al. 2011). Jak ale reaguje tato skupina na minerálně trofický gradient na velké škále, širokou geografickou oblast, s jednotlivými typy pramenišť v oblastech s různého stáří? Pro takovou studii bylo vybráno 54 lo slovenského pomezí, Oravy a vnitřních Západních Karpat r lokalit byl podmíněn zjištěním, že opaskovci, zejména specialisté z ňováni omezenou možností disperze na nové lokality probíhá jen pasivním způsobem, a proto nový soubor zahrnoval více než polovinu lokalit starších než 2 500 let (Horsák et al. 2015), aby všichni potenciální obyvatelé ě měli šanci ho osídlit. Hlavní gradient, který strukturuje taxoce je opět gradient minerální bohatosti (analýza hlavních koordinát Skladba opaskovců se mění od lokalit minerálně chudých, kyselých, množstvím nerozložené organické hmoty (vysoké koncentrace celkového organického až po lokality s vysokými koncentracemi Ca a Mg a vysokou vodivostí shluková analýza skupiny opaskovců (Schenková ch koordinát PCoA 54 lokalit s osmi proměnnými prostř 0,05. Zobrazeno 15 indikátorových druhů pro tři skupiny shlukové analýzy druhy frekventované (na 15ti lokalitách a více). Symboly lokalit podle shlukové analýzy: trojúhelníky, skupina C. (b) Shluková analýza Wardovou metodou na Bray ísla lokalit označují typ prameništního slatiniště na základě vegetace a chemismu a další detaily viz Schenková et al., accepted, odkud byly obrázky notlivé lokality uspořádala částečně odlišně od čty (oproti původnímu dělení na 5 typů, zde jsme použili dva nejkyselejší a A B A B C , více vlhka a nižší produktivita trofický gradient na velké škále, zahrnující oblastech s různým podložím, studii bylo vybráno 54 lokalit v oblasti ních Západních Karpat (Schenková et al., , zejména specialisté z této lokality (Rádková et al. a proto nový soubor zahrnoval více než aby všichni potenciální obyvatelé adient, který strukturuje taxocen analýza hlavních koordinát od lokalit minerálně chudých, kyselých, (vysoké koncentrace celkového organického vysokými koncentracemi Ca a Mg a vysokou vodivostí ková et al., accepted, nnými prostředí pasivně proloženými i skupiny shlukové analýzy a Symboly lokalit podle shlukové analýzy: čtverce, skupina A; trojúhelníky, skupina C. (b) Shluková analýza Wardovou metodou na Bray-Curtis a chemismu (Hájek et al. y obrázky převzaty. od čtyř základních typů , zde jsme použili dva nejkyselejší b C 27 sloučené v jednu skupinu) vytvořených na základě vegetace a chemismu (Hájek et al. 2006). Za tímto rozdílem stojí právě vliv substrátu ovlivňující druhovou skladbu podle přítomnosti organické hmoty nebo naopak převážně anorganického substrátu. Substrát se spolu s teplotou vody podílí na druhém nejvýznamnějším směru variability v datech. Tři skupiny opaskovců nalezené shlukovou analýzou můžeme popsat podle indikátorových druhů (Analýza indikátorových druhů, Dufréne & Legendre 1997): skupina A s indikátorovým druhem T. strandi zahrnující minerálně bohaté lokality většinou se srážením pěnovce (typ 1), skupina B s indikátorovým druhem Stylodrilus heringianus, vodním máloštětinatcem indikujícím kamenitý substrát a vysychavost toků (Nijboer et al. 2004) a skupina C, s velkým počtem euryvalentních indikátorových druhů (Erpobdella vilnensis, Limnodrilus hoffmeisteri, Lumbriculus variegatus, Tubifex tubifex, Cognettia glandulosa (Michaelsen, 1888), Tubifex ignotus (Štolc, 1886), zahrnující teplejší lokality s dostatkem organické hmoty (Schenková et al., accepted). Skupiny B a C zahrnují směs všech typů pameništních slatinišť a skladba skupiny opaskovci zde odráží jen charakter substrátu, organický vs. anorganický, vlhký vs. vysychavý a teplotu, nikoli chemismus vody. Signifikantní vliv množství organického substrátu na skladbu opaskovců zcela nezávislý na chemismu potvrdili také Rádková et al. (2014b). Druhý gradient, který strukturuje společenstvo opaskovců, je podobně jako ve studii na malé škále (Bojková et al. 2011) představován hydrologickým režimem, avšak podstatnou měrou je navíc ovlivňován přítomností rozkládající se organické hmoty, která je zdrojem potravy studované skupiny a rozhoduje o jejich výskytu bez ohledu na typ prameništního slatiniště dle vegetace. Tak je možné přísunem organické hmoty, např. vlivem pastvy koní, nevratně přeměnit jedinečné pěnovcové slatiniště s dominantním vzácným druhem T. strandi na místo osídlené akvaristickými nitěnkami T. tubifex a L. hoffmeisteri, jejichž kvantita indikuje znečištění lokalit (Hrabě 1954). 2.3.4 Změny společenstva opaskovců v otepleném toku Výjimečné vlastnosti skupiny opaskovci (máloštětinatí i pijavice), která jak se potvrdilo, zahrnuje citlivé druhy indikující čistotu a neovlivněnost stanoviště i druhy, které ukazují na velkou míru dotace organické hmoty uváděné např. v Brinkhurst & Cook (1974), Uzunov et al. (1988), ale i v našich výzkumech (Schenková et al. 2001b, Bojková et al. 2011), vedly k možnosti studovat i ekosystémy lidskou činností silně pozměněné, jako jsou např. oteplené důlní vody. Jedinečnou příležitost ke studiu vlivu změny teplotního režimu představuje řeka Nedvědička protékající Českomoravskou vrchovinou, která je recipientem oteplených důlních vod z posledního uranového dolu ve střední Evropě v Rožné. Tato řeka je vhodným 28 modelovým systémem, neboť teplá důlní voda nezvyšuje zásadním způsobem průtok a nemění tak hydrologické poměry a neobsahuje ani významně zvýšené množství radioaktivních látek. Nejen voda v řece Nedvědičce pod přítokem důlních vod s obsahem uranu Unat = 0,010 mg l−1 , ale i sama důlní voda s hodnotou Unat = 3,4 mg l−1 splňuje limity evropských norem a je pod hodnotou 24 mg l−1 vyžadovanou směrnicí „Directive 2008/105/EC of the European Parliament“ (Hudcová et al. 2012). Důlní voda se ovšem vyznačuje nejen zvýšenou teplotou, ale i vodivostí (vysoká koncentrace síranů), pH a sníženým obsahem kyslíku a živin (odstraněny v čističce odpadních vod), takže celý systém je více komplexní (podrobněji viz Růžičková et al. 2014). Pro případovou studii byla vybrána tři odběrová místa na řece Nedvědičce: nad přítokem oteplené důlní vody (US), těsně pod přítokem (DS1) a níže po toku (DS2) a jako pozadí jedno odběrové místo v přítoku oteplené důlní vody (MW); na každém z těchto čtyř míst byly studovány dva habitaty: peřej a tůň (podrobněji v Růžičková et al. 2014). Silný dopad na společenstvo opaskovců byl potvrzen; jak druhová diverzita, tak abundance opaskovců pod přítokem oteplené důlní vody signifikantně poklesla v habitatech tůň i peřej (Obr. 10). Přesto, že nebylo možné odlišit vliv chemických proměnných od vlivu změny teploty, je vysoce pravděpodobné, že absence typického sezonního jevu, jako je zamrzání toku, také ovlivnila skladbu opaskovců. Jedna z nemnoha studií vlivu změny teplotního režimu zahrnující i skupinu Clitellata prokázala v industriální oblasti po oteplení vody jiný výsledek, a to nárůst abundance máloštětinatců, ovšem při signifikantně zvýšeném průtoku (Nedeau et al. 2003). Ochuzení společenstva opaskovců na řece Nedvědičce však mělo jiné příčiny. První je vliv zvýšené vodivosti, k níž jsou různé druhy do různé míry citlivé (Generlich & Giere 1996), např. výskyt druhu Propappus volki Michaelsen, 1916 je silně negativně korelován s vodivostí (Dumnicka & Pasternak 1978), druhý je vliv zvýšené teploty, neboť v řece Nedvědičce se za normálních okolností vyskytují i stenotermní druhy, např. Haplotaxis Obrázek 10. Krabicové grafy druhové diverzity (a) a abundance (b) opaskovců na vzorkovacích místech na řece Nedvědičce: nad přítokem oteplené důlní vody (US), těsně pod přítokem (DS1) a níže po toku (DS2); hodnoceno odděleně pro peřej (tmavá) a tůň (bílá). Další detaily viz Růžičková et al. 2014, odkud byl obrázek převzat. a b 29 gordioides Hartmann, 1821 a Stylodrilus heringianus (Dumnicka 2000), které se nedokážou vyrovnat s oteplenou a v zimním období nezamrzající vodou. Tyto vlivy pak jsou různě intenzivní v prokysličených peřejích, kde pod přítokem důlních vod chybí šest taxonů, a v hlubších tůních, kde chybí tři. Peřeje jsou obývány rheofilními taxony, typickými pro horní toky s méně živinami a vyšší koncentrací rozpuštěného kyslíku (Schwank 1981) a citlivějšími na pokles kvality vody (Verdonschot 2006). Změny v teplotním režimu vedou nejen k úbytku, ale i k výměně druhů (Živić et al. 2006), kdy právě na druhové úrovni je možné proniknout do podstaty změn v druhové diverzitě a změn v abundancích taxocenu Clitellata. Oligostenotermní druhy, mezi něž patří obyvatel podzemních vod a pramenišť Haplotaxis gordioides (Schwank 1981, Dumnicka 2000), se už pod přítokem oteplené vody neobjevují. Zástupci chladnomilného rodu Stylodrilus reagují poklesem početnosti a následným návratem do původního stavu vzhledem k jeho široké ekologické plasticitě (Syrovátka et al. 2009). Stejně tak reaguje Lumbriculus variegatus, ovšem z jiného důvodu – vzhledem ke své vazbě na nižší hodnoty pH (Nijboer et al. 2004) se přesouvá z místa přítoku důlní vody do oblasti s pro něj vhodnějším pH. Nenáročné druhy rodu Limnodrilus tolerující různé teploty, množství kyslíku i různou vodivost (např. Korn 1963, Dumnicka & Galas 2006), zůstávají v početnostech nad i pod přítokem stejné. Byl nalezen i druh Aulodrilus japonicus, který na oteplení vody reaguje nárůstem početnosti. Celkově lze shrnout, že i tato skupina permanentní fauny vodních bezobratlých je vstupem oteplených důlních vod do toku do různé míry ohrožena, přičemž pro některé druhy je tento vliv limitující. 2.3.5 Variabilita druhové skladby pijavic v tekoucích a stojatých vodách Pijavice (Hirudinida) představují úžeji specializovanou skupinu parazitů a predátorů, kteří se odlišují nejen morfologicky, ale i celou svojí biologií, proto obvyklou metodikou pro studium makrozoobentosu, vhodnou pro vzorkování máloštětinatých opaskovců, zachytíme jen malou část jejich diverzity (Koperski 2011). K podrobnějšímu studiu ekologických parametrů stojících za strukturováním skupiny pijavic je zapotřebí použití odlišných vzorkovacích metod (Kubová & Schenková 2012) a její hodnocení samostatně. Pijavice obývají jak tekoucí, tak stojaté vody, přesto je většina prací věnována buď jednomu, nebo druhému habitatu (např. stojatým vodám se věnují Young & Ironmonger 1981, Spelling & Young 1987, tekoucím např. Grosser et al. 2001, Koperski 2005, 2010). Omezení existujících souhrnných prací z tekoucích i stojatých vod spočívá ve spíše popisném zaměření na 30 distribuci druhů, charakteristiku preferovaných habitatů, případně vztah ke znečištění (např. Bennike 1943, Elliott & Mann 1979, Košel 1988, 1989, van Haaren 2004, Schenková et al. 2009) nebo naopak jen na jejich vztah k chemismu vody (Mann 1955, Grosser et al. 2001). Proto je velmi zajímavá otázka studia vlivu nabídky potravy i fyzikálně-chemických parametrů současně se zohledněním rozdílných podmínek v tekoucích a stojatých vodách. První předpoklad zjištěný také již v pracích autorů Mann (1953) a Koperski (2006) o odlišnosti společenstev obývajících tekoucí a stojaté vody, se potvrdil. Nejsilnější gradient strukturující taxocen pijavic představuje rozdíl v typu habitatu: tekoucí versus stojaté vody. DCA analýza ukázala spolu s ním další významné morfologické a fyzikální proměnné, které tyto habitaty odlišují: tekoucí – vyšší zastínění, stojaté – nižší drsnot dna, větší množství makrofyt a vyšší teplota vody (Obr. 11, Kubová et al. 2013). Při porovnání variability vysvětlené jednotlivými proměnnými prostředí v přímých analýzách tří datových souborů – oba habitaty, jen tekoucí a jen stojaté vody – vykazují výsledky celkového souboru mnohem větší podobnost s habitatem tekoucích vod. Gradienty proměnných prostředí v tekoucích vodách jsou pro strukturování společenstva pijavic zahrnující oba habitaty rozhodující. Zcela novým zjištěním, dosud pouze odhadovaným bez statistických důkazů, je význam dostupnosti kořisti, který je prediktorem výskytu pijavic a to jak v tekoucích, tak ve stojatých vodách, tak v souboru zahrnujícím oba typy (Kubová et al. 2013). Dosud studované zástupné proměnné charakterizující úživnost ekosystému a vykazující signifikantní vliv na strukturu společenstva pijavic jsou např. alkalinita, vodivost, koncentrace fosforečnanů nebo biotické indexy charakterizující trofický stav (Bennike 1943, Mann 1955, Herrmann 1970, Koperski 2005, 2010). Přímý vliv těchto proměnných na společenstvo pijavic je silně nepravděpodobný, celková úživnost systému vede k vyšším abundancím makrozoobentosu, jímž se pak pijavice živí. Jiným neočekávaným výsledkem je význam zastínění pro výskyt pijavic, vysvětlující Obrázek 11. Ordinační diagram DCA společenstva pijavic na 109 lokalitách v prostoru 1. a 2. ordinační osy. Všechny nalezené druhy kromě odlehlé hodnoty pro Hirudo medicinalis jsou znázorněny. V diagramu jsou pasivně proložené proměnné prostředí, které signifikantně korelovaly s 1. až 4. ordinační osou; signifikantní i po Bonferonniho korekci jsou tučně (P < 0,0026). Zkratky názvů druhů a proměnných prostředí a další detaily Kubová et al. (2013), odkud byl obrázek převzat. 31 vysoký podíl variability jak v tekoucích tak stojatých vodách, jejich vliv je však protichůdný (Kubová et al. 2013). V tekoucích vodách narůstá druhová diverzita i abundance s vyšším zastíněním, neboť pijavice jsou zde lépe chráněné před fluktuacemi teploty, a množství kyslíku. Zastíněná místa představují pro chladnomilné druhy refugia (Aguiar et al. 2002, Ebersole et al. 2003). Naopak ve stojatých vodách – v rybnících a nádržích – s nižším zastíněním narůstá diverzita teplomilných druhů. Také přímo teplota vody a průměrná roční teplota vzduchu jsou pro pijavice významným parametrem. Druhová bohatost ve stojatých vodách vykazuje podél gradientu průměrné roční teploty unimodální průběh (Kubová et al. 2013), neboť ani nížinné lokality s vysokou zemědělskou produkcí na jednom konci gradientu ani chladné podhorské rybníky a nádrže na druhém konci nepodporují diverzitu teplomilných druhů žijících ve stojatých vodách, jak bylo obdobně pozorováno v britských jezerech (Young & Ironmonger 1981). Zajímavé je srovnání výsledku z tekoucích a stojatých vod u nás, kdy mezi stojatými a tekoucími vodami nebyl nalezen rozdíl v abundancích (Kubová et al. 2013), avšak druhová diverzita byla vyšší v tekoucích vodách, s polskými lokalitami, kde nejvyšší diverzita byla v jezerech a nižší v řekách a rybnících (Koperski 2006). Relativně čistá jezera v Polsku, jaká se na našem území bohužel nenacházejí (vyjma horských, která jsou tuto skupinu příliš chladná), představují pro pijavice unikátní kombinaci ekologických parametrů s vysokými počty vodních bezobratlých (makrozoobentosu) jako kořisti při relativně nízké trofii. 2.4 Odpovědi vybraných druhů opaskovců na různé proměnné prostředí – malá a velká škála Odpověď celého společenstva na různé gradienty prostředí je vždy souhrnem odpovědí jednotlivých druhů, jejich prezencí či absencí a změnami jejich abundancí. Zatímco na malé škále ve smyslu mezohabitatů (Armitage et al. 1995) se jedná především o hydraulické a substrátové preference, na velké škále jsou druhy vodních bezobratlých determinovány hydromorfologií toků, klimatickými podmínkami, chemismem a množstvím potravy (např. Hynes 1970, Cummins et al. 1984). Na malé škále na úrovni habitatů podmiňuje výskyt máloštětinatých opaskovců charakter substrátu: velikost zrna podmiňující jeho drsnost, přítomnost makrofyt a přítomnost hydraulicky klidných míst umožňujících akumulaci organické hmoty, která tvoří jejich hlavní 32 složku potravy (Verdonschot 2001, Křoupalová et al. 2011). Detailní studium prostorové distribuce jednotlivých druhů na úrovni mezohabitatů lze nejlépe studovat srovnáním různých mezohabitatů lišících se typem substrátu, hydraulicky i množstvím akumulované organické hmoty v rámci jednoho toku. Tento náročný přístup ovšem omezuje počet studovaných druhů na druhy dostatečně frekventované a vyskytující se ve vysokých abundancích. Takto byly ve studii věnované skupinám „Oligochaeta“ a Chironomidae na řece Svratce zjištěny hydraulické preference pro pět druhů máloštětinatých opaskovců a další druhy pakomárovitých (Obr. 12, Syrovátka et al. 2009, upraveno). Dva taxony preferují velmi úzké rozpětí hydraulických podmínek - Aulodrilus japonicus Yamaguchi, 1953 se vyskytuje pouze v tůních s nízkou hodnotou Froudova čísla (výpočet zahrnuje rychlost proudění, hloubku a gravitační zrychlení) a Nais stolci preferuje středně rychle proudící úseky bez turbulencí. Další druhy nevykazují tak úzké preference, Nais alpina se optimálně vyskytuje v úsecích se středním prouděním, ale v nízkých denzitách se vyskytuje i v tůních s nejnižší rychlostí proudění a peřejích s nejvyšší rychlostí. Rod Stylodrilus preferuje peřeje, ale obývá i středně proudivé úseky a druh Propappus volki silně preferuje peřeje, obývá i proudivé úseky, ale tůním se vyhýbá (Syrovátka et al. 2009). Oba tyto druhy jsou pro obývání peřejí dobře adaptovány, Stylodrilus si staví hlenové trubičky, které ochraňují při pohybu substrátu (Mrázek 1926), P. volki, který je známým obyvatelem pohyblivých písků a intersticiálních prostor se přilepuje k substrátu pomocí adhezivní látky (Bird 1982, Petto & Humpesch 1992). Stanovení habitatových preferencí pro jednotlivé druhy opaskovců na velké prostorové škále vyžaduje rozsáhlý datový soubor s vysokým počtem lokalit postihující celou škálu proměnných prostředí měřených na všech lokalitách, což velmi limituje počet takových studií v tekoucích vodách. Takto precizně byl stanoven vztah jednotlivých druhů k saprobitě (Sládeček & Košel 1984, Uzunov et al. 1988), tekoucím vs. tůňovým habitatům a minerálnímu substrátu vs. vegetaci (Martínez-Ansemil & Collado 1996), typu vodního tělesa (Koperski 2006), eutrofizaci, nadmořské výšce a substrátu (Verdonschot 2006) a některým chemickým proměnným (Mann 1955, Timm et al. 2001). Propappus volki Stylodrilus spp. Nais stolci Nais alpina Aulodrilus japonicus Obrázek 12. Hydraulické preference pěti frekventovaných druhů máloštětinatých opaskovců. Kolečka znázorňují medián, silné linky horní a dolní kvartil, tenké 10% a 90% kvantily Froudova čísla váženého abundancí taxonu. Převzato a upraveno pouze pro „Oligochaeta“ ze Syrovátka et al. (2009), kde jsou uvedeny další detaily. 33 Bohatý datový soubor opaskovců (většinou máloštětinatých) z 54 prameništních slatinišť spolu s proměřením celkem 17 proměnných prostředí na každé lokalitě představoval možnost stanovit enviromnentální prediktory jejich výskytu. Po redukci počtu druhů na dvanáct dostatečně početných a proměnných prostředí na osm vzájemně nekorelovaných, vybraných na základě předchozích studií opaskovců (Martínez-Ansemil & Collado 1996, Timm et al. 2001, Verdonschot 2006, Bojková et al. 2011) byly spočítány zobecněné lineární modely (GLM, McCullagh & Nedler 1989). Tyto modely vyjadřující abundance vybraných druhů jako lineární funkci osmi proměnných prostředí byly spočítány s quasi-Poissonovým rozložením korigujícím overdisperzi dat (Schenková et al., accepted, kde jsou uvedeny další detaily analýzy). Jako nejzajímavější se jeví vzácný druh Trichodrilus strandi, indikátor minerálně bohatých pěnovcových slatinišť, která nejsou antropogenně ovlivněná – v našich analýzách na základě taxocenu opaskovců typ pramenišť A (Obr. 9, Schenková et al., accepted). Jde o druh prameništního specialisty, obývající čisté oligotrofní, chladné, vysoce mineralizované toky (Hrabě 1981, Juget & Dumnicka 1986, Šporka 1998, Bojková et al. 2011). Jeho výskyt je pozitivně korelován s koncentrací Ca a Mg natolik, že 50 % variability jeho abundancí lze vysvětlit těmito proměnnými. Ke stejnému typu pramenišť je byť slaběji vázán i druh Rhyacodrilus falciformis, který je znám jak vztahem k pramenným a podzemním vodám krenofilní stygobiot (Schwank 1981, Juget 1987, Dumnicka 2000), tak vlhkým půdám (Schlaghamerský & Kobetičová 2005). My jsme u něj zaznamenali unimodální odpověď ke koncentracím Ca a Mg (vysvětlující 13 % variability) a preferenci habitatů s nízkým množstvím organického substrátu. Druh Stylodrilus heringianus, indikující druhou skupinu pramenišť (B) na základě opaskovců (Obr. 9), je charakteristický pro kyselé slatiniště se 73 % variability vysvětlenými negativním vlivem Ca a Mg (Schenková et al., accepted). Pro tento druh je typická schopnost přežít i občasné vyschnutí toku (Nijboer et al. 2004). Pro další druh Cognettia sphagnetorum vázající se ke skupině B (i když ne jako indikátor) je všechna zjištěná variabilita vysvětlená negativním vztahem k Ca a Mg koncentracím (47 %) (Schenková et al., accepted) a i když u nás nebyla statisticky významná, je pro jeho prezenci v této skupině důležitá i vazba na nižší teploty vody, kterou se významně liší od zástupce stejného rodu C. glandulosa (Timm et al. 2001). Mesenchytraeus armatus, také se vztahem ke skupině pramenišť B, má veškerou zjištěnou variabilitu danou právě vztahem k chladnějším vodám, mineralizace vody pro něj není důležitá (Schenková et al., accepted), naopak jde o půdní druh s pozitivním vztahem 34 k vlhkosti (Graefe & Schmelz 1999), takže může lépe odolávat dočasnému prosychání prameniště, pravděpodobně charakteristickému pro tuto skupinu pramenišť. Pijavice Erpobdella vilnensis, živící se jako predátor, je nejsilnějším indikátorem třetí skupiny pramenišť označenou C a charakteristickou vyšší trofií; z měřených proměnných pro ni byla významná jen schopnost tolerovat nedostatek kyslíku (vysvětlující 23 % variability) (Schenková et al., accepted). Další indikátorové druhy této skupiny Tubifex tubifex a Limnodrilus hoffmeisteri, jsou charakteristickými indikátory znečištěných vod (např. Brinkhurst & Jamieson 1971, Uzunov et al. 1988), neboť jejich abundance narůstají směrem k vyšším teplotám a množství organického substrátu, respektive k celkovému organickému uhlíku a nitrátům (Schenková et al., accepted). U silně acidofilního druhu Cognettia sphagnetorum (van Duinen et al. 2006) bylo 47 % variability vysvětleno Ca a Mg (negativní vztah), u acidotolerantního druhu Lumbriculus variegatus (Graefe & Schmelz 1999) jen 8 %, silnější vztah byl zaznamenán k vyšším koncentracím celkového uhlíku (40 %) a teplotě vody (15 %). Nerozložená rostlinná potrava v kyselých slatiništích je typickou potravou druhu Lumbriculus variegatus (Moore 1978, Brinkhurst & Gelder 1991). Drobné fytofilní druhy z podčeledi Naidinae Pristina bilobata a Nais communis vykazovaly vztah k nižším koncentracím Ca a Mg, přičemž podhorský druh P. bilobata navíc vykazoval pozitivní vztah k teplotě a organickému substrátu a euryvalentní druh N. communis negativní vztah k anorganickému substrátu (Schenková et al., accepted). Pro stanovení preferencí jednotlivých druhů pijavic byl také vyhodnocen široký datový soubor 109 lokalit na území České republiky (Kubová & Schenková 2014). Prediktivní modely bylo možné spočítat pro sedm dominantních a dostatečně frekventovaných druhů pijavic (A. heteroclita, G. complanata, H. stagnalis, Hemiclepsis marginata, T. tessulatum, E. octoculata a E. vilnensis) a 12 proměnných prostředí. Vzhledem k šíři variability různých typů vzorkovaných lokalit je na rozdíl od máloštětinatých opaskovců pro pijavice velmi významný typ habitatu, kdy kategoriální proměnná tekoucí vs. stojaté vody byla signifikantní pro všechny studované druhy. Tekoucí vody preferuje pouze G. complanata, pro kterou je důležitý i nízký obsah amonných iontů, a E. vilnensis, která je naopak k jejich vysokým koncentracím signifikantně tolerantní (Kubová & Schenková 2014), což bylo nové zjištění; pouze Van Haaren (2004) popisuje přítomnost druhu v téměř stojatých vodách holandských kanálů. Také jeho přítomnost v nejvíce znečištěné skupině prameništních slatinišť a tolerance nízkého množství kyslíku podporuje informace o jeho všeobecné odolnosti (Schenková et al., accepted). Ostatní sledované druhy signifikantně preferují vody stojaté (Kubová & Schenková 35 2014). Téměř všechny sledované druhy mají také významný vztah ke klimatickým podmínkám, kde průměrná roční teplota je pro většinu z nich signifikantní, pro tři druhy E. octoculata, E. vilnensis a G. complanata i v kvadratickém tvaru, jak ukazují odpovědní křivky sestrojené pro tekoucí a stojaté vody zvlášť, u G. complanata jen pro tekoucí (Obr. 13). Stejně jako pro máloštětinaté opaskovce, je i pro pijavice významný charakter substrátu. A. heteroObrázek 13. (a) Signifikantní odpovědní křivky (P < 0,05) běžných druhů pijavic k průměrné roční teplotě založené na kvadratickém tvaru prediktivních modelů, — stojaté vody, – - – tekoucí vody. Převzato z Kubová & Schenková (2014), kde jsou uvedeny další detaily. clita, G. complanata a Helobdella stagnalis dávají přednost hrubšímu substrátu, který je pro ně optimálním podkladem, pouze parazitický druh Hemiclepsis marginata preferuje bahnitý společně s vyšším obsahem nitrátů – oba tyto faktory jsou významné spíše pro jeho rybí hostitele. Také další druhy stojatých vod A. heteroclita a Helobdella stagnalis obývají spíše vody znečištěné s vysokým obsahem fosforečnanů, respektive s vysokými hodnotami celkového uhlíku (Kubová & Schenková 2014), což je v souladu s pracemi Mann (1955), Sládeček & Košel (1984), van Haaren (2004) a odporuje to pouze výsledkům práce Koperski (2005), kde byl studován velmi omezený datový soubor. Závěrem kapitoly lze říct, že stanovit preference konkrétních druhů opaskovců je velmi obtížný úkol zejména pro vzácné a málo početné druhy, které se vymykají možnostem statistického zhodnocení dat. Avšak každý příspěvek do této mozaiky byť s limitovanou platností v místních podmínkách přináší možnost vysvětlení chování celého společenstva a tudíž i vysvětlení, jaké podmínky taková druhová skladba indikuje. 36 3. Závěr V tomto shrnujícím úvodu bylo mým cílem představit šíři diverzity našich dvou největších skupin opaskovců (Clitellata), máloštětinatých opaskovců a pijavic, často pokládaných za pouhé indikátory organického znečištění. Tito kroužkovci však reagují na celou škálu gradientů prostředí, zejména na chemismus vody a charakter substrátu, takže jejich druhové složení a početnost pomáhají odhalit nejen jednotlivé antropogenní vlivy, od různých typů znečištění, přes oteplení vod až po morfologické změny habitatů, ale indikují nám i vlastnosti habitatů vzácných a čistých, jako jsou prameništní slatiniště. Zatímco výskyt většiny vodních máloštětinatých opaskovců odráží změny v substrátu a v chemismu vodního prostředí, zejména obohacení organickým materiálem, přímo, pijavice nám pomáhají indikovat zvýšení abundance jejich kořisti, tedy početnost ostatních vodních bezobratlých. V dnešní uspěchané době prací silně zaměřených na fylogenezi a „barcoding“ jednotlivých druhů opaskovců se někdy nedostává základních informací o jejich ekologii, a proto jsou předložené práce příspěvkem k doplnění této mezery v poznání zejména zjištěním odpovědí jednotlivých druhů na konkrétní fyzikálně-chemické i biologické gradienty. 37 4. Literatura Adreani, L., C. Bonacina, G. Bonomi & C. Monti, 1984. Cohort cultures of Psammoryctides barbatus (Grube) and Spirosperma ferox Eisen: a tool for a better understanding of demographic strategies in Tubificidae. Hydrobiologia 115, 113–119. Aguiar, F. C., M. T. Ferreira & P. Pinto, 2002. Relative influence of environmental variables on macroinvertebrate assemblages from an Iberian basin. J. N. Am. Benthol. Soc. 21, 43–53. Armitage, P. D., I. Pardo & A. Brown, 1995. Temporal constancy of faunal assemblages in ‘mesohabitats’ – Application to management? Arch. Hydrobiol. 133, 367–387. Bennike, S. A. B., 1943. Contributions to the ecology and biology of the Danish freshwater leeches (Hirudinea). Folia Limnol. Scand. 2, 1–109. Bílková, M. & J. Schenková, 2015. Trochaeta cylindrica (Hirudinida: Erpobdellidae) – máme v ČR opravdu jen tohoto zástupce rodu? In: Rádková V. & J. Bojková (eds), XVII. konference České limnologické společnosti a Slovenskej limnologickej spoločnosti "Voda - věc veřejná": Sborník příspěvků. 2015, pp. 37. Bird, G. J., 1982. Distribution, life cycle and population dynamics of the aquatic enchytraeid Propappus volki (Oligochaeta) in an English chalkstream. Holoartic Ecology 5, 67–75. Bojková, J. & J. Helešic, 2009. Spring fens as a unique biotope of stonefly larvae (Plecoptera): species richness and species composition gradients. In: Staniczek, A. H. (ed.), International Perspectives in Mayfly and Stonefly Research. Proceedings of the 12th International Conference on Ephemeroptera and the 16th International Symposium on Plecoptera, Stuttgart 2008. Aquatic Insects 31(Suppl. 1), 365–373. Bojková, J., J. Schenková, M. Horsák & M. Hájek, 2011. Species richness and composition patterns of clitellate (Annelida) assemblages in the treeless spring fens: the effect of water chemistry and substrate. Hydrobiologia 667, 159–171. Bonomi, G., 1979. Ponderal production of Tubifex tubifex Müller and Limnodrilus hoffmeisteri Claparède (Oligochaeta, Tubificidae), benthic cohabitants of an artifical lake. Boll. Zool. 46, 153–161. Bonomi, G., 1980. Population dynamics of Tubifex tubifex, studied by means of a new model, In: Brinkhurst, R. O. & D. G. Cook (eds), Aquatic oligochaete biology. Plenum Publishing Corporation, New York, 185–203. Bouché, M. B., 1977. Strategies lombriciennes. In: Lohm, U. & T. Persson (eds), Soil organisms as components of ecosystems. Ecological Bulletin (Stockohlm) 25, 122–132. Brinkhurst, R. O. & D. G. Cook, 1974. Aquatic earthworms (Annelida: Oligochaeta), pp. 143–156. In: Hart, C. W. Jr & S. L. H. Fuller (eds), Pollution Ecology of Freshwater Invertebrates, Academic Press, New York, 389 pp. Brinkhurst, R. O. & S. R. Gelder, 1991. Annelida: Oligochaeta and Branchiobdellida. In: Thorp, T. H. & A. P. Covich (eds), Ecology and Classification of North American Freshwater Invertebrates. Academic Press, New York, 401–435. Brinkhurst, R. O. & B. G. M. Jamieson, 1971. Aquatic Oligochaeta of the World. Oliver, Boyd, Edinburgh, 860 pp. Brusca R. C. & G. J. Brusca, 1990. Invertebrates. Sinauer Assoc. Inc., Sunderland, 922 pp. Cummins, K. W., G. W. Minshall, J. R. Sedell, C. E. Cushing & R. C. Petersen, 1984. Stream ecology theory. Verh. Internat. Verein. Limnol. 20, 1818–1827. Davies, R. & N. McLoughlin, 1996. The effect of feeding regime on the growth and reproduction of the medicinal leech Hirudo medicinalis. Freshwat. Biol. 36(3), 563– 568. Drake, J. A. (ed.), 2009. Handbook of Alien Species in Europe. Chapter 11: List of Species Alien in Europe and to Europe—Annelida, Oligochaeta, 217–218. 38 Dufrêne, M. & P. Legendre, 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 63, 345–366. Dumnicka, E. 2000. Studies on Oligochaeta taxocens in streams, interstitial and cave waters of southern Poland with remarks on Aphanoneura and Polychaeta distribution. Acta Zool. Cracov. 43 (3–4), 339–392. Dumnicka, E., 2001. Some remarks on the origin of stygobiontic oligochaetes. Mémoires de Biospéologie 28, 39–45. Dumnicka, E. & K. Pasternak, 1978. The influence of physicochemical properties of water and bottom sediments in the River Nida on the distribution and numbers of Oligochaeta. Acta. Hydrobiol. (Cracow) 20 (3), 215–232. Dumnicka, E. & K. Kukuła, 1990. The communities of oligochaetes of the Wołosatka and Terebowiec streams (the Bieszczady National Park, southeastern Poland). Acta Hydrobiol. 30, 423–435. Dumnicka, E. & J. Galas, 2006. Distribution of benthic fauna in relation to environmental conditions in an inundated opencast sulphur mine (Piaseczno reservoir, Southern Poland). Aquat. Ecol. 40 (2), 203–210. Ebersole, J. L., W. J. Liss & C. A. Frissell, 2003. Cold water patches in warm streams: physicochemical characteristics and the influence of shading. J. Am. Water Resour. Assoc. 39, 355–368. Elliott, J. M. & K. H. Mann, 1979. A key to the British freshwater leeches with notes of their life cycles and ecology. In: Freshwater Biological Association Scientific Publication No. 40. Erséus, C., 2005. Phylogeny of oligochaetous Clitellata. Hydrobiologia 535(536), 357–372. Erséus, C., M. J. Wetzel & L. Gustavsson, 2008. ICZN rules – a farewell to Tubificidae (Annelida, Clitellata). Zootaxa 1744, 66–68. Erséus, C. & M. Källersjö, 2004. 18S rDNA phylogeny of Clitellata (Annelida). Zool. Scr. 33, 187–196. Ferraguti, M. & C. Erséus, 1999. Sperm types and their use for a phylogenetic analysis of aquatic clitellates. Hydrobiologia 402, 225–237. Fránková, M., J. Bojková, A. Poulíčková & M. Hájek, 2009. The structure and species richness of the diatom assemblages of the Western Carpathian spring fens along the gradient of mineral richness. Fottea 9, 355–368. Generlich, O. & O. Giere, 1996. Osmoregulation in two aquatic oligochaetes from habitats with different salinity and comparison to other annelids. Hydrobiologia 334 (1-3), 251– 261. Glombová, J. & J. Schenková, 2015. Habitat preferences and ventral color variability of Hirudo medicinalis (Clitellata: Hirudinida). Ecologica Montenegrina 2(1), 51–61. Graefe, U. & R. M. Schmelz, 1999. Indicator values, strategy, types and life forms of terrestrial Enchytraeidae and other microannelids. Newsletter on Enchytraeidae 6, 59– 67. Grosser, C., D. Heidecke & G. Moritz, 2001. Untersuchungen zur Eignung heimischer Hirudineed als Bioindikatoren für Fließgewässer. Hercynia N. F. 34, 101–127. Gruszka, P., 1999. The river Odra estuary as a gateway for alien species immigration to the Baltic Sea Basin. Acta Hydrochimica et Hydrobiologica 27, 374–382. Hájek, M., P. Hekera & P. Hájková, 2002. Spring fen vegetation and water chemistry in the Western Carpathian flysch zone. Folia Geobotanica 37, 205–224. Hájek, M., M. Horsák, P. Hájková & D. Dítě, 2006. Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen terminology in ecological studies. Perspect. Plant Ecol., Evol. Syst. 8, 97–114. 39 Herrmann, S. J., 1970. Systematics distribution, and ecology of Colorado Hirudinea. Am. Midl. Nat. 83, 1–37. Hill, M. O., 1979. TWINSPAN – A FORTRAN program for arranging multivariate in an ordered two-way table by classification of individuals and attributes. Cornell University, Ithaca, New York, 99 pp. Horsák, M. & M. Hájek, 2003. Composition and species richness of mollusc communities in relation to vegetation and water chemistry in the Western Carpathian spring fens: the poor–rich gradient. Journal of Molluscan Studies 69, 349–357. Horsák M., V. Rádková, J. Bojková, V. Křoupalová, J. Schenková, V. Syrovátka & J. Zajacová, 2015. Drivers of aquatic macroinvertebrate richness in spring fens in relation to habitat specialization and dispersal mode. J. Biogeogr. 42(11), 2112–2121. Hrabě, S., 1935. O nepohlavním rozmnožování nítěnky Bothrioneurum vejdovskýanum Štolc. Sborník kl. přír. v Brně 17, 13–18. Hrabě, S., 1936. Pijavka lékařská (výskyt na jižní Moravě). Věda přírodní 17, 124. Hrabě, S., 1939. Příspěvek k poznání vodních Oligochaet Čech. Sborník Přírodovědeckého klubu v Brně 21, 74–81. Hrabě, S., 1954. Máloštětinatci – Oligochaeta. In: Hrabě S. et al. (eds), Klíč k určování zvířeny ČSR. Díl I., ČSAV, Praha, 289–320. Hrabě, S., 1981. Vodní máloštětinatci (Oligochaeta) Československa. Acta Universitatis Carolinae, Biologia 1979, 1–168. Hudcová, H., J. Badurová, M. Rozkošný, R. Funková, J. Svobodová & J. Sova, 2012. Ovlivnění jakosti vod a sedimentů v povodí řeky Nedvědičky těžbou a zpracováním uranových rud. VTEI Vodohospodářské Technicko-ekonomické Informace 54 (3), 5–10. Hynes, H. B. N., 1970. The ecology of running waters. Liverpool University Press, Liverpool, 1–555. Chapman, P. M., M. A. Farrell & R. O. Brinkhurst, 1982. Relative tolerances of selected aquatic oligochaetes to individual pollutants and environmnetal factors. Aquatic Toxicology 2, 47–67. Fránková, M., J. Bojková, A. Poulíčková & M. Hájek, 2009. The structure and species richness of the diatom assemblages of the Western Carpathian spring fens along the gradient of mineral richness. Fottea 9, 355–368. International Union for Conservation of Nature [IUCN], 1994. IUCN Red Lists categories and criteria as approved by 40th Meeting of the IUCN Council. IUCN Gland Switzerland, 21 pp. Jördens, J., T. Struck & G. Purschke, 2004. Phylogenetic inference regarding Parergodrilidae and Hrabeiella periglandulata (“Polychaeta”, Annelida) based on 18S rDNA, 28 rDNA and COI sequences. J. Zool. Syst. Evol. Research 42, 207–280. Juget, J., 1987. Contribution to the study of the Rhyacodrilinae (Tubificidae, Oligochaeta), with description of two new stygobiont species from the alluvial plain of the French upper Rhone, Rhyacodrilus amphigenus, sp. n. and Rhizodriloides phreaticola, g. n., sp. n. Hydrobiologia 155, 107–118. Juget, J. & E. Dumnicka, E., 1986. Oligochaeta (incl. Aphanoneura) des eaux souterraines continentales. In: Botosaneanu, L. (ed), Stygofauna mundi. Leiden – E.J. Brill/dr. W. Backhuys, 234–243. Koperski, P., 2005. Testing the suitability of leeches (Hirudinea Clitellata) for biological assessment of lowland streams. Pol. J. Ecol. 53, 65–80. Koperski, P., 2006. Relative importance of factors determining diversity and composition of freshwater leech assemblages (Hirudinea; Clitellata): a metaanalysis. Arch. Hydrobiol. 166, 325–341. 40 Koperski, P., 2010. Diversity of macrobenthos in lowland streams: ecological determinants and taxonomic specificity. J. Limnol. 69, 88–101. Koperski, P., 2011. Hirudinea has not any value as biomonitoring tools in STAR/AQEM method of stream assessment. Abstracts of 4th International Conference Hirudinea: biology, taxonomy, faunistics, 18-21 May, Wierzba, Poland, pp. 15. Korn, H., 1963. Studien zur Ökologie der Oligochaeten in der oberen Donau unter Berücksichtigung der Abwassereinwirkungen. Arch. Hydrobiol. 27 (2), 131–182. Košel, V., 1988. Pijavice (Hirudinea) ČSSR a ich hodnocení v bioindikácii saprobity. In: Hodnocení bentosu tekoucích vod. MLVD ČSR, 45–60. Košel, V., 1989. Pijavice (Hirudinea) ČSSR a ich využitie v bioindikácií saprobity II. In: Informačný Bulletin. MLVD ČSR, 14–42. Košel, V., 1995. Dunajské faunistické prvky v dolnej Morave. In: Pellantová, J. (ed) Zoologické dny Brno 1995, Proceedings of the conference, pp. 24. Košel, V., 1998. Fauna pijavíc (Hirudinea) Českej a Slovenskej republiky a najnovšie taxonomické zmeny. In: Pellantová, J., V. Opravilová, A. Pleskačová & J. Zukal, (eds), Zoologické dny Brno 1998, Proceeding of the conference, pp. 26. Košel, V., 1999a. Annelida: Hirudinea. In: Opravilová, V., J. Vaňhara & I. Sukop (eds), Aquatic Invertebrates of the Pálava Biosphere Reserve of UNESCO, Folia Facultatis scientiarium naturalium Universitatis Masarykianae Brunensis, Biologia 101, Masaryk University, Brno, 97–102. Košel, V., 1999b. Rozšírenie dunajských faunistických prvkov v prítokoch Dunaja na Slovensku. In: Pellantová, J., V. Opravilová, A. Pleskačová & J. Zukal (eds), Zoologické dny Brno 1999, Proceeding of the conference, pp. 32. Koubková, B. & L. Vojtková, 1973. K poznání fauny pijavek (Hirudinea) ČSSR. Folia Facultatis Scientiarum Naturalium Universitatis Purkianae Brunensis 14 (6), 103–118. Křoupalová, V., J. Bojková, J. Schenková, P. Pařil & M. Horsák, 2011. Small-Scale distribution of aquatic macroinvertebrates in two spring fens with different groundwater chemistry. International Review of Hydrobiology 96, 235–256. Kubová, N. & J. Schenková, 2012. A comparison of two semi-quantitative methods for freeliving leeches (Clitellata: Hirudinida) collecting. Lauterbornia 75, 79–86. Kubová, N., J. Schenková & M. Horsák, 2013. Environmental determinants of leech assemblage patterns in lotic and lenitic habitats. Limnologica 43, 516–524. Kubová, N. & J. Schenková, 2014. Tolerance, optimum ranges and ecological requirements of free-living leech species (Clitellata: Hirudinida). Fundamental and Applied Limnology, Archiv für Hydrobiologie 185(2), 167–180. Ladle, M. N., 1971. The biology of Oligochaeta from Dorset chalk streams. Freshwater Biol. 1, 83–97. Lazim, M. N. & M. A. Learner, 1986. The life-cycle and production of Limnodrilus hoffmeisteri and L. udekemianus (Tubifidae; Oligochaeta) in the organically enriched Moan-Feeder Stream, Cardiff, South Wales. Arch. Hydrobiol. 74, 200–225. Lazim, M. N., M. A. Learner & S. Cooper, 1989. The importance of worm identity and life history in determining the vertical distribution of tubificids (Oligochaeta) in a riverine mud. Hydrobiologia 178, 81–92. Learner, M. A., G. Lochhead, & B. D. Hughes, 1978. A review of the biology of British Naididae (Oligochaeta) with emphasis on the lotic environment. Freshwater Biol. 8, 357–375. Lišková, E., 1964. Das Vorkommen von Branchiura sowerbyi Beddard (Oligochaeta, Tubificidae) in der Tschechoslowakei). Acta Societatis Zoologicae Bohemoslovenicae 4, 305–311. 41 Lucký, Z. & V. Dyk, 1964. Cizopasníci ryb v řekách a rybnících povodí Odry a Dyje. Sborník Vysoké školy zemědělské v Brně 12, 49–73. Malmer, N., 1986. Vegetational gradients in relation to environmental conditions in north western European mires. Canadian Journal of Botany 64, 375–383. Mann, K. H., 1953. Some factors influencing the distribution of fresh-water leeches in Britain. Proc. Int. Assoc. Theor. Appl. Limnol. 123, 377–391. Mann, K. H., 1955. The ecology of the British freshwater leeches. J. Anim. Ecol. 24 (1), 98– 119. Martin, P., 2010. On the origin of the Hirudinea and the demise of the Oligochaeta. Proc. R. Soc. Lond., 268, 1089–1098. Marotta, R., M. Ferraguti, C. Erséus & L. M. Gustavsson, 2008. Combined-data phylogenetics and character evolution of Clitellata (Annelida) using 18S rDNA and morphology. Zoological Journal of the Linnean Society, 154, 1–26. Martínez-Ansemil, E. & R. Collado, 1996. Distribution patterns of aquatic oligochaetes inhabiting watercourses in the Northwestern Iberian Peninsula. Hydrobiologia 334, 73– 83. McCullagh, P. & J. A. Nelder, 1989. Generalized Linear Models, 2nd ed. London: Chapman and Hall. McHugh, D., 1997. Molecular evidence that echiurans and pogonophorans are derived annelids. Proc. Natl Acad. Sci. U.S.A. 94, 8006–8009. Milbrink, G., 1983. An improved environmnetal index based on the relative abundance of oligochaete species. Hydrobiologia 406, 133–142. Milbrink, G. & T. Timm, 2002. Indicative profundal oligochaete assemblages in selected small Swedish lakes. Hydrobiologia 468, 53–61. Moore, J. W., 1978. Importance of algae in the diet of the oligochaetes Lumbriculus variegatus (Müller) and Rhyacodrilus sodalis (Eisen). Oecologia 35, 357–363. Mrázek, A., 1926. K biologii rodu Stylodrilus. Věst. Král. Čes. Spol. Nauk 2, 1–13. Nedeau, E. J., R. W. Merritt & M. G. Kaufman, 2003. The effect of an industrial effluent on an urban stream benthic community: water quality vs. habitat quality. Environ. Pollut. 123 (1), 1–13. Neubert, E. & H. Nesemann, 1999. Annelida, Clitellata; Branchiobdellida, Acanthobdellea, Hirudinea. Süsswasserfauna von Mitteleuropa, Band 6/2. Spektrum Academischer Verlag, Berlin, 178 pp. Nijboer, R. C., M. J. Wetzel & P. F. M. Verdonschot, 2004. Diversity and distribution of Tubificidae, Naididae, and Lumbriculidae (Annelida: Oligochaeta) in the Netherlands: an evaluation of twenty years of monitoring data. Hydrobiologia 520, 127–141. Omelková, M., V. Syrovátka, V. Křoupalová, V. Rádková, J. Bojková, M. Horsák, M. Zhai & J. Helešic, 2013. Dipteran assemblages of spring fens closely follow the gradient of groundwater mineral richness. Can. J. Fish. Aquat. Sci. 70, 689–700. Opravilová, V. & M. Hájek, 2006. The variation of testacean assemblages (Rhizopoda) along the complete base-richness gradient in fens: a case study from the Western Carpathians. Acta Protozoologica 45, 191–204. Petto, H. & U. H. Humpesch, 1992. Time series analysis of developmental cycles of oligochaetes in relation to environmental factors in the River Danube. Arch. Hydrobiol. 124, 53–67. Pfannkuche, O., 1981. Distribution, abundance and life cycles of aquatic Oligochaeta (Annelida) in a freshwater tidal flat of the Elbe Estuary. Arch. Hydrobiol., Suppl. 43, 506–524. Pižl, V., 2002. Žížaly České republiky. Sborník přírodovědeckého klubu v Uherském Hradišti, Supp. 9, 154 pp. 42 Pižl, V., 2005. Lumbricidae (žížalovití). In: Farkač, J., D. Král & M. Škorpík (eds), Červený seznam ohrožených druhů České republiky. Bezobratlí. Red list of endangered species in the Czech Republic. Invertebrates. Agentura ochrany přírody a krajiny ČR, Praha, 65–66. Poulíčková, A., K. Bogdanová, P. Hekera & P. Hájková, 2003. Epiphytic diatoms of the spring fens in the flysch area of the Western Carpathians. Biologia 58, 749–757. Purschke, G., 1999. Terrestrial polychaetes – models for the evolution of the Clitellata (Annelida)? Hydrobiologia 406, 87–99. Rádková, V., J. Bojková, V. Křoupalová, J. Schenková, V. Syrovátka & M. Horsák, 2014. The role of dispersal mode and habitat specialisation in metacommunity structuring of aquatic macroinvertebrates in isolated spring fens. Freshwater Biology 59(11), 2256– 2267. Rádková, V., V. Syrovátka, J. Bojková, J. Schenková, V. Křoupalová & M. Horsák, 2014. The importance of species replacement and richness differences in small-scale diversity patterns of aquatic macroinvertebrates in spring fens. Limnologica 47(5), 52–61. Risnoveanu, G. & A. Vadineanu, 2002. Observations on the population dynamics of Potamothrix hammoniensis (Michaelsen, 1901) (Tubificidae, Oligochaeta) in Lake Isacova in the Danube Delta. Hydrobiologia 479, 23–30. Rodriguez, P., M. Martinez-Madrid, J. A. Arrate & E. Navarro, 2001. Selective feeding by the aquatic oligochaete Tubifex tubifex (Tubificidae, Clitellata). Hydrobiologia 463, 133– 140. Rouse, G. W. & K. Fauchald, 1995. The articulation of annelids. Zoologica Scripta 24(4), 269–301. Rousset, V., F. Pleijel, G. W. Rouse, C. Erséus & M. Siddall, 2006. A molecular phylogeny of annelids. Cladistics 22, 1–23. Rousset, V., L. Plaisance, C. Erséus, M. E. Siddall & G. W. Rouse, 2008. Evolution of habitat preference in Clitellata (Annelida). Biological Journal of the Linnean Society 95, 447– 464. Ruppert, E. E., R. S. Fox & R. D. Barnes, 2004. Invertebrate zoology. Seventh edition. Thomson, Brooks/Cole, 963 pp. Růžičková, S., J. Schenková, V. Weissová & J. Helešic, 2014. Environmental impact of heated mining waters on clitellate (Annelida: Clitellata) assemblages. Biologia 69(9), 1179–1189. Sawyer, R. T., 1986. Leech biology and behaviour, vol. II. Clarendon Press, Oxford. Schenková, J., 2005. Oligochaeta (máloštětinatci). In: Farkač, J., Král, D. & Škorpík, M. (eds), Červený seznam ohrožených druhů České republiky. Bezobratlí. Red list of threatened species in the Czech Republic. Invertebrates. Agentura ochrany přírody a krajiny ČR, Praha, 62–64. Schenková, J. & O. Komárek, 1999. Oligochaeta of the Morava River basin: distribution patterns, community composition and abundance. Scripta Fac. Sci. Nat. Univ. Masaryk. Brun., Biology 25, 33–51. Schenková, J., O. Komárek & S. Zahrádková, 2001a. Oligochaeta of the Morava and Odra River basins (Czech Republic): species distribution and community composition. Hydrobiologia 463, 235–239. Schenková, J., O. Komárek & S. Zahrádková, 2001b. The plausibility of using Oligochaeta to evaluate running waters in the Czech Republic. Scripta Fac. Sci. Nat. Univ. Masaryk. Brun, Biology 27, 173–187. Schenková, J. & V. Košel, 2005. Hirudinea (pijavice). In: Farkač, J., Král, D. & Škorpík, M. (eds), Červený seznam ohrožených druhů České republiky. Bezobratlí. Red list of 43 threatened species in the Czech Republic. Invertebrates. Agentura ochrany přírody a krajiny ČR, Praha, 67–68. Schenková, J. & J. Helešic, 2006. Habitat preferences of aquatic Oligochaeta (Annelida) in the Rokytná River, Czech Republic - a small highland stream. Hydrobiologia 564, 117– 126. Schenková, J., J. Helešic & J. Jarkovský, 2006. Seasonal dynamics of Bythonomus lemani and Bothrioneurum vejdovskyanum (Oligochaeta, Annelida) in relation to environmental variables. Biologia 61, 517–523. Schenková, J., J. Jarkovský & J. Helešic, 2007. Strategies of coexistence of two species: Erpobdella octoculata and E. vilnensis (Hirudinea: Erpobdellidae). International Review of Hydrobiology 92(4–5), 527–538. Schenková, J. & J. Kroča, 2007. Seasonal changes of an Oligochaetous Clitellata (Annelida) community in a mountain stream. Acta Universitatis Carolinae, Environmentalica 21, 143–150. Schenková, J., J. Sychra, V. Košel, N. Kubová & J. Horecký, 2009. Freshwater leeches (Annelida: Clitellata: Hirudinida) of the Czech Republic (Central Europe): check-list, new records, and remarks on species distributions. Zootaxa 2227, 32–52. Schenková, J., P. Pařil, K. Petřivalská & J. Bojková, 2010. Aquatic oligochaetes (Annelida: Clitellata) of the Czech Republic: check-list, new records, and ecological remarks. Zootaxa 2676, 29–44. Schenková, J., M. Bílková & M. Horsák, accepted. The response of Clitellata (Annelida) to environmental gradients in spring fens. Limnologica. Schlaghamerský, J. & K. Kobetičová, 2005. A small annelid community (Enchytraeidae, Tubificidae, Aeolosomatidae) during meadow restoration on arable land and in a nearby well-preserved meadow. Proceedings of the Estonian Academy of Sciences: Biology, Ecology 54, 323–330. Schwank, P., 1981. Turbellarien, Oligochaeten und Archianneliden des Breitenbachs und anderer oberhessischer Mittelgebirgsbäche. II. Die Systematik und Autökologie der einzelnen Arten. Schlitzer Produktionsbiologische Studien (43-2). Arch. Hydrobiol. Suppl. 62 (1), 86–147. Siddall, M. E., K. Apakupakul, E. M. Burreson, K. A. Coates, C. Erséus, S. R. Gelder, M. Källersjö & M. H. Trapido-Rosenthal, 2001. Validating Livanow: molecular data agree that leeches, branchiobdellidans, and Acanthobdella peledina form a monophyletic group of Oligochaetes. Mol. Phyl. Evol. 21, 346–351. Sims, R. W. & B. M. Gerard, 1999. Earthworms. Notes for the identification of British species. 4th Edition. Published for The Linnean Society of London and The Estuarine and Coastal Sciences Association by Field Studies Council, Montford Bridge, Shrewsbury, UK. 169 pp. Sládeček, V., 1973. System of water quality from the biological point of view. Ergebnise der Limnologie 7, 1–128. Sládeček, V. & V. Košel, 1984: Indicator value of freshwater leeches (Hirudinea) with a key to the determination of European species. Acta Hydroch. Hydrobiol. 12, 451–461. Spelling, S. M. & J. O. Young, 1987. Predation on lake-dwelling leeches (Anellida: Hirudinea): an evaluation by field experiment. J. Anim. Ecol. 56, 131–146. Sperber, C., 1948. A taxonomic study of the Naididae. Zool. Bird. Upps. 29, 1–296. Syrovátka, V., J. Schenková & K. Brabec, 2009. The distribution of chironomid larvae and oligochaetes within a stony-bottomed river stretch: the role of substrate and hydraulic characteristics. Fundamental and Applied Limnology, Archiv für Hydrobiologie 174, 43–62. 44 Šporka, F., 1998. Thy typology of floodplain water bodies of the Middle Danube (Slovakia) on the basis of the superficial polychaete and oligochaete fauna. Hydrobiologia 386, 55–62. Švec, J., 1960. Příroda jihovýchodní Moravy, Gottwaldov. Přírodovědecký sborník 1, 187– 210. Thorhauge, F., 1976. Growth and life cycle of Potamothrix hammoniensis (Tubificidae, Oligochaeta) in the profundal of eutrophic Lake Esrom. A field and laboratory study. Arch. Hydrobiol. 78, 71–85. Timm, T., A. Seire & P. Pall, 2001. Half a century of oligochaete research in Estonian running waters. Hydrobiologia 463, 223–234. Trontelj, P., 1997. Molekulare Systematik der Egel (Hirudinea): Phylogenetische Analyse nuklearer und mitochondrialer ribosomaler DNA-Sequenzen.- Selbstverlag, Trontelj, Ljubljana, Dissertation thesis, University Tübingen. Uzunov, J., V. Košel & V. Sládeček, 1988. Indicator value of freshwater Oligochaeta. Acta Hydrochim. Hydrobiol. 16, 173–186. van Duinen, G. A., T. Timm, A. J. P. Smolders, A. M. T. Brock & W. C. E. P. Verberk, 2006. Differential response of aquatic oligochaete species to increased nutrient availability – a comparative study between Estonian and Dutch raised bogs. Hydrobiologia 564, 143– 155. van Haaren, T., 2004. The freshwater leeches (Hirudinea) of the Netherlands. Lauterbornia 52, 113–131. Verdonschot, P. F. M., 2001. Hydrology and substrates: determinants of oligochaete distribution in lowland streams (The Netherlands). Hydrobiologia 463, 249–262. Verdonschot, P. F. M., 2006. Beyond masses and blooms: the indicative value of oligochaetes. Hydrobiologia 564, 127–142. Virtanen, R., J. Ilmonen, L. Paasivirta & T. Muotka, 2009. Community concordance between bryophyte and insect assemblages in boreal springs: a broad-scale study in isolated habitats. Freshwater Biology 54, 1651–1662. Westheide, W., D. McHugh, G. Purschke & G. Rouse, 1999. Systematization of the Annelida: different approaches. Hydrobiologia 402, 291–307. Young, J. O. & J. W. Ironmonger, 1981. A quantitative study of the comparative distribution of non-parasitic leeches and triclads in the stony littoral of British lakes. Int. Rev. Ges. Hydrobiol. 66, 847–862. Zavřel, J., 1923. K fauně jihomoravských tůní. Příroda 16, 144–145. Živić, I., Z. Marković & M. Brajković, 2006. Influence of the temperature regime on the composition of the macrozoobenthos community in a thermal brook in Serbia. Biologia 61 (2), 179–191. 45 5. Seznam publikovaných vědeckých prací v ISI časopisech k tématu habilitační práce 5.1 Druhová diverzita máloštětinatých opaskovců a její změny podél gradientů prostředí 46 Schenková, J., O. Komárek & S. Zahrádková, 2001 Oligochaeta of the Morava and Odra River basins (Czech Republic): species distribution and community composition. Hydrobiologia, 463, 235–240. Hydrobiologia 463: 235–240, 2001. P. Rodriguez & P.F.M. Verdonschot (eds), Aquatic Oligochaete Biology VIII. © 2001 Kluwer Academic Publishers. Printed in the Netherlands 235 Oligochaeta of the Morava and Odra River basins (Czech Republic): species distribution and community composition Jana Schenkov´a, Ond˘rej Kom´arek & Sv˘etlana Zahr´adkov´a Masaryk University, Faculty of Science, Department of Zoology and Ecology, Kotl´a˘rsk´a 2, 611 37 Brno, Czech Republic Fax: +420-5-41211214. E-mail: schenk@sci.muni.cz Key words: aquatic Oligochaeta, distribution, ordination, Czech Republic Abstract The oligochaete fauna of 57 small streams of the Morava and Odra River basins, Czech Republic, was studied during 1997 and 1998. TWINSPAN and CCA (CANOCO) were used to characterize the relationship between oligochaete species, habitat diversity and environmental variables. Chemical oxygen demand (COD), water hardness, NO3 −–N, Ca2+, Mg2+, altitude, and substrate type were found to be the primary factors influencing the distribution of aquatic Oligochaeta. Introduction The ecological requirements of aquatic Oligochaeta (Clitellata) and their relationship to abiotic factors in streams of the Czech Republic (central Europe) have received little attention in previous studies. While extensive taxonomic reports on oligochaetes have been published by Hrab˘e (1979) and Li˘sková (1976), and on the oligochaete family Enchytraeidae, by Chalupský (1988), few ecological studies on this diverse and often dominant group of lotic benthic organisms have been conducted (Brinkhurst, 1978; Uzunov et al., 1988; Hörner et al., 1995). The objectives of this study were to determine the distribution of oligochaete species in small, relatively unpolluted streams in the Czech Republic, and to evaluate the impact of environmental factors on the composition of oligochaete taxocenoses using multicriterial analyses. ∗ The paper is dedicated to the memory of Prof. Dr Sergej Hrab˘e, on the 100th anniversary of his birth. Dr Hrab˘e, a major contributor to aquatic oligochaete taxonomy during his extensive career in the Department of Zoology and Anthropology at Masaryk University, actively published from 1927 up to 1984. Description of sites studied Study sites were located on small streams in the Morava River basin (sensu lato, which means the Morava and Dyje River basins together) and in the Odra River basin (Czech Republic) (Fig. 1). The studied area represents an interesting region since all biogeographical subprovinces found in the Czech Republic, are present: Hercynicum, Pannonicum, Carpathicum and Polonicum (Culek, 1996) (Fig. 1). All sites were either unpolluted or moderately influenced by treated and untreated domestic wastewater effluent. Studied localities presented the following characteristics: they were situated from 175 to 750 m a.s.l.; the distance from the source was 0.7 to 16.8 km; the mean width of the streams ranged from 0.93 to 4.25 m; and the mean depth of the streams ranged from 0.06 to 1.1 m. Materials and methods Samples of macrozoobenthos were collected from 27 localities during spring, summer, and autumn of 1997, and from 30 localities during the same seasons in 1998. Sampling at each station was completed using 236 Figure 1. Map of the study area showing site localities and river basins. D – Dyje; M – Morava; O – Odra River basin. Biogeographical subprovinces named according to Culek (1996). He – Hercynicum; Po – Polonicum; Ca – Carpathicum; Pa – Pannonicum. a standard method of kick sampling for a period of 3 min (Kershaw & Frost, 1968). During each sampling period, water temperature, width and depth of the stream, hydrogen ion concentration (as pH), conductivity and the substrate composition were measured. The evaluation of the substrate composition at each site followed Wright et al. (1984) by expressing the weighted average of percent presence of each particle size-classes (boulders, cobbles, pebbles, granules, sand, mud and clay). The mean value of phi, which is the negative logarithm of the particle size in millimetres, characterised each particle size-class. Laboratory analyses for important ion components present at our sampling sites were performed on samples collected during each sampling period. Alkalinity, water hardness, oxygen content, dissolved oxygen (DO), biochemical oxygen demand (BOD5), chemical oxygen demand (COD), total organic carbon (TOC), dissolved organic carbon (DOC), NH4 +–N, NO2 −–N, NO3 −–N, total nitrogen (N TOT), o-PO4 3−–P, total phosphorus (P TOT), Cl−, SO4 2−, Ca2+ and Mg2+ were measured. Current velocity was not included in the analyses; single measurements obtained during sampling had no predicable value because of the frequently changing water level at the studied sites. Samples of macrozoobenthos were fixed on site with 4% formaldehyde. After the samples had been sorted, oligochaetes were prepared for identification by either mounting permanently on slides using Canada balsam, or prepared as temporary mounts using a glycerin-water (1:5) solution. With the exception of taxa representing five genera in the family Enchytraeidae, which were determined using the keys of Nielsen & Christensen (1959, 1961, 1963), all oligochaetes were identified to the species level using the keys of Hrab˘e (1954, 1979). Juvenile forms or damaged individuals were determined only to family level. The resulting data were evaluated and interpreted using TWINSPAN (Hill, 1979). All options were set to default; maximum group size for division was five and maximum level of divisions was six. Relationships between oligochaete species and environmental variables were evaluated by Canonical Correspondence Analysis (CCA) using the CANOCO program for Windows (Ter Braak & ˘Smilauer, 1998). The scaling type was biplot and species data were not transformed. With the exception of representatives of Enchytraeidae, taxa unidentified to the species level were omitted from the analyses. Statistical significance was then determined by a Monte Carlo permutation test (Ter Braak & ˘Smilauer, 1998). 27 environmental vari- 237 Figure 2. Divisive hierarchic classification (TWINSPAN) of species (for abbreviations see Table 1). 1TWINSPAN group, 2eigenvalue. ables were tested in 999 permutations using automatic forward selection. Results During the 1997 and 1998 sampling periods, 22 211 individuals of the class Oligochaeta representing eight families, 27 genera and 36 species were collected (Table 1). One species of Aeolosomatidae (Annelida, Aphanoneura)was also collected. The abbreviation for each identified taxon used in analyses is provided in Table 1. Hierarchical divisive classification of species Hierarchical divisive classification of 51 taxa with eigenvalues of divisions is apparent from Figure 2. The eigenvalues express the level of distinction of separated groups at each division. Oligochaeta were separated into seven different groups. Group ∗00, further division of which expressed eigenvalue 0.196 and hence was not significant, consists of representatives of the family Naididae and other species from sites characterized by a sandy bottom with plant detritus. Group ∗010 includes the taxa Enchytraeus, Mesenchytraeus and Eiseniella tetraedra (Savigny, 1826). Group ∗011 consists of the cosmopolitan species Nais elinguis Müller, 1773 and Cernosvitoviella (Enchytraeidae). Group ∗100 and group ∗101, with relatively low eigenvalue of division, include species of the genus Stylodrilus – inhabiting unpolluted brooks and rivers with sandy bottom, the species Criodrilus lacuum Hoffmeister, 1845 – common in pools, and the genus Pristinella – which prefers pristine waters. Group ∗110 includes species in the family Tubificidae, and Uncinais uncinata (Ørsted, 1842) (Naididae). Group ∗111 contains only unidentified Enchytraeidae species. Canonical correspondence analysis (CCA) Canonical correspondence analysis (CCA) concerned 27 environmental variables and 46 species or genera, respectively; five genera that might have included more than one species were omitted (Fig. 3). The eigenvalue for the first axis was 0.535, the second 0.335 and the third 0.255. The percentage variance of species environment relation was 35.8 for the first axis, 22.5 for the second and 17.1 for the third axis. The statistical significance of the data was evaluated using the Monte Carlo permutation test. The following environmental factors were found to be statistically significant: COD, hardness, NO3 −–N, 238 Figure 3. Canonical correspondence analysis (CCA), ordination plot of species (for abbreviations see Table 1) and main environmental variables on the first two CCA axes. Ca2+, Mg2+, altitude, and substrate type (P < 0.01). CCA analysis showed correlations (>0.5): positive for COD, altitude and negative for hardness and the first axis. The distribution of species along the first axis reflects their requirements regarding organic matter supply, altitude and hardness. A positive correlation for Mg2+ was shown by the second axis, while positive correlations for Ca2+ and Mg2+ were shown by the third axis. The distribution of species along the second and third axis can be explained by the water hardness. Discussion From the analyses performed, we determined that COD and water hardness together with concentrations of NO3 −–N, Ca2+, Mg2+, altitude, and substrate type are the primary factors influencing the distribution of Oligochaeta in small streams. The distribution of the species of the family Tubificidae can be explained by their preference for substrates with higher organic content and fine particle size (Fig. 3). The species are widespread in distribution, from lower to higher altitudes. All species collected are common and abundant, especially in 239 Table 1. List of oligochaete species from the Morava and Odra River Basins in the Czech Republic and the abbreviation of each species Species Abbreviation Aeolosoma hemprichi Ehrenberg, 1831 Aeol hem Aulodrilus pluriseta (Piguet, 1906) Aulo pur Bothrioneurum vejdovskyanum ˘Stolc, 1886 Both vej Bythonomus lemani Grube, 1880 Byth lem Cernosvitoviella sp. Cern sp Chaetogaster cristallinus Vejdovsk´y, 1883 Chae cri Chaetogaster diaphanus (Gruithuisen, 1828) Chae dip Chaetogaster diastrophus (Gruithuisen, 1828) Chae dis Chaetogaster langi Bretscher, 1896 Chae lan Cognettia sp. Cogn sp Criodrilus lacuum Hoffmeister, 1845 Crio lac Eiseniella tetraedra (Savigny, 1826) Eise tet Enchytraeidae Ench ind Enchytraeus sp. Ench sp Fridericia sp. Frid sp Haplotaxis gordioides (Hartmann, 1821) Hapl gor Limnodrilus hoffmeisteri Clapar`ede, 1862 Limn hof Limnodrilus udekemianus Clapar`ede, 1862 Limn ude Limnodrilus sp. juv. Limn spj Lumbricidae Lumb ind Lumbriculus variegatus Grube, 1844 Lumb var Mesenchytraeus armatus Levinsen, 1884 Mese arm Mesenchytraeus sp. Mese sp Nais alpina Sperber, 1948 Nais alp Nais bretscheri Michaelsen, 1899 Nais bre Nais communis Piguet, 1906 Nais com Nais elinguis O. F. Müller, 1773 Nais eli Nais pseudoobtusa Piguet, 1906 Nais pse Nais simplex Piguet, 1906 Nais sim Nais variabilis Piguet, 1906 Nais var Nais sp. Nais sp Ophidonais serpentina (O. F. Müller, 1773) Ophi ser Potamothrix hammoniensis (Michaelsen, 1901) Pota ham Potamothrix sp. juv. Pota spj Pristinella menoni (Aiyer, 1930) Pris men Pristinella rosea (Piguet, 1906) Pris ros Pristinella sp. Pris sp Propappus volki Michaelsen, 1905 Prop vol Psammoryctides barbatus (Grube, 1861) Psam bar Rhyacodrilus coccineus (Vejdovsk´y, 1875) Rhya coc Rhyacodrilus falciformis Bretscher, 1901 Rhya fal Slavina appendiculata (Udekem, 1855) Slav app Stylodrilus heringianus Clapar`ede, 1862 Styl her Stylodrilus parvus (Hrab˘e & ˘Cernosvitov, 1927) Styl par Stylodrilus sp. juv. Styl spj Trichodrilus sp. Tric sp Tubifex ignotus (˘Stolc, 1886) Tubi ign Tubifex tubifex (O. F. Müller, 1774) Tubi tub Tubificidae juv. Tubi juv Uncinais uncinata (Ørsted, 1842) Unci unc Vejdovskyella comata (Vejdovsk´y, 1883) Vejd com polluted waters (Brinkhurst, 1971). COD and the sediment structure, as the most significant factors for oligochaete occurrence, have been mentioned by other authors (Brinkhurst, 1967; Uzunov, 1982). The distribution of Limnodrilus hoffmeisteri Claparède, 1862, Nais elinguis Müller, 1773, Chaetogaster langi Bretscher, 1896, Ophidonais serpentina (Müller, 1773) and Pristinella rosea (Piguet, 1906) is positively correlated with water hardness, Ca2+, Mg2+ and NO3 −-N and negatively correlated with altitude (Fig. 3). All are known to occur also in stagnant waters. While the values for water hardness, and Ca2+ and Mg2+ ion concentration are readily influenced by easily eroded bedrock, the presence of these ions also depends also on the concentration of dissolved CO2, which is related to water eutrophication. Major changes in the structure of oligochaete assemblages related to water mineralization, substrate type, and current velocity were documented by Martínez-Ansemil & Collado (1996), who studied Oligochaeta inhabiting largely unpolluted watercourses in Galicia (Spain) and Northern Portugal. Dumnicka (1978), in her studies of Oligochaeta in the River Nida, Poland, concluded that bottom type and current speed as well as hardness or Ca2+ and Mg2+ content determine the composition of oligochaete communities. With the exception of the species noted above, naidids are distributed in streams with the lower content of organic matter and coarse substratum (Fig. 3), which is typical for unpolluted waters. This group is distributed both at low and high altitudes. While oligochaete distribution in small streams is determined by COD, water hardness (MartínezAnsemil & Collado, 1996) or current velocity (Dumnicka, 1978), substrate type seems to be the most important factor governing the presence of Oligochaeta in large rivers (˘Sporka, 1998; Montanholi-Martins & Takeda, 1999; Rempel et al., 2000). This could also be influenced by the presence of a sufficient food supply. The results of this study also suggest that oligochaetes, a group which demonstrate a broad range of ecological tolerance, are nonetheless more restricted at the family level to certain types of environments. Acknowledgements This project was supported by grants from Masaryk University No. 206/99/1522 and from Ministry of Education No. 143100010. We wish to thank our teacher Prof. F. Kubí˘cek for assistance with 240 macroinvertebrate identifications, advice and direction throughout this study. We also thank first author’s father Prof. J. Gaisler for critical review of the manuscript and M. J. Wetzel (Illinois Natural History Survey, Champaign, U.S.A.) for language help and suggesting many helpful improvements. References Brinkhurst, R. O., 1967. The distribution of aquatic oligochaetes in Saginaw bay, Lake Huron. Limnol. Oceanogr. 12: 137–143. Brinkhurst, R. O., 1971. A Guide for the Identification of British Aquatic Oligochaeta. Titus Wilson & Son, Kendal: 55 pp. Brinkhurst, R. O., 1978. Oligochaeta. In J. Illies (ed.), Limnofauna Europea. G. Fischer, Stuttgart, New York: 139–144. Chalupský, J., 1988. Czechoslovak enchytraeids (Oligochaeta, Enchytraeidae) II. Catalogue of species. V˘est. ˘cs. Spole˘c. zool. 52: 81–95. (in Czech). Culek, M. (ed.), 1996. Biogeografické ˘clenení ˘Ceské Republiky. (biogeographical classification of the Czech Republic). Enigma, Praha: 347 pp (in Czech). Dumnicka, E. & K. Pasternak, 1978. The influence of physicochemical properties of water and bottom sediments in the River Nida on the distribution and numbers of Oligochaeta. Acta Hydrobiol. 20: 215–232. Hill, M. O., 1979. TWINSPAN – A FORTRAN program for arranging multivariate in an ordered two-way table by classification of individuals and attributes. Cornell University, Ithaca, New York: 99 pp. Hörner, K. M., O. Moog & F. ˘Sporka, 1995. Oligochaeta. In Moog, O. (ed.), Fauna Aquatica Austriaca. Katalog zur autökologischen Einstufung Aquatischer Organismen Österreichs. Bundesministerium für Land- und Forstwirtschaft, Vienna: 277 pp. Hrab˘e, S. (ed.), 1954. Klí˘c k ur˘cování zví˘reny ˘CSR. (key to the Czechoslovak fauna). Vol. 1. ˘CSAV, Praha: 539 pp (in Czech). Hrab˘e, S., 1979. Vodní málo˘st˘etinatci (Oligochaeta) ˘Ceskoslovenska. (aquatic Oligochaeta of Czechoslovakia). Acta Univ. Carol., Biol. 1–2: 1–167 (in Czech, with English summ). Kershaw, W. & S. Frost, 1968. The selective control of Simulium larvae by particulate insecticides and its significance in river management. Trans. r. Soc. trop. Med. Hyg. 63: 35–40. Lisková, E., 1976. P˘rísp˘evek k výskytu n˘ekterých druh˚u limikolních málo˘st˘etinatc˚u (Oligochaeta) na území ˘Cech a Moravy ( ˘Ceskoslovensko) (contribution to the existence of some species of Oligochaeta limicola on the Bohemian and Moravian territory (Czechoslovakia)). Acta sci. nat. Mus. Bohem. merid. ˘Ceské Bud˘ejovice 16: 17–30 (in Czech, with English summ). Martínez-Ansemil, E. & R. Collado, 1996. Distribution patterns of aquatic oligochaetes inhabiting watercourses in the Northwestern Iberian Peninsula. Hydrobiologia 334: 73–83. Montanholi-Martins, M. C. & A. M. Takeda, 1999. Communities of benthic oligochaetes in relation to sediment structure in the upper Paraná River, Brazil. Stud. Neotrop. Fauna Envir. 34: 52–58. Nielsen, C. O. & B. Christensen, 1959. The Enchytraeidae – critical revision and taxonomy of European species (studies on Enchytraeidae VII). Natura Jutlandica 8–9: 1–160. Nielsen, C. O. & B. Christensen, 1961. The Enchytraeidae – critical revision and taxonomy of European species. Natura Jutlandica, Suppl. 1: 1–23. Nielsen, C. O. & B. Christensen, 1963. The Enchytraeidae – critical revision and taxonomy of European species. Natura Jutlandica, Suppl. 2: 1–19. Rempel, L. L., J. S. Richardson & M. C. Healey, 2000. Macroinvertebrate community structure along gradients of hydraulic and sedimentary conditions in a large gravel-bed river. Freshwat. Biol. 45: 57–73. ˘Sporka, F., 1998. The typology of floodplain water bodies of the Middle Danube (Slovakia) on the basis of superficial polychaete and oligochaete fauna. Hydrobiologia 386: 55–62. Ter Braak, C. J. F. & P. ˘Smilauer, 1998. Canoco reference manual and user’s guide to Canoco for Windows. Centre for Biometry, Wageningen: 351 pp. Uzunov, J., V. Ko˘sel & V. Sláde˘cek, 1988. Indicator value of freshwater Oligochaeta. Acta Hydrochim. Hydrobiol. 16: 173–186. Uzunov, J., 1982. Statistical assessment of the significance of both bottom substrata and saprobity for the distribution of aquatic Oligochaeta in rivers. Limnologia 14: 353–361. Wright, J. F., D. Moss, P. D. Armitage & M. Furse, 1984. A preliminary classification of running-water sites in Great Britain based on macro-invertebrate species and the prediction of community type using environmental data. Freshwat. Biol. 14: 221–256. 53 Schenková, J. & J. Helešic, 2006 Habitat preferences of aquatic Oligochaeta (Annelida) in the Rokytná River, Czech Republic – a small highland stream. Hydrobiologia, 564, 117–126. Habitat preferences of aquatic Oligochaeta (Annelida) in the Rokytna´ River, Czech Republic – a small highland stream Jana Schenkova´ * & Jan Helesˇ ic Institute of Botany and Zoology, Masaryk University, Kotla´rˇska´ 2, 611 37 Brno, Czech Republic (*Author for correspondence: Fax: +420541211214; E-mail: schenk@sci.muni.cz) Key words: Oligochaeta, habitat preferences, distribution pattern, temporal variability, multivariate analysis Abstract Research was carried out to determine aquatic oligochaete habitat preferences in the Rokytna´ River (Thaya River basin), a sixth order highland stream in the Czech Republic during the period of April 1999–April 2001. Quantitative samples were collected and current velocity and basic physico-chemical variables were measured monthly in four typical habitats in the Rokytna´ River. During this study, 28, 842 individuals representing 44 oligochaete species or higher taxa were collected. Temporal variability of proportional occurrence of trophic groups found on selected habitats (gathering collectors and grazers) was analysed. Habitat preferences of oligochaete species were evaluated by Canonical Correspondence Analysis (CANOCO). Biochemical oxygen demand (BOD) and nitrate (NO3 ) ) ion concentration were the most important variables explaining the distribution of Oligochaeta along the first axis. Current velocity (at 40% of the depth) and presence of oligochaetes associated with the habitat where gravel bars never formed were the most important variables along the second axis. Both axes were correlated with the temperature, reflecting the sampling in summer along the first axis and sampling in late spring along the second axis. The amount of organic matter (BOD) and concentrations of NO3 ) ions represented both oligochaete food source and decomposition products contributing to the growth of algae. Current velocity and preferred habitat explained the spatial pattern of oligochaete distributions. Introduction A wide range of environmental factors permanently influences aquatic ecosystems. Major physico-chemical factors are mostly defined by geology, geomorphology, and climate, and aquatic ecosystems can also be affected significantly by human activity. The oligochaete community composition reflects the states and changes in these variables. Even under natural conditions, a dynamic process of disturbance and change in the community composition occurs continuously (Hynes, 1970; Williams, 1980). The influence of stream hydrology, and physical and chemical factors on aquatic Oligochaeta (Annelida) have been studied by many authors (e.g., Korn, 1963; Dumnicka & Pasternak, 1978; Prenda & Gallardo, 1992; Martı´nez-Ansemil & Collado, 1996; Verdonschot, 2001). A moderately polluted highland stream was selected to study habitat preferences within the aquatic oligochaete community. The first objective was to follow the temporal variability of the community composition over a 2-year study. Oligochaete species were divided according to their feeding habits (Moog, 1995) into two groups – grazers and gathering collectors, and temporal variability in their proportional occurrence was evaluated. Such changes were followed separately on four dominant habitats differing from hydrological point of view. The second objective was to evaluate, by means of multivariate analysis, environmental variables significant for the oligochaete distribution and Hydrobiologia (2006) 564:117–126 Ó Springer 2006 P.F.M. Verdonschot, H. Wang, A. Pinder & R. Nijboer (eds), Aquatic Oligochaete Biology IX DOI 10.1007/s10750-005-1713-0 thus to establish if selected habitats play an important role in oligochaete community compo- sition. Study area The oligochaete fauna was studied in the Rokytna´ River (Thaya River basin, Czech Republic), a sixth order stream (Strahler, 1957). The Rokytna´ River is 89.3 km long, with a catchment area of 585.4 km2 ; the mean annual discharge at the mouth is 1.27 m3 s)1 . The present study was conducted in a 60 m reach of the river, located at river km 9, at an altitude of 220 m and a slope of 3.2 m km)1 . The hydrology at the study reach is characterised by two (summer and winter) annual maximum discharge levels: 1999 (14.6 and 6.0 m3 s)1 respectively), 2000 (3.8 and 24.3 m3 s)1 respectively), and 2001 (2.2 and 7.5 m3 s)1 respectively). Highly variable discharges are often associated with agricultural landscapes – the catchment area is not able to absorb either summer rainstorms or winter snow-melt. The substrate of the stream within this study area consists of pebbles, gravel, and small amount of sand. For the studied river stretch, an alternating of the straight and meander parts is typical. On the gravel substratum, periphyton developed in spring, dominantly represented by Bacillariophyceae (Marvan, 1998), but the character of the river bottom did not enable a growth of macro- phyta. Materials and methods Habitat types Four major habitat types on two cross-sections were sampled monthly, from April 1999 to April 2001. One sample was taken at cross-section A, situated in the streamline. This part of the river was chosen, as a representative of the natural straight part of the river, where gravel bottom does not form either gravel bars or islands. Three samples were taken in a meander at cross-section B to include all different habitats of this river stretch. One in the littoral, drying up part (depositional zone indicated as B littoral), one on the gravel bar (indicated as B gravel bar) and one in streamline (erosional zone: B streamline), respectively (Fig. 1). Water depth, current velocity at the bottom and at 40% of the depth characterised selected habitats. ‘‘Freeze core’’ method (Bretschko & Klements, 1986) down to the depth of 0.1 m on each of the selected habitats was used for sediment structure evaluation twice – in October 2000 and June 2001. Detailed results of the sediment analysis including organic matter content down to the 0.7 m depth were published by Helesˇ ic et al. (2005). The sediment particles were sorted and percent representation of individual particle sizes was calculated. The roughness of the substrate of each habitat was expressed by the phi value (Cummins, 1962) for all selected habitats as a weighted average of phi values for each particle size. The smallest value ()3.5) and hence the highest roughness was found on B gravel bar, similar to that found on habitat A streamline ()3.2), habitats B littoral and B streamline had higher values ()2.4 and )2.5), all of them in October 2000. The bottom roughness almost did not change on habitats A streamline ()3.1), B gravel bar ()3.4) and B streamline ()2.6) while in B littoral the bottom roughness increased ()3.6) at the end of investigation in June 2001. Due to possible habitat damage it was refrained from more frequent sampling of the substratum. Although the Rokytna´ River is quite a dynamic stream, the substratum did not change within a year except in one of the selected habitats. The substrate data were not included in analyses below, but were used to describe the characteristics of studied habitats. Environmental variables The following physico-chemical variables were recorded during each sampling period: water temperature, hydrogen ion concentration (as pH), dissolved oxygen, conductivity, current velocity at 40% of depth, current velocity at bottom, water depth, biochemical oxygen demand (BOD), chemical oxygen demand (COD), ammonia and nitrate nitrogen, and phosphate phosphorus (PO4 3) ). The values of physico-chemical variables measured were very similar between habitats, however, the current velocity differed considerably. Mean daily 118 discharge values of the sampling dates were obtained from the Czech Hydrometeorological Institute (Table 1). One value per sampling date was obtained, since the values did not differ among studied habitats. Oligochaeta The macrozoobenthic populations were sampled using a Kubı´cˇ ek sampler (0.1 m2 , mesh size 0.5 mm) (Helan et al., 1973). Oligochaete specimens were fixed in formalin (4%) in the field, and sorted under the stereomicroscope in the laboratory. All oligochaete species were mounted in Canada Balsam (Cranston, 1982) and determined using keys by Hrabeˇ (1954, 1981), Brinkhurst & Jamieson (1971), Sperber (1950), Timm (1999) and Kathman & Brinkhurst (1999). Identification of Bythonomus lemani was confirmed by microscopical examination of mounted specimens that had been embedded in paraffin, sectioned longitudinally, then stained in haematoxylin (Jı´rovec, 1958). After the Oligochaeta were divided into trophic groups (Moog, 1995), the temporal variability in proportional occurrence of trophic groups found (gathering collectors and grazers) and their occurrence on selected habitats was evaluated. Data processing Habitat preferences of oligochaete trophic groups on selected habitats were compared using the Wilcoxon Matched pair test, because the measured data did not have normal distributions (Kolmogorov–Smirnov test) and were dependent on sampling date. The correlation of two trophic groups and two environmental variables (temperature and daily discharge) were evaluated using the Spearman rank correlation coefficient (Zar, 1984). Faunistic and environmental data were analysed by Canonical Correspondence Analysis (CCA), CANOCO (Ter Braak & Schmilauer, 2002). This method permits the construction of theoretical variables (ordination axes) that best fit the species data according to a unimodal method A B width [m] 0 -0.5 -1.0 0 -0.5 -1.0 150 B littoral B gravel bar B streamline 105 50 A streamline 10 depth[m]depth[m] width [m] Figure 1. Cross-sections of habitats A and B on the Rokytna´ River, Czech Republic (5 April 2000), and the position of the sampling points: A streamline, B littoral, gravel bar and streamline (arrows). 119 of ordination. In the canonical ordination these axes are a linear combination of environmental variables. The correlations between environmental variables and the ordination axes are derived and summarised in the eigenvalue of the ordination axis. The result of CCA is a set of scores for both sites and taxa, which can be presented as twodimensional ordination diagram where points represent sites or taxa and lines outgoing from the origin expresses environmental variables (Ter Braak & Schmilauer, 2002). The length of the lines represents the importance of the respective vari- able. The data were not transformed and species were not down-weighted. The statistical significance of the relationship between all species and all variables was tested by Monte Carlo permutation test using 9999 permutations (Ter Braak & Schmilauer, 2002). Results Oligochaeta During this study, 28 842 individuals representing 36 species of the families Lumbriculidae, Naididae, Tubificidae, and Lumbricidae were collected and identified (Table 2). In addition, the family Enchytraeidae was represented by unidentified species in four genera. Psammoryctides barbatus and Bothrioneurum vejdovskyanum (Tubificidae) and Nais elinguis (Naididae) were the dominant species. Trophic groups Most of the recorded species belong to two trophic groups, gathering collectors and grazers. Species with more trophic adaptations (Moog, 1995), the dominant feeding habit was used for evaluating. The third group, predators (only within the genus Chaetogaster) represented only about 0.1% of the total number of individuals and therefore was omitted in the analyses. Though the proportion of trophic groups (gathering collectors and grazers) varied among habitats, these differences were insignificant (p>0.05) (Wilcoxon Matched pair test). The occurrence of grazers was positively correlated (Spearman rank correlation coefficient, p<0.05) with the discharge and negatively with temperature on habitat A streamline (Fig. 2a). The grazers were also negatively correlated with temperature habitat B streamline (Fig. 2b) and gathering collectors were positively correlated with temperature on habitat A streamline (Fig. 2c), (Spearman rank correlation coefficient, p<0.05). Table 1. Minimum, maximum, mean and median values of environmental variables of the Rokytna´ River over the period April 1999– April 2001 Variable Min. Max. Mean Median Water temperature (°C) )0.2 19.4 11.0 13.0 pH 4.4 9.0 7.6 7.7 O2 [mg l)1 ] 6.59 18.20 10.4 9.43 Conductivity [lS cm)1 ] 453 725 615 615 Current velocity at bottom [m s)1 ] 0 0.87 0.34 0.30 Current velocity at 40% of depth [m s)1 ] 0 1.46 0.67 0.68 Mean daily discharge [m3 s)1 ] 0.13 3.95 1.36 1.08 Depth [m] 0.10 0.47 0.22 0.20 BOD [mg O2 l)1 ] 1.9 15.8 5.4 4.5 COD [mg O2 l)1 ] 26.1 51.1 27.8 32.2 NO3 ) [mg l)1 ] 12.0 57.5 27.8 20.0 NH4 + [mg l)1 ] 0.25 1.10 0.60 0.60 PO4 3) [mg l)1 ] 0.05 1.80 0.85 0.90 120 Table 2. List of oligochaete taxa recorded, taxon code, frequency of occurrence, percentage of occurrence and trophic group (gat – gathering collector, gra – grazer and pre – predator) Taxon Abbreviation No. of individuals % Trophic group Lumbricidae Allolobophora chlorotica Savigny, 1826) Allo chl 28 0.10 gat Eiseniella tetraedra (Savigny, 1826) Eise tet 26 0.09 gat Enchytraeidae Enchytraeus g. sp. div. Ench sp 64 0.22 gat Fridericia g. sp. Div. Frid sp 54 0.19 gat Cernosvitoviella g. sp. div. Cern sp 3 0.01 gat Cognettia g. sp. div. Cogn sp 32 0.11 gat Tubificidae Aulodrilus pluriseta (Piguet, 1906) Aulo plu 2 0.01 gat Bothrioneurum vejdovskyanum Sˇ tolc, 1886 Both vej 2604 9.03 gat Limnodrilus claparedeanus Ratzel, 1868 Limn cla 3 0.01 gat Limnodrilus hoffmeisteri Claparede, 1862 Limn hof 167 0.60 gat Limnodrilus udekemianus Claparede, 1862 Limn ude 6 0.02 gat Limnodrilus g. sp. div. juv. Limn sp 2292 7.95 gat Moraviodrilus pygmaeus Hrabeˇ , 1935 Mora pyg 386 1.34 gat Potamothrix hammoniensis (Michaelsen, 1901) Pota ham 7 0.02 gat Psammoryctides barbatus (Grube, 1861) Psam bar 5482 19.01 gat Psammoryctides moravicus (Hrabeˇ , 1934) Psam mor 5 0.02 gat Rhyacodrilus coccineus (Vejdovsky´ , 1875) Rhya coc 41 0.14 gat Rhyacodrilus falciformis Bretscher, 1901 Rhya fal 1395 4.84 gat Rhyacodrilinae juv. with hair chaetae Rhya juv 1634 5.67 gat Spirosperma ferox Eisen, 1879 Spir fer 1 0.003 gat Tubifex tubifex (O. F. M}uller, 1774) Tubi tub 50 0.17 gat Tubificidae juv. with hair chaetae Tubi juv 957 3.32 gat Naididae Chaetogaster diaphanus (Gruithuisen, 1828) Chae dip 21 0.07 pre Chaetogaster diastrophus (Gruithuisen, 1828) Chae dis 7 0.02 pre, gat, gat Nais alpina Sperber, 1948 Nais alp 461 1.60 gra, gat Nais barbata O. F. M}uller, 1773 Nais bar 108 0.37 gra, gat Nais bretscheri Michaelsen, 1899 Nais bre 857 2.97 gra, gat Nais communis Piguet, 1906 Nais com 144 0.50 gra, gat Nais elinguis O. F. M}uller, 1773 Nais eli 5580 19.34 gra, gat Nais pardalis Piguet, 1906 Nais par 6 0.02 gra, gat Nais pseudobtusa Piguet, 1906 Nais pse 48 0.17 gra, gat Nais simplex Piguet, 1906 Nais sim 20 0.07 gra, gat Nais variabilis Piguet 1906 Nais var 1 0.003 gra, gat Ophidonais serpentina O. F. M}uller, 1773 Ophi ser 4 0.01 gra, gat Pristina aequiseta Bourne, 1981 Pris aeq 56 0.19 gra, gat Pristina bilobata (Bretscher, 1903) Pris bil 19 0.07 gra, gat Pristina rosea (Piguet, 1906) Pris ros 323 1.12 gra, gat Stylaria lacustris (Linnaeus, 1767) Styl lac 2 0.01 gra, gat Vejdovskyella intermedia (Bretscher, 1896) Vejd int 22 0.08 gra, gat Continued on p. 122 121 Habitat preferences Canonical correspondence analysis (Fig. 3) was used to extract species–environment relationships; 44 taxa and 13 environmental variables and 8 nominal variables in 84 samples were evaluated. Four nominal variables represented selected habitats – A streamline, B littoral, B gravel bar, and B streamline, and four nominal variables represented seasons – spring (March–April), spring/summer (May–June), summer (July–August), and autumn/ winter (September–February). These sampling periods correspond more closely with temporal changes in oligochaete community composition than the four ‘standard’ seasons (e.g., winter=21 December through 20 March). The statistical significance of environmental variables was assessed by Monte Carlo permutation test. Ranked from the most to the least: BOD, temperature, habitat A streamline, NO3 ) , current velocity at 40%, habitat B streamline, summer sampling and conductivity were significant. The eigenvalues for the four axes are 0.325, 0.171, 0.084, and 0.075, respectively. According to the weighted correlation matrix, the first axis (40.8% variance of the species–environment relation) is related to BOD (0.592) and NO3 ) (0.350) and thus represents the food source (NO3 ) as indicator of a nutrient source for algae and diatoms). The second axis (21.6% of variance) is correlated with current velocity at 40% of the depth (0.400) and presence on habitat A streamline ()0.408), explained spatial variability. Both axes are negatively correlated with temperature ()0.334, )0.396 respectively), which reflects the summer sampling along the first axis ()0.518) and the spring/summer sampling ()0.421) along the second axis respectively (Fig. 3). The third ordination axis (10.6% of variance) is positively correlated with the presence of oligochaetes on habitat B streamline (0.391), BOD (0.376), temperature (0.360) and negatively with NO3 ) ()0.401). In the ordination diagram representatives of the family Naididae were in right upper corner showing development at lower temperatures, in spring. Most of Tubificidae representatives were negatively correlated with current velocity in 40% of the depth and occurred on habitat A streamline. Discussion Most oligochaete species found in the Rokytna´ River occurred within a wide range of environmental conditions, demonstrating a large temporal and spatial variability. Oligochaete composition on four selected habitats did not differ significantly when comparing proportion of two feeding groups. We suggest that density changes of grazers, which were negatively correlated with the temperature and positively with discharge, were directly caused by periphyton growth. The grazers represented by members of the family Naididae have maximal development in winter and spring (Pfannkuche, 1981) when sufficient light enables the development of periphyton, also Sˇ porka (1996) have found that the abundance of the family Naididae is dependent on the quantity of periphyton. The positive correlation of gathering collectors and the temperature again correspond with availability of food sources. They reach maximal densities in summer (Lazim & Learner, 1986), when decaying organic matter is available. Most significant relationships were associated with a very stable habitat A; the fact that gravel bars never form there enhance oligochaete growth. Table 2. (Continued) Taxon Abbreviation No. of individuals % Trophic group Lumbriculidae Bythonomus lemani (Grube, 1879) Byth lem 1401 4.86 gat Lumbriculus variegatus O. F. M}uller, 1774 Lumb var 14 0.05 gat Stylodrilus parvus (Hrabeˇ & Cˇ ernosvitov, 1927) Styl par 813 2.82 gat Stylodrilus heringianus Claparede, 1862 Styl her 49 0.17 gat Stylodrilus g. sp. div. juv. Styl juv 3647 12.64 gat Total 28 842 100.00 122 2. 0.0 0.5 1.0 1.5 2.0 5 3.0 IV.99 V.99 VI.99 VII.99 VIII.99 IX.99 X.99 XII.99 II.00 III.00 IV.00 V.00 VI.00 VII.00 VIII.00 IX.00 X.00 XII.00 II.01 III.01 IV.01 date -5.0 0.0 5.0 10.0 15.0 20.0 log(n+1)ofdensities[indm -2 ] 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 IV.99 V.99 VI.99 VII.99 VIII.99 IX.99 X.99 XII.99 II.00 III.00 IV.00 V.00 VI.00 VII.00 VIII.00 IX.00 X.00 XII.00 II.01 III.01 IV.01 date -5.0 0.0 5.0 10.0 15.0 20.0 log (n+1) discharge [m3 s-1] temperature [˚C] grazers on habitat A streamline grazers onhabitat B streamline 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 IV.99 V.99 VI.99 VII.99 VIII.99 IX.99 X.99 XII.99 II.00 III.00 IV.00 V.00 VI.00 VII.00 VIII.00 IX.00 X.00 XII.00 II.01 III.01 IV.01 date -5.0 0.0 5.0 10.0 15.0 20.0 gathering collectors on habitat A streamline (a) (b) (c) Figure 2. The temporal variability of grazers on habitat A streamline, positively correlated with the discharge and negatively with temperature (a) The temporal variability of grazers on habitat B streamline, negatively correlated with temperature (b) The temporal variability of gathering collectors on habitat A streamline, positively correlated with temperature (c) (Spearman rank correlation coefficient, p<0.05). 123 Variability of current velocities in different habitats of cross-section B resulted in either the movement of worms between habitats or their downward burrowing into hyporheic layers. Habitat preferences of various species were evaluated using CANOCO. Oligochaete community composition was dependent upon organic matter input (BOD) and sources of inorganic ions NO3 ) (aerobic degradation product and secondary periphyton nutrient source) along the first axis. The second axis was correlated with current velocity and presence on habitat A streamline. The most important variable determining oligochaete community composition in habitats assessed during this study was habitat A streamline in which little if any shifting of substrate occurred – it offered stable conditions for oligochaete occurrence, especially permanent availability of organic matter in substratum. Both axes, however, were also correlated with temperature and seasons of sampling, thus representing temporal variability. The values for chemical variables monitored during this study indicate that the Rokytna´ River varies from slightly to strongly polluted stream within a year. Detecting the habitat preferences of species in polluted waters is problematic. Some authors (Dumnicka & Pasternak, 1978; Culp et al., 1983; Prenda & Gallardo, 1992) showed that certain oligochaete species were not habitat selective. In CCA analysis, two of the four selected habitats (B littoral and B gravel bar) showed only small reaction with the oligochaete distribution. Although both were differing in environmental conditions with respect to velocity and depth, the oligochaete composition was quite similar there. The position of these environmental variables is similar in the diagram (Fig. 3), although they are not correlated. CCA analysis showed that certain habitats are vital for oligochaete occurrence (habitat A streamline was the third most impor- 0.8 -1.0 1.0 -0.8 Aulo plu Allo chl Both vej Byth lem Cern sp Chae dip Chae dis Cogn sp Eise tet Ench sp Frid sp Limn cla Limn hof Limn ude Limn juv Lumb var Mora pyg Nais alp Nais bar ais bre Nais com Nais eli Nais par ais pse Nais sim Nais var Ophi ser Pota ham Pris aeq Pris bil Pris ros Psam bar sam mor Rhya juv Rhya coc Rhya fal Spir ferStyl lac Styl her Styl par Styl juv Tubi tub Tubi juv Vejd int A BL BG BS spring spring/summer summer autumn/winter temperature conductivity velocity at 40% BOD NO3 Figure 3. CCA diagram of the axis 1 and 2 of oligochaete taxa (for abbreviations see Table 2) in relation to environmental variables (arrows), seasons (diamonds) and sampled habitats (points): A = A streamline, BL = B littoral, BG = B gravel bar, BS = B streamline – recorded in the Rokytna´ River. 124 tant environmental variable); other variables were less important. Results were significantly influenced by temporal variability – oligochaete community composition differed both in time and in space. We conclude that, at least in the lower reaches of a highland stream, habitats do not play as an important role as has been demonstrated in high order streams (Korn, 1963; Montanholi-Martins & Takeda, 1999, 2001). Although some authors (Montanholi-Martins & Takeda, 1999) applied a very similar sampling scheme, they found spatial distribution to prevail over the temporal one. Our conclusions are similar to those of Verdonschot (2001), who studied the influence of different substrates in lowland rivers. There were no significant relationships with the habitats if the most of the study streams included them. According to Verdonshot (2000) the disturbance caused by agricultural activities in the catchment area can cause that only ubiquists without habitat preferences settle the bottom. Most of the oligochaete species show wide ecological valences and habitat preferences are not significant when comparing relatively close sampling points in streams particular in agricultural areas. Relatively natural character of the stream is why we found two (stable) habitats important for oligochaete occurrence. On the other hand, the impact of agriculture causes extreme discharges and this promotes ubiquist species whose community composition and abundance, therefore, varies with time rather than with habitat. Acknowledgements The authors would like to thank Prof. J. Gaisler (Institute of Botany and Zoology, Masaryk University) and Mr. M. J. Wetzel (Illinois Natural History Survey, Champaign, U.S.A.) for their critique of this manuscript and assistance in improving the English. We are also grateful to our team of co-workers in field and laboratory for their helpful assistance. Financial support was kindly granted by Masaryk University (No. 206/ 01/0902) and Ministry of Education of the Czech Republic (No. 0429). References Brinkhurst, R. O., Jamieson & B. G. M. , 1971. Aquatic Oligochaeta of the World. Oliver & Boyd, Edinburgh, 860 pp. Cranston, P. S., 1982. A key to the larvae of the British Orthocladiinae (Chironomidae). Scientific Publication of the Freshwater Biological Association 45: 1–152. Culp, J. M., S. J. Walde & R. W. Davies, 1983. Relative importance of substrate particle size and detritus to stream benthic macroinvertebrate microdistribution. Canadian Journal of Fisheries and Aquatic Sciences 40: 1568–1574. Cummins, K. W., 1962. An evaluation of some techniques for the collection and analysis of benthic samples with spetial emphasis on lotic waters. American Midland Naturalist 67: 477–504. Dumnicka, E. & K. Pasternak, 1978. The influence of physicochemical properties of water and bottom sediments in the River Nida on the distribution and numbers of Oligochaeta. Acta Hydrobiologica 20(3): 215–232. Helan, J., F. Kubı´cˇ ek, B. Losos, E. Sedla´ k & M. Zelinka, 1973. Production conditions in the trout brooks of the Beskydy Mountains. Folia Biologia. Univ J E Purkyneˇ Brno : 105. Helesˇ ic, J., Leichtfried, M., Wagner, F. & M. Omesova´ , 2005. Investigations on gravel bars and hyporheic zone in an Alpine and two Hercynian streams in Central Europe. Internationale Vereinigung fu¨ r Theoretische und Angewandte Limnologie Verhandlungen 29. (In print). Hrabeˇ , S. (ed.), 1954. Klı´cˇ k urcˇ ova´ nı´ zvı´rˇ eny Cˇ SR [key to the Czechoslovak fauna]. Vol. 1. Cˇ SAV, Praha, 540 pp. (In Czech). Hrabeˇ , S., 1981. Vodnı´ ma´ losˇ teˇ tinatci (Oligochaeta) Cˇ eskoslovenska [aquatic Oligochaeta of Czechoslovakia]. Acta Universitatis Carolinae, Biologia 1979: 1–168. (In Czech, English summ.). Hynes, H. B. N., 1970. The Ecology of Running Waters. Liverpool University Press, Liverpool, 555 pp. Jı´rovec, O., 1958. Zoologicka´ technika [zoological technique]. Sta´ tnı´ pedagogicke´ nakladatelstvı´, Praha, 342 pp (In Czech). Kathman, R. D. & R. O. Brinkhurst, 1999. Guide to the freshwater Oligochaetes of North America. Aquatic Resources Center, College Grove, Tennessee, USA, 264 pp. Korn, H., 1963. Studien zur }Okologie der Oligochaeten in der oberen Donau unter Ber}ucksichtigung der Abwassereinwirkungen. Archiv fu¨ r Hydrobiologie 27: 131–182. Lazim, M. N. & M. A. Learner, 1986. The life-cycle and production of Limnodrilus hoffmeisteri and L. udekemianus (Tubifidae; Oligochaeta) in the organically enriched MoanFeeder Stream, Cardiff, South Wales. Archiv fu¨ r Hydrobiologie 74(2): 200–225. Martı´nez-Ansemil, E. & R. Collado, 1996. Distribution patterns of aquatic oligochaetes inhabiting watercourses in the Northwestern Iberian Peninsula. Hydrobiologia 334: 73–83. Marvan, P., 1998. Rˇ asova´ flo´ ra stojaty´ ch vod, mokrˇ adu˚ a toku˚ sˇ irsˇ ı´ oblasti vlivu energeticke´ soustavy Dukovany-Dalesˇ ice [algal flora in the region of the Dukovany-Dalesˇ ice energy complex]. Prˇ ı´rodoveˇ d. Sbor. Za´ padomorav. Muzea Trˇ ebı´cˇ (Acta Scientiarum Naturalium Musei Moraviae Occidentalis Trˇ ebı´cˇ 34: 1–136. (In Czech, English summ.). 125 Moog, O. (ed.), 1995. Fauna aquatica Austriaca. Katalog zur Aut}okologischen Einslufung Aquatischer Organismen }Osterreichs, Teil IIIA Arteninventar f}ur }Osterreich. Bundesministerium f}ur Land- und Forstwirtschaft, Wien, 494 pp. Montanholi-Martins, M. C. & A. M. Takeda, 1999. Communities of benthic oligochaetes in relation to sediment structure in the upper Parana´ River, Brazil. Studies on Neotropical Fauna & Environment 34: 52–58. Montanholi-Martins M. C. & A. M. Takeda, 2001. Spatial and temporal variations of oligochaetes of the Ivinhema River and Patos Lake in the Upper Parana´ River Basin, Brazil. In: Rodriguez, P. & P. F. M. Verdonschot, (eds), Aquatic Oligochaete Biology VIII. Hydrobiologia 463:197–205. Pfannkuche, O., 1981. Distribution, abundance and life cycles of aquatic Oligochaeta (Annelida) in a freshwater tidal flat of the Elbe Estuary. Archiv fu¨ r Hydrobiologie Suppl 43(4): 506–524. Prenda, J. & A. Gallardo, 1992. The influence of environmental factors and microhabitat availability on the distribution of an aquatic oligochaete assemblage in Mediterranean River Basin. Internationale Revue der Gesamten Hydrobiologie 77(3): 421–434. Sperber, C., 1950. A guide for the determination of European Naididae. Zoologiska Bidrag Fra˚ n Uppsala 29: 45–81. Strahler, A. N., 1957. Quantitative analysis of watershed geomorphology. American Geophysical Union Trans 38: 913– 920. Sˇ porka, F., 1996. Macrozoobenthos – permanent fauna. In: Krno I (eds), Limnology of the Turiec River Basin (West Carpthians, Slovakia). Biologia, Bratislava 51(2):23–27. Timm, T., 1999. A Guide to the Estonian Annelida. Estonian Academy Publishers, Tartu-Tallinn, 208 pp. Ter Braak, C. J. F. & P. Schmilauer, 2002. Canoco Reference Manual and Cano Draw for Windows User’s Guide. Software For Cononical Community Ordination (Version 4.5). Centre for Biometry, Wageningen, 500 pp. Verdonschot, P. F. M., 2000. Soft-bottomed lowland streams: a dynamic desert. Internationale Vereinigung fu¨ r Theoretische und Angewandte Limnologie Verhandlungen 27: 2577–2581. Verdonschot P. F. M., 2001. Hydrology and substrates: determinants of oligochaete distribution in lowland streams. In: Rodriguez P. & P. F. M. Verdonschot (eds), Aquatic Oligochaete Biology VIII. Hydrobiologia 463:249–262. Williams, D. D., 1980. Temporal patterns in recolonization of stream benthos. Archiv fu¨ r Hydrobiologie 90(1): 56–74. Zar J. H.., 1984. Biostatistical Analysis (2nd edn.). Prentice Hall, London, 428 pp. 126 64 Schenková, J., J. Helešic & J. Jarkovský, 2006 Seasonal dynamics of Bythonomus lemani and Bothrioneurum vejdovskyanum (Oligochaeta, Annelida) in relation to environmental variables. Biologia, 61, 517–523. Biologia, Bratislava, 61/5: 517—523, 2006 Section Zoology DOI: 10.2478/s11756-006-0085-x Seasonal dynamics of Bythonomus lemani and Bothrioneurum vejdovskyanum (Oligochaeta, Annelida) in relation to environmental variables Jana Schenková1 , Jan Helešic1 & Jiří Jarkovský2 1 Masaryk University, Faculty of Science, Institute of Botany and Zoology, Kotlářská 2, CZ–61137 Brno, Czech Republic; e-mail: schenk@sci.muni.cz 2 Masaryk University, Centre of Biostatistics and Analyses, Faculty of Medicine and Faculty of Science, Kamenice 126/3, CZ–62500 Brno, Czech Republic Abstract: The seasonal dynamics of Bythonomus lemani (Lumbriculidae) were studied for the first time and the knowledge of Bothrioneurum vejdovskyanum (Tubificidae) was extended based on four quantitative samples of oligochaetes taken monthly in the Rokytná River (Czech Republic) during a two-year study (April 1999 – April 2001). The influence of water temperature, velocity, depth, discharge, pH, conductivity, dissolved oxygen amount and biochemical oxygen demand (BOD) on their life cycles was evaluated. Habitat preferences of the juvenile and adult stages were recorded. Time series analysis was used to determine the worm densities, seasonality and trends. For Byth. lemani one distinct reproduction cycle per year was found and this was regulated by temperature, while Both. vejdovskyanum showed a one-year cycle not significantly dependent on measured environmental variables. The overall trend was an increase in density for Byth. lemani and a decrease in density for Both. vejdovskyanum. Byth. lemani showed a significant negative correlation between the trend of its density and BOD concentration. Key words: Bythonomus lemani, Bothrioneurum vejdovskaynum, aquatic Oligochaeta, seasonal dynamics, time series analysis. Introduction The knowledge on the seasonal population dynamics of certain aquatic oligochaetes is limited. As early as in the first half of the last century, Hrabě (1935a, b) studied the reproduction of Bothrioneurum vejdovskyanum Štolc, 1888 (Tubificidae) and described its asexual reproduction, at that time not known in any representative of this family. Brinkhurst & Kennedy studied other tubificid species in the second half of the last century (Brinkhurst & Kennedy, 1965; Brinkhurst, 1966; Kennedy, 1966). The best known are the life cycles of Tubifex tubifex (M¨uller, 1774), Limnodrilus hoffmeisteri Clapar`ede, 1862 and L. udekemianus Clapar`ede, 1862 (Ladle, 1971; Bonomi, 1979, 1980; Pfannkuche, 1981; Lazim & Learner, 1986; Lazim et al., 1989) because of their high abundance in polluted waters. Other species of this family which have been studied include Potamothrix hammoniensis (Michaelsen, 1901) (Thorhauge, 1976; Risnoveanu & Vadineanu, 2002), Psammoryctides barbatus (Grube, 1861) and Spirosperma ferox Eisen, 1879 (Adreani et al., 1984). Freshwater species of the family Lumbriculidae and Propappidae represented by Stylodrilus heringianus Clapar`ede, 1862, S. parvus (Hrabě-Černosvitov, 1927) and Propappus volki Michaelsen, 1916 were studied by Dumnicka & Kukula (1990) and Petto & Humpesch (1992). Some species from the family Naididae were also studied (e.g., Learner et al., 1978; Dumnicka, 1982). Recently there has been a shift from studies following only changes in the numbers of worms to more sophisticated techniques such as modelling of seasonal dynamics. In this study we aim to evaluate the seasonal dynamics of Bythonomus lemani (Grube, 1879) (Lumbriculidae) and Bothrioneurum vejdovskyanum (Tubificidae) because they are very rare and rare species, respectively, in the Czech Republic and information about their natural reproduction strategy is scarce (especially for Byth. lemani). Distribution of the Palaearctic species Byth. lemani covers S and C Europe and the study area lies on its northern margin. The conservation of this rare species requires more knowledge about its ecological demands. Whereas some authors (Brinkhurst, 1978; Hrabě, 1981) considered Byth. lemani to be a stagnant water (lakes) species, others (Rodriguez & Armas, 1983) considered it an inhabitant of running waters; certain authors have considered it as a species of oligosaprobic waters (Uzunov et al., c 2006 Institute of Zoology, Slovak Academy of Sciences 518 J. Schenková et al. 1988). The second species, Both. vejdovskyanum, with a cosmopolitan distribution, is remarkable for its reproduction by architomy (fission followed by development of the rest of the body), which is quite rare in the Tubificidae family. The species studied represent two different forms of life strategies, for Byth. lemani sexual reproduction is typical, while Both. vejdovskyanum reproduces by the above mentioned architomy. The aim of our study was to describe and compare their life cycles, to evaluate which environmental variable(s) regulate them and to find habitat preferences of juvenile and adult stages of Byth. lemani. Material and methods Study area and sampling The sixth order Rokytná River (the Thaya River Basin, Czech Republic), which is influenced relatively little by human impact, was chosen for this study. The sampling site was situated on the ninth river km near Moravský Krumlov (49◦ 03 N, 16◦ 19 E), with 3.2% slope at 220 m a.s.l. (Fig. 1). The river bottom mainly consisted of small pebbles, gravel, sand and, locally, silt. During late winter and in spring periphytic algae covered the substratum; from the beginning of May the river channel was shaded and water showed high turbidity. Oligochaetes were sampled along two cross-sections (A and B) across a 60 m long river reach. Cross-section A was a straight part of the channel, while B was a meandering one; they differed from one another in the variability of their width during the year (Tab. 1). Four typical habitats were sampled at the same time, one on cross-section A and three on B (Fig. 1). The habitat on cross-section A was located in the middle of the channel, where small pebbles (20–40 mm) comprised 40% of bottom substratum and gravel bars did not form there. This is hereafter referred to as ‘streamline A’. The habitats on cross-section B were: ‘littoral’, located close to the right bank of an inner river bend, ‘gravel bar’, located in the middle of the channel and ‘streamline B’, on the left side with the strongest water current up to 1.46 [m s−1 ] and the most coarse substratum. Small pebbles (20– 40 mm) formed on cross-section B: 13%, 12% and 17% of the bottom substrata of littoral, gravel bar and streamline habitats, respectively. The river channel in cross-section A remained stable during the two-years sampling period, but on cross-section B the substratum was continually shifting, although the general shape of the river channel and character of the three studied habitats remained approximately the same. Oligochaeta Oligochaeta were sampled monthly from April 1999 to April 2001 within each habitat except in winter, when two monthly sampling was used. Quantitative samples were taken using a Kubíček’s sampler (HELAN et al., 1973) (mesh size 0.5 mm) from a triangular area of 0.1 m2 . Sampled animals were stored in 4% formalin in the field and sorted in the laboratory. Oligochaeta were identified to species level using the keys of HRABĚ (1954, 1981). The specific identification of Byth. lemani was tested using cross sectioning. Abundance of juvenile and adult individuals of Byth. lemani AS BS BG BL CZECH REPUBLIC 0 50 100 km 0 10 20 m Rokytná River Fig. 1. Map showing the study site and selected river stretch with the sampling points. AS – streamline; BL – littoral; BG – gravel bar; BS – streamline. and Both. vejdovskyanum were counted. Identification of juvenile Byth. lemani was possible because they were the only lumbriculids with simple pointed setae present in the area. Environmental characteristics On each sampling date one sample of water for chemical analysis was taken on cross-section A and biochemical oxygen demand (BOD) was evaluated in the laboratory. Considering the dimensions of the river, values of BOD on crosssection B were considered the same as from A. The water temperature, velocity at 40% of the depth and velocity close to the bottom, depth, pH, conductivity and dissolved oxygen were measured at each of the four habitats. Mean daily discharges were obtained from the hydrological station situated 6 km downstream from the sampling site. Statistical analysis The presence of species in different parts of the stream and differences in their abundance were evaluated using χ2 test with a null hypothesis of equal distribution of worms among habitats. The proportion of adults and juveniles of Byth. lemani was determined by contingency table analysis. Proportions of their densities were weighted by the total number of worms. Time series analysis was used to evaluate trends in worm abundance, based on the mean of worm densities and the means of abiotic parameters. Twenty-five dates were used in the time series of species density analysis; 21 sampling events and four missing values (taking into account two monthly samplings in winter) estimated from adjacent points in the time period. Data were log transformed. Moving average smoothing (3 numbers) was applied for visualization of the time series. The time series analysis enables division of the total trend in oligochaete densities into two components: ‘smooth’ – representing a particular trend (increasing/decreasing) during the whole sampling period and ‘cyclic’ – following Seasonal dynamics of Bythonomus lemani and Bothrioneurum vejdovskyanum 519 Table 1. Physico-chemical characteristic of the selected sites, cross-sections A and B and habitats AS, BS, BG and BL. A B Cross-section Mean Min.–Max. Mean Min.–Max. Width (m) 10.35 9.56–14.42 13.02 9.06–18.14 AS BS BG BL Habitat Mean Min.–Max. Mean Min.–Max. Mean Min.–Max. Mean Min.–Max. Temperature (◦C) 11.0 −0.1–19.4 11.0 −0.2–19.4 11.0 −0.2–19.4 11.0 −0.2–17.6 pH 7.5 4.4–9.0 7.7 5.9–9.0 7.6 5.9–8.8 7.5 5.9–8.3 Dissolved O2 (mg L−1) 10.2 6.9–12.4 10.6 7.3–17.5 10.3 7.3–14.2 10.4 7.3–14.2 Conductivity (µS cm−1) 620 468–700 617 479–725 612 536–725 612 536–725 Velocity close to the bottom (m s−1) 0.36 0.16–0.64 0.37 0.13–0.92 0.29 0–0.98 0.35 0.0–0.76 40% velocity (m s−1) 0.70 0.29–1.10 0.84 0.53–1.46 0.57 0.11–0.94 0.55 0.03–1.35 Depth (m) 0.26 0.11–0.47 0.27 0.11–0.42 0.16 0.02–0.36 0.20 0.06–0.38 Mean Min.–Max. BOD (mg L−1) 5.4 1.9–15.8 COD (mg L−1) 27.8 26.1–51.1 NO− 3 (mg L−1) 27.9 12.0–57.5 NH+ 4 (mg L−1) 0.60 0.25–1.10 PO3 4 (mg L−1) 0.85 0.05–1.80 Discharge (m3 s−1) 1.36 0.13–3.95 regularly repeating changes in densities over the course of time. The smooth component of time series was evaluated by Daniel’s test (DANIELS, 1950) which in fact is the Spearman rank correlation between oligochaete densities and their rank in the time series. For the subsequent analysis of cyclic component of the time series, the time series was detrended (i.e., the smooth component was removed) by linear regression. The cyclic component was computed by two methods; (i) autocorrelation of abundances and (ii) spectral analysis of seasonality. Relationships between abundances and abiotic parameters were computed by cross-correlation (i.e., correlation of densities with values of environmental variables shifted in time) and the lag between them was evaluated (BOX & JENKINS, 1970). The Spearman rank correlation coefficient was used also to compare trends between species densities and environmental parameters. The analyses were performed using Statistica 7 for Windows (STATSOFT, 2004). Results Environmental variables Seasonal changes of physico-chemical variables in the studied river stretch over two years were recorded (Tab. 1). All values were calculated from the same number of measurements (n = 21). In the highland river water quality became near oligosaprobity during the winter, while in the summer sufficient autochthonous and allochthonous organic matter sources created a status close to β-mesosaprobity (ČSN 75 7358, 1997). Oligochaeta Of the total number of 28,842 oligochaetes (36 species), 100 µm at ov sp vdte ffsf te pe pr IX X XI sf Fig. 2. Bythonomus lemani. Schematic drawing of reproductive organs, IX, X, XI segment, lateral view: at – atrium; ff – female funnel; ov – ovarium; pe – penis; pr – prostate gland; sf – sperm funnel; sp – spermatheca; te – testes; vd – vas deferens. 900 juvenile and 506 adult individuals of Byth. lemani and 2,590 juvenile and 14 adult individuals of Both. vejdovskyanum were found. In Byth. lemani, the following identification characters were revealed: the clitellum began in the half of segment IX and extended into segment XIII, the paired mushroom-like spermatecae were situated in segment IX, two pairs of testes were in the IX and X segment, atria entered into small penes in segment X (Fig. 2). Adults of Byth. lemani were observed throughout the year. Adults of Both. vejdovskyanum occurred only rarely because of asexual reproduction, with seven individuals found in May 1999, four in May 2001 and three in June 2001. Mean density of Byth. lemani was 220 ind. m−2 while that of Both. vejdovskyanum was 370 ind. m−2 . 520 J. Schenková et al. Bothrioneurum vejdovsk ya num habitat A s tre am line 0 50 100 150 200 250 300 350 400 density[ind.0.1m-1 ] Bothrioneurum vejdovsk yanum habitat B littoral Bothrioneurum vejdovsk ya num habitat B graveBothrioneurum vejdovsk ya num habitat B s tre am line 100 150 200 250 300 350 400 Bythonomus lemani habitat A s tre am line 0 20 40 60 80 100 120 140 160 180 200 density[ind.0.1m-1 ] Byth lem juv Byth lem ad Bythonomus lemani habitat B littoral Bythonomus lemani habitat B grave l bar V.99 VII.99 IX.99 XI.99 I.00 III.00 V.00 VII.00 IX.00 XI.00 I.01 III.01 Bythonomus lemani habitat B s tre am line 0 20 40 60 80 100 120 140 160 180 200 IV.99 VI.99 VIII.99 X.99 XII:99 II.00 IV.00 VI.00 VIII.00 X.00 XII.00 II.01 IV.01 Fig. 3. Bythonomus lemani. Seasonal changes in densities of juvenile and adult individuals in four selected habitats. Bothrioneurum vejdovsk ya num habitat A s tre am line 0 50 100 150 200 250 300 350 400 density[ind.0.1m-1 ] Bothrioneurum vejdovsk ya num habitat B littoral Bothrioneurum vejdovsk ya num habitat B grave l bar V.99 VII.99 IX.99 XII:99 III.00 V.00 VII.00 IX.00 XII.00 III.01 Bothrioneurum vejdovskya num habitat B s tre am line 0 50 100 150 200 250 300 350 400 IV.99 VI.99 VIII.99 X.99 II.00 IV.00 VI.00 VIII.00 X.00 II.01 IV.01 Fig. 4. Bothrioneurum vejdovskyanum. Seasonal changes in densities in four selected habitats. Habitat preferences Numbers of Byth. lemani differed between the four habitats (Fig. 3) whereas habitat preference was less marked for Both. vejdovskyanum (Fig. 4). Significant inter-habitat differences were found for both Byth. lemani, (P < 0.01; χ2 = 598; df = 3) and Both. vejdovskyanum, (P < 0.01; χ2 = 454; df = 3). Byth. lemani preferred stream line B, a dynamic stretch of the river with the fastest current (mean water velocity at of depth 40% was 0.84 m s−1 ). Both. vejdovskyanum preferred stream line A, a relatively straight and shallow river stretch with less fluctuating water level, with no shifting of substratum (mean water velocity at of depth 40% was 0.70 m s−1 ). Significant differences in densities of adult and juvenile Byth. lemani were found among habitats (χ2 = 24.5, P < 0.01). The adults predominated in the habitat stream line A while juveniles were mostly in littoral Seasonal dynamics of Bythonomus lemani and Bothrioneurum vejdovskyanum 521 Bothrioneurum vejdovskyanum V.99 VII.99 IX.99 XI.99 I.00 III.00 V.00 VII.00 IX.00 XI.00 I.01 III.01 0 20 40 60 80 100 120 Bythonomus lemani V.99 VII.99 IX.99 XI.99 I.00 III.00 V.00 VII.00 IX.00 XI.00 I.01 III.01 0 5 10 15 20 25 30 35 40 45 50 Fig. 5. Time series of Bythonomus lemani and Bothrioneurum vejdovskyanum based on mean densities, moving average smoothing was applied. Fig. 6. Peridiograms of Bythonomus lemani and Bothrioneurum vejdovskyanum after extraction of smooth component. of B. In habitat B stream line, the one generally preferred by this species, the ratio of adults to juveniles was balanced. Time series analysis The evaluation of smooth components showed significant trends for both species (Fig. 5). The density of Byth. lemani was increasing with Daniel’s test value 0.51 (P = 0.017), while that of Both. vejdovskyanum was decreasing with Daniel’s test value 0.54 (P = 0.011). None of the selected environmental variables showed a significant trend (using Daniel’s test). The evaluation of cyclic components using autocorrelation showed certain cyclic trends, but they were insignificant. Peridiograms showed one distinct cycle per year in both species (Fig. 6). The cross-correlations for the density of Byth. lemani and Both. vejdovskyanum and environmental variables showed significant positive cross-correlation of Byth. lemani with water temperature (two-month lag). No other significant relationships between either species or environmental parameters were found. Comparison of trends of species densities and environmental parameters revealed some significant trends; a negative correlation between abundance of Byth. lemani and BOD (rs = 0.59; P < 0.05). Discussion Although Oligochaeta are generally considered as ubiquists that live in various habitats, significant habitat preferences were found in the two selected species. Byth. lemani preferred sites with the highest water velocity (0.53–1.46 m s−1 ), hence we can confirm it as a running water species (Rodriguez & Armas, 1983) requiring a sufficient level of dissolved oxygen. Other habitats were colonised with significantly lower densities – the straight part of the stream was preferred by adults, the littoral by juveniles. The arrangement of sexual organs in this species corresponds to that found by Rodriguez (1988), but we did not record prostate cells in discrete masses as stated by Brinkhurst & Jamieson (1971). Both. vejdovskyanum as a typical tubificid inhabited the straight part of the stream, the substratum of which did not shift for most of the year. This distribution decreased the competition between Byth. lemani and Both. vejdovskyanum, which were the dominant species at this site. Based on worm densities in the Rokytná River during a two-year study, a model of the reproductive cycle of Byth. lemani was created. The spectral analysis was computed and its peridiogram showed one distinct reproduction cycle per year. Although some adults were 522 J. Schenková et al. present throughout the year, main breeding activity started in April. The correlation with water temperature indicates that increasing temperature in March may have triggered the development of sexual organs and the subsequent copulation of worms. Increasing abundances of juveniles between August and November indicates that worms were hatching from cocoons at that time. The juvenile oligochaetes had probably grown during the winter months and matured during the spring or summer of the next year. Such a life cycle is comparable with that of another lumbriculid, Stylodrilus heringianus (Petto & Humpesch, 1992). These authors also found a one-year cycle and significant correlation with water temperature. A similar one-year life cycle was recorded for S. parvus, with numerous adults in May and the highest percentage of juveniles in October (Dumnicka & Kukula, 1990). The significant negative correlation of Byth. lemani densities and BOD values can be explained by ecological adaptation of this species to changing conditions within the stream. According to Uzunov et al. (1988), it is an oligo- (80%) or β-mesosaprobic (20%) water species preferring a small amount of organic pollution in water. During the part of the year when concentrations of the dissolved organic matter are highest, most adults die after deposition of cocoons and the development of juveniles inside the cocoons takes place. Juveniles’ hatching and growth start in the autumn after BOD values have decreased. The total trend showing an increase in the abundance of the oligosaprobic water species Byth. lemani and a decrease in the βmesosaprobic species Both. vejdovskyanum (Uzunov et al., 1988) probably reflected overall changes in water quality at the site. Our data, however, are insufficient to specify the impact of particular environmental vari- ables. The reproductive strategy of Both. vejdovskyanum (Tubificidae) is different. The species reproduces by architomy, and adults are found only sporadically. Our peridiogram showed a one-year developmental cycle. These results can be compared with a one year study by Hrabě (1935a, b) who found worms, with up to 140 segments in winter, whose fission started in the second half of April, continued during summer, declined in autumn and completely stopped in winter. Similarly, in laboratory experiments, Both. vejdovskyanum reproduce by fragmentation without any marks of degeneration for several years (Timm, 1984). When looking at the asexual reproduction of the Naididae family, we can find the numbers increasing with temperature in the genus Nais (e.g., Poddubnaya, 1968; Pfannkuche, 1981; Dumnicka, 1982), except for Nais elinguis M¨uller, 1773 (Learner et al., 1978). No periodic cycle as a result of asexual reproduction was found in the genus Chaetogaster (Petto & Humpesch, 1992). We can conclude that the life history of the sexually reproducing lumbriculid Byth. lemani consists of a one-year reproduction cycle regulated by temperature; further knowledge of its seasonal dynamics could be obtained by sampling the smallest juveniles and cocoons. Under the same conditions asexual reproduction of the tubificid Both. vejdovskyanum was not affected by temperature, although it also showed a one-year reproduction cycle. For this species, a longer study period in the field will be necessary to find out which environmental parameter(s) regulate reproduction. Acknowledgements We would like to thank A. PINDER (Dept. Conservation and Land Management, Wanneroo, Australia) and J. GAISLER (Masaryk University, Brno, Czech Republic) for reviewing the manuscript and K. TAYLOR for proofreading. The project was supported by grants from the Grant Agency of the Czech Republic (No. 206/02/0902) and from the Ministry of Education, Youth and Sports of the Czech Republic (MSM0021622416 and MSM0021622412). References ADREANI, L., BONACINA, C., BONOMI, G. & MONTI, C. 1984. Cohort cultures of Psammoryctides barbatus (Grube) and Spirosperma ferox Eisen: a tool for a better understanding of demographic strategies in Tubificidae. Hydrobiologia 115: 113–119. BONOMI, G. 1979. Ponderal production of Tubifex tubifex M¨uller and Limnodrilus hoffmeisteri Clapar`ede (Oligochaeta, Tubificidae), benthic cohabitants of an artifical lake. Boll. Zool. 46: 153–161. BONOMI, G. 1980. Population dynamics of Tubifex tubifex, studied by means of a new model, pp. 185–203. In: BRINKHURST, R.O. & COOK D.G. (eds) Aquatic oligochaete biology. Plenum Publishing Corporation, New York. BOX, G.E.P. & JENKINS, G.M. 1970. Time series analysis. Forecasting and Control. Holden Day, San Francisco, 553 pp. BRINKHURST, R.O. 1966. The Tubificidae (Oligochaeta) of polluted waters. Verh. Int. Verein. Limnol. 16: 854–859. BRINKHURST, R.O. 1978. Oligochaeta, pp. 139–144. In: ILLIES, J. (ed.) Limnofauna Europaea, Gustav Fischer Verlag, New York. BRINKHURST, R.O. & JAMIESON, B.G.M. 1971. Aquatic Oligochaeta of the World. Oliver & Boyd, Edinburgh, 860 pp. BRINKHURST, R.O. & KENNEDY, C.R. 1965. Studies on the biology of the Tubificidae (Annelida, Oligochaeta) in a polluted stream. J. Anim. Ecol. 34: 429–443. ČSN 75 7358 1997. Jakost vod – Klasifikace jakosti povrchových vod [Water quality – Classification of surface water]. Czech Standards Institute, Praha, 9 pp. DANIELS, H.E. 1950. Rank correlation and population models. J. Roy. Stat. Soc. B 12: 171–181. DUMNICKA, E. 1982. Stream ecosystems in mountain grassland (West Carpathians). 9. Oligochaeta. Acta Hydrobiol. 24: 391–398. DUMNICKA, E. & KUKULA, K. 1990. The communities of oligochaetes of the Wolosatka and Terebowiec streams (the Bieszczady National Park, southeastern Poland). Acta Hydrobiol. 30: 423–435. HELAN, J., KUBÍČEK, F., LOSOS, B., SEDLÁK, E. & ZELINKA, M. 1973. Production conditions in the trout brooks of the Beskydy Mountains. Folia Fac. Sci. Nat. Univ. Purk. Brun. Biol. 38: 1–105. Seasonal dynamics of Bythonomus lemani and Bothrioneurum vejdovskyanum 523 HRABĚ, S. 1935a. O nepohlavním rozmnožování nítěnky Bothrioneurum vejdovskyanum Štolc [About the asexual reproduction of Bothrioneurum vejdovskyanum Štolc]. Sbor. Kl. Přír. Brno 17: 13–18. HRABĚ, S. 1935b. ¨Uber Moraviodrilus pygmaeus n. g. n. sp., Rhyacodrilus falciformis Br., Ilyodrilus bavaricus Oschm. und Bothrioneurum vejdovskyanum Št. Spisy Přír. Fak. Univ. Brno 209: 1–19. HRABĚ, S. (ed.) 1954. Klíč k určování zvířeny ČSR [Key to the Czechoslovak fauna]. Vol. 1. ČSAV, Praha, 540 pp. HRABĚ, S. 1981. Vodní máloštětinatci (Oligochaeta) Československa [Aquatic Oligochaeta of Czechoslovakia]. Acta Univ. Carol. Biol. 1979: 1–168. KENNEDY, C.R. 1966. The life history of Limnodrilus hoffmeisteri Clap. (Oligochaeta: Tbificidae) and its adaptive significance. Oikos 17: 158–168. LADLE, M. 1971. The biology of Oligochaeta from Dorset chalk streams. Freshwater Biol. 1: 83–97. LAZIM, M.N. & LEARNER, M.A. 1986. The life-cycle and production of Limnodrilus hoffmeisteri and L. udekemianus (Tubifidae; Oligochaeta) in the organically enriched Moan-Feeder Stream, Cardiff, South Wales. Arch. Hydrobiol. 74: 200–225. LAZIM, M.N., LEARNER, M.A. & COOPER, S. 1989. The importance of worm identity and life history in determining the vertical distribution of tubificids (Oligochaeta) in a riverine mud. Hydrobiologia 178: 81–92. LEARNER, M.A., LOCHHEAD, G. & HUGHES, B.D. 1978. A review of the biology of British Naididae (Oligochaeta) with emphasis on the lotic environment. Freshwater Biol. 8: 357– 375. PETTO, H. & HUMPESCH, U.H. 1992. Time series analysis of developmental cycles of oligochaetes in relation to environmental factors in the River Danube. Arch. Hydrobiol. 124: 53–67. PFANNKUCHE, O. 1981. Distribution, abundance and life cycles of aquatic Oligochaeta (Annelida) in a freshwater tidal flat of the Elbe Estuary. Arch. Hydrobiol., Suppl. 43: 506–524. PODDUBNAYA, T.L. 1968. Biologiya rozmnozhenia vida Chaetogaster diaphanus [Biology of reproduction of Chaetogaster diaphanus]. Trudy Inst. Biol. Vnutr. Vod Akad. Nauk SSSR 17: 3–20 RISNOVEANU, G. & VADINEANU, A. 2002. Observations on the population dynamics of Potamothrix hammoniensis (Michaelsen, 1901) (Tubificidae, Oligochaeta) in Lake Isacova in the Danube Delta. Hydrobiologia 479: 23–30. RODRIGUEZ, P. 1988. Sur certaines esp`eces de Lumbriculidae (Annelida: Oligochata) du nord de la péninsule ibérique. Ann. Limnol. 24: 203–211. RODRIGUEZ, P. & ARMAS, J.C. 1983. Contribution `a la connaissance de la faune d’Oligoch`etes aquatiques du pays basque et zones limitrophes. Ann. Limnol. 19: 93–100. STATSOFT, Inc. 2004. STATISTICA (data analysis software system), version 7. www.statsoft.com, 1984–2005. THORHAUGE, F. 1976. Growth and life cycle of Potamothrix hammoniensis (Tubificidae, Oligochaeta) in the profundal of eutrophic Lake Esrom. A field and laboratory study. Arch. Hydrobiol. 78: 71–85. TIMM, T. 1984. Potencial age of aquatic Oligochaeta. Hydrobiologia 115: 101–104. UZUNOV, V., KOŠEL, V. & SLÁDEČEK, V. 1988. Indicator value of freshwater Oligochaeta. Acta Hydrochim. Hydrobiol. 16: 173–186. Received June 23, 2005 Accepted December 13, 2005 72 Syrovátka, V., J. Schenková & K. Brabec, 2009 The distribution of chironomid larvae and oligochaetes within a stony-bottomed river stretch: the role of substrate and hydraulic characteristics. Fundamental and Applied Limnology, Archiv für Hydrobiologie, 174, 43–62. eschweizerbartxxx author DOI: 10.1127/1863-9135/2009/0174-0043 1863-9135/09/0174-0043 $ 5.00 © 2009 E. Schweizerbart’sche Verlagsbuchhandlung, D-70176 Stuttgart The distribution of chironomid larvae and oligochaetes within a stony-bottomed river stretch: the role of substrate and hydraulic characteristics Vít Syrovátka*, Jana Schenková and Karel Brabec1 With 9 figures, 4 tables and 1 appendix Abstract: The taxonomic and functional structure of oligochaete and chironomid communities in a stony-bottomed river reach was investigated with respect to substrate and hydraulic conditions. Combined oligochaete and chironomid data were analyzed to search for main gradients and the separate data sets were analyzed to identify the most important variables determining the structure of the communities. Preferences for particular hydraulic conditions, expressed as Froude number, were calculated for 29 most abundant taxa. The results of Correspondence Analysis (CA) indicated that the main gradient in the data could be explained by hydraulic conditions and, inversely, by the amount of sedimented particulate organic matter (POM). The second CA axis probably reflected the quantity of the available food and space resources. Canonical Correspondence Analysis (CCA) showed the amount of sedimented POM as the most important variable explaining 21 and 24 % of the variance in the oligochaete and chironomid data, respectively. Among the other variables, the occurrence of aquatic vegetation, variability of near-bottom current velocity and substrate roughness were the most important. In the case of chironomids, the proportions of functional feeding strategies changed along the gradient of hydraulic conditions: the proportions of predators, active filterfeeders and collectors/gatherers decreased with the increasing hydraulic stress, while the proportion of grazers/ scrapers increased. Nevertheless, in the case of oligochaetes, the proportions of functional feeding strategies did not follow the gradient of hydraulic conditions. Although the total abundance of both oligochaetes and chironomids was independent of hydraulic conditions, only few oligochaete taxa were able to succeed in hydraulically rough conditions and most oligochaete taxa were found only in pools. On the other hand, chironomids showed high taxa richness, which seemed to be limited by the quantity of the available food and space resources rather than hydraulic stress. Key words: chironomidae, oligochaeta, distribution, substrate, hydraulic conditions, stream. Introduction Hydromorphological features of rivers reflecting longterm climatic and geomorphological processes are being influenced by anthropogenic impacts and global changes. The knowledge of distributional patterns of river biota and its habitat preferences is fundamental to effective assessment of possible effects of climate fluctuations and/or anthropogenic impacts on fluvial ecosystems. In this respect, the following paper aims to contribute to the knowledge of aquatic macroinvertebrate distributional patterns. Physical factors, food availability and biological interactions are generally proposed as determinants of spatial variation in the stream community structure (e.g. Hynes 1970, Cummins et al. 1984, Statzner et al. 1988). At a larger scale (e.g. catchment) the main changes in the benthic macroinvertebrate community structure are usually found along the longitudinal gradient from source to mouth of a stream and the influAuthors’ address: 1 Department of Botany and Zoology, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic. * Author for correspondence; e-mail address: syrovat@sci.muni.cz Fundamental and Applied Limnology Archiv für Hydrobiologie Vol. 174/1: 43–62, February 2009 © E. Schweizerbart’sche Verlagsbuchhandlung 2009 eschweizerbartxxx author 44 V. Syrovátka et al. ence of particular physical and chemical factors is difficult to separate because all the factors usually change along with the distance from the source (Lindegaard & Brodersen 1995). At a finer scale (mesohabitat – sensu Armitage et al. 1995) hydraulic and substrate conditions are the major factors influencing the benthic macroinvertebrate community structure. These factors are highly interrelated and each in part depends on the other. The substrate grain size is determined by past and present flows (Leopold 1994, Allan 1995) and the grain size determines surface roughness which, in turn, creates fine-scale patterns of near-bed flow that influence organic matter retention and the distribution of benthic organisms (e.g. Culp et al. 1983, Quinn et al. 1996, Bouckaert & Davis 1998, Hoover et al. 2006). Some studies emphasize the importance of substrate – especially its organic components – in determining the density, taxa richness, and overall structure of benthic invertebrate community (Ward 1975, Death & Winterbourn 1994, Way et al. 1995, Beisel et al. 1998, Habdija et al. 2004, Ortiz et al. 2006) but most of the recent studies are in agreement that the hydraulic conditions play the major role (Quinn & Hickey 1994, Rempel et al. 2000, Doisy & Rabeni 2001, Mérigoux & Dolédec 2004, Brooks et al. 2005). The mean flow velocity is not an adequate descriptor of the flow conditions. Therefore, some complex hydraulic parameters incorporating the velocity, depth and eventually substrate characteristics were proposed (Davis & Barmuta 1989). These hydraulic parameters (e.g. Froude number, boundary Reynolds number, roughness shear velocity) have proved to be better predictors of the benthic invertebrate community structure than the measured current velocity not only in cases when the substrate roughness and depth varied within the studied locality (e.g. Qiunn & Hickey 1994, Doisy & Rabeni 2001, Fesl 2002, Mérigoux & Dolédec 2004, Brooks et al. 2005). Moreover, easily accessible Froude number (incorporates only the velocity, depth and acceleration due to gravity) was found to be strongly related to invertebrate abundance in many other studies (e.g. Orth & Maughan 1983, Wetmore et al. 1990, Jowett et al. 1991, Benbow et al. 1997). Froude number was also identified as a good hydraulic parameter for objective identification of pool, run, and riffle habitats (Jowet 1993). Oligochaeta (sensu oligochaetous Clitellata; Erséus 2005) and chironomid larvae often comprise a large proportion of benthic macroinvertebrate communities but due to their small body size and difficulties associated with their identification, their habitat preferences and distributional patterns at the mesohabitat scale are not well known. For chironomid larvae only the works of Ruse (1994) and Fesl (2002) deal with the spatial distribution with regard to hydraulic conditions, and some other studies focus on the preferences of particular species to particular hydraulic conditions (Collier 1993, Benbow et al. 1997). Only few studies bring any information about meso- or microhabitat preferences of oligochaete taxa (Verdonschot 1999, 2001). Oligochaetes and chironomid larvae differ in many ways (their physique, life cycle, reproduction), but they are similar in their relatively small, prolonged and flexible body. Their body proportions together with the locomotion type – sprawling/walking, and the absence of legs enable them to inhabit bed sediments into notable depths (Schmid 1993, Rulík 1995). Some taxa of both groups are able to survive in low-oxygen to anoxic conditions. Collecting/gathering and grazing/scraping predominate within these groups, though they differ in feeding mechanisms: contrary to the oligochaetes, chironomids use chitinous mouthparts such as mandibles and mentum to graze. Moreover, some chironomid larvae can utilize particulate organic matter (POM) using active or passive filtration which is very rare within the oligochaetes (Learner et al. 1978). In this study, spatial distribution of oligochaetes and chironomid larvae at the mesohabitat scale was investigated. The two groups were chosen because of their high abundance in benthic stream communities and their ecological similarity. Sampling was carried out simultaneously at a single river reach which enabled elimination of temporal variability and of factors associated with the longitudinal stream zonation. The objectives were to i) determine the main gradients in the structure of oligochaete and chironomid communities, ii) identify the most important factors influencing the taxonomic structure of these communities, iii) identify oligochaete and chironomid community types and relate them to particular environmental conditions, and iv) determine habitat preferences of frequent taxa. Study site The Svratka River (Czech Republic) is a rather stable simple channelled stream, which drains the Czech- MoravianHighlandswithsiliceousbedrock.Thecatchment area of about 354 km2 is dominated by coniferous forests (42 %) and arable land (32 %), followed by agricultural areas with significant areas of natural vegetation (14 %), pastures (6 %), urban fabric (3 %) and transitional woodlands-shrubs (2 %). Mean annual rainfall in the catchment is about 746 mm year–1 . eschweizerbartxxx author Chironomids and oligochaetes in a river 45 The samples were taken from an approx. 300 m long reach located in the Czech-Moravian Highlands, 480 m above sea level (49° 36′ 51″ N, 16° 13′ 59″ E). The Svratka is a mid-sized river of the 5th Strahler’s order at this site. The mean slope of the sampled reach is 0.28 % and the mean channel width is 12.5 m. Both river banks are bordered by willows and shrubs that pass further to a coniferous forest on the left and arable land on the right side. The median annual discharge in 2002 was 1.9 m3 s–1 (10 % and 90 % quantiles were 1.1 m3 s–1 and 8.2 m3 s–1 , respectively). The mean annual water temperature in 2002 was 6.9 °C with the summer maximum of 20.2 °C. On the sampling date, water conductivity 164 µS cm–1 and pH 7.36 were recorded. The stream-bed substrate was dominated by cobbles (mesolithal) but ranged from sand (psammal) to boulders (macrolithal). The mineral substrate was covered with fine particulate organic matter (FPOM) in the deposition areas with low current, where also patches of leaf accumulation occurred. Living parts of terrestrial plants (grass leaves, roots) were observed at the margins. Patches of aquatic mosses (Fontinalis antipyretica Hedw. and Hygrohypnum ochraceum (Turn. ex Wils.) Loeske) and Ranunculus sp. were recorded in the streamline and the “bare” mineral substrate was usually overgrown with diatoms. Methods Sampling and physical measurements The sampling was carried out on one occasion (3–4 October 2002) during stable and low flow conditions (1.25 m3 s–1 ). The closest high flow event was recorded 50 days before sampling, which ought to be sufficient time for stream recovery and recolonization of habitats. Mesohabitats (visually distinct areas) were initially visually assessed according to surface flow characteristics, current velocity, depth and substrate, and their proportions within the studied river reach were estimated (± 5 %). In total, 27 samples were taken. Twenty macroinvertebrate sampling points were distributed among the mesohabitats proportionally to their share (one sampling point was assigned for each 5 % of the river reach). Within each mesohabitat the sampling points were randomly positioned. Additional 7 macroinvertebrate sampling points were randomly positioned at mesohabitats represented by less than 5 % in order to collect samples from the majority of hydraulic conditions available throughout the study site. A short underwater video sequence was taken prior to sampling at each sampling point. It was used to estimate the amount of organic matter at the sampling points. The dominant and subdominant substrate was visually classified into categories according to Hering et al. (2004) and the presence of aquatic vegetation at the sampling point was recorded. The depth was measured using a simple mechanic device (Fig. 1a,b) at 25 points arranged in a matrix of 5 by 5 points with 5 cm distance intervals. Although this procedure was very fast (a few seconds) it might have disturbed the benthic organisms. A sampling net was therefore placed downstream the investigated area before the depth measurements, and the sample was taken immediately afterwards. Samples were taken using a hand net (mesh size 250 µm) from an area of 0.0625 m2 (25 × 25 cm) where the depth was measured. During sampling the substrate was disturbed by hands into the depth of approx. 5 cm. Samples were preserved in 4 % formaldehyde solution. Current velocity was measured after the sampling (portable water flow meter, The Marsh-McBirney Model 2000 FlowMate) in 4 depths (2 cm from the bottom and in 0.2, 0.4 and 0.8 depth from the bottom) at 5 points distributed along the right and upper edge of the disturbed sampled area. Water temperature and discharge data were obtained from the nearest gauge station (Dalečín, approx. 3 km downstream). There are no major tributaries between the gauge station and the study site. Laboratory procedure The samples were sorted under dissecting microscope in the laboratory. All the macroinvertebrates were picked up and stored in 75 % ethanol. Only oligochaetes and chironomid larvae were identified under microscope and counted for this study. Small oligochaete specimens (genera Nais and Pristina) were slide-mounted in the glycerine-water solution (1:5), larger oligochaetes and all chironomid head capsules in the Canada balsam. Oligochaetes were identified according to Hrabě (1954, 1981), Brinkhurst & Jamieson (1971), Timm (1999) and Timm & Veldhijzen van Zanten (2002) and chironomid larvae according to Cranston (1982), Fittkau & Roback (1983), Nocentini (1985) and Schmid (1992). Calculated and estimated environmental parameters For the data analyses averages of the five measured values of the current velocity for each depth were calculated and their standard deviations were used as a measure of the current velocity variability in particular depths. Depth was calculated as the median value of the 25 measured depths. A smooth inclined plane may provide high substrate roughness if calculated as an ordinary standard deviation of the measured depths. Therefore, a plane was fitted linearly through the 25 measured depths (arranged in the matrix of 5 × 5 points) and the residues of the measured depths from the plane were calculated. The standard deviation of these residues was used as the measure of substrate roughness within each sampling area. The amount of particulate organic matter (POM) was estimated using the underwater video sequences. Values 0–3 were assigned to each sampling area according to the quantity of visible POM (0 – no visible sedimented organic particles (usually riffles), 1 – some sedimented organic particles present, 2 – fine organic particles covering most of the mineral substrate, and 3 – the substrate composed mainly of organic parts). Substrate types were coded according to the estimated particle size of the dominant mineral substrates. Values 0–6 were assigned for each substrate type: organic substrate (0), psammal (1), akal (2), microlithal (3), mesolithal (4), macrolithal (5) and megalithal (6). For the description and the particle size of the eschweizerbartxxx author 46 V. Syrovátka et al. substrate types see Hering et al. (2004). Hydraulic parameters that were calculated included: Froude number (Fr) = U/(gD)1/2 Reynolds number (Re) = (UD)/v roughness shear velocity (U*) = U/ (5.75 log10(12 D/kv)) inferred boundary Reynolds number (Re*) = (U* kv)/v where D = depth, g = acceleration due to gravity, kv = substrate roughness, U = current velocity at 0.4 depth and v = kinematic viscosity of water (1.394 × 10–6 m2 s–1 at 7.8 °C). All the measured and calculated environmental variables and their ranges are listed in Table 1. Community parameters As the measure of the oligochaete and chironomid diversity, number of taxa standardized according to Heck et al. (1975) to 50 individuals of each taxonomic group per sample was used. If there were fewer individuals in a sample, the taxa richness was not calculated and the sample was omitted. The proportions of particular feeding strategies within samples (further in text as proportions of collectors/gatherers, predators etc.) were calculated using species traits characteristics listed in the autecological database used in software ASTERICS (AQEM consortium 2002; see also www.aqem.de and Fig. 1. The device used for substrate roughness measurements. Two plastic boards are perforated in the middle (25 holes, Ø 11 mm) and fitted in the metal frame equipped with four adjustable legs. 25 aluminium tubes (Ø 10 mm) go through the holes in both boards and are blocked on the upper board’s surface by two 300 mm long L-shaped aluminium sticks tight together with two rubber bands. A 5 mm thick cellular plastic strip is glued to the inner surface of each aluminium stick to adhere better to the surface of the tubes. Each pair of the aluminium sticks operates 5 tubes. After the positioning of the device at the sampled area, the boards were set horizontally using the adjustable legs. Then the pairs of the aluminium sticks were pulled apart, so that the tubes could slide down to the stream-bed. The aluminium sticks were then released again and locked the tubes in their position. As soon as all the tubes were locked, the whole device was removed from the stream and the tubes were measured on the bank. a) the whole device; b) a detail of the aluminium sticks in the open position. eschweizerbartxxx author Chironomids and oligochaetes in a river 47 www.freshwaterecology.info/). Species traits characteristics of related taxa were used when the characteristics of the respective taxon were not available (6 chironomid taxa). To compare the success of two most frequent feeding strategies (collecting/gathering and grazing/scraping) all taxa were classified into the following feeding groups: pure collectors/ gatherers (col), partial collectors/gatherers and partial grazers/ scrapers (col/gr), pure grazers/scrapers (gr), and others (other). Taxa richness and abundance of particular feeding categories were computed for each sample from 100 random selections of 100 individuals. Random selections were performed using MATLAB Version 6.1.0.450. The classification of taxa is given in Appendix 1. Data analyses For multivariate analyses the species data were log (x+1) transformed. Detrended Correspondence Analysis (DCA) was used to identify the length of the main gradient in the faunal data. In all cases the gradient lengths were between 1.5 and 3.0 standard deviation units (2.3, 2.0, and 1.9 SDU in the oligochaete, chironomid, and combined data respectively) indicating that both the linear and unimodal models were suitable (Ter Braak & Prentice 1988). Correspondence Analysis (CA) was used to search for the main gradients in the combined faunal data and Spearman rank correlation coefficients of the sample scores with the environmental and the community parameters were computed to explain those gradients. Canonical Correspondence Analysis (CCA) (Ter Braak 1986) using stepwise forward selection was performed to identify environmental parameters which could account for the maximum variation in the oligochaete and chironomid data separately. All environmental variables were used in this analysis and the significance of each variable was tested by 999 unrestricted Monte Carlo permutations. CANOCO for Windows version 4.5 was used for all ordinations. Correlations were performed using STATISTICA for Windows version 7. In the next step, two cluster analyses and subsequent two Indicator Species Analyses (Dufrene & Legendre 1997) were performed to group communities according to the oligochaete and chironomid taxonomic structure separately, and to identify the taxa characteristic of the community types obtained by the cluster analysis. Bray/Curtis (Sørensen) dissimilarity index was used as the distance measure and the grouping was done using the Flexible Beta linkage method with beta value set at -0.4. The significance of indicator taxa was tested by 999 Monte Carlo permutations. Only the taxa with the Indicator Value higher than 50 were considered good indicators. Clustering and Indicator Species Analysis were performed using PC-ORD for Windows Version 4.17. Hydraulic conditions were identified as the major factor influencing the structure of the oligochaete and chironomid communities, and therefore the preferences of particular taxa for particular hydraulic conditions expressed as the Froude number were assessed. Medians and 10, 25, 75, and 90 % quantiles of the Froude number weighted by the abundance of a given taxon were calculated for each taxon and the values were used to demonstrate different hydraulic preferences of the taxa. Only the taxa represented by at least 50 individuals were analyzed. The result of this analysis might be affected by the irregularity in the distribution of Froude numbers within the data set. As there were more samples from habitats with low Froude number than from habitats with high Froude number, eight samples were removed to obtain as even distribution of Froude numbers as possible. Results Faunal data In total 6,275 specimens of 35 oligochaete taxa and 10,272 specimens of 56 chironomid taxa were collected. The abundance of oligochaetes and chironomid Table 1. Ranges of measured and calculated environmental variables. Variable Abbreviation Range of values Water depth (cm) depth 12.4–50.1 Substrate roughness (SD of 25 water depths) roughness 0.66–5.77 Current velocity in 2 cm from the bottom (cm s–1 ) cur_2 0.0–54.8 Current velocity in 0.2 depth from the bottom (cm s–1 ) cur_0.2 0.2–65.2 Current velocity in 0.4 depth from the bottom (cm s–1 ) cur_0.4 0.2–95.8 Current velocity in 0.8 depth from the bottom (cm s–1 ) cur_0.8 3.2–132.0 Variability of current velocity in 2 cm (SD) SDvel2 cm 2.55–37.44 Variability of current velocity in 0.2 depth (SD) SDvel0.2 2.05–32.28 Variability of current velocity in 0.4 depth (SD) SDvel0.4 1.41–47.25 Variability of current velocity in 0.8 depth (SD) SDvel0.8 1.79–26.27 Froude number Fr 0–0.56 Reynolds number Re 0–2061 Roughness shear velocity U* 0–40.35 Inferred boundary Reynolds number Re* 0–52.56 Presence of aquatic vegetation VEG 0/1 Category of the amount of particulated organic matter POM 0–3 Category of mineral substrate particle size mineral 0–6 eschweizerbartxxx author 48 V. Syrovátka et al. larvae in samples ranged from 21 to 558 (median = 195) and from 65 to 957 (median = 258) individuals respectively. The number of oligochaete taxa ranged between 3 and 21 (median = 6), the number of chironomid taxa ranged between 15 and 32 (median = 23) and the taxa richness of both taxonomic groups combined ranged between 18 and 50 (median = 28). Total abundances and frequencies of all taxa are listed in Appendix 1. Abundance and taxa richness patterns The total abundance and diversity of chironomid communities were independent of hydraulic conditions (Fig. 2c). Nevertheless, the taxa richness of chironomids was logarithmically dependent on their total abundance (Linear regression model, Adjusted R-squared = 0.9836, p < 0.001) (Fig. 2b), suggesting their high diversity (Fig. 2a) and their ability to find favourable conditions in different environments within the sampled river section. Both chironomid total abundance and taxa richness were limited by the availability of food and space resources rather than hydraulic conditions. The total abundance of oligochaetes was also independent of hydraulic conditions but their diversity was negatively related to the Froude number (Spearman Rank Correlation, R = 0.47, p < 0.05) (Fig 2c). Many oligochaete taxa occurred in pools of the studied river section but only few were able to succeed and reach high densities in habitats with Froude number higher than 0.1. Fig. 2. Scatter plots showing the relationships between a) the diversity and total abundance of the oligochaete and chironomid communities, b) their taxa richness and total abundance, c) their diversity and Froude number. Only the communities with more than 50 individuals are displayed. eschweizerbartxxx author Chironomids and oligochaetes in a river 49 Main gradients in the combined data The first four CA axes explained almost 48 % of the variance in the faunal data and the sum of all eigenvalues was 1.223 (Table 2, Fig. 3). The sample scores on the first CA axis were correlated most with the amount of POM (positively) and with hydraulic parameters (negatively) such as the inferred boundary Reynolds number, Froude number, roughness shear velocity, current velocity and the current velocity variability in different depths (Table 2). Considering the community parameters, the first CA axis correlated positively with the proportion of predators and active filter-feeders and with the taxa richness 9DULDEOH $; $; $; $; GHSWK     FXUB     FXUB     FXUB     FXUB     6'YHOFP     6'YHO     6'YHO     6'YHO     )U     5H     8     5H     9(*     320     PLQHUDO     6     6BFKLU     FKLU GLYHUVLW\     1BFKLU     6BROLJ     ROLJ GLYHUVLW\     &2/B6     *5B6     *5B1     *$     $)     3)     35     *5BFKLU     *$BFKLU     $)BFKLU     3)BFKLU     35BFKLU     (LJHQYDOXHV     &XPXO YDU     (QYLURQPHQWDOYDULDEOHV&RPPXQLW\SDUDPHWHUV Table 2. Eigenvalues of the CA axes and Spearman rank correlations between the CA axes and environmental and community parameters. Only parameters that significantly correlated with at least one CA axis are included. Stars indicate the significance of the correlations (*** – p < 0.001, ** – p < 0.01, * – p < 0.05). S – total taxa richness, S_chir – chironomid taxa richness, chir diversity – chironomid diversity, N_chir – chironomid abundance, S_olig – oligochaete taxa richness, olig diversity – oligochaete diversity, COL_S – the taxa richness of collectors/gatherers, GR_S – taxa richness of grazers/scrapers, GR_N – abundance of grazers/scrapers, %GA – proportion of collectors/gatherers, %AF – proportion of active filter-feeders, %PF – proportion of passive filter-feeders, %PR – proportion of predators, %GR_chir – proportion of grazers/scrapers within chironomids, %GA_chir – proportion of collectors/gatherers within chironomids, %AF_chir – proportion of active filter-feeders within chironomids, %PF_chir – proportion of passive filter-feeders within chironomids, %PR_chir – proportion of predators within chironomids. For abbreviations of environmental variables see Table 1. eschweizerbartxxx author 50 V. Syrovátka et al. of collectors/gatherers, and negatively with the taxa richness and abundance of grazers/scrapers (Table 2). This axis correlated also with the proportions of collectors/gatherers (positively) and grazers/scrapers (negatively), but only if calculated from chironomid data alone (Table 2, Fig. 3). The sample scores on the second CA axis were positively correlated with the presence of aquatic vegetation and weakly with the current velocity variability in different depths. Of the community parameters, the second CA axis correlated most with the taxa richness and total abundance of chironomids (positively) (Table 2). These parameters separated habitats rich in chironomids from poorer ones so that the vegetated riffles and runs together with pools rich in POM appeared in the upper part of the CA ordination diagram, while the habitats with bare mineral substrate in the lower part (Fig. 3). The second CA axis correlated also with the proportion of the passive filter-feeders, and with the abundance of grazers and weakly with the total taxa richness (positively) and the proportion of the collectors/gatherers (negatively) (Table 2, Fig. 3). The sample scores on the third CA axis were negatively correlated with the current velocity variability in different depths and with the presence of aquatic vegetation. These correlations were stronger than those between the second CA axis and the same parameters (Table 2). The third CA axis also weakly correlated with the Froude number, current velocity in 0.8 depth, water depth and the category of the mineral substrate particle size (Table 2). Of the community parameters, the third CA axis correlated with the abundance and taxa richness of grazers and the proportion of the passive filter-feeders (negatively) and the active filterfeeders (positively) (Table 2). It is difficult to interpret the directions of the second and the third largest variability in the data using the available parameters. Both the second and the third CA axes were correlated with similar parameters and most of these correlations were rather weak. Nevertheless, it seems that the direction of the second largest variability might be explained by the taxa richness and abundance of chironomids, while the direction of the third one by the presence of aquatic vegetation and the associated variability in current velocity, though the presence of aquatic vegetation influences also the taxa richness and abundance of chironomids. The fourth ordination axis weakly correlated only with the particle size of the mineral substrate (Table 2). Oligochaete community structure in relation to environmental parameters The CCA suggested that the amount of POM followed by hydraulic parameters were the most significant parameters explaining the highest portion of variability within the oligochaete data. Using stepwise forward selection the amount of POM, category of the mineral substrate particle size, the substrate roughness and the presence/absence of aquatic vegetation, explaining 21.36, 7.51, 6.35, and 5.2 % of the total variance in the oligochaete data respectively, were selected as statistically significant parameters influencing the oligochaete community structure (Fig. 4). Fig. 3. CA ordination diagram showing the position of samples on the first and second CA axes. The area of samples reflects the total chironomid abundance and the symbols’ grey tones indicate Froude number. Proportions of chironomid feeding strategies are displayed as passive variables. (%AF proportion of active filter-feeding, %GA collecting/ gathering, %GR grazing/scraping, %PF passive filter-feeding, %PR predation, ᮀ samples from habitats with aquatic vegetation, ᭺ the other samples) eschweizerbartxxx author Chironomids and oligochaetes in a river 51 Oligochaete community types Cluster analysis identified three types of oligochaete communities (Fig. 5), though Stylodrilus sp. and N. alpina comprised the majority (from 60 % to 98 %) of the oligochaete community at almost all sampled patches: The first type included communities from pool habitats with mineral substrate and from riffles with aquatic mosses (10 patches). The communities of these quite different habitats were grouped probably because of their low diversity and total abundance (Fig. 6). Only the most common taxa occurred at these habitats. The communities were dominated by N. alpina followed by Stylodrilus sp. or N. stolci that was found in runs and riffles with vegetation only (Fig. 4). Of the other taxa, Propappus volki was the only one occurring within these communities in considerable proportions. As all these taxa were common in other samples as well, no indicator taxa were identified for this community type. The second type included communities from run and riffle habitats with mineral substrate and usually with aquatic vegetation (10 patches). The diversity was similar to the previous type. The communities were dominated by Stylodrilus sp. followed by N. alpina and P. volki. The proportions of Stylodrilus sp. and P. volki were higher than within the previous community type and P. volki was identified as a good indicator species (Table 3) (Fig. 4). The third community type was characteristic of pools (Fig. 6) with high amount of POM (7 patches) and also living parts of terrestrial plants (grass leaves) occurred at three patches. It had almost twice as high taxa richness as both the previous types (Fig. 6). N. alpina dominated followed by Stylodrilus sp., Aulodrilus japonicus, Tubificidae with hairs, Specaria josinae and Limnodrilus sp. occurred in considerably high abundances and were identified as indicators of this community type (Table 3) (Fig. 4). Chironomid community structure in relation to environmental parameters Similarly to the oligochaetes, the CCA suggested that the variability in the chironomid data was best explained by the amount of POM followed by hydraulic parameters. Using stepwise forward selection, the amount of POM, the current velocity variability near the bottom and the particle size of the mineral substrate, explaining 23.72, 8.63 and 4.31 % of the total variance respectively, were selected as statistically Fig. 4. CCA ordination diagram (the first and second axes) showing the positions of oligochaete taxa in relation to environmental variables significantly influencing the oligochaete community structure. Only the taxa with species fit and species weight > 10 % are displayed. Froude number is displayed as a passive variable. (mineral – the category of mineral substrate grain size, POM – the category of the amount of particulate organic matter, roughness – substrate roughness, VEG – the occurrence of aquatic vegetation, Fr – Froude number, ᮀ indicator taxa of the second community type, ᭡ indicator taxa of the third community type, + other taxa). Fig. 5. Dendrogram showing the clustering of oligochaete communities into the three oligochaete community types. eschweizerbartxxx author 52 V. Syrovátka et al. Table 3. Indicator taxa of the oligochaete community types. Indicator value (Ind. value), p-value (p) and median abundance within each community type are shown for each taxon. Values in grey refer to the habitat type of which the taxa are indicative. Fig. 6. Box-plots of the diversity, total abundance, and Froude number of the three oligochaete and four chironomid community types (square – median, box – quartiles, whiskers – ranges). eschweizerbartxxx author Chironomids and oligochaetes in a river 53 significant parameters influencing the structure of the chironomid community (Fig. 7). Chironomid community types In general, the taxonomic composition of chironomid communities was similar across all sampled patches. Most taxa occurred in the majority of habitat types but their proportions differed. Four different types of chironomid communities were identified using cluster analysis (Fig. 8). These community types may be interpreted in terms of different hydraulic conditions (Fig. 6). The first community type occurred at three sampled patches with minor current (Fig. 6) and high amount of POM. The total chironomid abundance was high (Fig. 6) and Microtendipes pedellus-Gr. dominated. Further characteristics of this community type were high relative abundances of Prodiamesa olivacea, Thienemannimyia/Conchapelopia-Gr., Corynoneura sp. and taxa from the Tanytarsini tribe (Micropsectra sp., Tanytarsus sp., Tanytarsus brundini/curticornis and Cladotanytarsus sp.), and the presence of different taxa from the subfamily Tanypodinae (Ablabesmyia sp., Apsectrotanypus trifascipennis, Natarsia sp. and Zavrelimyia sp.). In contrast to the other community types, relative abundances of Synorthocladius semivirens and Orthocladius species were low. Ten good indicators of this group were identified (Table 4) (Fig. 7). The second community type (9 patches) occurred at habitats with low current (Fig. 6) and mineral substrate sometimes covered with fine particulate organic matter (FPOM). It was characterized by the dominance of S. semivirens and high relative abundances of Orthocladius cf. obumbratus and Orthocladius cf. rubicundus. M. pedellus-Gr., Thienemannimyia/ Conchapelopia-Gr., Corynoneura sp. and taxa from the Tanytarsini tribe (Tanytarsus sp., T. brundini/curticornis, Micropsectra sp. and Cladotanytarsus sp.) were again the most abundant taxa. If compared to the first community type, the same taxa from the Tanypodinae subfamily were present although in lower densities. Most of the taxa were common in other community types. S. semivirens was identified as a single indicator with low indicator value (Table 4) (Fig. 7). The third community type occurred in runs and riffles (Fig. 6) with mineral substrate sometimes with aquatic mosses (8 patches). The lowest total chironomid abundances were observed (Fig. 6). O. cf. obumbratus, S. semivirens and O. cf. rubicundus were the most dominant taxa, together accounting for 50 – 80 % of the entire community. No Tanypodinae taxa were present except for Thienemannimyia/ConchapelopiaGr., and practically no individuals of M. pedellus-Gr. Similarly, the relative abundances of Corynoneura sp. and the Tanytarsini taxa were lower. On the contrary, the proportions of Orthocladius rivicola-Gr., Eukiefferiella and Tvetenia species and Rheotanytarsus sp. were higher than in the previous community types. One good and two weak indicators were identified (Table 4) (Fig. 7). The last community type was characteristic of runs and riffles (Fig. 6), often with aquatic vegetation. Similarly to the first community type, high total chironomid abundances were observed (Fig. 6). Rheotanytarsus sp. and both Tvetenia species dominated at the expense of O. cf. obumbratus, O. cf. rubicundus and Fig. 7. CCA ordination diagram (the first and the second axes) showing the positions of chironomid taxa in relation to environmental variables significantly influencing the chironomid community structure. Only the taxa with species fit and species weight > 10 % are displayed. Froude number is displayed as a passive variable. (mineral – the category of mineral substrate grain size, POM – the category of the amount of particulate organic matter, SDvel2 cm – the current velocity variability 2 cm above the bottom. Fr – Froude number, ᭿ indicator taxa of the first community type, ᭺ indicator taxa of the second community type, ᭡ indicator taxa of the third community type, ᮀ indicator taxa of the fourth community type, + other taxa) eschweizerbartxxx author 54 V. Syrovátka et al. S. semivirens, whose proportions decreased. Conversely, the proportions of Eukiefferiella species and Potthastia longimana increased to their observed maximum. The proportions of Corynoneura sp. and the Tanytarsini taxa were similar to those observed in the previous community type. Seven good indicators were identified (Table 4) (Fig. 7). Hydraulic preferences of selected taxa Hydraulic preferences of 6 oligochaete and 23 chironomid taxa were assessed (Fig. 9). The taxa showed different preferences for hydraulic conditions expressed as the Froude number. Generally, it was possible to identify i) taxa occurring only in pools with very low Froude number, ii) taxa occurring only in riffles and runs, and iii) taxa occupying most of (or all) the samTable 4. Indicator taxa of the chironomid community types. Indicator value (Ind. value), p-value (p) and median abundance within each community type are shown for each taxon. Values in gray refer to the habitat type of which the taxa are indicative. Fig. 8. Dendrogram showing the clustering of chironomid communities into the four chironomid community types. eschweizerbartxxx author Chironomids and oligochaetes in a river 55 pled habitats and having low or no preferences for hydraulic conditions. Among the oligochaetes, three taxa preferred narrow ranges of Froude number: A. japonicus and Tubificidae with hairs occurred only in pools with very low Froude number, while N. stolci preferred runs (Fig. 9). The other three oligochaete taxa did not show such strong preferences: N. alpina was almost evenly distributed across all the sampled patches, Stylodrilus sp. slightly preferred runs and riffles and only P. volki occurred almost exclusively in runs and riffles (Fig. 9). Among the chironomids, only M. pedellus Gr. and P. olivacea showed strong preferences for particular hydraulic conditions. They occurred only in pools with low Froude number (Fig. 9). Some taxa showed rather strong preferences for riffles (Tvetenia bavarica/ calvescens, T. discoloripes/verralli, Eukiefferiella devonica/ilkleyensis, Polypedilum laetum-Gr. and Rheotanytarsus sp.) or runs and riffles (O. rivicola-Gr., E. lobifera, Cricotopus bicinctus-Gr. and P. longimana) (Fig. 9). The other chironomid taxa occurred more or less across the whole range of the available hydraulic conditions and usually showed weak preferences for pools or runs: e.g. taxa from the Tanytarsini tribe except for Rheotanytarsus sp. (Cladotanytarsus sp., Micropsectra sp. and both the Tanytarsus sp. and T. brundini/curticornis) preferred pools, but occurred also in runs and riffles (Fig. 9). Discussion The importance of hydraulic conditions The major influence of hydraulic conditions on the structure of benthic macroinvertebrate communities has already been reported (e.g. Orth & Maughan 1983, Jowett et al. 1991, Lancaster & Hildrew 1993, Quinn & Hickey 1994, Benbow et al. 1997, Mérigoux & Dolédec 2004). Also in this study, hydraulic conditions, inversely related to the amount of sedimented POM, best explained the main gradient in the combined data, along which both the taxonomic and functional structure of the communities changed. Surprisingly, of the measured and calculated hydraulic Fig. 9. Hydraulic preferences of frequent taxa. Medians (circles), lower and upper quartiles (thick lines) and 10 % and 90 % quantiles (thin lines) of Froude number are weighted by the abundances of taxa. The area of the circles reflects the total abundance of particular taxa. Tick marks pointing upwards indicate the position of the samples on the gradient of the Froude number. Pool, run and riffle habitats are identified according to Froude number (Jowett 1993). eschweizerbartxxx author 56 V. Syrovátka et al. variables, current velocity in 0.8 depth (from bottom) was the best explanatory variable of this gradient, although it was closely followed by the inferred boundary Reynolds number, current velocity in 0.2 and 0.4 depth, Froude number and roughness shear velocity. The substitutability of the simple current velocity for complex hydraulic variables might be caused by a relatively low heterogeneity in water depth and substrate roughness (Quinn & Hickey 1994, Brooks et al. 2005) in the Svratka River. It is also surprising that the amount of sedimented POM, estimated from underwater video sequences and classified into only four categories, was identified as a more important variable, explaining the structure of both separate oligochaete and chironomid communities better than the measured and calculated hydraulic variables. Nevertheless, already Rabeni & Minshall (1977) demonstrated the influence of POM on the structure of macroinvertebrate community, and the spatial distribution of chironomid larvae in gravels of the River Pank was also most correlated with fine detritus (Ruse 1994). In this study, the amount of POM explained about 21 and 24 % while the hydraulic variables about 14 and 20 % of the variance in the oligochaete and chironomid data respectively. In the case of oligochaetes, the samples seemed to be divided into organically rich with many oligochaete taxa and poor containing only few common taxa. Within the organically poor samples the substrate roughness and the occurrence of aquatic vegetation played the major role and hydraulic conditions were less important. In the case of chironomids the amount of POM seemed to be replaceable by some hydraulic variables and the community structure changed more gradually along the gradient of the amount of sedimented POM (hydraulic conditions). Potential influence of substrate characteristics A part of the variability within the data could be explained by some substrate characteristics. In the case of oligochaetes, the substrate characteristics might have represented the thickness of the colonisable substrate layer (Stanford & Ward 1988). It is quite curious that both the substrate particle size and substrate roughness were chosen by the CCA, which indicates that these two variables probably expressed different substrate qualities. In the case of combined data, the second largest variability could be best explained by chironomid taxa richness and abundance that seemed to reflect the quantity of available food and space resources across the whole range of hydraulic conditions. The quantity of available food and space resources could be probably interpreted in terms of different substrate characteristics. In this respect, aquatic vegetation in runs and riffles and large quantities of sedimented POM in pools provided the most favourable conditions. Aquatic vegetation highly enlarges the substrate surface and may also alter near-bed hydraulic conditions and promote sedimentation of fine particles (Glime & Clemons 1972, Sand-Jensen & Mebus 1996). Higher abundance and taxa richness of chironomids at vegetated habitats was reported earlier e.g. by Wright et al. (1983), Nolte (1989) and Schmid (1993). On the other hand, pools rich in POM offer plenty of food to collecting/gathering and active filter-feeding taxa with low oxygen demands and are likely to satisfy food demands of large numbers of individuals (e.g. Culp et al. 1983). Functional feeding strategies As well as the taxonomic structure, also the functional structure of macroinvertebrate communities changes and reflects the spatial variability within a stream (Poff & Ward 1990, Scarsbrook & Townsend 1993, Townsend & Hildrew 1994, Resh et al. 1994, Wohl et al. 1995, Lamouroux et al. 2004). The taxa richness of collectors/gatherers and grazers/scrapers changed along the main CA axis. Negative association of collectors/gatherers with hydraulic variables was recently reported e.g. by Quinn & Hickey (1994), Rempel et al. (2000), Doisy & Rabeni (2001) or Mérigoux & Dolédec (2004). Lower current velocities enable sedimentation of fine organic particles and therefore support collectors/gatherers. On the other hand, higher velocities benefit periphyton in nutrient-poor streams (Horner et al. 1990) and therefore support grazers/scrapers – the consumers of periphytic algae. The taxa richness of collectors/gatherers and grazers/scrapers changed along the gradient of hydraulic conditions, and therefore similar changes in the proportions of collectors/gatherers and grazers/scrapers were expected. Nevertheless, the proportions of these feeding strategies significantly correlated with the first CA axis only if calculated from chironomid data alone. This was the case because the two most abundant oligochaete collectors/gatherers (Stylodrilus spp. juv. and P. volki) preferred riffles and runs, while the most abundant oligochaete species, a partial grazer/scraper N. alpina did not show any preference for particular hydraulic conditions. In this respect it seemed that the proportions of functional feeding groups within the oli- eschweizerbartxxx author Chironomids and oligochaetes in a river 57 gochaete community did not follow the gradient of hydraulic conditions as was observed in the chironomid community (with two exceptions of uncommon predators, all the oligochaete taxa were classified either as pure collectors/gatherers or partial collectors/gatherers and partial grazers/scrapers). This can probably be explained by different behaviour of oligochaetes versus chironomids. Oligochaetes usually exploit interstitial spaces hidden from the rough hydraulic conditions (Usseglio-Polatera et al. 2000), while tube-building chironomids can stand quite rough hydraulic conditions in the upper layer of the substrate, where the food resources are influenced most by hydraulic conditions. Similarly to the course of collecting/gathering strategy within chironomid community, also the proportions of active filter-feeders and predators decreased along with the increasing hydraulic stress. Active filter-feeders feed on sedimented POM and therefore are favoured at habitats with high sedimentation rates. Predators in pools can probably move about on the substrate without the danger of being swept away by the current. In contrast, Doisy & Rabeni (2001) found no relationship between hydraulic variables and the proportion of predators, while in the study of Rempel et al. (2000) predators were even positively associated with Reynolds number. This disagreement was probably caused by different fractions of the macroinvertebrate communities that were analyzed (only a part of the macroinvertebrate community, e.g. without predatory stoneflies, was analyzed in this study) and by different identification levels (chironomids were identified at the family and subfamily level in Doisy & Rabeni (2001) and Rempel et al. (2000) respectively). It is also possible that the proportion of predators differ in different rivers. The proportion of passive filter-feeders, attributable only to a chironomid Rheotanytarsus sp., was possibly influenced by the occurrence of aquatic vegetation. It can be explained by the benefit of passive filter-feeders from the unimpeded velocities and turbulence transmitted through the open plant stands (Wallace 1980, Iversen et al. 1985, Sand-Jensen & Pedersen 1999). This hypothesis is supported by Schmid (1993), who found Rheotanytarsus nigricauda Fittkau, 1960 in distinctly higher densities in the epilithic moss Fontinalis antipyretica than in the neighbouring mineral substrate. Notes on the ecology of frequent taxa The oligochaete taxa richness patterns confirmed the general preference of most oligochaete taxa for hydraulically smooth conditions promoting creation of patches rich in sedimented POM (Schmedtje & Colling 1996). Nevertheless, the most abundant oligochaete Stylodrilus sp., accounting for 40 % of the whole oligochaete community, preferred runs and riffles where it dominated. P. volki even indicated runs and riffles. Both these taxa were able to succeed in hydraulically rough conditions because of their adaptation to living in floating sands and gravel bars: P. volki is able to exploit interstitial spaces in the substrate and it can attach itself to the substrate surface by adhesive substance (Bird 1982, Petto & Humpesch 1992). Stylodrilus sp. can form relatively firm mucous tubes into which it hides during disturbances (Mrázek 1926). N. stolci preferred runs too and was strongly associated with aquatic vegetation though it is referred to be a typical species of stony substrates (Learner et al. 1978, Verdonschot 1999). In contrast, N. alpina could be considered a very adaptive species since it occurred in all samples and dominated in most of them. Chironomids S. semivirens, O. cf. rubicundus and O. cf. obumbratus showed similar plasticity. All these taxa are classified as partial collectors/gatherers and partial grazers/scrapers (AQEM consortium 2002) and feeding on both the FPOM and algae probably enables them to succeed in wide range of hydraulic conditions. Unlike the oligochaetes, habitat preferences of most chironomids reflected their feeding behaviour. Collectors/gatherers and active filter-feeders (primarily taxa from the Chironomini tribe) preferred pools, while grazers/scrapers (Tvetenia and Eukiefferiella species) and the passive filter-feeder Rheotanytarsus sp. preferred riffles and runs. Conclusions Even though a limited number of samples were analyzed, large spatial variability in the taxonomic and the functional structure of the investigated communities was observed and it was further possible to relate this variability to environmental variables. The sampling design was set up to reduce the temporal and large-scale spatial variation. The results of this study are therefore associated with the studied river section and the sampling season, but nevertheless contribute to the knowledge of lotic macroinvertebrates spatial distribution patterns. Although further work is needed to understand the spatial variability in the macroinvertebrate communities and the hydraulic preferences of particular taxa at more general level, it was shown that the investigated communities clearly reflected environ- eschweizerbartxxx author 58 V. Syrovátka et al. mental conditions. This indicates that any alteration of physical habitat induced for example by human activities or global changes (see Pedersen 2009 in this issue) might influence both the taxonomic and the functional structure of the macroinvertebrate communities in whole river segments. Acknowledgements We are indebted to Marcela Růžičková and Petr Pařil for their assistance in the field work and to Lenka Tajmrová for language corrections. Thanks also to two anonymous reviewers for valuable comments on the manuscript. This study was supported by the grant from the Ministry of Education of the Czech Republic (MSM 0021622416), grant from the Czech Science Foundation (GA CR 524/05/H536) and by international projects Euro-limpacs (GOCE-CT-2003-505540) and STAR (EVK1-CT 2001-00089). References Allan, J. D., 1995: Stream ecology. – Chapman & Hall, London, pp. 1–388. AQEM consortium, 2002: Manual for the application of the AQEM method. A comprehensive method to assess European streams using benthic macroinvertebrates, developed for the purpose of the Water Framework Directive. Version 1.0, February 2002. Armitage, P. D., Pardo, I. & Brown, A., 1995: Temporal constancy of faunal assemblages in ‘mesohabitats’ – Application to management? – Arch. Hydrobiol. 133: 367–387. Beisel, J. N., Usseglio-Polatera, P., Thomas, S. & Moreteau, J. C., 1998: Stream community structure in relation to spatial variation: the influence of mesohabitat characteristics. – Hydrobiologia 389: 73–88. Benbow, M. E., Burky, A. J. & Way, C. M., 1997: Larval habitat preference of the endemic Hawaiian midge, Telmatogeton torrenticola Terry (Telmatogetoninae). – Hydrobiologia 346: 129–136. Bird, G. J., 1982: Distribution, life cycle and population dynamics of the aquatic enchytraeid Propappus volki (Oligochaeta) in an English chalkstream. – Holoartic Ecology 5: 67–75. Bouckaert, F. W. & Davis, J., 1998: Microflow regimes and the distribution of macroinvertebrates around stream boulders. – Freshwat. Biol. 40: 77–86. Brinkhurst, R. O. & Jamieson, B. G. M., 1971: Aquatic Oligochaeta of the World. – Oliver & Boyd, Edinburgh, pp. 1–860. Brooks, A. J., Haeusler, T., Reinfelds, I. & Williams, S., 2005: Hydraulic microhabitats and the distribution of macroinvertebrate assemblages in riffles. – Freshwat. Biol. 50: 331–344. Collier, K., 1993: Flow preferences of larval Chironomidae (Diptera) in Tongariro River. – N. Z. J. Mar. Freshwat. Res. 27: 219–226. Cranston, P. S., 1982: A key to the larvae of the British Orthocladiinae (Chironomidae). – Sci. Publ. Freshwat. Biol. Assoc. 45: 1–152. Culp, J. M., Walde, S. J. & Davies, R. W., 1983: Relative importance of substrate particle size and detritus to stream benthic macroinvertebrate microdistribution. – Can. J. Fish. Aquat. Sci. 40: 1568–1574. Cummins, K. W., Minshall, G. W., Sedell, J. R., Cushing, C. E. & Petersen, R. C., 1984: Stream ecology theory. – Verh. Internat. Verein. Limnol. 20: 1818–1827. Davis, J. A. & Barmuta, L. A., 1989: An ecologically useful classification of mean and near-bed flows in streams and rivers. – Freshwat. Biol. 21: 271–282. Death, R. G. & Winterbourn, M. J., 1994: Environmental stability and community persistence: a multivariate approach. – J. N. Amer. Benthol. Soc. 13: 125–139. Doisy, K. E. & Rabeni, C. F., 2001: Flow conditions, benthic food resources, and invertebrate community composition in a low-gradient stream in Missouri. – J. N. Amer. Benthol. Soc. 20: 17–32. Dufrene, M. & Legendre, P., 1997: Species assemblages and indicator species: the need for a flexible asymmetrical approach. – Ecol. Monogr. 67: 345–366. Erséus, C., 2005: Phylogeny of oligochaetous Clitellata. – Hydrobiologia 535/536: 357–372. Fesl, C., 2002: Biodiversity and resource use of larval chironomids in relation to environmental factors in a large river. – Freshwat. Biol. 47: 1065–1087. Fittkau, E. J. & Roback, S. S., 1983: The larvae of Tanypodinae (Diptera: Chironomidae) of the Holarctic region – Keys and diagnoses. – Entomol. Scand. Suppl. 19: 33–110. Glime, J. M. & Clemons, R. M., 1972: Species diversity of stream insects on Fontinalis spp. compared to diversity on artificial substrates. – Ecology 53: 458–464. Habdija, I., Habdija, B. P., Matoničkin, R., Kučinic, M., Radanovic, I., Miliša, M. & Mihaljevic, Y., 2004: Current velocity and food supply as factors affecting the composition of macroinvertebrates in bryophyte habitats in karst running water. – Biologia 59: 577–593. Heck, K. L., van Belle, G. & Simberloff, D., 1975: Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. – Ecology 56: 1459–1461. Hering, D., Moog, O., Sandin, L. &Verdonschot, P. F. M., 2004: Overview and application of the AQEM assessment system. – Hydrobiologia 516: 1–20. Hoover, T. M., Richardson, J. S. & Yonemitsu, N., 2006: Flowsubstrate interactions create and mediate leaf litter resource patches in streams. – Freshwat. Biol. 51: 435–447. Horner, R. R., Welch, E. B., Seeley, M. R. & Jacoby, J. M., 1990: Responses of periphyton to changes in current velocity, suspended sediment and phosphorus concentration. – Freshwat. Biol. 24: 215–232. Hrabě, S. (ed.), 1954: Klíč k určování zvířeny ČSR [key to the Czechoslovak fauna]. Vol. 1. – ČSAV, Praha, pp. 1–540. (In Czech). Hrabě, S., 1981: Vodní máloštětinatci (Oligochaeta) Československa [aquatic Oligochaeta of Czechoslovakia]. – Acta Universitatis Carolinae, Biologia 1979: 1–168. (In Czech, English summ.) Hynes, H. B. N., 1970: The Ecology of Running Waters. – Liverpool University Press, Liverpool: pp. 1–555. Iversen, T. M., Thorup, J., Hansen, T. & Olesen, J., 1985: Quantitative estimates and community structure of invertebrates in a macrophyte rich stream. – Arch. Hydrobiol. 102: 291– 301. Jowett, I. G., 1993: A method for objectively identifying pool, run, and riffle habitats from physical measurement. – N. Z. J. Mar. Freshwat. Res. 27: 241–248. eschweizerbartxxx author Chironomids and oligochaetes in a river 59 Jowett, I. G., Richardson, J., Biggs, B. J. F., Hickey, C. W. & Quinn, J. M., 1991: Microhabitat preferences of benthic invertebrates and the development of generalised Deleatidium spp. habitat suitability curves, applied to four New Zealand rivers. – N. Z. J. Mar. Freshwat. Res. 25: 187–199. Lamouroux, N., Dolédec, S. & Gayraud, S., 2004: Biological traits of stream macroinvertebrate communities: effects of microhabitat, reach, and basin filters. – J. N. Amer. Benthol. Society 23: 449–466. Lancaster, J. & Hildrew, A., 1993: Flow refugia and the microdistribution of lotic macroinvertebrates. – J. N. Amer. Benthol. Soc. 12: 385–393. Learner, M. A., Lochhead, G. & Hughes, B. D., 1978: A review of the biology of British Naididae (Oligochaeta) with emphasis on the lotic environment. – Freshwat. Biol. 8: 357–375. Leopold, L. B., 1994:A View of the River. – Harvard University Press, Cambridge, Massachusetts, pp. 1–298. Lindegaard, C. & Brodersen, K. P., 1995: Distribution of Chironomidae (Diptera) in the river continuum. In: Cranston, P. (ed.): From genes to ecosystems. – CSIRO Publications, Melbourne, pp. 257–271. Mérigoux, S. & Dolédec, S., 2004: Hydraulic requirements of stream communities: a case study on invertebrates. – Freshwat. Biol. 49: 600–613. Mrázek, A., 1926: K biologii rodu Stylodrilus. [biology of genus Stylodrilus] – Věst. Král. Čes. Spol. Nauk 2: 1–13. (in Czech) Nocentini, A., 1985: Guide per il riconoscimento delle specie animali delle acque interne Italiane, 29: Chironomidi, 4 (Diptera: Chironomidae: Chironominae, larvae). – Consiglio nazionale delle ricerche, pp. 1–186. Nolte, U., 1989: Chironomid communities of lotic mosses. – Acta Biol. Debr. Oecol. Hung. 3: 249–255. Orth, D. J. & Maughan, O. E., 1983: Microhabitat preferences of benthic fauna in a woodland stream. – Hydrobiologia 106: 157–168. Ortiz, J. D., Martí E. & Puig, M. A., 2006: Influences of a point source on the microhabitat distribution of stream benthic macroinvertebrates. – Arch. Hydrobiol. 165: 469–491. Pedersen M. L., 2009: Effects of channelisation, riparian structure and catchment area on physical habitats in small lowland streams. – Fundam. Appl. Limnol., Arch. Hydrobiol. 174: 89–99. Petto, H. & Humpesch, U. H., 1992: Time series analysis of developmental cycles of oligochaetes in relation to environmental factors in the River Danube. – Arch. Hydrobiol. 124: 53–67. Poff, N. L. & Ward, J. V., 1990: Physical habitat template of lotic systems: recovery in the context of historical pattern of spatiotemporal heterogeneity. – Environ. Manage. 14: 629–645. Quinn, J. M. & Hickey, C. W., 1994: Hydraulic parameters and benthic invertebrate distributions in two gravel-bed New Zealand rivers. – Freshwat. Biol. 32: 489–500. Quinn, J. M., Hickey, C. W. & Linklater, W., 1996: Hydraulic influences on periphyton and benthic macroinvertebrates: simulating the effects of upstream bed roughness. – Freshwat. Biol. 29: 211–220. Rabeni, C. F. & Minshall, G. W., 1977: Factors affecting the microdistribution of stream benthic insects. – Oikos 29: 33–43. Rempel, L. L., Richardson, J. S. & Healey, M. C., 2000: Macroinvertebrate community structure along gradients of hydraulic and sedimentary conditions in a large gravel-bed river. – Freshwat. Biol. 45: 57–73. Resh, V. H., Hildrew, A. G., Statzner, B. & Townsend, C. R., 1994: Theoretical habitat templets, species traits, and species richness: a synthesis of long-term research on the Upper Rhône River in the context of currently developed ecological theory. – Freshwat. Biol. 31: 539–554. Rulík, M., 1995: The vertical distribution of macrozoobenthos in river bed sediments (Morava River, Czech Republic). – Folia Fac. Sci. Nat. Univ. Masarykiane Brunensis, Biologia 91: 129–142. Ruse, L. P., 1994: Chironomid microdistribution in gravel of an English chalk river. – Freshwat. Biol. 32: 533–551. Sand-Jensen, K. & Mebus, J. R., 1996: Fine-scale patterns of water velocity within macrophyte patches in Danish streams. – Oikos 76: 169 –180. Sand-Jensen, K. & Pedersen, O., 1999: Velocity gradients and turbulence around macrophyte stands in streams. – Freshwat. Biol. 42: 315–328. Scarsbrook, M. R. & Townsend, C. R., 1993: Stream community structure in relation to spatial and temporal variation: a habitat templet study of two contrasting New Zealand streams. – Freshwat. Biol. 29: 395–410. Schmedtje, U. & Colling, M., 1996: Ökologische Typisierung der aquatischen Makrofauna. – Informationsberichte des Bayerischen Landesamtes für Wasserwirtschaft 4, München, pp. 1–548. Schmid, P., 1992: A key to the larval Chironomidae and their instars from Austrian Danube region, streams and rivers. Wasser und Abwasser, Supplement 3. – Federal Institute for Water Quality, Wien – Kaisermühlen, pp. 1–514. Schmid, P. E., 1993: Random patch dynamics of larval Chironomidae (Diptera) in the bed sediments of a gravel stream. – Freshwat. Biol. 30: 239–255. Stanford, J. A. & Ward, J. V. (1988): The hyporheic habitat of rive ecosystem. – Nature 355: 64–66. Statzner, B., Gore, J. A. & Resh, V. H., 1988: Hydraulic stream ecology: observed patterns and potential applications. – J. N. Amer. Benthol. Soc. 7: 307–360. Syrovátka, V. & Brabec, K., 2008: The response of chironomid larvae to hydraulic conditions: Synorthocladius semivirens (Diptera: Chironomidae) in two different rivers. – Bol. Mus. Mun. Funchal, Suppl. 13: 161–167. Ter Braak, C. J. F., 1986: Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. – Ecology 67: 1167–1179. Ter Braak, C. J. F. & Prentice, I. C., 1988: A theory of gradient analysis. – Adv. Ecol. Res. 18: 271–317. Timm, T., 1999: A guide to the Estonian Annelida. – Estonian Academy Publishers, Tartu Tallinn, pp. 1–208. Timm, T. & Veldhijzen van Zanten, H. H., 2002: Freshwater Oligochaeta of North-West Europe. CD-ROM. – Center for Taxonomic Identification (ETI) and University of Amsterdam, the Netherlands. Townsend, C. R. & Hildrew, A. G., 1994: Species traits in relation to a habitat templet for river systems. – Freshwat. Biol. 31: 265–275. Usseglio-Polatera, P., Bournaud, M., Richoux, P. & Tachet, H., 2000: Biological and ecological traits of benthic freshwater macroinvertebrates: relationships and definition of groups with similar traits. – Freshwat. Biol. 43: 175–205. Verdonschot, P. F. M., 1999: Micro-distribution of oligochaetes in a soft-bottomed lowland stream (Elsbreek; The Netherlands). – Hydrobiologia 406: 149–163 eschweizerbartxxx author 60 V. Syrovátka et al. Verdonschot, P. F. M., 2001: Hydrology and substrates: determinants of oligochaete distribution in lowland streams. – In: Rodriguez, P. & Verdonschot P. F. M (eds), Aquatic Oligochaete Biology VIII. – Hydrobiologia 463: 249–262. Wallace, J. B., 1980: Filter-feeding ecology of aquatic insects. – Ann. Rev. Entomol. 25: 103–132. Ward, J. W., 1975: Bottom fauna-substrate relationships in a Northern Colorado trout stream: 1945 and 1974. – Ecology 56: 1429–1434. Way, C. M., Burky A. J., Bingham, C. R. & Miller, A. C., 1995: Substrate roughness, velocity refuges, and macroinvertebrate abundance on artificial substrates in the lower Mississippi River. – J. N. Amer. Benthol. Soc. 14: 510–518. Wetmore, S. H., Mackay, R. J. & Newbury, R. W., 1990: Characterization of the hydraulic habitat of Brachycentrus occidentalis, a filter-feeding caddishfly. – J. N. Amer. Benthol. Soc. 9: 157–169. Wohl, D. L., Wallace, J. B. & Meyer, J. L., 1995: Benthic macroinvertebrate community structure, function and production with respect to the habitat type, reach and drainage basin in the Appalachians (USA). – Freshwat. Biol. 34: 447–464. Wright, J. F., Hiley, P. D., Cameron, A. C., Wigham, M. E. & Berrie, A. D., 1983: A quantitative study of the macroinvertebrate fauna of five biotopes in the River Lambourn, Berkshire, England. – Arch. Hydrobiol. 96: 271–292. Submitted: 23 January 2007; accepted: 13 September 2007. eschweizerbartxxx author Chironomids and oligochaetes in a river 61 Appendix 1. Abundances and frequencies of taxa (in all samples / in the subset of 19 samples used for the analysis of hydraulic preferences of selected taxa) and their classification to feeding groups (col – collectors/gatherers, col/gr – partial collectors/gatherers and partial grazers/scrapers, gr – grazers/scrapers, other – others. Abbrev. Taxon Abundances Frequenices Trophic group OLIGOCHAETA NAIDIDAE chaediap Chaetogaster diaphanus (Gruithuisen, 1828) 3 3 other chaedias Chaetogaster diastrophus (Gruithuisen, 1828) 1 1 other naisalpi Nais alpina Sperber, 1948 2,305/1,621 27/19 col/gr naisbret Nais bretscheri Michaelsen, 1899 4 3 col/gr naiscomm Nais communis Piguet, 1906 27 9 col/gr naiselin Nais elinguis O. F. Műller, 1773 3 2 col/gr naispard Nais pardalis Piguet, 1906 27 2 col/gr naispseu Nais pseudoobtusa Piguet, 1906 2 2 col/gr naisstol Nais stolci Hrabě, 1981 308/302 12/10 col/gr ophiserp Ophidonais serpentina (O. F. Műller, 1773) 1 1 col prisrose Pristina rosea (Piguet, 1906) 10 3 col prisaequ Pristina aequiseta Bourne, 1891 12 6 col prisbilo Pristina bilobata (Bretscher, 1903) 5 3 col slavappe Slavina appendiculata (D’udekem, 1855) 10 5 col specjosi Specaria josinae (Vejdovský, 1883) 72 9 col styllacu Stylaria lacustris (Linnaeus, 1767) 13 4 col/gr TUBIFICIDAE aulojapo Aulodrilus japonicus Yamaguchi, 1953 177/156 9/5 col auloplur Aulodrilus pluriseta (Piguet, 1906) 1 1 col limnodsp Limnodrilus spp. juv. 78 7 col rhyachair Rhyacodrilinae juv. with hair chaete 6 3 col spirferx Spirosperma ferox (Eisen, 1879) 1 1 col tubiigno Tubifex ignotus (Štolc, 1886) 2 2 col tubihair Tubificidae with hairs juv. 163/131 7/4 col PROPAPPIDAE propvolk Propappus volki Michaelsen, 1916 484/408 23/17 col HAPLOTAXIDAE haplgord Haplotaxis gordioides (Hartmann, 1821) 5 5 col ENCHYTRAEIDAE achasp. Achaeta sp. 1 1 col cognglan Cognettia glandulosa (Michaelsen, 1888) 1 1 col cognsp. Cognettia sp. 3 1 col enchsp. Enchytraeus sp. 1 1 col fridsp. Fridericia sp. 1 1 col LUMBRICIDAE eisetetr Eiseniella tetraedra (Savigny, 1826) 5 4 col luicussp Lumbricus sp. 1 1 col LUMBRICULIDAE lumbvari Lumbriculus variegatus O. F. Műller, 1774 1 1 col stylbrac Stylodrilus brachystylus Hrabě, 1929 2 2 col stylodsp Stylodrilus spp. juv. 2,539/2,117 27/19 col CHIRONOMIDAE TANYPODINAE ablabesp Ablabesmyia sp. 6 4 other apsetrif Apsectrotanypus trifascipennis (Zetterstedt, 1838) 25 8 other natasp. Natarsia sp. 4 4 other nilodubi Nilotanypus dubius (Meigen, 1804) 24 12 other thiegrge Thienemannimyia/Conchapelopia - Gr. 495/312 25/17 other zavyiasp Zavrelimyia sp. 5 5 other eschweizerbartxxx author 62 V. Syrovátka et al. Appendix 1. Continued. Abbrev. Taxon Abundances Frequencies Trophic group DIAMESINAE pottgaed Potthastia gaedii (Meigen, 1838) 1 1 col/gr pottlong Potthastia longimana (Kieffer, 1922) 57/55 14/12 col/gr PRODIAMESINAE prodoliv Prodiamesa olivacea (Meigen, 1818) 147/142 4/3 col ORTHOCLADIINAE brilmode Brillia bifida (Kieffer, 1909) 31 11 col brilflav Brillia flavifrons Johannsen, 1905 12 3 col corysp. Corynoneura sp. 408/271 26/19 gr cricannu Cricotopus annulator Goetghebuer, 1927 7 5 gr cricbici Cricotopus bicinctus (Meigen, 1818) 8 7 col/gr cricbigr Cricotopus bicinctus-Gr. 68/57 16/13 col/gr crictrgr Cricotopus tremulus-Gr. 32 12 gr critriia Cricotopus trifascia Edwards, 1929 5 3 col/gr diplcult Diplocladius cultriger Kieffer in Kieffer & Thienemann, 1908 1 1 col eukibrev Eukiefferiella brevicalcar (Kieffer, 1911) 30 11 gr eukicoer Eukiefferiella coerulescens (Kieffer in Zavrel, 1926) 22 13 gr eukideil Eukiefferiella devonica/ilkleyensis 94/91 13/10 gr eukigrgr Eukiefferiella gracei-Gr. 2 1 gr eukilobi Eukiefferiella lobifera Goetghebuer, 1934 69/55 19/14 gr eukimino Eukiefferiella minor (Edwards, 1929) 3 2 gr eukisimi Eukiefferiella similis Goetghebuer, 1939 1 1 gr hetemarc Heterotrissocladius marcidus (Walker, 1856) 3 2 col nanoreag Nanocladius rectinervis-Agg. 202/168 21/15 col orthrigr Orthocladius rivicola-Gr. 124/116 15/11 gr orthrubi Orthocladius cf. rubicundus (Meigen, 1818) 695/530 24/16 col/gr orthfrig Orthocladius frigidus (Zetterstedt, 1838) 4 3 gr orthobum Orthocladius cf. obumbratus Johannsen, 1905 1,167/903 27/19 col/gr orththie Orthocladius thienemanni Kieffer in Kieffer & Thienemann, 1906 13 9 gr paracrsp Paracricotopus sp. 2 2 col parastyl Parametriocnemus stylatus (Kieffer, 1924) 9 6 gr pararufi Paratrichocladius rufiventris (Meigen, 1830) 16 9 col/gr rheofusc Rheocricotopus fuscipes (Kieffer, 1909) 199/162 23/16 col/gr synosemi Synorthocladius semivirens (Kieffer, 1909) 1,575/809 27/19 col/gr thellasp Thienemanniella sp. 266/178 24/16 col/gr tvetbaca Tvetenia bavarica/calvescens 632/606 22/15 gr tvetdive Tvetenia discoloripes/verralli 480/461 22/17 gr CHIRONOMINAE-Tribus Chironomini cromussp Cryptochironomus sp. 56 9 other demisp. Demicryptochironomus sp. 1 1 col micrchgr Microtendipes pedellus-Gr. 836/503 14/7 col paraalgr Paratendipes albimanus-Gr. 3 2 col phaepssp Phaenopsectra sp. 6 2 col/gr polyconv Polypedilum convictum (Walker, 1856) 17 5 col polylagr Polypedilum laetum-Gr. 299/283 18/13 col polyscgr Polypedilum scalaenum-Gr. 75 10 col xenoxeno Xenochironomus xenolabis (Kieffer in Thienemann & Kieffer, 1916) 1 1 other CHIRONOMINAE-Tribus Tanytarsini cladotsp Cladotanytarsus sp. 214/105 17/11 col mictrasp Micropsectra sp. 455/383 26/18 col paratasp Paratanytarsus sp. 4 2 col/gr rheotasp Rheotanytarsus sp. 897/874 23/15 other stembrgr Stempellinella brevis-Gr. 3 3 col tanybrun Tanytarsus brundini/curticornis 201/130 24/16 col/gr tanytasp Tanytarsus sp. 260/162 24/17 col 93 Schenková, J., P. Pařil, K. Petřivalská & J. Bojková, 2010 Aquatic oligochaetes (Annelida: Clitellata) of the Czech Republic: check-list, new records, and ecological remarks. Zootaxa, 2676, 29–44. TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Accepted by B. Sket: 14 Oct. 2010; published: 15 Nov. 2010 29 ZOOTAXA ISSN 1175-5326 (print edition) ISSN 1175-5334 (online edition)Copyright © 2010 · Magnolia Press Zootaxa 2676: 29–44 (2010) www.mapress.com/zootaxa/ Article Aquatic oligochaetes (Annelida: Clitellata) of the Czech Republic: check-list, new records, and ecological remarks JANA SCHENKOVÁ1 , PETR PAŘIL2 , KARLA PETŘIVALSKÁ3 & JINDŘIŠKA BOJKOVÁ4 Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic. E-mail: 1 schenk@sci.muni.cz; 2 paril@sci.muni.cz; 3 karlap@sci.muni.cz; 4 bojkova@centrum.cz Abstract This study contributes to the knowledge of central European clitellates by creating a check-list of Oligochaeta (sensu oligochaetous Clitellata; Erséus 2005) of the Czech Republic, exclusive of taxa in the family Enchytraeidae. In total, 95 aquatic oligochaete species representing 43 genera are reported for the Czech Republic. Rare species are highlighted and associated with the categories for threatened species as outlined by the International Union for the Conservation of Nature. The first records of Trichodrilus strandi Hrabě, 1936, Pristina jenkinae (Stephenson, 1931), Pristina osborni (Walton, 1906), Rhyacodrilus subterraneus Hrabě, 1963, Aulodrilus limnobius Bretscher, 1899, and Aulodrilus pigueti Kowalewski, 1914 in the Czech Republic are presented. Their ecology, morphology, and distribution are discussed. Key words: Oligochaeta, Trichodrilus strandi, Pristina jenkinae, Pristina osborni, Rhyacodrilus subterraneus, Aulodrilus limnobius, Aulodrilus pigueti, habitat preferences, first records, red list, alien species Introduction Aquatic Oligochaeta (sensu oligochaetous Clitellata; Erséus 2005), are typical inhabitants of bottom sediments, forming communities whose species composition is a relevant information source for water quality assessment (Brinkhurst & Cook 1974; Chapman 2001; Verdonschot 2006). Hence, reliable species identification and a complete knowledge of their ecology are essential. Since the turn of the 20th century many phylogenetic changes and taxonomic shifts in Oligochaeta have been made. Therefore, the monographs published by renowned Czech oligochaetologists in the 20th century have become insufficient for valid identification. The list of oligochaete species of the Czech Republic is scattered among old monographs, mostly written in Czech, and recent papers that have documented distributional records for particular species. Furthermore, the territory of the present Czech Republic was previously a part of several different countries, so its records of oligochaete fauna formed a subset of data published on larger territories. Taxonomic surveys on aquatic oligochaetes have a long tradition in the Czech Republic. Many worldfamous taxonomists, whose names have been assigned by patronymy to oligochaete species and genera, came from the Czech territory. At the end of the 19th century, when the Czech Republic was a part of AustriaHungary, František Vejdovský (1849–1939) and Antonín Štolc (1863–1917) published numerous works dealing with the classifications and morphology of Oligochaeta (e.g. Vejdovský 1876, 1883, 1884, 1892; Štolc 1886, 1888). At the beginning of the 20th century, Alois Mrázek (1868–1923) and Lev Černosvitov (1902– 1946, born in Russia) continued their works with studies on anatomy and reproduction (e.g. Mrázek 1913a, 1913b), and morphology and faunistics (e.g. Černosvitov 1928, 1930, 1935). Fundamental research on this group was made by Sergěj Hrabě (1899–1984), who was born in Russia where he lived with his Czech parents until the October Revolution. After the revolution, during the civil war and under difficult circumstances, he moved back to what was then Czechoslovakia. He published an admirable volume of almost 100 scientific papers and monographs, in which he (and other authors), among others, described 11 new species to science TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. SCHENKOVÁ ET AL.30 · Zootaxa 2676 © 2010 Magnolia Press from Czechoslovakia and 15 genera new for science and 77 new species of oligochaeta from other countries. Both fundamental monographs by Hrabě (1954, 1981) still serve as the list of Czech oligochaetes and remain the major source of information on the morphology of many species. These works were published prior to 1992, when the former Czechoslovakia was split into the Czech Republic and Slovakia, and therefore include species from both countries irrespective of the new political boundaries. This list was supplemented by species documented by Eva Lišková (1964, 1976), and more recently by species documented in faunistic studies (e.g. Wohlgemuth & Schenková 1999) and ecological studies (e.g. Uzunov et al. 1988; Schenková et al. 2001a, 2001b; Schenková 2005; Schenková & Kroča 2007). Aquatic and semiaquatic species of the family Lumbricidae were treated in the monograph by Pižl (2002), which dealt with predominantly terrestrial species. Up to now, aquatic species of the family Enchytraeidae have been investigated insufficiently (cf. Hrabě 1954) or even omitted (cf. Hrabě 1981). Extensive studies focusing on the terrestrial and semiaquatic Enchytraeidae occurring in terrestrial habitats were published by Chalupský (1988, 1991, 1994). New records for the Czech Republic were recently reported by Jiří Schlaghamerský (e.g. Schlaghamerský 2007; Schlaghamerský & Kobetičová 2005, 2006; Šídová & Schlaghamerský 2007; Schlaghamerský & Pižl 2009). With respect to taxonomic development, the distribution of the family Enchytraeidae in the Czech Republic needs detailed investigation of both freshwater and terrestrial habitats, and a revision of the published historical data. The objectives of this study are (i) to summarise and update the check-list of aquatic oligochaete species for the Czech Republic, (ii) to evaluate the frequency of all species occurrences in the Czech Republic and update the Red list and (iii) to discuss new records with extended information on their distribution, preferred habitats, ecological requirements, and morphological characteristics. Six oligochaete species reported herein as new for the Czech Republic—Trichodrilus strandi (Lumbriculidae), Pristina jenkinae and Pristina osborni (Naididae: Pristininae), Rhyacodrilus subterraneus (Naididae: Rhyacodrilinae), and Aulodrilus limnobius and Aulodrilus pigueti (Naididae: Tubificinae)—were studied in detail. Material and methods The check-list of aquatic oligochaetes (exclusive of taxa in the family Enchytraeidae) was compiled from published records (Hrabě 1954, 1981; Schenková 2005; Schenková & Kroča 2007; Pižl 2002) and from unpublished material determined and/or revised by the authors. Semiaquatic species of the family Lumbricidae were selected based on the data published in the monograph by Pižl (2002), after personal communication with the author. Nomenclature for species discussed in this paper follows Erséus et al. (2008) and a synonymy of species (according to Timm 2009) is presented for the six species reported as new records for the Czech Republic. Each species discussed herein was given a category for its frequency of occurrence in the Czech Republic based upon published data and unpublished records. The unpublished records were compiled from those discussed in running water quality assessments and other projects in which the authors have participated since 1996. This dataset includes approximately 1300 sites across the whole of the Czech Republic. Species were sorted into four categories: F1—scarce (up to 10 sites), F2—medium frequent (10–100 sites), F3—very frequent (more than 100 sites) and A—absent (i.e., not recorded from the Czech Republic since 1996). For scarce or rare species, a category of threat in the Czech Republic according to the International Union for Conservation of Nature 1994 was recommended. As we applied the IUCN criteria at national level, we used guidelines prepared by the IUCN/SSC Regional Applications Working Group (Gärdenfors et al. 2001, IUCN 2003, Miller et al. 2007). A national and regional category for a particular species may not be the same as its global category, because at global level the whole range of a species is evaluated. Because many oligochaete species dwell in different freshwater habitats, they were sampled by various methods. The conservation and processing of samples and species identification were the same. Trichodrilus strandi was collected quantitatively using a metal frame of 25 × 25 cm2 in spring fen habitats. Vegetation and upper bottom layer were gathered to the depth of 5 cm and this substrate was elutriated through a 250 μm mesh net. TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 2676 © 2010 Magnolia Press · 31CHECK-LIST OF OLIGOCHAETES OF THE CZECH REPUBLIC Pristina jenkinae, Rhyacodrilus subterraneus, and Aulodrilus limnobius were collected in reaches of the river (20–100 m in length) using a three-minute kick-sampling of all visually distinguishable habitats, which were sampled proportionally to their occurrences in the reach of the river using a hand net (25 × 25 cm2 , mesh size 500 μm) (Kokeš et al. 2006). Aulodrilus pigueti was collected using the same type of hand net (25 × 25 cm2 , mesh size 500 μm) in the bottom substrate of a fishpond and in submerged littoral vegetation. Pristina osborni was collected in a large river from a depth up to 3 m using an “air lift” vacuum sampler designed for sampling in large, fast-flowing rivers (Pehofer 1998) and the grab “van Veen” (Lie & Pamatmat 1965). The samples were elutriated through the 250 μm mesh net. Samples obtained by all these methods were fixed by 4% formaldehyde in the field and then sorted under a stereomicroscope in the laboratory. Oligochaetes were picked up, permanently mounted in Canada balsam and identified under a light microscope using the keys by Hrabě (1954, 1981), Timm & Veldhijzen van Zanten (2002) and Timm (2009). New records of selected species included the following information associated with specimens: name of the water body, name of the settlement (town, village, city), closest site from which the specimen(s) was/were collected, latitude and longitude coordinates for the collecting site, name(s) of the person(s) who collected and/or identified the species and date of collection. Abbreviations for the names of collectors and persons who identified the species are presented below: IS—Ivan Skála, JB—Jindřiška Bojková, JK—Jiří Kokeš, JSc— Jana Schenková, JSy—Jan Sychra, JZ—Jiří Zahrádka, KB—Karel Brabec, KP—Karla Petřivalská, LO— Libuše Opatřilová, PH—Pavel Horák, PP—Petr Pařil. Data on habitat characteristics - abiotic and chemical parameters, water saprobity (Kolkwitz & Marsson 1909), ecology, morphology (if new or untypical features were recorded) and distribution of species are noted. Results and discussion The check-list of 95 aquatic/semiaquatic oligochaete species for the Czech Republic comprises the families Lumbriculidae (12 species), Naididae sensu Erséus et al. (2008) (a total of 72 species)—which includes the Naidinae (36 species), Pristininae (eight species), Tubificinae (22 species), and Rhyacodrilinae (six species), Propappidae (one species), Criodrilidae (one species), Haplotaxidae (one species) and Lumbricidae (8 species) (Table 1). The majority of the evaluated species (44) were moderately or widely distributed (F2 and F3) in the Czech Republic. They are mostly ubiquitous and euryecious species (e.g., several species of Tubificinae inhabiting running and stagnant waters) and many species can tolerate high organic matter content and pollution. There were also two species, Potamothrix moldaviensis Vejdovský et Mrázek, 1903 and Potamothrix bavaricus (Oschman, 1913) (both in the subfamily Tubificinae), that are considered alien species in Europe (Drake 2009). However, their non-indigenous status in central Europe is questionable because they were recorded historically from areas within the border of today's Czech Republic. P. moldaviensis has previously been described in the Vltava (Moldau) River (the Elbe basin) in the beginning of 20th century and P. bavaricus was recorded in the Elbe basin in the 1930s (Hrabě 1939). Both species recently occur in moderately polluted rivers—P. moldaviensis prefers larger rivers, while P. bavaricus prefers smaller streams. Thirty-eight species were considered rare (F1). Some of these species are not necessarily endangered, since they can be locally abundant in either restricted areas or particular habitats. For instance, Stylodrilus lemani (Grube, 1879) is abundant in a few eutrophic streams in southern Moravia (located in the south-eastern part of the Czech Republic) and Haemonais waldovogeli Bretscher, 1900 is dominant in the bottom fauna of small fishponds in the Czech-Moravian Highland Mountains. By contrast, one species, Branchiura sowerbyi Beddard, 1892, is a non-indigenous thermophilic species which has been spreading throughout Europe, most likely via water transport (Lišková 1964; Gruszka 1999). However, its invasion is very slow because of a lack of suitable habitats (warmer waters). We have documented four records of B. sowerbyi since 1964, when it was found (Lišková 1964) for the first time in Czechoslovakia. Two other species, Psammoryctides moravicus TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. SCHENKOVÁ ET AL.32 · Zootaxa 2676 © 2010 Magnolia Press (Hrabě, 1934) and Paranais frici Hrabě, 1941—both considered aliens of Ponto-Caspian origin in Europe (Drake 2009)—were recently found sporadically in the Labe and Morava Rivers that serve as immigration gateways into Czech waters. TABLE 1. Aquatic Oligochaeta of the Czech Republic. Lumbriculidae, Naididae (Naidinae, Pristininae, Rhyacodrilinae, Tubificinae), Propappidae, Haplotaxidae, Criodrilidae, and Lumbricidae. Frequency of occurrence since 1996: F1— scarce (up to 10 sites), F2—medium frequent (10–100 sites), F3—very frequent (more than 100 sites) and A—absent. Lumbricidae, affinity to wet habitats and frequency of occurrence refers to Pižl (2002, and personal communication). Taxon Author Reference Frequency Lumbriculidae Lamprodrilus mrazeki Hrabě, 1929 Hrabě 1954, 1981 A Lumbriculus variegatus (Müller, 1774) Hrabě 1954, 1981 F3 Rhynchelmis limosella Hoffmeister, 1843 Hrabě 1954, 1981 F2 Stylodrilus absoloni (Hrabě, 1970) Hrabě 1981 A Stylodrilus brachystylus Hrabě, 1929 Hrabě 1954, 1981 F3 Stylodrilus heringianus Claparède, 1862 Hrabě 1954, 1981 F3 Stylodrilus lemani (Grube, 1879) Hrabě 1954, 1981 F1 Stylodrilus parvus (Hrabě & Černosvitov, 1927) Hrabě 1954, 1981 F1 Trichodrilus allobrogum Claparède, 1862 Hrabě 1954, 1981 F1 Trichodrilus moravicus Hrabě, 1937 Hrabě 1954, 1981 F1 Trichodrilus pragensis Vejdovský, 1876 Hrabě 1954, 1981 A Trichodrilus strandi Hrabě, 1936 new record F1 Naididae: Naidinae Amphichaeta leydigi Tauber, 1879 Hrabě 1954, 1981 F1 Arcteonais lomondi (Martin, 1907) Hrabě 1954, 1981 F1 Aulophorus furcatus (Müller, 1773) Hrabě 1954, 1981 F1 Chaetogaster cristallinus Vejdovský, 1884 Hrabě 1954, 1981 F1 Chaetogaster diaphanus (Gruithuisen, 1828) Hrabě 1954, 1981 F2 Chaetogaster diastrophus (Gruithuisen, 1828) Hrabě 1954, 1981 F2 Chaetogaster langi Bretscher, 1896 Hrabě 1954, 1981 F2 Chaetogaster limnaei Baer, 1827 Hrabě 1954, 1981 A Chaetogaster setosus Světlov, 1925 Hrabě 1954 A Dero digitata (Müller, 1774) Hrabě 1954, 1981 F2 Dero dorsalis Ferronière, 1899 Hrabě 1954, 1981 A Dero nivea Aiyer, 1929 Hrabě 1954 A Dero obtusa Udekem, 1855 Hrabě 1954, 1981 A Haemonais waldvogeli Bretscher, 1900 Hrabě 1954, 1981 F1 Nais alpina Sperber, 1948 Hrabě 1954, 1981 F3 Nais barbata Müller, 1774 Hrabě 1954, 1981 F2 Nais behningi Michaelsen, 1923 Hrabě 1954, 1981 F1 Nais bretscheri Michaelsen, 1899 Hrabě 1954, 1981 F2 Nais christinae Kasprzak, 1973 Hrabě 1981 F1 Nais communis Piguet, 1906 Hrabě 1954, 1981 F2 ......continued on the next page TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 2676 © 2010 Magnolia Press · 33CHECK-LIST OF OLIGOCHAETES OF THE CZECH REPUBLIC Taxon Author Reference Frequency Nais elinguis Müller, 1774 Hrabě 1954, 1981 F3 Nais pardalis Piguet, 1906 Hrabě 1954, 1981 F2 Nais pseudobtusa Piguet, 1906 Hrabě 1954, 1981 F1 Nais simplex Piguet, 1906 Hrabě 1954, 1981 F2 Nais stolci Hrabě, 1981 Hrabě 1954 F1 Nais variabilis Piguet, 1906 Hrabě 1954, 1981 F2 Ophidonais serpentina (Müller, 1774) Hrabě 1954, 1981 F2 Paranais frici Hrabě, 1941 Hrabě 1954, 1981 F1 Piguetiella blanci (Piguet, 1906) Schenková 2005 F1 Ripistes parasita (Schmidt, 1847) Hrabě 1954, 1981 F1 Slavina appendiculata (Udekem, 1855) Hrabě 1954, 1981 F2 Specaria josinae (Vejdovský, 1884) Hrabě 1954, 1981 F1 Stylaria lacustris (Linnaeus, 1767) Hrabě 1954, 1981 F3 Uncinais uncinata (Øersted, 1842) Hrabě 1954, 1981 F1 Vejdovskyella comata (Vejdovský, 1884) Hrabě 1954, 1981 F2 Vejdovskyella intermedia (Bretscher, 1896) Hrabě 1954, 1981 F1 Naididae: Pristininae Pristina aequiseta Bourne, 1891 Hrabě 1954, 1981 F1 Pristina amphibiotica Lastočkin, 1927 Hrabě 1954 A Pristina bilobata (Bretscher, 1903) Schenková & F1 Kroča 2007 Pristina jenkinae (Stephenson, 1931) new record F1 Pristina longiseta Ehrenberg, 1828 Hrabě 1954, 1981 F1 Pristina menoni (Aiyer, 1930) Hrabě 1954 F1 Pristina osborni (Walton, 1906) new record F1 Pristina rosea (Piguet, 1906) Hrabě 1954, 1981 F2 Naididae: Rhyacodrilinae Bothrioneurum vejdovskyanum Štolc, 1886 Hrabě 1954, 1981 F3 Branchiura sowerbyi Beddard, 1892 Hrabě 1981 F1 Epirodrilus pygmaeus (Hrabě, 1935) Hrabě 1954, 1981 F2 Rhyacodrilus coccineus (Vejdovský, 1875) Hrabě 1954, 1981 F3 Rhyacodrilus falciformis Bretscher, 1901 Hrabě 1954, 1981 F2 Rhyacodrilus subterraneus Hrabě, 1963 new record F1 Naididae: Tubificinae Aulodrilus japonicus Yamaguchi, 1953 Hrabě 1954, 1981 F2 Aulodrilus limnobius Bretscher, 1899 new record F1 Aulodrilus pigueti Kowalewski, 1914 new record F1 Aulodrilus pluriseta (Piguet, 1906) Hrabě 1954, 1981 F2 Haber speciosus (Hrabě, 1931) Hrabě 1954, 1981 A Ilyodrilus templetoni (Southern, 1909) Hrabě 1954, 1981 F2 Limnodrilus claparedeanus Ratzel, 1868 Hrabě 1954, 1981 F3 Limnodrilus hoffmeisteri Claparède, 1862 Hrabě 1954, 1981 F3 ......continued on the next page TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. SCHENKOVÁ ET AL.34 · Zootaxa 2676 © 2010 Magnolia Press Thirteen species have not been recorded in studies conducted in the Czech Republic since 1996. Their absence from more recent collections could be caused by various reasons. Firstly, particularly unique habitats were not studied, thus species limited in distribution to these areas where not recorded—e.g., a cave species Stylodrilus absoloni (Hrabě, 1970), a groundwater species Trichodrilus pragensis Vejdovský, 1876, and a snail parasite Chaetogaster limnaei Baer, 1827. Secondly, most of the material discussed in this paper was collected in running water habitats; stagnant waters were studied to a lesser extent. This could be the reason for the absence of the temporal pool specialist Lamprodilus mrazeki Hrabě, 1929 and stagnant water specialists such as Dero dorsalis Ferronière, 1899, Dero nivea Aiyer, 1929, Dero obtusa Udekem, 1855, and Chaetogaster setosus Světlov, 1925. Other species that have not been reported since 1996 include Pristina amphibiotica Lastočkin, 1927, Haber speciosus (Hrabě, 1931), Peipsidrilus pusillus Timm, 1977, Potamothrix bedoti (Piguet, 1913), and Tubifex nerthus Michaelsen, 1908—each of these had previously been reported only once in the country, and we consider them to be either very rare or regionally extinct in the Czech Republic. Taxon Author Reference Frequency Limnodrilus profundicola (Verrill, 1871) Hrabě 1981 F1 Limnodrilus udekemianus Claparède, 1862 Hrabě 1954, 1981 F2 Peipsidrilus pusillus Timm, 1977 Hrabě 1981 A Potamothrix bavaricus (Oschmann, 1913) Hrabě 1954, 1981 F2 Potamothrix bedoti (Piguet, 1913) Hrabě 1954, 1981 A Potamothrix hammoniensis (Michaelsen, 1901) Hrabě 1954, 1981 F2 Potamothrix moldaviensis Vejdovský & Mrázek, 1903 Hrabě 1954, 1981 F2 Psammoryctides albicola (Michaelsen, 1901) Hrabě 1954, 1981 F2 Psammoryctides barbatus (Grube, 1861) Hrabě 1954, 1981 F3 Psammoryctides moravicus (Hrabě, 1934) Hrabě 1954, 1981 F1 Spirosperma ferox Eisen, 1879 Hrabě 1954, 1981 F2 Tubifex ignotus (Štolc, 1886) Hrabě 1954, 1981 F2 Tubifex nerthus Michaelsen, 1908 Hrabě 1981 A Tubifex tubifex (Müller, 1774) Hrabě 1954, 1981 F3 Propappidae Propappus volki Michaelsen, 1916 Hrabě 1954 F2 Haplotaxidae Haplotaxis gordioides (Hartmann, 1821) Hrabě 1954, 1981 F2 Criodrilidae Criodrilus lacuum Hoffmeister, 1845 Hrabě 1954 F1 Lumbricidae Aporrectodea georgii (Michaelsen, 1890) Pižl 2002 F1 Aporrectodea handlirschi (Rosa, 1879) Pižl 2002 F1 Aporrectodea limicola (Michaelsen, 1890) Pižl 2002 F1 Eisenia fetida (Savigny, 1826) Pižl 2002 F2 Eisenia spelaea (Rosa, 1909) Pižl 2002 F1 Eiseniella tetraedra (Savigny, 1826) Pižl 2002 F3 Helodrilus oculatus Hoffmeister, 1845 Pižl 2002 F1 Octoclasion tyrtaeum (Savigny, 1826) Pižl 2002 F2 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 2676 © 2010 Magnolia Press · 35CHECK-LIST OF OLIGOCHAETES OF THE CZECH REPUBLIC TABLE 2. Proposal of the Red list of aquatic Oligochaeta of the Czech Republic. Two species from the family Lumbricidae according to Pižl (2005) are included. The Red List of aquatic oligochaetes of the Czech Republic (Schenková 2005, Pižl 2005) was modified on the basis of the new extensive data by excluding Aulodrilus japonicus Yamaguchi, 1953, Ilyodrilus templetoni (Southern, 1909), Epirodrilus pygmaeus (Hrabě, 1935), Psammoryctides albicola (Michaelsen, 1901), and Slavina appendiculata (Udekem, 1855), which had been formerly considered endangered. The number of recent records and distribution of these species within the Czech Republic indicate the stability of their populations. On the basis of those new data, we changed the protection status of another three species— Pristina bilobata (Bretscher, 1903), Pristina longiseta Ehrenberg, 1828, and Uncinais uncinata (Ørsted, 1842)—from endangered (EN) to vulnerable (VU). However, we now suggest that the status of endangered species (EN) to be allocated to Trichodrilus strandi, Haber speciosus, Lamprodrilus mrazeki, Peipsidrilus pusillus, and Stylodrilus absoloni with respect to their very restricted occurrence—not only in the Czech Republic, but also in neighbouring countries. Vulnerable protection status (VU) was proposed for Amphichaeta leydigi Tauber, 1879, Nais behningi Michaelsen, 1923, Nais christinae Kasparzak, 1973, Nais stolci Hrabě, 1981, Pristina aequiseta Bourne, 1891, P. osborni, P. jenkinae, R. subterraneus, Specaria josinae (Vejdovský, 1884), S. lemani and Vejdovskyella intermedia (Bretscher, 1896), based on their rare occurrence and scattered distributions. The new Red list of Czech aquatic oligochaete species with suggested changes is given in Table 2. Six species collected during this present study are reported here as new records for the Czech Republic: Trichodrilus strandi, Pristina jenkinae, P. osborni, Rhyacodrilus subterraneus, Aulodrilus limnobius and A. pigueti. The extent of their physical and chemical characteristics of finding sites is summarised in Table 3. Species accounts Family: Lumbriculidae Trichodrilus strandi Hrabě, 1936 Records. Bílé Potoky Spring Fen, Valašské Klobouky, 49°06'52"N / 18°01'40"E, lgt. JB, det. JSc (2006); Hrubý Mechnáč Spring Fen, Lopeník, 48°56'27"N / 17°47'51"E, lgt. JB, det. JSc (2006); Kalábová Spring endangered (EN) vulnerable (VU) Arcteonais lomondi (Martin, 1907) Amphichaeta leydigi Tauber, 1879 Criodrilus lacuum Hoffmeister, 1845 Aporrectodea limicola (Michaelsen, 1890) Haber speciosus (Hrabě, 1931) Pristina aequiseta Bourne, 1891 Lamprodrilus mrazeki Hrabě, 1929 Pristina bilobata (Bretscher, 1903) Peipsidrilus pusillus Timm, 1977 Pristina jenkinae (Stephenson, 1931) Piguetiella blanci (Piguet, 1906) Pristina longiseta Ehrenberg, 1828 Stylodrilus absoloni (Hrabě, 1970) Pristina osborni (Walton, 1906) Trichodrilus pragensis Vejdovský, 1876 Nais behningi Michaelsen, 1923 Trichodrilus strandi Hrabě, 1936 Nais christinae Kasprzak, 1973 Nais stolci Hrabě, 1981 Rhyacodrilus subterraneus Hrabě, 1963 Specaria josinae (Vejdovský, 1884) near threatened (NT) Stylodrilus lemani (Grube, 1879) Apporrectodea georgii (Michaelsen, 1890) Uncinais uncinata (Øersted, 1842) TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. SCHENKOVÁ ET AL.36 · Zootaxa 2676 © 2010 Magnolia Press Fen, Březová, 48°56'22"N / 17°44'39"E, lgt. JB, det. JSc (2006); Chmelinec Spring Fen, Vyškovec, 48°56'22"N / 17°51'20"E, lgt. JB, det JSc (2006); Hutě Spring Fen, Žítková, 48°59'27"N / 17°54'33"E, lgt. JB, det. JSc (2006). Characteristics of sites. T. strandi was recorded in 2006 in the Western Carpathian spring fens, which are situated in the easternmost part of the Czech Republic, on the boundary with Slovakia (Fig. 1). We have collected this species from altitudes 350–642 m a.s.l. in extremely mineral-rich spring fens with precipitation of cold water travertine (tufa). The bottom substrate of spring fens was dominated by inorganic material (gravel and sand) and coarse particulate organic matter (leaves and wood). Tufa precipitated on all submerged surfaces forms either small incrustations or strong layers. FIGURE 1. The distribution of Trichodrilus strandi, Pristina jenkinae, Pristina osborni, Rhyacodrilus subterraneus, Aulodrilus limnobius and A. pigueti in the Czech Republic. Ecology. T. strandi is well adapted for this rather hostile environment because of a tiny flexible body that enables it to utilise small interstitial spaces, particularly those in tufa-covered substrates. In studied sites, it represented the eudominant species followed by 16 additional oligochaete taxa, mostly taxa in the family Enchytraeidae. Its main adaptation can be feeding on specific kinds of bacteria that colonise surfaces in mineral-rich waters (Tarmo Timm pers. com.). Although the environment in spring fens is rather stable with small temperature fluctuations, we recorded seasonal variations in the ratio between juveniles and adults from 50% of juveniles in spring to their prevalence (80%) in autumn. T. strandi is a monocyclic gatherer-collector burrowing in sediments of xenosaprobic streams, and it is considered a K-strategist (Šporka 2003). Morphology. This species can be distinguished from other taxa in that all chaetae are bifid with tiny upper teeth, the male pores are located on conical porophores in IX, and spermathecal pores are present in X (Fig. 2). The positions of sexual pores in T. strandi (porophores in X, spermathecal pores in IX) are opposite of those in the genus Stylodrilus, with which young T. strandi can be confused. We have recorded variability TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 2676 © 2010 Magnolia Press · 37CHECK-LIST OF OLIGOCHAETES OF THE CZECH REPUBLIC in the spermathecae position of 200 individuals: 36% had spermathecae in X, 38% in between X and XI (crossing the septa) and 26% in XI. We did not observe any lateral wings in the genital region, but we identified only fixed individuals. Distribution. The nearest known localities for T. strandi are in the Valča Brook—a tributary of the Turiec River in the Malá Fatra Mts. (Slovakia) (Šporka 1996a), which is approximately 80 km from our sites (Šporka 1996a), and the spring outflow of an ice cave in the Tatra Mts.—approximately 150 km from our sites (Hrabě 1942). European distribution is highly scattered with records from karstic or flysh areas in France (Giani 1979; Juget & Dumnicka 1986), Croatia (Karaman 1987) and Italy (Brinkhurst 1963). According to Fauna Europaea (Timm & Giani 2004), the species was found in the Czech Republic, but unfortunately no additional information for this report was provided, nor is available. These data most likely represent records reported from areas in what is now known as Slovakia prior to its split from the former Czechoslovakia. T. strandi as the stygophilous species, representative of the Lumbriculidae, is more limited in global distribution (Martin et al. 2008). This species is worth further investigation since its populations seem to be geographically separated and there is even the question if they represent the same species. FIGURE 2. Trichodrilus strandi. A: Schematic drawing of reproductive organs in IX, X, XI segment, lateral view. mp: male pore on conical porophorus, sp: spermatheca, ov: ovarium. B: dorsal chaeta. Family: Naididae Subfamily: Pristininae Pristina jenkinae (Stephenson, 1931) Synonyms: Naidium jenkinae Stephenson, 1931; Pristina idrensis Sperber, 1948; Pristinella jenkinae (Stephenson, 1931) Records. Teplá Brook, Věžná, 49°26'42"N / 16°16'33"E, lgt. PP, det. PP (2003); Bečva River, Lipník-Osek, 49°29'48"N / 17°31'06"E, lgt. KB, det. PP (2004); Gránický Brook, Znojmo, 48°51'60"N / 16°01'33"E, lgt. PP, det. PP (2005); all specimens were immature. Characteristics of sites. The species was found in two different habitats: epirhithral and hyporhithral streams. The epirhithral habitat was represented by two small brooks (2nd and 3rd Strahler order) with dominating stony-gravel substrates, natural channel morphology and forested catchments (catchment area up to 20 km2 ). The hyporhithral habitat was a 30 m wide shallow reach of the river of 7th Strahler order (catchment area 1,526 km2 ) with cobble-pebble substrate, which flows through extensively used farmland. A natural self-restoration of this reach of the river resulted from a big flood in 1997. TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. SCHENKOVÁ ET AL.38 · Zootaxa 2676 © 2010 Magnolia Press Ecology. Pristina jenkinae, a detritophagous oligochaete, was recorded in different freshwater habitats (Timm & Veldhijzen van Zanten 2002), including hyporheic zones (Strayer & Bannon-O’Donnell 1988; Giani et al. 2001; Wetzel & Taylor 2001), and in wet soil of a tropical rainforest (Collado & Schmelz 2001). In central Europe, it was reported from rhithral and potamal zones, with preferences from xeno- to betamesosaprobity (Hörner et al. 2002). The absence of any historic records of this species from the Czech Republic are likely attributed to difficulties in its identification (ecophenotypic variation in its chaetae, and status as a valid taxon) and its rare to occasional occurrence (Wetzel & Taylor 2001). Morphology. This species can be distinguished from related European Pristina species by none or slight shortening of the upper teeth in ventral chaetae from the anterior to posterior end, parallel teeth of dorsal needles with upper teeth slightly (anterior most) or distinctly (posterior bundles) shorter and thinner (from 1/2 to 2/3), smooth hair chaetae, and gradual intestinal dilatation from ½ VI to VII (Collado & Schmelz 2001; Timm & Veldhijzen van Zanten 2002). A single spermathecal chaeta is present in VII in mature specimens, but we unfortunately did not find any sexually active individuals during this present study. Distribution. Pristina jenkinae has a cosmopolitan distribution (Timm & Veldhijzen van Zanten 2002) and it has been reported from many other European countries: Germany, Poland, Slovakia, Moldova, Romania, Italy, France, Spain, Portugal, Norway, Sweden, The Netherlands, the UK, Greece, and Finland (Timm & Giani 2004). However, the absence of records in other European countries can be connected with identification difficulties and the unclear taxonomical status of this taxon. P. jenkinae was at first synonymised with P. idrensis by Kathman (1985) and recently redescribed and discussed as probably distinct species by Collado & Schmelz (2001). Pristina osborni (Walton, 1906) Synonyms: Naidium osborni Walton, 1906; Naidium minutum Stephenson, 1914; Pristinella osborni (Walton, 1906); Pristina minuta (Stephenson, 1914) Records. Labe (Elbe) River, Děčín 50°42'34"N / 14°11'44"E, lgt. JK, det. PP (2008); all specimens were immature. Characteristics of site. The species was found in a single site, in the Labe (Elbe) River approximately 20 km far from the Czech/German boundary near Dečín (Tetschen). This river is the largest in the Czech Republic (8th Strahler order) and it is extensively used for shipping to the German port of Hamburg. The mean depth of this reach of the river was 2.4 m, the bottom substrate was predominantly sand (45%) and gravel (55%) and water quality is classified according to BOD (biochemical oxygen demand) in the betamesosaprobity (Table 3). Ecology. Pristina osborni inhabits freshwaters including hyporheic waters and caves (Giani et al. 2001) and wet soil (Stout 1958). Its ability to inhabit also semi-terrestrial environments enhances the opportunity for freshwater populations of this species to persist in intermittent wetlands (Montalto & Marchese 2005). In tropical regions, P. osborni prefers areas with higher calcium content (Alves et al. 2008). Asexual reproduction occurs most commonly via paratomy (Timm & Veldhijzen van Zanten 2002). The species is not usually abundant within the oligochaete community (Giani et al. 2001; Alves et al. 2008). Morphology. The species can be distinguished by the typical shape of its dorsal bifid chaetae, with the teeth diverting in a wide angle and the presence of only one needle and one smooth hair seta in the dorsal bundles. The budding zone begins from XII, and the stomach dilatation begins abruptly in segments VII–VIII. The morphology of the genital organs was described in detail by Erséus and Grimm (1998). Distribution. Pristina osborni has a cosmopolitan distribution (Timm & Veldhijzen van Zanten 2002), and is absent only in the eastern Palaearctic region (Timm & Giani 2004). European records are limited to southern and western countries (Portugal, Spain, Italy, France, The Netherlands, and Germany; Timm & Giani 2004). The Labe (Elbe) River, which flows through north-eastern Germany to the Baltic Sea, likely serving as a migration corridor for this species—from its original distribution area in western Europe (as well as it was documented for aliens) into the Czech Republic. P. osborni could spread into this reach of the river, probably TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 2676 © 2010 Magnolia Press · 39CHECK-LIST OF OLIGOCHAETES OF THE CZECH REPUBLIC from a lower part of the watershed via upstream migration or dissemination by shipping. However, downstream dissemination into the Labe River—proven to be an alternative pathway of spreading of epipotamal species (Pařil et al. 2008)—is rather improbable for P. osborni. TABLE 3. Summary of the characteristics of the aquatic oligochaete species Trichodrilus strandi, Pristina jenkinae, Pristina osborni, Rhyacodrilus subterraneus, Aulodrilus limnobius and A. pigueti sites in the Czech Republic. Subfamily: Rhyacodrilinae Rhyacodrilus subterraneus Hrabě, 1963 Records. Robečský Brook, Česká Lípa, 50°40'05"N / 14°30'27"E, lgt. IS, det. JS/PP (2007), immature specimens; Svitava River, Brno, 49°08'43"N / 16°37'48"E, lgt. PH, det. PP (2006); one mature specimen. Characteristics of sites. Although most published records refer to groundwater and hyporheic habitats (Erséus et al. 1999; Wetzel & Taylor 2001), we found R. subterraneus in surface waters. These surface habitats, however, likely receive groundwater influences. The Robečský Brook is situated in the north-western part of the Czech Republic in semi-natural landscape with numerous wetlands and fishponds. The sample was taken downstream of the Peklo Natural Reserve, where a brook flows through a narrow sandstone gorge with substrate formed of mud (40%), sand (30%) and gravel (30%). On the contrary, the second sampling site is situated downstream of Brno, the second largest city in the country, in the straightened and dyked Svitava River stretch (substrate: 20% mud, 20% sand, 30% gravel and 30% stones), which also serves as a recipient of sewage water from urban settlements. Ecology. Rhyacodrilus subterraneus occurs in fresh and brackish water (Erséus et al. 1999); in reference to its name, especially in interstitial hyporheic zones and wet soil. Many records were reported from deeper hyporheic habitats (Strayer 2001) and caves (Wetzel & Taylor 2001; Ferreira et al. 2007); nevertheless, it was Species Trichodrilus strandi Pristina jenkinae Pristina osborni Rhyacodrilus subterraneus Aulodrilus limnobius Aulodrilus pigueti Sites: No of sites 5 3 1 2 7 1 No of records 15 3 1 2 8 1 River basin Morava Morava Labe Morava, Labe Morava, Dunaj, Labe Morava Abundance >10% 1–2% 1–2% 1–2% 2.1–5% 1–2% Water body spring brook/ helocrene brook/river river brook/river brook/river fish-pond Abiotic parameters Min.-max.: Altitude [m a.s.l.] 350–642 225–420 120 190–240 165–485 440 Strahler order 1 2–7 8 5–6 3–4 – Ann. average discharge [m3 s-1 ] – 0.001–15.3 309 1.2–5.2 0.01–0.8 – Average stream width [m] – 0.9–33.0 100 7.2–12.0 1.9–5.0 – Chemical parameters Min.- max.: pH 7.3–8.2 6.0–9.0 8.8 7.3–8.5 6.0–9.1 9.5–9.8 Conductivity [mS m-1 ] 406–599 91–1180 427 333–737 118–921 414–434 Ann. average water temp. [°C] 7.0–14.5 10.6–10.7 14.3 10.2–10.9 8.1–11.8 – BOD [mg O2 l-1 ] – 1.0–6.6 4 1.2–20.8 0.8–9.4 – Dissolved oxygen [mg l-1 ] 2.4–12.7 7.1–14.7 8.9 6.9–14.1 5.4–13.7 6.9–15.4 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. SCHENKOVÁ ET AL.40 · Zootaxa 2676 © 2010 Magnolia Press also found in species-rich oligochaete assemblages in eutrophic streams (Timm et al. 1997). Reproduction in this species is sexual (Timm & Veldhijzen van Zanten 2002), but in some regions (United States) only immature specimens have been found (Wetzel & Taylor 2001). Morphology. Rhyacodrilus subterraneus can be distinguished from its congeners by straighter and two times longer upper tooth of anterior dorsal chaetae with intermediate teeth, and two times longer upper tooth in anterior ventral chaetae. Penial chaetae near male pores in XI segment of mature specimens are only single with a simple curved tip (Timm & Giani 2004). Distribution. Prior to records collected during this present study, this rare Holarctic species had been found only in western European countries (France, Germany, Norway, Sweden, Spain, and The Netherlands; Timm & Giani 2004), and in the eastern and Midwestern United States (Strayer & Bannon-O'Donnell 1988; Strayer 2001; Wetzel & Taylor 2001; Kathman & Brinkhurst 1998). Subfamily: Tubificinae Aulodrilus limnobius Bretscher, 1899 Records. Gránický Brook, Znojmo, 48°51'60"N / 16°01'33"E, lgt. PP, det. PP. (2005); Drietomice River, Starý Hrozenkov, 48°57'13"N / 17°52'29"E, lgt. PP, det. PP (2005); Trusovický Brook, Jívová, 49°42'27"N / 17°21'40"E, lgt. KB, det. PP; Olešná River, Zvole, 49°29'26"N / 16°09'44"E, lgt. KB, det. PP (2002); Nectava River, Březinky, 49°39'24"N / 16°46'52"E, lgt. KB, det. PP (2002); Okluky River, Uherský Ostroh, 48°59'38"N / 17°24'07"E, lgt. H, det. PP (2002); Farský Brook, Trhové Sviny, 48°50'24"N / 14°37'55"E, lgt. JZ, det. PP (2002); all specimens were immature. Characteristics of sites. All records were from small and middle-sized brooks (3rd and 4th Strahler order, river width up to 5 m) with a bottom substrate dominated by sand, gravel, and stones. Most of these highland stretches had a natural morphology (with buffer strips) and extensively used (cropland, grassland), partially forested catchments. The brooks have good water quality (from oligo- to beta-mesosaprobity), with one exception of lowland stream (Okluky River, alpha-mesosaprobity). Ecology. Being a detritophagous species, A. limnobius occurs from hyporhithral to potamal, and also has been collected from standing water areas including deeper, profundal habitats (Hörner et al. 2002; Šporka 2003; Alves et al. 2008). It can tolerate intermediate eutrophication (Verdonschot 2006) and organic pollution from oligo- to alpha-mesosaprobity (Hörner et al. 2002). Microhabitat preferences of fine substrates rich in organic material (pelal, psamal and argylal) have been reported (Šporka 2003; Alves et al. 2008). Among oligochaetes, A. limnobius belongs to K-strategists (Šporka 2003) with one reproductive cycle per year, mostly realised by asexual reproduction (architomy); mature specimens are rare (Timm & Veldhijzen van Zanten 2002). Worms burrow in sediment, where they build reinforced tubes of silt (Timm & Veldhijzen van Zanten 2002). Morphology. Aulodrilus limnobius has characteristic bifid crotchets, with up to 10 chaetae per bundle (all with shorter upper teeth, and occasionally with wing-like dilations of the distal ends of the chaetae in posterior segments), and an unsegmented tail, serving as a respiratory organ—typical for this genus. It can be distinguished from its congeners known to occur in the Czech Republic—A. pigueti, A japonicus, and A. pluriseta—by a lack of hair chaetae (Timm & Veldhijzen van Zanten 2002; van den Hoek & Verdonschot 2005). Distribution. This cosmopolitan species has been recorded in most of European countries, absent only in Austria, the UK, Croatia, Denmark, Greece, Slovenia, and Portugal (Timm & Giani 2004). According to Fauna Europaea (Timm & Giani 2004), the species was found also in the Czech Republic, but unfortunately, the source of this data is not available. TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 2676 © 2010 Magnolia Press · 41CHECK-LIST OF OLIGOCHAETES OF THE CZECH REPUBLIC Aulodrilus pigueti Kowalewski, 1914 Records. Štěpánek Pond, Pozďatín, 49°13'22"N / 16°02'25"E, lgt. JS, det. KP (2007); the single specimen collected during this study was immature. Characteristics of sites. Aulodrilus pigueti was found at a single locality, the Štěpánek fishpond in the Czech-Moravian Highland Mountains (Českomoravská vrchovina), which is situated in the middle part of the Czech Republic. This fishpond is a small shallow pond (2.2 ha) exploited by intensive fish farming. The management of the fish stock composed of Cyprinus carpio Linnaeus and Tinca tinca Linnaeus involved supplementary feeding and application of manure, which caused nutrient enrichment. Macrophytes, mostly Glyceria maxima (Hartman) and Typha latifolia Linnaeus, covered only 5% of the littoral zone. Ecology. Aulodrilus pigueti burrows in sediments where it forms tubes from detritus (Timm & Veldhijzen van Zanten 2002). Finogenova and Arkhipova (1994), Schloesser et al. (1995) and Šporka (1996b) reported that A. pigueti inhabits various freshwater environments, such as lakes, rivers, and marshes. It prefers water quality from oligo- to alpha-mesosaprobic and substrate pelal (Šporka 2003), and tolerates a lower amount of dissolved oxygen and acidification (Orciari & Hummon 1975; report EPA/600/3-90/073). The sample from which this single specimen of A. pigueti was identified was dominated by Dero digitata (Müller, 1774), more species in the genus Limnodrilus, and other Tubificinae. Morphology. Aulodrilus pigueti can be distinguished from all other taxa by distal dilatations of bifid crotchets with shorter upper teeth (typical for the genus Aulodrilus). Dorsal crotchets beginning from VI–IX are replaced by oar-shaped pectinate chaetae with a rounded or sometimes slightly bifid tip. It is possible to distinguish it from congeners and all other Tubificinae by the presence of oar-shaped chaetae in dorsal bundles in its middle segments. Distribution. Aulodrilus pigueti is a cosmopolitan species, often found in tropical countries (Timm & Veldhijzen van Zanten 2002; Arslan & Sahin 2003). The nearest record to the Czech Republic is from backwaters of the Morava River in Slovakia (Šporka 1996b); it has also been recorded from the neighbouring countries of Germany and Poland (Timm & Giani 2004). While A. pigueti is widely distributed in many other European countries it has not been reported from Austria, Hungary, Romania, Belgium, the UK, Denmark, Latvia, Switzerland, and Slovenia (Timm & Giani 2004). Conclusions This updated check-list of aquatic oligochaetes of the Czech Republic, based on historical and recent records, includes 95 species: Lumbriculidae (12 species), Naidinae (36 species), Pristininae (eight species), Tubificinae (22 species), Rhyacodrilinae (six species), Propappidae (one species), Criodrilidae (one species), Haplotaxidae (one species), and Lumbricidae (8 species). The Red list of Czech aquatic oligochaete species has been corrected and updated, and now includes nine endangered species (EN), 14 vulnerable species (VU), and one near threatened (NT). Special attention should be given to the protection and conservation of unique habitats from which these endangered and vulnerable species have been reported. In addition, it is important to establish and support monitoring programs for all aquatic habitats to document introduced and invasive species that are known to be spreading throughout Europe and elsewhere worldwide. Acknowledgments We would like to thank K. Brabec, P. Horák, J. Kokeš, A. Krausová, L. Opatřilová, I. Skála, J. Sychra, J. Zahrádka for kindly providing material and information about sampling sites, and J. Gaisler for English proofreading. We are indebted to V. Pižl for consultation about the family Lumbricidae. We would also like to thank M.J. Wetzel and C. Erséus for their critical reading of the manuscript with many useful comments. Financial support was granted by the Ministry of Education, Youth and Sports of the Czech Republic (MSM0021622416). TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. SCHENKOVÁ ET AL.42 · Zootaxa 2676 © 2010 Magnolia Press References Alves, R.G., Marchese, M.R. & Martins, R.T. (2008) Oligochaeta (Annelida, Clitellata) of lotic environments at Parque Estadual Intervales (São Paulo, Brazil). Biota Neotropica, 8(1), 69–72. Arslan, N. & Sahin, Y. (2003) Two new records of Aulodrilus Bretcher, 1899 (Oligochaeta, Tubificidae) for the Turkish fauna. Turkish Journal of Zoology, 27, 275–280. Brinkhurst, R.O. (1963) The aquatic Oligochaeta recorded from lake Maggiore with notes on species known from Italy. Memorie del Istituto Italiano di Idrobiologia, 16, 137–150. Brinkhurst, R.O. & Cook, D.G. (1974) Aquatic Earthworms (Annelida: Oligochaeta) In: Hart, C.W. Jr. & Fuller, S.L.H (Eds.) Pollution ecology of freshwater invertebrates, Academic Press, New York and London, pp. 143–156. Chalupský, J. (1988) Czechoslovak enchytraeids (Oligochaeta, Enchytraeidae) II. Catalogue of species. Věstník československé Společnosti zoologické, 52, 81–95. Chalupský, J. (1991) Czechoslovak Enchytraeidae (Oligochaeta). III. Description of a new species of Enchytronia and notes on two species of Marionina. Acta Societas Zoologicae Bohemicae, 55, 99–113. Chalupský, J. (1994) Czech Enchytraeidae (Oligochaeta). IV. Description of Enchytronia pratensis sp. n. and a note on Marionina communis. Acta Societas Zoologicae Bohemicae, 57, 167–172. Chapman, P.M. (2001) Utility and relevance of aquatic oligochaetes in Ecological Risk Assessment. Hydrobiologia, 463, 149–169. Collado, R. & Schmelz, R.M. (2001) Descriptions of three Pristina species (Naididae, Clitellata) from Amazonian forest soils, including P. marcusi sp. nov. Hydrobiologia 463, 1–11. Černosvitov, L. (1928) Die Oligochaetenfauna der Karpathen. Zoologische Jahrbücher Abt. Systematik, 55, 1–28. Černosvitov, L. (1930) Studien über die Spermaresorption. Zoologische Jahrbuch für Anatomie, 52, 488–538. Černosvitov, L. (1935) Monografie československých dešťovek [the monograph of Czechoslovak Lumbricidae]. Archiv pro přírodovědecký výzkum Čech, 19, 1–86. Drake, J.A. (ed.) (2009) Handbook of Alien Species in Europe. Chapter 11: List of Species Alien in Europe and to Europe—Annelida, Oligochaeta. Pp. 217–218. Erséus, C. (2005) Phylogeny of oligochaetous Clitellata. Hydrobiologia, 535/536, 357–372. Erséus, C. & Grimm, R. (1998) Pristina proboscidea and Pristinella osborni (Oligochaeta, Naididae) from a freshwater creek near Darwin, Northern Territory, Australia, with descriptions of the genital organs of both species. The Beagle, Records of the Museums and Art Galleries of the Northern Territory, 14, 149–158. Erséus, C., Grimm, R., Healy, B., Lundberg, S., Rota, E. & Timm, T. (1999) Clitellate diversity in Nationalstadsparken, an urban national park in Stockholm, Sweden. Hydrobiologia, 406, 101–110. Erséus, C., Wetzel, M.J. & Gustavson, L. (2008) ICZN rules—a farewell to Tubificidae (Annelida, Clitellata). Zootaxa, 1744, 66–68. Ferreira, D., Malard, F., Dole-Olivier, M.J. & Gilbert, J. (2007) Obligate groundwater fauna of France: diversity patterns and conservation implications. Biodiversity and Conservation, 16, 567–596. Finogenova, N.P. & Arkhipova, N.R. (1994) Morphology of some species of the genus Aulodrilus Bretscher. Hydrobiologia, 278, 7–15. Gärdenfors, U., Hilton-Taylor, C., Mace, G. & Rodríguez, J.P. (2001) The application of IUCN Red List Criteria at regional levels. Conservation Biology, 15, 1206–1212. Giani, N. (1979) Les oligochètes du Sud-Ouest de la France (2e. Note). Bulletin de La Societe d'Histoire Naturelle de Toulouse, 115, 347–358. Giani, N., Sambugar, B., Rodriguez, P. & Martínez, E. (2001) Oligochaetes in southern European groundwater: new records and an overview. Hydrobiologia, 463(1–3), 65–74. Gruszka, P. (1999) The river Odra estuary as a gateway for alien species immigration to the Baltic Sea Basin. Acta Hydrochimica et Hydrobiologica, 27, 374–382. Hörner, K., Moog, O. & Šporka, F. (2002) Oligochaeta. - Part. 3. In: Moog, O. (Ed.), Fauna Aquatica Austriaca. Wasserwirtschaftskataster, Bundesministerium für Land und Forstwirtschaft, Wien, 18 pp. Hrabě, S. (1939) Příspěvek k poznání vodních Oligochaet Čech [contribution to the knowledge of Bohemian aquatic Oligochaetes]. Sborník Přírodovědeckého klubu v Brně, 21, 74–81. Hrabě, S. (1942) Poznámky o zvířeně ze studní a pramenů na Slovensku [notes on the fauna of wells and springs in Slovakia]. Sborník Přírodovědeckého klubu v Brně, 24, 23–30. Hrabě, S. (1954) Máloštětinatci-Oligochaeta. Pp. 289–320. In: Hrabě S. et al. (Eds): Klíč k určování zvířeny ČSR. Díl I. [the Key to the Czech fauna. Volume I] ČSAV, Praha, 540 pp. Hrabě, S. (1981) Vodní máloštětinatci (Oligochaeta) Československa. [aquatic Oligochaeta of Czechoslovakia] Acta Universitatis Carolinae, Biologia, 1979, 1–168. International Union for Conservation of Nature [IUCN], (1994) IUCN Red Lists categories and criteria as approved by 40th Meeting of the IUCN Council. IUCN Gland Switzerland, 21 pp. TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 2676 © 2010 Magnolia Press · 43CHECK-LIST OF OLIGOCHAETES OF THE CZECH REPUBLIC International Union for Conservation of Nature [IUCN], (2003) Guidelines for Application of IUCN Criteria at Regional Levels. Version 3.0. IUCN Species Survival Commission. IUCN, Gland, Switzerland and Cambridge, UK, 26 pp. Juget, J. & Dumnicka, E. (1986) Oligochaeta (Incl. Aphanoneura) des eaux souterraines continentales. In: Botosaneanu (Ed), L. Stygofauna Mundi. E.J. Brill/Dr. W. Backhuys, Leiden, pp. 234–243. Karaman, S. (1987) Trichodrilus strandi (Oligochaeta, Lumbriculidae) a new element in the fauna of Yugoslavia. Biol. Vestn., 35, 27–30. Kathman, R.D. (1985) Synonymy of Pristinella jenkinae (Oligochaeta: Naididae). Proceedings of the Biological Society of Washington, 98, 1022–1027. Kathman, R.D. & Brinkhurst, R.O. (1998) Guide to the freshwater oligochaetes of North America. Aquatic Resources Center, College Grove, TN. 264 pp. Kokeš, J., Zahrádková, S., Němejcová, D., Hodovský, J., Jarkovský, J. & Soldán, T. (2006) The PERLA system in the Czech Republic: A multivariate approach to assess ecological status of running waters. Hydrobiologia, 556, 343– 354. Kolkwitz, R. & Marsson, M. (1909) Ökologie der tierischen saprobien. Internationale Revue der gesamten Hydrobiologie und Hydrographie, 2, 126–152. Lie, U. & Pamatmat, M.M. (1965) Digging characteristics and sampling efficiency of the 0.1 m2 Van Veen Grab. Limnology and Oceanography, 10(3), 379–384. Lišková, E. (1964) Das Vorkommen von Branchiura sowerbyi Beddard (Oligochaeta, Tubificidae) in der Tschechoslowakei). Acta Societatis Zoologicae Bohemoslovenicae, 4, 305–311. Lišková, E. (1976) Příspěvek k výskytu některých druhů limikolních máloštětinatců (Oligochaeta) na území Čech a Moravy (Československo) [contribution to the existence of some species of Oligochaeta limicola on the Bohemian and Moravian territory (Czechoslovakia)]. Acta Musei Bohemiae meridionalis in České Budějovice, 16, 17–30. (In Czech, English summ.) Martin, P., Martinez-Ansemil, E., Pinder, A., Timm, T. & Wetzel, M.J. (2008) Global diversity of oligochaetous clitellates ("Oligochaeta"; Clitellata) in freshwater. In: Balian, E.V., Lévêque, C., Segers, H. & Martens, K. (Eds). Freshwater Animal Diversity Assessment. Hydrobiologia, 595(1), 117–127. Miller, R.M., Rodríguez, J.P., Aniskowicz-Fowler, T., Bambaradeniya, C., Boles, R., Eaton, M.A., Gärdenfors, U., Keller, V., Molur, S., Walker, S. & Pollock, C. (2007) National threatened species listing based on IUCN criteria and regional guidelines: Current status and future perspectives. Conservation Biology, 21, 684–696. Montalto, L. & Marchese, M. (2005) Cyst formation in Tubificidae (Naidinae) and Opistocystidae (Annelida, Oligochaeta) as an adaptive strategy for drought tolerance in fluvial wetlands of the Paraná River, Argentina. Wetlands, 25(2), 488–494. Mrázek, A. (1913a) Beiträge zur Naturgeschichte von Lumbriculus. Sitzungsberichte der Köninglich böhmischen Gesellschaft der Wissenschaften (II Klasse), 14, 1–54. Mrázek, A. (1913b) Enzystierung bei einem Süsswasseroligochaeten. Biol. Centralbl., 33, 658–666. Orciari, R.D. & Hummon, W.D. (1975) A comparison of benthic Oligochaete populations in acid and neutral lentic environments in southeastern Ohio. Ohio Journal of Science, 77, 44–49. Pařil, P., Bojková, J., Špaček, J. & Helešic, J. (2008) Ecology of Leuctra geniculata (Plecoptera: Leuctridae), an Atlantomediterranean species on the north-eastern border of its area. Biologia, 63(4), 574–581. Pehofer, H.E. (1998) A new quantitative air-lift sampler for collecting invertebrates designed for operation in deep, fastflowing gravelbed rivers Archiv für Hydrobiologie, Suppl. 115/2, Large Rivers, 11(2), 213–232. Pižl, V. (2002) Žížaly České republiky. [Earthworms of the Czech Republic] Sborník přírodovědeckého klubu v Uherském Hradišti, Supp. 9, 154 pp. Pižl, V. (2005) Lumbricidae (žížalovití). In Farkač, J., Král, D. & Škorpík, M. (Eds.) Red list of endangered species in the Czech Republic. Invertebrates. Agentura ochrany přírody a krajiny ČR, Praha. Pp. 65–66. Report EPA/600/3-90/073: Impacts on quality of inland wetlands of the United States: A survey of indicators, techniques, and applications of community level biomonitoring data. Available from http://www.epa.gov/OWOW/ wetlands/wqual/miv.html (accessed 1.3.2010) Schenková, J. (2005) Oligochaeta (máloštětinatci). In Farkač, J., Král, D. & Škorpík, M. (Eds.) Red list of endangered species in the Czech Republic. Invertebrates. Agentura ochrany přírody a krajiny ČR, Praha. Pp. 62–64. Schenková, J., Komárek, O. & Zahrádková, S. (2001a) Oligochaeta of the Morava and Odra River basins (Czech Republic): species distribution and community composition. Hydrobiologia, 463, 235–239. Schenková, J., Komárek, O. & Zahrádková, S. (2001b) The plausibility of using Oligochaeta to evaluate running waters in the Czech Republic. Scripta Facultatis Scientiarum Naturalium Universitatis Masarykianae Brunensis, 27, 173– 187. Schenková, J. & Kroča, J. (2007) Seasonal changes of an oligochaetous Clitellata (Annelida) community in a mountain stream. Acta Universitatis Carolinae, Environmentalica, 21, 143–150. Schlaghamerský, J. (2007) Consequences of the advance in Fridericia taxonomy for our knowledge of Czech and Slovak enchytraeid faunas. In Tajovský, K., Schlaghamerský, J. & Pižl, V. (Eds.), Contributions to Soil Zoology in Central TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. SCHENKOVÁ ET AL.44 · Zootaxa 2676 © 2010 Magnolia Press Europe II. ISB BC AS CR, v.v.i., České Budějovice, pp. 127–130. Schlaghamerský, J. & Kobetičová, K. (2005) A small annelid community (Enchytraeidae, Tubificidae, Aeolosomatidae) during meadow restoration on arable land and in a nearby well-preserved meadow. Proceedings of the Estonian Academy of Sciences: Biology/Ecology, 54, 323–330. Schlaghamerský, J. & Kobetičová, K. (2006) The impact of cattle pasturage on small annelids (Annelida: Enchytraeidae, Tubificidae, Aeolosomatidae) in grasslands of the White Carpathians (Czech Republic). European Journal of Soil Biology, 42, 305–309. Schlaghamerský, J. & Pižl, V. (2009) Enchytraeids and earthworms (Annelida: Clitellata: Enchytraeidae, Lumbricidae) of parks in the city of Brno, Czech Republic. Soil organisms, 81(2), 145–173. Schloesser, D.W., Reynoldson, T.B. & Manny, B.A. (1995) Oligochaete fauna of Western Lake Erie 1961 and 1982: signs of sediment quality recovery. Journal of Great Lake research, 21(3), 294–306. Stout, J.D. (1958) Aquatic Oligochaetes occurring in forest litter - II. Transactions of the Royal Society of New Zealand, 85(2), 289–299. Strayer, D.L. (2001) Ecology and distribution of hyporheic microannelids (Oligochaeta, Aphanoneura, and Polychaeta) from the eastern United States. Archiv für Hydrobiologie, 131(3), 493–510. Strayer, D.L. & Bannon-O’Donnell, E. (1988) Aquatic microannelids (Oligochaeta and Aphanoneura) of underground waters of Southeastern New York. American Midland Naturalist, 119(2), 327–335. Šídová, A. & Schlaghamerský, J. (2007) The impact of high game density on enchytraeids in a mixed forest. In Tajovský, K., Schlaghamerský, J. & Pižl, V. (Eds.), Contributions to Soil Zoology in Central Europe II. ISB BC AS CR, v.v.i., České Budějovice, pp. 147–152. Šporka, F. (1996a) Macrozoobenthos-permanent fauna. In: Krno, I. (Ed.), Limnology of the Turiec river basin (West Carpthians, Slovakia). Biologia, Bratislava, 51(2), 23–27. Šporka, F. (1996b) First record of Aulodrilus pigueti (Oligochaeta, Tubificidae) from the Morava River in Slovakia. Biologia, 51(5), 494. Šporka, F. (2003) Polychaeta, Oligochaeta. In: Šporka, F. (Ed.), Vodné bezstavovce (makroinvertebráta) Slovenska. Súpis druhov a autekologické charakteristiky [Slovak aquatic macroinvertebrates. Checklist and catalogue of autecological notes], Slovenský hydrometeorologický ústav, Bratislava, pp. 88–96. Available from http:// www.zoo.sav.sk/voda_pdf/voda_pdf.htm (accessed 1.3.2010) Štolc, A. (1886) Beiträge zur Kenntnis der Naidomorphen. Zoologische Anzeiger, 9, 502–506. Štolc, A. (1888) Monografie českých Tubificidů: morfologická a systematická studie [a monograph of the Czech Tubificidae: morphologic and systematic study]. Královská česká společnost nauk, Praha 45 pp. Timm, T. (2009) A guide to the freshwater Oligochaeta and Polychaeta of Northern and Central Europe. Lauterbornia, 66, 1–235. Timm, T., Erséus, C. & Lundberg, S. (1997) New and unusual records of freshwater Oligochaeta from the Scandinavian Peninsula. Nordic Journal of Freshwater Research, 72 (1996), 15–29. Timm, T. & Giani, N. (2004) Oligochaeta. Fauna Europaea homepage (online release 2.1). Available from http:// www.faunaeur.org/ (accessed 1.3.2010) Timm, T. & Veldhijzen van Zanten, H.H. (2002) Freshwater Oligochaeta of North–West Europe. CD–ROM. Center for Taxonomic Identification (ETI) and University of Amsterdam, the Netherlands. Uzunov, V., Košel, V. & Sládeček, V. (1988) Indicator value of freshwater Oligochaeta. Acta Hydrochimica et Hydrobiologica, 16(2), 173–186. van den Hoek, T.H. & Verdonschot, P.F.M. (2005) Distribution and ecology of Aulodrilus japonicus in the Netherlands (Oligochaeta: Tubificidae). Nederlandse faunistische mededelingen 23, 103–112. Vejdovský, F. (1876) Beiträge zur Oligochaetenfauna Böhmens. Sitzungsberichte der Köninglich böhmischen Gesellschaft der Wissenschaften (mathematische-naturwissenschaftliche Klasse) 1875, 191–201. Vejdovský, F. (1883) Revisio Oligochaetorum Bohemiae. Sitzungsberichte der Köninglich böhmischen Gesellschaft der Wissenschaften (mathematische-naturwissenschaftliche Klasse) 1883, 215–231. Vejdovský, F. (1884) System und Morphologie der Oligochaeten. Akademie der Wissenschaften in Wien, Praha, 166 pp. Vejdovský, F. (1892) Entwicklungsgeschichtliche Untersuchungen: mit Atlas. Druck und Verlag von J. Otto, Praha, 401 pp. Verdonschot, P.F.M. (2006) Beyond masses and blooms: the indicative value of oligochaetes. Hydrobiologia, 564, 127– 142. Wetzel, M.J. & Taylor, S.J. (2001) First records of freshwater oligochaetes (Annelida, Clitellata) from caves in Illinois and Missouri, USA. Journal of Cave and Karst Studies, 63(3), 99–104. Wohlgemuth, E. & Schenková, J. (1999) Annelida: Aeolosomata, Oligochaeta. In Opravilová, V., Vaňhara, J. & Sukop, I. (Eds), Aquatic Invertebrates of the Pálava Biosphere Reserve of UNESCO. Folia Facultatis scientiarium naturalium Universitatis Masarykianae Brunensis, Biologia 101, Masaryk University, Brno, pp. 89–95. 110 Křoupalová, V., J. Bojková, J. Schenková, P. Pařil & M. Horsák, 2011 Small-scale distribution of aquatic macroinvertebrates in two spring fens with different groundwater chemistry. International Review of Hydrobiology, 96, 235–256. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 1434-2944/11/306-0235 Internat. Rev. Hydrobiol. 96 2011 3 235–256 DOI: 10.1002/iroh.201111307 VENDULA KŘOUPALOVÁ*, JINDŘIŠKA BOJKOVÁ, JANA SCHENKOVÁ, PETR PAŘIL and MICHAL HORSÁK Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic; e-mails: vkroupalova@seznam.cz, schenk@sci.muni.cz Research Paper Small-Scale Distribution of Aquatic Macroinvertebrates in Two Spring Fens with Different Groundwater Chemistry key words: springs, fens, macroinvertebrate assemblages, within-site heterogeneity, seasonal variation Abstract We examined responses of macroinvertebrate assemblages to environmental and temporal variations along spring source-spring brook transects in two fen habitats, sharply differing in groundwater chemistry, and compared the patterns among individual taxonomical groups. We hypothesised a different importance of environmental heterogeneity and seasonal changes primarily linked to strong tufa precipitation, which causes stronger environmental filtering in the calcareous fen. In concordance, we observed that assemblages of the more homogenous calcareous fen primarily changed over time, due to seasonal shifts in source availability and favourable conditions. Their spatial distribution was determined by the amount of CPOM, tufa crusts and temperature variation, but a substantial part of the assemblage exhibited spatial uniformity (Plecoptera, Clitellata, and especially Trichoptera and Diptera). The assemblages of the more heterogeneous Sphagnum-fen were primarily driven by water pH and substrate and the season was a notably weaker predictor. We found that different macroinvertebrate groups can display various responses to the measured variables shaping the overall pattern obtained based on the whole community. Further, greater environmental heterogeneity can result in temporally stable species distribution patterns even at very small spatial scales within a single site. 1. Introduction Small-scale distributions of macroinvertebrates in springs have been studied mainly in terms of the zonation patterns of assemblages along the springbrooks and spring sourcespringbrook gradients. These studies looked at different lengths of the spring fen gradient and different within-site heterogeneity and the composition of assemblages from different studies reflected different environmental factors such as discharge (MINSHALL, 1968; CHERTOPRUD, 2006), temperature (WARD and DUFFORD, 1979; RESH, 1983; VON FUMETTI et al., 2007; BARQUÍN and DEATH, 2011), and substrate (WARD and DUFFORD, 1979; FERRINGTON et al., 1995; ILMONEN and PAASIVIRTA, 2005). The distance from a spring-source was commonly * Corresponding author 236 V. KŘOUPALOVÁ et al. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.revhydro.com interpreted as a proxy for rapid changes in the environment with decreasing influence of a stable supply of groundwater (e.g., VON FUMETTI et al., 2007) and rapid changes of distributional patterns of macroinvertebrates at the species level and at higher taxonomic levels. These patterns have often been described by comparing the macroinvertebrate species occurring at different distances from the spring-source (e.g., RESH, 1983; WILLIAMS and HOGG, 1988; BARQUÍN and DEATH, 2011). Beside substrate, discharge and temperature regimes, groundwater chemistry may also influence macroinvertebrate distributions within a single spring site. It can be expected to be important in heterogeneous springs, where the input of groundwaters of different chemistry creates markedly different patches within a spring. Direct effects of pH, bases and metal content in water can alter the suitability of these microhabitats for macroinvertebrates since individual species and/or taxonomic groups are diversely sensitive to these factors, mainly due to physiological reasons (cf. FORD, 1989; SUTCLIFFE and HILDREW, 1989; VUORI, 1995). GLAZIER and GOOCH (1987) and GLAZIER (1991) reported that alkalinity and pH had an important influence on spring assemblage compositions; similarly, WILLIAMS et al. (1997) found that water chemistry parameters, describing different levels of urbanisation, were important determinants of spring assemblages. Benthic macroinvertebrate assemblages of springs are composed of species with different strengths of the linkage to the spring environment (LINDEGAARD et al., 1998) and also with different biological and ecological traits (WILLIAMS, 1991; WAGNER et al., 1998). Therefore, the distribution of macroinvertebrates within a spring reflects not only the various habitat preferences of species (e.g., ILMONEN and PAASIVIRTA, 2005) and their requirements for different food sources (e.g., MCCABE and SYKORA, 2000; BARQUÍN and DEATH, 2006), but also their life histories (cf. WILLIAMS and HOGG, 1988; BARQUÍN and DEATH, 2004). The responses of invertebrate orders and/or taxonomic groups to measured factors describing spring habitats can differ from one another (e.g., MINSHALL, 1968; RESH, 1983; WILLIAMS and HOGG, 1988); thus, the whole macroinvertebrate assemblage may comprise taxa with different, even inverse, responses. However, there is a lack of studies directly comparing the responses of whole macroinvertebrate assemblages with responses expressed by the individual taxonomic groups comprising them. In this study, we explored the within-site distribution of macroinvertebrates in two spring fens that significantly differ in water pH and mineral richness. The first site was a calcareous fen with differing degrees of tufa precipitation which provided an ecologically extreme habitat. The second site was a Sphagnum-fen characterised by different pH levels, mineral richness and different substrates. We aimed (i) to compare the spatial and temporal variations between the two complete macroinvertebrate assemblages and among individual taxonomic groups, namely Ephemeroptera, Plecoptera, Trichoptera, Diptera (except Chironomidae), Chironomidae, and Clitellata, and (ii) to analyse the influence of the measured variables on species composition of the assemblages. We hypothesised that temporal variation would be more important in the calcareous fen since precipitations of tufa can constrain the number of microhabitats and their diversity, while the spatial distribution of species would be more important in the environmentally more heterogeneous Sphagnum-fen and would be predominantly driven by gradients of pH and mineral richness. 2. Methods 2.1. Study Area and Sites The studied spring fens are located in the Western Carpathian flysch zone, in the borderland between the Czech Republic and Slovakia. Flysch is characterised by a serial alternation of sandstone and claystone deposits with different calcium contents. Due to specific bedrock chemistry, spring fens with different mineral richness of groundwater occur in this area. Two spring fens representing the opposite Small-Scale Distribution of Macroinvertebrates 237 © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.revhydro.com ends of the pH/calcium gradient were selected for this study. The first site is a calcareous fen with strong tufa precipitation (the Bílé Potoky Nature Reserve; 49°06′47″ N, 18°01′24″ E) situated in the Bílé Karpaty Mountains; the second site is a Sphagnum-fen (the Obidová Nature Monument 49°31′03″ N, 18°31′24″ E) situated in the Moravskoslezské Beskydy Mountains. Both spring fens are composed of four helocrenes with springbrooks which drain the whole spring fen area and connect downstream. In each site, we chose a ca. 400 m long spring source-springbrook transect comprising three helocrenes of different groundwater chemistry and their springbrooks. The transect ran longitudinally through the spring fen and covered the whole site’s heterogeneity. The calcareous fen was situated on a steep meadow hillside which reaches an altitude between 380 and 500 m above sea level (m a.s.l.) and covers 8.8 ha. Great horsetail (Equisetum telmateia EHRH.) and butterbur (Petasites hybridus LINNÉ) were the dominant vascular plants; brown mosses (family Bryidae) dominated in the moss layer. However, no plants covered the bottom of the springbrooks. The pH of the water was alkaline (mean = 8.3 ± 0.2) and conductivity was very high (mean = 480 ± 43.0 μS cm–1 ). The spring source-springbrook transect was characterised by an increasing discharge and an increasing variation in water temperature downstream (Table 1). An intense precipitation of calcium carbonate (tufa) formed strong crusts (mostly upstream) as well as small tufa grains (predominantly downstream). Beside tufa incrustations, the dominant types of bottom substrate were stones and dead leaves. Dead leaves dominated in the upper sections near the spring sources, while stones were mostly found in the lowermost section of the spring fen (Table 1). The Sphagnum-fen was situated in a meadow with moderate slopes between 710 and 750 m a.s.l. and covered 7.3 ha. The spring source-springbrook transect was characterised by a sharp gradient in pH and mineral richness. The uppermost part of the spring fen was classified as a mineral-poor Sphagnumfen characterised by an acidic pH (mean = 5.2 ± 0.6) and a high iron concentration (2620 μg l–1 ). The remaining part of the Sphagnum-fen was classified as a mineral-rich Sphagnum-fen dominated by calcitolerant Sphagna. The mean pH was higher here than in the mineral-poor part of the Sphagnumfen (pH 6.6 ± 0.7); the iron concentration remained very high in the middle part of the spring fen (mean = 2875 ± 650.9 μg l–1 ) but this value decreased distinctly downstream (mean = 244 ± 72.7 μg l–1 ). The conductivity was rather low (mean = 60 ± 14.2 μS cm–1 ) along the whole Sphagnum-fen. The discharge was lower in the middle sections of the spring fen than in the upper and lower sections due to the high retention of water by peat in the middle sections (Table 1). The substrate characteristics changed considerably along the entire spring source-springbrook transect; fine detritus (FPOM) and Sphagna prevailed near the spring sources, whilst a coarse inorganic substrate (coarse gravel) dominated in the lower part of the Sphagnum-fen (Table 1). 2.2. Field Sampling and Explanatory Variables Sampling was carried out three times: in spring (April–May), summer (July), and autumn (September) in 2006. Benthic samples were collected in five (calcareous fen) and six (Sphagnum-fen) sections of the springs which represented different abiotic conditions along the 400 m long transects from spring sources to the springbrooks draining each fen. The length of each section was approx. 50 m, and the distance between neighbouring sections was at least 20 m. In each section, a sample consisting of ten sampling plots (25 cm × 25 cm), which represented all of the habitats along the sampled spring section, was taken semiquantitatively with a hand net (mesh size 0.5 mm) by the kick-sampling method (FROST, 1971). After washing the sampled substrate several times in a bucket and removing the coarse inorganic substrate, the sample was elutriated through a net of a 0.5 mm mesh size and the remaining material was preserved in 4% formaldehyde. The samples were subsequently sorted and invertebrates were identified in the laboratory, mostly to the species and genus levels. Water temperature, pH, conductivity, and dissolved oxygen were measured in the field using portable instruments (WTW Multi 340i/SET) in each sampling occasion. The annual variation of temperature of each section was calculated from individual measurements as the difference between maximal and minimal temperature values during the year. Discharge was estimated by sampling the spring water in a vessel for a defined period of time in each sampling. We recorded the percentage cover of stones, gravel, sand, coarse particulate organic matter (CPOM), fine particulate organic matter (FPOM), and tufa crusts in each section. For statistical analyses, the relative proportions of stones, gravel, and sand in each section were expressed by the phi coefficient (FURSE et al., 1986). In autumn, water samples were collected and concentrations of soluble Na, K, Ca, Mg, Al, Fe, SO4, NO3, and PO4 ions were measured © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.revhydro.com 238 V. KŘOUPALOVÁ et al. Table1.MeanvaluesofthephysicochemicalvariablesmeasuredinthecalcareousfenandtheSphagnum-feninspring,summer,and autumnin2006.TheamountofinorganicsubstrateandFPOMdidnotchangeduringtheyear,thereforeconcretenumbersofphicoef- ficient,tufacrusts,andFPOMareshowninthetableinsteadofmeanvalues.Thesamplesarenumberedfrom1to5and1to6and describetheincreasingdistanceofthesampledsitesawayfromthesourceofthefens.Var.intemperature–variationintemperature; CPOM–coarseparticulateorganicmatter;FPOM–fineparticulateorganicmatter. pHVar.in temperature (°C) Con- ductivity (μScm–1 ) Dissolved oxygen (mgl–1 ) Discharge (mls–1 ) phi- coefficient Tufa crusts (%) CPOM (%) FPOM (%) Ca (mgl–1 ) Fe (μgl–1 ) Distance fromhelo- crenes(m) Calcareous-fen 18.1±0.123.7523±54.08.3±1.9377±441–3.23043.3±4.701055341 28.3±0.054474±27.09.2±2.3377±239–1.93053.3±4.7075.98310 38.2±0.124.8497±9.48.9±2.2767±525–3.12033.3±4.7093.7279120 48.5±0.087.4495±32.09.1±2.5933±556–0.7752030092.9130220 58.47483±7.59.9±3.2933±556–2.952010082.5164300 Sphagnum-fen 15.2±0.6655±16.73.1±3.0233±94–1.4100609.326201 26.1±0.6574±2.65.4±1.363±916.2500906.836601 36.5±0.5658±4.36.8±1.873±61–1.7500705.4209010 46.6±0.7465±16.27.5±1.9933±634–5.01003010311170 57.0±0.3547±2.68.3±2.0300±284–3.5500406.3143200 66.8±0.8463±14.57.8±1.81067±680–4.8300510.4278300 Small-Scale Distribution of Macroinvertebrates 239 © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.revhydro.com in an accredited laboratory. These samples were collected in late autumn because of the relative stability of water chemistry in this period (cf. HÁJEK and HEKERA, 2004). 2.3. Statistical Analyses We analysed responses of the entire benthic community first (i.e., all taxa from all samples) and then from the whole array we chose the following taxonomic groups, which were the most species rich and abundant in studied sites: Ephemeroptera, Plecoptera, Trichoptera, Diptera except Chironomidae, and Clitellata. These datasets were analysed separately. The individual species-by-sample matrices were subjected to principal components analysis (PCA) due to the low species turnover within the studied transects. The length of the main gradient in the detrended correspondence analysis (DCA) did not exceed 3 units, indicating that ordination techniques based on the linear response model were most appropriate (LEPŠ and ŠMILAUER, 2003). The relationships between explanatory variables and site scores on the first four ordination axes of PCA were assessed using Spearman’s rank correlations (rs) for continuous variables and the Mann-Whitney U test for nominal variables. Partial redundancy analysis (pRDA) with the season as a covariable was used for testing the amount of variability explained by each physicochemical variable with a forward selection for each tested taxonomic group. The MonteCarlo permutation test was used to test the significance of variables (P = 0.01; 1999 permutations). Prior to PCA and RDA, the species abundance data were log (x + 1) transformed to reduce the effect of dominant taxa. The variation partitioning approach (BORCARD et al., 1992) was used to determine the relative amounts of variation in species data explained by two different constraining groups of variables (physicochemical variables and season) in separate RDAs. Since the explained variation was also influenced by the number of explanatory variables (PERES-NETO et al., 2006), we only used the three most powerful predictors in each group of variables that were significant in the separate RDAs. The CANOCO 4.5 software package (TER BRAAK and ŠMILAUER, 2002) was used for computing the ordinations and STATISTICA 8 (HILL and LEWICKI, 2007) was used for the univariate analyses. Sequential Bonferroni corrections of the significance levels (HOLM, 1979) were applied for multiple comparisons of explanatory variables. 3. Results 3.1. Macroinvertebrate Diversity and Abundance Altogether, 138 and 163 taxa were represented by 54,424 and 45,988 individuals recorded in the calcareous fen and in the Sphagnum-fen, respectively (Appendix 1). An abundance of non-insect taxa prevailed at both sites. The amphipod Gammarus fossarum KOCH accounted for 73% and 30% of all individuals in the calcareous fen and in the Sphagnum-fen, respectively. After G. fossarum, the clitellate Trichodrilus strandi HRABĚ was the most abundant species in the calcareous fen and the snail Bythinella austriaca (FRAUENFELD) was the most abundant species in the Sphagnum-fen (Fig. 1). In contrast, insect fauna was more taxon rich than non-insect fauna with a high dominance of Diptera, which was particularly rich in the calcareous fen and comprised nearly 65% of all taxa recorded there (Fig. 2). There were large proportions of other insect taxa in the Sphagnum-fen (Trichoptera and Plecoptera) and Clitellata were also characteristic for this site (Fig. 2). 3.2. Differences in the Proportions of Spatial and Temporal Variations between Spring Fens The PCA and variation partitioning in partial RDAs revealed significant differences in the role of physicochemical variables and season for structuring of assemblages in the study of spring fens (Table 2, Fig. 3). When looking at the whole benthic assemblage in the calcare- 240 V. KŘOUPALOVÁ et al. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.revhydro.com ous fen, the first PCA axis (28% of the explained data variation) reflected the difference between spring, summer, and autumn samples, whereas the second ordination axis (18% of the explained data variation) expressed changes in physicochemical variables along the transect (Fig. 4). On the contrary, Sphagnum-fen assemblages revealed the opposite pattern; the first ordination axis (24.5% of the explained data variation) displayed the grouping of samples along the transect and the second PCA axis (17% of the explained data variation) was associated with the season (Fig. 5). The variation partitioning method revealed that physicochemical variables had a substantially greater influence (38%) than season (19%) in the Sphagnum-fen, while the difference in the variation explained by physicochemical variables and season was not so high in the calcareous fen (28.5% and 17%, respectively) when considering the whole assemblage (Fig. 3). Furthermore, the differences in the effect of physicochemical variables and season between the individual taxonomic groups were also recorded. In the calcareous fen, the relative part of the species data variation explained by season was the highest for Trichoptera and Diptera (except Chironomidae) (32% and 28.5%, respectively), which corresponded well with the high significance of season in these groups in the PCA analysis (Table 2). Ephemeroptera was the group with the largest part of the variation explained by physicochemical variables in the calcareous fen (45.5%). In the Sphagnum-fen, the greatest influence of physicochemical variables (66%) and the lowest influence of season (3.7%) were characteristic for Ephemeroptera. The second highest proportion of the variation explained by physicochemical variables (43%) was recorded in the Trichoptera data set. Simultaneously, Ephemeroptera and Trichoptera were the only taxonomic groups in the Sphagnum-fen where the season was not significant on the first PCA axis (Table 2). In contrast, the smallest proportion of variFigure 1. The relative abundance of macroinvertebrates at the studied sites. Figure 2. The taxonomic structure of macroinvertebrate assemblages at the studied sites. Small-Scale Distribution of Macroinvertebrates 241 © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.revhydro.com Table2.RelationshipsbetweenPCAordinationsitescores(firsttwoaxes),explanatoryvariables,andnumberoftaxaandindividuals inthecalcareousfenandtheSphagnum-fenusingSpearman’srankcorrelations(rs)andtheMann-WhitneyUtest.UsingBonferroni correctionsthecurrentcutlevelforSpearman’scorrelationswasP<0.003(inbold).ValuesatthesignificancelevelofP<0.01arein normalprint.Dipteraex.Chir.–DipteraexceptChironomidae;var.intemperature–variationintemperature;CPOM–coarseparticulate organicmatter;FPOM–fineparticulateorganicmatter;ns–notsignificant. calcareousfenEphemeropteraPlecopteraTrichopteraDipteraexc.Chir.ChironomidaeClitellataAlltaxa 1.axis2.axis1.axis2.axis1.axis2.axis1.axis2.axis1.axis2.axis1.axis2.axis1.axis2.axis Explainedvariance0.7980.1570.3640.2910.3010.2110.3090.2400.3060.2350.5310.2100.2790.178 rsrsrsrsrsrsrs pHnsnsnsnsnsnsnsnsnsnsnsnsnsns Var.intemperaturensnsnsnsnsnsnsnsnsnsnsnsns0.775 Conductivitynsnsnsnsnsnsnsnsnsnsnsnsnsns Dissolvedoxygennsns0.793ns0.647nsns0.832ns0.705nsnsnsns Dischargensnsnsnsnsnsnsns–0.790ns–0.721nsnsns phi-coefficientnsnsnsnsnsnsnsnsnsnsnsnsnsns Tufacrustsnsnsnsnsnsnsnsnsnsnsnsnsns–0.692 CPOMnsnsnsnsnsnsnsnsnsnsnsnsns–0.705 Cansnsnsnsnsnsnsnsnsnsnsnsnsns Fensnsnsnsnsnsnsnsnsnsnsnsnsns Distancefromhelocrenesnsnsnsnsnsnsnsnsnsnsnsnsns0.772 Numberoftaxa0.885ns–0.539nsnsns0.686nsnsnsnsnsnsns Numberofindividuals0.974nsns–0.75nsns0.900ns0.964ns0.985ns0.703ns P(Utest)P(Utest)P(Utest)P(Utest)P(Utest)P(Utest)P(Utest) Season0.03ns0.007ns0.005ns0.0070.0050.040.030.014ns0.002ns Sphagnum-fenEphemeropteraPlecopteraTrichopteraDipteraexc.Chir.ChironomidaeClitellataAlltaxa 1.axis2.axis1.axis2.axis1.axis2.axis1.axis2.axis1.axis2.axis1.axis2.axis1.axis2.axis Explainedvariance0.6060.2480.3580.1970.2590.2070.3930.1510.3050.2010.3240.2270.2450.171 rsrsrsrsrsrsrs pHnsns0.733nsnsnsns0.6620.621nsns0.788nsns Var.intemperature–0.882nsnsns–0.866nsnsnsns–0.64nsns–0.629ns Conductivitynsnsnsnsnsnsnsnsnsnsnsnsnsns Dissolvedoxygennsnsnsnsnsnsnsnsnsns–0.604nsnsns Discharge0.739nsnsns0.769ns0.679nsnsnsnsns0.634ns phi-coefficient–0.894nsnsns–0.699nsnsnsns–0.642ns–0.636–0.674ns FPOM–0.914nsnsns–0.825nsnsns–0.636nsns–0.605–0.887ns Ca0.673nsnsns0.712nsnsnsnsnsnsnsnsns Fe–0.733nsnsns–0.636nsns–0.843nsnsns–0.724–0.761ns Distancefromhelocrenes0.886nsnsns0.863nsns0.683nsnsns0.7230.889ns Numberoftaxa0.968nsnsnsnsnsnsnsns0.770nsnsns–0.589 Numberofindividuals0.96ns–0.834nsns0.5950.721nsns0.746nsns0.607ns P(Utest)P(Utest)P(Utest)P(Utest)P(Utest)P(Utest)P(Utest) Seasonnsns0.020.050ns0.0400.0100ns0.008ns0.0090.05ns0.03 242 V. KŘOUPALOVÁ et al. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.revhydro.com ation explained by the physicochemical variables was detected in the Plecoptera (30%) and Diptera (28%) assemblages (Fig. 3). 3.3. Responses of Individual Taxonomic Groups to Environmental Gradients Calcareous fen. According to the PCA, the main changes in the species composition of taxonomic groups were significantly associated with dissolved oxygen (Plecoptera and to a lesser degree Trichoptera) and discharge (Chironomidae and Clitellata) (Table 2). Numbers of individuals significantly correlated with the first PCA axes of all taxonomic groups (except Plecoptera and Trichoptera) (Table 2). Using the season as a covariable in partial RDA, variation in water temperature explained a large part of the variation in the whole Figure 3. Comparison of the variance explained by physicochemical variables and season between the taxonomic groups of the calcareous fen (A) and the Sphagnum-fen (B) using the variation partitioning approach in separate RDAs. Small-Scale Distribution of Macroinvertebrates 243 © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.revhydro.com assemblage data set. Looking at the whole assemblage, the most significant factors in the individual taxonomic groups were the amount of CPOM (Ephemeroptera), variation in temperature and Ca concentration (Plecoptera), and tufa crusts (Chironomidae) (Table 3). In the Clitellata assemblage, the pRDA results confirmed the importance of discharge, indicating its significant influence on this taxonomic group. However, no significant predictor was found in the Diptera assemblage (which did not include Chironomidae) (Table 3). Sphagnum-fen. Changes in physicochemical variables along the spring source-springbrook transect played a more important role in the structuring of macroinvertebrate assemblages in the Sphagnum-fen than in the calcareous fen. Changes along the longitudinal transect were best displayed by the first PCA axis of the Ephemeroptera and Trichoptera assemblages, which were significantly correlated with nearly all of the physicochemical variables, reflecting changes along the transect (Table 2). Water pH was the only physicochemical variable that correlated with the first PCA axis of Plecoptera, reflecting a seasonal variation in this assemblage. However, the remaining three taxonomic groups showed a different pattern; they were more closely related to the physicochemical variables obtained on the second PCA axis of each taxonomic group (Table 2). On the basis of partial RDA analysis, FPOM was identified as the most important predictor and pH as the second most important when looking at the whole assemblage (Table 3). Likewise, the amount of FPOM controlled a large part of the variation in the Ephemeroptera, Plecoptera, and Chironomidae data sets. The main changes in species composition of the remaining groups were explained by Fe and/ Figure 4. Principal component analysis (PCA) of all species data in the calcareous fen: ordination plot of sampled sites on the first two PCA axes with posteriori plotted abiotic variables. Only the variables significantly associated with the PCA axis at the level P < 0.01 are shown. The most important species which were characteristic of upstream and downstream sections are displayed. • – springbrooks in the upper part of the fen connected to their spring sources; – downstream springbrooks formed by the joining of upstream springbrooks. Numbers from 1 to 5 before the slash describe the increasing distance of the sampled sites from the spring source of the fen; numbers behind the slash describe the month of sampling. Var. in temperature – variation in temperature; CPOM – coarse particulate organic matter; distance – distance from helocrenes. 244 V. KŘOUPALOVÁ et al. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.revhydro.com Figure 5. Principal component analysis (PCA) of all species data in the Sphagnum-fen: ordination plot of sampled sites on the first two PCA axes with posteriori plotted abiotic variables. Only the variables significantly associated with the PCA axis at the level P < 0.01 are shown. The most important species which were characteristic of upstream and downstream sections are displayed. • – springbrooks in the upper part of fen connected to their spring sources; – downstream springbrooks formed by the joining of upstream springbrooks. Numbers from 1 to 6 before the slash describe the increasing distance of the sampled sites from the beginning of the fen; numbers behind the slash describe the month of sampling. Var. in temperature – variation in temperature; FPOM – fine particulate organic matter, distance – distance from helocrenes. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.revhydro.com Small-Scale Distribution of Macroinvertebrates 245 Table3.ResultsoftheforwardselectionprocedureinpRDAusingtheseasonasacovariableforspeciesdatainthecalcareousfen andtheSphagnum-fen.Thenumbersfrom1to9expresstheorderoffactorsaccordingtotheproportionofexplainedvariationineach taxonomicgroup.VariablessignificantatP=0.01(Monte-Carlotest)wereincludedinthemodel;thesevariablesareinbold.Significance levels:***,P<0.001;**,P<0.01;*,P<0.05.Dipteraex.Chir.–DipteraexceptChironomidae;var.intemperature–variationin temperature;CPOM–coarseparticulateorganicmatter;FPOM–fineparticulateorganicmatter. calcareousfenEphemeropteraPlecopteraTrichopteraDipteraexc.Chir.ChironomidaeClitellataAlltaxa Var.intemperature52%211%**83%27%64%55%116%** Dissolvedoxygen37%**43%65%113%74%64%36% pH62%62%74%64%46%46%55% Conductivity81%35%*38%84%36%72%27% Discharge43%82%46%45%26%114%*83% phi-coefficient90%52%90%74%84%81%65% Tufacrusts71%72%55%54%113%**211%46% CPOM130%***90%29%90%90%90%74% Ca28%*119%**110%36%90%37%90% Fe90%90%90%90%56%90%90% Totalvariance54%46%50%47%49%50%52% Sphagnum-fenEphemeropteraPlecopteraTrichopteraDipteraexc.Chir.ChironomidaeClitellataAlltaxa FPOM150%***117%***37%83%120%***73%122%*** Var.intemperature47%*37%*120%***54%27%210%**46% pH71%28%*216%***91%83%45%211%** Conductivity90%73%83%73%74%54%83% Dissolvedoxygen81%45%75%44%*92%93%73% Discharge211%**54%92%34%65%64%93% phi-coefficient64%92%56%63%46%36%*37%** Ca57%*64%66%*210%***37%*83%56%** Fe38%**83%47%*114%***56%119%***65% Totalvariance89%53%72%46%60%57%66% 246 V. KŘOUPALOVÁ et al. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.revhydro.com or Ca concentrations (Diptera except Chironomidae and Clitellata), water pH (Trichoptera), and variation in water temperature (Trichoptera and Clitellata) (Table 3). 4. Discussion 4.1. Spatio-Temporal Variations in Macroinvertebrate Assemblages In the calcareous fen, the assemblages primarily changed in response to the changing seasons (Fig. 4, Table 2), whereas in the Sphagnum-fen, they were primarily influenced by substrate and water chemistry (Fig. 5, Table 2). On one hand, this could be connected to the different within-site heterogeneity of environmental conditions between the two spring fens, and/or on the other hand to seasonal shifts in available sources and favourable conditions. Strong tufa precipitation in the calcareous fen created a rather uniform environment, thus the main microhabitat differentiation was caused by discharge and the presence of leaf packets, which varied seasonally. In contrast, the seasonal variation was overridden by a sharp gradient of physicochemical variables (substrate structure, pH and mineral richness) in the Sphagnum-fen. This demonstrates the importance of spatial heterogeneity for the distribution of macroinvertebrates in springs, which was also previously pointed out by WARD and DUFFORD (1979), who recorded a significant effect of substrate heterogeneity on macroinvertebrate diversity and abundance in a springbrook-pond system. The pronounced shared effect of physicochemical variables and season expressed in the calcareous fen (Fig. 3) can be attributed in particular to the seasonal variability in discharge and the amount of leaf packets (cf. significant correlations of physicochemical variables in the PCA analysis and their non-significant contribution after including the season as a covariable in pRDA; Tables 2 and 3). It also suggests an important role of seasonal shifts in the sources and periods of favourable environmental conditions in the calcareous fen. Harsh conditions in the calcareous fen may mean that aquatic fauna is strongly dependent on the allochthonous input of organic matter in the form of leaves and wood. A substantial part of the assemblages was formed by univoltine species (especially many plecopterans and dipterans) with early spring and spring emergence. This is obvious because the life cycles of many shredders in temperate regions are synchronised with the input of riparian leaves in the autumn (e.g., MALICKY, 1989; WILLIAMS, 1991). They showed a major growth period in late autumn and winter when they reached high abundance and species richness in the samples (Table 2). On the contrary, the Sphagnum-fen was not influenced by the seasonal input of organic matter since it was surrounded by coniferous forest and was rich in organic matter due to the continual strong formation of peat. We recorded equal numbers of individuals collected during the seasons and the numbers of taxa recorded even decreased towards autumn (Table 2). 4.2. Spatial Distribution of Macroinvertebrates in the Calcareous Fen The spatial distribution of macroinvertebrates was primarily determined by factors linked with the distance from the helocrene spring sources: tufa precipitation, organic matter input and temperature variation (Tables 2 and 3). The sections directly following the helocrenes were inhabited by unique crenophilic species from all macroinvertebrate groups that were not present downstream, whereas some species occurred exclusively in downstream sections. The contribution by particular groups to the total composition of the macroinvertebrate assemblages differed. A relative spatial uniformity of species composition (and the dominant influence of seasonal variation) was particularly observed for Trichoptera, Diptera (except Chironomidae), Plecoptera, and Clitellata. The spatial uniformity of the Trichoptera assemblage was most likely attributable to the tufa substrate, which is extremely unsuitable Small-Scale Distribution of Macroinvertebrates 247 © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.revhydro.com for many species. It forms small particles similar to sand grains, which are known to be an unstable and nutrient-poor substrate for caddis flies (SOLUK, 1985; COBB and FLANNAGAN, 1990; PHILLIPS, 2003), and/or strong compact crusts which hinder access to the deeper parts of the bottom substrate (ZOLLHÖFER et al., 2000). Moreover, Trichoptera assemblages, even if they included many species restricted to springs, did not show fixed zonation patterns in a spring source-springbrook gradient, but these patterns had a strong seasonal component (MCCABE and SYKORA, 2000). Similarly, spatially uniform Diptera (except Chironomidae) assemblages varied more distinctly during the season, most likely because they consisted of many eurytopic taxa which are able to colonise a wide range of habitats (cf. BRINKMANN, 1991; WAGNER et al., 1998; DE JONG et al., 2008). On the other hand, there were several Trichoptera and Diptera taxa dominating in tufa zones which either have mechanisms to cope with tufa deposition or may actually benefit from tufa formation (MARKS et al., 2006). We found several calciphilous species of Trichoptera and Diptera (e.g., Rhyacophila pubescens PICTET, Plectrocnemia brevis MCLACHLAN, Pericoma calcilega FEUERBORN, Thaumastoptera calceata MIK) which could favour these conditions. However, they were evenly distributed along the studied transect. For Plecoptera, we found an effect of Ca concentration, which was difficult to interpret. The species composition of the Plecoptera assemblage was similar along the studied transect, but their abundance was higher in sections with lower Ca concentrations. We observed strong calcium carbonate encrustations on the thorax and tergites of Nemoura and Protonemura larvae sampled in the places with the strongest tufa precipitation. These encrustations might have adverse effects similar to those of Fe precipitates which cause the inhibition of motion and the smothering of aquatic invertebrates in humic waters (VUORI, 1995). A similar situation was observed in clitellate assemblages which were locally negatively affected by discharge and the presence of strong tufa crusts, because they are sensitive to physical disturbances (BARQUÍN and DEATH, 2004) and the reduction of interstitial spaces in the stream bed caused by tufa deposition (cf. RUNDIO, 2009). Clitellates assemblages have been documented as not being as closely related to seasonal changes as insect fauna in springs (BARQUÍN and DEATH, 2009). However, in our study, the seasonal variation was distinctive owing to the seasonal dynamics of the dominant species Trichodrilus strandi, which is monocyclic with spring-summer copulation, lying cocoons in summer (ŠPORKA, 2003; SCHENKOVÁ et al., 2010), with juveniles in autumn increasing the number of individuals in samples. A comparably lower influence of seasonal variation was observed in Ephemeroptera and Chironomidae assemblages. Their species composition was significantly associated with coarse organic matter and tufa crusts. They formed discrete assemblages in places near helocrenes (Chironomidae) or in the springbrook (Ephemeroptera). This pattern resulted from the dominance of crenobiontic and madicolous Chironomidae such as Neostempellina thienemanni REISS, Krenopelopia sp., Krenosmittia cf. camptophleps (EDWARDS) and Parachaetocladius abnobaeus (WULKER) (LINDEGAARD, 1995) near the helocrenes and rheophilous mayflies (Ecdyonurus subalpinus KLAPÁLEK, Electrogena ujhelyii (SOWA)) dwelling predominantly in the springbrook section of the fen. 4.3. Spatial Distribution of Macroinvertebrates in the Sphagnum-Fen The spatial distribution of macroinvertebrates along the transect was governed by a joint influence of pH/mineral richness and substrate. Particular taxa were more or less sensitive to variations in pH and iron concentrations along the transect and/or the preferred substrate of different volumes of fine detritus. Water chemistry varying along the studied transect influenced Clitellata and Diptera (except Chironomidae) assemblages by the effects of acidity and high iron concentrations (Table 3). Clitellates showed a shift from acidotolerant speciesdominated assemblages (Enchytraeidae) to eurytopic aquatic species-dominated assemblages 248 V. KŘOUPALOVÁ et al. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.revhydro.com (Naididae and Lumbriculidae). Diptera (except Chironomidae) were characterised by an increased abundance of acid-benefiting Ceratopogonidae (SOMMER and HORWITZ, 2001) and by a very rare occurrence of species from the families Tipulidae and Limoniidae, which were documented as being limited by pH and heavy metals (SASAKI et al., 2005). Two groups, Chironomidae and Plecoptera, were predominantly associated with substrate, regardless of acidity and the distance from the helocrenes (Table 3). Many Chironomidae species showed clear preferences for either spring sections with a dominance of FPOM or with a high amount of inorganic substrate. These results correspond well to the findings of FERRINGTON (1998), who emphasised the importance of a predominant substrate type for the chironomid assemblage composition in springs. A joint influence of pH/mineral richness and substrate was observed in the Ephemeroptera and Trichoptera assemblages. As the mayflies are the most acid-sensitive aquatic insects (BRAUKMANN, 2001), they were completely missing in the most acidic parts of the fen. Under episodically slight acidic and circum-neutral conditions, they were less abundant in sections with organic substrate and abundant in sections with a higher discharge and coarse sediment. This response was caused by the different degrees of acid sensitivity of mayflies. Baetis vernus CURTIS, an “acid-benefitting” species, which can even increase their densities with increasing acidity (TIXIER et al., 2009), and the “slightly acid-sensitive” species Baetis niger (LINNAEUS), which tolerates episodically acid events (BRAUKMANN, 2001; PETRIN et al., 2007), inhabited sections with circum-neutral conditions that were episodically weakly acidic. In sections with neutral conditions, i.e., springbrooks, the number of mayflies significantly increased and the assemblage included “acid-sensitive” species. The distribution in these sections was governed by the substrate, namely by the proportions of FPOM (preferred by, e.g., Baetis niger) and stones and gravel (occurrence of Ecdyonurus subalpinus and Habrophlebia lauta EATON and higher abundance of Baetis vernus). Contrary to Ephemeroptera, the Trichoptera taxa richness and abundance remained constant along the Sphagnum-fen. However, some species occurred exclusively in acidic sections (i.e., acid-tolerant and/or crenophilous species, according to BRAUKMANN, 2001; GRAF et al., 2008) or in acid-neutral sections (i.e., slightly acid-sensitive and acidsensitive lotic species; BRAUKMANN, 2001; GRAF et al., 2008). Spring-dwelling species are generally more tolerant to low pH levels than rhitrobiontic species (see also BRAUKMANN, 2001; SASAKI et al., 2005), which appears to be an adaptation to special crenal conditions (HAHN, 2000). Simultaneously, the Trichoptera assemblage dwelling in this site comprised many species with pronounced substrate preferences which were distributed in relation to the fine detritus/inorganic particle proportions in the bottom substrate (e.g., Silo pallipes, Odontocerum albicorne, and Hydropsyche saxonica). 5. Conclusions Spatial heterogeneity in environmental conditions can be an important factor that controls macroinvertebrate within-site distribution. Higher heterogeneity can result in temporally stable species distribution patterns even at very small spatial scales, contrary to environmentally more homogeneous habitats where seasonal changes are of higher importance. Environmentally more heterogeneous habitats also promote variation in individual taxa responses to the measured variables, shaping the overall pattern obtained based on the whole community. In the more heterogeneous habitat, the response of the whole assemblage was a complex of different group responses, contrary to analogical or non-significant responses in a less heterogeneous habitat. This study stresses the importance of segregating the responses of individual macroinvertebrate groups when studying species distribution patterns even within a single habitat. Responses of individual groups can be highly variable or even reverse at environmentally more heterogeneous sites. Small-Scale Distribution of Macroinvertebrates 249 © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.revhydro.com 6. Acknowledgements This study was supported by the long-term research plan of Masaryk University (MSM 0021622416), specific research of Masaryk University (MUNI/A/0976/2009) and research projects of the Czech Science Foundation (P505/10/P302 and P505/11/0779). 7. References BARQUÍN, J. and R. G. DEATH, 2004: Patterns of invertebrate diversity in streams and freshwater springs in Nothern Spain. – Arch. Hydrobiol. 161: 329–349. BARQUÍN, J. and R. G. DEATH, 2006: Spatial patterns of macroinvertebrate diversity in New Zealand springbrooks and rhitral streams. – J. N. Am. Benthol. Soc. 25: 768–786. BARQUÍN, J. and R. G. DEATH, 2009: Physical and chemical differences in karst springs of Cantabria, northern Spain: do invertebrate communities correspond? – Aquat. Ecol. 43: 445–455. BARQUÍN, J. and R. G. DEATH, 2011: Downstream changes in spring-fed stream invertebrate communities: the effect of increased temperature range? – J. Limnol. 70: 134–146. BORCARD, D., P. LEGENDRE and P. DRAPEAU, 1992: Partialling out the spatial component of ecological variation. – Ecology 73: 1045–1055. BRAUKMANN, U., 2001: Stream acidification in South Germany – chemical and biological assessment methods and trends. – Aquat. Ecol. 35: 207–232. BRINKMANN, R., 1991: Zur Habitatpräferenz und Phänologie der Limoniidae, Tipulidae und Cylindrotomidae (Diptera) in Bereich eines norddeutschen Tieflandbaches. – Faun.-Oekol. Mitt. Suppl. 11: 1–156. CHERTOPRUD, M. V., 2006: Spring macrobenthos communities of the Moscow province. – Zh. Obshch. Biol. 67: 376–384. COBB, D. G. and J. F. FLANNAGAN, 1990: Trichoptera and substrate stability in the Ochre River, Manitoba. – Hydrobiologia 206: 29–38. DE JONG, H., P. OOSTERBROEK, J. GELHAUS, H. REUSCH and C. YOUNG, 2008: Global diversity of craneflies (Insecta, Dipera: Tipulidea or Tipulidae sensu lato) in freshwater. – Hydrobiologia 595: 457–467. FERRINGTON, L. C. JR., R. KAVANAUGH, F. SCHMIDT and J. L. KAVANAUGH, 1995: Habitat separation among Chironomidae (Diptera) in Big springs. – J. Kans. Entomol. Soc. 68: 152–165. FERRINGTON, L. C. JR., 1998: Generic composition of the chironomid fauna in springs of North America. – In: BOTOSANEANU, L. (ed.). Studies in Crenobiology: The biology of springs and springsbrooks. – Backhuys Publishers, Leiden, pp. 141–155. FORD, J., 1989: The effects of chemical stress on aquatic species composition and community structure. – In: LEVIN, S. A., M. A. HARWELL, J. R. KELLY and K. D. KIMBALL (eds.). Ecotoxicology: Problems and approaches. – Springer-Verlag, New York, pp. 99–114. FROST, S., 1971: Evaluation of kicking technique for sampling stream bottom fauna. – Can. J. Zool. 49: 167–173. FURSE, M. T., D. MOSS, J. F. WRIGHT, P. D. ARMITAGE and R. J. M. GUNN, 1986: A practical manual to the classification and prediction of macroinvertebrate communities in running water in Great Britain. – Freshw. Biol. Assoc., River laboratory, UK, pp. 1–147. GLAZIER, G. S. and J. L. GOOCH, 1987: Macroinvertebrate assemblages in Pennsylvania (U.S.A.) springs. – Hydrobiologia 150: 33–43. GLAZIER, G. S., 1991: The fauna of North American temperate cold springs: patterns and hypotheses. – Freshw. Biol. 26: 527–542. GRAF, W., J. MURPHY, C. DAHL, C. ZAMORA-MUŇOZ and M. J. LÓPEZ RODRÍGUEZ, 2008: Trichoptera. – In: SCHMIDT-KLOIBER, A. and D. HERING (eds.). Distribution and ecological preferences of European freshwater organisms. – Volume 1, Pensoft Publishers, Sofia, pp. 1–388. HAHN, H. J., 2000: Studies on classifying of undisturbed springs in southwestern Germany by macrobenthic communities. – Limnologica 30: 247–259. HÁJEK, M. and P. HEKERA, 2004: Can seasonal variation in fen water chemistry influence the reliability of vegetation-environmental analyses? – Preslia 76: 1–14. HILL, T. and P. LEWICKI, 2007: Statistics: methods and applications. – StatSoft, Tulsa, OK. HOLM, S., 1979: A simple sequentially rejective multiple test procedure. – Scand. J. Stat. 6: 65–70. 250 V. KŘOUPALOVÁ et al. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.revhydro.com ILMONEN, J. and L. PAASIVIRTA, 2005: Benthic macrocrustacean and insect assemblages in relation to spring habitat characteristics: patterns in abundance and diversity. – Hydrobiologia 533: 99–113. LEPŠ, J. and P. ŠMILAUER, 2003: Multivariate analysis of ecological data using CANOCO. – Cambridge University Press, Cambridge, pp. 1–110. LINDEGAARD, C., 1995: Chironomidae (Diptera) of European cold springs and factors influencing their distribution. – J. Kans. Entomol. Soc. 68: 108–131. LINDEGAARD, C., K. P. BRODERSEN, P. WIBERG-LARSEN and J. SKRIVER, 1998: Multivariate analyses of macrofaunal communities in Danish springs and springbrooks. – In: BOTOSANEANU, L. (ed.). Studies in Crenobiology: The biology of springs and springsbrooks. – Backhuys Publishers, Leiden, pp. 201–220. MALICKY, H., 1989: Life cycle strategies in some European caddisflies. – Proceedings of the sixth international Symposium on Trichoptera, pp. 195–198. MARKS, J. C., R. PARNELL, C. CARTER, E. C. DINGER and G. A. HADEN, 2006: Interactions between geomorphology and ecosystem processes in travertine streams: Implications for decommissioning a dam on Fossil Creek, Arizona. – Geomorphology 77: 299–307. MCCABE, D. J. and J. L. SYKORA, 2000: Community structure of caddisflies along a temperate springbrook. – Arch. Hydrobiol. 148: 263–282. MINSHALL, G. W., 1968: Community dynamics of the benthic fauna in a woodland springbrook. – Hydrobiologia 32: 305–339. PERES-NETO, P. R., P. LEGENDRE, S. DRAY and D. BORCARD, 2006: Variation partitioning of species data matrices: estimation and comparison of fractions. – Ecology 87: 2614–2625. PETRIN, Z., H. LAUDON and B. MALMQVIST, 2007: Does freshwater macroinvertebrate diversity along a pH-gradient reflect adaptation to low pH? – Freshw. Biol. 52: 2172–2183. PHILLIPS, E. C., 2003: Habitat preference of aquatic macroinvertebrates in an East Texas sandy stream. – J. Freshw. Ecol. 18: 1–11. RESH, V. H., 1983: Spatial differences in the distribution of benthic macroinvertebrates along a springbrook. – Aquat. Insects 5: 193–200. RUNDIO, D. E., 2009: Community–habitat relationships in coastal streams in Big Sur, California, USA: travertine influences macroinvertebrate abundance and community structure. – Hydrobiologia 620: 91–108. SASAKI, A., A. ITO, J. AIZAWA and T. UMITA, 2005: Influence of water and sediment quality on benthic biota in an acidified river. – Water Res. 39: 2517–2526. SCHENKOVÁ, J., P. PAŘIL, K. PETŘIVALSKÁ and J. BOJKOVÁ, 2010: Aquatic oligochaetes (Annelida: Clitellata) of the Czech Republic: check-list, new records, and ecological remarks. – Zootaxa 2676: 29–44. SOLUK, D. A., 1985: Macroinvertebrate abundance and production of psammophilous Chironomidae in shifting sand areas of a Lowland River. – Can. J. Fish. Aquat. Sci. 42: 1296–1302. SOMMER, B. and P. HORWITZ, 2001: Water quality and macroinvertebrate response to acidification following intensified summer droughts in a Western Australian wetland. – Mar. Freshw. Res. 52: 1015–1021. SUTCLIFFE, D. W. and A. G. HILDREW, 1989: Invertebrate communities in acid streams. – In: MORRIS, R., E. W. TAYLOR, D. J. A. BROWN and J. A. BROWN (eds.). Acid Toxicity and Aquatic Animals. – Cambridge University Press, Cambridge, pp. 13–29. ŠPORKA, F., 2003: Polychaeta, Oligochaeta. – In: ŠPORKA, F. (ed.). Vodné bezstavovce (makroinvertebráta) Slovenska. Súpis druhov a autekologické charakteristiky. – Slovenský hydrometeorologický ústav, Bratislava, pp. 88–96. Available from http://www.zoo.sav.sk/voda_pdf/voda_pdf.htm (accessed 1.3.2010) TER BRAAK, C. J. F. and P. ŠMILAUER, 2002: CANOCO Reference manual and Canodraw for Windows user’s guide: software for canonical community ordination (version 4.5). – Microcomputer Power, Ithaca, NY, USA, pp. 1–500. TIXIER, G., V. FELTEN and F. GUEROLD, 2009: Life cycle strategies of Baetis species (Ephemeroptera, Baetidae) in acidified streams and implications for recovery. – Fundam. Appl. Limnol. 174: 227–243. VON FUMETTI, S., P. NAGEL and B. BALTES, 2007: Where a springhead becomes a springbrook – a regional zonation of springs. – Fundam. Appl. Limnol. 169: 37–48. VUORI, K.-M., 1995: Direct and indirect effects of iron on river ecosystems. – Ann. Zool. Fenn. 32: 317–329. WAGNER, R., J. FISCHER and S. SCHNABEL, 1998: The Dipteran community of Central European springs: a summary. – In: BOTOSANEANU, L. (ed.). Studies in Crenobiology: The biology of springs and springsbrooks. – Backhuys Publishers, Leiden, pp. 157–166. Small-Scale Distribution of Macroinvertebrates 251 © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.revhydro.com WARD, J. V. and R. G. DUFFORD, 1979: Longitudinal and seasonal distribution of macroinvertebrates and epilithic algae in a Colorado springbrook-pond system. – Arch. Hydrobiol. 86: 284–321. WILLIAMS, D. D. and I. D. HOGG, 1988: Ecology and production of invertebrates in a Canadian coldwater spring-springbrook system. – Holarct. Ecol. 11: 41–54. WILLIAMS, D. D., 1991: Life history traits of aquatic arthropods in springs. – Mem. Entomol. Soc. Can. 155: 107–124. WILLIAMS, D. D., N. E. WILLIAMS and Y. CAO, 1997: Spatial differences in macroinvertebrate community structure in springs in southeastern Ontario in relation to their chemical and physical environments. – Can. J. Zool. 75: 1404–1414. ZOLLHÖFER, J. V., M. BRUNKE and T. GONSER, 2000: A typology of springs in Switzerland by integrating habitat variables and fauna. – Arch. Hydrobiol. Suppl. 121: 349–376. Manuscript submitted November 23rd, 2010; revised May 30th, 2011; accepted May 30th, 2011 252 V. KŘOUPALOVÁ et al. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.revhydro.com Appendix 1. The list of taxa collected in the calcareous fen and Sphagnum-fen in 2006. calcareous fen Sphagnum-fen Platyhelminthes Dugesia gonocephala (DUGÉS, 1830) × Polycelis felina (DALYELL, 1814) × Mollusca Ancylus fluviatilis O. F. MÜLLER, 1774 × Bythinella austriaca (FRAUENFELD, 1857) × × Galba truncatula (O. F. MÜLLER, 1774) × × Pisidium personatum MALM, 1855 × × Pisidium casertanum (POLI, 1791) × × Radix peregra (O. F. MÜLLER, 1774) × Annelida Achaeta sp. × Cernosvitoviella sp. × Cognettia glandulosa (MICHAELSEN, 1888) × Cognettia sphagnetorum (VEJDOVSKÝ, 1878) × Eiseniella tetraedra (SAVIGNY, 1826) × × Enchytraeus sp. × × Erpobdella octoculata (LINNAEUS, 1758) × Erpobdella vilnensis LISKIEWICZ, 1927 × Fridericia sp. × × Haplotaxis gordioides (HARTMANN, 1821) × Henlea cf. perpusilla FRIEND, 1911 × Limnodrilus hoffmeisteri CLAPARÉDE, 1862 × Lumbriculus variegatus (O. F. MÜLLER, 1774) × Marionina sp. × Mesenchytraeus armatus (LEVINSEN, 1884) × × Nais communis PIGUET, 1906 × Pristina rosea (PIGUET, 1906) × Rhyacodrilus falciformis BRETSCHER, 1901 × × Stylodrilus heringianus CLAPARÉDE, 1862 × Tubifex tubifex (O. F. MÜLLER, 1774) × × Trichodrilus strandi HRABĚ, 1936 × Crustacea Gammarus fossarum KOCH, 1835 × × Ephemeroptera Baetis niger (LINNAEUS, 1761) × Baetis rhodani (PICTET, 1845) × Baetis vernus CURTIS, 1834 × Ecdyonurus subalpinus KLAPÁLEK, 1907 × × Electrogena ujhelyii (SOWA, 1981) × Habrophlebia lauta EATON, 1884 × Paraleptophlebia submarginata (STEPHENS, 1835) × Rhithrogena sp. × Odonata Aeshna cyanea (O. F. MÜLLER, 1764) × Cordulegaster boltonii (DONOVAN, 1807) × Pyrrhosoma nymphula (SULZER, 1776) × Plecoptera Amphinemura standfussi (RIS, 1902) × Diura bicaudata (LINNAEUS, 1758) × Isoperla cf. tripartita ILLIES, 1954 × Small-Scale Distribution of Macroinvertebrates 253 © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.revhydro.com Appendix 1. (continued) calcareous fen Sphagnum-fen Leuctra braueri KEMPNY, 1898 × × Leuctra inermis KEMPNY, 1899 × Leuctra nigra (OLIVIER, 1811) × Leuctra prima KEMPNY, 1899 × Nemoura cf. avicularis MORTON, 1894 × Nemoura cambrica STEPHENS, 1836 × × Nemoura cinerea (RETZIUS, 1783) × Nemoura marginata PICTET, 1835 × × Nemoura sciurus AUBERT, 1949 × Nemurella pictetii KLAPÁLEK, 1900 × Protonemura lateralis (PICTET, 1835) × × Heteroptera Velia caprai TAMANINI, 1947 × Megaloptera Sialis fuliginosa PICTET, 1836 × Neuroptera Osmylus fulvicephalus (SCOPOLI, 1763) × Coleoptera Anacaena globulus Ad. (PAYKULL, 1798) × Anacaena sp. Lv. × × Agabus guttatus Ad. (PAYKULL, 1798) × Agabus paludosus Ad. (FABRICIUS, 1801) × Agabus sp. Lv. × Deronectes platynotus Ad. (GERMAR, 1834) × Deronectes sp. Lv. × Elmis aenea Ad. (O. F. Müller, 1806) × Elmis maugetii Ad. (LATREILLE, 1798) × Elmis sp. Lv. × Elodes sp. Lv. × × Esolus angustatus Ad. (O. F. MÜLLER, 1821) × Eubria palustris Lv. GERMAR, 1818 × Hydraena gracilis Ad. GERMAR, 1824 × Hydraena morio Ad. KIESENWETTER, 1849 × Hydraena nigrita Ad. GERMAR, 1824 × Hydraena saga Ad. d’ORCHYMONT, 1930 × × Hydrobius fuscipes Lv. (LINNAEUS, 1758) × Laccobius striatulus Ad. (FABRICIUS, 1801) × Limnius perrisi Ad. (DUFOUR, 1843) × Limnius perrisi Lv. (DUFOUR, 1843) × Limnebius truncatellus (THUNBERG, 1794) × Oreodytes sanmarkii Ad. (C. R. SAHLBERG, 1834) × Platambus maculatus Ad. LINNAEUS, 1758 × × Platambus maculatus Lv. LINNAEUS, 1758 × Trichoptera Beraea pullata (CURTIS, 1834) × Beraea sp. × Ernodes articularis (PICTET, 1834) × Ernodes articularis/vicinus × Chaetopteryx fusca BRAUER, 1857 × Chaetopteryx fusca/villosa × Chaetopteryx major MCLACHLAN, 1876 × × 254 V. KŘOUPALOVÁ et al. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.revhydro.com Appendix 1. (continued) calcareous fen Sphagnum-fen Crunoecia irrorata (CURTIS, 1834) × Hydatophylax infumatus (MCLACHLAN, 1865) × Hydropsyche saxonica MCLACHLAN, 1884 × Limnephilus cf. ignavus MCLACHLAN, 1865 × Limnephilus cf. sparsus CURTIS, 1834 × Notidobia ciliaris (LINNAEUS, 1761) × Odontocerum albicorne (SCOPOLI, 1763) × Oligotricha striata (LINNAEUS, 1758) × Parachiona picicornis (PICTET, 1834) × Plectrocnemia brevis MCLACHLAN, 1871 × Plectrocnemia conspersa (CURTIS, 1834) × × Potamophylax nigricornis (PICTET, 1834) × × Rhyacophila philopotamoides MCLACHLAN, 1879 × Rhyacophila pubescens PICTET, 1834 × Rhyacophila sp. × × Sericostoma personatum (KIRBY et SPENCE, 1826) × × Silo pallipes (FABRICIUS, 1781) × Wormaldia occipitalis (PICTET, 1834) × × Diptera Tipulidae Nigrotipula nigra (LINNAEUS, 1758) × Tipula bosnica STROBL, 1898 × Tipula fulvipennis DE GEER, 1776 × Tipula goriziensis STROBL, 1893 × Tipula lateralis MEIGEN, 1804 × Tipula maxima PODA, 1761 × Tipula rufina MEIGEN, 1818 × Tipula unca WIEDEMANN, 1817 × Limoniidae Cheilotrichia sp. × Eloeophila sp. × × Ellipteroides alboscutellatus (VON ROSER, 1840) × Gonomyia lucidula MEIJERE, 1920 × Gonomyia sp. × Helius sp. × Molophilus sp. × Neolimnomyia filata (WALKER, 1856) × × Orimarga sp. × Scleroprocta sp. × × Thaumastoptera calceata MIK, 1866 × Pediciidae Dicranota sp. × × Pedicia sp. × × Tricyphona sp. × × Ptychopteridae Ptychoptera lacustris MEIGEN, 1830 × Psychodidae Berdeniella sp. × Jungiella sp. × Pericoma calcilega FEUERBORN, 1923 × Pneumia sp. × Psychoda sp. × Threticus sp. × Ulomyia sp. × × Dixidae Dixa maculata MEIGEN, 1818 × × Dixa submaculata EDWARDS, 1920 × Small-Scale Distribution of Macroinvertebrates 255 © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.revhydro.com Appendix 1. (continued) calcareous fen Sphagnum-fen Thaumaleidae Thaumalea sp. × × Ceratopogonidae Atrichopogon sp. × × Ceratopogoninae × × Dasyhelea sp. × × Chironomidae Apsectrotanypus trifascipennis (ZETTERSTEDT, 1838) × × Brillia bifida (KIEFER, 1909) × × Chaetocladius piger GR. × × Conchapelopia sp. × × Corynoneura cf. lobata EDWARDS, 1924 × × Diamesa cf. tonsa (HALIDAY, 1856) × × Eukiefferiella cf. brehmi GOUIN, 1943 × Eukiefferiella brevicalcar (KIEFFER, 1911) × Eukiefferiella cf. fuldensis LEHMANN, 1972 × × Heleniella serratosioi RINGE, 1976 × × Heterotanytarsus apicalis (KIEFER, 1921) × Heterotrissocladius marcidus (WALKER, 1856) × Krenopelopia sp. × × Krenosmittia cf. camptophleps (EDWARDS, 1929) × Limnophyes sp. × × Macropelopia cf. nebulosa (MEIGEN, 1804) × Metriocnemus hygropetricus GR. × × Metriocnemus fuscipes GR. × × Micropsectra sp. × × Microtendipes chloris GR. × Nanocladius parvulus/rectinervis × Natarsia sp. × × Neostempellina thienemanni REISS, 1984 × Orthocladius lignicola KIEFFER, 1914 × Orthocladius rivicola GR. × × Orthocladius rivulorum KIEFER, 1909 × Paramerina sp. × Parametriocnemus stylatus (SPARCK, 1923) × × Paraphaenocladius sp. × × Paratendipes nudisquama (EDWARDS, 1929) × Phaenopsectra sp. × Polypedilum convictum GR. × Polypedilum laetum GR. × Polypedilum scalaenum GR. × × Prodiamesa olivacea (MEIGEN, 1818) × × Parachaetocladius abnobaeus (WÜLKER, 1959) × × Rheocricotopus atripes (KIEFER, 1913) × × Rheocricotopus effusus (WALKER, 1856) × × Rheocricotopus fuscipes (KIEFER, 1909) × × Rheocricotopus sp. × Smittia sp. × Stempellinella ciliaris/flavidula × × Synorthocladius semivirens (KIEFER, 1909) × × Tanytarsus sp. × Thienemanniella clavicornis/vittata × Trissopelopia sp. × Tvetenia bavarica GR. × × Zavrelimyia sp. × × 256 V. KŘOUPALOVÁ et al. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.revhydro.com Appendix 1. (continued) calcareous fen Sphagnum-fen Simuliidae Simulium argyreatum MEIGEN, 1838 × Simulium cf. carpathicum (KNOZ, 1961) × × Simulium costatum FRIEDERICHS, 1920 × × Simulium ornatum MEIGEN, 1818 × Simulium trifasciatum CURTIS, 1839 × Simulium vernum GR. × × Sciaridae × × Cecidomyidae × × Stratiomyidae Beris clavipes (LINNAEUS, 1767) × Beris vallata (FORSTER, 1771) × Nemotelus pantherinus (LINNAEUS, 1758) × Oxycera meigenii STAEGER, 1844 × Oxycera pardalina MEIGEN, 1822 × Oxycera pygmaea (FALLEN, 1817) × Tabanidae Chrysops caecutiens (LINNAEUS, 1758) × Hybomitra sp. × Tabanus autumnalis LINNAEUS, 1761 × Tabanus sp. × Rhagionidae Chrysopilus sp. × Athericidae Ibisia marginata (FABRICIUS, 1781) × Empididae Chelifera sp. × × Clinocera sp. × Dolichocephala sp. × Dolichopodidae × Syrphidae Melanogaster hirtella (LOEW, 1843) × Sciomyzidae Pherbellia sp. × × Drosophilidae Scaptomyza sp. × 133 Bojková, J., J. Schenková, M. Horsák & M. Hájek, 2011 Species richness and composition patterns of clitellate (Annelida) assemblages in the treeless spring fens: the effect of water chemistry and substrate. Hydrobiologia, 667, 159–171. PRIMARY RESEARCH PAPER Species richness and composition patterns of clitellate (Annelida) assemblages in the treeless spring fens: the effect of water chemistry and substrate Jindrˇisˇka Bojkova´ • Jana Schenkova´ • Michal Horsa´k • Michal Ha´jek Received: 6 February 2010 / Revised: 20 January 2011 / Accepted: 13 February 2011 Ó Springer Science+Business Media B.V. 2011 Abstract Spring fens are isolated treeless wetlands of a high conservation value. Their environmental conditions are strongly related to their groundwater chemistry, which controls species distribution within various groups of organisms. Clitellates, a dominant group of non-insect aquatic fauna, however, have never been studied in these habitats. It is unclear from previous studies to what extent the distribution of aquatic non-insect taxa reflects water chemistry rather than the substrate structure. We studied 34 spring fens sampled in 17 isolated sites in the Western Carpathian Mountains to determine mainly the effects of water chemistry and substrate structure on variation in species richness and composition of clitellate assemblages as examples of the non-insect fauna. A total of 34 taxa were found, with 3–15 taxa collected per sample. Species richness was negatively correlated with water mineral concentration measured as water electric conductivity (r = -0.57, P \ 0.001) and positively with TOC (r = 0.60, P \ 0.001). Surprisingly, the lowest number of taxa was found in calcareous fens and richness increased towards Sphagnum-fens. There was a species turnover related to changes in mineral richness and substrate characters. The main change of species composition was promoted by changes in substrate structure. The second gradient of species composition was linked with the amount of nutrients, moisture, and dominance of sphagna, and was associated with an increase of eurytopic species in fens with high nutrient availability. It was difficult to separate the effects of water chemistry and substrate on clitellate species distributions owing to the fact that variation in tufa precipitation and vegetation was driven by water chemistry changes. This study presented the first quantitative data on fen clitellate assemblages, which appear to have an unusual pattern of species richness. In contrast to plants and molluscs, calcareous fens appeared to be a harsh environment for clitellate species. Only few specialized species, mainly Trichodrilus strandi, were able to establish viable populations. The significant effect of water chemistry on clitellate distribution patterns raises questions about the direct influence of water chemistry on non-insect aquatic taxa, which have previously been considered to be mostly determined by substrate characteristics. Keywords Spring fens Á Oligochaeta Á Hirudinida Á Poor–rich gradient Á Diversity pattern Introduction Identification and explanation of non-random patterns of species richness and composition is one of the key Handling editor: Stuart Anthony Halse J. Bojkova´ (&) Á J. Schenkova´ Á M. Horsa´k Á M. Ha´jek Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotla´rˇska´ 2, 61137 Brno, Czech Republic e-mail: bojkova@centrum.cz 123 Hydrobiologia DOI 10.1007/s10750-011-0634-3 factors in understanding the underlying processes of community ecology. However, the patterns observed can vary between different habitats and they are also dependent on the length of the gradient and the groups of organisms studied. Thus, it is usually not possible to apply results of studies in one type of habitat or taxonomical group directly to another habitat or group. Knowledge of the ecology of particular taxonomical groups is often highly uneven across different habitat types. For example, clitellates (sensu Erse´us, 2005), which include oligochaetes and leeches, have been studied in detail in various types of running waters, lakes, and artificial habitats (e.g. Sˇporka, 1998; Verdonschot, 2001; Nijboer et al., 2004; Dumnicka & Boggero, 2007; Dumnicka et al., 2007). However, there are only few studies of this group in mire habitats. These studies dealt with oligochaetes of ombrotrophic bogs and moorlands (i.e. mires that receive all of their water and nutrients from precipitation) and bog streams (Svendsen 1957a, b; Cragg, 1961; Smith, 1986; Smith & Kaster, 1986; van Duinen et al., 2006), which showed to have very low species richness. The only abundant species inhabiting these nutrient-poor and acidic mires, Cognettia sphagnetorum, is also the only thoroughly studied species in terms of growth, survival, and feeding habits (e.g. Springett & Latter, 1977; Latter & Howson, 1978). Habitats slightly influenced by alkaline groundwater (lagg zones, transitional mires, and bog brooklets) tend to have higher species richness because of higher availability of nutrients (van Duinen et al., 2006). There is only sketchy information on clitellate assemblages of treeless spring fens (i.e. minerotrophic mires, wetlands supplied by mineral-rich groundwater). Available studies on fens deal with the production of soil oligochaetes (Erman & Erman, 1975) and species composition of assemblages in degraded fenland area in the Netherlands affected by eutrophication (Verdonschot, 1984) and in ditches and canals of drained fens in Germany (Langheinrich et al., 2004). Clitellates of undisturbed, nutrientlimited spring fens have never been studied. The habitat diversity of well-preserved fens is primarily determined by the chemistry of the groundwater supplying them, especially the calcium concentration and water pH (e.g. Ha´jek et al., 2006). A sharp gradient of mineral richness from acid mineral-poor fens to extremely mineral-rich calcareous fens was originally described in relation to vegetation as the poor–rich gradient (e.g. du Rietz, 1949; Malmer, 1986; Ha´jek et al., 2006). Five vegetation types of increasing complexity along the gradient clearly describe the diversity of fens (for details, see Ha´jek et al., 2006). Three of the vegetation types are Sphagnum-fens (mineral-poor, moderately mineralrich, and mineral-rich fens) and two are brown-moss fens (extremely mineral-rich and calcareous fens). Conspicuous changes in species richness and composition have also been observed along this gradient in molluscan (Horsa´k & Ha´jek, 2003), algal (Poulı´cˇkova´ et al., 2003; Fra´nkova´ et al., 2009), and testacean (Opravilova´ & Ha´jek, 2006) assemblages. However, the question whether aquatic macroinvertebrates respond significantly to this ecological gradient is yet to be studied, because most existing ecological studies have not covered the entire length of the gradient (e.g. Erman & Erman, 1975; van Duinen et al., 2006; Suren et al., 2008). Previous studies that have included water chemistry were restricted to rather uniform mire habitats, which is the probable reason why these studies found that the variation in macroinvertebrate assemblages was governed by physical habitat attributes at the within-site scale and by various basic ecological differences among wetland types at the between-site scale. Glazier (1991) assumed there was an influence of mineral richness and pH on the composition of macroinvertebrate assemblages of springs, because non-insect taxa highly dominated in assemblages of hard-water springs and insect taxa dominated in softwater springs, whereas insects usually prevail in other lotic habitats regardless of their pH or alkalinity (Glazier & Gooch, 1987; Glazier, 1991). Glazier (1991) proposed a complex influence of the adverse effects of low pH and alkalinity on crustaceans and molluscs and the benefits of physical constancy in the habitats he studied which favoured non-emergent species with high population densities. Subsequent research confirmed the importance of habitat stability, especially in terms of minimal fluctuation in flow and temperature fluctuations (Barquı´n & Death, 2004), and supported the existence of a weak association between aquatic insects and spring water only in hard-water springs (Virtanen et al., 2009) and tufa-forming spring fens (Bojkova´ & Helesˇic, 2009). However, the influence of water chemistry on the Hydrobiologia 123 distribution patterns of the aquatic non-insect fauna has not been studied to date in mires. The aims of this study were to (i) determine the effect of water chemistry on species richness and composition of clitellate assemblages, (ii) show the pattern of species distribution along the main environmental gradients, and (iii) provide the first quantitative data on aquatic and semi-aquatic oligochaetes and leeches of spring fens. We have chosen the Western Carpathian flysch zone (Czech Republic and Slovakia) as our study area because they vary from calcium-poor acidic fens with a tendency towards ombrotrophy (about 2 mg l-1 of calcium) to extremely calcium-rich tufa-forming fens (up to 300 mg l-1 of calcium). Materials and methods Study area and sites The study area was located on the western margin of the Western Carpathians (48°560 –49°320 N, 17°440 – 18°510 E), in the border region between the Czech Republic and Slovakia (Fig. 1). It was chosen because of the variable chemistry of the local aquifers and, therefore, the groundwater supplying the wetlands within it, as well as because of the overall the similarities in hydrological characteristics, origin, and age of spring fens within the area (Rybnı´cˇkova´ et al., 2005). The bedrock of this area is formed by alternating claystone and sandstone with variable chemistry, especially differing in calcium and magnesium content. Marls, claystone, limestone, and calcareous sandstone prevail in the south-western part of the study area, where groundwater is extremely rich in calcium and magnesium, which causes formation of cold water travertine (tufa) in most cases. Towards the north-east, the groundwater is still rich in calcium, but has a lower content of magnesium and higher contents of sodium, potassium, and iron. The northern part of the study area is characterised by decalcified, iron-cemented sandstone. It has the lowest calcium concentration within the entire study area (Rapant et al., 1996; Ha´jek et al., 2002). Seventeen sites of treeless, mostly sloping fens supplied by permanent springs, were chosen to cover the complete mineral-richness gradient (Fig. 1). The sites were selected on the basis of previous comprehensive studies of spring fen vegetation in order to cover all main vegetation types that mirror main ecological types of spring fen habitats (Poulı´cˇkova´ et al., 2005; Ha´jek et al., 2006). To obtain a balanced set of these structural habitat types, six sites were selected within calcareous fens with a different degree of calcium carbonate precipitation (Caricion Fig. 1 Location of the study area and sites Hydrobiologia 123 davallianae), six within mineral-rich fens without calcium carbonate precipitation (Caricion davallianae), and five sites within Sphagnum-fens of different mineral richness and acidity of water (Sphagno warnstorfii–Tomenthypnion, Caricion fuscae, and Sphagno recurvi–Caricion canescentis). The altitudes of the studied fens varied from 450 to 750 m a.s.l. Field sampling and explanatory variables Samples of clitellates were collected three times a year (May, July, and September 2006), from 17 sites in two different habitats (altogether 102 samples), i.e. the part of the spring fen with strongest flow and the part with slow-flowing or almost standing water. For statistical analyses, samples from individual seasons were merged to provide 34 samples from two habitats at 17 sites. Each sample was a plot delimited by a metal frame of 25 9 25 cm (625 cm2 ), where vegetation and bottom sediment were gathered to the depth of 5 cm. It was elutriated through a net of 250 lm mesh size, and substrate was kept in 4% formaldehyde solution. Clitellates were extracted by hand-sorting under a stereomicroscope in the laboratory. Oligochaetes were permanently mounted on microscope slides. The keys of Hrabeˇ (1954, 1981), Nielsen & Christensen (1959, 1961, 1963), Timm (1999), and Timm & Veldhijzen van Zanten (2002) were used for identification of oligochaetes. Hirudinida were identified according to Neubert & Nesemann (1999) and Kosˇel (2001). Species nomenclature follows Siddall et al. (2001), Erse´us (2005), and Erse´us et al. (2008). Water conductivity, temperature, dissolved oxygen, and pH were measured in situ by portable instruments (WTW Multi 340i/SET). Water conductivity represents the approximation of total water mineral concentration; it strongly correlates with Ca ? Mg concentration (Ha´jek et al., 2005) and it can be used as a reliable proxy of the calcium concentration (Sjo¨rs & Gunnarsson, 2002; Horsa´k, 2006). At each sampling date, 100 ml of substrate was extracted from next to each sampling plots for measuring total organic carbon (Shimadzu TOCVCPH). For characterising each site, a one-shot sample of substrate and water was taken in August 2006. Substrate samples were sampled from a plot of 25 9 25 cm to the depth of 5 cm. These plots always lay next to the places where samples of clitellates were taken and reflected the same structural microhabitat type. Particulate organic matter (POM) was elutriated from these samples using an elutriation apparatus (Omesova´ & Helesˇic, 2004), sieved through a net of 1 mm mesh size, and dried at 70 °C. Coarse particulate organic matter (CPOM; fraction [1 mm) was sorted according to the origin (sphagna, brown mosses, vascular plants, and wood/ leaves). All fractions were weighed and described as the proportions of the total weight of CPOM. Remaining inorganic substrate was dried at 80 °C and used for grain size analysis. Median diameter of particle size (D50) was used for describing the substrate particle size (Giere, 1993). Water samples were collected in autumn due to relative stability of water chemistry (Ha´jek & Hekera, 2004) and the content of ions Ca2? , Mg2? , Fe, NO3 , and PO4 3were measured (Table 1). Two environment characteristics of sites (moisture and nutrients) were estimated based on the vegetation composition using the Ellenberg indicator values (EIV) in the JUICE program (Tichy´, 2002). The indicator value for nutrients referred to the availability of three major nutrients (N, P, K) to plants and it strongly correlated with plant biomass production (Schaffers & Sy´kora, 2000). There is a general lack of correlation between soil or water nutrient concentrations and Ellenberg value for nutrients (Schaffers & Sy´kora, 2000). The species composition of vascular plants was recorded in the 4 9 4 m (16 m2 ) plots placed in the central part of each site. The cover of each plant species was estimated using the BraunBlanquet nine-grade scale (van der Maarel, 1979), and an EIV for plant species was calculated (for details see Schaffers & Sy´kora, 2000; Horsa´k et al., 2007). EIVs have proved to be very useful in studies of animal ecology, yielding accurate estimates of variables difficult to measure directly in the field (Horsa´k et al., 2007). Statistical analyses All explanatory variables were subjected to the Principal Components Analysis (PCA) on the correlation matrix (centred and standardised) to reveal the main gradients of environmental variation and to show the relations among variables. The species abundance data were log-transformed as Y = log Hydrobiologia 123 (n ? 1) to reduce the undue influence of dominant species. Detrended Correspondence Analysis (DCA) was used to study relationships between species composition and explanatory variables. Spearman rank correlations (rs) and Mann–Whitney U test were used to examine possible relationships between explanatory variables and site scores on the ordination axes. Bonferroni corrections of the significance level were used for multiple comparisons of explanatory variables (Holm, 1979). The variation partitioning approach (Økland, 1999) was used to determine the relative amount of variation in clitellate data explained by two different constraining groups of variables (water chemistry and substrate characteristics) in separate Canonical Correspondence Analyses (CCA) using the forward selection procedure and the Monte Carlo test with 1,999 permutations (Lepsˇ & Sˇmilauer, 2003). Since explained variation is also influenced by the number of explanatory variables (Peres-Neto et al., 2006), we used only variables that were significant in two CCAs where all water chemistry variables and all substrate characteristics were included (not shown in the Results). The CANOCO 4.5 package (ter Braak & Sˇmilauer, 2002) was used for ordination techniques and STATISTICA 8 (Hill & Lewicki, 2007) for the other (uni-dimensional) analyses. Results Major environmental gradients and relationships among measured variables Many of the explanatory variables were inter-correlated, as shown in the PCA of 18 explanatory variables (Table 2). PCA found one important environmental gradient within a set of explanatory variables, and the majority of these variables were significantly associated with the first PCA axis. This axis reflected the gradient of mineral richness (conductivity, Ca2? , Mg2? ), pH, NO3 - concentration, substrate structure (D50, TOC, POC, wood/leaves, sphagna), moisture, and discharge (Table 2). The second PCA axis was significantly correlated with nutrients, Fe concentration, and vascular plants. The third PCA axis was correlated with PO4 3- concentration and brown-mosses. The fourth axis explained a very small part of the total variation, and no significant correlations with the analysed variables were observed. Major gradients of species composition A total of 34 taxa of clitellates of 7,299 specimens were found in the studied spring fens (Table 3). Table 1 Descriptive statistics for the variables used in the analyses Calcareous fens Mineral-rich fens Sphagnum-fens MEAN MAX MIN SD MEAN MAX MIN SD MEAN MAX MIN SD pH 7.9 8.2 7.3 0.3 7.3 8.4 6.3 0.6 5.4 6.9 2.8 1.1 Conductivity (lS cm-1 ) 485.8 600.0 406.0 60.3 288.3 599.0 48.0 169.8 62.9 114.0 30.0 19.5 Discharge (ml s-1 ) 188.3 533.3 46.7 162.5 78.9 130.0 43.3 30.7 120.0 433.3 23.3 157.7 TOC (g kg-1 ) 18.9 65.8 0.0 18.0 103.0 271.8 18.4 68.8 214.6 319.0 76.3 81.0 PO4 3(mg l-1 ) 0.1 0.5 0.0 0.2 0.2 0.3 0.0 0.1 0.3 0.7 0.0 0.3 NO3 (mg l-1 ) 9.3 20.5 0.2 6.2 1.0 2.5 0.1 0.9 0.5 1.3 0.1 0.4 Fe (lg l-1 ) 305.7 816.0 40.0 280.3 2925.5 3600.0 169.0 846.4 1400.4 3660.0 46.0 2327.6 Ca (mg l-1 ) 88.8 112.0 60.6 19.8 48.7 107.0 9.3 33.2 6.0 9.2 3.7 1.9 Mg (mg l-1 ) 11.7 18.6 2.4 5.8 9.3 15.5 1.2 5.5 1.9 3.1 0.7 0.9 D50 (mm) 3.4 11.6 0.2 3.8 0.3 0.9 0.1 0.3 0.1 0.1 0.1 0.0 POM (%) 9.8 42.1 0.2 11.1 28.0 82.2 1.6 24.4 58.3 99.1 30.2 19.0 Leaves/wood (%) 58.8 100.0 20.0 36.3 46.5 90.0 3.0 43.5 0.0 0.0 0.0 0.0 Vascular plants (%) 18.0 24.0 14.0 4.3 48.8 72.0 6.0 25.3 54.0 80.0 24.0 23.0 Brown-mosses (%) 64.3 80.0 55.0 11.1 48.0 94.0 10 28.5 14.0 26.0 2.0 12.0 Sphagna (%) 0.0 0.0 0.0 0.0 24.0 24.0 24.0 0.0 62.0 100 18.0 28.7 Hydrobiologia 123 Numbers of taxa ranged from 3 to 15 per sample and from 6 to 27 per site; the median number of species per sample and site was 7 and 15, respectively. The clitellate assemblages consisted mostly of taxa belonging to families Enchytraeidae (14 taxa) and Naididae (11 taxa). Both Lumbriculidae and Lumbricidae were represented by three taxa and Haplotaxidae by a single species. Two species of Hirudinida were recorded. Dominant oligochaete species, Trichodrilus strandi and Stylodrilus heringianus (both Lumbriculidae), represented 31.7 and 28.7%, respectively, of all specimens recorded (Table 3). In the DCA, the first axis accounted for 22.4%, the second for 8.2%, the third for 5.6%, and the fourth 3.3% of the total variance of species data. This analysis revealed two major gradients in species data; the first gradient expressed on the first ordination axis reflected the influence of mineral richness and substrate characteristics on the composition of clitellate assemblages (Fig. 2). Variables displaying significant correlation (P \ 0.002) with the sample scores on the first DCA axis were those describing chemistry of spring fen water (i.e. pH, conductivity, NO3 , Ca2? , and Mg2? ) and characteristics of the bottom substrate (i.e. D50, TOC, proportions of POM and wood/leaves in substrate sample) (Table 4). Flow parameters (water discharge and depth) were not significantly correlated with the first DCA axis (Table 4). The first DCA axis showed the shift in species composition from calcareous fens with different degree of tufa precipitation towards Sphagnum-fens and, in several cases, towards mineral-rich fens (Fig. 2). This gradient represented the compound effect of mineral richness and substrate character. According to the position of individual species on the first DCA axis (Fig. 3), a stygophilous species T. strandi was the only species with a strong affinity to calcareous fens. In the middle part of the axis, semiaquatic taxa Fridericia spp., Eiseniella tetraedra, Mesenchytraeus armatus, Cognettia sphagnetorum, and Rhyacodrilus falciformis were present. Common aquatic oligochaete species, as well as a leech Erpobdella vilnensis, had the highest scores on the first axis. The second ordination axis expressed the second important gradient in species data, the gradient of moisture and nutrients as indicated by EIV values and the dominance of sphagna. Along this gradient, the group of Sphagnum-fens (upper right part of the diagram) and mineral-rich fens (lower right part of the diagram) were clearly separated (Fig. 2). Cognettia sphagnetorum, C. glandulosa, and Lumbriculus variegatus were associated with Sphagnum-fens, which was indicated by their higher scores on the second axis. Predominantly, eurytopic aquatic species (e.g. Limnodrilus hoffmeisteri, Tubifex tubifex, and Erpobdella vilnensis) were characteristic of a group of mineral-rich fens on the opposite side of the axis (Fig. 3). The number of taxa was significantly correlated with sample scores on the first DCA axis that reflects main changes in species composition (Table 4). Abundance did not significantly vary along both axes. Species richness significantly increased with decreasing conductivity (r = -0.57, P \ 0.001) and with increasing TOC (r = 0.60, P \ 0.001). The number of taxa was lowest in calcareous fens and Table 2 PCA of 18 explanatory variables PCA 1 PCA 2 PCA 3 PCA 4 rs rs rs rs Eigenvalues 0.413 0.143 0.108 0.078 Water chemistry pH 20.922 -0.004 -0.044 0.149 Conductivity 20.817 -0.025 -0.323 0.049 Fe 0.465* 0.555 -0.127 0.288 Ca2? 20.819 0.199 -0.242 0.179 Mg2? 20.736 0.031 0.142 -0.217 NO3 - 20.758 -0.404 -0.017 -0.008 PO4 3- 0.278 0.071 20.529 0.450* Substrate TOC 0.865 0.230 0.148 -0.166 Moisture 0.609 -0.002 -0.466* 0.093 Nutrients -0.246 0.620 -0.042 0.083 D50 20.777 -0.335 0.012 0.118 POM 0.802 0.305 0.078 -0.317 Leaves/wood 20.806 -0.498* -0.285 0.201 Vascular plants 0.323 0.612 -0.183 -0.471* Brown-mosses 0.099 0.447* 0.662 0.454* Sphagna 0.721 -0.364 0.057 -0.178 Others Average discharge 20.606 -0.222 0.342 -0.081 Depth 0.275 0.436 -0.009 -0.287 Eigenvalues of axes and correlations of explanatory variables with the first four PCA axes (rs) are shown. Significant correlations at the level of P \ 0.01 are marked by asterisks and those significant after Bonferroni correction (P \ 0.002) are in bold Hydrobiologia 123 Table 3 List of recorded taxa Names of taxa Calcareous fens (12) Mineral-rich fens (12) Sphagnum-fens (10) Oligochaeta Enchytraeidae Buchholzia sp. 0 0 0.02/1 Cernosvitoviella sp. 0.21/1 0.05/1 0.09/4 Cognettia glandulosa (Michaelsen, 1888) 0.09/1 0.56/3 2.71/7 Cognettia sphagnetorum (Vejdovsky´, 1878) 1.03/3 7.67/5 10.03/10 Enchytraeus albidus Henle, 1837 0 0.05/1 0 Enchytraeus cf. buchholzi Vejdovsky´, 1879 0.15/1 0 0 Enchytraeus spp. 0.96/3 0.38/1 0.19/4 Fridericia spp. 10.22/7 3.19/8 2.91/7 Henlea spp. 1.09/5 0.12/2 0 Marionina argentea (Michaelsen, 1889) 0.04/1 0 0 Marionina sp. 0.10/2 0.27/2 0 Mesenchytraeus armatus (Levinsen, 1884) 0.31/3 1.86/4 0.48/5 Mesenchytraeus sp. 0 0 0.03/5 Stercutus niveus Michaelsen, 1888 0.17/1 0 0 Naididae (sensu Erse´us et al. 2008) Aulodrilus limnobius Bretscher, 1899 0 0.18/1 0 Limnodrilus udekemianus Clapare`de, 1862 0.05/1 0.88/4 0.14/2 Limnodrilus hoffmeisteri Clapare`de, 1862 0 1.10/5 0.66/3 Nais communis Piguet, 1906 0 0.34/4 1.26/3 Pristina bilobata (Bretscher, 1903) 0 0.23/2 0.43/4 Pristina rosea (Piguet, 1906) 0 0 0.02/1 Rhyacodrilus coccineus (Vejdovsky´, 1875) 0 0 0.05/1 Rhyacodrilus falciformis Bretscher, 1901 0.26/2 1.54/6 0.09/3 Tubifex ignotus (Sˇtolc, 1886) 0 0.05/1 0 Tubifex tubifex (Mu¨ller, 1774) 0.38/3 0.95/1 1.71/3 Tubificidae juv. 0.39/3 1.64/3 1.35/5 Lumbriculidae Lumbriculus variegatus (Mu¨ller, 1774) 0 4.09/3 12.77/7 Stylodrilus heringianus Clapare`de, 1862 0.09/1 13.64/8 59.88/10 Trichodrilus strandi Hrabeˇ, 1936 77.55/12 8.13/2 0 Lumbricidae Eisenia fetida (Savigny, 1826) 0 0 0.07/1 Eiseniella tetraedra (Savigny, 1826) 6.41/12 22.67/12 1.52/6 Lumbricidae juv. 0 0 0.06/2 Haplotaxidae Haplotaxis gordioides (Hartmann, 1821) 0.50/2 0.38/1 0 Hirudinida Erpobdlellidae Erpobdella vilnensis (Liskiewicz, 1925) 0 29.62/8 3.54/4 Trochaeta bykowski O¨ rley, 1886 0 0.40/2 0 The average abundance per sample/the frequency in samples are given. Numbers of samples are given in parentheses Hydrobiologia 123 increased towards Sphagnum-fens. The number of specimens per sample was significantly correlated with moisture (r = 0.54, P \ 0.001). The position of samples from two different habitats (flowing and almost still water) differed in the ordination only in the case of calcareous fens, where sample scores differed significantly on the first axis (Mann–Whitney U test, P \ 0.05); samples collected in the higher flowing habitats were situated on the left part of the DCA diagram. These flowing water samples were the most species poor of all samples (highly dominated by T. strandi), probably because the formation of tufa was the strongest in these habitats. Samples taken in slow-flowing habitats had a high portion of enchytraeids and therefore they were placed along the first axis close to samples from mineral-rich fens. Individual effects of two different variable groups In the CCA, which included all explanatory variables, conductivity, vascular plants, moisture, TOC, and PO4 3were the variables explaining the most variation in species data (Table 4). It suggested the importance of both water chemistry and substrate, although conductivity was the strongest single predictor of assemblage structure. Flow characteristics (mean discharge and depth) were not significant in the model. The variation partitioning revealed that water chemistry explained slightly more variability in species data than characteristics of the substrate did (Fig. 4). Of the 16% of variation explained by water chemistry alone, 10% was explained by conductivity and PO4 3. Moisture and TOC were responsible for the majority (9%) of the variability explained by substrate characteristics (13%). The amount of shared variability (18%) was higher than each partial effect, showing a strong correlation between bottom substrate character and mineral richness. Conductivity, that directly reflects the mineral richness of water, was significantly correlated with TOC (rs = -0.73, P \ 0.001), D50 (rs = 0.62, P \ 0.001), and proportions of wood/ leaves and sphagna in the substrate sample (rs = 0.64 and rs = -0.67, P \ 0.001). Conductivity was not significantly correlated with vascular plants (rs = -0.26). Discussion Putting aside the widely studied effects of pollution on clitellates (e.g. Brinkhurst & Cook, 1974; Uzunov et al., 1988; Lang, 1998), main factors controlling the species richness and composition of clitellate assemblages in different freshwater habitats are linked with substrate composition, organic matter content, food quality of the organic component, current velocity (e.g. Montanholi-Martins & Takeda, 1999; Verdonschot, 1999, 2001; Dumnicka, 2006; Syrova´tka et al., 2009). To date, there have been only two studies examining the effect of mineral richness of water on clitellate assemblages (Martı´nez-Ansemil & Collado, 1996; Schenkova´ et al., 2001). Both reported a significant influence of water mineral richness on clitellate assemblages on a large geographical scale. However, the reported patterns showed different regional diversity of clitellates, partly interfering with different geology, rather than real effects of water chemistry. In both studies, some doubt remained about the direct effect of mineral richness on aquatic clitellate assemblages. Our results suggest that both mineral richness and substrate are important influences of the species richness and composition of clitellate assemblages in the Western Carpathian spring fens. Flow conditions of these sites were less important (Table 4). The Fig. 2 DCA ordination plot of samples on the first two ordination axes. Variables that significantly correlated with the first and the second ordination axes were posteriori plotted. Classification of investigated sites was based on the vegetation units: rectangles calcareous fens, circles mineral-rich fens, triangles Sphagnum-fens Hydrobiologia 123 influences of both factors were complex, owing to direct as well as indirect influence of mineral richness on particular substrate characteristics. The precipitation of tufa on all submerged objects directly changes the environment, creating harsh conditions for clitellates. Thus, the sites with the strongest tufa formation were the most species poor. The effect of mineral richness was often indirectly mediated by vegetation, the structure, and composition of which are strongly influenced by mineral richness (Ha´jek et al., 2002; Rozbrojova´ & Ha´jek, 2008). Along the major mineral richness gradient both the amount and the quality of organic matter in fen substrates changed (Tables 1, 2), which created different habitat conditions for species strongly preferring specific substrates. Species turnover clearly reflected the traits of species that dominated particular assemblages along the mineral richness gradient: a stygophilous species, semiaquatic sediment burrowers, aquatic sediment burrowers, and surface active species (Fig. 3). A very rare stygophilous species Trichodrilus strandi (cf. Dumnicka, 2001) occurred exclusively on tufa-forming (calcareous) fens and reached high abundance also in sites with such strong tufa precipitation that the occurrence of other species was constrained. Tufa habitats are in direct contact with groundwater due to a weak formation of peat and stable high inflow of groundwater (Ha´jkova´ et al., 2004). Further along the gradient of decreasing mineral richness, weaker tufa precipitation (leading to its absence) changed Table 4 Spearman correlations (rs) between explanatory variables and sample scores on the first three DCA axes DCA CCA DCA 1 DCA 2 DCA 3 DCA 4 Order in forw. sel. Explained variation rs rs rs rs % P Water chemistry pH 20.780 -0.500* -0.411 0.514 11 3 n.s. Conductivity 20.837 -0.390 -0.376 0.406 1 21 \0.001 Fe 0.424 0.104 0.014 20.528 10 3 n.s. Ca2? 20.750 -0.447* -0.316 0.357 8 3 n.s. Mg2? 20.512 -0.498* -0.386 0.487* 12 2 n.s. NO3 - 20.612 -0.309 -0.053 0.421 6 4 n.s. PO4 3- 0.062 0.191 0.395 20.658 5 4 \0.05 Substrate TOC 0.610 0.410 0.346 -0.411 4 5 \0.01 Moisture 0.195 0.532 0.013 -0.346 3 7 \0.01 Nutrients -0.279 20.610 -0.209 -0.042 7 4 n.s. D50 20.649 -0.347 -0.110 0.492* 16 1 n.s. POM 0.623 0.372 0.123 -0.248 13 2 n.s. Leaves/wood 20.795 -0.164 -0.035 -0.141 16 1 n.s. Vascular plants 0.371 -0.304 -0.061 -0.313 2 7 \0.01 Brown-mosses 0.166 -0.075 -0.043 0.028 15 2 n.s. Sphagna 0.501* 0.702 0.108 0.456* 17 1 n.s. Others Discharge -0.165 -0.438* -0.461* 0.313 9 4 n.s. Depth 0.197 -0.139 0.097 0.247 14 2 n.s Number of species 0.660 0.200 0.247 -0.294 – – – Number of specimens 0.084 0.410 -0.271 -0.076 – – – Significant correlations at the level of P \ 0.01 are marked by asterisks and those significant after Bonferroni correction (P \ 0.002) are in bold. Percentages of species data variance explained by all variables. Orders of variable selection in forward selection in CCA and the significance (Monte Carlo test) are given Hydrobiologia 123 assemblage composition towards species not restricted to surface sediments (mostly Enchytraeidae; Fig. 3). The wider vertical distribution of enchytraeids is connected with the ability to penetrate to deeper sediment layers, especially during periods of drought and/or higher water temperature, and to inhabit substrates of variable moisture (e.g. Springett et al., 1970; Lundkvist, 1982). These sediment-burrowing species have been reported from sediments in various freshwater and terrestrial habitats as well. For example, Cognettia sphagnetorum occurs in coniferous forest soils (e.g. Lundkvist, 1982; Graefe & Schmelz, 1999; Schlaghamersky´, 2002), as well as in ombrotrophic and slightly minerotrophic mires (e.g. Erman & Erman, 1975; van Duinen et al., 2006). Rhyacodrilus falciformis inhabits mainly different running water habitats (Juget, 1987), but there were also several records from terrestrial habitats—moist soils in grasslands, meadows, and deciduous forests which were not permanently waterlogged (Graefe & Schmelz, 1999; Schlaghamersky´ & Kobeticˇova´, 2005). These species from the middle part of the gradient of mineral richness are likely not fully confined to the aquatic environment. In contrast, the end of the mineral richness gradient was characterised by the dominance of aquatic sediment burrowers and surface dwellers (e.g. oligochaetes Limnodrilus hoffmeisteri, Tubifex tubifex, Stylodrilus heringianus, and a leech Erpobdella vilnensis) which were not recorded in the previous fen types or were scarce there. The species richness of clitellates increased towards more acidic sites and increasing organic matter content, which is the opposite pattern than other organisms strongly responding to the mineral richness gradient. Species richness of vascular plants, diatoms, and molluscs increased towards mineral-rich fens (Ha´jek et al., 2002; Horsa´k & Ha´jek, 2003; Fra´nkova´ et al., 2009). Chiefly, clitellates were species-poor at sites where the abovementioned organisms reach their high or maximal species diversity. However, it should be stressed that this study did not include extremely mineral-poor and permanently acidic sites, simply because they are not present in the study area. These types of acidic mires are known to be the most species-poor due to a low-nutrient availability for clitellates (van Duinen et al., 2006). If these sites are included, a skewed unimodal response of clitellate species richness towards Sphagnum-dominated acidic mires is expected, because the highly acidic conditions of bogs were proved to limit the occurrence of many clitellate species. Beside mineral richness, the pattern of clitellate occurrence also reflected different hydrological regimes and productivity of the fen habitats because clitellate assemblages were influenced by moisture and fertility of the substrate (Fig. 2; Table 4). The seasonal decrease of water level and desiccation of the upper soil layer causes nutrients to mineralise. For that reason, the species composition of the vegetation shifts from sedge-moss dominance to forb-rich vegetation with plant species that use more nutrients (Ha´jek et al., 2006; Rozbrojova´ & Ha´jek, 2008). Fig. 3 Position of species along the first two ordination axes. Only species with a fit in the model above 10% are shown Fig. 4 Variation partitioning. Independent and shared variability of water chemistry and substrate characteristics were expressed as percentages of the total inertia in partial CCAs. Only significant variables were included (see Table 2). Significance of independent variability explained was tested by the Monte Carlo test Hydrobiologia 123 Consequently, the formation of peat is lower, and the structure of organic sediments is different in nutrientenriched sites. It was observed that these changes caused the decrease of plant and mollusc fen specialists and their simultaneous replacement by ubiquitous species (Ha´jek et al., 2006). In clitellates, we observed a similar effect with an increase of eurytopic aquatic species resulting in their dominance in the assemblage. The species change could be explained by the influence of different peat amount and its structure. Nutrient-poor sites (associated with the presence of sphagna and higher moisture) were dominated by oligochaete species fed on decomposing leaves and vegetation (Lumbriculus variegatus; Moore, 1978; Brinkhurst & Gelder, 1991) and on older decomposing litter of Eriophorum and Calluna (Cognettia sphagnetorum; Latter & Howson, 1978). As these oligochaetes are acidotolerant and reproduce by fragmentation, they often reach high densities in nutrient-poor ombrotrophic mires and coniferous forest soils (Springett & Latter, 1977; Schlaghamersky´, 2002; van Duinen et al., 2006). On the other hand, nutrient-rich sites were dominated by detritovorous oligochaetes (Tubificinae and Rhyacodrilinae) because the higher availability of nutrients leads to greater production of plant biomass amounts of decomposing organic matter in than in nutrient-poor sites. Conclusion The results of our study showed the importance of mineral richness, substrate, and nutrient availability in constituting the clitellate assemblages in the spring fens. The effect of water chemistry was roughly equivalent to the effect of substrate as proportions of an independent variation in species data explained by water chemistry and substrate characteristics were significant and comparable. However, water chemistry and substrate characteristics are inter-correlated. This is the result of tufa precipitation in calcareous fens and vegetation changes along the mineralrichness gradient, as well as related to seasonal decrease of water level in some fens. These factors determined the substrate character by the formation of peat and the structure of organic sediments. We also showed that response of species richness to the same ecological gradient may be reversed for different taxonomic groups. Contrary to previous studies on various taxonomic groups in fens, the species richness of clitellates increased towards more acid sites owing to more favourable substrate conditions. Nevertheless, when including the most acidic sites into the study, a unimodal response could be expected. Acknowledgments This study was supported by the Czech Science Foundation (526/09/H025 and P505/11/0779) and the Ministry of Education, Youth and Sports (MSM 0021622416). References Barquı´n, J. & R. G. Death, 2004. Patterns of invertebrate diversity in streams and freshwater springs in Northern Spain. Archiv fu¨r Hydrobiologie 161: 329–349. Bojkova´, J. & J. Helesˇic, 2009. Spring fens as a unique biotope of stonefly larvae (Plecoptera): species richness and species composition gradients. In Staniczek, A. H. (ed.), International Perspectives in Mayfly and Stonefly Research. Proceedings of the 12th International Conference on Ephemeroptera and the 16th International Symposium on Plecoptera, Stuttgart 2008. Aquatic Insects 31(Suppl. 1): 365–373. Brinkhurst, R. O. & D. G. Cook, 1974. Aquatic earthworms (Annelida: Oligochaeta). In Hart, C. W. Jr. & S. L. H. Fuller (eds), Pollution Ecology of Freshwater Invertebrates. Academic Press, New York/London: 143–156. Brinkhurst, R. O. & S. R. Gelder, 1991. Annelida: Oligochaeta and Branchiobdellida. In Thorp, T. H. & A. P. Covich (eds), Ecology and Classification of North American Freshwater Invertebrates. Academic Press, New York: 401–435. Cragg, J. B., 1961. Some aspects of the ecology of moorland animals. Journal of Ecology 49: 477–506. du Rietz, G. E., 1949. Huvudenheter och huvudgra¨nser i svensk myrvegetation. Svensk Botanisk Tidskrift 43: 274–309. Dumnicka, E., 2001. Some remarks on the origin of stygobiontic oligochaetes. Me´moires de Biospe´ologie 28: 39–45. Dumnicka, E., 2006. Composition and abundance of oligochaetes (Annelida: Oligochaeta) in springs of Krako´wCze˛stochowa Upland (Southern Poland): effect of spring encasing and environmental factors. Polish Journal of Ecology 54: 231–242. Dumnicka, E. & A. Boggero, 2007. Freshwater Oligochaeta in two mountain ranges in Europe: the Tatra Mountains (Poland) and the Alps (Italy). Fundamental and Applied Limnology 168: 231–242. Dumnicka, E., J. Galas & P. Koperski, 2007. Benthic invertebrates in karst springs: does substratum or location define communities? International Review of Hydrobiology 92: 452–464. Erman, D. C. & N. A. Erman, 1975. Macroinvertebrate composition and production in some Sierra Nevada minerotrophic peatlands. Ecology 56: 591–603. Hydrobiologia 123 Erse´us, C., 2005. Phylogeny of oligochaetous Clitellata. Hydrobiologia 535(536): 357–372. Erse´us, C., M. J. Wetzel & L. Gustavson, 2008. ICZN rules – a farewell to Tubificidae (Annelida, Clitellata). Zootaxa 1744: 66–68. Fra´nkova´, M., J. Bojkova´, A. Poulı´cˇkova´ & M. Ha´jek, 2009. The structure and species richness of the diatom assemblages of the Western Carpathian spring fens along the gradient of mineral richness. Fottea 9: 355–368. Giere, O., 1993. Meiobenthology, the Microscopic Fauna in Aquatic Sediments. Springer, Berlin. Glazier, D. S., 1991. The fauna of North American temperate cold springs: patterns and hypotheses. Freshwater Biology 26: 527–542. Glazier, D. S. & J. L. Gooch, 1987. Macroinvertebrate assemblages in Pennsylvania (USA) springs. Hydrobiologia 150: 33–43. Graefe, U. & R. M. Schmelz, 1999. Indicator values, strategy, types and life forms of terrestrial Enchytraeidae and other microannelids. Newsletter on Enchytraeidae 6: 59–67. Ha´jek, M. & P. Hekera, 2004. Can seasonal variation in fen water chemistry influence the reliability of vegetationenvironment analyses? Preslia 76: 1–14. Ha´jek, M., P. Hekera & P. Ha´jkova´, 2002. Spring fen vegetation and water chemistry in the Western Carpathian flysch zone. Folia Geobotanica 37: 205–224. Ha´jek, M., P. Ha´jkova´, K. Rybnı´cˇek & P. Hekera, 2005. Present vegetation of spring fens and its relation to water chemistry. In Poulı´cˇkova´, A., M. Ha´jek & K. Rybnı´cˇek (eds), Ecology and Palaeoecology of Spring Fens of the West Carpathians. Palacky´ University, Olomouc: 69–103. Ha´jek, M., M. Horsa´k, P. Ha´jkova´ & D. Dı´teˇ, 2006. Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen terminology in ecological studies. Perspectives in Plant Ecology, Evolution and Systematics 8: 97–114. Ha´jkova´, P., P. Wolf & M. Ha´jek, 2004. Environmental factors and Carpathian spring fen vegetation: the importance of scale and temporal variation. Annales Botanici Fennici 41: 249–262. Hill, T. & P. Lewicki, 2007. Statistics: Methods and Applications. StatSoft, Tulsa. Holm, S., 1979. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6: 65–70. Horsa´k, M., 2006. Mollusc community patterns and species response curves along a mineral richness gradient: a case study in fens. Journal of Biogeography 33: 98–107. Horsa´k, M. & M. Ha´jek, 2003. Composition and species richness of mollusc communities in relation to vegetation and water chemistry in the Western Carpathian spring fens: the poor– rich gradient. Journal of Molluscan Studies 69: 349–357. Horsa´k, M., M. Ha´jek, L. Tichy´ & L. Jurˇicˇkova´, 2007. Plant indicator values as a tool for land mollusc autecology assessment. Acta Oecologica 32: 161–171. Hrabeˇ, S., 1954. Klı´cˇ k urcˇova´nı´ zvı´rˇeny Cˇ SR, Vol. 1. Cˇ SAV, Praha. Hrabeˇ, S., 1981. Vodnı´ ma´losˇteˇtinatci (Oligochaeta) Cˇ eskoslovenska. Acta Universitatis Carolinae-Biologia 1979: 1–168. Juget, J., 1987. Contribution to the study of the Rhyacodrilinae (Tubificidae, Oligochaeta), with description of two new stygobiont species from the alluvial plain of the French upper Rhone, Rhyacodrilus amphigenus, sp. n. and Rhizodriloides phreaticola, g. n., sp. n. Hydrobiologia 155: 107–188. Kosˇel, V., 2001. Hirudinolo´gia pre hydrobiolo´gov v praxi. In Makovinska´, J. & L. To´thova´ (eds), Zbornı´k z hydrobiologicke´ho kurzu 2001. Rajecke´ Teplice: 37–54. Lang, C., 1998. Contrasting responses of oligochaetes (Annelida) and chironomids (Diptera) to the abatement of eutrophication in Lake Neuchaˆtel. Aquatic Sciences 61: 206–214. Langheinrich, U., S. Tischew, R. M. Gersberg & V. Lu¨deritz, 2004. Ditches and canals in management of fens: opportunity or risk? A case study in the Dro¨mling Natural Park, Germany. Wetland Ecology and Management 12: 429–445. Latter, P. M. & G. Howson, 1978. Studies on the microfauna of blanket bog with particular reference to Enchytraeidae. II. Growth and survival of Cognettia sphagnetorum on various substrates. Journal of Animal Ecology 47: 425–448. Lepsˇ, J. & P. Sˇmilauer, 2003. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press, Cambridge. Lundkvist, H., 1982. Population dynamics of Cognettia sphagnetorum (Enchytraeidae) in a Scots pine forest soil in Central Sweden. Pedobiologia 23: 21–41. Malmer, N., 1986. Vegetational gradients in relation to environmental conditions in north western European mires. Canadian Journal of Botany 64: 375–383. Martı´nez-Ansemil, E. & R. Collado, 1996. Distribution patterns of aquatic oligochaetes inhabiting watercourses in the Northwestern Iberian Peninsula. Hydrobiologia 334: 73–83. Montanholi-Martins, M. C. & A. M. Takeda, 1999. Communities of benthic oligochaetes in relation to sediment structure in the upper Parana´ River, Brazil. Studies on Neotropical Fauna and Environment 34: 52–58. Moore, J. W., 1978. Importance of algae in the diet of the oligochaetes Lumbriculus variegatus (Mu¨ller) and Rhyacodrilus sodalis (Eisen). Oecologia 35: 357–363. Neubert, E. & H. Nesemann, 1999. Annelida, Clitellata; Branchiobdellida, Acanthobdellea, Hirudinea. Su¨sswasserfauna von Mitteleuropa, Band 6/2. Spektrum Academischer Verlag, Berlin. Nielsen, C. O. & B. Christensen, 1959. The Enchytraeidae – critical revision and taxonomy of European species (studies on Enchytraeidae VII). Natura Jutlandica 8–9: 1–160. Nielsen, C. O. & B. Christensen, 1961. The Enchytraeidae – critical revision and taxonomy of European species. Natura Jutlandica 10(Suppl 1): 1–23. Nielsen, C. O. & B. Christensen, 1963. The Enchytraeidae – critical revision and taxonomy of European species. Natura Jutlandica 10(Suppl 2): 1–19. Nijboer, R. C., M. J. Wetzel & P. F. M. Verdonschot, 2004. Diversity and distribution of Tubificidae, Naididae, and Lumbriculidae (Annelida: Oligochaeta) in the Netherlands: an evaluation of twenty years of monitoring data. Hydrobiologia 520: 127–141. Økland, R. H., 1999. On the variation explained by ordination and constrained ordination axes. Journal of Vegetation Sciences 10: 131–136. Hydrobiologia 123 Omesova´, M. & J. Helesˇic, 2004. On the processing of freezecore samples with notes on the impact of sample size. Scripta Facultatis Scientiarum naturalium Universitatis Masarykianae Brunensis, Biology 29: 59–66. Opravilova´, V. & M. Ha´jek, 2006. The variation of testacean assemblages (Rhizopoda) along the complete base-richness gradient in fens: a case study from the Western Carpathians. Acta Protozoologica 45: 191–204. Peres-Neto, P. R., P. Legendre, S. Dray & D. Borcard, 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87: 2614–2625. Poulı´cˇkova´, A., K. Bogdanova´, P. Hekera & P. Ha´jkova´, 2003. Epiphytic diatoms of the spring fens in the flysch area of the Western Carpathians. Biologia 58: 749–757. Poulı´cˇkova´, A., M. Ha´jek & K. Rybnı´cˇek (eds), 2005. Ecology and Palaeoecology of Spring Fens in the Western Part of the Carpathians. Palacky´ University, Olomouc. Rapant, S., K. Vrana & D. Bodisˇ, 1996. Geochemical Atlas of Slovakia. Part Groundwater. GSSR, Bratislava. Rozbrojova´, Z. & M. Ha´jek, 2008. Changes in nutrient limitation of spring fen vegetation across environmental gradients in the West Carpathians. Journal of Vegetation Science 19: 613–620. Rybnı´cˇkova´, E., P. Ha´jkova´ & K. Rybnı´cˇek, 2005. The origin and development of spring fen vegetation and ecosystems – palaeobotanical results. In Poulı´cˇkova´, A., M. Ha´jek & K. Rybnı´cˇek (eds), Ecology and Palaeoecology of Spring Fens of the West Carpathians. Palacky´ University, Olomouc: 29–62. Schaffers, A. P. & K. V. Sy´kora, 2000. Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: composition with field measurements. Journal of Vegetation Science 11: 225–244. Schenkova´, J., O. Koma´rek & S. Zahra´dkova´, 2001. Oligochaeta of the Morava and Odra River basins (Czech Republic): species distribution and community composition. Hydrobiologia 463: 235–246. Schlaghamersky´, J., 2002. The Enchytraeidae of spruce forest plots of different exposure and acid deposition in a German mountain range. European Journal of Soil Biology 38: 305–309. Schlaghamersky´, J. & K. Kobeticˇova´, 2005. A small annelid community (Enchytraeidae, Tubificidae, Aeolosomatidae) during meadow restoration on arable land and in a nearby well-preserved meadow. Proceedings of the Estonian Academy of Sciences: Biology, Ecology 54: 323–330. Siddall, M. E., K. Apakupakul, E. M. Burreson, K. A. Coates, C. Erse´us, S. Gelder, M. Ka¨llersjo¨ & H. Trapido-Rosenthal, 2001. Validating Livanow: molecular data agree that leeches, branchiobdellidans, and Acanthobdella peledina form a monphyletic group of oligochaetes. Molecular Phylogenetics and Evolution 21: 346–351. Sjo¨rs, H. & U. Gunnarsson, 2002. Calcium and pH in north and central Swedish mire waters. Journal of Ecology 90: 650–657. Smith, M. E., 1986. Ecology of Naididae (Oligochaeta) from an alkaline bog stream: life history patterns and community structure. Hydrobiologia 133: 79–90. Smith, M. E. & J. R. Kaster, 1986. Feeding habits and dietary overlap of Naididae (Oligochaeta) form a bog stream. Hydrobiologia 137: 193–201. Sˇporka, F., 1998. Thy typology of floodplain water bodies of the Middle Danube (Slovakia) on the basis of the superficial polychaete and oligochaete fauna. Hydrobiologia 386: 55–62. Springett, J. A. & P. M. Latter, 1977. Studies on the micro-fauna of blanket bog with particular reference to Enchytraeidae. I. Field and laboratory test of micro-organisms as food. Journal of Animal Ecology 46: 959–974. Springett, J. A., J. E. Brittain & B. P. Springett, 1970. Vertical movement of Enchytraeidae (Oligochaeta) in moorland soils. Oikos 21: 16–21. Suren, A. M., P. Lambert, K. Image & B. K. Sorrell, 2008. Variation in wetland invertebrate communities in lowland acidic fens and swamps. Freshwater Biology 53: 727–744. Svendsen, J. A., 1957a. The distribution of Lumbricidae in an area of Pennine moorland. Journal of Animal Ecology 26: 411–421. Svendsen, J. A., 1957b. The behaviour of lumbricids under moorland conditions. Journal of Animal Ecology 26: 423–439. Syrova´tka, V., J. Schenkova´ & K. Brabec, 2009. The distribution of chironomid larvae and oligochaetes within a stony-bottomed river stretch: the role of substrate and hydraulic characteristics. Fundamental and Applied Limnology 173: 43–62. ter Braak, C. J. F. & P. Sˇmilauer, 2002. CANOCO Reference Manual and Canodraw for Windows User’s Guide. Software for Canonical Community Ordination (ver. 4.5). Biometris, Wageningen. Tichy´, L., 2002. JUICE, software for vegetation classification. Journal of Vegetation Science 13: 451–453. Timm, T., 1999. A Guide to the Estonian Annelida. Estonian Academy Publishers, Tartu-Tallinn. Timm, T. & H. H. Veldhijzen van Zanten, 2002. Freshwater Oligochaeta of North-West Europe. CD-ROM. Center for Taxonomic Identification (ETI), University of Amsterdam, Amsterdam. Uzunov, V., V. Kosˇel & V. Sla´decˇek, 1988. Indicator value of freshwater Oligochaeta. Acta Hydrochimica et Hydrobiologica 16: 173–186. van der Maarel, E., 1979. Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39: 97–114. van Duinen, G. A., T. Timm, A. J. P. Smolders, A. M. T. Brock & W. C. E. P. Verberk, 2006. Differential response of aquatic oligochaete species to increased nutrient availability – a comparative study between Estonian and Dutch raised bogs. Hydrobiologia 564: 143–155. Verdonschot, P. F. M., 1984. The distribution of aquatic oligochaetes on the fenland area of N.W. Overijssel (The Netherlands). Hydrobiologia 115: 215–222. Verdonschot, P. F. M., 1999. Micro-distribution of oligochaetes in a soft-bottomed lowland stream (Elsbeek; The Netherlands). Hydrobiologia 406: 149–163. Verdonschot, P. F. M., 2001. Hydrology and substrates: determinants of oligochaete distribution in lowland streams (The Netherlands). Hydrobiologia 463: 249–262. Virtanen, R., J. Ilmonen, L. Paasivirta & T. Muotka, 2009. Community concordance between bryophyte and insect assemblages in boreal springs: a broad-scale study in isolated habitats. Freshwater Biology 54: 1651–1662. Hydrobiologia 123 147 Růžičková, S., J. Schenková, V. Weissová & J. Helešic, 2014 Environmental impact of heated mining waters on clitellate (Annelida: Clitellata) assemblages. Biologia, 69(9), 1179–1189. Biologia 69/9: 1179—1189, 2014 Section Zoology DOI: 10.2478/s11756-014-0424-2 Environmental impact of heated mining waters on clitellate (Annelida: Clitellata) assemblages Sylvie Růžičková, Jana Schenková, Veronika Weissová & Jan Helešic Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic; e-mails: sylvie.ruzickova@gmail.com; schenk@sci.muni.cz; veronika.weissova@centrum.cz; helesic@sci.muni.cz Abstract: Mining is a relatively highly monitored industry. While chemical pollutants (toxic ions, radionuclides, etc.) have mostly been eliminated from mining waters, other types of environmental pollution (temperature regime alterations, high concentrations of various anions, etc.) can affect benthic invertebrates. In this study, we focused on the effect of mining water effluent on the diversity and density of aquatic Clitellata. Four sampling sites were selected. Three sites in a natural stream (the Nedvědička River, Czech Republic), one upstream and two downstream from the mining effluent, and one site on the mining waters were sampled monthly during 2008–2009. Environmental variables were recorded in and samples were collected from two types of habitats – riffles and pools. The response of clitellate assemblages was evaluated using principal component analysis and generalised estimating equations. The results indicated that the mining effluent caused partial species exchange and had negative effects on clitellate taxa richness and abundance. These responses were specific to both the habitat (riffle/pool) and species sampled. In each of the different taxa studied, we observed one of four typical clitellate responses: (a) elimination of stenotherm species; (b) reduction of clitellate species followed by quick recovery; (c) neutral response; or (d) positive influence. We found that aquatic clitellates, which are considered to be eurytopic with broad ecological valences, are also sensitive to even slight environmental pollution. Key words: aquatic Clitellata; oligochaeta; thermal pollution; mineralised heated water; pool and riffle habitats Introduction Freshwater ecosystems are threatened by various human activities. Among the strongest reported threats are alterations of temperature regime and water pollution. Unlike global climate changes, heated mining waters can cause a high, stable, and long-term increase in water temperature, which is often accompanied by increases in various ion concentrations. Temperature influences the metabolism and life history of organisms through its effect on both physical and chemical processes, and it is a key determinant of invertebrate community composition in most environments (Hogg & Williams 1996; Živi´c et al. 2006; Haidekker & Hering 2008). Thermal water effluent causes disturbances in the natural state and can lead to the elimination of stenothermic species and the establishment of thermophilous species (Nedeau et al. 2003). The second aspect of mining or general industrial water inflow is the increase in the concentration of heavy metals and various ions, which change water pH, conductivity, and hardness (Maret et al. 2003; Nedeau et al. 2003; Miliša et al. 2010). The final stress factor for benthic organisms downstream from the operations is elevated radiation; radionuclides accumulate primarily in bottom sediments and can alter the life histories of benthic invertebrates. However, in common conditions where radiation doses in the vicinity of a mine are under local government control, the direct effect on benthic invertebrates has not yet been shown (Thomas & Liber 2001). In the Czech Republic, a unique opportunity to study the environmental impact of heated waters exists in the Nedvědička River, which is a recipient of treated mining water from the last underground uranium mine in Central Europe. Fortunately, the discharge into the Nedvědička River does not significantly increase downstream from the effluence, which enables the study of the effect of only the heated mining water, without changes in stream morphology. Besides temperature, mining water differs from stream water in that it has higher pH, conductivity, and inorganic carbon values, as well as lower oxygen and nutrient values, which makes the influence on stream biota more complex. The concentration of uranium, which is another chemical variable that could affect benthic invertebrates, was very low in the Nedvědička River at the point of the mining water inflow (Unat = 3.4 mg L−1 ), and it decreased rapidly towards the most distant downstream sampling point (Unat = 0.010 mg L−1 ). Both values were well below 24 mg L−1 , as required by Directive 2008/105/EC of the European Parliament (Hudcová et al. 2012). As the mutagenicity of the water sediments analysed by the Ames Test (Ames et al. 1975) was not previously recorded in either the mining waters or the Nedvědička River (Hudcová et al. c 2014 Institute of Zoology, Slovak Academy of Sciences 1180 S. Růžičková et al. 2012), this variable was not recorded in the presented study. Of the variables we studied, water temperature was expected to have the greatest effect on local benthic communities. A moderate increase in water temperature, similar to those observed in the Nedvědička River, was tested by Hogg & Williams (1996) on benthic arthropods. They reported decreases in their densities, as well as alterations in their life cycles. Other parameters in our study, pH and oxygen concentration, are supposed to have a lower impact when altered. In such cases, when pH varies within a relatively small range around neutral (6.8–8.9) and oxygen concentrations are relatively high (6.5–12.2 mg L−1 ), their influence on the composition of the benthic community is not significant (Quinn & Hickey 1990). In contrast, higher water conductivity, which reflects an increase in total ionic content, was associated with decreased invertebrate community diversity (Batty et al. 2005). Unfortunately, recent reports on the effects of altered thermal regime and changes in ion concentration on benthic macroinvertebrates have focused either on Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa (Voelz et al. 1994; Lakly & McArthur 2000) or on arthropods (Lehmkuhl 1972; Hogg & Williams 1996; Wellborn & Robinson 1996). Even if all components of the benthic community are considered, clitellates are treated as a single taxon or its several families (Saltveit et al. 1994; Batty et al. 2005; Taylor & Dykstra 2005, Miliša et al. 2010), due to difficulties associated with their identification. For our study, we selected clitellate (Annelida: Clitellata) assemblages, as oligochaetous clitellates are generally considered to be the group of benthic invertebrates most resistant to various disturbances, although their sensitivity to disturbances still differs among species. Oligochaetous clitellates represent a group of permanent fauna, in which limited mobility is characteristic. The slow, upstream movement of oligochaetous clitellates such as Naidinae is accomplished by swimming or burrowing into the substratum, as is the case for non-swimming taxa, while their downstream movement is accomplished by drift (e.g., Cellot & Juget 1998). Once present at a site with altered thermal regime and water chemistry, they are continually exposed to the new environment. Forasmuch as clitellate species exhibit a wide range of ecological valences, including eurythermic and stenothermic species, their assemblage composition is likely to respond to thermal alterations. Surprisingly, there is no consensus in the literature with respect to the response of the clitellates to increased temperature. In running waters, where the amount of dissolved oxygen is higher due to the continuous movement, an increase in clitellate density under an effluent of heated water was recorded, whether the water was heated naturally (Taylor & Dykstra 2005; Živi´c et al. 2013) or artificially (Nedeau et al. 2003). However, in stagnant waters, the diversity of clitellates was reduced to only a few of the most resistant species in very low densities (Krodkiewska 2005). Conductivity has been found to be one of the basic variables that induce changes in clitellate assemblages, with a decrease in diversity being caused by increasing conductivity (Bojková et al. 2011). While results have been recorded for conductivity resulting from Ca2+ and Mg2+ ion concentration, there have been no previous reports about the effect of SO2− 4 ion concentration on clitellate assemblage changes. Although water mineralisation resulting from the combination of various inorganic ion concentrations is known to be a significant variable affecting the structure of the clitellate community (MartínezAnsemil & Collado 1996; Schenková et al. 2001), it is not known if it has a positive or negative effect on species diversity and density. The poor understanding of the effect of heated mineralised water effluence on clitellate assemblages and their associated species, as well as discrepancies in reported results regarding the effects (both positive and negative) of thermal alteration on clitellate diversity and abundance, led us to propose three null hypotheses. First, the abundance and taxa richness of clitellates as a group that generally tolerates environmental pollution will not be influenced by the input of mining waters. Second, any changes in clitellate assemblages due to thermal and chemical alteration will be the same for pool and riffle assemblages. Third, clitellates, as a rather uniform group (e.g., feeding strategy, body shape) of invertebrates, will show no species-specific answer to thermal and chemical pollution. Material and methods Study site The Nedvědička River is a second order stream with a length of 28.5 km and an 84.3 km2 catchment area located in the Bohemian-Moravian Highlands in the Czech Republic. It runs through the village of Rožná, where uranium has been mined since 1958. Decontaminated mining water is used as a coolant in a chemical uranium ore processing plant. The cooling water is discharged into the Nedvědička River at 16.9 km from its spring (49◦ 28 53 N, 16◦ 14 00 E). To evaluate the clitellate response to heated mining water, four sampling sites were chosen, three on the Nedvědička River and one on the mining water tributary. The first site (US: upstream) is on the Nedvědička River about 200 m upstream from the mining water inflow, the second site (MW: mining water) is on the mining water, the third site (DS1: downstream1) is on the Nedvědička River immediately downstream of this inflow, and the fourth site (DS2: downstream2) is on the Nedvědička River about 800 m downstream of the inflow site (Fig. 1). Sampling sites on the Nedvědička River only (US, DS1, and DS2) are included in all statistical analyses. The MW samples allowed us to determine background information about the chemistry of and the clitellate species pool in the mining water. The mining water runs in a brook approximately 1.5 m wide with a substratum composed of gravel in riffles and mud, and sand and gravel in pools. All sampling sites were well canopied with Alnus sp., Salix sp., Fraxinus sp., and Sambucus nigra. Sampling sites DS1, DS2, and MW did not freeze over in the winter due to the warm water inflow, in contrast to the US site, which froze to the depth during the winter months. Clitellata of heated mining waters 1181 Fig. 1. Location of sampling sites. Species data Samples of macroinvertebrates were taken monthly from March 2008 to June 2009 (sampling in January was omitted) at each of the four sampling sites. Macroinvertebrates were collected quantitatively using a Hess stream bottom sampler (0.08 m2 ) fitted with a 256-µm-mesh collection net. Two samples from each of the pools and two from each of the riffles were pooled separately at each sampling site. A total of 120 samples were obtained. The collected material was fixed in 4% formaldehyde in the field. In the laboratory, the clitellates were sorted and classified by species or genus level (in the case of juveniles). Physical and chemical measurements Basic physicochemical parameters were recorded at each of the sampling sites (Table 1). For each sampling site, one value each of conductivity, pH, dissolved oxygen, and oxygen saturation was measured (HACH HQ40d) during each monthly sampling in the field. Concentrations of NH+ 4 , NO− 3 , PO3− 4 (VIS spectrometer HELIOS δ), and SO2− 4 ions (capillary electrophoresis) and total nitrogen (TN), total carbon (TC), total inorganic carbon (IC), and total organic carbon (TOC) (Shimandzu) were measured from each water sample in the laboratory. During each sampling, two values for depth, velocity at 40% of the depth from the bottom, and substrate composition were recorded separately for pools and riffles. Temperature data loggers were submersed at all sampling sites, and water temperature was recorded every 15 minutes during the entire sampling period. To evaluate the hydrodynamic characteristics of the sampling sites, the Froude number (Fr) was calculated using Fr = U/ √ gD (D: depth, g: acceleration due to gravity, and U: current velocity at 0.4 depth). The phi value (Hynes 1970) was used to evaluate substrate coarseness. Statistical analyses Principal component analysis (PCA) was used to search for the main gradients in the environmental data and to identify the relationships between the variables. Seasonal changes in the environmental data were separated from differences among sampling sites using special covariables that represented relative seasonality (for details, see Straka et al. 2012). The collected temperature data were scaled by day and month by means of these values and were used in the PCA. Environmental data were fitted linearly into the twodimensional ordination space, and only significant variables (based on 999 permutations) were shown in the PCA diagram. Variables (Froude number and phi) related to the habitats were not included in the PCA because they were measured twice, for riffles and pools separately, while only one measurement per sampling site was taken for all the other variables. The differences in Froude number and phi among the specific sampling sites were tested using the Wilcoxon matched pairs test; habitats were treated separately. The same test was used to find the differences in physicochemical variables between US and MW. PCA was also used to study the relationships between species composition and explanatory variables. Seasonal changes in species data were separated from differences among sampling sites using the same covariables as in PCA on environmental data (see above). The species data were log(x + 1) transformed to reduce the undue influence of dominant species. Samples containing fewer than five individuals were excluded from the analysis. To explain the ecological meaning of species data gradients, environmental variables were fitted linearly into the two-dimensional ordination space and only significant variables (based on 999 permutations) were shown in the PCA diagram. Because the samples showed temporal dependence, we used the generalised estimating equations (GEE) with autoregressive (AR1) correlation structure and Poisson distribution to evaluate differences in abundance and taxa richness between particular sampling sites. The same method and test was used for testing the mining water effect on 1182 S. Růžičková et al. Table 1. Minimum, maximum, and median values of the measured environmental variables at sampling sites. US MW DS1 DS2 Site Min Median Max Min Median Max Min Median Max Min Median Max Variable Conductivity (µS cm−1) 202 318 410 987 1395 1580 400 604 930 415 583 789 pH 7.3 7.6 8.4 7.8 8.2 8.9 7.5 8.0 8.5 7.2 8.0 8.8 Dissolved O2 (mg L−1) 8.7 11.4 12.7 7.6 8.8 10.1 8.1 10.2 12.3 8.2 10.3 12.0 O2 saturation (%) 86 96 118 78 98 116 81 98 120 78 97 119 Mean monthly temperature (◦C) 2.9 11.7 15.4 12.6 17.9 19.9 4.8 13.4 16.4 4.8 13.3 16 Min. monthly temperature (◦C) 0.1 7.4 13.3 8.0 13.5 17.2 1.9 9.1 15.0 1.7 9.0 14.8 Max. monthly temperature (◦C) 5.8 15.0 19.0 18.1 21.2 24.1 7.4 16.8 20.6 7.4 16.3 20.7 NH+ 4 (mg L−1) 0.4 0.7 1.6 0.0 0.6 1.6 0.0 0.5 1.1 0.0 0.5 1.3 NO− 3 (mg L−1) 8.6 29.5 41.9 0.4 12.9 30.5 13.8 22.0 41.1 13.6 21.3 41.5 PO3− 4 (mg L−1) 0.0 0.1 0.4 0.0 0.0 0.1 0.0 0.1 0.5 0.0 0.1 0.3 SO2− 4 (mg L−1) 44 48 66 430 500 690 80 170 280 81 145 270 TN (mg L−1) 0.6 7.8 15.5 0.2 1.7 8.4 0.2 6.0 14.6 0.8 5.7 14.6 TC (mg L−1) 11.8 21.3 64.8 16.9 32.8 63.9 12.9 20.5 38.9 12.7 20.5 37.9 IC (mg L−1) 4.4 11.3 23.2 11.2 23.6 46.1 7.6 13.3 27.8 6.4 15.9 27.3 TOC (mg L−1) 3.0 8.7 55.4 0.6 6.6 19.4 1.1 8.2 12.9 1.1 7.8 20.3 phi value (riffles) –7.0 –4.6 –1.7 –7.0 –3.4 –1.7 –7.4 –5.8 –3.2 –7.0 –4.4 –1.3 phi value (pools) –4.4 –0.7 2.4 –4.2 1.4 5.1 –5.1 –1.8 2.0 –4.5 –1.5 4.5 Froude number (riffles) 0.17 0.36 0.70 0.17 0.38 0.70 0.06 0.44 0.89 0.06 0.26 0.51 Froude number (pools) 0.01 0.08 0.17 0.01 0.11 0.17 0.01 0.05 0.12 0.01 0.06 0.14 Explanations: US – unaffected locality upstream from the tributary, MW – heated mining water, DS1 – first influenced locality downstream from the tributary, DS2 – second influenced locality downstream from the tributary, TN – total amount of nitrogen, TC – total amount of carbon, IC – amount of inorganic carbon, and TOC – total amount of organic carbon. six of the most abundant and ecologically important taxa. All analyses were performed in R (version 2.12.0; R Development Core Team, 2010) using the ‘vegan’ (Oksanen et al. 2011) and ‘geepack’ (Hojsgaard et al. 2006) packages. Results Environmental data Mining water differs from water in the Nedvědička River along several parameters, the most important of which, for this study, are its elevated water temperature, higher conductivity, and lower organic pollution (Table 1). MW differed from the unaffected US most significantly in water temperature (P < 0.001), which ranged 8–24◦ C in MW. Heated mining water caused an average increase of 1.8◦ C in water temperature in DS1 when compared to US. Differences in temperature between the downstream sites (DS1 and DS2) were small (about 0.2◦ C; Fig. 2C). Significantly higher conductivity (P < 0.001), which reached values above 1,000 µS cm−1 , was caused by increased SO2− 4 ions. Inorganic carbon and pH were significantly higher in MW compared to US (P < 0.01), and dissolved oxygen and nutrients (NO− 3 and PO3− 4 ) were lower (P < 0.01). Lower organic pollution in mining water (Table 1) was due to the presence of the decanting plant, which processes mining water upstream from its inflow into the Nedvědička River. Mining water is discharged continuously, without fluctuation in volume (0.06 m3 s−1 ). The Nedvědička River displayed an unaltered character in the sampled stretch, with a width of 2.7–3.5 m, a mean discharge volume of 0.25 m3 s−1 , a mean pool depth ranging from 0.24 m (US) to 0.37 m (DS2), a mean riffle depth ranging from 0.16 m (DS1) to 0.21 m (DS2), a mean velocity in pools ranging from 0.12 m s−1 (DS1) to 0.14 m s−1 (US), and a mean velocity in riffles ranging from 0.41 m s−1 (DS2) to 0.54 m s−1 (DS1). Coarse gravel and gravel were the dominating substratum in riffles, and gravel and sand were the dominating substratum in pools. Phi values were similar within particular habitats (riffle/pool), especially in pools (Fig. 2A). In the riffles, DS1 had significantly coarser substrate than that found in DS2 and US (Wilcoxon paired test, P < 0.05). In the pools, the US Froude number was significantly higher than in both downstream sites (Fig. 2B). In the riffles, DS1 had a significantly higher Froude number when compared to DS2 (P < 0.05), but not when compared to US. The main gradients for the environmental data were identified using PCA. The first PCA axis explained 34.3% of the variance. The main gradient represented these measured variables (i.e., conductivity, temperature, pH, and dissolved oxygen), which differed significantly between the mining water tributary and the natural water sites on the Nedvědička River. The unaffected sampling site (US) was well separated from both affected sites (DS1 and DS2; Fig. 3). The differences between DS1 and DS2 were small; groups of points highly overlapped each other in ordination space. The second PCA axis explained 17% of the variance in the data and was associated with the amount of nutrients, specifically, total organic carbon and nitrate ions. General differences among sampling sites along this nutrient gradient were small. Clitellate community A total of 2,715 individuals representing 44 clitellate Clitellata of heated mining waters 1183 Fig. 2. Box-plots of environmental variables: phi values (A), Froude number (B) (habitats considered separately), and measured temperature (C), lines join daily means. US – site upstream from the mining water inflow, DS1 – first site downstream from the mining water inflow, and DS2 – second site downstream from the mining water inflow. taxa were collected from the study sites in the Nedvědička River. The numbers of taxa per sampling site were 35 from US, 30 from DS1, and 24 from DS2. Total abundance was 1,710 individuals from US, 279 from DS1, and 942 from DS2. In the mining water tributary, 1,446 individuals from only 17 taxa were observed. In PCA based on biological data, the first axis explained 33.9% of the variance (Fig. 4). Although points of particular sampling sites overlap, the main gradient in faunal data representing community change along the extent of sampling site disturbance (from US through DS2 to DS1) is clearly visible. This gradient was best expressed by fitted environmental variables: increase of conductivity, temperature, IC, and pH in the most affected DS1 on the one side, and higher amount of dissolved oxygen and organic carbon associated with unaffected US on the other side. The second gradient, explaining 11.1% of variability, is related to the substrate coarseness phi. A comparison among sampling sites (both habitats evaluated together) in the number of taxa showed a significant (P < 0.05) decrease downstream from the tributary (Fig. 5A). However, the difference in number of taxa between DS1 and DS2 was insignificant. In addition to detailing the elimination of some taxa downstream from the effluent, species replacement was also monitored. Some of the taxa we observed upstream from the mining water effluent site were replaced either by new taxa or by taxa coming from the mining waters (Table 2). In addition, the number of individuals within each taxa was significantly lower downstream from the tributary (Fig. 5B) in both DS1 and DS2 (P < 0.05). Separate evaluations of habitats revealed a significant decrease in the number of taxa between the pools in the US and both downstream sites (P < 0.05), but no difference between DS1 and DS2. The DS1 riffles had significantly fewer taxa compared to US and DS2 (P < 0.005); there was no difference between US and DS2. The number of individuals in pools was significantly higher in US compared to both DS sites (P < 0.05); DS1 had significantly fewer individuals than DS2 (P < 0.05). Similarly, the DS1 riffles had significantly fewer individuals compared to US and DS2 (P < 0.005), but there was no difference between US and DS2. Comparing the habitats (riffles/pools) within sampling sites showed that they were populated differently by clitellates. Significantly higher taxa richness in pools was recorded for DS1 (P < 0.001; Fig. 5A), and significantly higher abundances in the pools were recorded for US and DS1 (P < 0.05). Selected species responses Genus Stylodrilus was the most abundant taxon found in the three sample sites on the Nedvědička River (US, DS1, and DS2), and genus Limnodrilus was the most abundant in MW (Table 2). Other species that were prevalent in particular sampling sites include Haplotaxis gordioides in US, Nais bretscheri in DS1, and Aulodrilus japonicus in DS2. Three species, Bothrioneurum vejdovskyanum, Limnodrilus udekemianus, and Psammoryctides albicola, were found exclusively in MW. We focused our study on the response to thermal and chemical alteration of six taxa (Aulodrilus japonicus, Haplotaxis gordioides, Limnodrilus spp., Lumbriculus variegatus, Spirosperma ferox, and 1184 S. Růžičková et al. Fig. 3. PCA ordination plot of environmental variables. Circle – US, square – DS1, triangle – DS2. Black arrows represent fitted variables. Only significant variables are shown (P < 0.05, based on 999 permutations). Fig. 4. PCA ordination plot of species data. Samples are displayed. Circle – US, square – DS1, triangle – DS2. Black arrows represent fitted variables. Only significant variables are shown (P < 0.05, based on 999 permutations). Clitellata of heated mining waters 1185 Fig. 5. Box-plots of taxa number (A) and logarithmic transformed abundance values (B) for three sampling sites. The habitats were treated separately. US – site upstream from the mining water inflow, DS1 – first site downstream from the mining water inflow, and DS2 – second site downstream from the mining water inflow. Fig. 6. Box-plots of logarithmic transformed abundances of selected species for three sampling sites; habitats treated separately. US – site upstream from the mining water inflow, DS1 – first site downstream from the mining water inflow, and DS2 – second site downstream from the mining water inflow. Stylodrilus spp.) with the highest abundances and regular occurrences in the sample sites from the Nedvědička River. We observed four types of responses by the species to the mining water effluent (Fig. 6): I) The decrease in abundance of Haplotaxis gordioides in both DS sites was significant (P < 0.001). In addition, this species was nearly eliminated downstream of the tributary, with only a few occasional occurrences (Fig. 6A). 1186 S. Růžičková et al. Table 2. Total number of individuals of clitellate species recorded in sampling sites. Site US-R US-P MW-R MW-P DS1-R DS1-P DS2-R DS2-P Name NAIDINAE Nais alpina (Sperber, 1948) 3 5 Nais barbata (O.F. M¨uller, 1773) 69 3 8 Nais bretscheri (Michaelsen, 1899) 8 3 21 6 24 19 Nais communis (Piguet, 1906) 3 1 1 Nais elinguis (O.F. M¨uller, 1773) 6 7 3 2 27 2 Nais pseudobtusa (Piguet, 1906) 12 3 2 Nais simplex (Piguet, 1906) 2 Nais sp. juv. 74 23 Nais variabilis (Piguet, 1906) 2 Ophidonais serpentina (O.F. M¨uller, 1773) 2 2 1 Slavina appendiculata (d’Udekem, 1855) 2 1 Uncinais uncinata (Oersted, 1842) 8 5 2 PRISTININAE Pristina jenkinae (Stephenson, 1932) 1 RHYACODRILINAE Bothrioneurum vejdovskyanum (Štolc, 1888) 1 25 Rhyacodrilus falciformis (Bretscher, 1901) 5 TUBIFICINAE Aulodrilus japonicus (Yamaguchi, 1953) 1 17 14 1 75 Aulodrilus limnobius (Bretscher, 1899) 1 Aulodrilus pluriseta (Piguet, 1906) 9 1 3 Limnodrilus claparedeanus (Ratzel, 1869) 15 1 6 Limnodrilus hoffmeisteri (Clapar`ede, 1862) 9 1 439 12 2 9 Limnodrilus udekemianus (Clapar`ede, 1862) 5 Limnodrilus sp. juv. 1 4 6 656 10 3 24 Psammoryctides albicola (Michaelsen, 1901) 2 Psammoryctides barbatus (Grube, 1861) 1 2 2 Spirosperma ferox (Eisen, 1879) 8 26 16 9 50 Tubifex tubifex (O.F. M¨uller, 1774) 2 36 1 15 Tubificidae juv. 1 4 2 153 3 11 53 ENCHYTREIDAE Cognettia glandulosa (Michaelsen, 1888) 1 1 3 Enchytraeus albidus (Henle, 1837) 1 Enchytraeus sp. 1 1 1 Fridericia sp. 2 2 2 1 1 3 Henlea sp. 1 4 1 2 1 Mesenchytraeus armatus (Levinsen, 1884) 1 PROPAPPIDAE Propappus volki (Michaelsen, 1922) 32 HAPLOTAXIDAE Haplotaxis gordioides (Hartmann, 1821) 79 126 3 9 4 LUMBRICIDAE Eiseniella tetraedra (Savigny, 1826) 5 20 24 6 7 1 4 16 LUMBRICULIDAE Bythonomus lemani (Grube, 1880) 1 Lumbriculus variegatus (O.F. M¨uller, 1774) 14 46 3 31 1 11 5 26 Stylodrilus brachystylus (Hrabě, 1928) 38 157 4 67 18 Stylodrilus heringianus (Clapar`ede, 1862) 8 13 3 Stylodrilus sp. juv. 156 803 6 5 12 359 84 ERPOBDELLIDAE Erpobdella octoculata (L., 1758) 2 5 1 3 1 Erpobdella vilnensis (Liskiewicz, 1927) 2 4 Erpobdella sp. juv. 2 GLOSSIPHONIIDAE Glossiphonia complanata (L., 1758) 1 Glossiphonia concolor (Apathy, 1888) 1 Glossiphonia nebulosa (Kalbe, 1964) 1 Helobdella stagnalis (L., 1758) 1 Total 427 1283 45 1401 131 148 527 415 Explanations: US – site upstream from the mining water inflow, MW – heated mining water inflow, DS1 – first site downstream from the mining water inflow, DS2 – second site downstream from the mining water inflow, R – riffles, P – pools. II) While Stylodrilus spp. and Lumbriculus variegatus abundances decreased in DS1, further downstream in DS2, they increased again to almost the quantity found in US (Fig. 6B, C). The decrease of abundance in DS1 and the increase in DS2 were significant in both Stylodrilus spp. and Lumbriculus variegatus (P < 0.001). Furthermore, an exchange of preferred habitat for Stylodrilus spp. was observed. It showed a preference Clitellata of heated mining waters 1187 for pools in US and DS1, while it showed a preference for riffles in DS2. III) A neutral response to the mining water effluent was observed in two taxa, Spirosperma ferox and Limnodrilus spp.; abundances in all sampling sites were almost the same. IV) An increase of abundance in Aulodrilus japonicus was observed in the downstream sites (Fig. 6D). The increase in DS1 and DS2 compared to US was significant (P < 0.05). A significantly higher abundance in DS2 compared to DS1 was also observed (P < 0.05). Discussion The Clitellata assemblages in this study, represented mainly by oligochaetes and partly by leeches, proved to be a good tool for the evaluation of aquatic ecosystem degradation caused by mineralised and heated mining water. Their diversity and density strongly reflected the changes in water environment. The environmental variables that were altered the most below the mining water tributary included conductivity, temperature, pH, IC, and dissolved oxygen concentration (arranged in order of goodness of fit in the multivariate analysis), and we assume them to be responsible for changes in the clitellate assemblage composition. This assumption was confirmed when we fitted all environmental variables into a species data ordination plot. The main gradient of community changes corresponded with the gradient of environmental variables altered by MW inflow. There was no opportunity to segregate the effects of individual variables, but their combined impact was detectable. A significant decrease in species richness and abundance below the mining water tributary was observed (Fig. 4), despite the fact that clitellates are considered to be the most tolerant group to various ecological disturbances (e.g., Brinkhurst & Cook 1974; Uzunov et al. 1988). Contrary to our results, Nedeau et al. (2003) observed an increased abundance of oligochaetes and chironomid larvae under heated industrial effluence, but a simultaneous increase in water current and resulting changes in the stream morphology probably affected the results. Two mechanisms likely explain the negative effect of mining water input on clitellate assemblages. First, the effect of changes in water chemistry and the resulting increase in conductivity causes a clitellate osmoregulation problem that is balanced by active seeking of optimal osmotic conditions (Preston 2009) more distantly downstream. Some species, such as Propappus volki, show a strong negative correlation with water hardness, which is often tightly associated with conductivity (Dumnicka & Pasternak 1978), and we observed that this species was completely eliminated below the mining water tributary in our study (Table 2). Osmoregulatory capacity differs among oligochaete species (Generlich & Giere 1996), and Propappus volki is probably highly sensitive to osmotic stress. Second, the effect of increased water temperature was remarkable. A small increase (1.8◦ C on average) resulted in water remaining unfrozen during the winter, a feature to which cold water species (e.g., Haplotaxis gordioides and Stylodrilus heringianus; Dumnicka 2000), which naturally inhabit part of the stream above the tributary, are not adapted. The drop in their numbers below the tributary was significant (Fig. 6A, B). Hence, we can reject the hypothesis that running water clitellates are such a resistant group of organisms that the mining water input does not change their densities and taxa richness. Stream morphology has been reported to be significant for clitellate distribution (Neadeau et al. 2003), which was confirmed by evaluating the riffle and pool samples separately. The clitellate assemblage composition of each habitat (riffle/pool) was distinctly affected (Fig. 5). The decrease in the number of taxa observed downstream from the mining water tributary was higher in the riffles than in the pools. Six taxa inhabiting only riffles upstream were excluded downstream from the tributary, whereas the three taxa inhabiting pools upstream were excluded downstream (Table 2). Rheophilous taxa, which often inhabit the upper parts of streams, for which low nutrients and higher oxygen content are typical (Schwank 1981), are often more vulnerable to decreased water quality (Verdonschot 2006). Contrary to our results, an identical diversity with different qualitative and quantitative composition was reported in another study below thermal water inflow for all macroinvertebrates, with only a decrease in overall abundance being reported (Živi´c et al. 2006). Nevertheless, the species exchange as the response to the thermal inflow (Živi´c et al. 2006) was analogous to our results. Similarly, changes in water chemistry, which are often accompanied by a higher trophic state, result not in decreased clitellate species diversity, but in changeover of the proportion of particular species with different ecological valences (Krodkiewska & Michalik-Kucharz 2009). We recorded species exchange below the mining water tributary and changes in the abundance of particular taxa, but overall, we observed a decrease in diversity and density. The reason for this result might be the cumulative effect of the simultaneous influence of high conductivity and increased temperature. Nevertheless, all of these changes were distinct for riffles and pools, and therefore, we can also reject the hypothesis that species will respond in the same manner to these changes in different habitats. In our study, we observed habitat-specific responses of the clitellates to the various disturbances. The collective response of the entire clitellate community to the mining water inflow can be explained by analysing the responses of particular species to the changes in their environment. We found that the level of influence was not the same at the species level. The elimination of the oligo-stenotherm species Haplotaxis gordioides, one of the most abundant species in the upstream site, explains its life strategy as stygobiont, meaning that it inhabits cool water springs and small streams (Schwank 1981; Dumnicka 2000). We believe that the increased water temperature and absence of winter freezing affected the downstream population 1188 S. Růžičková et al. negatively. The reduction of Stylodrilus spp. abundance was due to its preference for higher altitudes and, therefore, lower temperatures and higher oxygen concentrations (Dumnicka 2000; Verdonschot 2006). Its quick recovery is due to its ecological plasticity, expressed by a broad flow condition valence (Syrovátka et al. 2009). However, the analogous response of Lumbriculus variegatus is explained differently, by its preference for lower pH (Nijboer et al. 2004), which can result in its movement into parts of the stream with optimal pH values. Some taxa with broad ecological valence, such as Limnodrilus spp., were not influenced by changes in environmental conditions because of their high tolerance to low oxygen levels, increased temperatures, and high levels of conductivity caused by sulphate ions (Korn 1963; Dumnicka & Galas 2006). The input of mining waters was even favourable for Aulodrilus japonicus, which is intolerant of water pollution (Dumnicka & Pasternak 1978), especially nutrient loading and higher conductivity. Therefore, it was found only in small numbers in the mining water tributary and in riffles and pools downstream (DS1), but its abundance increased further downstream (DS2), where it found a compromise between conductivity and water quality levels. Other taxa of the 44 recorded clitellates would also probably fit into one of these strategies, but they were present in such low numbers that they showed random distributions. In contrast to the Nedvědička River, the mining water assemblages showed distinctly lower species diversity, comprising a subset of the species recorded in the other sampling sites (Table 2). Only three species that inhabited the mining water were excluded from the other, “better” sites. These species were Bothrioneurum vejdovskyanum, a rare species preferring either large rivers or smaller streams in lowlands (Hrabě 1981; Schenková et al. 2006);Limnodrilus udekemianus, which prefers organically enriched sites, but not those under poor conditions (Brinkhurst & Cook 1974); and Psammoryctides albicola, a lowland stagnant water species (Hrabě 1981). To summarize, Clitellate assemblages, similar to other aquatic invertebrate taxa, are threatened by mining water pollution. This pollution not only lowers their diversity and density, but also causes species changeover. Therefore, analyses of clitellate assemblages must always be conducted at the species level. The problem is the exclusivity of the types of disturbances discussed in this report under natural conditions and, hence, worse plausibility of their mutual compar- isons. Acknowledgements We would like to thank V. Syrovátka for useful statistical comments and recommendation, and M. Růžičková and S. Němejc for their technical assistance. This study was supported by the grant from the Ministry of Education of the Czech Republic (MSM 0021622416) and the specific research of Masaryk University (MUNI/A/0888/2013). References Ames B., McCann J. & Yamasaki E. 1975. Methods for detecting carcinogens and mutagens with the Salmonella/mammalianmicrosome mutagenicity test. Mutation Res. 31 (6): 347–364. DOI: 10.1016/0165-1161(75)90046-1 Batty L.C., Atkin L. & Manning D.A.C 2005. Assessment of the ecological potential of mine-water treatment wetland using a baseline survey of macroinvertebrate communities. Environ. Pollut. 138 (3): 412–419. DOI: 10.1016/j.envpol.2005.04.022 Bojková J., Schenková J., Horsák M. & Hájek M. 2011. Species richness and composition patterns of clitellate (Annelida) assemblages in the treeless spring fens: the effect of water chemistry and substrate. Hydrobiologia 667 (1): 159–171. DOI: 10.1007/s10750-011-0634-3 Brinkhurst R.O. & Cook D.G. 1974. Aquatic earthworms (Annelida: Oligochaeta), pp. 143–156. In: Hart C.W. Jr & Fuller S.L.H. (eds), Pollution Ecology of Freshwater Invertebrates, Academic Press, New York, 389 pp. ISBN-13: 978- 0123284501, ISBN-10: 0123284503 Cellot B. & Juget J. 1998. Oligochaete drift in a large river (French Upper Rhône): the effect of life cycle and discharge. Hydrobiologia 389 (1-3): 183–191. DOI: 10.1023/A:100351 1916699 Directive 2008/105/EC of European Parliament and of the Council on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending Directive 2000/60/EC”, OJ L348, pp. 84–97, 24.12.2008 Dumnicka E. 2000. Studies on Oligochaeta taxocens in streams, interstitial and cave waters of southern Poland with remarks on Aphanoneura and Polychaeta distribution. Acta Zool. Cracov. 43 (3–4): 339–392. Dumnicka E. & Galas J. 2006. Distribution of benthic fauna in relation to environmental conditions in an inundated opencast sulphur mine (Piaseczno reservoir, Southern Poland). Aquat. Ecol. 40 (2): 203–210. DOI: 10.1007/s10452-005-6040-z Dumnicka E. & Pasternak K. 1978. The influence of physicochemical properties of water and bottom sediments in the River Nida on the distribution and numbers of Oligochaeta. Acta. Hydrobiol. (Cracow) 20 (3): 215–232. Generlich O. & Giere O. 1996. Osmoregulation in two aquatic oligochaetes from habitats with different salinity and comparison to other annelids. Hydrobiologia 334 (1-3): 251–261. DOI: 10.1007/BF00017375 Haidekker A. & Hering D. 2008. Relationship between insects (Ephemeroptera, Plecoptera, Coleoptera, Trichoptera) and temperature in small and medium-sized streams in Germany: A multivariate study. Aquat. Ecol. 42 (3): 463–481. DOI: 10.1007/s10452-007-9097-z Hogg I.D. & Williams D.D. 1996. Response of stream invertebrates to a global-warming thermal regime: an ecosystemlevel manipulation. Ecology 77 (2): 395–407. DOI: http:// dx.doi.org/10.2307/2265617 Hrabě S. 1981. Vodní máloštětinatci (Oligochaeta) Československa. Acta Univ. Carol. Biol. 1-2, 1979, 168 pp. Hojsgaard S., Halekoh U. & Yan J. 2006. The R Package geepack for generalized estimating equations. J. Stat. Soft. 15 (2): 1–11. Hudcová H., Badurová J., Rozkošný M., Funková R., Svobodová J. & Sova J. 2012. Ovlivnění jakosti vod a sedimentů v povodí řeky Nedvědičky těžbou a zpracováním uranových rud. VTEI Vodohospodářské Technicko-ekonomické Informace 54 (3): 5–10. Hynes H.B.N. 1970. The Ecology of Running Waters. Liverpool University Press, Liverpool, 555 pp. ISBN: 0802016898, 9780802016898 Korn H. 1963. Studien zur ¨Okologie der Oligochaeten in der oberen Donau unter Ber¨ucksichtigung der Abwassereinwirkungen. Arch. Hydrobiol. 27 (2): 131–182. DOI: 10.1127/ agdonauforschung/1/1963/131 Krodkiewska M. 2005. The Oligochaeta communities in the benthos of artificially heated Rybnik dam reservoir (Poland). J. Clitellata of heated mining waters 1189 Freshwater Ecol. 20 (1): 117–122. DOI: 10.1080/02705060. 2005.9664944 Krodkiewska M. & Michalik-Kucharz A. 2009. The bottom Oligochaeta communities in sand pits of different trophic status in Upper Silesia. Aquat. Ecol. 43 (2): 437–444. DOI: 10.1007/s10452-008-9199-2 Lakly M.B. & McArthur J.V. 2000. Macroinvertebrate recovery of a post-thermal stream: habitat structure and biotic function. Ecol. Engineer. 15 (Suppl. 1): S87-S100. DOI: 10.1016/S0925-8574(99)00075-0 Lehmkuhl D.M. 1972. Change in thermal regime as a cause of reduction of benthic fauna downstream of a reservoir. J. Fish. Res. Board Canada, 29 (9): 1329–1332. DOI: 10.1139/f72- 201 Maret T.R., Cain D.J., MacCoy D.E. & Short T.M. 2003. Response of benthic invertebrate assemblages to metal exposure and bioaccumulation associated with hard-rock mining in northwesterm streams, USA. J. N. Am. Benthol. Soc. 22 (4): 598–620. Martínez-Ansemil E. & Collado R. 1996. Distribution patterns of aquatic oligochaetes inhabiting watercourses in the Northwestern Iberian Peninsula. Hydrobiologia 334 (1): 73–83. DOI: 10.1007/BF00017355 Miliša M., Živkovi´c V. & Habdija I. 2010. Destructive effect of quarry effluent on life in a mountain stream. Biologia 65 (3): 520–526. DOI: 10.2478/s11756-010-0044-4 Nedeau E.J., Merritt R.W. & Kaufman M.G. 2003. The effect of an industrial effluent on an urban stream benthic community: water quality vs. habitat quality. Environ. Pollut. 123 (1): 1–13. DOI: 10.1016/S0269-7491(02)00363-9 Nijboer R.C., Wetzel M.J. & Verdonschot P.F.M. 2004. Diversity and distribution of Tubificidae, Naididae, and Lumbriculidae (Annelida: Oligochaeta) in the Netherlands: an evaluation of twenty years of monitoring data. Hydrobiologia 520 (1-3): 127-141. DOI: 10.1023/B:HYDR.0000027732.88238.61 Preston R.L. 2009. Osmoregulation in Annelids, pp. 135–160. In: Evans D.H. (ed.), Osmotic and Ionic Regulation: Cells and Animals, CRC Press, Boca Raton, 606 pp. ISBN: 9780849380303 Oksanen J., Blanchet F.G., Kindt R., Legendre P., Minchin P.R., O’Hara R.B., Simpson G.L., Solymos P., Stevens M.H.H. & Wagner H. 2011. vegan: Community Ecology Package. R package version 2.0-2. http://CRAN.R-project.org/package =vegan Quinn J.M. & Hickey C.W. 1990. Characterisation and classification of benthic invertebrate communities in 88 New Zealand rivers in relation to environmental factors. N. Z. J. Mar. Freshwater Res. 24 (3): 387–409. DOI: 10.1080/00288330. 1990.9516432 Quinn J.M., Steele G.L., Hickey C.W. & Vickers M.L. 1994. Upper thermal tolerances of twelve New Zealand stream invertebrate species. N. Z. J. Mar. Freshwater Res. 28 (4): 391–397. DOI: 10.1080/00288330.1994.9516629 R Development Core Team 2010. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Saltveit S.J., Bremnes T. & Brittain J.E. 1994. Effect of a changed temperature regime on the benthos of a Norwegian regulated river. Regul. Rivers: Res. & Manage. 9 (2): 93–102. DOI: 10.1002/rrr.3450090203 Schenková J., Helešic J. & Jarkovský J. 2006. Seasonal dynamics of Bythonomus lemani and Bothrioneurum vejdovskyanum (Oligochaeta, Annelida) in relation to environmental variables. Biologia 61 (5): 517—523. DOI: 10.2478/s11756-006- 0085-x Schenková J., Komárek O. & Zahrádková S. 2001. Oligochaeta of the Morava and Odra River basins (Czech Republic): species distribution and community composition. Hydrobiologia 463: 235–240. DOI: 10.1007/978-94-010-0597-5 24 Schwank P. 1981. Turbellarien, Oligochaeten und Archianneliden des Breitenbachs und anderer oberhessischer Mittelgebirgsb¨ache. II. Die Systematik und Aut¨okologie der einzelnen Arten. Schlitzer Produktionsbiologische Studien (43-2). Arch. Hydrobiol. Suppl. 62 (1): 86–147. Straka M., Syrovátka V. & Helešic J. 2012. Temporal and spatial macroinvertebrate variance compared: crutial role of CPOM in a headwater stream. Hydrobiologia 686 (1): 119–134. DOI: 10.1007/s10750-012-1003-6 Syrovátka V., Schenková J. & Brabec K. 2009. The distribution of chironomid larvae and oligochaetes within a stony-bottomed river stretch: the role of substrate and hydraulic characteristics. Fund. Appl. Limnol. / Arch. Hydrobiol. 174 (1): 43–62. DOI: 10.1127/1863-9135/2009/0174-0043 Taylor B.R. & Dykstra A.N. 2005. Effect of hot ground water on a small swamp-stream in Nova Scotia, Canada. Hydrobiologia 545 (1): 129–144. DOI: 10.1007/s10750-005-2745-1 Thomas P. & Liber K. 2001. An estimation of radiation doses to benthic invertebrates from sediments collected near a Canadian uranium mine. Environ. Int. 27 (4): 341– 353. DOI: 10.1016/S0160-4120(01)00085-X Uzunov V., Košel V. & Sládeček V. 1988. Indicator value of freshwater Oligochaeta. Acta Hydrochim. Hydrobiol. 16 (2): 173– 186. DOI: 10.1002/aheh.19880160207 Verdonschot P.F.M. 2006. Beyond masses and blooms: the indicative value of oligochaetes. Hydrobiologia 564: 127–142. DOI: 10.1007/1-4020-5368-1 13 Voelz N.J., Poff N.L. & Ward J.V. 1994. Differential effects of a brief thermal disturbance on caddisflies (Trichoptera) in a regulated river. Am. Midl. Nat. 132 (1): 173–182. Wellborn G.A. & Robinson J.V. 1996. Effects of a thermal effluent on macroinvertebrates in a Central Texas Reservoir. Am. Midl. Nat. 136 (1): 110–120. Živi´c I., Markovi´c Z. & Brajkovi´c M. 2006. Influence of the temperature regime on the composition of the macrozoobenthos community in a thermal brook in Serbia. Biologia 61 (2): 179–191. DOI: 10.2478/s11756-006-0029-5 Živi´c I., Živi´c M., Miloševi´c D., Bjelanovi´c K., Stanojlovi´c S., Daljevi´c R. & Markovi´c Z. 2013. The effects of geothermal water inflow on longitudinal changes in benthic macroinvertebrate community composition of a temperate stream. J. Therm. Biol. 38 (5): 255–263. DOI: 10.1016/j.jtherbio.2013.03.005 Received September 4, 2013 Accepted July 27, 2014 159 Schenková, J., M. Bílková & M. Horsák, accepted 27.1.2016 The response of Clitellata (Annelida) to environmental gradients in spring fens. Limnologica. Accepted Manuscript Title: The response of Clitellata (Annelida) to environmental gradients in spring fens Author: Jana Schenkov´a Martina B´ılkov´a Michal Hors´ak PII: S0075-9511(16)00009-8 DOI: http://dx.doi.org/doi:10.1016/j.limno.2016.01.004 Reference: LIMNO 25492 To appear in: Received date: 27-8-2015 Revised date: 18-1-2016 Accepted date: 27-1-2016 Please cite this article as: Schenkov´a, J., B´ilkov´a, M., Hors´ak, M.,The response of Clitellata (Annelida) to environmental gradients in spring fens, Limnologica (2016), http://dx.doi.org/10.1016/j.limno.2016.01.004 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Page 1 of 24 Accepted M anuscript 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 The response of Clitellata (Annelida) to environmental gradients in spring fens Jana Schenková*, Martina Bílková, Michal Horsák Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic *Corresponding author. Tel.: +420 549496959. E-mail address: schenk@sci.muni.cz (J. Schenková). Abstract Patterns in aquatic Clitellata assemblage composition are known to be driven by several environmental gradients, with water chemistry and substratum characteristics being particularly important. In this study we explored 54 isolated spring fens across the eastern Czech Republic and Slovakia. These fens varied in calcium and magnesium concentrations, forming a sharp and well defined environmental gradient running from calcium-poor acidic fens to extremely calcium-rich tufa-forming fens. We found that the main changes in clitellate species composition were controlled by this gradient, and/or total organic carbon content, over a wide area, including fen sites differing in other environmental conditions and historical development. However, this pattern was weakened in sites with a high organic matter content, which represented a second driver of change in assemblage composition along with water temperature. Three main types of fens were determined using cluster analysis based on clitellate assemblage composition. However, only the first type, which included tufa-forming fens, was found to fit with the previously established spring fen types based on vegetation (i.e. extremely mineral-rich fens with a tufa, brown-moss mineral-rich fens, mineral-rich Sphagnum fens and mineral-poor Sphagnum fens). The second clitellate type included sites with low temperatures and occasional desiccation, while the third type was characterised by high temperatures and trophy. Using eight environmental predictors, we were able to significantly explain changes in the population abundances of all 12 common species (i.e. recorded at 15-plus sites). The results from individual species modelling also suggests that an increase in organic matter content can trigger compositional shifts towards assemblages of common eurytopic tubificid species. Thus, human-induced eutrophication and negative changes in spring fen hydrology, mainly drying up, can represent a serious threat for species-specific assemblages of aquatic clitellates, especially at alkaline sites due to their isolated and spatially limited nature. Keywords: Clitellata, spring fens, environmental gradients, indicator species, species responses *Manuscript Page 2 of 24 Accepted M anuscript 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 1. Introduction Spring fens represent scattered treeless wetlands fed by groundwater that host nutrient-limited vegetation (Hájek et al., 2006). Helocrene wetlands are characterised by highly stable environments, less prone to natural disturbances than other types of aquatic environments (Lake, 2000). They also tend to include various habitat types, both lotic and lentic, forming heterogeneous mesohabitat complexes (Lindegaard, 1995). They vary in water chemistry from calcium-poor acidic fens with a tendency towards ombrotrophy to extremely calcium-rich tufa-forming fens, thus forming a so called poor-rich gradient (Malmer, 1986; Hájek et al., 2006). The water chemistry of wetlands is generally extremely important for clitellates, with very acidic sites inhabited only by asexually reproducing species (van Duinen et al., 2006), while high mineral richness can favour spring fen specialists (Bojková et al., 2011). Spring fens also cover a broad variety of substrate types, known to be one of the most important environmental gradients determining clitellate species distribution (e.g. Šporka, 1998; Montanholi-Martins and Takeda, 1999; Verdonschot, 2001; Syrovátka et al., 2009). As existing studies on aquatic clitellate assemblage diversity have shown, their broadscale patterns can be explained mainly by water chemistry, substrate characteristics and organic pollution (Martínez-Ansemil and Collado, 1996; Schenková et al., 2001; Nijboer et al., 2004; Verdonschot, 2006). As such, spring fens seem to be an appropriate model system for deepening our understanding of the main responses of clitellate assemblages, as well as individual species responses. Further, there currently exists only limited data dealing with clitellates in headwater habitats, covering acidic conditions of ombrotrophic peatlands (van Duinen et al., 2006), bog streams (Smith, 1986; Smith and Kaster, 1986), limnocrene karstic springs (e.g. Dumnicka, 2006; Mori and Brancelj, 2006) or cave springs (e.g. Dumnicka, 2000; Achura and Rodriguez, 2008; Achurra et al., 2015). Some studies have explored several spring fens over a relatively spatially limited area (Erman and Erman, 1975; Bojková et al., 2011). However, virtually no data exist on clitellate diversity patterns from wetland headwater habitats over a broader spatial scale. Patterns of response in individual species have also been mostly neglected. Only a few studies have addressed this topic, exploring a species response to a single or only a few variables. For instance, organic matter content (Uzunov et al., 1988), current velocity and substratum (Martínez-Ansemil and Collado, 1996; Syrovátka et al., 2009), ecological quality, altitude and total phosphorus (Verdonschot, 2006) and other chemical variables (Timm et al., 2001) have been studied in running waters. In this study we aim to analyse the effect of water chemistry and physical variables on the diversity of clitellate assemblages over a large spatial scale using an extensive dataset, collected from 54 isolated hydrologically uniform fen sites in the Western Carpathians Mountains (Czech Republic and Slovakia). Low variation in water temperature, as well as discharge makes water supply across the spring fens comparable (Rádková et al., 2014). We made sure to explore a high number of sites, covering a wide variety of ecological settings Page 3 of 24 Accepted M anuscript 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 along several environmental gradients. The study sites belong to four main types based on water chemistry and vegetation (Hájek et al., 2006): (i) extremely mineral-rich fens with a tufa formation dominated by the moss Cratoneuron commutatum, (ii) brown-moss mineralrich fens without a tufa formation dominated by the moss Drepanocladus revolvens agg., (iii) mineral-rich Sphagnum fens with calcitolerant Sphagnum species and (iv) mineral-poor Sphagnum fens dominated by S. recurvum agg. Each of the four spring fen types were spread throughout the entire study area with none of them locally aggregated. As various groups of invertebrates are strongly determined by the poor-rich gradient (Testacea: Opravilová & Hájek, 2006; Mollusca: Horsák & Hájek, 2003; Clitellata: on small scale, Bojková et al., 2011; Diptera: Omelková et al., 2013), we focused on spring fen clitellate assemblages inhabiting a large number of localities. Clitellates form neither cases nor solid cuticle structures to protect their soft and flexible bodies. Therefore, the effect of the calcium and magnesium concentration gradient is considered to be indirect (Martínez-Ansemil and Collado, 1996). Nevertheless, we expect to see a different species composition at sites with high inorganic particles compared to sites dominated by organic materials, such as wood, leaves and particulate organic matter (Verdonschot, 2001; Bojková et al., 2011). It has been shown that organic substrate is used by clitellates as a source of food (e.g. Lafont, 1984; Verdonschot, 2006) and can serve as a shelter. The objectives of this study are to (i) determine the main gradients of clitellate assemblage composition at isolated fen sites distributed over a broad spatial scale, (ii) identify the main fen types based on clitellate assemblage composition and compare these clitellate-based types with the types defined based on chemistry and vegetation and (iii) determine the habitat preferences of common species using predictive models of species abundance as a linear function of environmental variable(s). 2. Material and methods 2.1. Study area The study area was located in the Western Carpathian Mountains of the Czech and Slovak Republics (Fig. 1), covering an area of 223 km west to east and 74 km north to south. The area consists of three main parts: the Moravian-Slovakian borderland on flysh bedrock (i.e. alternating claystone and sandstone layers), the Orava region, which is the eastern extension of the flysh zone, and the Inner Western Carpathians with geological structures formed by cores of Paleozoic and crystalline schists overlaid by Mesozoic shale-sandstone and carbonate lithofacies (Poprawa and Nemčok, 1988; Hájek and Hekera, 2005; Horsák et al., 2007). This area was selected for this study because of the frequent occurrence of wellpreserved spring fens with contrasting water chemistry, spanning from calcareous fens to acidic Sphagnum fens, within each of the three geologically distinct parts. Page 4 of 24 Accepted M anuscript 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 Fifty four permanent treeless spring fens, fed by groundwater and developed mostly on gentle slopes, were chosen for this study to cover as wide a gradient of groundwater chemistry (pH 3.6–8.4) as possible. The study sites can be classified into four main types based on water chemistry and vegetation (Hájek et al., 2006): (i) extremely mineral-rich fens with tufa (25 sites), (ii) mineral-rich fens without tufa (15 sites), (iii) mineral-rich Sphagnum fens (7 sites) and (iv) mineral-poor Sphagnum fens (7 sites). The uneven representation of the site types corresponds with the variation in the bedrock chemistry and a high frequency of alkaline sloping fens. The elevation of the study fens varied from 400 to 800 m a.s.l. 2.2. Field sampling From 2006 to 2012, samples of aquatic macroinvertebrates were collected in spring and autumn from each study site. To cover the whole spring fen habitat heterogeneity, samples from three contrasting mesohabitats were collected at each site. Two types of mesohabitats, i.e. with flowing and standing water, were sampled from the spring mouth, each from a quadrate defined by a metal frame (25x25 cm). All the material taken up to the depth of 5 cm was elutriated using a hand net (mesh size 500 µm). A spring brook was the third type of mesohabitat, sampled using a hand net (mesh size 500 µm) from 10 25x25 cm sampling plots distributed along an approximately 20 m long stretch starting immediately downwards of the spring mouth. Altogether, 324 samples were obtained. To cover the whole seasonal and spatial variability of clitellate assemblages we merged samples from both seasons and from three mesohabitats into a single sample per site. Samples were preserved by 4% formaldehyde in situ and clitellates were hand-sorted in the laboratory under a stereomicroscope and identified after mounting into the Canadian Balsam. For the identification of oligochaetous clitellates, keys from Hrabě (1954, 1981), Timm (2009), Pižl (2002) and Schmelz and Collado (2010) were used, and for leeches keys from Neubert and Nesemann (1999) and Košel (2001) were used. Current taxonomy of clitellates follows Siddall et al. (2001), Erséus (2005) and Erséus et al. (2008). 2.3. Environmental variables The following eight variables were established for each study site, as they have already been proven, or are likely to be, important drivers of aquatic clitellate assemblages and species population size (Martínez-Ansemil and Collado, 1996; Timm et al., 2001; Verdonschot, 2001; Verdonschot, 2006; Bojková et al., 2011; Rádková et al., 2014). Water temperature and dissolved oxygen were measured in the field using portable instruments (WTW Multi 340i/SET) at each sampling occasion. GPS positions were directly measured in the field and used to determine mean annual air temperature by using overlays of plot locations with a digital elevation model and climatic maps, based on Tolasz (2007), in the ArcGIS 8.3 program (ESRI, 2003). Of the intercorrelated variables altitude and mean annual air temperature, we selected the latter because of the independence of geographical position. Water samples for the laboratory analysis of Ca2+ and Mg2+ (combined, Ca+Mg) and NO3 ion concentrations were taken in autumn, when the chemistry of spring fens is the Page 5 of 24 Accepted M anuscript 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 most stable (Hájek and Hekera, 2004). Total organic carbon (TOC) was measured from a 100 ml sample of substrate (Shimadzu TOC VCPH), which was taken next to the sample of the clitellates. This variable is closely bound to spring fen type categorisation, reaching only 5% in extremely mineral-rich fens, but significantly increasing in fens of low mineral content (poor fens) (Hájek et al., 2002). Substrate samples were collected during the autumn sampling from a 25x25 cm plot up to the depth of 5 cm. Substrate was collected from patches adjacent to the plots used for clitellate sampling and reflected the same structural microhabitat type. Organic matter (ORG) was obtained from substrate samples by elutriation (Omesová and Helešic, 2004), using a net with a mesh diameter of 100 µm, dried at 80 °C and weighed. The remaining inorganic substrate was dried at 80 °C and used for the grain size analysis (Giere, 1993), from which the amount of inorganic particles smaller than 500 µm was determined (INORG) and expressed as a percentage of the total weight of inorganic matter. 2.4. Statistical analyses Relationships among explanatory variables were inspected using Spearman correlations and multi-panel scatter plots. The environmental variables were not found to be highly intercorrelated (rho<0.50), except for total organic carbon (TOC) and Ca+Mg concentration (rho=-0.57). These two variables were; however, used as they are likely to constitute ecologically different responses of clitellate species. Under a high Ca+Mg concentration, in alkaline sites, a strong precipitation of calcium carbonate notably changes substrate conditions, while TOC increases in both acidic and productive sites. Descriptive statistics of the eight explanatory variables used in the statistical analyses are summarised in Table 1. Principal Coordinate Analysis (PCoA), also known as MDS (Metric Multidimensional Scaling), on Bray-Curtis distances was used to explore and visualise variation in the species composition of clitellate assemblages (command “cmdscale” in the “vegan” package). Species abundances were transformed as y=ln(x+1) prior to the analysis to reduce the effect of dominant species. The importance of ordination axes was evaluated using a broken-stick model (Peres-Neto et al., 2003), which is a permutation-based technique comparing the real eigenvalues of ordination axes with those eigenvalues generated randomly by the model. Based on this method, only the first and second axes were selected as important and meaningful for further interpretation of assemblage compositional variances. To associate the main changes in species composition with the environmental predictors, we used multiple regressions between the predictors and site scores on the first and second ordination axes. The significance was tested by 9999 permutations using the “envfit” function in the “vegan” package. Distance based Redundancy Analysis (dbRDA) using BrayCurtis distances was performed to test the significance of the effect of each predictor on the species composition variance and to identify a parsimonious set of environmental predictors which could account for the maximum variation in the clitellate species data. Forward selection procedures and Monte Carlo permutation tests with 4999 runs were used. Page 6 of 24 Accepted M anuscript 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 Procrustes analysis with 9999 permutations (Gower, 1975; Jackson, 1995) was used to test the congruence between site scores on the first two PCoA and dbRDA axes. Cluster analysis, followed by Indicator Species Analysis (Dufréne and Legendre, 1997), was performed to determine the main types of fens based on clitellate assemblage composition and to identify the clitellate species characteristics for these fen types. BrayCurtis dissimilarity on log-transformed abundance data, y=ln(x+1), and Ward’s method were used for the grouping. Indicator Species Analysis (Dufréne and Legendre, 1997) was performed using the “multipatt” function from the “indicspecies” package (De Cáceres and Legendre, 2009), with significance tested using a permutation test with 999 runs. Fen types determined based on clitellates were compared with the main types of fens defined based on vegetation (Hájek et al., 2006). Differences in environmental variables among the three main clitellate types of fens were compared using a one-way ANOVA, and a Tukey post hoc test (multiple comparison tests) was used to determine the significant differences between group pairs. Generalized Linear Models (GLM; McCullagh and Nelder, 1989) with quasi-Poisson distribution of errors, i.e. corrected for overdispersion, were used to model related clitellate species abundances as a linear function of the eight environmental variables. Prior to modelling, we assessed the distribution of all variables to look for potential outliers. We transformed some of the predictors to straighten up their left-skewed distribution and to linearise the relationships between response variables and predictors. Ca+Mg, inorganic particles and total organic carbon were square root transformed, nitrate concentration and water temperature were transformed by natural logarithm, while the other variables were kept untransformed. Modelling was performed only for the 12 common species, i.e. those recorded at 15 or more sampling sites. First, the response of species abundance to eight predictors was searched visually in case of a potential unimodal response (found only for Ca+Mg and annual air temperature) we also tested the effect of the quadratic term along with a linear term, included for all predictors. To find the best model for each species we used a guided step-wise forward selection with F statistic. We started with a null model and the predictors were sequentially added into the model and at each step the current model was tested against a set of more complicated and simpler models. The selection process stopped once the inclusion of another term did not cause a significant improvement in the current model and, simultaneously, the omission of any term would lead to a significant worsening of the model. For all final models we examined residuals for residual patterns with respect to fitted values and to individual predictors and we also checked residuals for normality, homogeneity of variance and identified influential observations using Cook’s distances (Cook, 1977). All statistical analyses were performed in R (R Core Team, 2014) using the “vegan” (Oksanen et al., 2011), “PerformanceAnalytics” (Carl and Peterson, 2010) and “indicspecies” (De Cáceres and Legendre, 2009; De Cáceres, 2013) packages. Page 7 of 24 Accepted M anuscript 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 3. Results 3.1. The response of clitellate assemblages to environmental gradients A total of 34,122 individuals collected from 54 study sites, were assigned to 42 clitellate taxa (mostly species, except for some genera of the family Enchytraeidae). On average 632 individuals and 13 species were collected per site. The highest abundances were obtained for Lumbriculidae, in contrast the highest taxa-richness was found for Naididae sensu Erséus et al. (2008) (Table 2). Using Principal Coordinate Analysis (PCoA), we observed two main gradients of species composition variance, which covered 31.1% and 16.0% of the entire variation respectively. The main compositional change, expressed on the first PCoA axis, was related mainly to the variation in total organic carbon (TOC) in the substratum and also partly to Ca+Mg concentration and annual air temperature (Table 3, Fig. 2). Mineral poor Sphagnum fens, having a high content of poorly decomposed organic matter (recorded as a high TOC), were occupied by Cognettia glandulosa, Lumbriculus variegatus and Nais communis, plotted in the right part of the diagram. In contrast, extremely mineral-rich fens with a tufa formation and very low TOC in the substratum were inhabited by a rich population of Trichodrilus strandi (left part of the diagram). The second main direction of species compositional variance was mostly associated with the amount of organic matter vs. inorganic matter and the gradient of water temperature (Table 3, Fig. 2). Fen sites with a high amount of food and a high water temperature were plotted in the upper part of the diagram, harbouring rich populations of generalist species (e.g. Tubifex tubifex and Limnodrilus hoffmeisteri) and predators (Glossiphonia nebulosa, G. concolor, Erpobdella vilnensis and Haemopis sanguisuga). Several variables, such as concentration of calcium and magnesium, dissolved oxygen concentration and mean annual air temperature, expressed almost an equal association to both PCoA axes. The distance based Redundancy Analysis (dbRDA) showed very similar results as the PCoA (Table 3), with TOC, Ca+Mg ions and annual air temperature being the most important environmental predictors of clitellate assemblages. Each of these variables separately explained more than 10% of the total variance in the species data and two of them were included in the most parsimonious model in the forward selection (Table 3). The Procrustes analysis showed a strong significant correlation between the position of samples in the ordination spaces of the PCoA and dbRDA (Procrustes R=0.854, P<0.001). 3.2. Clitellate assemblage types Based on the cluster analysis we determined three main types of fens differing in clitellate assemblage composition (Fig. 3). In the first division, the sites split up into extremely mineral rich fens with a tufa precipitation (type A) and the other fens (type B and C). However, the following division reflected more complex environmental differences (Table Page 8 of 24 Accepted M anuscript 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 2, Fig. 3). The sites of the type A fens were characterised by high concentrations of Ca+Mg ions, low TOC and high annual air temperature (Fig. 4) and Trichodrilus strandi was identified as the indicator of this group. Based on field observations, all these sites were pristine calcareous fens. Type B included spring fens with cold water and also the lowest concentration of Ca+Mg ions and intermediate values of TOC (Fig. 2, Fig. 4). Stylodrilus heringianus was found to be an indicator species of this fen type. This group included both calcareous fens and the most acidic fens, defined as vegetation type 1-2 and 4. Type C was the most broad fen type in respect of clitellate distribution, with 12 species characteristic for this type of fen (Table 2). The sites of this fen type had the highest water temperatures and were also enriched by organic matter, resulting in significantly lower oxygenation compared with the other two types (Fig. 4). Their mineral richness was highly variable as they belonged to all four types defined by vegetation (Fig. 3). 3.3. Environmental preferences of studied species We succeeded in building a significant model between the abundances of all the 12 dominant species and the eight environmental predictors using a GLM (Table 4). Based on the final parsimonious model, variables linked with mineral richness gradient (i.e. combined Ca and Mg concentration and TOC in the substratum) were the most important predictors for six species. Three of these species (all with a total explained variation >50%) were also among those species selected based on Indicator Species Analysis as characteristic for one of the three main fen types defined based on clitellate assemblage composition. The abundance of these species increased mostly in acidic fens, but Trichodrilus strandi increased in mineral-rich tufa fens as the indicator of type A. In contrast, Rhyacodrilus falciformis abundances expressed a unimodal response to concentrations of Ca2+ and Mg2+ . Water temperature, dissolved oxygen, organic matter and concentration of nitrates were found to be the main drivers for the other five species. Responses to water temperature both positively and negatively separated oligostenothermic species, such as Pristina bilobata and Mesenchytraeus armatus, from those species preferring high temperatures, such as Tubifex tubifex. Nevertheless, responses to high organic matter were positive not only for Tubifex tubifex but also for Pristina bilobata populations. The other predictors were less important in the models, yet significant responses were found in several species, having both positive and negative effects on individual species abundances. 4. Discussion 4.1. The response of clitellate assemblages to environmental gradients Based on an extensive dataset of spring fen habitats, distributed over a large spatial scale and covering a broad ecological variety of spring fens, we found that nutrient limited ecosystems harbour clitellate assemblages of relatively high species richness, with a total number of 42 taxa (mostly species) and an average of 13 taxa per sampling site, recorded at Page 9 of 24 Accepted M anuscript 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 54 sampling sites. In comparison with other spring ecosystems, the diversity in the studied spring fens was almost as high as those of the karstic systems in southern Europe, with a total of 47 species and a range of 2–19 taxa per sampling site (Achura and Rodriguez 2008). Clitellate diversity in fenland areas and raised bogs appears to be even lower than that of fens, as Verdonschot (1984) reported 33 species and van Duinen et al. (2006) only 7–13 species in acidic conditions. It seems that spring fens are well utilized by species of Lumbriculidae, as they reached the highest mean abundances per sampling site in all three clitellate fen types (Table 2). Trichodrilus strandi dominated in extremely mineral-rich fens with tufa precipitation, Stylodrilus heringianus dominated in spring fens with cold water and low Ca+Mg ion concentrations and Lumbriculus variegatus dominated in fens with a high content of organic carbon in the substratum. The importance of mineral richness on compositional variation of clitellate assemblages at spring fens has already been observed in the data collected in the Outer Western Carpathians (Bojková et al., 2011), which in many cases did not exceed 700 years (Hájková et al., 2012). However, the distribution of passively dispersing clitellates was found to be highly influenced by spatial processes, especially among habitat specialists (Milbrink, 1999; Rádková et al., 2014) and it is likely that there was not enough time for all species to colonise all the favourable sites studied by Bojková et al. (2011). Therefore, in this study we explored a higher number of sites located across the entire Western Carpathians, half of which were older than 2.500 years. There were several sites with continuous development over the whole Holocene (Horsák et al., 2015). The gradient of mineral richness was still highly significant for both compositional changes of clitellate assemblages and also for the responses of individual species. However, the highest predictive power for the overall variation in assemblage composition was found for TOC in the substratum. This can be explained by the confounding effect of water chemistry and TOC in the substratum, due to the accumulation of organic matter in acidic fens (Hájek et al., 2006). Further, several clitellate species are known to prefer substrate with a high amount of organic matter (e.g. Uzunov et al., 1988). Along this combined gradient of water chemistry and substrate characteristics a complete species composition turnover was observed. Acidic fens, i.e. with a high amount of accumulated organic carbon (TOC) in the sediment, were inhabited mainly by Lumbriculus variegatus, Cognettia glandulosa, C. sphagnetorum and Nais communis, which are known as acid-tolerant/acidophilus species (Graefe and Schmelz, 1999; van Duinen et al., 2006) that feed mainly on plant remains. The opposite end of the gradient is represented by alkaline sites with assemblages dominated by Trichodrilus strandi, a spring fen specialist/stygophilous species (Hrabě, 1942; Dumnicka, 2001; Bojková et al., 2011). We hypothesise that such harsh conditions at these preserved calcareous spring fens with tufa precipitations can be linked to the reduction of the interstitial spaces. This change has a negative effect on most oligochaetes (Rundio, 2009), but it is preferred by T. strandi, as it is a stygophilous species (Dumnicka, 2001) that probably specialised on feeding on microorganisms associated with a high calcium content (Timm, pers. com.). Page 10 of 24 Accepted M anuscript 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 4.2. The clitellate assemblage types Using the classification of the study sites based on vegetation (Hájek et al., 2006) only the extremely mineral-rich fens with a tufa formations were fitted with a clitellate assemblage type. Clitellate type A almost exclusively occurred in extremely mineral-rich fens with a tufa formation (vegetation type 1), with only three sites containing brown-moss mineral-rich fens (vegetation type 2). Trichodrilus strandi was proven to be a specialist of pristine, oligotrophic, cold and highly mineralized spring and underground waters, as it was found to be a significant indicator of clitellate type A. Similar habitat preferences have already been reported for this species in the literature (Hrabě, 1981; Juget and Dumnicka, 1986; Giani et al., 2001; Achurra and Rodriguez, 2008; Bojková et al., 2011; Achurra et al., 2015). This species showed the highest indicator value of all species analysed (Table 2). Rhyacodrilus falciformis was also associated with type A, though not as an indicator, and is reported both as a crenophilous stygobiont of running water as well as a soil species (Schwank, 1981; Juget, 1987; Dumnicka, 2000; Schlaghamerský and Kobetičová, 2005). Such a relatively wide habitat tolerance can be; however, explained by its unimodal relationship to Ca+Mg concentrations, combined with a preference for low organic matter (Table 4), which explained 23.8% of the variance in its abundance data. The second fen type defined based on clitellate assemblage composition (type B) included cold water fens with variable concentrations of Ca+Mg ions (Fig. 4). The high abundance of Stylodrilus heringianus, which was the only indicator species from this fen type, was explained by Ca+Mg ion concentration, which had a strong negative effect on population densities. Likewise, Cognettia sphagnetorum is a typical inhabitant of acidic soils (Graefe and Schmelz, 1999), and acidic wetlands up to ombrotrophic bogs (van Duinen et al., 2006), and was associated with this fen type. This species strongly and positively responded to decreases in Ca+Mg concentrations, which explained 47% of the variance in its abundance data (Table 4). However, another species associated with type B, Mesenchytraeus armatus, did not show any relationship to the poor-rich gradient and its abundances were predicted mainly by mean annual temperature, with a preference for colder waters. The other two dominant clitellate species from type B are characterised by their tolerance to desiccation; Stylodrilus heringianus prefers habitats with stony substrates and intermittent stream flow (Nijboer et al., 2004) and Cognettia sphagnetorum is able to survive 20 days of drought, probably in a desiccation tolerant stage (Maraldo and Holmstrup, 2009). In addition, the other species associated with this group were either Enchytraeidae (generally soil species) or semiaquatic species (the leech Trocheta cylindrica). The presence of these species might suggest an important common environmental feature of the fen sites included into type B, which is occasional desiccation. This was partly observed in the field, but it was not directly measured. Page 11 of 24 Accepted M anuscript 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 The highest species diversity and highest number of indicator species was associated with the third clitellate fen type, type C (Table 2). The presence of many generalist species was in the accordance with low oxygenation, high water temperature, high variability, but overall high TOC and also highly variable mineral richness. Tubifex tubifex and Limnodrilus hoffmeisteri, whose dominance can indicate waters with high organic pollution (e.g. Brinkhurst and Jamieson, 1971; Uzunov et al., 1988), were abundant in sites with either a high amount of organic matter content or total organic carbon content and nitrate concentration respectively. Another two indicator species, Lumbriculus variegatus and Cognettia glandulosa, with 40% and 27% of their variation in abundance explained by TOC were characteristic for most acidic sites in this group, preferring high water temperatures and high inorganic substratum respectively. It is worth noting that several sites included in this group showed vegetation classification favourable for Trichodrilus strandi. However, due to a human-made increase in organic matter, as a result of horse or cow pasture (indicated in the field), Trichodrilus strandi was most likely replaced by the eurytopic species Tubifex tubifex and Limnodrilus hoffmeisteri. Therefore, Tubifex tubifex could have a hypothetical competitive advantage, and also other eurytopic species, over the habitat specialists. This might be supported by the fact that eurytopic species did not show any association with characteristics of microhabitats, such as vegetation or substrate coarseness, if sufficient food in form of organic matter was available (Prenda and Gallardo, 1992). To summarise, we confirmed that clitellate distribution is strongly connected with the gradient of spring fen groundwater chemistry, which remains the same across a large spatial area including isolated fen sites of highly variable age. Although we expected a significant imprint of dispersal, based on processed compositional variance (as found by Rádková et al., 2014), it seems that the effect of environmental conditions is extremely important. Our study also stresses that pristine and highly endangered spring fen habitats, hosting unique species-rich clitellate assemblages, can be easily destroyed by an increase in organic matter, either by human-made eutrophication or also negative changes in hydrological conditions (Hájek et al., 2006). Our results, based on individual species response modelling, suggest that these negative alterations in habitat conditions can trigger compositional shifts towards assemblages of common eurytopic tubificid species. A higher risk is expected for assemblages of calcareous spring fens, as acidic sites and their surroundings are less suitable for pasture and require more space, while alkaline fens develop on spatially limited groundwater outlets. 5. Acknowledgements We are very grateful to Ondřej Hájek for the preparation of the map. Comments from two reviewers have considerably improved the quality of the manuscript. This study was supported by the Czech Science Foundation (P505/11/0779, GA15-15548S and GA16- 03881S) and the Masaryk University (MUNI/A/0788/2013). Page 12 of 24 Accepted M anuscript 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 6. References Achurra, A., Rodriguez, P., 2008. Biodiversity of groundwater oligochaetes from a karst unit in northern Iberian Peninsula: ranking subterranean sites for conservation management. Hydrobiologia 605, 159–171. Achurra, A., Rodriguez, P., Reynoldson, T.B., 2015. Is the Cantabrian region of northern Spain a biodiversity hotspot for obligate groundwater fauna? The case of oligochaetes (Annelida, Clitellata). Hydrobiologia 745, 151–166. Bojková, J., Schenková, J., Horsák, M., Hájek, M., 2011. Species richness and composition patterns of clitellate (Annelida) taxocenoses in the treeless spring fens: the effect of water chemistry and substrate. Hydrobiologia 677, 159–171. Brinkhurst, R.O., Jamieson, B.G.M., 1971. Aquatic Oligochaeta of the World. Oliver, Boyd, Edinburgh. De Cáceres, M., 2013. Indispecies R package, (online), Available from: http://cran.r- project.org/web/packages/indicspecies/index.html. De Cáceres, M., Legendre, P., 2009. Associations between species and groups of sites: indices and statistical inference. Ecology 90(12), 3566–3574. Carl, P., Peterson, B.G., 2010. PerformanceAnalytics: Econometric tools for performance and risk analysis. R package version 1.0.2.1. Cook, R.D., 1977. Detection of influential observation in linear regression. Technometrics 19, 15–18. Dufrêne, M., Legendre, P., 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 63, 345–366. Dumnicka, E., 2000. Studies on Oligochaeta taxocens in streams, interstitial and cave waters of southern Poland with remarks on Aphanoneura and Polychaeta distribution. Acta Zool. Cracov. 43 (3-4), 339–392. Dumnicka, E., 2001. Some remarks on the origin of stygobiontic oligochaetes. Mem. Biospeol. 28, 39–45. Dumnicka, E., 2002. Upper Vistula River: response of aquatic communities to pollution and impoundment. X. Oligochaete taxocens. Pol. J. Ecol. 50(2), 237–247. Dumnicka, E. 2006. Composition and abundance of oligochaetes (Annelida: Oligochaeta) in springs of Kraków-Czeştochowa Upland (Southern Poland): effect of spring encasing and environmental factors. Pol. J. Ecol. 54, 231–242. Page 13 of 24 Accepted M anuscript 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 Erman, D.C., Erman, N.A., 1975. Macroinvertebrate composition and production in some Sierra Nevada minerotrophic peatlands. Ecology 56, 591–603. Erséus, C., 2005. Phylogeny of oligochaetous Clitellata. Hydrobiologia 535(536), 357–372. Erséus, C., Wetzel, M.J., Gustavson, L., 2008. ICZN rules – a farewell to Tubificidae (Annelida, Clitellata). Zootaxa 1744, 66–68. ESRI, 2003. ArcGIS 8.3. Environmental Systems Research Institute, Redlands, CA, USA http://www.esri.com Giani, N., Sambugar, B., Rodriguez, P., Martínez-Ansemil, E., 2001. Oligochaetes in southern European groundwater: new records and overview. Hydrobilogia 463, 65–74. Giere, O., 1993. Meiobenthology, the Microscopic Fauna in Aquatic Sediments. Springer, Berlin. Gower, J.C., 1975. Generalized Procrustes analysis. Psychometrika 40, 30–51. Graefe, U., Schmelz, R.M., 1999. Indicator values, strategy types and life forms of terrestrial Enchytraeidae and other microannelids. Newsletter on Enchytraeidae 6, 59–67. Hájek, M., Hekera, P., 2004. Can seasonal variation in fen water chemistry influence the reliability of vegetation-environment analyses? Preslia 76, 1–14. Hájek, M., Hekera, P., 2005. The study area and its geochemical characteristic. In: Poulíčková, A., Hájek, M., Rybníček, K. (Eds.), Ecology and palaeoecology of spring fens of the West Carpathians. Palacký University, Olomouc, pp. 23–28. Hájek, M., Hekera, P., Hájková, P., 2002. Spring fen vegetation and water chemistry in the Western Carpathian flysch zone. Folia Geobot. 37, 205–224. Hájek, M., Horsák, M., Hájková, P., Dítě, D., 2006. Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen terminology in ecological studies. Perspect. Plant Ecol., Evol. Syst. 8, 97–114. Hájková, P., Horsák, M., Hájek, M., Lacina, A., Buchtová, H., Pelánková, B., 2012. Origin and contrasting succession pathways of the Western Carpathian calcareous fens revealed by plant and mollusc macrofossils. Boreas 41, 690–706. Horsák, M., Hájek, M., 2003. Composition and species richness of mollusc communities in relation to vegetation and water chemistry in the Western Carpathian spring fens: the poor–rich gradient. J. Mollus. Stud. 69, 349–357. Horsák, M., Hájek, M., Dítě, D., Tichý, L., 2007. Modern distribution patterns of snails and plants in the Western Carpathian spring fens: is it a result of historical development? J. Mollus. Stud. 73, 53-60. Page 14 of 24 Accepted M anuscript 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 Horsák, M., Rádková, V., Bojková, J., Křoupalová, V., Schenková, J., Syrovátka, V., Zajacová, J., 2015. Drivers of aquatic macroinvertebrate richness in spring fens in relation to habitat specialization and dispersal mode. J. Biogeogr. 42, 2112–2121. Hrabě, S., 1942. Poznámky o zvířeně ze studní a pramenů na Slovensku. Sborník Přírodovědeckého klubu v Brně XXIV, 23–30. Hrabě, S., 1954. Klíč k určování zvířeny ČSR, Vol. 1. ČSAV, Praha. Hrabě, S., 1981. Vodní máloštětinatci (Oligochaeta) Československa. Acta U. Carol. Biol. 1979, 1–168. Jackson, D.A., 1995. PROTEST: A PROcrustean Randomization TEST of community environment concordance. Ecoscience 2(3), 297–303. Juget, J., 1987. Contribution to the study of the Rhyacodrilinae (Tubificidae, Oligochaeta), with description of two new stygobiont species from the alluvial plain of the French upper Rhone, Rhyacodrilus amphigenus, sp. n. and Rhizodriloides phreaticola, g. n., sp. n. Hydrobiologia 155, 107–118. Juget, J., Dumnicka, E., 1986. Oligochaeta (incl. Aphanoneura) des eaux souterraines continentales. In Botosaneanu, L. (ed), Stygofauna mundi. Leiden – E.J. Brill/dr. W. Backhuys. 234–243. Košel, V., 2001. Hirudinológia pre hydrobiológov v praxi. In Makovinská, J., L. Tóthová (Eds), Zborník z hydrobiologického kurzu 2001. Rajecké Teplice, 37–54. Lafont, M., 1984. Oligochaete communities as biological descriptors of pollution in the fine sediments of rivers. Hydrobiologia 115, 127–129. Lake, P.S., 2000. Disturbance, patchiness, and diversity in streams. J. N. Am. Benthol. Soc. 19, 573–592. Lindegaard, C., 1995. Chironomidae of European cold springs and factors influencing their distribution. Journal of Kansas Entomological Society 68, 108–131. Maraldo, K., Holmstrup, M., 2009. Recovery of enchytraeid populations after severe drought events. Appl. Soil Ecol. 42, 227–235. Malmer, N., 1986. Vegetational gradients in relation to environmental conditions in north western European mires. Can. J. Botany 64, 375–383. Martínez-Ansemil, E., Collado, R., 1996. Distribution patterns of aquatic oligochaetes inhabiting watercourses in the Northwestern Iberian Peninsula. Hydrobiologia 334, 73– 83. Page 15 of 24 Accepted M anuscript 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 McCullagh, P., Nelder, J.A., 1989. Generalized Linear Models, 2nd ed. London: Chapman and Hall. Milbrink, G., 1999. Distribution and dispersal capacity of the Ponto-Caspian tubificid oligochaete Potamothrix heushcheri (Bretscher, 1990) in Scandinavia. Hydrobiologia 406, 133–142. Montanholi-Martins, M.C., Takeda, A.M., 1999. Communities of benthic oligochaetes in relation to sediment structure in the Upper Paraná River, Brazil. Stud. Neotrop. Fauna E. 34, 52–58. Mori, N., Brancelj, 2006. Macroinvertebrate communities of karst springs of two river catchments in the Southern Limestone Alps (the Julian Alps, NW Slovenia). Aquat. Ecol. 40, 69–83. Neubert, E., Nesemann, H., 1999. Annelida, Clitellata; Branchiobdellida, Acanthobdellea, Hirudinea. Süsswasserfauna von Mitteleuropa, Band 6/2. Spektrum Academischer Verlag, Berlin. Nijboer, R.C., Wetzel, M.J., Verdonschot, P.F.M., 2004. Diversity and distribution of Tubificidae, Naididae, and Lumbriculidae (Annelida: Oligochaeta) in the Netherlands: an evaluation of twenty years of monitoring data. Hydrobiologia 520, 127–141. Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Wagner, H., 2011. Vegan: Community Ecology Package. R package version 2.0-7, (online), Available from:http://CRAN.R-project.org/package=vegan. Omelková, M., Syrovátka, V., Křoupalová, V., Rádková, V., Bojková, J., Horsák, M., Zhai, M., Helešic, J., 2013. Dipteran assemblages of spring fens closely follow the gradient of groundwater richness. Can. J. Fish. Aquat. Sci. 70, 689–700. Omesová, M., Helešic, J., 2004. On the processing of freeze-core samples with notes on the impact of sample size. Scipta Fac. Sci. Nat. Univ. Masaryk. Brun. 29, 59–66. Opravilová, V., Hájek, M., 2006. The variation of testacean assemblages (Rhizopoda) along the complete base-richness gradient in fens: a case study from the Western Carpathians. Acta Protozool. 45, 191–204. Peres-Neto, P.R., Jackson, D.A., Somers, K. M., 2003. Giving meaningful interpretation to ordination axes: assessing loading significance in principal component analysis. Ecology 84, 2347–2363. Pižl, V., 2002. Žížaly České republiky. Earthworms of the Czech Republic. Journal of the Society for Natural Science Uherské Hradiště, Suppl. 9, 1–154. Page 16 of 24 Accepted M anuscript 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 Poprawa, D., Nemčok, J. (eds), 1988. Geological atlas of the western Outer Carpathians. Państwowy Instytut Geologiczny, Warszava, Poland. Prenda, J., Gallardo, A., 1992. The influence of environmental factors and microhabitat availability on the distribution of an aquatic oligochaete assemblage in a Mediterranean river basin. Int. Revue ges. Hydrobiol. 77, 421–432. Rádková V., Syrovátka, V., Bojková, J., Schenková, J., Křoupalová V., Horsák, M., 2014. The importance of species replacement and richness differences in small-scale diversity patterns of aquatic macroinvertebrates in spring fens. Limnologica 47, 52–61. R Core Team, 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available at: http://www.R-project.org. Rundio, D.E., 2009. Community-habitat relationship in coastal streams in Big Sur, California, USA: travertine influences macroinvertebrate abundance and community structure. Hydrobiologia 620, 91–108. Schenková, J., Komárek O., Zahrádková, S., 2001. Oligochaeta of the Morava and Odra River basins (Czech Republic): species distribution and community composition. Hydrobiologia 463, 235–246. Schlaghamerský, J., Kobetičová, K., 2005. A small annelid community (Enchytraeidae, Tubificidae, Aeolosomatidae) during meadow restoration on arable land and in a nearby well-preserved meadow. Proceedings of the Estonian Academy of Sciences: Biology, Ecology 54, 323–330. Schwank, P., 1981. Turbelaria, Oligochaeta and Archiannelida from Breitenbach and other highland streams in Eastern Hesse II The systematics and autecology of species. Arch. Hydrobiol./Suppl. 62(1), 86–147. Schmelz, R.M., Collado, R., 2010. A guide of European terrestrial and freshwater species of Enchytraeidae (Oligochaeta). Soil Org. 82(1), 1–176. Siddall, M.E., Apakupakul, K., Burreson, E.M., Coates, K.A., Erséus, C., Gelder, S., Källersjö, M., Trapido-Rosenthal, H., 2001. Validating Livanow: molecular data agree thatleeches, branchiobdellidans, and Acanthobdella peledina form a monophyletic group of oligochaetes. Mol. Phylogenet. Evol. 21, 346–351. Smith, M.E., 1986. Ecology of Naididae (Oligochaeta) from an alkaline bog stream: life history patterns and community structure. Hydrobiologia 133, 79–90. Smith, M.E., Kaster, J.R., 1986. Feeding habits and dietary overlap of Naididae (Oligochaeta) from a bog stream. Hydrobiologia 137, 193–201. Page 17 of 24 Accepted M anuscript 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 Šporka, F., 1998. Thy typology of floodplain water bodies of the Middle Danube (Slovakia) on the basis of the superficial polychaete and oligochaete fauna. Hydrobiologia 386, 55–62. Syrovátka, V., Schenková, J., Brabec, K., 2009. The distribution of chironomid larvae and oligochaetes within a stony-bottomed river stretch: the role of substrate and hydraulic characteristics. Fund. Appl. Limnol. 173, 43–62. Timm, T., 2009. A guide to the freshwater Oligochaeta and Polychaeta of Northern and Central Europe. Lauterbornia 66, 1–235. Timm, T., Seire, A., Pall, P., 2001. Half a century of oligochaete research in Estonian running waters. Hydrobiologia 463, 223–234. Tolasz, R., 2007. Climate Atlas of Czechia. Český hydrometeorologický ústav Olomouc. Univerzita Palackého v Olomouci, Oloumouc. Uzunov, V., Košel, V., Sládeček, V., 1988. Indicator value of freshwater Oligochaeta. Acta Hydroch. Hydrob. 16, 173–186. van Duinen, G.A., Timm, T., Smolders, A.J.P., Brock, A.M.T., Verberk, W.C.E.P., 2006. Differential response of aquatic oligochaete species to increased nutrient availability – a comparative study between Estonian and Dutch raised bogs. Hydrobiologia 564, 143– 155. Verdonschot, P.F.M., 1984. The distribution of aquatic oligochaetes on the fenland area of N.W. Overijssel (The Netherlands). Hydrobiologia 115, 215–222. Verdonschot, P.F.M., 2001. Hydrology and substrates: determinants of oligochaete distribution in lowland streams (The Netherlands). Hydrobiologia 463, 249–262. Verdonschot, P.F.M., 2006. Beyond masses and blooms: the indicative value of oligochaetes. Hydrobiologia 564, 127–142. Page 18 of 24 Accepted M anuscript 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 Table 1 Descriptive statistics of environmental variables for the three types of fens (A, B, C; Fig. 3): Ca+Mg, the sum of concentrations of calcium and magnesium ions in the groundwater; O2, dissolved oxygen; NO3 , the amount of nitrate; TOC, total organic carbon; ORG, total organic matter; INORG, % of inorganic particles smaller than 500 µm from total weight of the inorganic particles. Variable MIN MEAN MAX SD MIN MEAN MAX SD MIN MEAN MAX SD Ca+Mg (mg l-1 ) 25.40 70.29 120.60 29.08 4.40 32.27 79.10 21.84 8.50 40.30 101.40 26.86 O2 (mg l-1 ) 2.91 6.85 10.00 1.74 2.50 6.85 10.00 1.88 1.43 4.90 7.83 1.70 NO3 (mg l-1 ) <0.01 3.51 12.00 3.65 <0.01 3.83 21.66 5.80 <0.01 1.83 12.64 3.21 TOC (mg l-1 ) <0.01 51.58 137.00 43.62 2.12 131.00 266.80 82.48 30.32 169.00 327.40 98.14 ORG (g) 18.65 77.95 129.70 30.61 18.08 71.50 146.50 44.03 33.20 106.20 186.10 35.64 INORG < 500 µm (%) 13.00 33.50 59.00 12.34 11.00 40.44 71.00 14.52 15.00 40.44 53.00 10.49 Water temperature (°C) 8.8 12.9 23.5 3.3 7.7 10.9 15.0 2.0 11.8 14.5 20.2 2.4 Annual temperature (°C) 5.1 6.8 8.3 0.8 4.5 5.8 7.2 0.8 5.2 6.1 7.3 0.6 Type A Type B Type C Page 19 of 24 Accepted M anuscript 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 Table 2 List of all recorded taxa arranged according to the results of the Indicator Species Analysis. The indicator value of a species represents the maximal indicator value of the species among the three types of fens (A, B, C; Fig. 3). Significant indicator species and P values are in bold. The assemblage type, with the maximal indicator value, is highlighted in grey for each of the indicator species. Average abundances per sample from the sites where the species was found and the number of these sites are shown before and after the slash, respectively. The total number of study sites for each fen type is given after the slash. Type A/19 Type B/16 Type C/20 Taxon name Ind. value P Trichodrilus strandi Hrabě, 1936 0.880 0.001 435.6/18 4/3 50.2/10 Henlea spp. 0.638 0.036 8/16 4.4/14 4.2/6 Eiseniella tetraedra (Savigny, 1826) 0.583 0.731 23.4/18 28.5/15 20.1/18 Rhyacodrilus falciformis Bretscher, 1901 0.528 0.146 12.2/10 4.1/9 9.5/4 Enchytraeus spp. 0.510 0.787 7.5/11 2.4/12 1.5/13 Stylodrilus heringianus Claparède, 1862 0.674 0.004 5.3/9 124.9/15 107.9/19 Cognettia sphagnetorum (Vejdovský, 1878) 0.622 0.080 17.3/9 117.8/14 75/18 Fridericia spp. 0.608 0.207 19.3/15 24/14 5.3/16 Mesenchytraeus armatus (Levinsen, 1884) 0.575 0.331 7.5/13 16.2/13 5.3/14 Henlea perpusilla Friend, 1911 0.410 0.390 2/5 8/5 3/4 Haplotaxis gordioides (Hartmann, 1821) 0.350 0.171 1.5/2 2/3 Trochaeta cylindrica Örley, 1886 0.338 0.292 1.5/2 3.3/3 2/1 Marionina argentea (Michaelsen, 1889) 0.182 0.746 1/1 1/1 Erpobdella vilnensis (Liskiewicz, 1925) 0.849 0.001 1.8/5 25/2 48.1/17 Limnodrilus hoffmeisteri Claparède, 1862 0.803 0.001 40.8/9 2.3/3 86.6/18 Lumbriculus variegatus (Müller, 1774) 0.766 0.001 12/6 20.6/11 223.7/18 Tubifex tubifex (Müller, 1774) 0.751 0.001 15.3/15 29.5/8 135.6/19 Cognettia glandulosa (Michaelsen, 1888) 0.694 0.002 6/2 16.2/12 89.5/15 Tubifex ignotus (Štolc, 1886) 0.655 0.002 1/1 - 15.7/9 Nais communis Piguet, 1906 0.650 0.019 2/2 48/11 94.1/15 Aulodrilus limnobius Bretscher, 1899 0.602 0.003 9/1 2/2 48.6/9 Haemopis sanguisuga (Linnaeus, 1758) 0.519 0.012 1/1 - 2.5/6 Cernosvitoviella spp. 0.500 0.338 3.1/7 18.9/7 11.2/11 Glossiphonia concolor (Apáthy, 1888) 0.500 0.004 - - 6.2/5 Pristina bilobata (Bretscher, 1903) 0.496 0.102 2.7/3 13/4 9.2/9 Limnodrilus udekemianus Claparède, 1862 0.462 0.074 5/1 1.5/2 1.7/7 Slavina appendiculata (Udekem, 1855) 0.447 0.036 - - 24/4 Glossiphonia nebulosa Kalbe, 1964 0.500 0.004 - - 4.8/4 Pristina jenkinae (Stephenson, 1931) 0.496 0.102 14.5/4 - 10.6/7 Limnodrilus claparedeanus Ratzel, 1868 0.424 0.077 61/1 - 15.6/5 Rhyacodrilus coccineus (Vejdovský, 1875) 0.402 0.304 12/4 1/1 3/7 Marionina sp. 0.388 0.441 3.4/5 1/2 3.5/6 Pristina aequiseta Bourne, 1891 0.387 0.112 - - 2.7/3 Spirosperma ferox Eisen, 1879 0.387 0.091 - - 28.7/3 Nais variabilis Piguet, 1906 0.332 0.334 - 13/2 5/4 Aulodrilus japonicus Yamaguchi, 1953 0.316 0.319 - - 130/2 Trichodrilus tatrensis Hrabě, 1937 0.316 0.342 - - 7/2 Trichodrilus sp. 0.316 0.342 - - 4.5/2 Mesenchytraeus spp. 0.246 0.786 - 1/2 3.5/2 Helobdella stagnalis (Linnaeus, 1758) 0.246 0.786 - 5/1 4/2 Pristina rosea (Piguet, 1906) 0.228 0.787 - 6/1 3.5/2 Nais bretscheri Michaelsen, 1899 0.217 0.756 4/1 1.5/2 Type of fen based on clitellate assemblage composition Mean abundances from sites with species occurence Page 20 of 24 Accepted M anuscript 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 Table 3 Summary results of the PCoA and dbRDA analyses. Regression coefficients for the multiple linear regressions for the explanatory variables and the PCoA site scores on the first two axes (PCoA 1 and 2), explained variation (R2 %) and its significance (P) based on 9999 permutations. Adjusted percentage of explained variation (AdjR2 ) in species data by each variable in separate dbRDA analyses (Gross effects) and in a single dbRDA model that includes all variables (Pure effects). The order of the variables entering the single dbRDA model was based on a forward selection procedure (FS). Significance (P) of explained variation was tested using a Monte Carlo test with 4999 runs. For abbreviations of environmental variables see Table 1. PCoA dbRDA Regression coefficients Explained variability Explained variability in FS Variable PCoA 1 PCoA 2 R2 (%) P AdjR2 (%) P AdjR2 (%) P Order FS TOC 1.000 -0.027 54.330 <0.001 18.09 0.005 16.46 0.001 1 Ca+Mg -0.787 0.617 55.210 <0.001 16.62 0.005 5.46 0.001 2 Annual temp. -0.764 0.646 36.610 <0.001 10.28 0.005 n.s. n.s. n.s. O2 -0.711 -0.703 34.890 <0.001 9.20 0.005 1.89 0.005 4 Water temp. -0.014 1.000 42.230 <0.001 6.98 0.005 4.84 0.001 3 ORG 0.319 0.948 21.880 0.002 3.81 0.015 n.s. n.s. n.s. NO3 -0.930 -0.367 11.050 0.047 3.79 0.015 n.s. n.s. n.s. INORG<500 µm 0.507 -0.862 11.610 0.040 2.26 0.045 n.s. n.s. n.s. Page 21 of 24 Accepted M anuscript 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 Table 4 Adjusted percentage of variance in the analysed species abundance explained by each predictor included in the final generalized linear models with Poisson distribution. The gross effect of the most important predictor for each taxa group (in bold) and the net effects of the other predictors are listed sequentially and summed up to give the Total. The effect of the linear term of each predictor and the quadratic term of the combined content of Ca+Mg and annual temperature are denoted by (+) and (-) for a positive and a negative effect respectively. Significance: ***, <0.001; **, <0.01; *, <0.05; <0.07 (marginally significant). For the explanation of predictor abbreviations see Table 1. Explained variance - pure effects Total ORG Stylodrilus heringianus 75.8 72.8 (-)*** 3.0 (-)* Lumbriculus variegatus 62.8 7.9 (-)** 15.3 (+)*** 39.7 (+)*** Trichodrilus strandi 50.2 19.5 (+)*** 30.7 (+)*** Nais communis 34.7 24.4 (-)** 10.3 (-)** Cognettia sphagnetorum 47.1 47.1 (-)*** Cognettia glandulosa 42.5 15.7 (+)** 26.9 (+)** Pristina bilobata 36.8 8.9 (-)** 12.7 (-)* 10.6 (+)** 14.3 (-)** Mesenchytraeus armatus 32.8 22.9 (-)*** <1.0 n.s. 9.9 (+)* Tubifex tubifex 27.5 16.6 (+)** 10.9 (+)* Rhyacodrilus falciformis 23.8 13.2 (+)* 10.6 (-)* Erpobdella vilnensis 23.3 23.3 (-)** Limnodrilus hoffmeisteri 17.9 10.2 (+)* 7.7 (+). NO3 Annual temp. Annual temp.^2Ca+Mg Ca+Mg^2 Water temp. O2 INORG <500 µm TOC Page 22 of 24 Accepted M anuscript 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 Fig. 1 Location of the study area and sites. Page 23 of 24 Accepted M anuscript 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 Fig. 2 PCoA ordination plot of the 54 clitellate assemblages with the position of 15 indicator species (given in bold) and the eight the frequent species (found at least at 15 sites). Eight environmental variables were fitted post-hoc into the ordination space of the first and second axes (all variables had significant fit, P<0.05). The classification of sites is based on the results of the cluster analyses (Fig. 3): rectangles, type A; circles, type B; triangles, type C. Abbreviations of taxa–indicators of type A: TriStr, Trichodrilus strandi; HenSpp, Henlea spp.; indicator of type B: StyHer, Stylodrilus heringianus; indicators of type C: ErpVil, Erpobdella vilnensis; LimHof, Limnodrilus hoffmeisteri; LumVar, Lumbriculus variegatus; TubTub, Tubifex tubifex; CogGla, Cognettia glandulosa; TubIgn, Tubifex ignotus; NaiCom, Nais communis; AulLim, Aulodrilus limnobius; HaeSan, Haemopis sanguisuga; GloCon, Glossiphonia concolor; SlaApp, Slavina appendiculata; GloNeb, Glossiphonia nebulosa; frequent taxa: CerSpp, Cernosvitoviella spp.; CogSph, Cognettia sphagnetorum; EisTet, Eiseniella tetraedra; EncSpp, Enchytraeus spp.; FriSpp, Fridericia spp.; MesArm, Mesenchytraeus armatus; PriBil, Pristina bilobata; RhyFal, Rhyacodrilus falciformis. For the abbreviations of the environmental variables see Table 1. Page 24 of 24 Accepted M anuscript 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 Fig. 3 Result of the cluster analysis (Bray-Curtis distance, Ward’s method) of the 54 fen sites based on clitellate assemblages into the three types (A, B, C). Classification of the sites based on vegetation is shown by different numbers: 1, extremely rich fens with tufa; 2, rich fens without tufa; 3, mineral-rich Sphagnum fens and 4, mineral-poor Sphagnum fens. Fig. 4 Variation of five environmental factors among the three types of fens based on clitellate assemblage composition (see Fig. 3). mean value, box height indicates (i.e. 1.5 times the interquartile range at each side), and letters at the top indicate statistically significant Tukey post-hoc test, P<0.05). five environmental factors among the three types of fens based on clitellate assemblage composition (see Fig. 3). The central line of each box refers to the indicates the interquartile range, whiskers to the non (i.e. 1.5 times the interquartile range at each side), and a small cross for statistically significant differences between the types five environmental factors among the three types of fens based on The central line of each box refers to the the interquartile range, whiskers to the non-outlier range cross for an outlier. Small differences between the types (ANOVA and 186 5.2 Druhová diverzita máloštětinatých opaskovců a její změny podél gradientů prostředí 187 Schenková, J., J. Jarkovský & J. Helešic, 2007 Strategies of coexistence of two species: Erpobdella octoculata and E. vilnensis (Hirudinea: Erpobdellidae). International Review of Hydrobiology, 92(4–5), 527–538. © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 1434-2944/07/4-508-527 JANA SCHENKOVÁ*, 1 , JIRˇÍ JARKOVSKY´2 and JAN HELESˇIC1 1 Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlárˇská 2, 611 37 Brno, Czech Republic; e-mail: schenk@sci.muni.cz 2 Institute of Biostatistics and Analyses, Faculty of Medicine and Faculty of Science, Masaryk University, Kamenice 126/3, 625 00 Brno, Czech Republic Strategies of Coexistence of Two Species: Erpobdella octoculata and E. vilnensis (Hirudinea: Erpobdellidae) key words: seasonal dynamics, habitat preferences, diet Abstract Populations of Erpobdella octoculata and E. vilnensis were studied monthly over two years (May 1999–April 2001) at four sampling points on the river Rokytná (Czech Republic). The water depth and velocity were measured and the Froude number for each sample was calculated to follow flow conditions above the bottom. Temporal differences in biomass of the two species were studied by comparing their wet weights and evaluated by the time series analysis; differences in their diets were evaluated by gut content analyses. Significantly different hydrodynamic preferences for juvenile and adult stages of E. octoculata and E. vilnensis were recorded. In E. vilnensis only, an annual cycle was recorded with a one-month shift of mean weights compared to E. octoculata. This shift, together with the correlation of the leeches wet weights with their prey sizes and their distinct habitat preferences are suggested as mechanisms that explain their coexistence. 1. Introduction The predatory species Erpobdella octoculata (LINNAEUS, 1758) (Hirudinea: Erpobdellidae) seems to be one of the best-investigated organisms of the bottom fauna across different water bodies. Its life cycle in stagnant and running waters is completed principally in one (e.g., MURPHY and LEARNER, 1982; DALL, 1979, 1983) or, rarely, in two or three years (e.g., MANN, 1953; ELLIOTT, 1973). Certain authors recorded both one-year and two-year cycles but in different localities (ASTON and BROWN, 1975; MALTBY and CALLOW, 1986). Many studies of the feeding habits of E. octoculata have been undertaken (e.g., YOUNG and IRONMONGER, 1979, 1980; DALL, 1983; TOMAN and DALL, 1997; KUTSCHERA, 2003), because the prey is swallowed as a whole and remains in the gut for some time almost undamaged. Only one study of Erpobdella vilnensis LISKIEWICZ, 1927 (former E. monostriata GEDROYC´), has been published (MANOLELI, 1976). This species probably has a similar life strategy to E. octoculata but is less common. In most populations of E. vilnensis, a one year cycle was recorded with only few breedings in their second year. The goal of our study was to reveal the mechanisms enabling the coexistence of E. octoculata and E. vilnensis populations. These species are of similar size and weight, feed on similar prey and are commonly found together in Czech streams. Competition for space was assessed by the habitat preferences of individual juveniles and adults of the two species. From the environmental variables recorded, we selected those which regulate the reproducInternat. Rev. Hydrobiol. 92 2007 4–5 527–538 DOI: 10.1002/iroh.200610992 * Corresponding author tion of leeches. The life cycles of E. octoculata and E. vilnensis, based on recording the leeches wet weights, were compared and their synchronisation estimated. The food niches were evaluated by the analysis of the leeches’ gut contents and by comparing the composition, abundance and size of the prey. 2. Methods 2.1. Study Area The study stream was the Rokytná (6th order) which has a length of 89.3 km and a catchment area of 585.4 km2 . It runs through an upland area in the southern part of the Czech Republic. In this area the climate is warm and dry with a moderate winter and a mean annual temperature of 8 °C. During the study period, the mean annual discharge varied from 1.0 to 1.3 m3 s–1 , with winter and summer floods. The maximum discharge reached 24.3 m3 s–1 and the minimum was 0.08 m3 s–1 . The bottom substratum consisting of small pebbles, gravel, and sand, was rather unstable, especially in meandering reaches. In January and February, the river was frozen down to the bottom, in spring the substratum was colonized by periphytic algae and in summer the stream was completely shaded and the water was highly turbid because of organic pollution (ß-mesosaprobity). No macrophytes were observed on the river bottom during the course of study year. 2.2. Sampling and Laboratory Methods Four habitats in the River Rokytná were chosen with different hydrological characteristics and substratum. These were situated on two cross-sections, A and B, 60 m distant (for details of sampling see SCHENKOVÁ and HELESˇIC, 2006). The first sampling point was on cross-section A in the straight part of the stream, here called A streamline (AS). In this part of the stream the substratum did not shift and did not form gravel bars. The three remaining sampling points were on cross-section B in the meandering part of the stream, here called B littoral (BL), B gravel bar (BG), B streamline (BS). At each sampling point, quantitative macro-invertebrate samples were taken monthly from May 1999 to April 2001, except for a two-month interval in winter. Samples were collected using a triangular sampling device (HELAN et al., 1973) with an area of 0.1 m2 and a mesh size 500 µm. Due to the unstable substratum on cross-section B, we did not evaluate preference of leeches for particular sampling points but for particular hydrodynamic conditions. The values of Froude number (Fr) were computed for each sample from water velocity and depth using the formula Fr = U¯/÷ – g D, where U¯ is mean current velocity, g is acceleration due to gravity and D is total water depth (DAVIS and BARMUTA, 1989). The Froude number as a descriptor of the main channel flow represents the ratio of inertial forces to gravitational forces. The critical value of Fr is that at which the flow is changing from tranquil to broken and turbulent. Samples were divided into four categories according to their Fr values. Categories three and four were subsequently combined because of some anomalies with category four samples (Table 1 shows the respective categories 1–3). From the environmental variables recorded – water temperature, velocity, depth, discharge, pH, conductivity and biochemical oxygen demand (Table 2) – we aimed to select those that regulate the life cycles of leeches. Macrozoobenthos samples were fixed in the field using 4% formaldehyde. Samples were sorted and leeches removed in the laboratory. These were stored in 70% ethanol and identified to species (Table 3). E. octoculata and E. vilnensis represented the eudominant Hirudinea species. Adults of both species can 528 J. SCHENKOVÁ et al. © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.revhydro.com Table 1. Categories of Froude number values. Fr 0–0.3 0.31–0.6 0.61–0.9 0.91–1.23 Category 1 2 3 be identified by the position of their male and female ducts but juveniles only by colour. As result of fixation with formaldehyde, the clitellum could not be observed (MURPHY and LEARNER, 1982). In E. octoculata dark spots cover the whole dorsal part, while E. vilnensis has a light median stripe without any spots. The smallest stages were colourless when fixed and their identification, unfortunately, was impossible. All leeches of the two species were weighed to the nearest 0.01 mg after 15 minutes of drying. According to their wet weights they were divided into six weight categories on a common logarithmic scale (Table 4). Strategies of Coexistence 529 © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.revhydro.com Table 2. Environmental variables recorded 1999–2001. Variable Min. Max. Mean Median Water temperature [°C] –0.2 19.4 11.0 13.0 Current velocity at 40% of depth [m s–1 ] 0.00 1.46 0.67 0.68 Depth [m] 0.10 0.47 0.22 0.20 Mean daily discharge [m3 s–1 ] 0.13 3.95 1.36 1.08 pH 4.4 9.0 7.6 7.7 Conductivity [µS cm–1 ] 453 725 615 615 BOD [mg l–1 ] 1.9 15.8 5.4 4.5 Table 3. List of Hirudinea species recorded. List of Hirudinea species Erpobdella octoculata juv. 315 Erpobdella octoculata ad. 49 Erpobdella vilnesis juv. 152 Erpobdella vilnesis ad. 191 Erpobdella spp. juv. 61 Glossiphonia complanata juv. 4 Glossiphonia concolor juv. 4 Glossiphonia nebulosa juv. 1 Piscicola geometra juv. 6 Helobdella stagnalis juv. 2 Hemiclepsis marginata juv. 1 Total 786 Table 4. E. octoculata and E. vilnensis wet weight categories, maximal, minimal and mean prey width. Category 1 prey widths were not analysed in this study. Weight Limits of wet Erpobdella octoculata Erpobdella vilnensis category weight [g] Mean width Min. – Max. Mean width Min.–Max. [µm] width [µm] [µm] width [µm] 1 0.0001–0.0003 – – – – 2 0.00031–0.001 172.0 129.5–220.4 190.3 132.5–248.0 3 0.00101–0.003 189.7 78.0–310.0 219.9 102.1–456.6 4 0.00301–0.01 210.8 76.2–616.2 245.4 103.4–676.2 5 0.01001–0.03 247.3 53.6–1021 321.9 104.2–673.0 6 0.03001–0.1 284.4 149.8–516.0 291.3 158.1–558.3 After being weighed, the gut contents of 48 individuals of E. octoculata and 51 of E. vilnensis were examined. We selected leeches from all sampling months within the year 2000. These included specimens from all weight categories except category one, which was too small for gut examination (Table 4). The gut contents were obtained by cutting their ventral parts and removing prey items under a stereomicroscope. Whole or fragments of invertebrates were identified to the most precise acheivable level in glycerine-water (1:5 solution) under an upright microscope. The head capsules widths of insects 530 J. SCHENKOVÁ et al. © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.revhydro.com Table 5. List of the prey taxa and their abundances from the analysed guts of E. octoculata and E. vilnensis. Taxon E. octoculata E. vilnensis Oligochaeta Bothrioneurum vejdovskyanum 2 Bythonomus lemani 3 Chaetogaster diastrophus 1 Limnodrilus spp. juv. 26 17 Nais alpina 1 1 N. bretscheri 5 1 N. communis 3 1 N. elinguis 9 7 Potamothrix hammoniensis 1 Psammoryctides barbatus 9 14 Rhyacodrilinae, with hair chetae 6 Rhyacodrilus coccineus 2 Stylodrilus spp. juv. 33 9 Tubifex tubifex 1 Tubificidae indet. 8 Crustacea Gammarus roeselii 1 Ephemeroptera Baetis rhodani 3 2 Trichoptera Hydroptila sp. 1 Chironomidae Chironomini gen. sp. 1 Eukiefferiella spp. 2 3 Micropsectra sp. 1 1 Microtendipes gr. pedellus 1 Nanocladius parvulus/rectinervis 1 Orthocladiinae gen. sp. 10 10 Orthocladius sp. 2 Parametriocnemus stylatus 1 Prodiamesa olivacea 1 Rheocricotopus chalybeatus 4 2 Rheotanytarsus sp. 2 3 Tanypodinae gen. sp. 1 Tanytarsus brundini/curticornis 1 Chironomidae indet. 2 1 unidentified taxa 7 5 empty gut 10 18 number of prey items 118 84 number of leeches analysed 48 51 mean number of prey items per ind. 3.8 3.3 and the mean body widths of other taxonomic groups (at least three measurements) were measured under the microscope and recorded. When more than one fragment of a taxon was recorded, especially for oligochaetes, we distinguished different individuals by their widths or, if this was not possible, by counting only fragments with prostomial parts. 2.3. Statistical Methods Seasonal changes of Fr number values were tested by auto-correlations for all particular habitats (AS, BL, BG and BS) and no significant cyclic changes were found. The total trend of Fr number values was evaluated by Daniel’s test (in fact Spearman correlation against their order) and no significant trend was found either for total data (P = 0.718) or for particular habitats AS: P = 0.283, BL: P = 0.083, BG: P = 0.351, BS: P = 0.117. Therefore samples from habitats were treated as independent and habitat preferences of adults and juveniles of E. octoculata and E. vilnensis in places with different hydrodynamic conditions were evaluated by chi square test. The null hypothesis, of equal distribution between habitats represented by categories of Fr number, was rejected at the 5% significance level. The relationships between the mean abundances of leeches and mean environmental variables were computed by cross-correlation (BOX and JENKINS, 1970). The goal was to find correlations of values of environmental variables with abundances, shifted in time, and to compute the lag between changes of these values and the response in terms of the abundance of leeches. Seasonal dynamics for both species were evaluated by time series analysis of the mean abundance of leeches, after first excluding the extremely abundant samples from May 1999. Moving average smoothing was applied for visualisation of the time series. The number of cycles per year and, thus, the length of the cycle were evaluated by spectrum (Furier) analysis of seasonality (SHUMWAY, 1988). Food niches of both species and their overlap were tested by Bray-Curtis Similarity Index (BRAY and CURTIS, 1957), which was applied to invertebrate taxa found in leech guts (Table 5). The previous finding that, in E. octoculata, the size of prey is positively correlated with the leeche’s wet weight (i.e. YOUNG and IRONMONGER, 1979; DALL, 1983) was tested for both Erpobdella species by the Spearman rank correlation coefficient (rs). Statistica 7 for Windows (STATSOFT, 2004) was used for all analyses. 3. Results 3.1. Habitat Preferences In total, 786 individuals of eight Hirudinea species belonging to the orders Pharyngobdellida and Rhynchobdellida were recorded in samples (Table 3). In this study, 315 juveniles and 49 adults of E. octoculata and 152 juveniles and 191 adults of E. vilnensis were recorded. As already mentioned, 61 individuals could not be identified to species and were, therefore, excluded from all analyses. Significantly different habitat preferences were found by the chi square test: juveniles of E. octoculata preferred either the lowest flow (category 1, Fr 0–0.3) or the highest (category 3, Fr 0.6–1.23), juveniles of E. vilnensis preferred the middle flow (category 2, Fr 0.31–0.6). Densities of adults of E. octoculata increased significantly towards the lower flow. No significant preferences of E. vilnensis adults were found. 3.2. Seasonal Dynamics The life cycle of E. vilnensis was regulated by physical parameters of the environment. The cross-correlations showed significant relationships with temperature, water depth and velocity with the three-month shift. Seasonal changes in densities of both species, after curve smoothing, are shown in Figure 1. While the densities of E. vilnesis followed significant, Strategies of Coexistence 531 © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.revhydro.com regular cyclic changes, the differences in densities of E. octoculata were not significant. The same results were obtained by periodograms of both species (Fig. 2). Furier’s analysis revealed approximately a one year cycle for E. vilnensis. The cross-correlation analysis of temporal changes of mean wet weights revealed a one-month shift of E. octoculata weights against E. vilnensis (Fig. 1). Therefore the two species differed in weight at any time of the year. The mean monthly increase in wet weight was 0.0064 g for E. octoculata but only 0.0037 g for E. vilnensis, so that the difference in their size increased during their develop- ment. The life cycle of each species was visualised by frequency histograms of the mean densities of juvenile and adult leeches in each of six weight classes. End of year classes were estimated and marked (Fig. 3). The end of each year generation enabled three distinct gen- 532 J. SCHENKOVÁ et al. © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.revhydro.com Plot of selected variables (series) 6/7/99 7/15/99 7/21/99 8/3/99 9/7/99 10/7/99 12/2/99 2/17/00 3/29/00 4/12/00 5/10/00 6/7/00 7/12/00 8/9/00 9/6/00 10/4/00 12/7/00 2/7/01 3/14/01 4/14/01 Erpobdella octoculata; trns. Erpobdella vilnesis; trns. -5 0 5 10 15 20 25 30 35 meannumberofleeches[ind0.1m -2 ] Figure 1. Seasonal changes in mean densities (a) and mean wet weights (b) of E. vilnensis and E. octoculata. a) b) Plot of selected variables (series) 6/7/99 7/15/99 7/21/99 8/3/99 9/7/99 10/7/99 12/2/99 2/17/00 3/29/00 4/12/00 5/10/00 6/7/00 7/12/00 8/9/00 9/6/00 10/4/00 12/7/00 2/7/01 3/14/01 4/14/01 Erpobdella octoculata; trns. Erpobdella vilnensis; trns. 0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 wetweight[g] erations to be distinguished: year class 1998 (individuals born in 1998 and dying in spring and summer 1999), year class 1999 and year class 2000. Mean wet weights of distinct yearclasses are given for E. octoculata (Fig. 4) and E. vilnensis (Fig. 5). Though a one-year life cycle for the latter species was not confirmed by spectral analysis, all adults died after breeding and hence the reproduction was probably also annual. Strategies of Coexistence 533 © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.revhydro.com Spectral analysis: Erpobdella octoculata No. of cases: 20 1 2 3 4 frequency 0 100 200 300 400 500 periodogramvalues Spectral analysis: Erpobdella vilnesis No. of cases: 20 1 2 3 4 frequency 0 100 200 300 400 500 periodogramvalues Figure 2. Periodograms of E. octoculata (a) and E. vilnensis (b). a) b) 534 J. SCHENKOVÁ et al. © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.revhydro.com Figure 3. Frequency histograms of mean densities of E. octoculata and E. vilnensis. For ranges of weight categories see Table 4. Black arrows indicate the borders between year classes. Strategies of Coexistence 535 © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.revhydro.com Erpobdella octoculata Median; Whisker: 25%-75% class 1998 class 1999 class 2000 May-1999 Jun-1999 Jul-1999 Sep-1999 Oct-1999 Dec-1999 Feb-2000 Apr-2000 May-2000 Jun-2000 Jul-2000 Aug-2000 Sep-2000 Oct-2000 Dec-2000 Feb-2001 Mar-2001 Apr-2001 month 0.000 0.005 0.010 0.015 0.020 0.025 0.030 weight[mg] Figure 4. Mean densities (with 25 and 75% quartile) of the 1998, 1999 and 2000 year-classes of E. octoculata during the study period. Erpobdella vilnensis Median; Whisker: 25%-75% class 1998 class 1999 class 2000 May-1999 Jun-1999 Jul-1999 Sep-1999 Oct-1999 Dec-1999 Feb-2000 Apr-2000 May-2000 Jun-2000 Jul-2000 Aug-2000 Sep-2000 Oct-2000 Dec-2000 Feb-2001 Mar-2001 Apr-2001 month 0.000 0.005 0.010 0.015 0.020 0.025 0.030 weight[mg] Figure 5. Mean densities (with 25 and 75% quartile) of the 1998, 1999 and 2000 year-classes of E. vilnensis during the study period. 3.3. Gut Content Analysis In the guts of 48 individuals of E. octoculata and 51 individuals of E. vilnensis, we identified 202 individual specimens of invertebrate of 15 taxa of Oligochaeta, 14 of Chironomidae and a single taxon each of Crustacea, Ephemeroptera and Trichoptera (Table 5). Oligochaeta and Chironomidae were the dominant components of the food. A Bray-Curtis similarity index was computed and the food composition of the two species had a high similarity of 83.7%. E. octoculata was adjudged to be more effective at hunting because the percentage of leeches with empty guts was higher for E. vilnensis (21.0%) than for E. octoculata (8.4%). However, the mean number of prey per leech was similar 3.8 for E. octoculata and 3.3 for E. vilnensis (leeches with empty guts not included). A significant Spearman correlation between mean wet weight leeches and their prey size was recorded for both E. octoculata, rs = 0.507 and E. vilnensis, rs = 0.519 at a significance level of 0.05. Figure 6 shows the increase in prey size with four leech weight categories; the fifth category (the biggest leeches) was omitted because of low sample size. The size of E. vilnensis prey seemed to increase more rapidly than that of E. octoculata. 4. Discussion The present study of the coexistence of two sympatric populations of E. octoculata and E. vilnensis revealed a complex of mechanisms enabling them successfully utilise the same food niche. Based on time series analyses, no evidence of cyclic changes in densities were confirmed for E. octoculata and none of the environmental variables tested were shown to influence its life cycle. According to ASTON and BROWN (1975) breeding is regulated by a day-length. In our study, E. octoculata seemed to have an annual cycle, as previously record- 536 J. SCHENKOVÁ et al. © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.revhydro.com Median; Whisker: 25%-75% Erpobdella octoculata Erpobdella vilnensis <0.001 0.001-0.003 0.003-0.01 >0.01 w eight [mg] 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 preysize Figure 6. Mean prey size for individual weight categories of E. octoculata and E. vilnensis. ed by DALL (1983). However, the duration of our study was too short to confirm this. On the other hand the annual life cycle of E. vilnensis, as previously recorded by MANOLELI (1976), was confirmed, with reproduction significantly stimulated by changes of water temperature, depth and velocity. Increasing temperature in early spring, together with high discharges, trigged the development of the leeches clitella, followed by copulation and the deposition of cocoons. The hatching time was approximately the same in both species – juveniles occurred during July, but the mean wet weights of new-born leeches were slightly higher in E. octoculata and increasing more rapidly than for E. vilnensis. Juvenile E. octoculata were more successful in hunting the prey and they chose habitats with very low or very high flow, which probably increased the variability of the food on offer. This could have caused the one-month shift in the wet weights of the two species, which is another mechanism lowering food competition. DALL (1979) observed similar behaviour in sympatric populations of E. octoculata and E. testacea (SAVIGNY, 1822) but he recorded that reproduction of E. testacea began a month earlier. We found that the size of the leeches’ prey is weight-specific (DALL, 1983) in both species. The analysis of leech gut contents showed that their main food was comprised of Oligochaeta and Chironomidae, with an 83% similarity in the taxonspecies composition of their diets which means that they were not selective feeders. Two different life strategies of reproduction were observed. E. octoculata as a typical r-strategist produced a huge number of juveniles with high mortality. In all samples combined, juveniles represented 87% of individuals captured. For E. octoculata, high fecundity (juveniles per adult) was typical. More than half of the specimens of E. vilnensis found were adults and this would remain so even if all unidentified juveniles were of this species. In the conditions pertaining in our study, E. vilnensis, produced less juveniles than E. octoculata. Hence, E. vilnensis must have had a lower mortality resulting in low fecundity for this species. We also observed rapid sexual development of E. vilnensis. Specimens of E. vilnensis were also recorded in the winter months when individuals of E. octoculata were hidden in bottom substratum, suggesting that E. vilnensis is better adapted to running waters conditions. In general, the life strategy of E. octoculata is based upon high cocoon production and high food source utilisation, but also on high mortality of juveniles. In contrast, E. vilnensis produces lower numbers of cocoons, its juveniles hunt for prey preferentially in mid-current conditions, but with lower success, and its all-year mortality is small. As a result, populations of the two species are able to co-exist to good effect. 5. Acknowledgements We would like to thank our colleague V. SYROVÁTKA for identifying representatives of the family Chironomidae and J. GAISLER and M. FURSE for checking the language and other improvements. The project was supported by Long-term Research Plans from the Ministry of Education, Youth and Sports of the Czech Republic (MSM0021622416 and INCHEMBIOL MSM0021622412). 6. References ASTON, R. J. and D. J. A. BROWN, 1975: Local and seasonal variations in populations of the leech Erpobdella octoculata (L.) in a polluted river warmed by condenser effluents. – Hydrobiologia 47: 347–366. BRAY, J. R. and J. T. CURTIS, 1957: An ordination of the upland forest communities of southern Wisconsin. – Ecological Monographs 27: 325–349. BOX, G. E. P. and G. M. JENKINS, 1970: Time series analysis. Forecasting and control. – San Francisco: Holden Day. 553 pp. Strategies of Coexistence 537 © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.revhydro.com DALL, P. C., 1979: Ecology and production of the leeches Erpobdella octoculata L. and Erpobdella testacea SAV. in Lake Esrom, Denmark. – Arch. Hydrobiol./Suppl. 57: 188–220. DALL, P. C., 1983: The natural feeding and resource partitioning of Erpodella octoculata L. and Erpodella testacea SAV. in Lake Esrom, Denmark. – Int. Revue ges. Hydrobiol. 68: 473–500. DAVIS, J. A. and L. A. BARMUTA, 1989: An ecologically useful classification of mean and near-bed flows in streams and rivers. – Freshw. Biol. 21: 271–282. ELLIOTT, J. M., 1973: The life cycle and production of the leech Erpobdella octoculata (L.) (Hirudinea: Erpobdellidae) in a lake district stream. – J. Anim. Ecol. 42: 437–450. HELAN, J., F. KUBÍČEK, B. LOSOS, E. SEDLÁK and M. ZELINKA, 1973: Production conditions in the trout brooks of the Beskydy Mountains. – Folia Biologia. Univ. J. E. Purkyně, Brno, 105 pp. KUTSCHERA, U., 2003: The feeding strategies of the leech Erpobdella octoculata (L.): A laboratory study. – Internat. Rev. Hydrobiol. 88: 94–101. MALTBY, L. and P. CALOW, 1986: Intraspecific life-history variation in Erpobdella octoculata (Hirudinea: Erpobdellidae). II. Testing theory on the evolution of semelparity and iteroparity. – J. Anim. Ecol. 55: 739–750. MANN, K. H., 1953: The life history of Erpobdella octoculata (LINNAEUS, 1758). – J. Anim. Ecol. 22: 199–207. MANOLELI, D., 1976: Ecological and biological observation on the species Erpobdella monostriata (GODROYC, 1916). PAWLOWSKI, 1948 (Hirudinea, Erpobdellidae). – Trav. Mus. Hist. nat. “Gr. Antipa” 17: 1–8. MURPHY, P. M. and M. A. LEARNER, 1982: The life history and production of the leech Erpobdella octoculata (Hirudinea Erpobdellidae) in the River Ely, South Wales. – J. Anim. Ecol. 51: 57–67. SCHENKOVÁ, J. and J. HELESˇIC, 2006: Habitat preferences of aquatic Oligochaeta (Annelida) in the Rokytná River, Czech Republic – a small highland stream. – Hydrobiologia 564: 117–126. SHUMWAY, R. H., 1988: Applied statistical time series analysis. – Englewood Cliffs, NJ: Prentice Hall. STATSOFT, Inc. 2004: STATISTICA (data analysis software system), version 7. – www.statsoft.com. TOMAN, M. J. and P. C. DALL, 1997: The diet of Erpobdella octoculata (Hirudinea: Erpobdellidae) in two Danish lowland streams. – Arch. Hydrobiol. 140: 549–563. YOUNG, J. O. and J. W. IRONMONGER, 1979: The natural diet of Erpobdella octoculata (L.) (Hirudinea: Erpobdellidae) in British lakes. – Arch. Hydrobiol. 87: 483–503. YOUNG, J. O. and J. W. IRONMONGER, 1980: A laboratory study of three species of leeches occuring in British lakes. – Hydrobiologia. 68: 209–215. Manuscript received March 17th, 2006; revised February 5th, 2007; accepted May 23rd, 2007 538 J. SCHENKOVÁ et al. © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.revhydro.com 200 Schenková, J., J. Sychra, V. Košel, N. Kubová & J. Horecký, 2009 Freshwater leeches (Annelida: Clitellata: Hirudinida) of the Czech Republic (Central Europe): check-list, new records, and remarks on species distributions. Zootaxa, 2227, 32–52. Accepted by B. Sket: 17 Aug. 2009; published: 10 Sep. 200932 ZOOTAXA ISSN 1175-5326 (print edition) ISSN 1175-5334 (online edition)Copyright © 2009 · Magnolia Press Zootaxa 2227: 32–52 (2009) www.mapress.com/zootaxa/ Article Freshwater leeches (Annelida: Clitellata: Hirudinida) of the Czech Republic (Central Europe): check-list, new records, and remarks on species distributions JANA SCHENKOVÁ1 , JAN SYCHRA1 , VLADIMÍR KOŠEL2 , NELA KUBOVÁ1 & JAKUB HORECKÝ3 1 Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic. E-mail: schenk@sci.muni.cz; dubovec@seznam.cz; Kubova.Nela@seznam.cz 2 Department of Zoology, Faculty of Science, Comenius University, Mlynská dolina B-1, 84215 Bratislava, Slovakia. E-mail: kosel@fns.uniba.sk 3 Povodí Vltavy, s. p., Na Hutmance 5a, 158 00 Praha, Czech Republic. E-mail: horecky@centrum.cz Abstract Freshwater leeches (Annelida: Clitellata: Hirudinida) of the Czech Republic were studied on the basis of recent literature, information in selected databases, and results of recent surveys conducted by the authors. The objectives of this study were to summarize recent taxonomic information, and to update the check-list of leeches using records collected during an eleven-year study (1998 through 2008). Altogether, twenty-four species representing 12 genera and five families are reported for the Czech Republic, including the first reports of Piscicola cf. haranti Jarry, 1960 and Dina punctata Johansson, 1927 for the country. A detailed description of the distributions of rare species and characterization of localities from which they are reported are presented. Plausible modes of dispersal and propagation of species in Central Europe are discussed. According to recent records, leech species are divided into three groups: indigenous species with stable and strong populations (12 species), indigenous species with weak populations known from a limited number of localities (9 species), and species only recently recorded in the Czech Republic (3 species). For scarce or rare species, a category of threat in the Czech Republic according to the International Union for Conservation of Nature is recommended. Most of threatened species are inhabitants of lowland wetlands and lowland larger rivers—habitats that are negatively impacted, often catastrophically, by human activities throughout Central Europe. The protection of suitable habitats is the most effective way to protect extant populations of endangered leech species. Six species of leeches are recommended for permanent addition to the Red list of threatened species in the Czech Republic. Key words: Annelida, Clitellata, Hirudinida, leeches, Glossiphoniidae, Piscicolidae, Haemopidae, Hirudinidae, Erpobdellidae, Czech Republic, IUCN, Red List, habitat, distribution, Piscicola cf. haranti, Dina punctata, first record Introduction A check-list of freshwater leeches (Hirudinida) of the Czech Republic has long been in need of revision. Available information on the distribution, taxonomy, and ecology of leeches in the Czech Republic has been scattered throughout various historical as well as recent papers, but none of these have focused on the country’s fauna as a whole. Based on molecular phylogeny, leeches (Hirudinida), Branchiobdellida, and Acanthobdellida form a monophyletic clade—with its common ancestor being an oligochaetous clitellate related to the family Lumbriculidae (Siddall et al. 2001, Erséus 2005). While most leeches in the Czech Republic are thermophilous freshwater species inhabiting stagnant as well as running waters, a few species are considered to be amphibious. Leeches are common in eutrophic waters and often serve as indicators of pollution (e.g., Sládeček & Košel 1984, Košel 1988, Grosser et al. 2001, Koperski 2005). Although some of them have been TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 2227 © 2009 Magnolia Press · 33CHECK-LIST OF HIRUDINIDA OF THE CZECH REPUBLIC studied extensively, (e.g., the medicinal leech, Hirudo medicinalis Linnaeus, 1758), research focusing on the taxonomy and ecology of leeches occurring in the Czech Republic has been limited. Several noteworthy papers presenting distributional information on leeches in the Czech Republic have been published over the last 55 years: Hrabě (1954) recorded eleven leech species in his key to fauna; Švec (1960) found only six species during a faunal study of southeastern Moravia, but one was a new record (Alboglossiphonia hyalina (O. F. Müller 1774)—considered as a “form” at the time of Švec’s publication); Lucký & Dyk (1964) recorded four species of leeches during their study of fish parasites in rivers and ponds in Odra (Oder) and Dyje (Thaya) River catchment area, including a new record of Piscicola fasciata Kollar, 1842 (as Cystobranchus fasciatus Brumpt, 1900) for the Czech Republic; and Koubková & Vojtková (1973) reported eleven species in their publication on the fauna of the Czechoslovak Socialist Republic. More recently, Košel (1998 and 1999a) recorded nineteen and twenty species, respectively (Table 1). Unfortunately, the record of P. fasciata was not included in the check-list (Košel 1998). Although, most of these papers were published in the Czech or Slovak language, none provided a thorough review of the leech fauna known or thought likely to occur in the country. The objectives of this study are to summarize historical, recently published, and unpublished records of leeches occurring in the Czech Republic, to present data resulting from our recently completed surveys for leeches throughout the country (1998–2008), and to provide a current check-list of Hirudinida occurring in the Czech Republic. Methods and materials The information and data summarized herein have been obtained from following sources: recent literature records (Košel 1999a, Sukop 2004, Košel & Beran 2006); records in PERLA, a database prepared for the assessment of running waters in the Czech Republic (Kokeš et al. 2006); records in a database of monitoring of running waters provided by the T. G. Masaryk Water Research Institute (monitoring of reference conditions, surveillance monitoring, Project Labe (Elbe) (Horecký et al. 2004), research projects and others); records obtained during the monitoring of Hirudo medicinalis carried out by the authors and organized by the Agency for Nature Conservation and Landscape Protection of the Czech Republic 2005–2008; records and information included in the diploma thesis of N. Kubová (Kubová 2008); and data resulting from recent collections by the authors, colleagues, and other personnel. 1. Košel (1999a), Sukop (2004), Košel & Beran (2006), Kubová (2008) and authors collected leeches with tweezers and with hand strainers (mesh size 1 mm) from solid submerged inorganic and organic substratum, e.g., gravel, stones, woody debris and vegetation. Leeches were then narcotized by graduating concentration of ethanol to final 70%, and then fixed in 4% formaldehyde. 2. PERLA database and monitoring of running waters (1998–2008). Leeches were collected with a hand net (mesh size 500 µm) during a 3-minute kick sampling period from running waters. All habitats (e.g., riffle, pool, macrophytes, and woody debris) were sampled proportionally. Leeches were then fixed in 4% formaldehyde. 3. Project Labe (1999–2005). Leeches were collected during a 3-min kick sampling period using a hand net (mesh size 500 µm), which was supplemented by qualitative sampling from submerged substratum and insitu picking of individuals from additional material taken by hand net during extended sampling and sorting procedure. Samples were preserved in 80% ethanol. All leech specimens collected by these methods were identified in a laboratory under a stereomicroscope according to the keys of Neubert & Nesemann (1999) and Košel (2001). 4. Monitoring of Hirudo medicinalis (2005–2008). Specimens were collected by hand, removing from both gumboots (waders) or from the bare legs of the collectors. TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. SCHENKOVÁ ET AL.34 · Zootaxa 2227 © 2009 Magnolia Press Maps noting the distributions of leeches in the Czech Republic (with Bohemia to the west, and Moravia to the east, see Figure 1) were prepared for most species discussed in this paper, with the exception of those commonly collected throughout the country. FIGURE 1. The geographical position of the Czech Republic in central Europe, including historical divisions within the country—Bohemia (Čechy) to the west, and Moravia (Morava) to the east. Unpublished records of selected species are presented in the accounts, below, and (if available) include the following information associated with specimens: name of the water body, name of the settlement (town, village, city) closest to the site from which the specimen(s) was/were collected, index number [in brackets] of Central European map square (Pruner & Míka 1996) on which the collection site can be found, latitude and longitude coordinates for the collecting site, name(s) of the person(s) who collected and/or identified the species (collectors’ names, abbreviated in the accounts below), and date of collection. Published records are presented in the same way, and include a valid citation. Typical habitats and species distribution in the Czech Republic are briefly described. For scarce or rare species, a category of threat in the Czech Republic according to the International Union for Conservation of Nature (IUCN) (1994) is recommended. Abbreviations for the names of collectors associated with the species accounts presented below: A— anonymous, EP—Eva Podborská, FK—František Kubíček, GČ—Gašpar Čamlík, IS—Ivan Skála, JB— Jindřiška Bojková, JH—Jakub Horecký, JK—Jiří Kroča, JP—Jiří Procházka, JR—Jan Rucki, JSc—Jana Schenková, JSy—Jan Sychra, JŠ—Jan Špaček, KK—Kateřina Kolářová, MB—Milan Boukal, ML—Marek Liška, MS—Michal Straka, MŠ—Monika Štambergová, NK—Nela Kubová, NL—Natália Lapšanská, PK— Petr Komzák, PP—Petr Pařil, SV—Stanislav Větříček, VK—Vladimír Košel. Results and species accounts In total, twenty-four species of Hirudinida representing five families (Table 1) are now reported to occur in the Czech Republic based upon records in the literature and/or specimens collected during our eleven-year study (1998 through 2008). Detailed accounts for leeches occurring in the Czech Republic are presented below. TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 2227 © 2009 Magnolia Press · 35CHECK-LIST OF HIRUDINIDA OF THE CZECH REPUBLIC TABLE 1. Historical lists of leeches (Annelida, Clitellata, Hirudinida) and a new check-list of Hirudinida occurring in the Czech Republic, based upon published and unpublished records, and specimens from collections by the authors during the years 1998 through 2008. Phylum: Annelida Class: Clitellata Order: Hirudinida Hrab ě (1954), Koubková& Vojtková (1973) Švec(1960) Lucký& Dyk(1964) Košel(1998) Košel (1999a) thisstudy (1998–2008) Family: Glossiphoniidae Alboglossiphonia heteroclita (Linnaeus, 1761) + + + + Alboglossiphonia hyalina (O. F. Müller, 1774) + + + Alboglossiphonia striata (Apáthy, 1888) + + Batracobdella paludosa (Carena, 1824) misidentified Glossiphonia complanata (Linnaeus, 1758) + + + + Glossiphonia concolor (Apáthy, 1888) + + + Glossiphonia nebulosa Kalbe, 1964 + + + Glossiphonia slovaca (Košel, 1973) + + + Helobdella stagnalis (Linnaeus, 1758) + + + + + Hemiclepsis marginata (O. F. Müller, 1774) + + + + + Theromyzon tessulatum (O. F. Müller, 1774) + + + + Family: Piscicolidae Caspiobdella fadejewi (Epshtein, 1961) + + + Piscicola geometra (Linnaeus, 1758) + + + + + + Piscicola cf. haranti Jarry, 1960 + Piscicola fasciata Kollar, 1842 + Piscicola respirans Troschel, 1850 + + + Family: Haemopidae Haemopis sanguisuga (Linnaeus, 1758) + + + + + Family: Hirudinidae Hirudo medicinalis Linnaeus, 1758 + + + + Family: Erpobdellidae Dina lineata (O.F. Müller, 1774) + + + + + Dina punctata Johansson, 1927 + Erpobdella nigricollis (Brandes, 1900) + + + Erpobdella octoculata (Linnaeus, 1758) + + + + + Erpobdella testacea (Savigny, 1822) + + + + Erpobdella vilnensis (Liskiewicz, 1925) + + + Trocheta cylindrica Örley, 1886 + + + TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. SCHENKOVÁ ET AL.36 · Zootaxa 2227 © 2009 Magnolia Press Family: Glossiphoniidae Alboglossiphonia heteroclita (Linnaeus, 1761) Habitats and status: The species prefers lowland vegetated pools or slow running waters with riparian vegetation. Because of both morphological and genetic differences, two new species—A. hyalina and A. striata —were recently separated from this taxon (Trontelj 1997, Neubert & Nesemann 1999). Unfortunately, only some of the older records are distinguished into forms ‘heteroclita’, ‘hyalina’ and ‘striata’, thus it is not possible to separate their habitat preferences at this time. Alboglossiphonia heteroclita seems to be the most common species occurring in the whole territory of the Czech Republic except at higher elevations (only rarely over 500 m a.s.l.). Alboglossiphonia hyalina (O. F. Müller, 1774) Records: Chabařovice artifical lake, Chabařovice [5349], 50°39'05''N / 13°57'11''E, lgt. JŠ, det. JŠ (2005, 2006); concrete fire reserve, Jestřebice [5553], 50°27'49"N / 14°34'36"E (Košel & Beran 2006); Harasov Pond, Janova Ves [5553] 50°24'43"N / 14°34'18"E, (Košel & Beran 2006); irrigation ditch, Rakvice [7166], 48°49'45''N / 16°48'58''E, (Košel 1999a); Kutnar Pond, Rakvice [7166], 48°50'11''N / 16°47'34''E, lgt. NK, det. NK (2008); Milotický Pond, Milotice [7068], 48°57'52"N / 17°09'17"E, lgt. JSy, det. JSy (2008); Štěpánek pond, Pozďatín [6762], 49°13'26"N / 16°02'19"E, lgt. JSy (2006), det. JSy (2008); Tužínský Brook, Dřevěnice [5558], 50°26'33"N / 15°27'14"E, lgt. JŠ, det. JŠ (2008) (Figure 2). Habitats: The species was found in heterogeneous stagnant or slow-running waters, often of artificial origin, and all rich in organic material. The presence of submerged vegetation and aquatic snails also seems to be important. Status: Alboglossiphonia hyalina is a rare species with only few localities from southern Moravia, CzechMoravian Highland and northern Bohemia. These records suggest that this leech is probably more common in suitable habitats, most likely overlooked in previous collections due to its small size and translucent body. Alboglossiphonia striata (Apáthy, 1888) Records: Bažinka Pool, Lanžhot [7367], 48°38'05''N / 16°55'55''E, lgt. JSc, det. JSc (2006); pool, Ranšpurk [7367], 48°40'27''N / 16°56'23''E, (Košel 1999a) (Figure 2). Habitats: The species was recorded in natural lowland pools with aquatic vegetation. Its ecology is still not well known. Status: Alboglossiphonia striata is the rarest species in the genus known to occur in the Czech Republic, to date having been recorded only in southernmost Moravia. However, it could have been confused with or misidentified as A. heteroclita in previous studies. Glossiphonia complanata (Linnaeus, 1758) Habitats and status: Glossiphonia complanata represents a widely distributed species recorded from all kinds of water bodies, stagnant as well as running, with the exception of fast flowing mountain rivers and brooks. It is common throughout the Czech Republic. In past studies, this species was likely confused with or misidentified as one or more other Glossiphonia species because of its variable coloration. TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 2227 © 2009 Magnolia Press · 37CHECK-LIST OF HIRUDINIDA OF THE CZECH REPUBLIC FIGURE 2. The distribution of selected leech species (Annelida, Clitellata, Hirudinida: the families Glossiphoniidae and Piscicolidae) in the Czech Republic recorded during the years 1998 through 2008, based upon published and unpublished records, and specimens collected during this study. TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. SCHENKOVÁ ET AL.38 · Zootaxa 2227 © 2009 Magnolia Press Glossiphonia concolor (Apáthy, 1888) Records: Bílina River, Bílina [5448], 50°33'17"N / 13°46'25"E, lgt. JSy, det. JSy (2007); Bílina River, Kozlíky [5355], 50°36'41"N / 13°52'59"E, lgt. JSy, det. JSy (2007); Bílina River, Lbín [5349], 50°36'20"N / 13°51'32"E, lgt. JSy, det. JSy (2007); Bílina River, Stadice [5349], 50°37'08"N / 13°58'02"E, lgt. JSy, det. JSy (2007); Bílina River, Ústí nad Labem [5350], 50°39'27"N / 14°02'28"E, lgt. A, det. NK (2006); Blanice River, Nový Mlýn [6255], 49°46'40"N / 14°55'53"E, lgt. A, det. FK (1998); Blažejovický Brook, Blažejovice [6357], 49°36'46"N / 15°12'19"E, lgt. JH, NL, det. ML (2007); Bolíkovský Brook, Heřmaneč [6857], 49°07'07"N / 15°18'24"E, lgt. A, det. JSc (2007); Břevnický Brook, Břevnice [6359], 49°38'01"N / 15°35'36"E, lgt. A, det. FK (1998); Častava Brook, Chomoutov [7369], 49°37'54"N / 17°13'59"E, lgt. JSy, det. JSy (2008); Čechtický Brook, Křivsoudov [6356], 49°38'26"N / 15°04'40"E, lgt. JH, NL, det. JH (2007); Černý Brook, Meclov [6443], 49°30'36"N / 12°53'16"E, lgt. A, det. FK (1999); Dlažkovice Pond, Dlažkovice [5549], 50°27'53''N / 13°58'02''E, lgt. NK, det. NK (2007); Dolní Bartošovický Pond, Bartošovice [6374], 49°40'52"N / 18°01'45"E, lgt. JSy, det. JSy (2005); Harasov Pond, Janova Ves [5553], (Košel & Beran 2006); Hranečník Pond, Častotice [6762], 49°14'03"N / 16°04'24"E, lgt. JSy, NK, JSc, det. JSc (2008); Jihlava River, Vladislav [6761], 49°12'24"N / 15°59'49"E, lgt. A, det. NK (2006); Káča Brook, Hořátev [5856], 50°08'33"N / 15°02'25"E, lgt. A, det. JSy (2006); Kozárovický Brook, Zálezlice [5652], 50°18'35"N / 14°25'29"E, lgt. A, det. JSy (2006); Křišťanovický Pond, Křišťanovice [7049], 48°58'05"N / 13°56'45"E, lgt. JSy, det. JSy (2007); Lišanský Brook, Rakovník [5948], 50°05'35"N / 13°45'06"E, lgt. JH, NL, det. JH (2007); Morava River, Nové Zámky [6268], 49°42'58"N / 17°01'28"E, lgt. A, det. JSc (2007); Nový Častotický Pond, Častotice [6762], 49°14'09"N / 16°05'57"E, lgt. JSy, det. PP (2002), lgt. NK, JSc, JSy, det. JSc (2008); Odra River, Petřvaldík [6274], 49°43'30''N / 18°07'53''E, lgt. PK, SV, det. JSc (2007); Panenská Pool, Nové Mlýny [7166], 48°50'41''N / 16°43'40''E, (Košel 1999a); Ploužnický Brook, Ploužnice pod Ralskem [5354], 50°38'10"N / 14°48'30"E, lgt. A, det. JSy (2006); Podhrázský Pond, Lkáň [5549], 50°26'55''N / 13°56'57''E, lgt. NK, det. NK (2007); Pstružný Brook, Františkodol [6358], 49°39'22''N / 15°22'58''E, lgt. PK, SV, det. FK, JSc (1998, 2007); Rakovec Brook, Hrušky [6867], 49°07'44"N / 16°50'24"E, lgt. PK, det. PK (2007); Rokytná River, Moravský Krumlov [6963], 49°03'45"N / 16°19'31"E, (Schenková et al. 2007); Rokytná River, Vémyslice [6963], 49°02'06''N / 16°11'47''E, lgt. PK, SV, det. JSc (2007); Řečička Brook, Jindřichův Hradec [6856], 49°07'22"N / 15°00'02"E, lgt. JH, NL, det. JH (2007); Sázava River, Sázava [6155], 49°53'09"N / 14°52'26"E, lgt. A, det. FK (1998); Sázava River, Soběšín [6255], 49°47'55"N / 14°57'19"E, lgt. A, det. FK (1998); Sázava River, Vlastějovice [6257], 49°44'07"N / 15°10'45"E, lgt. A, det. FK (1998); Sázavka River, Sázavka [6258], 49°44'11"N / 15°23'15"E, lgt. A, det. FK (1998); Sekulská Morava (Morava River dead arm), Lanžhot [7367], 48°37'39"N / 16°57'12"E, lgt. JSy, NK, JSc, det. JSy (2008); Skalička Brook, Práče [7163], 48°53'03"N / 16°12'56"E, lgt. SV, PK, det. PK (2007); Střela River, Žlutice [5944], 50°05'45"N / 13°04'11"E, lgt. A, det. FK (1999); Šatava River, Nosislav [7065], 48°59'33"N / 16°38'48"E, lgt. A, det. JSy (2006); Únětický Brook, Únětice [5852], 50°08'56"N / 14°21'33"E, lgt. JH, NL, det. JH (2007); Úslava River, Vilémov [6447], 49°32'40"N / 13°36'08"E, lgt. A, det. FK (1999); Úslava River, Zdemyslice [6447], 49°35'58"N / 13°31'51"E, lgt. A, det. FK (2000); Vlára River, Svatý Štěpán [6974], 49°03'18''N / 18°01'19''E, lgt. PK, SV, det. JSc (2007); Vltava River, Praha [5952], 50°03'21"N / 14°24'60"E, lgt. JH, NL, det. JH (2002, 2005), Vltava River, Zelčín [5652], 50°19'09"N / 14°23'56"E, lgt. JH, NL, det. JH (2002); Vsetínská Bečva River, Bystřička [6573], 49°25'09''N / 17°57'10''E, lgt. PK, SV, det. JSc (2007) (Figure 2). Habitats: Glossiphonia concolor prefers especially stagnant waters or slowly running rivers or brooks. It occurs mainly in lowlands and moderate elevations (150–500 m, rarely up to 750 m a.s.l.). Status: Glossiphonia concolor can be locally abundant. With the exception of the boundary mountain areas, G. concolor is distributed throughout the entire Czech Republic. TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 2227 © 2009 Magnolia Press · 39CHECK-LIST OF HIRUDINIDA OF THE CZECH REPUBLIC Glossiphonia nebulosa Kalbe, 1964 Records: Bačovka Brook, Velký Osek [5957], 50°05'43"N / 15°12'46"E, lgt. A, det. JSy (2006); Bílina River, Bílina [5448], 50°33'17"N / 13°46'25"E, lgt. JSy, det. JSy (2007); Brodečka River, Víceměřice [6669], 49°20'35"N /17°10'29" E, lgt. SV, PK, det. PK (2007); Chomutovka Brook, Postoloprty [5648], 50°21'52"N / 13°42'10"E, lgt. JSy, det. JSy (2008); ditch, Lanžhot [7267], 48°42'42"N / 16°56'27"E, lgt. MS, det. JSy (2006); Dlažkovice Pond, Dlažkovice [5549], 50°27'53''N / 13°58'02''E, lgt. NK, det. NK (2007); Dyje River, Břeclav [7166], 48°48'40''N / 16°48'59''E, (Košel 1999a); Dyje River, Břeclav [7267], 48°46'22''N / 16°52'43''E, (Košel 1999a); Jihlava River, Vladislav [6761], 49°12'24"N / 15°59'49"E, lgt. A, det. NK (2006); Káča Brook, Hořátev [5856], 50°08'33"N / 15°02'25"E, lgt. A, det. JSy (2006), Kozárovický Brook, Zálezlice [5652], 50°18'35"N / 14°25'29"E, lgt. A, det. JSy (2006); Labe River, Němčice [5960], 50°05'38"N / 15°48'34"E, lgt. JH, NL, det. JH (2005); Labe River, Valy [5959], 50°01'58"N / 15°37'05"E, lgt. JH, NL, det. VK (2003); Labe River, Verdek [5560], 50°26'47"N / 15°47'05"E, lgt. JH, NL, det. JH (2002, 2003); Lišanský Brook, Rakovník [5948], 50°05'35"N / 13°45'06"E, lgt. JH, NL, det. JH (2007); Litava River, Vážany nad Litavou [6867], 49°07'47"N / 16°51'02"E, lgt. SV, PK, det. PK (2007); Mlýnská strouha drain, Jaroslavice [7263], 48°45'44"N / 16°15'06"E, lgt. SV, PK, det. PK (2007); Mnichovka Brook, Hrušov [6154], 49°53'36''N / 14°44'06''E, lgt. JH, NL det. JH (2006); Návesník Pond, Vortová [6261], 49°42'46"N / 15°55'43"E, lgt. JSy, det. JSy (2007); Nový Častotický Pond, Častotice [6762], 49°14'09"N / 16°05'57"E, lgt. JSy, det JSy (2006); Nový Pond, Mikulov [7266], 48°46'55''N / 16°40'32''E, (Košel 1999a); Okluky Brook, Uherský Ostroh [7070], 48°59'37"N / 17°24'10"E, lgt. SV, PK, det. PK (2007); Oslava River, Náměšť nad Oslavou [6862], 49°11'55"N / 16°08'58"E, lgt. A, det. EP (2007); Ploužnický Brook, Ploužnice pod Ralskem [5354], 50°38'10"N / 14°48'30"E, lgt. A, det. JSy (2006); Podhrázský Pond, Lkáň [5549], 50°26'56''N / 13°56'57''E, lgt. NK, det. NK (2007); Rakovec Brook, Hrušky [6867], 49°07'44"N / 16°50'24"E, lgt. PK, det. PK (2007); Rokytná River, Moravský Krumlov [6963], 49°03'45"N / 16°19'31"E, (Schenková et al. 2007); Rouchovanka Brook, Rešice [6962], 49°02'50"N / 16°08'47"E, lgt. SV, PK, det. PK (2007); Říčka River, Sokolnice [6866], 49°06'32"N / 16°43'16"E, lgt. SV, PK, det. PK (2007); Sendražický Brook, Velký Osek [5957], 50°05'26"N / 15°12'10"E, lgt. A, det. JSy (2006); Skalička Brook, Práče [7163], 48°53'03"N / 16°12'56"E, lgt. SV, PK, det. PK (2007); Svratka River, Křižánky [6362], 49°41'52"N / 16°03'39"E, lgt. SV, PK, det. PK (2007); Svratka River, Veverská Bitýška [6764], 49°16'45"N / 16°26'15"E, lgt. SV, PK, det. PK (2006); Šatava River, Nosislav [7065], 48°59'33"N / 16°38'48"E, lgt. A, det. JSy (2006); Štemberský Brook, Slaný [5750], 50°13'29"N / 14°04'48"E, lgt. JH, NL, det. JH (2008); Tichá Orlice River, Kunčice [5965], 50°00'17"N / 16°32'44"E, lgt. A, det. JSc (2007); Třebůvka River, Loštice [6267], 49°43'21''N / 16°53'48''E, lgt. PK, SV, det. JSc (2007); Únětický Brook, Únětice [5852], 50°08'56"N / 14°21'33"E, lgt. JH, NL, det. JH (2007); Valová Brook, Polkovice [6669], 49°23'42"N / 17°15'51"E, lgt. JSy, det. JSy (2008); Vltava River, Praha Podolí [5952], 50°03'21"N / 14°24'560"E, lgt. JH, NL, det. JH (2002) VK (2003); Vltava River, Zelčín [5652], 50°19'09"N / 14°23'56"E, lgt. JH, NL, det. JH (2002, 2005) (Figure 2). Habitats: Glossiphonia nebulosa is considered typical of running waters, but some of the records are from ponds at middle and higher elevations (about 600 m a.s.l.). Its ecological valences are probably broader than have been documented to date. Status: Prior to this study, Glossiphonia nebulosa had been recorded only from two localities in the southernmost part of the country (Košel 1999a); more recently, this species has been reported as a common species from additional localities in both Bohemia and Moravia. Most of localities are situated in southern Moravia (Dyje (Thaya), Svratka, and Jihlava River basins) and middle Bohemia (Labe (Elbe), Vltava, and Ohře River basins); no records have yet been reported from the southwestern part of the country. The species was probably overlooked in previous studies, and perhaps may have been confused with or misidentified as G. complanata in past studies. TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. SCHENKOVÁ ET AL.40 · Zootaxa 2227 © 2009 Magnolia Press Glossiphonia slovaca (Košel, 1973) Synonym: Batracobdella slovaca Košel, 1973 Records: Dyje River, Břeclav [7166], 48°48'40''N / 16°48'59''E, (Košel 1999a); Dyje River, Břeclav [7267], 48°46'22''N / 16°52'43''E, (Košel 1999a); Dyje River, Břeclav [7267], 48˚43'25''N / 16˚53'07''E, lgt. PK (2006), det. PK (2008) (Figure 2). Habitats: Limited information suggests that Glossiphonia slovaca occurs in larger lowland rivers. Status: Both records of this species in the Czech Republic were collected from Dyje River in the southernmost part of the country, which limit its northern range margin (Grosser & Nesemann 2004). Because of its scarceness, G. slovaca was classified as vulnerable in the Red list of threatened species in the Czech Republic (Schenková & Košel 2005). Helobdella stagnalis (Linnaeus, 1758) Habitats and status: Helobdella stagnalis is a very common species throughout the Czech Republic, especially in stagnant and slowly running waters. Most of the records are from eutrophic water bodies; it is absent only in brooks at the highest elevations in the country (over 800 m a.s.l.). Hemiclepsis marginata (O. F. Müller, 1774) Habitats and status: Hemiclepsis marginata is relatively abundant in stagnant water bodies, and usually those with aquatic vegetation occurring in lowlands and mid-elevations (150–450 m a.s.l.). It is less frequent in slowly running waters. Its distribution is scattered throughout the Czech Republic. Theromyzon tessulatum (O. F. Müller, 1774) Habitats and status: Theromyzon tessulatum is a locally abundant leech occurring in stagnant water bodies with aquatic vegetation or in larger rivers and slowly running brooks. Its distribution is scattered throughout the Czech Republic. Family: Piscicolidae Caspiobdella fadejewi (Epshtein, 1961) Synonym: Piscicola fadejewi Epshtein, 1961 Records: Bakovský Stream, Vepřek [5651], 50°18'18"N / 14°18'58"E, lgt. JH, NL, det. JH (2005); Bečva River, Choryně [6473], 49°30'12"N / 17°53'43"E, lgt. PK, SV, det. JSc (2007); Bílina River, Ústí nad Labem [5350], 50°39'28"N / 14°02'31"E, lgt. A (2007), det. JSy (2008); Blanice River, Mladá Vožice [6454], 49°32'52''N / 14°49'02''E, lgt. JH, NL, det. NL (2007); Blanice River, Radonice [6155], 49°47'20''N / 14°55'58''E, lgt. JH, NL, det. JH, NL (2004, 2005, 2007); Doubrava River, Záboří nad Labem [5958], 50°01'34"N / 15°20'40"E, lgt. JSy, det. JSy (2008); Dyje River, Břeclav [7267], 48°46'22''N / 16°52'43''E (Košel 1999a); Dyje River, Jevišovka [7164], 48°49'41"N / 16°28'24"E, lgt. A (2007), det. JSy (2008); Dyje River, Podhradí [7159], 48°53'29''N / 15°38'30''E, lgt. JŠ, det. JŠ (2008); Chotýšanka Brook, Libež [6255], 49°45'32''N / 14°54'53''E, lgt. JH, NL, det. NL (2006); Dyje River, Podhradí [7159], 48°53'29''N / TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 2227 © 2009 Magnolia Press · 41CHECK-LIST OF HIRUDINIDA OF THE CZECH REPUBLIC 15°38'30''E, lgt. PK, SV, det. JSc (2007); Dyje River, Podhradí [7060], 48°54'12"N / 15°41'21"E, lgt. A (2007), det. JSy (2008); Haná River, Bezměrov [6670], 49°19'53"N / 17°20'18"E, lgt. JSy, det. JSy (2008); Jevanský Brook, Stříbrná Skalice [6155] 49°53'22''N / 14°51'26''E, lgt. JH, NL, det. JH (2006); Kozský Brook, Sezimovo Ústí [6654], 49°22'57"N / 14°41'38"E, lgt. JH, NL, det. JH (2006); Labe River, Hřensko [5151], 50°52'28"N / 14°14'08"E, lgt. JSy, det. JSy (2008); Labe River, Liběchov [5552], 50°24'08"N / 14°26'53"E, lgt. A (2007), det. JSy (2008); Labe River, Valy [5959], 50°01'59"N / 15°37'00"E, lgt. A (2007), det. JSy (2008); Lužnice River, Bechyně [6752], 49°17'21''N / 14°28'11''E, lgt. PP, det. JSc, JSy (2007, 2008); Lužnice River, Dobronice [6652], 49°19'07"N / 14°29'36"E, lgt. A, det. JSc (2007); Lužnice River, Veselí nad Lužnicí [6854], 49°10'41"N / 14°41'51"E, lgt. A (2007), det. JSy (2008); Morava River, Černovír [6369], 49°36'44"N / 17°15'14"E, lgt. A (2007), det. JSy (2008); Morava River, Lhota [6368], 49°40'59"N / 17°08'59"E, lgt. A, det. JSc (2007); Morava River, Lobodice [6669], 49°23'48''N / 17°18'25''E, let. PK, SV, det JSc (2007); Morava River, Nové Zámky [6268], 49°42'57"N / 17°01'27"E, lgt. A, det. JSc (2007); Morava River, Větrovany [6569], 49°27'55"N / 17°18'19"E, lgt. JSy, det. JSy (2008); Moravská Dyje River, Písečné u Slavonic [7058], 48°57'48"N / 15°27'50"E, lgt. A (2007), det. JSy (2008); Nežárka River, Veselí nad Lužnicí [6854], 49°10'53"N / 14°42'33"E, lgt. A (2007), det. JSy (2008); Nučický Brook, Stříbrná Skalice [6155], 49°52'58"N / 14°51'33"E, lgt. JH, NL, det. JH (2007); Odra River, Petřvaldík [6274], 49°43'30''N / 18°07'53''E, lgt. PK, SV, det. JSc (2007); Oslava River, Nová Ves [6863], 49°07'21''N / 16°18'47''E, lgt. PK, SV, det. JSc (2007); Oslava River, Skřípina [6863], 49°08'27''N / 16°12'30''E, lgt. PK, SV, det. JSc (2007); Ostrovský Brook, Zruč nad Sázavou [6256], 49°44'31''N / 15°06'14''E, lgt. JH, NL, det. JH (2006); Sázava River, Kamenný Přívoz [6153], 49°51'31''N / 14°31'49''E, lgt. A, det. JSc (2007); Sázava River, Nespeky [6153], 49°51'27"N / 14°39'25"E, lgt. JH, NL, det. JH NL (2004, 2006, 2007); Sázava River, Pikovice [6152], 49°52'38''N / 14°26'11''E, lgt. A, det. JSc (2007); Sázava River, Sázava [6155], 49°52'51''N / 14°52'57''E, lgt. PK, SV, det. JSc (2007); Sázava River, Smrčná [6358], 49°39'37''N / 15°20'39''E, lgt. PK, SV, det. JSc (2007); Sázava River, Soběšín [6255], 49°47'35''N / 14°57'03''E, lgt. PK, SV, det. JSc (2007); Sázava River, Vlastějovice [6257], 49°43'41''N / 15°10'31''E, lgt. PK, SV, det. JSc (2007); Sázava River, Zruč nad Sázavou [6256], 49°44'32''N / 15°06'04''E, lgt. JH, NL, det. JH NL (2004, 2007), lgt. A (2007), det. JSy (2008); Svratka River, Vranovice [7065], 48°57'02"N / 16°37'07"E, lgt. A (2007), det. JSy (2008); Třebůvka River, Loštice [6267], 49°43'21''N / 16°53'48''E, lgt. PK, SV, det. JSc (2007); Valová Brook, Polkovice [6669], 49°23'42"N / 17°15'51"E, lgt. JSy, det. JSy (2008); Vlára River, Svatý Štěpán [6974], 49°03'18''N / 18°01'19''E, lgt. PK, SV, det. JSc (2007); Vltava River, Zelčín [5652], 50°19'09"N / 14°23'56"E, lgt. JH, NL, JSy det. JH, JSy (2005, 2006, 2008); Zákolanský Brook, Kralupy nad Vltavou [5751], 50°14'22"N / 14°18'14"E, lgt. JH, NL, det. JH (2004) (Figure 2). Habitats: Caspiobdella fadejewi occurs in large or medium size rivers with slow moving reaches. This species is often found on substratum – in contrast to Piscicola geometra, which is more often collected directly from its fish host. Based upon the distributional records of these two species, the higher number of current records of C. fadejewi than of P. geometra probably reflects the differences in collecting methodologies, rather than some other ecological factors. Status: Prior to this study, Caspiobdella fadejewi was known only from southern Moravia. However, it has been recently recorded at many additional localities in the Labe (Elbe), Odra (Oder), and Morava (March) River basins. The main areas of its distribution in the Czech Republic are associated with the Vltava and Morava River basins. Although it is likely that C. fadejewi has been confused occasionally with P. geometra, an overall trend of rapid spreading of C. fadejewi along the rivers with suitable habitats has been observed during our eleven-year study. Piscicola fasciata Kollar, 1842 Synonym: Cystobranchus fasciatus Brumpt, 1900 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. SCHENKOVÁ ET AL.42 · Zootaxa 2227 © 2009 Magnolia Press Habitats and status: Piscicola fasciata is a rare ectoparasitic species living most often on the catfish (Silurus glanis Linnaeus, 1758) (Neubert & Nesemann 1999). In the Czech Republic it was reported only once from the lower Dyje (Thaya) River (Lucký & Dyk 1964). During their survey, P. fasciata was found frequently on catfish in spring period. This species is hence supposed to live in the Czech Republic, although by the sampling method used it was not collected recently (1998 through 2008). Piscicola geometra (Linnaeus, 1758) Habitats and status: Piscicola geometra is the most common species of the family Piscicolidae; some specimens found in Czech rivers and streams are quite variable in color. While this species inhabits stagnant as well as running waters, it prefers slower flow conditions and the presence of various fish hosts. Piscicola cf. haranti Jarry, 1960 Records: Bílina River, Ústí nad Labem [5350], 50°39'28"N / 14°02'31"E, lgt. A (2007), det. JSy (2008); Mlýnský Brook, Litovel [6368], 49°41'58"N / 17°04'08"E, lgt. JSy, det. JSy (2008) (Figure 2). Habitats: The species was recorded in slow running waters located in the lowlands of the country. Status: Piscicola cf. haranti is reported in this paper to be a new record for the Czech Republic. The first two records of this species in the country were collected from the Morava (March) and Labe (Elbe) River basins, and indicate its possible wider distribution in the country. Over the last 20 years this species has likely been slowly expanding its range throughout central Europe. Piscicola respirans Troschel, 1850 Synonym: Cystobranchus respirans Brumpt, 1900 Records: Lukovský Brook, Luková [6165], 49˚52'10"N / 16˚37'39"E, lgt. SV (2007), det. PK (2008); Morava River, Moravičany [6267], 49˚45'19"N / 16˚58'32"E, lgt. SV (2006), det. PK (2008); Vlára River, Svatý Štěpán [6974], 49˚02’05”N / 18˚03’03”E, lgt. PK (2007), det. PK (2008) (Figure 2). Habitats: Piscicola respirans has been collected from small to medium-sized rivers and brooks, located in low or mid-elevations (250–400 m a.s.l.) of the country. Similar to P. geometra, P. respirans is most commonly collected from its fish host; it is rarely present in general macrobenthic samples. Status: Recent records for this species suggest that P. respirans is a rare species with a scattered distribution in the Czech Republic. All recent records for P. respirans are from the Morava River basin. Family: Haemopidae Haemopis sanguisuga (Linnaeus, 1758) Habitats and status: Haemopis sanguisuga has been found in small and medium sized running waters, small shallow ponds and pools, and often on wet soil next to these water bodies. Preference for habitats in higher elevations in Central Europe was reported by Košel (1982). Although infrequently collected in the Czech Republic, the current distribution of this species likely has been under-estimated due to its semi-aquatic life style and insufficient survey effort in its preferred habitats. TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 2227 © 2009 Magnolia Press · 43CHECK-LIST OF HIRUDINIDA OF THE CZECH REPUBLIC Family: Hirudinidae Hirudo medicinalis Linnaeus, 1758 Records: Černá jezera – Dyje River dead arm, Břeclav [7267], 48°43'09"N / 16°54'22"E, lgt. JP, det. JSy (2008); Kačení Louka Pool, Moravičany [6267], lgt. MB, det. MB (1998, 2003), lgt. MŠ, det. MŠ (2008); Kutnar Pond, Rakvice [7166], 48°50'11"N / 16°47'34"E, lgt. JSy, det. JSy (2006); Milotický Pond, Milotice [7068], 48°57'47"N / 17°09'15"E, lgt. JSc, JSy, GČ, det. JSc (2008); Pastvisko Pool, Lednice [7166], 48°48'30"N / 16°47'53"E, (Sukop 2004), lgt. JSc, NK, det. JSc (2005), lgt. JSc, MŠ, NK, JSy, det. JSc (2006), lgt. JSc, JSy, MS, det. JSc (2007), lgt. JSc, JSy, MS, det. JSc (2008); pond, Ostrovec [6550], lgt. MŠ, det. MŠ (2008); pond, Varvažov [6550], lgt. MŠ, det. MŠ (2008); Sekulská Morava (Morava River dead arm), Lanžhot [7367], 48°37'39"N / 16°57'12"E, lgt. JSc, JSy, NK, det. JSc (2008); Zámecký Pond, Lednice [7166], 48°48'46"N / 16°48'32"E, lgt. JSy, det. JSy (2006), lgt. JSc, JSy, MS, det. JSc (2008) (Figure 3). Habitats: Hirudo medicinalis was found in shallow stagnant lowland water bodies with abundant vegetation, stable water levels, and presence of amphibian and mammal hosts for juveniles and adults, respectively. All localities were in rather temperate climatic conditions. Status: Hirudo medicinalis is a critically endangered species in the Czech Republic (Schenková & Košel 2005) due to intensive agri- and aquaculture in the country, which has resulted in extensive destruction of natural wetlands by drainage and flood-control management. Further loss of critical habitat for this species has resulted from intensive fishery and recreation in the few remaining unaltered wetlands, ponds, and small pools in the country. Based on authors’ monitoring experiences, the intensive mud removal by heavy machinery in the Czech Republic has had destructive impact on H. medicinalis populations. Isolated pools that historically supported populations of medicinal leeches have failed to yield specimens after mud removal operations have been conducted. Recent distributional records for this species in the Czech Republic have been limited to only a few localities in southern and middle Moravia and southern Bohemia. Family: Erpobdellidae Dina lineata (O.F. Müller, 1774) Records: Dyje River dead arm, Břeclav [7267], 48°43'09"N / 16°54'22"E, lgt. JSy, det. JSy (2008); Myšník Pond, Častotice [6762], 49°14'12"N / 16°06'13"E, lgt. JS (2006), det. JS (2008); Ohře River, Terezín [5450], 50°30'06"N / 14°09'39"E, lgt. IS, det. IS (2005); Opatovický Brook, Ústí [6472], 49°31'19"N / 17°45'48"E, lgt. PK, SV, det. PK (2008); Panenská Pool, Nové Mlýny [7166], 48°50'41''N / 16°43'40''E, (Košel 1999a); Radičeveská strouha Brook, Trnovany [5647], 50°19'00"N / 13°35'54"E, lgt. IS, det. IS (2006); Reslava River, Pomezí nad Ohří [5939], 50°05'31"N / 12°15'07"E, lgt. IS, det. IS (2005); Soutěska Spring, Pavlovské vrchy [7165], 48°51'39''N / 16°38'46''E, (Košel 1999a); Skluzavka Pool, Plošiny [7267], 48°44'17''N / 16°53'19''E, (Košel 1999a); Sviní Brook, Kozlíky [5349], 50°36'43"N / 13°53'11"E, lgt. IS, det. IS (2005) (Figure 3). Habitats: Dina lineata occurs in smaller or medium-sized stagnant and running water bodies or in springs in lowlands (150–250 m a.s.l.); rarely also in pond or river littorals in mid-elevations (about 450 m a.s.l.). Status: Dina lineata is a rare species in natural habitats and commonly collected only in some lowland areas of the Czech Republic. TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. SCHENKOVÁ ET AL.44 · Zootaxa 2227 © 2009 Magnolia Press Dina punctata Johansson, 1927 Records: Dyje River, Podhradí [7159], 48°53'29''N / 15°38'30''E, lgt. PK, SV, det. JSc (2007); Lužnice River, České Velenice [7255], 48°45'53"N / 14°58'03"E, lgt. JR, det. JR (2007); Otava River, Katovice [6748], 49°16'22"N / 13°49'22"E, lgt. KK, det KK (2007) (Figure 3). Habitats: Dina punctata lives in littoral zones of larger rivers and brooks. Status: Dina punctata is reported in this paper to be a new species record for the Czech Republic. This species likely has spread into the country from the Dunaj (Danube) River basin, where it is more common. This is the case of the occurrence in the Dyje (Thaya) River. Its occurrences in southern Bohemia (in the Vltava River basin) need additional documentation. Other new records can be expected, especially in the southern part of the country. FIGURE 3. The distribution of selected leech species (Annelida, Clitellata, Hirudinida: the families Hirudinidae and Erpobdellidae) in the Czech Republic recorded during the years 1998 through 2008, based upon published and unpublished records, and specimens collected during this study. TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 2227 © 2009 Magnolia Press · 45CHECK-LIST OF HIRUDINIDA OF THE CZECH REPUBLIC Erpobdella nigricollis (Brandes, 1900) Records: Bílina River, Brozánky [5349], 50°36'35" / 13°56'25", lgt. JSy, det. JSy (2007); Bílina River, Hostomice [5448], 50°35'23"N / 13°49'36"E, lgt. JSy, det. JSy (2007); Bílina River, Kozlíky [5355], 50°36'41"N / 13°52'59"E, lgt. JSy, det. JSy (2007); Bílina River, Lbín [5349], 50°36'20"N / 13°51'32"E, lgt. JSy, det. JSy (2007); Bílina River, Stadice [5349], 50°37'08"N / 13°58'02"E, lgt. JSy, det. JSy (2007); Bílina River, Ústí nad Labem [5350], 50°39'27"N / 14°02'28"E, lgt. A (2007), det. JSy (2008), lgt. EP, det. EP (2008); Dyje River, Břeclav [7166], 48°48'40''N / 16°48'59''E, (Košel 1999a); Dyje River, Břeclav [7267], 48°46'22''N / 16°52'43''E, (Košel 1999a); Holínková dead arm, Rakvice [7166], 48°50'08''N / 16°48'06''E, (Košel 1999a); Káča Brook, Hořátev [5856], 50°08'33"N / 15°02'25"E, lgt. A, det. JSy (2006); Kamenice River, Nekrasín [7053], 49°13'20"N / 15°04'29"E, lgt. A, det. FK (1998); Kyjovka River, Lanžhot [7367], 48°41'26"N / 16°57'07"E, lgt. A, det. NK (2006); Labe River, Děčín [5251], 50°46'09"N / 14°12'45"E, lgt. JH, NL, det. VK (1999, 2003); Labe River, Hradec Králové [5760], 50°12'20"N / 15°49'29"E, lgt. A, det. EP (2007); Labe River, Hřensko [5151], 50°52'24"N / 14°14'07"E, lgt. JH, NL, det. JH (1999); Labe River, Lysá [5855], 50°10'49"N / 14°50'08"E, lgt. JH, NL, det. JH (2002); Labe River, Obříství [5652], 50°18'12"N / 14°29'08"E, lgt. JH, NL, det. JH (1999); Labe River, Obříství [5752], 50°17'54"N / 14°28'55"E, lgt. A, det. EP (2007); Labe River, Valy [5959], 50°01'58"N / 15°37'05"E, lgt. JH, NL, det. JH (1999, 2002, 2005); Lužnice River, Bechyně [6752], 49°17'29"N / 14°28'18"E, lgt. A, det. FK (1998); Lužnice River, Roudná [6854], 49°18'59"N / 14°43'21"E, lgt. A, det. FK (1998); Lužnice River, Vlkov [6756], 49°09'41"N / 14°43'18"E, lgt. A, det. FK (1998); Moravice River, Opava [6073], 49°55'38"N / 17°56'44"E, lgt. A, det. NK (2006); Mže River, Stříbro [6244], 49°45'14"N / 13°00'36"E, lgt. A, det. EP (2007); Odra River, Bohumín [6075], 49°55'04"N / 18°19'27"E, lgt. A, det. EP (2007), lgt. A, det. EP (2008); Odra River, Ostrava [6175], 49°49'13"N / 18°13'03"E, lgt. A, det. EP (2008); Olše River, Kopytov [6076], 49°56'49"N / 18°20'07"E, lgt. A, det. NK (2006); Opava River, Třebovice [6175], 49°49'57"N / 18°13'10"E, lgt. A, det. EP (2007); Oskava River, Pňovice [6268], 49°43'11"N / 17°09'37"E, lgt. A, det. EP (2007); Ostružná River, Sušice [6747], 49°15'18"N / 13°33'01"E, lgt. A, det. FK (1998); Otava River, Topělec [6650], 49°21'00"N / 14°08'40"E, lgt. A, det. NK (2006); Ploučnice River, Děčín [5251], 50°46'32"N / 14°12'30"E, lgt. A, det JSy (2006); Pšovka River, Kokořín [5553], 50°26'47"N / 14°34'41"E, (Košel & Beran 2006); Rokytka River, Strašín [6054], 49°59'59"N / 14°41'12"E, lgt. A, det. JSy (2006); Sázava River, Soběšín [6255], 49°47'55"N / 14°57'19"E, lgt. A, det. FK (1998); Sázava River, Utín [6360], 49°36'09"N / 15°40'01"E, lgt. A, det. FK (1998); Sázava River, Zruč nad Sázavou [6256], 49°44'32"N / 15°06'06"E,lgt. A, det. NK (2006); Senice River, Leskovec [6773], 49°16'52"N / 17°59'16"E, lgt. A, det. FK (2000); Smutná River, Bechyně [6654], 49°18'33"N / 14°27'38"E, lgt. A, det. FK (1998); Svratka River, Rajhrad [6965], 49°05'35"N / 16°37'10"E, lgt. A, det. EP (2007); Šlapanka Brook, Věžnice [6460], 49°30'56"N / 15°41'06"E, lgt. JH, NL, det. JH (2006); Tichá Orlice River, Kunčice [5965], 50°00'33"N / 16°32'15"E, lgt. A, det. FK (2000); Úhlava River, Dubová Lhota [6645], 49°20'10"N / 13°11'24"E, lgt. A, det. FK (1999); Úpa River, Jaroměř [5661], 50°21'24"N / 15°55'53"E, lgt. A, det. EP (2007); Úslava River, Vilémov [6447], 49°32'40"N / 13°36'08"E, lgt. A, det. FK (1999); Vltava River, Praha Podolí [5952], 50°03'21"N / 14°24'60"E, lgt. JH, NL, det. VK (2003) JH (1999, 2002, 2005); Vltava River, Podolí [5952], 50°03'01"N / 14°24'47"E, lgt. A, det. EP (2007); Vltava River, Praha Trója [5951], 50°04'06"N / 14°15'00"E, lgt. JH, NL, det. JH (2006, 2007); Vltava River, Zelčín [5652], 50°19'09"N / 14°23'56"E, lgt. JH, NL, det. VK (2003) JH (1999, 2002, 2005); Zákolanský Brook, Kováry [5851], 50°11'27"N / 14°15'52"E, lgt. JH, NL, det. JH (2006, 2007) (Figure 3). Habitats: Erpobdella nigricollis is an inhabitant of large- or medium-sized running waters, where it occurs frequently with (although less abundantly than) Erpobdella octoculata. Status: The distribution of E. nigricollis in the Czech Republic is scattered throughout the entire country, especially in lowland habitats; however, it seems to be absent from habitats located at higher elevations (over 500 m a.s.l.). TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. SCHENKOVÁ ET AL.46 · Zootaxa 2227 © 2009 Magnolia Press Erpobdella octoculata (Linnaeus, 1758) Habitats and status: Erpobdella octoculata is a very common leech species in all types of both running and stagnant waters throughout the Czech Republic. It is less abundant in running waters at higher elevations, where Erpobdella vilnensis is more commonly collected. Erpobdella testacea (Savigny, 1822) Records: Nesyt Pond, Lednice [7266], 48°46'48''N / 16°43'25''E, (Košel 1999a) (Figure 3). Habitats: The occurrence of Erpobdella testacea is restricted to lowland stagnant waters; to date, this species had been recorded from only one pond located in the south-eastern part of Czech Republic. Status: Although Erpobdella testacea is one of several species that are difficult to identify, it is nonetheless considered to be very rare in the Czech Republic; thus, we recommend a certain degree of protection for this species until further studies can establish its true status in the country. Erpobdella vilnensis (Liskiewicz, 1925) Habitats and status: Erpobdella vilnensis is common in the Czech Republic, especially in smaller brooks and springs or in the littoral areas of ponds occurring in the mid and higher elevations (usually over 350 m a.s.l.). It is distributed throughout the country and can be locally very abundant. Trocheta cylindrica Örley, 1886 Synonym: Trocheta bykowskii Gedroyč 1913 Records: Blazický Brook, Loukov [6572], 49°24'23"N / 17°43'05"E, lgt. A, det. JSy (2006); Brook, Halenkov [6775], 49˚16'33''N / 18˚10'43''E, lgt. JK (2006), det. JSy (2008); Brook, Trojanovice [6575], 49˚29'58''N / 18˚12'25''E, lgt. JK (2007), det. JSy (2008); Malše River, Straňany [7153], 48°53'14''N / 14°30'42''E, lgt. A, det. FK (1998) Bystrý Brook, Řeka [6377], 49˚37'16''N / 18˚36'09''E, lgt. JK, det. JSy (2008); Javorový Brook, Rovné [6377], 49˚37'38''N / 18˚36'57''E, lgt. JK (2007), det. JSy (2008); Malá Ráztoka Brook, Trojanovice [6575], 49˚29'57''N / 18˚15'56''E, lgt. JK, det. JSy (2008); Malá Tisová Brook, Halenkov [6774], 49˚16'29''N / 18˚08'38''E, lgt. JK, det. JSy (2008); Moravská Sázava River, Rájec [6167], 49°51'43"N / 16°54'46"E, lgt. A, det. NK (2006); Oskava River, Pňovice [6268], 49°43'11"N / 17°09'38"E, lgt. A (2007), det JSy (2008); Sázava River, Štukheilský Mlýn [6360], 49°36'09''N / 15°40'02''E, lgt. A, det. FK (1998); Skluzavka Pool, Plošiny [7267], 48°44'17''N / 16°53'19''E, (Košel 1999a); springbrook, Bukovec [6479], 49°32'51''N / 18°51'24''E, lgt. JB, det. JSy, (2005, 2006); Svitava River, Brno [6865], 49°08'35"N / 16°37'44"E, lgt. A., det. JSy (2008); Trnávka River, Hrobice [6772], 49°16'14''N / 17°49'30''E, lgt. A, det. FK (2000); Vlára River, Brumov [6974], 49°02'16"N / 18°03'04"E, lgt. A, det. NK (2006); Vsetínská Bečva River, Velké Karlovice [6675], 49°21'45"N / 18°18'09"E, lgt. A (2008), det. JSc (2009); Zaplavená Pool, Lubeš [7167], 48°48'12''N / 16°50'14''E, (Košel 1999a); Žábronožková Pool, Lanžhot [7267], 48°46'05''N / 16°52'08''E, (Košel 1999a); Živkovský Brook, Břeclav [7267], 48°47'30"N/16°52'32"E, lgt. A, det. JSy (2006) (Figure 3). Habitats: Trocheta cylindrica has commonly been collected in the Czech Republic from springs, and from small brooks at higher elevations (up to 900 m a.s.l.). Other records of this species were reported from lowland pools and wetlands, and (although less frequently) from larger rivers. Status: Trocheta cylindrica has a limited distribution in the Czech Republic; most of the records to date are from localities in eastern Moravia. Although infrequently collected in the Czech Republic, the current TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 2227 © 2009 Magnolia Press · 47CHECK-LIST OF HIRUDINIDA OF THE CZECH REPUBLIC distribution of this species likely has been under-estimated due to its semi-aquatic life style and insufficient survey effort in its preferred habitats. Discussion Geographically, the Czech Republic is situated in the centre of Europe (Figure 1), on the watersheds of the Labe (Elbe), Dunaj (Danube), and Odra (Oder) Rivers; each of these major watersheds serve as ‘avenues’ for leech distribution. Elevations throughout the country range from 120 to 1600 m, with a mean elevation of about 430 m. Czech leeches (Hirudinida) can be classified into three groups according to population strength and increasing or decreasing number of localities: 1) indigenous species with stable and strong populations – those with records from many sites throughout the country; 2) indigenous species with weak populations – those known from only a limited number of localities in the country; and 3) species recently recorded in the Czech Republic – those which have passively spread or have been introduced (in one or more ways) into the Czech Republic. Group 1. Various kinds of water bodies in the Czech Republic provide optimal conditions for most species of leeches known to occur in the country—indigenous species representing the European, Palaearctic fauna with historical records and stable populations. Alboglossiphonia heteroclita, Glossiphonia complanata, Helobdella stagnalis, Hemiclepsis marginata, Theromyzon tessulatum, Piscicola geometra, Haemopis sanguisuga, Erpobdella octoculata and E. vilnensis belong to this first group. Three other species are now included in this group: Glossiphonia concolor, G. nebulosa, and Erpobdella nigricollis. Previously considered to be rare in this country, these three species are now considered common due to the accurate identification of specimens and presence in the diversity of localities that have been surveyed for the presence of leeches. Group 2. The second group includes species considered historically extant in the Czech territory (mostly those considered to be restricted to several finite areas or habitats based upon historical records), but now considered to be a declining or more restricted species in the country based upon a limited number of records and/or specimens collected during this and other recent studies. The most important region for thermophilous leeches is the southernmost part of the Czech Republic, particularly in southern Moravia near the confluence of the Morava (March) and Dyje (Thaya) Rivers; this area lies biogeographically within the Pannonian Basin. In the cases of Alboglossiphonia hyalina and Alboglossiphonia striata, we have recorded an increase in reports of these two species in the Czech Republic—likely attributable to their recent separation, taxonomically, from Alboglossiphonia heteroclita (Trontelj 1997, Neubert & Nesemann 1999). In fact, A. hyalina and A. striata are probably indigenous to Central Europe. Very little is yet known about their ecology, but neither ever occurs in large populations. Because records of A. hyalina are limited in the Czech Republic, we suggest that this species be considered for listing as vulnerable. The distribution records for A. striata in this country are quite limited, and we believe this species to be threatened. Because we are aware of only two recent records of A. striata from the southeastern part of the country, we believe this species should be considered for listing as endangered. Of the species restricted to the Southern Moravia, only Glossiphonia slovaca is considered vulnerable (Schenková & Košel 2005). This species occurs mainly in running waters (all of our records come from the lower reaches of the Dyje River), although its occurrence is also likely in river branches and ponds. We believe this species to now be extirpated from the Morava River above its confluence with the Dyje River (Košel 1995, 1999b). Southern Moravia represents the northernmost limit of the current known distribution of G. slovaca (Grosser & Nesemann 2004). TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. SCHENKOVÁ ET AL.48 · Zootaxa 2227 © 2009 Magnolia Press Dina lineata is another rare species with a limited distribution in the Czech Republic; recent records come mainly from southern Moravia and western Bohemia. This species has only been recorded in smaller brooks, in stagnant, often temporal bodies, and in springs. To date, the known distribution of Dina lineata in the Czech Republic is based upon only a few specimens; most of these were recorded from unique and sensitive habitats. The limited known distribution and restricted habitats in which this rare species seems to occur provides plausible support for the listing of Dina lineata as vulnerable in the country. Another amphibious species, Trocheta cylindrica, is known from only a few scattered localities, primarily springs and small brooks, and (less frequently) from pools and slow running rivers. Although large populations of T. cylindrica have been recorded in its preferred habitat, its apparent restriction to unique and finite localities in the Czech Republic supports assignment of this species to vulnerable status. Hirudo medicinalis represents a unique case. It is a critically endangered species (Schenková & Košel 2005), yet has a historical distribution covering larger areas in the Morava and Labe River basins —with records of its broad distribution documented in several publications in the early and mid-20th century (Zavřel 1923, Hrabě 1936, Blažka 1958, 1960). Intensive collection pressure on natural populations of Hirudo medicinalis for use in a variety of medical applications has resulted in reductions—sometimes even decimation—of previously strong, naturally occurring populations of this species in the Czech Republic and elsewhere in Europe. The dramatic decrease in abundance of this species can also be attributed to the significant increase in intensive agri- and aquaculture activities in the Czech Republic (especially widespread and uncontrolled drainage of land) leading to the destruction of preferred habitats. This decrease in populations of H. medicinalis in the Czech Republic is quite obvious when compared to populations of this species in some other European countries, e.g., Poland (Buczyńsky 2003). During this present survey, H. medicinalis was recorded at only nine localities in the Czech Republic, most of them restricted to the Morava and Dyje River basins. Nevertheless, regular monitoring of H. medicinalis over the last five years—using specific, quantifiable methods for surveying and capture of specimens—has resulted in additional distributional information and new habitat preferences for this species. Our study of this critically endangered species in the Czech Republic is continuing. A closely related thermophilous species, Hirudo verbana Carena 1820, occurs in Austria and Hungary (Neubert & Nesemann 1999), which are located (respectively) south and east of the Czech Republic. This species, however, has not yet been recorded—either historically or during this and other recent studies— within the Czech Republic. Several records of H. verbana, especially those from Western Europe, are likely specimens that were obtained (or had escaped from) commercial cultures. Hirudo medicinalis and H. verbana can easily be distinguished from one another by comparison of their ventral color patterns: dark spots are present on H. medicinalis, but absent from H. verbana. Another uncommon species, Piscicola respirans, was recorded sporadically from several medium-sized rivers and brooks, within the Morava River basin only. Its preference for running water habitats at higher elevations (Neubert & Nesemann 1999, Košel 2001) was not confirmed during this study. Because of its scarceness, we believe this species should be considered vulnerable. The collection of P. respirans from fish hosts would most likely provide additional information about its distribution. Piscicola fasciata, a very uncommon species, to date, it has only been recorded in the Czech Republic by Lucký & Dyk (1964). This species is probably more common in the country than presently known from verifiable records, because it lives permanently attached to its catfish host, and thus has not been collected via the methodologies used for most free-living leeches during this eleven-year study. We expect to document the presence of P. faciata in the Czech Republic in the near future. Erpobdella testacea represents a very rare species, based upon a single known record from the southeastern part of the country. This species used to be reported from more stagnant water bodies in this area (Vojtek et al. 1967, Koubková & Vojtková 1973); the reason for its recent low occurrence, however, is still unknown. For this reason we suggest assignment of endangered status for Erpobdella testacea. Group 3. The third group includes leeches only recently recorded in the Czech Republic, with an increasing number of localities. For these species, there are no historical records from the Czech Republic. TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 2227 © 2009 Magnolia Press · 49CHECK-LIST OF HIRUDINIDA OF THE CZECH REPUBLIC One species—Caspiobdella fadejewi—had been reported only once from the country prior to this study. Two species are reported for the first time in the country—Piscicola cf. haranti and Dina punctata. Caspiobdella fadejewi, non-indigenous species of Ponto-Caspian origin, is quickly spreading throughout central Europe up the Dunaj River. It is a parasitic species that uses its hosts (several fish species) for transport. Since the 1980s, this species has been recorded in Poland, Austria, Germany and the Netherlands (Tittizer et al. 2000, Bij de Vaate et al. 2002, van Haaren et al. 2004). Today, C. fadejewi is the dominant piscicolid species in the Austrian part of the Dunaj River, and it has also been reported from many localities in the Dunaj and Rhein (Rhine) River basins in Germany. In the Czech Republic, it was initially recorded in the 1990s in the vicinity of the Morava-Dyje confluence (Košel 1998, 1999a) and it has recently spread into various slow flowing larger rivers in the Morava, Odra, and Labe River basins. Caspiobdella fadejewi is often more frequent than Piscicola geometra in macrozoobenthos samples, because it spends more time apart its fish host. In the same habitats, these two species are probably mutually exclusive (Jueg et al. 2004). Piscicola cf. haranti, reported here as a new record for the Czech Republic, is also thought to be spreading throughout central Europe based upon recent records. The origin and mode of distribution of this species, however, is still unclear. Recent records of this species are from Romania, Hungary, Austria, and Germany (from the Dunaj River), and more recently from the Rhein River basin (Neubert & Nesemann 1999, Tittizer et al. 2000, Jueg et al. 2004). Unfortunately, the original description of P. haranti by Jarry in 1960 was based only on the external morphology of specimens collected from a single locality—a spring in southern France. Given the dissimilarity of 1) the habitats in which populations of P. haranti (as originally described by Jarry in 1960) and P. cf. haranti (as reported from our surveys in the Czech Republic and from other records included herein), and 2) the distance of these two populations from one another, it is possible that these two taxa could in fact be different species. In consideration of its probable Dunaj basin origin, our record of this taxon from the Labe River basin is remarkable. This species appears to be more widespread than previously thought. Furthermore, there is the possibility of confusion with its congener, P. geometra. Dina punctata, recently reported as a new species for the country, can be considered a non-indigenous species that has been spreading into the Czech Republic from the west—likely from the Rhein River basin (Germany) through the Main River and floating channel to the Dunaj River. From the Dunaj, D. punctata has moved upstream into its tributaries, initially into the Slovak part of the Morava River (Košel 1999b), then more recently into the Dyje River in Vranov. During the eight years since it was first recorded in Slovakia, the species has moved about one hundred km upstream into the Dyje River. Two other Czech localities for D. punctata were found in southern Bohemia— both in upper parts of the Vltava River basin. The occurrence of this species in this region is still somewhat of a surprise. Because of its possible semi-aquatic life-style, we can speculate about its terrestrial spread from near situated brooks in the Dunaj River basin, where this species was previously recorded (Nesemann 1997). One possible explanation is that young D. punctata specimens are transported by waterfowl. Additional specimens of D. punctata collected from the lower parts of the Vltava or the Labe River basins may provide us with insight into this question. Its current northern distribution probably extends into, but not north of, the Czech Republic. According to the observations of this species in Slovakia, D. punctata seems to be an invasive and aggressive species, which can negatively influence the indigenous leech community (personal observation), and thus we expect more specimens to be collected from areas in the Czech Republic in the future. In general, the most diverse leech fauna in the Czech Republic has been recorded in southern Moravia, mainly in the vicinity of the Morava-Dyje confluence—an area into which some species (e.g., Glossiphonia slovaca) are known to have spread from south-eastern Europe. Other species such as Batracobdelloides moogi Nesemann & Csányi 1995 and Glossiphonia verrucata (Fr. Müller 1844) were found not far from the Czech border, and likely will be collected in the country in the near future. We also expect a recently confirmed species, Haemopis elegans Moquin-Tandon, 1846, to eventually spread into the Czech Republic; to date, H. elegans has been reported from Austria, Hungary, Slovenia and Germany (Grosser 2004a, Grosser & Neseman 2004). TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. SCHENKOVÁ ET AL.50 · Zootaxa 2227 © 2009 Magnolia Press Most of the records for leeches discussed in this paper were collected during recent monitoring programs of running waters in the Czech Republic, conducted over the last 11 years (1998 through 2008). Additional research focusing specifically on wetlands and habitats associated with smaller stagnant water bodies is necessary to increase our knowledge of leech distributions in the Czech Republic and elsewhere in Europe. As is true for other invertebrates, the conservation and legal protection of critical habitats used by threatened species is the most effective protection for leeches. Most of the threatened species of leeches are inhabitants of lowland wetlands and larger lowland rivers, usually those with aquatic macrophytes. These habitats are often heavily impacted by human activities throughout central Europe, usually with negative and often irreversible results. Leeches are usually not very sensitive to moderate changes and fluctuations in water quality; however, their populations have been declining steadily, often drastically, because of the destruction of their preferred habitats, or because of other unsuitable or incompatible influences there. Therefore, habitats with extensive and perennial populations of vulnerable, threatened, and/or rare leech species should be strictly protected; only carefully designed, well-managed, and regularly monitored construction projects should be permitted. Conclusions The check-list of leeches (Hirudinida) of the Czech Republic discussed in this paper and presented in Table 1 includes twenty-four species, reflecting historical and recent records published in the literature, unpublished records, and specimens from collections by the authors during this eleven-year study (1998 through 2008). Two of these—Piscicola cf. haranti and Dina punctata—are reported here as new records for the Czech Republic. Two species—Hirudo medicinalis and Glossiphonia slovaca—are already considered to be threatened species (Schenková & Košel 2005). The results of our research presented in this paper support our recommendation that six additional species be added permanently to the Red list of threatened species in the Czech Republic: four of these – Alboglossiphonia hyalina, Dina lineata, Piscicola respirans, and Trocheta cylindrica—should be listed as “vulnerable”, and two—Alboglossiphonia striata and Erpobdella testacea – should be listed as “endangered” according to IUCN Red List Categories and Criteria (IUCN 1994). Acknowledgments We would like to thank our colleagues J. Bojková, L. Opatřilová, J. Špaček and M. Štambergová and institutions the Agency for Nature Conservation and Landscape Protection of the Czech Republic, the Ministry of the Environment of the Czech Republic, and T. G. Masaryk Water Research Institute for providing specimens and faunistic information from their research projects. We thank L. Tajmrová for checking the language and other improvements. We are much indebted to both reviewers for constructive suggestions and especially to M. J. Wetzel (Illinois Natural History Survey, USA) for improving the English text. The project was supported by Long-term Research Plans from the Ministry of Education, Youth and Sports of the Czech Republic (MSM0021622416) and by the Ministry of the Environment of the Czech Republic (no. 0002071101). Literature cited Bij de Vaate, A., Jazdzewski, K., Ketelaars, H.A.M., Gollasch, S. & Van der Velde, G. (2002) Geographical patterns in range extension of Ponto-Caspian macroinvertebrate species in Europe. Canadian Journal of Fisheries and Aquatic Sciences, 59, 1159–1174. Blažka, P. (1958) The anaerobic metabolism of fish. Physiological Zoology, 31 (2), 117–128. Blažka, P. (1960) O biologiji karasja obyknovennogo (Carassius carassius /L./ morpha humilis Haeckel) [on the biology TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 2227 © 2009 Magnolia Press · 51CHECK-LIST OF HIRUDINIDA OF THE CZECH REPUBLIC of Carassius carassius /L./ morpha humilis Haeckel]. Zoologičeskij zhurnal, 39, 1383–1389. (In Russian with an English summary). Buczyński, P. (2003) Nowe stanowiska pijawki lekarskiej, Hirudo medicinalis [new localities of medicinal leech, Hirudo medicinalis]. Chrońmy Przyrode Ojczysta, 59(3), 86–87. (In Polish) Erséus, C. (2005) Phylogeny of oligochaetous Clitellata. Hydrobiologia, 535/536, 357–372. Grosser, C. (2004a) Haemopis elegans (Hirudinea: Haemopidae) – ein wieder-entdecktes europäisches Egeltaxon [Haemopis elegans (Hirudinea: Haemopidae) – a rediscovered European leech taxon]. Lauterbornia, 52, 77–86. (In German) Grosser, C. (2004b) Rote Liste der Egel (Hirudinae) des Landes Sachsen-Anhalt [red list of leeches (Hirudinae) of Saxony-Anhalt federal state]. Berichte des Landesamtes für Umweltschutz Sachsen-Anhalt, 39, 161–164. (In German) Grosser, C., Heidecke, D. & Moritz, G. (2001) Untersuchungen zur Eignung heimischer Hirudineen als Bioindikatoren für Fließgewässer [research of bioindicator suitability of indigenous leech species in running waters] Hercynia N. F., 34, 101–127. (In German) Grosser, C. & Nesemann, H. (2004) Engänzungen zur “Süßwasserfauna von Mitteleuropa 6/2: Annelida, Clitellata: Branchiobdellida, Acanthobdellea, Hirudinea“ [completions of “Süßwasserfauna von Mitteleuropa 6/2: Annelida, Clitellata: Branchiobdellida, Acanthobdellea, Hirudinea“] Lauterbornia, 52, 27–32. (In German) van Haaren, T., Hop, H., Soes, M. & Tempelman, D. (2004) The freshwater leeches (Hirudinea) of the Netherlands. Lauterbornia, 52, 113–131. Horecký, J., Stuchlík, E., Liška, M., Beran, L., Lapšanská, N., Chvojka, P., Hořická, Z., Matěna, J. & Krno, I. (2004) Changes of benthic macroinvertebrate diversity in the Czech part of Labe River. In: Geller, W. et. all (Eds.) 11th Magdeburg Seminar on Waters in Central and Eastern Europe: Assesment, Protection, Management - Proceedings of the international conference 18-22 October 2004 at the UFZ, UFZ, Leipzig, Germany, 236–237. Hrabě, S. (1936) Pijavka lékařská (výskyt na jižní Moravě) [medicinal leech (occurrence in the South Moravia)]. Věda přírodní, 17, 124. (In Czech) Hrabě, S. (1954) Pijavky – Hirudinea. [leeches - Hirudinea] In: Hrabě, S. (Ed.), Klíč k určování zvířeny ČSR. [key to the Czechoslovak fauna] Volume 1, ČSAV, Praha, pp. 321–323. (In Czech) International Union for Conservation of Nature [IUCN], (1994) IUCN Red Lists categories and criteria as approved by 40th Meeting of the IUCN Council. IUCN Gland Switzerland, 21 pp. Jarry, D. (1960) Piscicola haranti n. sp. (Hirudinea). Annales de parasitologie humaine et comparée, 35, 305–315. Jueg, U., Grosser, C. & Bielecki A. (2004) Zur Kenntnis der Fischegelfauna (Hirudinea: Piscicolidae) in Deutschland. [the distribution of fish leeches in Germany (Hirudinea: Piscicolidae) - current state of knowledge]. Lauterbornia, 52, 39–73. (In German) Kokeš, J., Zahrádková, S., Němejcová, D., Hodovský, H., Jarkovský, J. & Soldán, S. (2006) The PERLA system in the Czech Republic: a multivariate approach for assessing the ecological status of running waters. Hydrobiologia, 566, 343–354. Koperski, P. (2005) Testing the suitability of leeches (Hirudinea, Clitellata) for biological assessment of lowland streams. Polish Journal of Ecology, 53 (1), 65–80. Koperski, P. (2006) Relative importance of factors determining diversity and composition of freshwater leech assemblages (Hirudinea; Clitellata): a metaanalysis. Archiv für Hydrobiologie, 166(3), 325–341. Košel, V. (1982) Ecology of leeches (Hirudinea) in the Hornád, Hnilec and Torysa River basin with respect to human activity. Dissertation thesis, Comenius University Bratislava, 200 pp. Košel, V. (1988) Pijavice (Hirudinea) ČSSR a ich využitie v bioindikácii saprobity. [leeches (Hirudinea) and their use in bioindication of saprobity] In Hodnocení bentosu tekoucích vod [the evaluation of running water macrozoobenthos], MLVD ČSR Praha, 61, pp 45–60. (In Slovak) Košel, V. (1995) Dunajské faunistické prvky v dolnej Morave [Danube faunistic elements in lower March River]. In Pellantová, J. (Ed) Zoologické dny Brno 1995 [Zoological Days Brno 1995], Proceedings of the conference, pp. 24. (In Slovak) Košel, V. (1998) Fauna pijavíc (Hirudinea) Českej a Slovenskej republiky a najnovšie taxonomické zmeny. [leeches fauna (Hirudinea) of the Czech and Slovak Republic and current taxonomical changes] In Pellantová, J., Opravilová, V., Pleskačová, A. & Zukal, J. (Eds) Zoologické dny Brno 1998 [Zoological Days Brno 1998], Proceeding of the conference, pp. 26. (In Slovak) Košel, V. (1999a) Annelida: Hirudinea. In Opravilová, V., Vaňhara, J. & Sukop, I. (Eds), Aquatic Invertebrates of the Pálava Biosphere Reserve of UNESCO, Folia Facultatis scientiarium naturalium Universitatis Masarykianae Brunensis, Biologia 101, Masaryk University, Brno, pp. 97–102. Košel, V. (1999b) Rozšírenie dunajských faunistických prvkov v prítokoch Dunaja na Slovensku [distribution of the Danube faunistic elements in the tributaries of the Danube in Slovakia]. In Pellantová, J., Opravilová, V., Pleskačová, A. & Zukal, J. (Eds), Zoologické dny Brno 1999 [Zoological Days Brno 1999], Proceeding of the conference, pp. 32. (In Slovak) TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. SCHENKOVÁ ET AL.52 · Zootaxa 2227 © 2009 Magnolia Press Košel, V. (2001) Hirudinológia pre hydrobiológov v praxi [hirudinology for hydrobiologists in use]. In: Makovinská, J. & Tóthová, L. (Eds), Zborník z hydrobiologického kurzu 2001 [proceedings of hydrobiological course 2001], 26. – 30.3., Rajecké Teplice, pp. 37–54. (In Slovak) Košel, V. & Beran, L. (2006) Pijavice (Hirudinea) CHKO Kokořínsko. Leeches (Hirudinea) of Kokořínsko Protected Lanscape Area. Bohemia centralis, Praha, 27, 85–89. Koubková, B. & Vojtková, L. (1973) K poznání fauny pijavek (Hirudinea) ČSSR [to the knowledge of leeches (Hirudinea) fauna of Czechoslovak Socialist Republic]. Folia Facultatis Scientiarum Naturalium Universitatis Purkianae Brunensis, 14 (6), 103–118. (In Czech) Kubová, N. (2008) Habitatové preference pijavic (Hirudinida) in stagnant waters [habitat preferences of leeches (Hirudinida) in stagnant waters]. Diploma Thesis, Masaryk University, Brno, 77 pp. (In Czech) Lucký, Z. & Dyk, V. (1964) Cizopasníci ryb v řekách a rybnících povodí Odry a Dyje [fish parasites in rivers and ponds in Oder and Thaya River catchment area]. Sborník Vysoké školy zemědělské v Brně, 12, 49–73. (In Czech) Nesemann, H. (1997) Egel und Krebsegel (Clitellata: Hirudinea, Branchiobdellida) Österreichs [leeches and branchiobdellidans (Clitellata: Hirudinea, Branchiobdellida) of Austria]. Ersten Voralberger Malakologischen Gesellschaft, Rankweil, 104 pp. Neubert, E. & Nesemann, H. (1999) Annelida, Clitellata; Branchiobdellida, Acanthobdellea, Hirudinea. Süsswasserfauna von Mitteleuropa, Band 6/2. Spektrum Academischer Verlag, Berlin, 178 pp. Pruner, L. & Míka, P. (1996) Seznam obcí a jejich částí v České republice s čísly mapových polí pro síťové mapování fauny [list of settlements in the Czech Republic with associated map field codes for faunistic grid mapping system]. Klapalekiana, 32, Suppl., 1–175. Schenková, J. & Košel, V. (2005) Hirudinea (pijavice). In: Farkač, J., Král, D. & Škorpík, M. (Eds.), Červený seznam ohrožených druhů České republiky. Bezobratlí [red list of threatened species in the Czech Republic. Invertebrates]. Agentura ochrany přírody a krajiny ČR, Praha, pp. 67–68. Schenková, J., Jarkovský, J. & Helešic, J. (2007) Strategies of coexistence of two species: Erpobdella octoculata and E. vilnensis (Hirudinea: Erpobdellidae). International Review of Hydrobiology, 92(4–5), 527–538. Sládeček, V. & Košel, V. (1984) Indicator value of freshwater leeches (Hirudinea) with a key to the determination of European species. Acta Hydrochimica et Hydrobiologica, 12 (5), 451–461. Siddall, M.E., Apakupakul, K., Burreson, E.M., Coates K.A., Erséus, C., Gelder, S., Källersjö, M. & Trapido-Rosenthal, H. (2001) Validating Livanow: molecular data agree that leeches, branchiobdellidans, and Acanthobdella peledina form a monphyletic group of oligochaetes. Molecular Phylogenetics and Evolution, 21(3), 346–351. Sukop, I. (2004) Zooplankton a zoobentos NPP Pastvisko [zooplankton and zoobenthos of National Nature Monument Pastvisko]. Sborník Mendelovy zemědělské a lesnické univerzity v Brně, 15(4), 149–157. (In Czech) Švec, J. (1960) Příroda jihovýchodní Moravy, Gottwaldov [nature of south-east Moravia]. Přírodovědecký sborník, 1, 187–210. (In Czech) Tittizer, T., Schöll, F., Banning, M., Haybach, A. & Schleuter, M. (2000) Aquatische Neozoen im Makrozoobenthos der Binnenwasserstrassen Deutschlands. [aquatic neozoan invertebrates in the inland water ways of the Federal Republic of Germany]. Lauterbornia, 39, 1–72. (In German) Trontelj, P. (1997) Molekulare Systematik der Egel (Hirudinea): Phylogenetische Analyse nuklearer und mitochondrialer ribosomaler DNA-Sequenzen.- Selbstverlag, Trontelj, Ljubljana, Dissertation thesis, University Tübingen. Vojtek, J., Opravilová, V. & Vojtková, L. (1967) The importance of leeches in the life cycle of the order Strigeidida (Trematoda). Folia parasitologica (Praha), 14, 107-199. Zavřel, J. (1923) K fauně jihomoravských tůní [to the fauna of southern Moravian pools]. Příroda, 16, 144–145. (In Czech) TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. 222 Kubová, N., J. Schenková & M. Horsák, 2013. Environmental determinants of leech assemblage patterns in lotic and lenitic habitats. Limnologica, 43, 516–524. Limnologica 43 (2013) 516–524 Contents lists available at SciVerse ScienceDirect Limnologica journal homepage: www.elsevier.com/locate/limno Environmental determinants of leech assemblage patterns in lotic and lenitic habitats N. Kubová, J. Schenková∗ , M. Horsák Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotláˇrská 2, 61137 Brno, Czech Republic a r t i c l e i n f o Article history: Received 27 November 2012 Received in revised form 27 April 2013 Accepted 2 May 2013 Available online 10 June 2013 Keywords: Hirudinida Species diversity and composition Lotic and lenitic habitats Environmental predictors Prey availability Response curves a b s t r a c t Leeches (Clitellata: Hirudinida) are abundant predators or ecto-parasites inhabiting various freshwater habitats; however many biotic and abiotic drivers of their assemblage patterns have been deduced rather than directly tested. To study species richness and composition changes in leech assemblages, 109 sites of running and stagnant water bodies were sampled in three regions of the Czech Republic in 2007–2010, together with several explanatory variables that are known or expected to be important predictors of leech distribution. In total, 17 species of leeches were recorded, varying between 0–7 and 0–9 species in lotic and lenitic sites, respectively. These differences in species richness of lotic and lenitic sites were highly significant, contrary to the abundances, which varied between 0–283 and 0–295 individuals. The main change in species composition was controlled by water temperature and morphological characteristics (e.g. substrate and cover of macrophytes), mostly reflecting the differences between lotic and lenitic habitats. We found the density of benthos (i.e. prey availability) to be the best predictor of species composition in both lotic and lenitic sites, together with the percentage of canopy cover. However, the other significant predictors (i.e. the substrate and water conductivity found to be significant in lotic sites, and the mean annual temperature and PO4 3− in lenitic sites), differed between these habitats. Other than mean annual temperature and water temperature, which had different effects on species richness in lotic and lenitic sites, there were no other differences between lotic and lenitic sites in terms of how species richness and abundance responded to all other analyzed predictors. Our results stress the importance of prey availability and canopy for leech distribution patterns. Differences in the significant predictors of leech assemblage patterns between lotic and lenitic sites raise fundamental questions about the underlying mechanisms and ecological constraints to leech distribution in these main types of aquatic systems. © 2013 Elsevier GmbH. All rights reserved. Introduction The life strategies of leeches (Clitellata: Hirudinida), bloodsucking ecto-parasites of vertebrates or predators of invertebrates, determine their distribution patterns due to a tight relationship between food availability and leech occurrence (Sawyer, 1974). The importance of prey availability has however only been deduced from other habitat characteristics, such as the chemistry and trophic status of the water, without quantification and/or a detailed statistical evaluation (Pawłowski, 1936; Sandner, 1951; Mann, 1955; Elliott and Mann, 1979). Specific data exist only for some species of which the diet was explored in detail, with the majority of studies being related to Erpobdella octoculata (e.g. Young and Ironmonger, 1979; Dall, 1983; Toman and Dall, 1997; Schenková et al., 2007). Substrate, water depth, type of aquatic habitat and chemical parameters of the waterbody have also been ∗ Corresponding author. Tel.: +420 532146333. E-mail address: schenk@sci.muni.cz (J. Schenková). determined to be the other significant predictors of leech distribution (Sawyer, 1974; Koperski, 2006). As leeches have adapted to most aquatic environments, covering a rich variety of trophic levels from dystrophic to eutrophic aquatic systems (Mann, 1955; Sládeˇcek and Koˇsel, 1984), testing other environmental factors can reveal some important determinants of their distribution patterns. However, other biotic parameters of waterbodies, such as the presence of a canopy or macrophytes, have only exceptionally been considered in ecological studies to date. We are aware only of the work of Koperski (2010) evaluating the effect of riparian vegetation. Several hypotheses that are also unexplored relate to the effect of temperature, which is expected to have a great importance for leech distribution (Sawyer, 1974, 1986; Elliott and Mann, 1979). In the conditions found in central European, leeches are generally described as thermophilous organisms, but without specifying whether higher importance should be given to seasonal variations in water temperature within the habitat (which differ between running and standing waters) or the variation of temperature between sampling sites (mostly correlating with altitude). 0075-9511/$ – see front matter © 2013 Elsevier GmbH. All rights reserved. http://dx.doi.org/10.1016/j.limno.2013.05.001 N. Kubová et al. / Limnologica 43 (2013) 516–524 517 Fig. 1. Map of the Czech Republic showing the position of study areas with all 109 sampling sites. Note that the Bohemian–Moravian Highlands (B–M Highlands) include two distinct local sampling areas. Previous ecological studies on leeches were focused either solely on stagnant (e.g. Young and Ironmonger, 1981; Spelling and Young, 1987) or running waters (e.g. Grosser et al., 2001; Koperski, 2005, 2010). Existing studies summarizing the response of the whole assemblage in various types of water habitats are always focused only on a part of all the potential environmental variables. Descriptive studies summarizing leech data related to a certain geographical area (e.g. Bennike, 1943; Elliott and Mann, 1979; Koˇsel, 1988, 1989; van Haaren, 2004; Schenková et al., 2009) cover mostly habitat characteristics, pollution status and distribution of particular leech species. Other studies emphasize the importance of water chemistry (e.g. Mann, 1955; Grosser et al., 2001) or solely the trophic status of the water (Sládeˇcek and Koˇsel, 1984). Particular attention was given to various water types and their features by Koperski (2006) in his meta-analysis, but unfortunately without any evaluation of water chemistry. Some ecological studies refer to a different geographical range, with only a small overlap with European species (Herrmann, 1970; Moser et al., 2006). In this study, we used a geographically extended data set, covering both lotic and lenitic habitats, accompanied by the sampling of macrozoobenthos as potential prey, in order to segregate the influence of diet availability from the other environmental drivers. Specifically we attempted to: (i) determine the main predictors of species richness and composition of leech assemblages; and (ii) compare the observed assemblage patterns between lotic and lenitic habitats. Methods Study area Sampling sites were located in three different areas (i.e. Bohemian Uplands, the Bohemian–Moravian Highlands and the South Moravia Lowlands), covering the main types of waterbodies in the Czech Republic (Fig. 1). The majority of the waterbodies occurring within these areas (total extent 4320 km2) were sampled. In each area we tried to cover as much as possible of the broad variety of waterbodies in respect to their size (stream width in running waters, total area in stagnant waters), depth, substratum composition, relative cover and composition of the riparian/littoral vegetation. The Bohemian Uplands Protected Landscape Area is characterized by a patchy landscape, composed of fields, pastures and deciduous forests, with the exception of the northern part, which has been affected by brown coal mining. It represents a relatively warm and medium-dry region of a broader range of elevation (Table 1). The ˇZd’árské vrchy Hills (in the northern part of the Bohemian–Moravian Highlands) are covered by spruce forests and meadows, which are irrigated by numerous brooks and small rivers. This region is rather cold and humid and has the highest elevation of all the study sites. The Námˇeˇst’ nad Oslavou territory (the southern part of the Bohemian–Moravian Highlands) is characterized by an undulating landscape, covered by fields and pine forests. Although brooks and rivers are often present there, the most frequent waterbodies are ponds. It is warmer than the northern part of the region, but drier and of lower elevation. The third region, the South Moravia Lowlands, is an agricultural territory, dominated by fields and arable lands; most of the waterbodies studied were to a certain extent organically polluted. This region has the highest mean annual temperature, the lowest elevation and is semi-dry. Field sampling and laboratory work The sampling was carried out from the end of April to the beginning of June in 2007–2010. In total, 109 sites of lotic (51) and lenitic (58) waters were explored. Leeches were collected for 30 min by hand along 10 m of shoreline, including areas of bare shore and riparian/littoral vegetation at each study site. The method applied of collecting by tweezers or with bare hands (Elliott and Mann, 1979; Koˇsel, 1988) was used mainly because leeches were usually tightly attached to the substratum. Leeches were identified in the laboratory, after standardized fixation procedures (Koˇsel, 1988), according to Neubert and Nesemann (1999) and Grosser and Nesemann (2004). Several explanatory variables, which were known or expected to be important predictors of leech distribution, were established for each site: (i) water temperature, dissolved oxygen, water pH and conductivity were measured in the field by portable instruments (WTW Multi 340i/SET) two times in one week, and the mean value was used in the analyses to reduce the effect of shortterm variation; (ii) the concentration of nitrates, ammonia and orthophosphates, total carbon and total nitrogen were determined in the laboratory from water samples; (iii) the GPS position was directly measured in the field and used to determine the altitude and several climatic conditions (i.e. mean annual temperature, mean January and July temperatures, and the annual precipitation), obtained by using overlays of plot locations with a digital elevation model and climatic maps, based on Tolasz (2007), in the ArcGIS 8.3 program (ESRI, 2003); and (iv) water depth was measured in the field, the percentage of canopy and the percentage of the shoreline with riparian/littoral vegetation (macrophytes) were estimated and recorded in the field, and the substrate composition was estimated as a percentage of particle size categories in the field and converted using the phi scale (Hynes, 1970; Gordon et al., 1992). Samples of the macrozoobenthos were collected by three minute kick-sampling using a hand net with 250-␮m mesh size. All mesohabitats at each site were sampled proportionally, i.e. the sampling time given to each mesohabitat corresponded to their proportional representation at the site (Kokeˇs et al., 2006; Kubová and Schenková, 2012). The numbers of dominant taxa of macrozoobenthos (i.e. “Oligochaeta”, Mollusca, Ephemeroptera, Plecoptera, Trichoptera and Chironomidae) were counted and entered into the analyses; other taxa with a very low abundance were excluded from further evaluation. Invertebrate densities were converted on a scale from 1 to 5 (1, up to 150 individuals; 2, 150–300 individuals; 3, 300–500 individuals; 4, 500–1000 individuals; 5, more than 1000 individuals). Data analyses The preference of each species for either lotic or lenitic sites was tested based on a comparison of recorded individuals between the studied lotic and lenitic sites using a Mann–Whitney U test. 518 N. Kubová et al. / Limnologica 43 (2013) 516–524 Table 1 Climatic characteristics of the studied areas. Area Altitude (m a.s.l.) Mean annual temperature (◦ C) Mean January temperature (◦ C) Mean July temperature (◦ C) Precipitation (mm year−1 ) Bohemian Uplands 135–667 6.1–9.1 −3.8 to −0.8 15.7–18.8 488–713 Bohemian–Moravian Highlands ˇZd’árské vrchy Hills 553–719 6.0–6.8 −4.1 to −3.3 15.1–16.1 684–768 Námˇeˇst’ nad Oslavou territory 541–630 6.7–7.9 −3.5 to −2.8 16.5–17.8 355–586 South Moravia Lowlands 161–207 9.0–9.4 −1.9 to −1.5 19.0–19.4 480–504 Differences among number of species, total abundance and all explanatory variables were compared between lotic and lenitic sites using a t-test, as all these variables had a normal distribution (Kolmogorov–Smirnov test, p < 0.05). As all the climatic variables (altitude, temperature and precipitation) were strongly correlated (Spearman’s rank correlations rs > 0.795, p < 0.001), only the mean annual temperature was used in the analysis. The species-by-site matrix was analyzed using Detrended Correspondence Analysis (DCA; detrended by segments) to expose the major compositional gradients in the data. The numbers of individuals were transformed as log(x + 1) to exclude the effect of dominant species; rare species were downweighted according to the recommendations given by Lepˇs and ˇSmilauer (2003). The length of the main gradient (3.31 SD) in the species data was adequate for use in unimodal modelling (ter Braak and Prentice, 1988). To explain the gradients in the species data, the correlations with climate and environmental variables were examined using Spearman correlations (rs), with site scores on the first four DCA axes; a Mann–Whitney U test was used for nominal variables. Sequential Bonferroni corrections of the significance level were used for multiple comparisons of continuous environmental variables (Holm, 1979). Canonical Correspondence Analysis (CCA) and Redundancy Analysis (RDA) with a forward selection procedure and a Monte-Carlo test with 999 permutations were used to reveal the environmental variables that were able to explain a significant portion of variability in the leech data. Generalized Linear Models (GLM; McCullagh and Nelder, 1989), with Poisson family corrected for overdispersion (i.e. quasipoisson) in the data, were used to determine the explanatory variables that were significant for leech species richness and abundance. All variables were entered into the analysis in linear and quadratic shape; the interactions between variables were not included. The accuracy of the final models was checked using distribution of residuals and Cook’s distances. In the case of the existence of two good models for one species, Akaike’s information criterion (AIC) and the number of parameters were used as the deciding parameters (Guisan and Zimmermann, 2000). In order to test dietary preferences, the total abundance of macrozoobenthos and the numbers of “Oligochaeta”, Mollusca, Ephemeroptera, Plecoptera, Trichoptera and Chironomidae were entered stepwise into the analysis. All analyses, except for the DCA, were computed separately for lotic and lenitic sites. Species and environmental data were analyzed using the statistical programs CANOCO (ter Braak and ˇSmilauer, 2002), Statistica (StatSoft Inc., 2001) and R (version 2.10.1; R Development Core Team, 2010). Results In total, 4547 specimens of 17 leech species were collected (Table 2). Table 3 shows the environmental differences between the lotic and lenitic sites studied based on all the explanatory variables. The total abundance per site varied from 0 to 283 and from 0 to 295 individuals at lotic and lenitic sites, respectively. There was no difference between lotic and lenitic sites in terms of total abundance (p = 0.176); however, the abundance of several species differed significantly. Erpobdella vilnensis (p = 0.018) and Glossiphonia complanata (p = 0.042) expressed a significantly higher population size at lotic sites, contrary to Hemiclepsis marginata (p < 0.001) and Theromyzon tessulatum (p < 0.001), which had a higher number recorded at lenitic sites. In contrast to abundance, species numbers differed significantly between lotic and lenitic sites (p < 0.001), varying from 0 to 7 and from 0 to 9 species, respectively (Table 3). The DCA analysis of leech assemblages significantly separated lotic and lenitic sites along the first axis (Mann–Whitney U test, p = 0.038) (Fig. 2). The sample scores on this axis were strongly correlated with water temperature and several morphological variables: phi, macrophytes (positively) and canopy (negatively) (Table 4). The sample scores on the second axis were significantly correlated with the nitrate content (negatively), which represented the water chemistry gradient. The other correlations with the first four DCA axes were weaker and not significant after Bonferroni corrections (Table 4). The CCA analysis revealed significant relationships between the variance in leech compositional data and benthos densities (prey availability), water conductivity (water chemistry) and phi (substratum characteristics) (Table 5). Single RDA analyses, which were run separately for both habitat types, showed that the largest part of the variability in species data was also explained by benthos density: 24% in lotic and 15% in lenitic sites (Table 5). However, other than the percentage of canopy the other significant predictors differed between habitats, with phi and water conductivity found to be significant at lotic sites, and the mean annual temperature and PO4 3− at lenitic sites (Table 5). The type of habitat, along with mean annual temperature, water temperature, density of benthos, substratum composition and canopy significantly affected the species richness of leeches in the whole dataset (p < 0.001). The numbers of species in lotic sites Fig. 2. DCA ordination diagram of study sites positioned on the first two ordination axes, based on leech assemblages of 109 study sites. All species except Hirudo medicinalis, which was an outlier in the ordination space, were plotted. Variables with a significant correlation (p < 0.05) with at least one of the first four DCA axes are shown, and those significant after Bonferroni corrections (p < 0.0026) are in bold. Nominal variables (i.e. lotic or lenitic sites) are displayed as dark triangles. The first four DCA axes explained 16.9, 10.9, 7.0, and 4.4% of the species data variance, respectively. The sum of all eigenvalues was 3.31. N. Kubová et al. / Limnologica 43 (2013) 516–524 519 Table 2 List of recorded leech species with total abundances, number of their records and relative abundance (%) in all sampling sites, with lotic and lenitic sites shown separately. Species Both habitats (n = 109) Lotic habitats (n = 51) Lenitic habitats (n = 58) No. of individ. No. of sites Relative abund. (%) No. of individ. No. of sites Relative abund. (%) No. of individ. No. of sites Relative abund. (%) Alboglossiphonia heteroclita (Linnaeus, 1761) 226 18 4.97 35 5 1.98 191 13 6.98 Alboglossiphonia hyalina (O.F. Müller, 1774) 6 3 0.13 4 2 0.22 2 1 0.07 Alboglossiphonia striata (Apáthy, 1888) 8 4 0.17 3 1 0.17 5 3 0.18 Glossiphonia complanata (Linnaeus, 1758) 188 34 4.13 136 21 7.65 52 13 1.87 Glossiphonia concolor (Apáthy, 1888) 31 10 0.68 13 4 0.73 18 6 0.64 Glossiphonia nebulosa Kalbe, 1964 33 6 0.72 30 4 1.68 3 2 0.10 Helobdella stagnalis (Linnaeus, 1758) 774 58 17.02 187 23 10.52 587 35 21.19 Hemiclepsis marginata (O.F. Müller, 1774) 99 29 2.17 5 5 0.28 94 24 3.39 Theromyzon tessulatum (O.F. Müller, 1774) 43 22 0.94 7 3 0.39 36 19 1.23 Piscicola geometra (Linnaeus, 1758) 22 8 0.48 2 1 0.11 20 7 0.72 Piscicola haranti Jarry, 1960 1 1 0.02 1 1 0.05 0 0 – Haemopis sanguisuga (Linnaeus, 1758) 30 6 0.66 1 1 0.05 29 5 1.04 Hirudo medicinalis Linnaeus, 1758 12 1 0.26 0 0 – 12 1 0.43 Dina lineata (O.F. Müller, 1774) 1 1 0.02 1 1 0.05 0 0 – Erpobdella octoculata (Linnaeus, 1758) 2552 78 56.12 873 27 49.12 1679 51 60.61 Erpobdella testacea (Savigny, 1822) 1 1 0.02 1 1 0.05 0 0 – Erpobdella vilnensis (Liskiewicz, 1925) 520 41 11.43 478 25 26.89 42 16 1.51 Table 3 Descriptive statistics of environmental and response variables, recorded in lotic and lenitic study sites; differences between habitat types were tested by a t-test. Variable p Lotic habitats Lenitic habitats Min Median Max Min Median Max Explanatory variables Altitude (m a.s.l.) n.s. 136 318 719 135 263 708 Mean annual temperature (◦ C) n.s. 6.0 7.7 9.4 6.0 8.0 9.4 Mean January temperature (◦ C) n.s. −4.1 −1.9 −0.8 −4.1 −1.8 −0.9 Mean July temperature (◦ C) n.s. 15.1 17.6 19.4 15.1 17.7 19.4 Annual precipitation (mm) n.s. 485 552 768 480 554 759 Water temperature (◦ C) 0.001 10.5 14.3 22.9 13.3 18.4 26.7 Water pH 0.035 5.4 7.9 9.4 5.6 8.1 10.4 Water conductivity (␮S/cm) n.s. 50 424 2890 45 540 2014 Dissolved oxygen (mg/l) n.s. 3.4 9.8 15.7 2.3 8.9 21.8 Total carbon (mg/l) n.s. 0.5 35.0 290.4 0.7 41.0 125.1 Total nitrogen (mg/l) 0.001 0.7 7.0 20.0 0.1 2.2 18.0 Nitrates (mg/l) 0.001 0.0 13.5 38.4 0.0 1.8 28.1 Ammonium ions (mg/l) 0.046 0.0 0.6 28.5 0.0 0.7 9.4 Phosphates (mg/l) n.s. 0.0 0.2 1.9 0.0 0.1 5.9 Phi 0.028 −5.9 −1.3 8.0 −6.0 2.3 8.0 Water depth (cm) 0.004 15 28 60 21 45 85 Percentage of canopy (%) 0.001 0 30 95 0 10 80 Percentage of macrophytes (%) 0.001 0 0 80 0 20 100 Categorical density of benthos n.s. 1 3 5 1 3 5 Response variables Total abundance n.s. 0 20 183 0 23 295 Species richness 0.001 0 2 7 0 3 9 Table 4 Eigenvalues of the first four axes of the DCA, Spearman’s rank correlations (rs) and the Mann–Whitney U test (M–W) between environmental factors and site scores on the DCA axes. DCA AX1 AX2 AX3 AX4 rs rs rs rs Eigenvalues 0.984 0.863 0.779 0.686 Morphological variables Phi 0.38*** 0.21* n.s. n.s. Macrophytes 0.44*** n.s. n.s. −0.27* Canopy −0.42*** −0.22* n.s. n.s. Density of benthos n.s. n.s. −0.25* n.s. Water temperature 0.45*** n.s. n.s. −0.21* Chemical variables pH 0.25* n.s. n.s. n.s. Nitrates −0.26* −0.34*** n.s. n.s. Total carbon n.s. −0.23* 0.22* n.s. Phosphates −0.22* n.s. 0.24* n.s. Only those factors that significantly correlated with at least one DCA axis are shown. Significant correlations after Bonferroni corrections are in bold (the cut level was p = 0.0026); non-significant (n.s.) correlations are not shown. * Significance level: p < 0.05. *** Significance level: p < 0.001. 520 N. Kubová et al. / Limnologica 43 (2013) 516–524 Table 5 Percentage variance in leech species data explained by each variable in separate canonical correspondence analyses (CCA, all sites) or redundancy analyses (RDAs, lotic or lenitic sites), and the percentage of independent variation explained in a single CCA/RDA for all variables together using the forward selection procedure (FS). Variable CCA – all sites RDA – lotic sites RDA – lenitic sites Expl. var. % Order in FS Expl. var. in FS % Expl. var. % Order in FS Expl. var. in FS % Expl. var. % Order in FS Expl. var. in FS % Density of benthos 13.28* 1 13.28* 24.12** 1 24.12** 15.53** 1 15.53** Conductivity 11.11* 2 11.38* 11.47* 4 11.76* 14.77** 7 n.s. Phi 10.26* 3 10.57* 16.76** 2 11.47* 7.95 6 n.s. Nitrates 10.02* 4 n.s. 1.76* 12 n.s. 6.43 5 n.s. Water temperature 8.67 5 n.s. 11.17 5 n.s. 8.71 9 n.s. pH 8.67 6 n.s. 7.06 8 n.s. 3.03 12 n.s. Mean annual temperature 7.05 7 n.s. 10.0 6 n.s. 14.85** 2 14.77* Canopy 7.32 8 n.s. 11.76* 3 17.9** 14.39** 3 10.22* Phosphates 7.59 9 n.s. 5.59 10 n.s. 12.12* 4 9.85* Total carbon 7.86 10 n.s. 11.47 7 n.s. 7.57 11 n.s. Ammonium ions 7.05 11 n.s. 9.71 9 n.s. 7.19 8 n.s. Total nitrogen 7.32 12 n.s. 5.0 11 n.s. 7.19 10 n.s. The significance (p) of explained variation (expl. var.) was tested using the Monte Carlo test with 999 runs. The order of the variables during forward selection is shown. * Significance level: p < 0.05. ** Significance level: p < 0.01. were controlled by mean annual temperature, water conductivity and canopy, contrary to lenitic sites, with species richness significantly driven by benthos densities, water temperature, canopy and the quantity of ammonium (Table 6). We found that the total abundances of leeches in the whole dataset responded to the same variables as species richness. However, the abundances of leeches at the lotic sites were affected by water temperature, mean annual temperature, substratum composition, concentration of nitrates and canopy (Table 6). At the lenitic sites, the abundances were also associated with mean annual temperature and substratum composition; however, benthos density and the amount of total carbon were revealed as additional significant variables (Table 6). Using response curve modelling, we mostly found consistency in the responses of species richness and abundances to those environmental factors that had a significant effect on the analyzed data (Fig. 3). Other than for mean annual temperature and water temperature, which had different effects on species richness in lotic and lenitic sites, there were no other differences between lotic and lenitic sites in terms of the way in which species richness and abundance responded to all the other analyzed predictors. Discussion Assemblage patterns in the whole dataset Using the whole dataset, we documented significant differences in leech species composition between lotic and lenitic sites, Table 6 Results of the GLM modelling for species richness and total abundance recorded in all sites and in lotic and lenitic sites analyzed separately. Habitat Variable categorical Linear Quadratic p Value Var. expl. % Species richness Positive/negative response Positive/negative response All sites Habitat type 0.001 9.0 + Mean ann. temp. − Mean ann. temp. 0.013 8.7 + Water temp. − Water temp. 0.001 6.8 + Dens. of benthos – 0.002 4.1 − Phi – 0.033 3.4 − Canopy – 0.046 2.9 Lotic sites + Mean ann. temp. − Mean ann. temp. 0.018 10.3 + Conductivity − Conductivity 0.031 8.2 + Canopy – 0.011 3.6 Lenitic sites + Dens. of benthos − Dens. of benthos 0.001 12.1 + Water temp. − Water temp. 0.012 9.0 − Canopy – 0.041 6.5 − Ammonium – 0.047 3.1 Abundance All sites Habitat type 0.024 8.5 + Water temp. − Water temp. 0.001 7.8 + Dens. of benthos – 0.002 5.5 + Canopy − Canopy 0.021 4.3 + Mean ann. temp. − Mean ann. temp. 0.025 4.2 − Phi – 0.034 3.1 Lotic sites + Water temp. − Water temp. 0.006 9.1 + Mean ann. temp. − Mean ann. temp. 0.017 7.1 − Phi – 0.005 6.3 + Nitrates − Nitrates 0.029 4.6 + Canopy – 0.006 2.8 Lenitic sites + Mean ann. temp. − Mean ann. temp. 0.008 7.7 + Dens. of benthos − Dens. of benthos 0.001 6.8 + Phi − Phi 0.023 4.2 + Total carbon – 0.036 2.8 Mean ann. temp., mean annual temperature; water temp., water temperature; dens. of benthos, density of benthos; var. expl., explained variation. In the cases of both linear and quadratic term significant at p = 0.05 based on F test, a lower value of significance is shown. N. Kubová et al. / Limnologica 43 (2013) 516–524 521 Fig. 3. Response curves of species richness and abundance in lotic and lenitic sites against selected significant environmental factors. Significance of curves based on F test: ***p < 0.001; **p < 0.01; *p < 0.05; n.s., not significant. formerly also reported by Mann (1953) and Koperski (2006). Contrary to Koperski (2006, 2010), who distinguished further habitat types within lotic and lenitic waters, we only established these two basic categories in order to obtain gradients of physical–chemical and morphological characteristics that were as wide as possi- ble. Habitat type and several environmental factors, i.e. water temperature, phi (substratum composition), presence of macrophytes, percentage of canopy and nitrates, were found to be important in driving the main compositional changes in leech assemblages (Fig. 2). Variables connected with site morphology – phi value and the presence of macrophytes – increased along the first DCA axis towards lenitic sites, while the canopy variable increased towards lotic sites. It has already been pointed out that the coarser substratum in lotic habitats is generally preferred by leeches (Koperski, 2010). However, in lenitic habitats the fine substratum was accompanied by the presence of macrophytes, which could substitute for the lack of a coarse substratum (Sawyer, 1986). The direct ordination analysis (CCA) confirmed the importance of substratum composition and nitrates; significant effects of water conductivity and prey availability were also determined. However, as most of these important variables significantly differed between the two habitat types (Table 3), it was not possible to segregate the effect of habitat type and these variables based on the whole dataset. It can be concluded that these variables rather serve to define ecological differences between lotic and lenitic waters, which are also important predictors of leech distribution. As leech species composition was controlled by a combination of morphological, climatic, chemical and biological variables, it was not possible to conclude which of them was of higher importance. We therefore analyzed lotic and lenitic sites separately to segregate the effects of these confounding predictors. 522 N. Kubová et al. / Limnologica 43 (2013) 516–524 Comparison between lotic and lenitic habitats We found several important differences in variables that significantly shaped changes in the patterns of leech species composition, as well as species richness and abundance in lotic and lenitic sites. The results from lotic sites were more similar to those based on the whole dataset, suggesting the overall patterns of species composition to be mostly constrained by the lotic assemblages (Table 5). In all three datasets the density of benthos (i.e. prey availability) appeared consistently to be the best explanatory variable of leech species composition. To test the causality of these relationships, we ran separate CCA and RDA models, with all the significant environmental variables (see Table 5) included in each respective model, and tested the significance of benthos density for the residual variation in the leech data. The effect of benthos density was significant in all models (p < 0.05, data not shown). Although this factor also possessed the highest predictive power for changes in species richness at lenitic sites, no significant relationship was found for lotic sites (Table 6). Similar results were also found for the total abundances of leeches. Despite the great importance of prey availability for structuring leech assemblages, we did not determine any indicators of the specific food preferences of leeches as a whole, as has been reported earlier for individual genera, for example Erpobdella (e.g. Dall, 1983; Toman and Dall, 1997) or Helobdella (Davies et al., 1979). Moreover, leech abundance at lenitic sites expressed a clear unimodal response, with a significant decrease of leech abundance with increasing benthos densities (Fig. 3b). This can probably be explained by a compounding effect of organic pollution and high temperatures in lenitic habitats. This was further indicated by a higher percentage of Chironomidae larvae and “Oligochaeta”, suggesting a notable decrease in water quality to levels at which even some of the most tolerant species, Helobdella stagnalis and E. octoculata, were not able to increase their densities. Rather low and non-significant changes in both number of species and of individuals in lotic sites together with changes in prey density (Fig. 3a and b) suggested a presumably higher importance of abiotic variables in lotic habitats. These observations on prey availability are in good concordance with those previously published; however, they either give broader support to these earlier findings or have revealed some new underlying mechanisms. For example, Koperski (2005) found a high influence of phosphates, but only for lotic habitats and on the basis of only eleven sites in three relatively unpolluted rivers. It has previously also been reported that several chemical variables, closely connected with the trophic status of the water (e.g. alkalinity, conductivity, concentration of phosphates, nitrates and oxygen, and various direct indices of trophic status), are significant for leech distribution (e.g. Bennike, 1943; Mann 1955; Herrmann, 1970; Koperski, 2005, 2010). However, it is rather unlikely that these variables would exert a direct effect on the leeches as all of them are more or less linked with prey density and availability. Similar patterns were also obtained in our data, with water conductivity having a significant influence on species composition changes in all three datasets (Table 5). Phosphate content also explained a significant and notable amount of the variations in leech species composition, but only for lenitic sites. However, as mentioned above, it would appear that prey availability is a more important predictor of leech assemblage patterns in lenitic than in lotic sys- tems. We found the surrounding terrestrial vegetation (percentage of canopy) to have an important and previously unreported role for leech species distribution. It explained a high portion of the variations in the species composition data for both lotic and lenitic sites (Table 5). The surrounding terrestrial vegetation cover was also a significant predictor for species richness, but the effects observed in lotic and lenitic sites were opposite to each other. It is likely that the higher canopy at lotic sites, on one hand, probably prevented thermal fluctuations and offered patches of cold water as refuges for running water species (Aguiar et al., 2002; Ebersole et al., 2003), which are less tolerant of higher temperatures. On the other hand, a low canopy can offer suitable warm-water conditions for thermophilous/temperature-tolerant species in lenitic habitats. In contrast to the canopy, the influence of macrophytes was of lower importance, being significant only in the context of the whole dataset (Fig. 2), and probably reflecting the difference between lotic and lenitic habitats. In agreement with this, Koperski (2010) observed no significant effect of riparian vegetation on leech assemblages in running water. As most of the benthic taxa observed in our study were found on the coarse substratum at the bottom rather than on macrophytes, several explanations for this behaviour can be proposed. The underside of stones can be a suitable shelter, reducing the risk of fish predation and/or of being washed away during high flow events (Young and Spelling, 1986). We observed that these microhabitats can also provide rich sources of food, as they supported the highest densities of prey recorded on the river bottom during our sampling. We found a compounding effect of mean annual temperature and water temperature on leech assemblages, with importance differences of these two variables for each habitat type as a result of the different habitat features of lotic and lenitic sites. In lenitic sites, the mean annual (air) temperature explained a significant proportion of the variance in the leech composition data, and was more important than the directly measured water temperature (Table 5). In lotic sites, in contrast, both water and mean annual temperature had almost the same importance, as water temperature was probably more associated with stream morphology and substrate character than it was in lenitic sites. The character of the substrate was one of the most important predictors of compositional changes, but only in lotic sites. When considering species richness, however, opposite results were found for lotic and lenitic sites. There was a significant, but rather flat, response to mean annual temperature at lotic sites (Fig. 3c). In contrast, water temperature had a significant effect on lenitic species richness, presenting a unimodal response (Fig. 3e). Interestingly, we observed a rather narrow range of higher species richness in lotic sites along water temperature, with a maximum of 16 ◦C (based on water temperature range during the sampling), though the response curve was not significant (Fig. 3e). This can only suggest there are possible ecological limits to having a higher number of species towards both ends of the temperature gradient, as some leech species have a thermal threshold for starting reproduction (Bennike, 1943). In warmer sites there was an even sharper drop in species richness, starting from around 20 ◦C, probably caused by a lack of thermophilous/high temperaturetolerant species, which were represented only by E. octoculata, G. complanata and H. stagnalis in our data (Madsen, 1963). Thus, species that prefer simultaneously a higher water current and temperature would appear to be very rare. There is good ecological support for a unimodal response of species richness in lenitic sites along the mean annual temperature (Fig. 3c). Low temperatures are not favourable to most of the species: a negative correlation with altitude in stagnant waters has been reported for some leech species in British lakes (Young and Ironmonger, 1981). In contrast, higher mean annual temperatures, which were reached in the South Moravian sampling sites, are associated with the negative influence of organic pollution (caused by agricultural land-use in the surroundings). Similar limits can also shape the response of leech density along mean annual temperature, which expressed a significant unimodal pattern in both types of waterbodies (Fig. 3d). As reported previously by Koperski (2006), intensity of fish predation is another important controller of leech assemblages; this was not examined in detail in our study. We designed the present N. Kubová et al. / Limnologica 43 (2013) 516–524 523 study to achieve a rather large and representative data set of various freshwater bodies, which presented difficulties to obtain exact data on fish stock for all the lotic and lenitic sites. Thus, we were only able to estimate fish densities in the field (on a six-grade scale from 0, no fish, to 5, high abundance of fish). Using these rather coarse-scale estimates we were not able to determine any significant relationships between leech assemblages and fish densities. Habitat requirements and preferences of study species Most of the central European leech species are often reported as being rather generalist (Sawyer, 1974; Koˇsel, 1988, 1989; Neubert and Nesemann, 1999). Despite the common occurrence of most of the study species in both types of habitats, there were several statistical preferences of some species for one habitat or the other. We observed that four species, E. vilnensis, G. complanata, H. stagnalis and T. tessulatum, significantly preferred only one type of site, although they are able to inhabit either (Elliott and Mann, 1979; Neubert and Nesemann, 1999). These preferences have already been reported by Koperski (2006) for the former two species (which prefer lotic habitats) and by Bennike (1943) for the latter two species (which prefer lenitic habitats), but without an exact statistical evaluation. The rare species Dina lineata and Erpobdella testacea were found only in lotic habitats, though they are reported elsewhere predominantly from lenitic habitats (Elliott and Mann, 1979). This was probably linked to the presence of suitable mesohabitats in the study streams (e.g. muddy bottoms or shallow banks) and favourable water chemistry. The choice of study sites could be another possible explanation of this deviance from its known habitat requirements. However, this seems of low importance, as the observed habitat preferences of frequent species are in good agreement with those previously reported. For example, the common species E. octoculata and H. stagnalis were dominant in both lotic and lenitic habitats, as is generally known. These two species are the most dominant and frequent leech species in the Czech Republic (Koˇsel, 1988) and Europe (Elliott and Mann, 1979; Neubert and Nesemann, 1999). We did not find any significant differences in total abundance between lotic and lenitic sites, but significantly higher numbers of species were recorded in lotic habitats. In contrast to this result, Koperski (2006) recorded a higher diversity in lakes and a lower diversity in rivers and ponds. As there are no natural lakes present in our sampling area, it is difficult to compare these results. It is likely that large and natural lakes can offer a combination of suitable microhabitats and conditions characteristic of both lotic and lenitic habitats. They also possess a unique combination of ecological parameters: they are able to provide high prey availability, but without having a high trophic status. Thus, in order to achieve a better understanding of the processes driving local species richness, a perspective for further research would be to study a broader variety of water types, from springs and marches to large natural lakes. Acknowledgments This research has been supported by the Ministry of Education, Youth and Sports (MSM 0021622416) and MUNI/A/0976/2009. We want to thank Marcela R ˚uˇziˇcková and Stanislav Nˇemejc for their technical assistance. References Aguiar, F.C., Ferreira, M.T., Pinto, P., 2002. Relative influence of environmental variables on macroinvertebrate assemblages from an Iberian basin. J. N. Am. Benthol. Soc. 21, 43–53. Bennike, S.A.B., 1943. Contributions to the ecology and biology of the Danish freshwater leeches (Hirudinea). Folia Limnol. Scand. 2, 1–109. Dall, P.C., 1983. The natural feeding and resource partitioning of Erpobdella octoculata L. and Erpobdella testacea Sav. in Lake Esrom, Denmark. Int. Rev. Ges. Hydrobiol. 68, 473–500. Davies, R.W., Wrona, F.J., Linton, L., 1979. A serological study of prey selection by Helobdella stagnalis (Hirudinoidea). J. Anim. Ecol. 48, 181–194. Ebersole, J.L., Liss, W.J., Frissell, C.A., 2003. Cold water patches in warm streams: physicochemical characteristics and the influence of shading. J. Am. Water Resour. Assoc. 39, 355–368. Elliott, J.M., Mann, K.H., 1979. A key to the British freshwater leeches with notes of their life cycles and ecology. In: Freshwater Biological Association Scientific Publication No. 40. ESRI, 2003. ArcGIS 8.3. Environmental Systems Research Institute, Redlands, CA, USA http://www.esri.com Gordon, N.D., McMahon, T.A., Finlayson, B.L., 1992. Stream Hydrology: An Introduction for Ecologists. John Wiley and Sons, Chichester, New York. Grosser, C., Heidecke, D., Moritz, G., 2001. Untersuchungen zur Eignung heimischer Hirudineed als Bioindikatoren für Fließgewässer. Hercynia N. F. 34, 101–127 (in German language with English abstract). Grosser, C., Nesemann, H., 2004. Ergänzungen zur Süßwasserfauna von Mitteleuropa 6/2: Annelida, Clitellata: Branchiobdellida, Acanthobdellea, Hirudinea. Lauterbornia 52, 27–32 (in German language with English abstract). Guisan, A., Zimmermann, N.E., 2000. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186. Herrmann, S.J., 1970. Systematics distribution, and ecology of Colorado Hirudinea. Am. Midl. Nat. 83, 1–37. Holm, S., 1979. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70. Hynes, H.B.N., 1970. The Biology of Running Waters. Liverpool University Press, Liverpool. Kokeˇs, J., Zahrádková, S., Nˇemejcová, D., Hodovsk´y, J., Jarkovsk´y, J., Soldán, T., 2006. The PERLA system in the Czech Republic: a multivariate approach for assessing the ecological status of running waters. Hydrobiologia 566, 343–354. Koperski, P., 2005. Testing the suitability of leeches (Hirudinea Clitellata) for biological assessment of lowland streams. Pol. J. Ecol. 53, 65–80. Koperski, P., 2006. Relative importance of factors determining diversity and composition of freshwater leech assemblages (Hirudinea; Clitellata): a metaanalysis. Arch. Hydrobiol. 166, 325–341. Koperski, P., 2010. Diversity of macrobenthos in lowland streams: ecological determinants and taxonomic specificity. J. Limnol. 69, 88–101. Koˇsel, V., 1988. Pijavice (Hirudinea) ˇCSSR a ich hodnocení v bioindikácii saprobity. In: Hodnocení bentosu tekoucích vod. MLVD ˇCSR, pp. 45–60 (in Slovak language). Koˇsel, V., 1989. Pijavice (Hirudinea) ˇCSSR a ich vyuˇzitie v bioindikácií saprobity II. In: Informaˇcn´y Bulletin. MLVD ˇCSR, pp. 14–42 (in Slovak language). Kubová, N., Schenková, J., 2012. A comparison of two semi-quantitative methods for free-living leeches (Clitellata: Hirudinida) collecting. Lauterbornia 75, 79–86. Lepˇs, J., ˇSmilauer, P., 2003. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press, Cambridge. Madsen, B.L., 1963. Ecological investigations on some streams in East Jutland 2. Planarians and leeches. Flora Fauna 69, 113–125 (in Danish; English summary). Mann, K.H., 1953. Some factors influencing the distribution of fresh-water leeches in Britain. Proc. Int. Assoc. Theor. Appl. Limnol. 123, 377–391. Mann, K.H., 1955. The ecology of the British freshwater leeches. J. Anim. Ecol. 24, 98–119. McCullagh, P., Nelder, J.A., 1989. Generalized Linear Models. Chapman and Hall, London. Moser, E.W., Klemm, D.J., Richardson, D.J., Wheeler, B.A., Trauth, S.E., Daniels, B.A., 2006. Leeches (Annelida: Hirudinida) of Northern Arkansas. J. Ark. Acad. Sci. 60, 84–95. Neubert, E., Nesemann, H., 1999. Annelida, Clitellata; Branchiobdellida, Acanthobdellea, Hirudinea. Spektrum Academischer Verlag, Berlin. Pawłowski, L.K., 1936. Hirudinea. In: Fauna Słodkowodna Polski, 26. Wydawnictwo Towarzystwa Wspierania Nauki, Warszawa (in Polish language). R Development Core Team, 2010. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. Sandner, H., 1951. Badania nad fauna pijawek. Acta Zool. Oecol. Univ. Lodziensis 16, 1–50 (in Polish language). Sawyer, R.T., 1974. Leeches (Annelida: Hirudinea). In: Hart Jr., C.W., Fuller, S.L.H. (Eds.), Pollution Ecology of Freshwater Invertebrates. Academic Press, New York/London, pp. 81–142. Sawyer, R.T., 1986. Leech Biology and Behaviour. Clarendon Press, Oxford University Press, Oxford. Schenková, J., Jarkovsk´y, J., Heleˇsic, J., 2007. Strategies of coexistence of two species: Erpobdella octoculata and E. vilnensis (Hirudinea: Erpobdellidae). Int. Rev. Hydrobiol. 92, 527–538. Schenková, J., Sychra, J., Koˇsel, V., Kubová, N., Horeck´y, J., 2009. Freshwater leeches (Annelida: Clitellata: Hirudinida) of the Czech Republic (Central Europe): check-list, new records, and remarks on species distributions. Zootaxa 2227, 32–52. Sládeˇcek, V., Koˇsel, V., 1984. Indicator value of freshwater leeches (Hirudinea) with a key to the determination of European species. Acta Hydrochim. Hydrobiol. 12, 451–461. Spelling, S.M., Young, J.O., 1987. Predation on lake-dwelling leeches (Anellida: Hirudinea): an evaluation by field experiment. J. Anim. Ecol. 56, 131–146. StatSoft Inc., 2001. STATISTICA (Data Analysis Software System), Version 6. http://www.statsoft.com 524 N. Kubová et al. / Limnologica 43 (2013) 516–524 ter Braak, C.J.F., Prentice, I.C., 1988. A theory of gradient analysis. Adv. Ecol. Res. 18, 271–313. ter Braak, C.J.F., ˇSmilauer, P., 2002. CANOCO Reference Manual and CanoDraw for Windows User’s Guide. Software for Canonical Community Ordination (Version 4.5). Biometris, Wageningen & ˇCeské Budˇejovice. Tolasz, R., 2007. Climate Atlas of Czechia. ˇCesk´y hydrometeorologick´y ústav Olomouc. Univerzita Palackého v Olomouci, Oloumouc. Toman, M.J., Dall, P.C., 1997. The diet of Erpobdella octoculata (Hirudinea Erpobdellidae) in two Danish lowland streams. Arch. Hydrobiol. 140, 549–563. van Haaren, T., 2004. The freshwater leeches (Hirudinea) of the Netherlands. Lauterbornia 52, 113–131. Young, J.O., Ironmonger, J.W., 1979. The natural diet of Erpobdella octoculata (L.) (Hirudinea Erpobdellidae) in British lakes. Arch. Hydrobiol. 87, 483–503. Young, J.O., Ironmonger, J.W., 1981. A quantitative study of the comparative distribution of non-parasitic leeches and triclads in the stony littoral of British lakes. Int. Rev. Ges. Hydrobiol. 66, 847–862. Young, J.O., Spelling, S.M., 1986. The incidence of predation on lake-dwelling leeches. Freshwat. Biol. 16, 465–477. 232 Kubová, N. & J. Schenková, 2014 Tolerance, optimum ranges and ecological requirements of free-living leech species (Clitellata: Hirudinida). Fundamental and Applied Limnology, Archiv für Hydrobiologie, 185(2), 167–180. Tolerance, optimum ranges and ecological requirements of free-living leech species (Clitellata: Hirudinida) Nela Kubová1, * and Jana Schenková1 With 4 figures and 2 tables Abstract: Deep knowledge of the ecology of aquatic invertebrate species has always been essential background for water quality assessment and leeches (Clitellata: Hirudinida), which are at the top of the benthic invertebrate food chain, are hence a group of principal importance. To study the biological and habitat requirements of freeliving leeches, 109 sites of running and stagnant water were sampled in the Czech Republic, between 2007 and 2010. The morphological characteristics of the sampling site, chemical parameters of the water and climatic data were available for each site. Leeches were collected by hand, counted and identified. In total, seventeen species of genera Alboglossiphonia, Glossiphonia, Helobdella, Hemiclepsis, Theromyzon, Piscicola, Haemopis, Hirudo, Dina and Erpobdella were recorded. Environmental and species data were used in the analyses. The optima of twelve environmental variables for nine common species were compared using boxplots. The structure of the leech data set was recognised by cluster analysis, where eurytopic species formed a distinct group, well separated from all other species, which was further subdivided according to their ecology. Predictive models designed for seven of the leech species, revealed significant variables, which determined species occurrence and the extent of the effect of these variables. The most frequent significant variables were the type of habitat (lotic or lenitic) and the mean annual temperature. Key words: Hirudinida, cluster analysis, species optima, predictive models. Fundam. Appl. Limnol.  Vol. 185/2 (2014), 167–180Article published online September 2014 © 2014 E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, Germany www.schweizerbart.de DOI: 10.1127/fal/2014/0594 1863-9135/14/0594 $ 3.50 Introduction Most of the Central European leech species are adapted to lower water quality, and above all to higher trophy, from beta-mesosaprobic to alpha-mesosaprobic (water saprobity by Kolkwitz & Marsson 1909). In such waters, hundreds of individuals of common species, e.g., Erpobdella octoculata or Helobdella stagnalis, inhabit one sampling site (Schönborn 1985, Kutschera 2003). Hirudinida can therefore serve as good indicators of organic pollution (Sládeček & Košel 1984, Koperski 2005). Despite broad and systematic research into this group, the ecology of some of the rare species is poorly known. The life strategy and life cycles of the common species are the moststudied areas of leech biology (Mann 1957a, Mann 1957b, Elliott 1973, Learner & Potter 1974, Davies & Reynoldson 1976, Maltby & Calow 1986a, Maltby & Calow 1986b, Mason & Sayers 2005). Co-existence or competition of related species in one family (Calow & Riley 1982, Milne & Calow 1990) or in one genus (Dall 1983, Schenková et al. 2007) are further well-known research topics. In such studies, not only rare, but also less abundant common species are seldom covered and therefore their ecology on a large scale is only partly known. Authors’ address: 1  Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic * Corresponding author; kubova.nela@seznam.cz E eschweizerbart_xxx  168 Nela Kubová and Jana Schenková There are only a few ecological studies based in the field, which summarise the response of Hirudinida species to various environmental variables on a larger scale (Bennike 1943, Mann 1955, Elliott & Mann 1979, Sládeček & Košel 1984, Košel 1988, Košel 1989, Koperski 2006, Moser et al. 2006); unfortunately, these mostly refer to relatively small geographical areas. Focusing solely on stagnant (Young & Ironmonger 1981, Spelling & Young 1987) or running water (Grosser et al. 2001, Koperski 2005, Koperski 2010) is a further limitation. Predictors of species richness and composition of the leech assemblages were revealed within a large-scale study on freshwater leeches (Kubová et al. 2013), however, there was no inclusion of species ecology. To fill the gap in knowledge concerning the ecological demands of leech species, we focused on leech assemblages across the Czech Republic (Central Europe). Twenty-four species from five families have been reported in this territory: ten in the family Glossiphoniidae, four in the Piscicolidae, seven in the Erpobdellidae, one in the Haemopidae, and one in the Hirudinidae (Schenková et al. 2009). The main object of our study was therefore to evaluate the responses of leeches to various physical, chemical and morphological variables covering the lotic and lenitic habitats and mutually compare their responses between lotic and lenitic environments. To include the whole range of selected variables, we extended our study sites beyond the commonly sampled pool, to include those where leeches do not usually occur, such as brooks at a higher altitude. Appropriate mesohabitats were chosen to cover the whole spectrum of preferences of freeliving species. Using such a data set, we were able to evaluate the response of single species to the gradient of environmental variables. Our main targets were (1) to evaluate ecological valences in various environmental parameters for selected species and (2) to test the response of species in lotic and in lenitic habitats separately. Material and methods Study area Leeches were sampled from April to June in 2007– 2010 in 109 sites from running (51) and stagnant (58) water; each site was sampled once. With respect to leech occurrence, four areas were selected: the Bohemian Uplands Protected Landscape Area, the Žďárské vrchy Hills (the Bohemian-Moravian Highlands), the Náměšť nad Oslavou territory (the Bohemian–Moravian Highlands) and the South Moravian Lowlands (Fig. 1). These represented the main types of landscapes in the Czech Republic that are rich in water bodies and covered the main environmental gradients, as well as the gradients of latitude and longitude. Field sampling and laboratory procedure Within each area, sites were selected to sample the whole gradient of altitude, stream width in running water, the total area in stagnant water, depth, substratum composition, and the composition and amount of the littoral/riparian vegetation. The majority of water bodies in the study area (960 –1,440 km2 ) were sampled. At first, the type of habitat was determined at each sampling site as categorical variable: lotic, i.e. water with at least slow current (brooks, streams), and lenitic, i.e. water with absence of current (ponds, reservoirs). At each site, 10 m of shoreline was chosen for sampling. This sampling line included the different mesohabitats available at the site (Kubová & Schenková 2012). The amount of littoral/riparian vegetation was estimated as a percentage of shoreline covered by macrophytes within the selected sampling line. Leeches were collected manually according to the hand-collecting method (Elliott & Mann 1979, Košel 1988). The coarse substratum, macrophytes, wood and different submerged objects were checked. We collected leeches for 30 min at each site, to standardise sampling time (Kubová & Schenková 2012). Live leeches were transported from the field to the laboratory, where they were narcotised by a gradually increasing concentration of ethanol to a final level of 70 % and, after their death, the mucus was removed from their bodies. Leeches were then transferred onto paper saturated with 4 % formaldehyde to strengthen their bodies (Košel 1988) and stored in 4 % formaldehyde. They were identified according to Neubert & Nesemann (1999) and Grosser & Nesemann (2004). The abundances of adult leeches only were used for all statistic analyses. The GPS position was directly measured in the field and used to obtain the altitude and the climatic conditions (i.e., mean annual temperature, mean January and July temperatures and the annual precipitation) based on Tolasz (2007), in the ArcGIS 8.3 program (ESRI 2003). The pH, conductivity, dissolved oxygen and water temperature were measured in situ by portable instruments (WTW Multi 340 i/SET) twice-weekly at each site, and the mean values were used in analyses, to reduce the effect of short-term excesses. The concentration of nitrates, ammonium and orthophosphates, total carbon and total nitrogen were evaluated in the laboratory from water samples. The percentage of the canopy above the whole water body (lenitic habitats) or above the sampling river stretch (lotic habitats) was estimated in the field. The percentage of shoreline with littoral/ riparian vegetation was also estimated in the field. Substrate composition was estimated as a percentage of particle size categories in the field and converted on the phi scale (Hynes 1970, Gordon et al. 1992); phi values were then used for the respective statistic analyses. The quantity of all benthic macroinvertebrates was recorded, to obtain information concerning food availability. Samples of the benthos were collected by three-minute kicksampling using a hand net with 250 µm mesh size. All habitats were sampled proportionally. The number of individuals from the total macrozoobenthos, Oligochaeta (sensu oligochaetous Clitellata; Erséus 2005), Mollusca, Ephemeroptera, Plecoptera, Trichoptera and Chironomidae were counted and entered the analyses; the other very low abundant taxa were excluded from further evaluation. eschweizerbart_xxx 169Tolerance, optimum ranges and ecological requirements of free-living leech species Data analyses Cluster analysis was used to arrange leech species into groups of similar ecological requirements. After data (abundances of all species) standardisation, Ward’s method with Manhattan distances as the linking method was used to get the most objective results. Ecological preferences for leech species recorded at eight and more sites were visualised using box plots. Box plots for eight leech species and 12 selected environmental variables were constructed, based on the originally measured values, weighted by the abundance of each species at particular sites. The median, minimum and maximum values and the upper and lower quartile were depicted as box plots. The original values were shown on the x-axis. Predictive generalised linear models (GLM) based on an assumed relationship between the mean response variable and the linear combination of the explanatory variables was used to determine the explanatory variables that were significant for species with eight and more records. All variables were entered into the analysis in linear and quadratic shape, the interactions between variables were not included into the model formulae. As all climatic variables (temperatures and precipitation) were strongly correlated (Spearman’s rank correlations rs > 0.795, p < 0.001), only mean annual temperature was used in the analysis. For testing diet preferences, the total abundance of macrozoobenthos and numbers of Oligochaeta, Mollusca, Ephemeroptera, Plecoptera, Trichoptera and Chironomidae entered the analysis stepwise. Two models were computed for each species: one model based on the Poisson (quasipoisson in the case of over-dispersion in the data) distribution, recommended for the abundance data, and another model with logarithmic distributions. Poisson models were tested by the Chi-squared test at the p = 0.05 significance level, quasipoisson models by the F-test and logarithmic models by the t-test at the same significance level. The accuracy of final models was checked using the distribution of residuals and Cook’s distances. In the case when both models for one species complied with both criteria, Akaike’s information criterion (AIC) and the number of parameters were the deciding factors (Guisan & Zimmermann 2000). Seven final models complied with all the criteria. Based on the predictive models, graphs with selected leech species and mean annual temperature were constructed. The original discontinuous data were used to predict continuous sequences within the observed range in the models, which were depicted separately for lotic and lenitic habitats in the respective graphs. Species and environmental data were analysed using the statistics program Statistica (StatSoft Inc. 2001) and program R, version 2.10.1 (R development core team 2010). Fig. 1. Map of the Czech Republic, showing all sampled sites. eschweizerbart_xxx  170 Nela Kubová and Jana Schenková Results Species composition Overall, 4,547 individuals of 17 leech species were found (Table 1). The maximum number of leeches (295) was found at the stagnant water site in the Bohemian Uplands, and the maximum abundance of one species (208 specimens) was recorded for Helobdella stagnalis. We counted the total abundance and frequency of each species in lotic and lenitic habitats, both separately and together (Table 1). The structure of the leech data set was revealed using cluster analysis, which divided the whole assemblage into two main clusters (Fig. 2). The first cluster (A) was composed of eight more or less common species, which were recorded at ten or more sites. Erpobdella octoculata, which was found at 71.6 % of the observed sites (Table 1) was the last species to join the cluster (Fig. 2). The remaining species of cluster A formed two subgroups. The first group included three species (E. vilnensis, Glossiphonia complanata and G. concolor), which inhabited both lotic and lenitic habitats, but preferred habitats where the mean annual temperature did not exceed the mean values of the observed range. The second subgroup included four common stagnant water species. Two of these, Theromyzon tessulatum and Hemiclepsis marginata, were almost absent in lotic habitats and preferred less organically polluted sites, whereas two other rather eurytopic species, Alboglossiphonia heteroclita and H. stagnalis, inhabited similar, but more polluted sites in both lotic and lenitic habitats. The second cluster (B) included nine species, formed again from the two smaller subgroups. The first of these included free-living species of genus Alboglossiphonia: A. striata and A. hyalina, and the parasitic Piscicola geometra. Both species of the genus Alboglossiphonia are quite rare in the Czech Republic and prefer similar lenitic mesohabitats with macrophytes. Piscicola geometra was not rare, but with the sampling method used, their numbers should Fig. 2. Cluster analysis diagram for all leech species with displayed link distances. Species abbreviations: AlbHete – Alboglossiphonia heteroclita, AlbHyal – Alboglossiphonia hyalina, AlbStri – Alboglossiphonia striata, DinLine – Dina lineata, ErpOcto – Erpobdella octoculata, ErpTest – Erpobdella testacea, ErpViln – Erpobdella vilnensis, GloComp – Glossiphonia complanata, GloConc – Glossiphonia concolor, GloNebu – Glossiphonia nebulosa, HaeSang – Haemopis sanguisuga, HelStag – Helobdella stagnalis, HemMarg – Hemiclepsis marginata, PisGeom – Piscicola geometra, PisHara – Piscicola haranti, TheTess – Theromyzon tessulatum. eschweizerbart_xxx 171Tolerance, optimum ranges and ecological requirements of free-living leech species Table1.Totalabundancesandfrequenciesofspeciesatallsamplingsites:abundancesandfrequencies(displayedasthepercentageofsiteswithoccurrenceofeachspecies)ofspecies inloticandlenitichabitatswererecordedseparately. TotalLotichabitatsLenitichabitats Speciesn individuals frequencyof occurrence(% ofsites) minmaxmedianfrequencyof occurrence(%of loticsites) minmaxmedianfrequencyof occurrence(%of leniticsites) Alboglossiphoniaheteroclita(Linnaeus,1761) 22616.51 18 2 9.8 1 62 522.4 Alboglossiphoniahyalina(O. F. Müller,1774)   6 2.72  2 2 3.9 2  2 2 1.7 Alboglossiphoniastriata(Apáthy,1888)   8 3.73  3 3 1.9 1  3 1 5.2 Glossiphoniacomplanata(Linnaeus,1758) 18831.21 33 441.2 1 12 322.4 Glossiphoniaconcolor(Apáthy,1888)  31 9.21  5 3.5 7.8 1  7 2.510.3 GlossiphonianebulosaKalbe,1964  33 5.51 25 2 7.8 1  2 1.5 3.4 Helobdellastagnalis(Linnaeus,1758) 77453.21 52 545.1 1208 760.3 Hemiclepsismarginata(O. F. Müller,1774)  9926.61  1 1 9.8 1 12 241.4 Theromyzontessulatum(O. F. Müller,1774)  4320.21  3 3 5.9 1  6 132.8 Piscicolageometra(Linnaeus,1758)  22 7.32  2 2 1.9 1 12 112.1 PiscicolaharantiJarry,1960   1 0.91  1 1 1.9 0  0 0 0 Haemopissanguisuga(Linnaeus,1758)  30 5.51  1 1 1.9 1 20 1 8.6 HirudomedicinalisLinnaeus,1758  12 0.90  0 0 012 1212 1.7 Dinalineata(O. F. Müller,1774)   1 0.91  1 1 1.9 0  0 0 0 Erpobdellaoctoculata(Linnaeus,1758)255271.611351952.9 11522687.9 Erpobdellatestacea(Savigny,1822)   1 0.91  1 1 1.9 0  0 0 0 Erpobdellavilnensis(Liskiewicz,1925) 52037.61107 949 1  9 1.527.6 eschweizerbart_xxx  172 Nela Kubová and Jana Schenková have been underestimated when taking into consideration its parasitic life. The second subgroup included one rare species, G. nebulosa, and the species Haemopis sanguisuga, both of which prefer colder habitats, and four other species that are very rare in the Czech Republic and were found only once during sampling. Fig. 3. Environmental preferences for species with more than eight records and selected variables. Displayed values are weighted by the abundance of a particular species. —– min, max (except the outlying values), ― 25 %–75 %, ‫׀‬ median. Tick marks pointing upwards indicate the distribution of measured data. eschweizerbart_xxx 173Tolerance, optimum ranges and ecological requirements of free-living leech species Species environmental optima For the visualisation of the differences between the environmental optima of particular species, box plots were used (Fig. 3). These were prepared for all available variables, but only those where species responses were different from each other were presented. The mean annual temperature and altitude (Fig. 3a, b) represent the climatic variables. The thermophilous species (A. heteroclita and H. stagnalis) preferred Fig. 3. Continued. eschweizerbart_xxx  174 Nela Kubová and Jana Schenková Table2.ResultsoftheGLMmodelstestedbytheF-test(Poissonmodel)orChi-squaredtest(quasipoissonmodel)forsevenspeciesinbothhabitatsanalysedtogetherandseparately. Forthequasipoissonmodels,thedispersionparameterisnoted.Fromtwohabitats(lotic/lenitic)onlythiswithhigherpredictedabundanceforeachspeciesisdisplayed.Abbreviations: P–Poissonmodel;Q–quasipoissonmodel;meanann.temp.–meanannualtemperature;var.exp.–variabilityexplained. SpeciesModelVariable %var.exp.per model Categorical: habitattype Linear positive/negativeresponse Quadratic positive/negativeresponse AlboglossiphoniaheteroclitaQ:9.16lenitic–phi+phi47.9 +PO4 3 ––PO4 3 – GlossiphoniacomplanataQ:5.13lotic–meanann.temp.20.3 –phi –NH4 + HelobdellastagnalisQ:33.26lenitic–phi21.1 +TC HemiclepsismarginataPlenitic+meanann.temp.–meanann.temp.35.6 +phi +NO3  – TheromyzontessulatumPlenitic+meanann.temp.26.4 –TN+TN ErpobdellaoctoculataQ:1.18lenitic+meanann.temp.–meanann.temp.23.4 –TC –canopy ErpobdellavilnensisPlotic+meanann.temp.–meanann.temp.27.4 +NH4 + eschweizerbart_xxx 175Tolerance, optimum ranges and ecological requirements of free-living leech species warmer sites at lower altitudes, whereas G. complanata and Theromyzon tessulatum had an optimum in colder sites at higher altitudes. Other species are rather eurytopic and the climatic variables were not limiting for these. Water temperature, substratum, canopy and vegetation (Fig. 3c–f) are variables that characterise the type of habitat. Water temperature was the most fluctuating variable. The optimum of single species is connected to their affinity to the habitat type (lotic, lenitic) and partly to altitude. The substratum composition represented by the phi value was also related to the habitat type. Most of the leech species preferred a coarse substratum; only the parasitic Hemiclepsis marginata and T. tessulatum preferred sites with a fine substratum. The canopy and vegetation represented the macrophytes above and inside the water body, respectively. The canopy had an influence on the stability of the water temperature and was usually higher in lotic habitats in contrast to water vegetation (macrophytes), which was more abundant in lenitic habitats. The parasitic species preferred sites with a higher percentage of vegetation. Among the chemical variables, dissolved oxygen (Fig. 3g) is a variable that changes considerably in its dependence on time, microhabitat, or water flow. All the species, with the exception of A. heteroclita and P. geometra had an optimum of dissolved oxygen of about 10 mg l–1 . The amount of phosphates (Fig. 3h) represented the trophy of observed habitats and most of the species preferred the mean concentrations. Erpobdella vilnensis and two small species, H. stagnalis and mainly A.heteroclita, were very tolerant and had optima at a high concentration of phosphates. For this chemical variable, we noted the highest range of species optima. The species optima did not strongly differ according to total carbon and ammonium ion concentrations, contrary to total nitrogen and nitrates, higher values of which were limiting for A. heteroclita, H. stagnalis and P. geometra (Fig. 3i–l). Theromyzon tessulatum only preferred very low concentration of nitrates (Fig. 3k). Predictive models The most parsimonious predictive models for seven selected leech species (A. heteroclita, G. complanata, H. stagnalis, Hemiclepsis marginata, T. tessulatum, E. octoculata and E. vilnensis) were computed (Table 2). Final models were computed from the Poisson or quasipoisson distributions, and in quasipoisson, the dispersion parameter was noted. Variables significant for species distribution (p < 0.05) were selected from all variables and the type of species response was recorded (Table 2). The categorical variable, type of habitat (lotic or lenitic), was significant for all selected species and those habitat types for which the abundance of each species was predicted to be higher is shown in Table 2. Only G. complanata and E. vilnensis preferred lotic habitats. For both of these species, the mean annual temperature and ammonium ions were the most decisive variables, together with the substratum composition for G. complanata. All other species were more abundant in lenitic habitats and the significant variables were more diversified. In addition to the mean annual temperature, we noted the importance of substratum composition and water chemical param- eters. Species response curves to mean annual temperature Mean annual temperature was significant in the majority of predictive models; hence, the response curves of three common species (E. octoculata, E. vilnensis, G. complanata) to this variable were constructed (Fig. 4). The significant effect of mean annual temperature was expressed for lotic and lenitic habitats separately, to allow better comparison both within and between species. For two out of three dominant species (E. octoculata and E. vilnensis), mean annual temperature was significant for both linear and quadratic shapes in both, lotic and lenitic habitats. These models were used for creating species response curves and their quadratic shapes were visualized (Fig. 4). Erpobdella octoculata was more frequently recorded in lenitic habitats and it had a lower temperature optimum in lenitic then in lotic habitats. The temperature optimum of E. vilnensis in both habitats was similar, although this species preferred lotic habitats. In contrast to two previous species, quadratic shape of mean annual temperature for Glossiphonia complanata was significant only in lotic habitats (Fig. 4). G. complanata was less abundant than two previous species and preferred colder sites in lotic habitats. Response curves were not produced for the other species, because of their relatively low abundances and/or small numbers of records, which were further reduced by division between the two habitat types. The input data for creating predicted sequences were weak and curves had a low predictive effect. eschweizerbart_xxx  176 Nela Kubová and Jana Schenková Discussion Factors determining leech assemblage composition In this study, 17 out of 24 species reported from the Czech Republic (Schenková et al. 2009) were found. The type of habitat (lotic/lenitic) was an important determinant of leech occurrence (Table 2); generally, we recorded higher abundances (of common species) and lower total species diversity in lenitic than in lotic habitats. Conversely, out of the total of seventeen species found, sixteen were present in lotic habitats, with only Hirudo medicinalis being absent, and only fourteen were present in lenitic habitats. The cluster analysis identified two main clusters with eight common species in cluster A and nine less common and rather rare species in cluster B (Fig. 2). Such a division suggests species grouping according to two main leech life strategies: broad ecological valences for one part of leech species, where habitat preferences of a particular species are rather a quantitative function (Sawyer 1974), and alternatively, more specific ecological requirements for another group of leech species with special habitat preferences that enable them to inhabit only a few suitable sites with a certain combination of environmental characteristics. The habitat requirement of seven out of eight species from cluster A with the exception of G. concolor, were described using predictor modelling (Table 2). Habitat preferences of common leech species (cluster A) Erpobdella octoculata is the most common Central European leech, although its occurrence was restricted in hard water (Mann 1955). We found it at various site types from clean brooks to eutrophic ponds. This species is tolerant to the complete range of water quality and chemical conditions (Elliott 1973, Elliott & Mann 1979, Grosser et al. 2001) and has even been considered a low water-quality indicator (Sládeček & Košel 1984, Koperski 2005). We recorded the highest abundances in water with sufficient, but not an overabundance, of organic matter, which provided enough available diet (indirectly via benthic invertebrates feeding on it and later serving as a prey). A suitable altitude with an optimum of 300 – 500 m a.s.l. in predictive models, substituted by a mean annual temperature with an optimum of about 7 °C in stagnant and 8 °C in running water, respectively, was another crucial condition for the occurrence of E. octoculata. A negative correlation with the canopy in this model showed that it preferred unshadowed waters, which created slightly higher temperatures. The most abundant and frequent running water species, E. vilnensis, is common in Central European running water (Košel 1989, Neubert & Nessemann 1999, Koperski 2006). At the intermediate altitudes, E. vilnensis was syntopic with E. octoculata, however, E. vilnensis was almost absent from the southern Moravian territory (lower altitudes), where both lotic and lenitic habitats had higher temperatures and were more productive. On the contrary, E. vilnensis was more frequent and abundant than E. octoculata at higher altitudes. A surprising result was the tolerance of E. vilnensis to high concentrations of all analysed chemical variables. Considering its preference for higher altitudes and lotic habitats, which are usually less affected by chemical pollution, these results were not expected. Van Haaren (2004) only indicated a spo- Fig. 4. Significant curves (p < 0.05) of the common species response to the mean annual temperature, based on the quadratic predictive models. — lenitic habitats, – - – lotic habitats. eschweizerbart_xxx 177Tolerance, optimum ranges and ecological requirements of free-living leech species radic occurrence of E. vilnesis in lowland brooks and ditches, but the high tolerance of E. vilnensis to chemical pollution has not been so far discovered. Erpobdella octoculata and E. vilnensis niche portioning is probably controlled by temperature, which rather than chemical conditions, regulates differences in their life cycles (Schenková et al. 2007). Glossiphonia complanata is an evenly distributed species in all types of water bodies: lakes, ponds, marshes and running water (Bennike 1943). We recorded G. complanata in both habitat types, with a preference for lotic habitats. This species was syntopic with G. concolor and G. complanata, which, however, did not reach the same abundance. We found that G. complanata preferably inhabited water at higher altitudes and water with a sufficient amount of phosphates. These preferences, together with tolerance to a higher amount of nitrates and ammonium ions, also reported by Grosser et al. (2001) and Koperski (2005), enabled this species to colonise habitats with a high supply of both oxygen and organic matter. Organic matter was also essential for the occurrence of molluscs, the main component of its diet (Elliott & Mann 1979, Neubert & Nesseman 1999). Infrequent records of G. concolor confirmed its previously reported preference for stagnant water or slowly running water from lowlands to moderate elevations (Košel 1989, Neubert & Nessemann 1999, Koperski 2006, Schenková et al. 2009). Unfortunately, its ecological requirements have not yet been statistically evaluated, also based on insufficient frequencies in previous studies. New information concerning its ecological valences was the unusual combination of preference for habitats with a coarse substratum, typical for the genus Glossiphonia, and the high percentage of canopy and littoral/riparian vegetation. Its preference for shore covered with vegetation, separated its optimum habitat from the other congeners, G. complanata and G. nebulosa. Theromyzon tessulatum was almost absent from lotic habitats. Its preferred sites were ponds with abundant water birds. Its chemical preferences (e.g., the amount of oxygen, phosphates or total nitrogen) and saprobe status did not considerably differ from those reported from the Czech Republic (Košel 1989) and Germany (Grosser et al. 2001). Similar to Mann (1955), we recorded distinct behaviour in different size categories: small individuals were almost exclusively attached to the vegetation, whereas large, adult specimens were also found on the underside of stones. Such a strategy enables young leeches to more easily attach to birds for feeding and consequently grow to mature size. Adult leeches that do not feed but are breeding (Mann 1955), are safer under the stones (Sawyer 1986). Hemiclepsis marginata is a species that strongly prefers lenitic habitats, often weedy ponds (Mann 1955, van Haaren 2004). We usually found H. marginata on submerged vegetation, most often in eutrophic ponds with a muddy bottom, higher water temperature and sufficient fish stock. We recorded the importance of fine substratum and nitrates in the predictive model. In contrast to species with similar habitat preferences, such as H. stagnalis or A. heteroclita, Hemiclepsis marginata did not prefer high concentrations of chemical variables, especially phosphates. An unexpected finding was that this species was not abundant at the southernmost sites (with the highest mean annual temperatures) and at sites at the lowest altitudes with the richest fish stocks. Higher values of chemical parameters were probably limiting at these habitats. Such ecological valence might be the cause of its recent classification among high quality indicator species (Koperski 2005). The most common species of the family Glossiphoniidae was H. stagnalis. The ecological status of this species is still rather ambivalent. It occurs in heavily organically polluted waters and is considered as an indirect indicator of such conditions (Mann 1955, Sládeček & Košel 1984, van Haaren 2004), whereas in Poland, it belongs to a group of species that indicates high quality water (Koperski 2005). The explanation might be due to its tolerance of high content of phosphates on the one hand, and to limiting total nitrogen and nitrates on the other (this study, Grosser et al. 2001). The latter limitation might cause an undesirable increase in nutrients without any positive effect on habitat conditions or the amount of available diet, which is one of the most important parameters for the occurrence of H. stagnalis (Elliott & Mann 1979, Sawyer 1986). Alboglossiphonia heteroclita is a eurytopic species that often inhabits eutrophic sites with a high amount of phosphates, a muddy bottom and a low amount of oxygen (Mann 1955, Schenková et al. 2009), i.e., habitats which provide sufficient food, particularly oligochaetes, chironomids and molluscs. The importance of phosphates was confirmed by the predictive model, which explained a high percentage of the variance. The tolerance of A. heteroclita to water pollution was much higher, and its oxygen requirements lower, than those recorded in Germany (Grosser et al. 2001). This discrepancy might be caused by differences in the sampled habitat types; lotic habitats sampled in Sax- eschweizerbart_xxx  178 Nela Kubová and Jana Schenková ony (Germany) might not be polluted to a similarly high level as some of the lenitic habitats (fish ponds) included in our study. As a species that prefers lenitic habitats (Mann 1955, Košel 1989, Koperski 2006), A. heteroclita cannot be evaluated on the basis of lotic habitats only and the indication value and saprobe optimum of A. heteroclita should be re-evaluated to α-mesosaprobity, according to Košel (1989). Habitat preferences of less common and rare leech species (cluster B) Alboglossiphonia striata and A. hyalina have not been frequently reported from the Czech Republic (Schenková et al. 2009). In this study, only a few specimens were recorded, and therefore, it was impossible to better describe their ecology. Piscicola geometra is a common species in Central Europe: the small number of specimens recorded in this study was due to the sampling method used. Mann (1955), who used a similar sampling method for stagnant as well as running water, also reported P. geometra as a comparatively rare leech. The small number of our records might also have led to its positioning in the cluster analysis near to the rare species A. striata and A. hyalina, however, with a different ecology. Piscicola geometra spends most of its life attached to its fish host, and is therefore more frequently found during fish catches. Water quality was not a limiting factor for the occurrence of this leech, but recorded numbers were probably underestimated in comparison to its actual numbers (Grosser et al. 2001). In spite of few records, our results were similar to those in Grosser’s study (Grosser et al. 2001). The remaining six species within cluster B were all very rare during sampling. A small number of records of G. nebulosa in lotic habitats and an even smaller number in lenitic habitats, with the exception of the dominance of 25 specimens at one site, enabled us to calculate predictive models and visualise box plots. Due to its semi-aquatic lifestyle, Haemopis sanguisuga was usually found on the edge of water or on the shore during sampling: the most typical habitat was a pond with soft shores at higher altitudes. Haemopis sanguisuga was always found as a single specimen per site, except in one case, where 20 copulating individuals at one site were found. Haemopis sanguisuga was predominantly found in lenitic habitats, not only during this sampling but also in previous studies (Schenková et al. 2009, and unpublished data). Concerning its altitude preferences, we recorded this species preferentially at higher altitudes, similar to findings by Košel (1982), rather than in lowlands (Neubert & Nessemann 1999, Koperski 2006). Piscicola haranti is a species only recently reported from the Czech Republic (Schenková et al. 2009). Three existing records are now supplemented by one new record from this study. Since these records belong to different river basins (Morava and Labe Rivers), the distribution of P. haranti is probably wider; imprecise determinations and confusion with P. geometra have previously lowered its numbers. Hirudo medicinalis is a critically endangered leech species in the Czech Republic (Schenková & Košel 2005). The small populations are mostly weak and mutually isolated by various barriers. One site with a rather large population of H. medicinalis was included in our sampling site set, but from this single record, even general requirements could not be calculated. Hirudo medicinalis populations were depleted by collecting for medicinal purposes in the 19th century, and later by the deterioration in water quality as a consequence of industrial development at the beginning of the twentieth century. Changes in the agricultural landscape, such as the draining of pools, led to a decrease in the number of amphibians, which are hosts for juvenile leeches and H. medicinalis populations never recovered from these dramatic changes. Currently, even though water quality has improved and amphibians are more numerous, the availability of suitable habitats, irrespective of problems of leech dispersion, is still too low (Elliott & Kutschera 2011). Dina lineata and Erpobdella testacea from the family Erpobdellidae are further species that are not commonly found in the Czech Republic. Similar to Haemopis sanguisuga, Dina lineata is the second species that is almost amphibian and it inhabits mostly shallow littoral areas or soft banks and is scarce in the Czech Republic. Erpobdella testacea should be expected in stagnant water (Neubert & Nessemann 1999), but our record from running water shows that its distribution should not be solely associated with this habitat type. A few leech species whose occurrence could be expected within the study area remained completely undiscovered from various reasons. Caspiobdella fadejewi (Epshtein, 1961) from the family Piscicolidae and Erpobdella nigricollis (Brandes, 1900) from the family Erpobdellidae are relatively frequent, but both inhabit rather large rivers with slow current (Schenková et al. 2009) which were not included in the sampling. Absence of Piscicola fasciata Kollar, 1842 and Piscicola respirans Troschel, 1850 (family Piscicolidae) was probably caused by sampling method inap- eschweizerbart_xxx 179Tolerance, optimum ranges and ecological requirements of free-living leech species propriate to their collection (they live attached to the fish host) and their relative rarity. Trocheta cylindrica Örley, 1886 (family Erpobdellidae) was also not recorded, as it is an infrequent species with semiaquatic life. Nevertheless, gaining information about habitat preferences of these species is a challenging task for further research. Conclusions The results of this study show the fundamental importance of the type of habitat (lotic versus lenitic). Box plots visualising the preferred ranges of twelve physico-chemical variables of nine medium-frequent to frequent species, enabled a comparison between the species ecological requirements. Predictive models based on linear regression were produced for Erpobdella octoculata, Erpobdella vilnensis, Glossiphonia complanata, Helobdella stagnalis, Alboglossiphonia heteroclita, Hemiclepsis marginata and Theromyzon tessulatum. For each of the evaluated species, certain morphological and also chemical variables were relevant. For future surveys of the ecological demands of rare species, special sampling that focuses on their preferred habitats will be required. Acknowledgements The authors would like to thank two anonymous reviewers for their constructive critique of this manuscript and Veronika Schenková for assistance in improving the English. This research was supported by the Ministry of Education, Youth and Sports (MSM 0021622416) and MUNI/A/0888/2013. We would like to thank Marcela Růžičková and Stanislav Němejc for their technical assistance. References Bennike, S. A. B., 1943: Contributions to the ecology and biology of the Danish freshwater leeches (Hirudinea). – Folia Limnol. Scand. 2: 1–109. Calow, P. & Riley, H., 1982: Observations on reproductive effort in British Erpobdellid and Glossiphoniid leeches with different life cycles. – J. Anim. Ecol. 51: 697–712. Dall, P. C., 1983: The natural feeding and resource partitioning of Erpobdella octoculata L. and Erpobdella testacea Sav. in Lake Esrom, Denmark. – Int. Rev. Hydrobiol. 68: 473 – 500. Davies, R. W. & Reynoldson, T. B., 1976: A comparison of the life-cycle of Helobdella stagnalis (Linn.1758) (Hirudinoidea) in two different geographical areas in Canada. – J. Anim. Ecol. 45: 457– 470. Elliott, J. M., 1973: The diel activity pattern, drifting and food of the leech Erpobdella octoculata (L.) (Hirudinea: Erpobdellidae) in a lake district stream. – J. Anim. Ecol. 42: 449 – 459. Elliott, J. M. & Mann, K. H., 1979: A key to the British freshwater leeches with notes of their life cycles and ecology. – Freshw. Biol. Assoc. Sci. Publ. 40: 1–72. Elliott, J. M. & Kutschera, U., 2011: Medicinal leeches: historical use, ecology, genetics and conservation. – Freshw. Rev. 4: 21– 41. Erséus, C., 2005: Phylogeny of oligochaetous Clitellata. – Hydrobiologia 535/536: 357– 372. ESRI, 2003: ArcGIS 8.3. – Environmental Systems Research Institute, Redlands, CA, USA. http://www.esri.com. Gordon, N. D., McMahon, T. A. & Finlayson, B. L., 1992: Stream hydrology: an introduction for ecologists. – John Wiley & Sons, Chichester, New York, pp. 1– 429. Grosser, C., Heidecke, D. & Moritz, G., 2001: Untersuchungen zur Eignung heimischer Hirudineen als Bioindikatoren für Fließgewässer. – Hercynia N. F. 34: 101–127 (in German language with English abstract). Grosser, C. & Nesemann, H., 2004: Ergänzungen zur „Süßwasserfauna von Mitteleuropa 6/2: Annelida, Clitellata: Branchiobdellida, Acanthobdellea, Hirudinea“. – Lauterbornia 52: 27– 32 (in German language with English abstract). Guisan, A. & Zimmermann, N. E., 2000: Predictive habitat distribution models in ecology. – Ecol. Model. 135: 147–186. Hynes, H. B. N., 1970: The Ecology of running waters. – Liverpool University Press, Liverpool, pp. 1– 555. Kolkwitz, R. & Marsson, M., 1909: Ökologie der tierischen Saprobien. – Int. Rev. Hydrobiol. Hydrogeogr. 2: 126 –152 (in German language). Koperski, P., 2005: Testing the suitability of leeches (Hirudinea, Clitellata) for biological assessment of lowland streams. – Pol. J. Ecol. 53: 65 – 80. Koperski, P., 2006: Relative importance of factors determining diversity and composition of freshwater leech assemblages (Hirudinea; Clitellata): a metaanalysis. – Arch. Hydrobiol. 166: 325 – 341. Koperski, P., 2010: Diversity of macrobenthos in lowland streams: ecological determinants and taxonomic specificity. – J. Limnol. 69: 88 –101. Košel, V., 1982: Ecology of leeches (Hirudinea) in the Hornád, Hnilec and Torysa River basin with respect to human activity. – Dissertation thesis, Comenius University Bratislava, pp. 1– 200. Košel, V., 1988: Pijavice (Hirudinea) ČSSR a ich hodnocení v bioindikácii saprobity. Hodnocení bentosu tekoucích vod. – MLVD ČSR, 45 – 60 (in Slovak language). Košel, V., 1989: Pijavice (Hirudinea) ČSSR a ich využitie v  bioindikácií saprobity II. – Informačný bulletin MLVD ČSR, 14 – 42 (in Slovak language). Kubová, N. & Schenková, J., 2012: A comparison of two semiquantitative methods for free-living leeches (Clitellata: Hirudinida) collecting. – Lauterbornia 75: 79 – 86. Kubová, N., Schenková, J. & Horsák, M., 2013: Environmental determinants of leech assemblage pattern in lotic and lenitic habitats. – Limnologica 43: 516 – 524. Kutschera, U., 2003: The feeding strategies of the leech Erpobdella octoculata (L.): A laboratory study. – Int. Rev. Hydrobiol. 88: 94 –101. Learner, M. A. & Potter, D. W. B., 1974: Life-history and production of the leech Helobdella stagnalis (L.) in a shallow eutrophic reservoir in South Wales. – J. Anim. Ecol. 43: 199 – 208. eschweizerbart_xxx  180 Nela Kubová and Jana Schenková Maltby, L. & Calow, P., 1986a: Intraspecific life-history in Erpobdella octoculata (Hirudinea: Erpobdellidae). I. Field study. – J. Anim. Ecol. 55: 721–738. Maltby, L. & Calow, P., 1986b: Intraspecific life-history in Erpobdella octoculata (Hirudinea: Erpobdellidae). II. Testing theory on the evolution of semelparity and iteroparity. – J. Anim. Ecol. 55: 739 –750. Mann, K. H., 1955: The ecology of the British freshwater leeches. – J. Anim. Ecol. 24: 98 –119. Mann, K. H., 1957a: A study of a population of the leech Glossiphonia complanata (L.). – J. Anim. Ecol. 26: 99 –111. Mann, K. H., 1957b: The breeding, growth and age structure of a population of the leech Helobdella stagnalis (L.). – J. Anim. Ecol. 26: 171–177. Mason, T. A & Sayers, C. A., 2005: Cocoon deposition and hatching in the aquatic leech, Theromyzon tessulatum (Annelida, Hirudinea, Glossiphoniidae). – Am. Midl. Nat. 154: 78 – 87. Milne, I. S. & Calow, P., 1990: The cost and benefits of brooding in Glossiphoniid leeches with special reference to hypoxia as a selection pressure. – J. Anim. Ecol. 59: 41– 56. Moser, E. W., Klemm, D. J., Richardson, D. J., Wheeler, B. A., Trauth, S. E. & Daniels, B. A., 2006: Leeches (Annelida: Hirudinida) of Northern Arkansas. – J. Ark. Ac. Sc. 60: 84 – 95. Neubert, E. & Nesemann, H., 1999: Annelida, Clitellata; Branchiobdellida, Acanthobdellea, Hirudinea. – Spektrum Academischer Verlag, Berlin, pp. 1–179. R Development Core Team, 2010: R: A language and environment for statistical computing. – R Foundation for Statistical Computing, Vienna. Sawyer, R. T., 1974: Leeches (Annelida: Hirudinea). – In: Hart, C. W .Jr., Fuller, S. L. H. (eds): Pollution Ecology of Freshwater Invertebrates. – Academic Press, New York/London, pp. 81–142. Sawyer, R. T., 1986: Leech biology and behaviour. Vols. 1– 3. – Clarendon Press, Oxford University Press, Oxford, pp. 1–1065. Schenková, J., Jarkovský, J. & Helešic, J., 2007: Strategies of coexistence of two species: Erpobdella octoculata and E. vilnensis (Hirudinea: Erpobdellidae). – Int. Rev. Hydrobiol. 92: 527– 538. Schenková, J. & Košel, V., 2005: Hirudinea (pijavice). – In: Farkač, J., Král, D. & Škorpík, M. (eds): Červený seznam ohrožených druhů České republiky. Bezobratlí [red list of threatened species in the Czech Republic. Invertebrates]. – Agentura ochrany přírody a krajiny ČR, Praha, pp. 67– 68. Schenková, J., Sychra, J., Košel, V., Kubová, N. & Horecký, J., 2009: Freshwater leeches (Annelida: Clitellata: Hirudinida) of the Czech Republic (Central Europe): check-list, new records, and remarks on species distributions. – Zootaxa 2227: 32 – 52. Schönborn, W., 1985: Die ökologische Rolle von Erpobdella octoculata (L.) (Hirudinea: Erpobdellidae) in einem abwasserbelasteten Fluß. – Zool. Jahrb. Syst. 112: 477– 494. Sládeček, V. & Košel, V., 1984: Indicator value of freshwater leeches (Hirudinea) with a key to the determination of European species. – Acta hydroch. hydrobiol. 12: 451– 461. Spelling, S. M. & Young, J. O., 1987: Predation on lake-dwelling leeches (Anellida): an evaluation by field experiment. – J. Anim. Ecol. 56: 131–146. StatSoft Inc., 2001: STATISTICA (data analysis software system), version 6. – URL; < www.statsoft.com > . Tolasz, R., 2007: Climate atlas of Czechia. – Český hydrometeorologický ústav Olomouc, Univerzita Palackého v Olomouci, Oloumouc, pp. 1– 255. van Haaren, T., 2004: The freshwater leeches (Hirudinea) of the Netherlands. – Lauterbornia 52: 113 –131. Young, J. O. & Ironmonger, J. W., 1981: A quantitative study of the comparative distribution of non-parasitic leeches and triclads in the stony littoral of British lakes. – Int. Rev. Hydrobiol. 66: 847– 862. Submitted: 20 November 2013; accepted: 17 July 2014. eschweizerbart_xxx 247 6. Seznam dalších publikací k tématu habilitační práce Publikace v recenzovaných časopisech a monografiích Horsák M., V. Rádková, J. Bojková, V. Křoupalová, J. Schenková, V. Syrovátka & J. Zajacová, 2015. Drivers of aquatic macroinvertebrate richness in spring fens in relation to habitat specialization and dispersal mode. J. Biogeogr. 42(11), 2112–2121. Glombová, J. & J. Schenková, 2015. Habitat preferences and ventral color variability of Hirudo medicinalis (Clitellata: Hirudinida). Ecologica Montenegrina, Podgorica (Montenegro) 2(1), 51–61. Kubová, N. & J. Schenková, 2012. A comparison of two semi-quantitative methods for freeliving leeches (Clitellata: Hirudinida) collecting. Lauterbornia 75(3), 79–86. Schenková, J. & J. Kroča, 2007. Seasonal changes of an oligochaetous Clitellata (Annelida) community in a mountain stream. Acta Universitatis Carolinae: Environmentalica 21, 145–152. Schenková, J. & V. Košel, 2005. Hirudinea (pijavice). In Farkač, J., D. Král & M. Škorpík. Červený seznam ohrožených druhů České republiky. Bezobratlí. Red list of threatened species in the Czech Republic. Invertebrates. Praha: Agentura ochrany přírody a krajiny ČR, 67–68. Schenková, J., 2005. Oligochaeta (máloštětinatci). In In Farkač, J., D. Král & M. Škorpík. Červený seznam ohrožených druhů České republiky. Bezobratlí. Red list of threatened species in the Czech Republic. Invertebrates. Praha: Agentura ochrany přírody a krajiny ČR, 62–64. Schenková, J., 2005. Polychaeta (mnohoštětinatci). In Farkač, J., D. Král & M. Škorpík. Červený seznam ohrožených druhů České republiky. Bezobratlí. Red list of threatened species in the Czech Republic. Invertebrates. Praha: Agentura ochrany přírody a krajiny ČR, 60–61. Schenková, J. & O. Komárek, 1999. Oligochaeta of the Morava River Basin: distribution patterns, community composition and abundance. Scripta 1999, 33–52. Schenková, J., O. Komárek & S. Zahrádková, 2001. The plausibility of using Oligochaeta to evaluate running waters in the Czech Republic. Scripta 2001, 173–187. Populární publikace Schenková, J. & K. Tajovský. 2007. Kroužkovci. In Hudec, K., J. Kolibáč, Z. Laštůvka & M. Peňáz et al. (eds), Příroda České republiky Průvodce faunou. 1. vydání. Praha, Academia, 36–41. Konferenční vystoupení Schenková, J., M. Bílková & J. Schlaghamerský. Can oligochaete assemblages predict an ecological type of treeless spring fens? In 13th International Symposium on Aquatic Oligochaeta, 2015, Brno. (Přednáška). Schenková, J., M. Horsák & M. Bílková, 2015. Máloštětinatí opaskovci a jejich odezva na podmínky prostředí na prameništních slatiništích. In Zoologické dny 2015, Brno. (Přednáška) Schenková, J., M. Bartošová, V. Křoupalová & I. Přikryl, 2014. Bentická fauna pěnovcových potoků na Velké podkrušnohorské výsypce. In Zoologické dny 2014, Ostrava. (Poster) 248 Schenková, J., V. Opravilová & J. Helešic, 2013. Diverzita mikro-meiofauny na řekách Rokytné a Loučce. In Zoologické dny 2013, Brno. (Přednáška) Schenková, J., M. Bílková & J. Bojková, 2012. Variabilita vodních opaskovců (Clitellata) na slatiništích vnějších Západních Karpat. In XVI. Konferencia Slovenskej limnologickej spoločnosti a České limnologické společnosti 2012, Jasná. (Přednáška) Schenková, J., J. Sychra & N. Kubová, 2011. The freshwater leeches (Clitellata: Hirudinida) of the Czech Republic – preference of different types of water bodies. In 4th International Conference Hirudinea: biology, taxonomy, faunistics 2012, Wierzba, Poland. (Přednáška) Schenková, J., P. Pařil, K. Petřivalská & J. Bojková, 2011. Vodní máloštětinatci (Annelida: Clitellata) České republiky. In Zoologické dny 2011, Brno. (Přednáška) Schenková, J., J. Bojková, V. Křoupalová A M. Horsák, 2010. Variabilita opaskovců (Annelida: Clitellata) na minerálně-trofickém gradientu prameništních slatinišť: srovnání velké a malé prostorové škály. In Zoologické dny 2010, Praha. (Přednáška) Schenková, J., V. Křoupalová, M. Horsák & J. Bojková, 2009. Comparison of clitellate assemblages (Annelida: Clitellata) in two different mineral types of spring fens: the response in permanent fauna abundance and species richness. In 11th International Symposium on Aquatic Oligochaeta 2009, Alanya, Türkiye. (Přednáška) Schenková, J., P. Pařil & K. Petřivalská, 2009. Od Hraběte po současnost - aneb co víme o máloštětinatých červech v Čechách. In 15. konference České limnologické společnosti a Slovenskej limnologickej spoločnosti 2009, Třeboň. (Přednáška) Schenková, J., J. Sychra, V. Košel, N. Kubová & J. Horecký, 2009. Pijavice (Clitellata: Hirudinida) České republiky: check-list, nové nálezy a poznámky k šíření druhů. In Zoologické dny 2009, Brno. (Přednáška) Schenková, J., J. Špaček & J. Sychra, 2007. Dva nové druhy pijavic (Hirudinida) Alboglossiphonia hyalina (O. F. Müller, 1774) a Glossiphonia verrucata (Fr. Müller, 1844) pro Českou republiku. In Zoologické dny 2007, Brno. (Poster) Schenková, J. & J. Kroča, 2006. Sezónní změny společenstva máloštětinatců (Oligochaeta, Annelida) horského toku Moravskoslezských Beskyd. In 14. konference České limnologické společnosti a Slovenskej limnologickej spoločnosti 2006, Praha. (Přednáška) Schenková, J., J. Helešic & J. Jarkovský, 2005. Life strategies and habitat preferences of two competing species: Erpobdella octoculata and Erpobdella vilnensis (Annelida: Hirudinea). In Symposium RIVER BOTTOM VI Brno. (Přednáška) Schenková, J. & J. Helešic, 2004. Záleží akvatickým máloštětinatcům (Oligochaeta) na prostředí ve kterém žijí? In Zoologické dny 2004, Brno. (Přednáška) Schenková, J. & J. Helešic, 2003. Akvatická Oligochaeta - máloštětinatci a jejich habitatové preference. In Zoologické dny 2003, Brno. (Přednáška) Schenková, J. & J. Helešic, 2003. Habitat preferences of aquatic Oligochaeta in a small highland stream (Czech Republic). In 9th International symposium on aquatic Oligochaeta 2003, Wageningen, the Netherlands. (Poster)