Masarykova univerzita Přírodovědecká fakulta Ľubomír VIDLIČKA Vybrané aspekty z etológie a taxonómie švábov (Blattaria) Habilitačná práca v odbore Zoológia Bratislava 2015 Bibliografická identifikácia Meno a priezvisko autora: Ľubomír Vidlička Názov dizertačnej práce: Vybrané aspekty z etológie a taxonómie švábov (Blattaria) Názov dizertačnej práce po anglicky: Selected aspects of ethology and taxonomy of cockroaches (Blattaria) Odbor: Zoológia Rok obhajoby: 2016 Kľúčové slová v slovenčine: etológia, taxonómia, paleontológia, Blattaria, Nocticolidae, Blaberidae, Blattellidae Kľúčové slová v angličtine: ethology, taxonomy, paleontology, Blattaria, Nocticolidae, Blaberidae, Blattellidae Prehlásenie Prehlasujem, že som prácu napísal sám s použitím patričných literárnych zdrojov, ktoré sú v práci všetky riadne citované. V Bratislave, 20.11.2015 Ľubomír Vidlička Poďakovanie Na tomto mieste si dovoľujem poďakovať sa všetkým, ktorí ma na mojej dlhej ceste za poznaním švábov sprevádzali alebo správnym spôsobom ovplyvnili. V prvom rade je to RNDr. Milan Kozánek, CSc., u ktorého som ako mladý ašpirant začínal a po prvýkrát som prišiel do styku s masovo chovanými švábmi (Nauphoeta cinerea) na vedecké účely. Od tohto okamihu som už šváby nikdy neopustil i keď môj záujem o ne sa vyvíjal rôznymi smermi. Ďalej musím na tomto mieste poďakovať všetkým bývalým kolegom z Ústavu experimentálnej fytopatológie a entomológie SAV v Ivanke pri Dunaji a taktiež súčasným kolegom z Ústavu zoológie SAV v Bratislave za ich trpezlivosť s mojimi obľúbenými chovancami, ktorí sa viac-menej pravidelne vydávali v nočných hodinách na prieskum ústavu a ráno spôsobovali u nežnejšieho pohlavia zdesenie. Za dlhoročnú a plodnú spoluprácu ďakujem aj RNDr. Petrovi Vršanskému, PhD. z Geologického ústavu SAV, ktorý sa síce prednostne venuje fosílnym švábom, ale našiel som v ňom spriaznenú dušu aj pri živých predstaviteľoch tohto radu hmyzu. Poďakovanie patrí aj Prof. Ing. Jaroslavovi Holušovi, Ph.D. (Česká zemědělská univerzita v Praze) a Doc. RNDr. Petrovi Kočárkovi, Ph.D. (Přírodovědecká fakulta Ostravská univerzita v Ostravě) za príkladnú spoluprácu pri tvorbe monografie o ortopteroidnom hmyze Českej a Slovenskej republiky, kde zapadli aj „moje“ šváby. V neposlednom rade patrí moje poďakovanie mojej manželke, že mala pre moju záľubu pochopenie pri mojich neskorých príchodoch z práce, pri mimoeurópskych expedíciách, ako aj počas dovoleniek venovaných zberom švábov. 3 Abstrakt Predložená práca pojednáva o niektorých aspektoch etológie a taxonómie zástupcov radu švábov (Blattaria). Je založená na súbore 17 vedeckých článkov (väčšina z nich je zahrnutá v databáze WOS) a dvoch monografiách, ktoré majú vzťah k riešenej problematike. Obsah práce je rozdelený do 4 sekcií. Prvá sekcia „Etológia švábov“ pojednáva o sexuálnom správaní švábov druhu Nauphoeta cinerea počas dvorenia a párenia. Párenie je veľmi zložitý proces pozostávajúci zo 4 fáz. V každej fáze prebiehajú iné deje: i) vytvorenie pevného genitálneho spojenia, ii) kompletizácia a presun spermatofóru v tele samčeka, iii) prenos spermatofóru do burzy copulatrix samičky, iv) ukončenie párenia a rozpojenie genitálií. Jednotlivé fázy sú presne riadené nervovou sústavou, sprostredkované aj zmenami koncentrácie histamínu; počas dvorenia sú riadené hlavne mozgom (nadhltanové ganglium) a vo fáze kopulácie najmä posledným (šiestym) abdominálnym gangliom. Druhá sekcia „Rozšírenie a taxonómia švábov v Európe a na Slovensku“ sa skladá z troch častí. Prvá časť pojednáva o šváboch z rodu Ectobius, ktorý je v Európe zastúpený 35 druhmi. Tie sú však rozšírené veľmi nerovnomerne. Väčšinu tvoria endemitné druhy s veľmi malými areálmi rozšírenia, hlavne v južnej Európe. V podmienkach strednej Európy a Slovenska majú širšie zastúpenie iba druhy E. lapponicus, E. sylvestris a E. erythronotus. V posledných rokoch môžeme pozorovať prenikanie druhu E. vittiventris z južného Švajčiarska do oblasti strednej Európy a aj na územie Slovenska. Druh má podobné nároky ako naše natívne druhy. Ťažko si hľadá v prírode voľnú niku a tak často preniká do ľudských príbytkov. Druhá časť tejto sekcie sa zaoberá skupinou maculata z rodu Phyllodromica. Rod Phyllodromica je najväčší európsky rod s množstvom endemitných druhov v centrálnej Európe, vrátane územia Slovenska, Maďarska a Rumunska. Posledná časť v tejto sekcii hovorí o šváboch zo skupiny megerlei z rodu Phyllodromica. Túto skupinu tvoria zatiaľ iba tri druhy, z ktorých iba Ph. megerlei má širšie rozšírenie. Ďalšie druhy z tejto skupiny sa dajú očakávať hlavne v štátoch východného Stredomoria (Chorvátsko, Albánsko, Macedónsko, Čierna Hora, Srbsko) a západne od Čierneho mora (Bulharsko, Rumunsko). Tretia sekcia „Šváby juhovýchodnej Ázie a Južnej Ameriky“ je zameraná na vybrané endemitné rody žijúce v oblastiach s najväčšou druhovou bohatosťou švábov na svete. V časti o JV Ázii sú detailne spracované informácie o šváboch z rodov Caeparia, Chorisoserrata a Spelaeoblatta. Južnú Ameriku reprezentuje rod Macrophyllodromia, ktorý v súčasnosti združuje 12 druhov. Táto časť poukazuje na potrebu urýchleného výskumu v oblastiach tropických pralesov, ktoré sú veľmi rýchlo devastované a miznú. Posledná sekcia „Fosílne šváby“ je pohľadom do života švábov za posledných 300 miliónov rokov. Paleontológovia prinášajú takmer denne nové informácie o fosílnych druhoch, ktoré menia náš pohľad na evolúciu tejto skupiny. Výrazné zmeny nastali aj v paleoetológii švábov. Pozornosť v poslednej dobe vzbudili hlavne dva objavy: šváby ako čističi po dinosauroch a objav švába z „európskeho“ rodu Ectobius v amerických eocénnych usadeninách. 4 Abstract The present habilitation thesis deals with some aspects of ethology and taxonomy focusing on representatives of the order cockroaches (Blattaria). The thesis is based on the collection of 17 scientific papers (most of them included in the Web of Sciences) and 2 monographs, which are related to the thesis main topic. The content of thesis is divided into four sections. The first section “Ethology of cockroaches” deals with a sexual behaviour of cockroach species Nauphoeta cinerea during courtship and copulation. Mating is a very complex process comprising 4 phases. In each phase, different actions are involved: i) forming stable genital connection, ii) assembling and movement of spermatophore in the male body, iii) transferring of spermatophore into female bursa copulatrix and iv) finishing of copulation and disconnection of genitalia. All phases are exactly controlled by nervous system mediated by the changes of histamine concentration; during courtship is controlled mainly by brain (supraesophageal ganglion) and in the phase of copulation controlled mainly by the last (sixth) abdominal ganglion. The second section “Distribution and taxonomy of cockroaches in Europe and Slovakia” has three parts. First part deals with cockroach genus Ectobius that is represented by 35 species. These species are unequal distributed. The most of them are endemic species with small distribution areas mainly in South Europe. In central Europe including Slovakia, the species E. lapponicus, E. sylvestris and E. erythronotus are wide distributed. In the last years, we observe infiltration of species E. vittiventris from South Switzerland into the area of central Europe including Slovakia. This species has the same food request as our native species. It often occupies human habitats due to non-existing free niche. The second part deals with maculata-group of genus Phyllodromica. Phyllodromica is the most dominant European genus with numbers of endemic species in central Europe including Slovakia, Hungary and Romania. The last part deals with cockroaches from megerlei-group of Phyllodromica. This group consists of three species of which only Ph. megerlei is wide distributed. Other species from this group are expected to be distributed mainly in the states of east Mediterranean (Croatia, Albania, Macedonia, Monte Negro and Serbia) and westward from Black sea (Bulgaria and Romania). The third section “The cockroaches of south-east Asia and South America” focuses on selected endemic genera living in the area with the highest species richness worldwide. In the part of south-east Asia, detailed information about cockroaches from the genera Caeparia, Chorisoserrata and Spelaeoblatta can be found. South American cockroaches are represented by genus Macrophyllodromia consisting of 12 species. This section highlights the urgent needs of taxonomic research in the area of tropical forest which are nowadays massively devastated. The last section “Fossil cockroaches” is view to the life of cockroaches over the past 300 million years. The paleontologists bring daily new information about fossil species that are changing are view on the evolution of this group. Significant changes are also described in paleoethology of cockroaches. In last days, more attention is paid on two observations: cockroaches as a cleaner after dinosaurs and cockroaches from “European” genus Ectobius found in American Eocene sediments 5 Obsah 1. Úvod ................................................................................................................................. 7 2. Štruktúra práce a jej zameranie ........................................................................................ 8 2.1. Tematické okruhy .......................................................................................................... 8 3. Etológia švábov ................................................................................................................ 9 3.1. Dvorenie a párenie ........................................................................................................ 9 3.2. Prehľad príspevkov autora k poznaniu etológie švábov ............................................. 13 4. Rozšírenie a taxonómia švábov v Európe a na Slovensku ............................................ 14 4.1. Rod Ectobius – rozšírenie a biológia .......................................................................... 14 4.2. Rod Phyllodromica – skupina druhov maculata ........................................................ 16 4.3. Rod Phyllodromica – skupina druhov megerlei ......................................................... 20 4.4. Prehľad príspevkov autora k poznaniu švábov na Slovensku a v Európe ................. 22 5. Šváby juhovýchodnej Ázie a Južnej Ameriky ............................................................... 24 5.1. Šváby z rodu Caeparia Stål, 1877 (Blaberidae: Panesthiinae) .................................. 24 5.2. Šváby z rodu Chorisoserra (Blattellidae: Pseudophyllodrominae) ............................ 27 5.3. Šváby z rodu Spelaeoblatta Bolívar, 1897 (Noticolidae) ........................................... 29 5.4. Šváby z rodu Macrophyllodromia Saussure & Zehnter, 1893 (Blattellidae) ............. 31 5.5. Prehľad príspevkov autora k poznaniu švábov juhovýchodnej Ázie a Južnej Ameriky ......................................................................................................... 34 6. Fosílne šváby (Blaberidae, Blattellidae, Ectobiidae) ..................................................... 35 6.1. Prehľad príspevkov autora k poznaniu fosílnych švábov (Blaberidae, Blattellidae, Ectobiidae) ......................................................................... 37 7. Použitá literatúra ............................................................................................................ 38 Prehľad príloh..................................................................................................................... 48 6 1. Úvod Predložená habilitačná práca sa zaoberá etológiou, taxonómiou a fylogenézou radu švábov (Blattaria), ktorý tvorí spolu s modlivkami (Mantodea), koníkmi, kobylkami, svrčkami (Orthoptera), ucholakmi (Dermaptera), pakobylkami (Phasmatodea), svrčkovcami (Grylloblattodea) a nedávno opísaným radom Mantophasmatodea (KLASS et al. 2002) skupinu ortopteroidného hmyzu. Šváby ako rad sú tak u nás, ako aj vo svete, pomerne zanedbávaná skupina, čo je zrejme dané malým počtom druhov, ktoré tento rad zahŕňa. Na druhej strane však sú šváby ideálnymi laboratórnymi živočíchmi. Rýchlo a bezproblémovo sa množia, na malom priestore je ich možné dochovať stovky. Preto sa stali laboratórnou „myšou“ pri výskume bezstavovcov. Keď som koncom 80-tych rokov minulého storočia začínal svoju kariéru, bol to práve výskum fyziológie bezstavovcov, zhodou okolností švábov. Príprava pokusov si vyžadovala dôkladné poznanie ich pohlavného správania (pozri časť 3). Táto prvá skúsenosť spojená s výskumom švábov predurčila moju celoživotnú dráhu. Od etológie tropických laboratórnych druhov sa časom záujem presunul aj na naše autochtónne druhy švábov. V tej dobe bolo zo Slovenska známych len 5 druhov (MAŘAN & ČEJCHAN 1977) a z celej Európy asi 80 druhov švábov. O ich rozšírení či sezónnej dynamike sa vedelo veľmi málo a nakoniec sa aj existujúce determinačné kľúče ukázali ako nespoľahlivé. Vedomosti o šváboch bolo treba získavať takmer od začiatku. Na Slovensku sa faunistikou či taxonómiou švábov nezaoberal žiadny špecialista a v Českej republike sa im v tej dobe venovali iba dvaja odborníci, obaja však iba popri koníkoch a kobylkách. Štúdium začalo spracovaním muzeálnych zbierok v slovenských a českých múzeách (VIDLIČKA & MAJZLAN 1992, VIDLIČKA & HOLUŠA 1999). Dôkladné zoznámenie sa s literatúrou a všetkými dostupnými dátami vyústilo v spolupráci s vtedy tiež mladými kolegami z Čiech do publikovania nového zoznamu druhov (KOČÁREK et al 1999) ako aj bibliografie ortopteroidného hmyzu (HOLUŠA et al. 1999). Okruh záujmu sa postupne rozšíril aj na územie Maďarska a Rumunska. Spracované boli šváby celej Karpatskej kotliny (VIDLIČKA & SZIRÁKY 1997), Švajčiarska (VIDLIČKA & REZBÁNYAI-RESER 2005), čiastočne Chorvátska (VIDLIČKA & OZIMEC 2011). Popri tom boli objavené a opísané aj pre vedu nové druhy z Maďarska, Rumunska, Bulharska (pozri časť 4). Nazhromaždené údaje vyústili do monografického spracovania Fauny švábov Slovenska (VIDLIČKA 2001) a vďaka možnosti ponúknutej kolegami z Českej republiky aj ilustrovaného kľúča pre Českú Republika a Slovensko (KOČÁREK et al. 2005). Záujem o taxonómiu švábov zákonite viedol k rozšíreniu záujmového územia na teritóriá bohatšie na faunu švábov – juhovýchodnú Áziu a Južnú Ameriku (pozri časť 5). V týchto dvoch oblastiach žijú tri štvrtiny všetkých známych druhov švábov. Na rozdiel od Európy sú tu početné malé endemické rody. Ich identifikácia je pomerne náročná, odborníkov na šváby je na svete iba pár. Zároveň sú to oblasti postihnuté rýchle vzrastajúcim počtom obyvateľstva a v ruka v ruke s tým aj devastáciou prírody nebývalých rozmerov. Úzka spolupráca s paleontológom, ktorý sa veľmi úspešne etabloval pri výskume fosílnych švábov, vyústila okrem taxonomickej problematiky aj do výskumu ich paleoetológie (pozri časť 6), čím sa kruh záujmov akoby uzavrel a znovu sa vrátil tam kde začal. 7 2. Štruktúra práce a jej zameranie Habilitačná práca pozostáva z úvodnej časti, v ktorej sú stručne načrtnuté štyri záujmové okruhy, ktoré autor rieši alebo v minulosti riešil a zo súboru 17 vedeckých článkov publikovaných v impaktovaných (12) ako aj neimpaktovaných recenzovaných (5) časopisoch a dvoch monografií, ktoré majú vzťah k problematike vybraných tematických okruhov. Pripojené publikované práce sú iba výberom prác autora, keďže autor sa venuje okrem švábov (Blattaria) aj sieťokrídlovcom (Neuroptera) a príležitostne aj iným radom hmyzu (Insecta). Pripojené práce sú zároveň aj reprezentatívnym výberom z prác autora venovaných výskumu švábov z rokov 1993-2015. Úvodná časť práce slúžia na zoznámenie sa s tým, čo bolo v danej problematike známe do doby autorovho príspevku, s výsledkami autora a prípadne aj s tým, čo sa v tejto oblasti zistilo odvtedy dodnes. 2.1. Tematické okruhy práce a) Etológia švábov – dvorenie a párenie b) Rozšírenie a taxonómia švábov v strednej Európe a na Slovensku b1) Rod Ectobius – rozšírenie a biológia b2) Rod Phyllodromica – skupina druhov maculata b3) Rod Phyllodromica – skupina druhov megerlei c) Šváby v juhovýchodnej Ázii a Južnej Amerike c1) Šváby z rodu Caeparia Stål, 1877 (Blaberidae: Panesthiinae) c2) Šváby z rodu Chorisoserra (Blattellidae: Pseudophyllodromidae) c3) Šváby z rodu Spelaeoblatta Bolívar, 1897 (Noticolidae) c4) Šváby z rodu Macrophyllodromia Saussure & Zehnter, 1893 (Blattellidae) d) Fosílne šváby (Blaberidae, Blattellidae, Ectobiidae) 8 3. Etológia švábov 3.1. Dvorenie a párenie Záujem o detailný priebeh správania sa švábov počas dvorenia a párenia možno datovať do 50-tych rokov minulého storočia. Prelomovou bola práca dvojice amerických švábológov Louisa M. Rotha a Edwina R. Willisa o reprodukčnej biológii švábov (ROTH & WILLIS 1954). Predkopulačné správanie švábov vykazuje u celej skupiny určité známky uniformity (ROTH & WILLIS 1954, ROTH & DATEO 1966; ROTH & BARTH 1967, ROTH 1969, SIMON & BARTH 1977a,b). Priebeh párenia sa však môže v určitých detailoch líšiť v závislosti od umiestnenia tergálnych žliaz samčeka. V tergálnych žľazách sa tvorí sexuálny (afrodiziakálny) feromón. Podľa spôsobu akým samček láka samičku a zahajuje kopuláciu rozlišujeme tri typy páriaceho správania (A, B a C) (SRENG 1993). Párenie je najlepšie preskúmané na laboratórne chovaných druhoch švábov. Jedným z najčastejšie chovaných druhov je cirkumtropicky rozšírený druh Nauphoeta cinerea (Blaberidae: Oxyhaloinae). Z viacerých príčin práve on plní úlohu „laboratórnej myši“ pri výskume bezstavovcov. Spôsobom dvorenia a párenia je šváb Nauphoeta cinerea typickým predstaviteľom základného typu A. Keď sa k sebe priblížia samček a samička švába N. cinerea (obr. 1), ktorí sú pripravení na párenie, začne samček vylučovať prchavé látky krátkeho dosahu a na povrchu samičky sa objavia kontaktné feromóny, ktoré umožňujú druhovú identifikáciu, rozpoznanie pohlavia a zároveň, v prípade stretnutia správneho druhu a páru, uľahčujú aj koordináciu dvorenia samčeka samičke. Využívaniu pohlavných feromónov švábmi sa dlhodobo venoval Coby Schal (SCHAL 1982, SCHAL & BELL 1984, 1985, SCHAL et al. 1990, 1991) a tému prednedávnom komplexne spracoval (GEMENO & SCHAL 2004). Feromóny neslúžia len pri výbere partnera a na spustenie samčieho dvorenia, ale zároveň môžu regulovať aj viaceré fyziologické procesy. U N. cinerea môžu samčie feromóny ovplyvniť dĺžku života samičky, počet potomkov, pomer ich pohlavia a rýchlosť ich vývinu v plodovom vaku (MOORE et al. 2001, 2002, 2003). Pri krátkom tykadlovom kontakte overí samček fyziologickú pripravenosť samičky na párenie (obr. 2). V prípade samičkinej fertility zahajuje samček fázu dvorenia. Dvihne tegminy a krídla do takmer kolmej polohy k telu, čím odokryje tergity na svojom chrbte (obr. 3) a zároveň umožní lepšie pôsobenie 9 Ľubomír Vidlička Habilitačná práca Obr. 1. Stretnutie jedincov rôzneho pohlavia. Obr. 2. Tykadlový kontakt. Obr. 3. Dvorenie samčeka samičke. feromónu produkovaného tergálnymi žľazami. Následne sa ku samičke natočí tak, aby mohla zozadu vyliezť na jeho chrbát. Ak samička nereaguje na takúto ponuku snaží sa samček podsunúť bruško pod jej hlavu čo najtesnejšie. Fertilná samička zvyčajne reaguje na ponuku samčeka postupným vyliezaním na jeho chrbát (obr. 4). Súčasne ústnymi orgánmi „olizuje“ produkt samčích tergálnych žliaz (obr. 5). Vyliezanie zvyčajne končí dotykom samičkinej hlavy o dvihnuté krídla samčeka. Doba, ktorú strávi samička olizovaním sekrétov stačí samčekovi na to, aby vystrčil genitálny hák (ľavá faloméra), zasunul ho pomedzi samičie genitálie, a tak vytvoril dostatočne pevné spojenie so samičkou (obr. 6). Hákom spoľahlivo pripojený samček sa začne pohybovať dopredu a skladať krídla a tegminy na bruško, čím prinúti samičku zliezť bokom z jeho chrbta (obr. 7) a otočiť sa o 180 stupňov (obr. 8). Tým sa koniec samčieho bruška pretočí a následne ho samček musí dostať do prirodzenej polohy bez toho, aby bolo prerušené ukotvenie pomocou háku. Až po tomto pomerne náročnom úkone sa obaja v páre dostávajú do správnej kopulačne pozície a môže začať vlastná kopulácia (obr. 9). Zaujatú polohu nemení pár až do skončenia kopulácie (VIDLIČKA 2001, BELL et al. 2007). Proces kopulácie môže trvať rôzne dlho. Dĺžka kopulácie je samozrejme medzi druhmi variabilná, ale mení sa aj v rámci druhu. Jej dĺžku ovplyvňuje viacero faktorov. V prvom rade je to vek samčeka, ale vplyv má aj doba uplynutá od jeho posledného párenie a jeho sociálny status. Reálna dĺžka párenia sa dá zistiť iba odstránením vplyvu všetkých týchto faktorov. To znamená, že pozorovania z prírody sú ťažko interpretovateľné. Najdlhšie párenia pozorované v prírodných podmienkach sa týkajú juhoamerického druhu Xestoblatta hamata (Blattellidae), kde párenie v dažďovom pralese trvalo až 5 hodín (SCHAL & BELL 1982) a austrálskeho druhu Polyzosteria limbata (Blattidae, Polyzosterinae), kde párenie prebiehalo za denného svetla a páry niekedy zostávali spojené viac ako 24 hodín (MACKERRAS 1965). Zhodou okolností sa Nauphoeta cinerea pári najkratšie z doteraz študovaných druhov. Za dodržania štandardných podmienok (použitie 14 dní starých panenských samčekov chovaných už od posledného nymfálneho instaru v kolektíve nýmf rovnakého pohlavia pri teplote 251°C) je doba jeho párenia prekvapivo stabilná – 12,5 minúty (N=100, SE=0,9 – VIDLIČKA & HUČKOVÁ 1993). 10 Obr. 4. Vyliezanie samičky na chrbát dvoriaceho samčeka. Obr. 5. Olizovanie samčích sekrétov. Obr. 6. Prichytenie samičky hákom. Ľubomír Vidlička Habilitačná práca Pri pozmenených podmienkach môže prvé párenie trvať aj 17 minút (ROTH 1964). Druhé párenie s nedostatočným odstupom môže trvať podstatne dlhšie (1008 min.) a pri treťom párení v rade až 1412 minúty (ROTH 1964). Pozornosť bola zvyčajne venovaná dĺžke párenia a jeho úspešnosti, prípadne vlastnostiam potomstva, ale už menej vlastnému priebehu kopulácie. Telo samčekov počas kopulácie pulzuje v nepravidelných intervaloch. U Nauphoeta cinerea pulzuje telo samčeka prvé 4 minúty kopulácie približne 15x za minútu, ďalšie 4 minúty frekvencia klesá pod 10 pulzov za minútu, v 9. minúte sa počet pulzov prudko zväčšuje až na 20 za minútu, potom frekvencia pulzov bruška samčeka prudko klesá pod 10 pulzov za minútu (obr. 10) a v poslednej minúte párenia sa fakticky takmer úplne zastavuje (VIDLIČKA & HUČKOVÁ 1993). Experimentálne prerušovanie kopulácie v pravidelných intervaloch (po 4, 6, 8, 10 minútach od zaujatia páriacej polohy) prispelo k pochopeniu dejov v priebehu kopulácie. Vo väčšine prípadov mal samček po 4 minútach párenia penis vysunutý, podobne to bolo aj po 8 minútach párenia. V oboch prípadoch došlo v deviatej minúte k vysunutiu spermatoforu a jeho upevneniu k podkladu. Pri prerušení kopulácie po 10. minúte bol penis tiež vysunutý a zostal tak až do 13. minúty (podobne to bolo aj v predchádzajúcich dvoch prípadoch), a potom bol zatiahnutý. Na základe zistených zmien v rýchlosti pulzácie a tiež na základe výsledkov z prerušovania kopulácie bol priebeh kopulácie rozdelený do štyroch fáz: i. tvorba genitálneho kontaktu, vysunutie penisu (1.-4. minúta), ii. tvorba, kompletizácia a presun spermatoforu v tele samčeka (5.-8. minúta), iii. prenos spermatoforu do kopulačnej komôrky (bursa copulatrix) samičky (9. minúta), iv. prerušenie genitálneho kontaktu, zasunutie penisu a uvoľnenie upevňovacieho háku z tela samičky (10.-13. minúta) (VIDLIČKA & HUČKOVÁ 1993). Spermie po skončení párenia nemigrujú zo samčieho spermatoforu umiestneného v kopulačnej komôrke do samičej spermatéky okamžite. Spermatofor obsahuje nepohyblivé, stočené spermie, ktoré sa vystierajú a začínajú sa aktívne pohybovať až asi po 2 hodinách (VIDLIČKA & HUČKOVÁ 1993). Spermie sú aktivované výlučkami spermatéky (KHALIFA 1950). 11 Obr. 7. Bočné zliezanie samičky zo samčeka. Obr. 8. Natáčanie samičky do páriacej polohy. Obr. 9. Kopulácia v lineárnej polohe. Ľubomír Vidlička Habilitačná práca Keďže niektoré výskumy ukázali, že úroveň histamínu ako neurotransmiteru v hmyzích CNS sa mení v odozve na rôzne stresové podnety (KOZÁNEK et al. 1985, TAKÁČ et al. 1990), zvažovala sa aj jeho úloha v reprodukcii švábov Nauphoeta cinerea (HUČKOVÁ et al. 1992). Priebeh koncentračných zmien histamínu v mozgu (supraoesofageálnom gangliu) Nauphoeta cinerea počas párenia bol u samčekov a samičiek veľmi podobný (obr. 10). V čase dvorenia, keď samička vylezie na bruško samčeka a na začiatku kopulácie sa úroveň histamínu zvýšila len mierne. Tento nárast bol trochu prudší v mozgu samičiek oproti mozgu samčekov. V 5. minúte kopulácie sa koncentrácie histamínu u oboch pohlaví výrazne zvýšili a dosiahli asi 3-krát vyššie hodnoty, než boli pozorované u kontrolných nepárených skupín. V 10. minúte kopulácie sa znížila hladina histamínu a bola približne na rovnakej úrovni ako na začiatku kopulácie, avšak u samčekov bola signifikantne vyššia v porovnaní s kontrolnou skupinou. Po 2 hodinách bola hladina histamínu u oboch pohlaví takmer rovnaká ako v kontrolných skupinách alebo na začiatku kopulácie. V 6. abdominálnom gangliu boli zmeny koncentrácie histamínu výrazne odlišné u samčekov a samičiek (obr. 10). Na začiatku kopulácie bola síce u oboch pohlaví takmer rovnaká ako u kontrolnej skupiny, ale potom (v 5. a 10. minúte párenia) bol u samčekov zaznamenaný prudký nárast koncentrácie. U samičiek zostala koncentrácia histamínu porovnateľná s kontrolnou skupinou. Dve hodiny po ukončení kopulácie boli hodnoty histamínu nižšie ako u kontrolných skupín. To naznačuje úlohu 6. brušného ganglia a histamínu práve pri dotvorení spermatoforu v brušku samčeka a pri jeho presune a upevnení v kopulačnej komôrke samičky (KOZÁNEK et al. 1992, HUČKOVÁ et al. 1994). HINTZEPODUFAL & VETTER (1996) poukázali na funkciu juvenilného hormónu pri párení švába Blaptica dubia. Významnú úlohu hral hlavne v prvej fáze dvorenia – tykadlový kontakt. Ako už bolo naznačené, samčekovi po párení trvá príprava nového spermatoforu (hlavne jeho naplnenie spermiami) značnú dobu. Preto trvajú opakované párenia výrazne dlhšie. Samčekovia švába N. cinerea, ktorí sa opätovne párili skôr ako za 24 hodín, mali obmedzený počet spermií a produkovali menej potomkov než panenskí samčekovia a tiež 12 Obr. 10. Priebeh kontrakcií bruška u samčeka a zmeny hladiny histamínu v mozgu (plná čiara) a v 6. abdominálnom gangliu (bodkovaná čiara) u samčekov (modrá čiara) a samičiek (červená čiara) Nauphoeta cinerea počas 1. kopulácie. Ľubomír Vidlička Habilitačná práca samčekovia, ktorí mali päťdňovú dobu na zotavenie medzi dvoma kopuláciami (MONTROSE et al. 2004). Ukázalo sa, že samičky Nauphoeta cinerea sú schopné rozlíšiť samčekov, ktorí sa ešte nepárili od takých, ktorí sa už párili. Ak majú možnosť, vyberajú si panenských samčekov radšej ako samčekov s nedostatkom spermií (HARRIS & MOORE 2005). U druhu Schultesia nitor (Blaberidae: Zetoborinae) bolo pozorované, že samčekovia sa stávajú pohlavne receptívnymi až pár dní po imaginálnom zvlečení. Pred týmto časom nie sú schopní párenia. Samičky sa stávajú fertilnými takmer okamžite po imaginálnom zvlečení, skôr ako sú plne zafarbené a sklerotizované (tenerálne samičky). U tohto druhu je larválny vývoj u samčekov kratší ako u samičiek, čiže tento druh je protandrický. Samičky sa správajú monandricky (pária sa iba raz), zatiaľ čo samčekovia sú polygynní (ak majú príležitosť pária sa viackrát). Samičky u tohto druhu produkujú iba jednu znášku a krátko po vyliahnutí potomstva hynú. Aj u tohto druhu sa ukázalo, že ak majú samičky možnosť voľby, uprednostňujú panenských samčekov pred už skúsenejšími samčekmi (MONCEAU & VAN BAAREN 2012). Samičky ovoviviparného druhu Nauphoeta cinerea vynosia v priemere 6 ooték. Po oplodnení strácajú fertilitu. Keď porodia potomstvo chránia nymfy počas prvého instaru (MOORE & MOORE 2001). Až potom nadobúdajú opäť fertilitu a sú ochotné sa znova páriť (ROTH 1964). 3.2. Prehľad príspevkov autora k poznaniu etológie švábov (hnedou farbou sú uvedené príspevky, ktoré sú súčasťou habilitačnej práce) KOZÁNEK, M., TAKÁČ, P., VIDLIČKA, Ľ. 1990. Concentration changes of some monoamines and steroids during courtship and copulation of cockroach Nauphoeta cinerea. Invertebrate Reproduction & Development 18(1-2): 120. TAKÁČ, P., KOZÁNEK, M., VIDLIČKA, Ľ. 1990. Circadian changes of some vertebrate-type hormones in cockroach Nauphoeta cinerea. Invertebrate Reproduction & Development 18(1-2): 130. HUČKOVÁ, A., KOZÁNEK, M., VIDLIČKA, Ľ., TAKÁČ, P. 1992. Histamine distribution in the nervous system of the cockroach Nauphoeta cinerea (Blattodea, Panchloridae) and its changes during development, pp. 129-134. In: Advances in regulation of insect reproduction. Institute of Entomology Czech Academy Sciences, České Budějovice. ISBN 80-901250-0-X VIDLIČKA, Ľ., HUČKOVÁ, A. 1993. Mating of the cockroach Nauphoeta cinerea (Blattodea: Blaberidae): I. Copulatory behaviour. Entomological Problems 24(2): 69-73. (Príloha č. 1) HUČKOVÁ, A., VIDLIČKA, Ľ., KOZÁNEK, M. 1994. Mating of the cockroach Nauphoeta cinerea (Blattodea: Blaberidae): II. Histamine changes during courtship and copulation. Biologia 49(5): 691-695. (Príloha č. 2) VIDLIČKA, Ľ. 2001. Blattaria – šváby; Mantodea – modlivky (Insecta: Orthopteroidea). Veda, Bratislava, 169 pp. (Fauna Slovenska) ISBN 80-224-0640-6 (Príloha č. 18) 13 Ľubomír Vidlička Habilitačná práca 4. Rozšírenie a taxonómia švábov v Európe a na Slovensku Šváby (Blattaria) sú prevažne tropickou skupinou zahŕňajúcou okolo 5000 druhov. Z tohto množstva sa v Európe vyskytuje len okolo 120 druhov čo znamená, že v Európe je najmenšia druhová pestrosť švábov zo všetkých svetadielov (samozrejme okrem Antarktídy). Napriek pomerne malému množstvu druhov je švábologická literatúra zaoberajúca sa územím Európy nepomerne bohatšia ako na iných svetadieloch. Viaceré Európske druhy majú dosť široké rozšírenie a sú značne variabilné, čo spôsobilo, že boli opísané aj niekoľkokrát. Majú množstvo synoným, niektoré druhy aj viac ako desať. Situácia sa preto stala krajne neprehľadnou a paradoxne, určenie niektorých európskych druhov (hlavne balkánskych) je takmer nemožné. Z územia Európy je známych z natívnych druhov iba 6 rodov švábov – Ectobius, Phyllodromica, Loboptera, Planuncus, Capraiellus, Polyphaga a Hemelytroblatta. Z rodu Polyphaga zasahuje do Európy iba 1 druh – P. aegyptiaca. Rod Hemelytroblatta je zastúpený 5 druhmi zasahujúcimi okrajovo do juhovýchodnej Európy. Celý rod sa vyskytuje prevažne v severnej Afrike a na Blízkom Východe. Podobne rod Loboptera, ktorý zahŕňa 32 druhov, je z Európy známy iba 6 druhmi, z ktorých iba jeden je širšie rozšírený v Stredomorí – Loboptera decipiens. Ostatných 5 druhov je známych iba zo Španielska a boli opísané pomerne nedávno (BOHN 1990) odčlenením od druhu Loboptera decipiens. Zvyšok druhov je endemických na Kanárskych ostrovoch, Azorách, Madeire a v Maroku. Výnimku predstavujú dva druhy vyskytujúce sa v Kamerune (L. loboptera Princis, 1962) a v Saudskej Arábii (L. isolata Grandcolas, 1994). Rody Ectobius a Phyllodromica majú európske až eurázijské (palearktické) rozšírenie. Viaceré druhy zasahujú aj do Afriky. V rode Ectobius evidujeme v súčasnosti 67 druhov, z ktorých 35 je rozšírených v Európe, pri rode Phyllodromica je to 60 z 99 známych druhov. Rod Capraiellus vznikol odčlenením troch druhov z rodu Ectobius do samostatného podrodu (HARZ 1976), ktorý bol prednedávnom povýšený na samostatný rod (BOHN et al. 2013). Všetky tri druhy rodu Capraiellus sa vyskytujú v Európe. Rod Planuncus bol tiež zriadený iba pred dvomi rokmi (BOHN et al. 2013) a boli sem preradené 4 druhy z rodu Ectobius a 9 druhov z rodu Phyllodromica. Až 11 z nich žije v Európe. Oba tieto prípady naznačujú dosť neprehľadnú situáciu v rozlišovaní rodov Ectobius a Phyllodromica, kde bola donedávna hlavným kritériom dĺžka tegmín. 4.1. Rod Ectobius – rozšírenie a biológia Zo spomínaných 35 európskych druhov rodu Ectobius žije 27 na Apeninskom polostrove a na blízkych ostrovoch. Mnoho z nich je tam endemických, hlavne na Sicílii, Sardínii a ďalších menších ostrovoch. Hlbšie do kontinentálnej Európy preniká iba pár druhov. Na území Slovenska boli dlho známe iba 3 druhy – E. sylvestris (obr. 11), E. lapponicus a E. erythronotus. Status a tiež rozšírenie štvrtého druhu E. lucidus sú nejasné (BOHN 1989). 14 Ľubomír Vidlička Habilitačná práca Obr. 11. Ectobius sylvestris (VIDLIČKA 2001). Vďaka otepľovaniu klímy pribudol na našom území približne od roku 2010 nový druh švába pôvodom z južnej (podalpskej) časti Švajčiarska – Ectobius vittiventris. Keďže je teplomilnejší ako naše druhy a má podobné teritoriálne nároky, udomácniť sa mu darí iba vo väčších mestách, zvyčajne v trávnikoch, parkoch a záhradách pri domoch. Na Slovensku bol zatiaľ zistený iba v Bratislave, jeho prenikanie do ľudských príbytkov bolo iba sporadické (VIDLIČKA 2014). V roku 2015 však začal do príbytkov prenikať masovo, hlavne na jeseň. Svojim správaním (na rozdiel od synantropného druhu Blattella germanica sa neskrýva cez deň pred svetlom) vyvolal v postihnutých domácnostiach zdesenie a u dezinsekčných firiem zmätok (nepubl. údaje). Šírenie tohto druhu do roku 2014 je zobrazené na obrázku 12. Výskyt a rozšírenie švábikov z rodu Ectobius ako aj blízko príbuzného rodu Phyllodromica v Poľsku spracoval BAZYLUK (1977). V tom istom roku bol spracovaný aj zoznam Československých druhov švábov (MAŘAN & ČEJCHAN 1977). V tej dobe však neboli zo Slovenska ešte známe žiadne endemické druhy. Na Slovensku spracovali zoznam druhov švábov ako aj ich rozšírenie VIDLIČKA a MAJZLAN (1992). Následne bola spracovaná bibliografia literatúry o šváboch v Českej Republike a na Slovensku (HOLUŠA et al. 1999) a na jej základe aj zoznam druhov pre Čechy, Moravu a Slovensko (KOČÁREK et al. 1999). Priebežne boli spracované doplnkové informácie o výskyte švábov v rôznych oblastiach Slovenska: Muránska planina (VIDLIČKA 1997), Devínska Kobyla (VIDLIČKA 2005), ostrov Kopáč (VIDLIČKA 2007), Jurský Šúr (FEDOR et al. 2010), Východné Slovensko (TOMKO et al. 2013). Detailné poznanie rozšírenia švábov v celej Karpatskej kotline (zahrnuté boli aj celé Karpaty) (obr. 13) je založené na štúdiu bohatých muzeálnych materiálov z viacerých múzeí. Pre každý druh bola vypracovaná aj distribučná mapa (VIDLIČKA & SZIRÁKI 1997). 15 Ľubomír Vidlička Habilitačná práca Obr. 12. Mapa pôvodného rozšírenia švábika Ectobius vittiventris a smery jeho šírenia po roku 1985. Podľa VIDLIČKU (2014). Obr. 13. Rozšírenie druhu Ectobius lapponicus v Karpatskej kotline. Podľa VIDLIČKU & SZIRÁKIHO (1997) – upravené. Neskôr bolo podobne spracovaných takmer 800 exemplárov švábov z 25 rokov trvajúcich zberov (1975-2000) zo Švajčiarska. Zistených bolo 10 druhov z rodu Ectobius (VIDLIČKA & REZBANYAI-RESER 2005). Počas spracovávania bol zistený aj výskyt nového druhu švába (Ectobius supramontanus Bohn, 2004). Preto bola práca publikovaná až po zverejnení jeho opisu (BOHN 2004). Začaté bolo aj pomerne náročné spracovávanie balkánskej fauny švábov. Existuje zoznam švábov bývalej Juhoslávie (US & MATVEJEV 1967), tento však treba inovovať pre jednotlivé nástupnícke štáty a hlavne podľa najnovších zmien v taxonómii. Spracovanie balkánskeho komplexu druhov Ectobius erythronotus (KARAMAN & KARAMAN 1987) do danej problematiky väčšiu prehľadnosť neprinieslo, skôr naopak. Najnovší výskum sa začal v oblasti pohoria Biokovo (Chorvátsko), kde bolo v rozmedzí 900-1650 m n.m. zistených predbežne 5 druhov švábov (VIDLIČKA & OZIMEC 2011). Ďalší balkánsky materiál však zatiaľ čaká na komplexnú revíziu. O biológii švábov z rodu Ectobius sa zatiaľ toho veľa nevie. Ectobius sylvestris sa v južných Alpách dá zastihnúť až vo výškach okolo 2400 m (BEIER 1974). U nás bol pozorovaný v Belianskych Tatrách do 1700 m (CHLÁDEK 1986). Druhy tohto rodu sa živia hlavne organickým detritom. Cez deň môžeme samčekov často zastihnúť na kvetoch rastlín, najmä na sedmokráskach (Bellis sp.) a omanoch (Inula sp.), kde sa kŕmia peľom rastlín (VIDLIČKA 2001). Nymfy a samičky sú aktívne hlavne v noci (DREISIG 1971). V prírode (na Slovensku) sa švábiky hôrne (Ectobius sylvestris) vyskytujú od apríla do októbra (VIDLIČKA 1993, 2012) s vrcholom výskytu imág v polovici apríla až začiatkom mája (VIDLIČKA 1993, 2013). V Nemecku v jelšovom lese bola u toho istého druhu zaznamenaná najväčšia migrácia po kmeňoch stromov v druhej polovici mája (GHARAGJEDAGHI 1994). Imága švábika tmavoštíteho (Ectobius lapponicus) na východe Čiech dosiahli maximum v druhej polovici júna, respektíve až v júli (HOLUŠA & KOČÁREK 2000). Vrcholy výskytu imág korešpondujú aj s obdobiami znášok ooték (VIDLIČKA 1993) a zároveň aj s výskytom parazitoida Brachygaster minutus (VIDLIČKA 1998). Nymfy sa liahnu počas júla a zimujú ako štvrtý nymfálny instar (BROWN 1973a, b, VIDLIČKA 2012), zriedkavo ako druhý alebo tretí instar (BROWN 1983). Zimovanie prebieha najčastejšie v zemi, v trsoch tráv, ale aj v opustených hniezdach vtákov (VIDLIČKA 1999). 4.2. Rod Phyllodromica – skupina druhov maculata Je zaujímavé, že tak ako v južnej Európe majú sklony vytvárať množstvo endemitov zástupcovia z rodu Ectobius, tak v strednej Európe, kde je rod Ectobius zastúpený veľmi chudobne, plnia túto funkciu druhy rodu Phyllodromica, hlavne zo skupiny maculata. Typový druh Phyllodromica maculata (obr. 14) má veľmi široké rozšírenie od Nemecka po JZ Ukrajinu a od stredného Poľska až po severné Chorvátsko a Rumunsko. Jeho sfarbenie je veľmi variabilné a preto vznikli v minulosti problémy pri delení tohto druhu na variety, poddruhy resp. druhy. Novo opisované druhy majú spravidla malé areály rozšírenia a sú endemitmi na daných územiach. 16 Ľubomír Vidlička Habilitačná práca Obr. 14. Phyllodromica maculata (VIDLIČKA 2001). Viaceré endemické druhy boli opísané priamo zo Slovenska alebo susedného Maďarska. Prvými boli Phyllodromica harzi Chládek, 1977 zo Slovenského krasu a Phyllodromica chladeki Harz, 1977 z Muránskej planiny (CHLÁDEK & HARZ 1977). Druh Phyllodromica hungarica Vidlička, 1993 bol pôvodne opísaný z pohoria Bükk na severe Maďarska (VIDLIČKA 1993), ale neskôr bol zistený aj na južnom Slovensku (VIDLIČKA 2001, BOHN & CHLÁDEK 2011, TOMKO et al. 2013). Ďalší nový druh Phyllodromica dobsiki (dobšiki) Chládek, 1996 bol opísaný z Muránskej planiny, z rezervácie Suché doly pri Tisovci (CHLÁDEK 1996). Neskôr bol tento druh synonymizovaný s druhom Ph. hungarica (BOHN & CHLÁDEK 2011). Zo Slovenska bol opísaný aj poddruh Phyllodromica maculata marani (mařani) Chládek & Harz, 1980 s výskytom na strednom a východnom Slovensku, v Poľsku a Rumunsku. Od nominálneho poddruhu sa odlišoval morfológiou ootéky (CHLÁDEK & HARZ 1980). Zobrazená ootéka pochádzala zo Slovenského krasu. Ako vyzerajú imága švába sa v práci neuvádza, ale autor tvrdil, že sú zhodné s exemplármi z Brašova (Rumunsko) spomínanými v práci RAMMEHO (1951) ako poddruh Hololampra maculata schäfferi. Aj keď Ramme vyslovene hovorí o poddruhu, Chládek ich hodnotí ako melanickú formu schaefferi s tým, že medzi formami existujú prechody. To bol dôvod vytvorenia nového mena pre tento poddruh. Zo Slovenska známe jedince daného poddruhu a literatúru k nim sa vzťahujúcu neuvádza. VIDLIČKA a SZIRÁKI (1997) poukázali na to, že tento poddruh je iba synonymom Ph. maculata schaefferi známeho zo Slovenského krasu už 150 rokov (FRIVALDSZKY 1867) a z Maďarska 120 rokov (CHYZER 1897). Následne CHLÁDEK (1998) povýšil nový poddruh bez udania dôvodu na nový druh (a omylom uviedol opačné poradie autorov ako v pôvodnej práci – Harz et Chládek, 1980). Druh bol opätovne synonymizovaný s Ph. maculata schaefferi (VIDLIČKA 2001). Ak by bol uznaný jeho druhový status, meno by malo byť Phyllodromica schaefferi. Status tohto druhu (resp. poddruhu) je značne komplikovaný a zaslúži si krátke vysvetlenie. Druh bol (ako Blatta qvarta) pôvodne „opísaný“ (zobrazený na ilustrácii) v diele prírodovedca Jacoba Chritiana Schaeffera (*1718-†1790) pojednávajúcom o hmyze z okolia nemeckého mesta Regensburg (SCHAEFFER 1769). Pôvodný názov bol uznaný za neplatný z dôvodu, že meno bolo vlastne poradovým číslom a šváb samotný bol iba zobrazený na obrázku. Na Schaefferovu počesť dostal od Johanna Augusta Ephraima Goezeho (*1731-†1793) druh nové meno Blatta Schaefferi. GOEZE (1778) sa odvolal na Schaefferov obrázok a stručne druh charakterizoval. O typovej lokalite sa nezmienil. Neskôr Johann Friedrich Gmelin (*1748-†1804) publikoval podobný stručný opis v lipskom vydaní Linného „Systema Naturae“ (GMELIN 1789), ktoré sa stalo veľmi populárne. V práci neuviedol, že použil meno vytvorené Goezem. Vlastný problém vznikol, keď Johann Christian Daniel von Schreber (*1739-†1810) opísal z Nemecka druh Blatta maculata (teraz Ph. maculata) (SCHREBER 1781). Druh bol veľmi podobný druhu Blatta Schaefferi len mal svetlejšie tegminy s menšími čiernymi škvrnami. Gottlieb August Wilhelm Herrich-Schäffer (*1799-†1874) zaradil Gmelinom použité meno medzi synonymá druhu Blatta maculata, čo bolo z hľadiska princípu priority opodstatnené (HERRICH-SCHÄFFER 1840). Leopold Heinrich Fischer (*1817-†1886) vo svojom diele „Orthoptera Europaea“ s odvolaním sa na Gmelinom použité meno „Blatta Schaefferi“ zaradil tmavé exempláre ako varietu druhu Blatta maculata (FISCHER 1853). Keďže sa odvolal na Gmelinov opis bolo to 17 Ľubomír Vidlička Habilitačná práca z hľadiska časovej priority mien opäť logické riešenie. Pridal obsiahly opis, avšak nevyriešil rozšírenie, keďže spomína iba jedince z Nemecka a Rakúska. Keď uhorský entomológ Ján Frivaldský (*1822 Rajec-†1895 Budapešť) našiel v Zádielskej doline tmavé exempláre z rodu Phyllodromica zhodné s Gmelinovým aj Fischerovým opisom, začal pre ne používať meno Aphlebia maculata var. Schäfferi (FRIVALDSKY 1867). Rod Aphlebia Brunner von Wattenwyl, 1865 je synonymom staršieho rodového mena Phyllodromica Fieber, 1853. Varietu na poddruh povýšil Richard Ebner, keď použil pre tmavé jedince z Brašova (Rumunsko) názov Hololampra maculata schaefferi (EBNER 1930). Rod Hololampra Saussure, 1864 je tiež synonymom rodu Phyllodromica. Obaja (Frivaldský aj Ebner) použili názov „schaefferi“ v podradenom postavení k menu „maculata“, čo znamená, že ho považovali za mladší. Vychádzali teda z Gmelinovho opisu, ktorý je mladší ako Schäfferov opis druhu Blatta maculata. Pôvodný Goezeho starší opis nepoznali. Nanešťastie sa ukázalo, že takáto tmavá varieta resp. poddruh druhu Ph. maculata nežije ani v okolí Regensburgu ani v Nemecku vôbec. Z Nemecka sú známe iba klasicky svetlo sfarbené jedince zodpovedajúce opisu druhu Phyllodromica maculata. Lokalita Regensburg v Nemecku evidentne nemohla byť typovou lokalitou tmavých jedincov zodpovedajúcich Goezeho, Gmelinovmu či Fischerovmu opisu. Prvou publikovanou lokalitou zodpovedajúcou spomínaným opisom bola Zádielská dolina na Slovensku (FRIVALDSKÝ 1867). Preto bola Zádielská dolina dodatočne určená ako terra typica pre Phyllodromica maculata schaefferi v zmysle Gmelinovho opisu (VIDLIČKA 2001). Profesor Bohn z Nemecka chcel riešiť vzniknutú situáciu synonymizovaním názvu „schaefferi“ s druhom Ph. maculata (pers. comm.). Po upozornení, že meno „shaefferi“ je staršie ako „maculata“ bolo meno Blatta schaefferi klasifikované ako „nomen dubium“ a ponechaný bol iba názov Ph. maculata (BOHN & CHLÁDEK 2011). Avšak okolnosť, že druh Ph. schaefferi sa nevyskytuje na lokalite, ktorá mu bola pôvodne určená, nie je dôvod na zrušenie mena. Okrem toho sa Goeze ani Gmelin na lokalitu neodvolávali, takže Regensburg nebol oficiálnou typovou lokalitou. Napriek tomu zostalo pre tmavé jedince z okolia Zádielu meno Ph. marani, pre časť ďalších tmavo sfarbených jedincov zo stredného Slovenska a severného Maďarska bol vytvorený druh Phyllodromica latipennis Bohn & Chládek, 2011 (obr. 15) a pre tmavé exempláre zo Sedmohradska bol tiež vytvorený nový druh Phyllodromica variabilis Bohn, 2011 in BOHN & CHLÁDEK 2011). Tento stav je oficiálne doteraz platný, i keď praktické rozlišovanie medzi novo opísanými druhmi je vďaka ich variabilite dosť náročné a neisté. Vzhľadovo podobná Phyllodromica hungarica je od ostatných spomenutých druhov ľahko odlíšiteľná kvôli výrazne zahnutým krídlam (VIDLIČKA 1993). 18 Ľubomír Vidlička Habilitačná práca Obr. 15. Rozšírenie švábov zo skupiny maculata rodu Phyllodromica na Slovensku, v Maďarsku a Rakúsku. V práci BOHNA a CHLÁDKA (2011) je podrobne spracované rozšírenie všetkých druhov zo skupiny maculata v oblastiach ich výskytu. V práci chýba spracovanie rozšírenia Ph. maculata na Morave a v Čechách. Viaceré údaje sa nachádzajú v Chládkových starších i novších prácach (CHLÁDEK 1965, 1998, 2006). Podrobne bolo spracované rozšírenie tohto druhu v Českej republike v práci VIDLIČKU a HOLUŠU (1999). Druh sa pravdepodobne vyskytuje na vhodných lokalitách po celej republike (KOČÁREK et al. 2005), ani jedným smerom tu nedosahuje hranicu rozšírenia (obr. 16). Je známy aj zo všetkých okolitých štátov. O rozšírení druhu Phyllodromica maculata v Poľsku pojednávajú staršie práce BAZYLUKA (1976, 1977). V Poľsku, podobne ako aj v susednom Nemecku, prebieha severná hranica rozšírenia druhu približne na 53° severnej zemepisnej šírky (obr. 17). Prvé zmienky o šváboch zo skupiny maculata z Rumunska publikoval prírodovedec a entomológ slovenského pôvodu Oto Herman (*1835-†1914). Zmienil sa o výskyte druhu Phyllodromica maculata z okolia Kluža (Cluj, SZ Rumunsko), ale či sa jednalo o tmavú formu neuvádza (HERMAN 1871). Prvý kto konkrétne písal o tmavej forme (Aphlebia maculata var. Schäfferi) bol entomológ Karl Brunner von Wattenwyl (*1823†1914) (BRUNNER v. W. 1882). Určiť v súčasnosti o ktorý konkrétny druh išlo sa naisto nedá, keďže v súčasnosti je z Rumunska známych viacej druhov zo skupiny maculata. Okrem už spomenutého Bohnom opísaného druhu Phyllodromica variabilis, rozšíreného v centrálnej časti Rumunska, tu žijú aj ďalšie dva endemické druhy zo skupiny maculata. Prvým je už dávnejšie opísaná Phyllodromica transylvanica Vidlička, 1994 s pomerne 19 Ľubomír Vidlička Habilitačná práca Obr. 16. Rozšírenie švába Phyllodromica maculata v Českej Republike. Podľa VIDLIČKU a HOLUŠU (1999) - doplnené. Obr. 17. Rozšírenie švába Phyllodromica maculata v Poľsku. Podľa BAZYLUKA (1977) – upravené. širokým rozšírením v Sedmohradskej oblasti (Transylvánia). Momentálne je areál jeho výskytu ohraničený Karpatmi (VIDLIČKA 1994, BOHN & CHLÁDEK 2011). Tento druh nebol zatiaľ nájdený v Maďarsku, ale jeho výskyt na východe Maďarska je pravdepodobný, podobne ako aj na severe Srbska. Ďalším druhom je Phyllodromica halterisignata Bohn, 2011 (in BOHN & CHLÁDEK 2011). Zatiaľ je známy iba z jednej lokality na SZ Rumunska (obr. 18). 4.3. Rod Phyllodromica – skupina druhov megerlei Okrem skupiny druhov maculata z rodu Phyllodromica, je veľmi dobre definovanou aj skupina druhov megerlei. Skupina je charakteristická veľmi komplikovaným sieťovaným vzorom na tegminách a zároveň silne skrátenými tegminami u samičiek. Typovým druhom je Phyllodromica megerlei (obr. 19). Ani opis tohto druhu sa nezaobišiel bez problémov. Druh pôvodne opísal Toussaint de Charpentier (*1779†1847). Charpentier bol nemecký geológ. V rokoch 1811- 1828 zastával funkciu Sliezskeho vrchného banského odborníka vo Wroclawe (Wratislaviae). Amatérsky sa na pomerne slušnej úrovni venoval aj entomológii. V roku 1825 mu vo Wroclawe vyšlo dielo „Horae entomologicae“ o európskom hmyze, v ktorom najväčšiu pozornosť venoval ortopteroidnému hmyzu (Dermaptera, Blattaria, Mantodea, Orthoptera). V práci spomína 14 druhov švábov (vtedy všetky v rode Blatta), z ktorých dva sú novo opísané (CHARPENTIER 1825). Prvým je Blatta limbata z Lusitanie (oblasť zaberajúca časť Portugalska a Španielska), ktorý bol neskôr synonymizovaný s druhom Loboptera decipiens (Germar, 1817). Tento druh sa dokonca v práci tiež spomína (ako Blatta decipiens). Druhým opísaným druhom bola Blatta punctata z Rakúska. Opis druhu je v Charpentierovej práci prisúdený rakúskemu entomológovi Johannovi Carlovi Megerle von Mühlfeld (*1775-†1840). Až o 28 rokov si český entomológ (nemeckého pôvodu) Franz Xaver Fieber (*1807-†1872) všimol, že meno Blatta punctata použil Johann Friedrich Gustav von Eschscholtz (*1793-†1831) už v roku 1822 pri opise iného druhu švába (terajšia Diploptera punctata) (ESCHSCHOLTZ 1822). Preto na počesť objaviteľa premenoval druh z Rakúska na Phyllodromica megerlei. Keďže Fieber zaradil tento druh do ním novo opísaného rodu, stal sa druh zároveň typovým druhom rodu Phyllodromica (FIEBER 1853). 20 Ľubomír Vidlička Habilitačná práca Obr. 18. Rozšírenie švábov zo skupiny maculata rodu Phyllodromica v Rumunsku. Podľa BOHNA & CHLÁDKA (2011) – upravené. Obr. 19. Phyllodromica megerlei (VIDLIČKA 2001). Phyllodromica megerlei je síce druh s pomerne širokým areálom výskytu (obr. 20), ale na lokalitách sa vyskytuje vždy iba v neveľkých počtoch. Svojim výzorom (husto škvrnitými tegminami) je dosť odlišný od väčšiny druhov, ktoré boli neskôr do tohto rodu zaradené. Rakúsky ortopterológ Richard Ebner (*1885-†1961), ktorý sa venoval ortopteroidnému hmyzu Malej Ázie si všimol, že exempláre Ph. megerlei vyskytujúce sa v Turecku sú odlišné od jedincov z Európy, takže ich spomenul ako varietu, ale meno jej nepridelil (EBNER 1919). Významný ruský entomológ Grigorij Jakovlevič Bej-Bienko (*1903-†1971) v rámci edície „Fauna SSSR“ spracoval skupinu švábov (Blattaria). Aj on si uvedomil odlišnosť ázijských (Tureckých a Sýrskych) exemplárov. Na základe žlto-oranžovej škvrny na štíte (na rozdiel od čiernej škvrny u typickej formy) opísal nový poddruh Phyllodromica megerlei asiatica (BEYBIENKO 1950). Pri opise mal k dispozícii 7 exemplárov zo 6 lokalít, ale všetko to boli samičky, takže opísal iba samičku. Keď nemecký ortopterológ Willy Adolf Theodor Ramme (*1887-†1953) spracovával ortopteroidný hmyz južnej Európy a Malej Ázie nemal ešte k dispozícii Bej-Bienkovu „Faunu“. Mal však k dispozícii samčeka švába z Adany (Turecko) s oranžovou škvrnou na štíte a tak ho opísal ako Hololampra punctata f. erythronota (RAMME 1951). Táto forma bola o pár rokov synonymizovaná s BejBienkovým poddruhom (KARABAG 1958). Až takmer po 50-tich rokoch bol na základe odlišností v tvare tergálnej žľazy, stilusu a genitálneho háku povýšený tento poddruh na samostatný druh Phyllodromica asiatica (VIDLIČKA & MAJZLAN 1997). Zároveň bol na základe viacerých exemplárov pochádzajúcich z Bulharska, z lokality Vlas neďaleko Nesebaru opísaný druh podobný Ph. megerlei, len výrazne menší. Druh dostal meno Phyllodromica pulcherrima (VIDLIČKA & MAJZLAN 1997). Neskôr bol tento druh zberaný na viacerých lokalitách v Bulharsku (G. Hristov, pers. comm.). V súčasnosti sú tieto tri druhy – Ph. megerlei, Ph. asiatica a Ph. pulcherrima (obr. 21), jedinými zástupcami skupiny druhov megerlei v rode Phyllodromica. Rozšírenie Ph. megerlei bolo spracované v rámci Karpatskej kotliny (VIDLIČKA & SZIRÁKI 1997). Najnovšie údaje o výskyte na východnom Slovensku sú uvedené v práci TOMKU et al. (2013). Ľubomír Vidlička Habilitačná práca 21 Obr. 20. Rozšírenie švábov zo skupiny megerlei rodu Phyllodromica v Európe a Ázii. Podľa VIDLIČKU & MAJZLANA (1997) – upravené. Obr. 21. Phyllodromica pulcherrima ♂ a ♀ (VIDLIČKA & MAJZLAN 1997). 4.4. Prehľad príspevkov autora k poznaniu švábov na Slovensku a v Európe (hnedou farbou sú uvedené príspevky, ktoré sú súčasťou habilitačnej práce) VIDLIČKA, Ľ., MAJZLAN, O. 1992. Survey and geographical distribution of native cockroach species (Blattaria: Blattellidae: Ectobiinae) in Slovakia. Entomologické problémy 23: 21-29. VIDLIČKA, Ľ. 1993. Seasonal dynamycs of vertical migration and distribution of cockroach Ectobius sylvestris (Blattaria: Blattellidae: Ectobiinae) in oak forest. Biologia 48(2): 163- 166. (Príloha č. 3) VIDLIČKA, Ľ. 1993. Phyllodromica hungarica sp.nov., a new cockroach species from Hungary (Insecta: Blattodea: Blattellidae: Ectobiinae). Entomological Problems 24(1): 63-68. (Príloha č. 4) VIDLIČKA, Ľ. 1994. Phyllodromica transylvanica sp. nov., a new cockroach species from Romania and key of the maculata-group of Phyllodromica in central Europe. Entomological Problems 25(2): 55-62. (Príloha č. 5) VIDLIČKA, Ľ. 1997. Výskum švábov na Muránskej planine = Research on native cockroach species in the Muránska planina Mts. Výskum a ochrana prírody Muránskej planiny 1997: 89-92. VIDLIČKA, Ľ., MAJZLAN, O. 1997. Revision of the megerlei - group of the cockroach genus Phyllodromica Fieber (Blattaria: Blattellidae, Ectobiinae). Entomologica Scandinavica 28: 163-173. (Príloha č. 6) VIDLIČKA, Ľ., SZIRÁKI, Gy. 1997. The native cockroaches (Blattaria) in the Carpathian Basin. Folia Entomologica Hungarica 58: 187-220. VIDLIČKA, Ľ. 1998. Seasonal flight pattern of the evaniid wasp Brachygaster minutus (Hymenoptera: Evaniidae) - parasitoid of cockroach egg cases. Entomofauna Carpathica 10: 65-69. HOLUŠA, J., KOČÁREK, P., VIDLIČKA, Ľ. 1999. Bibliography to the fauna of Blattaria, Mantodea, Orthoptera and Dermaptera of the Czech and Slovak Republics. Articulata 14(2): 145-176. KOČÁREK, P., HOLUŠA, J., VIDLIČKA, Ľ. 1999. Check-list of Blattaria, Mantodea, Orthoptera and Dermaptera of the Czech and Slovak Republics. Articulata 14(2): 177-184. VIDLIČKA, Ľ. 1999. Šváby (Blattaria) v hniezdach vtákov. Folia faunistica Slovaca 4: 41-43. VIDLIČKA, Ľ., HOLUŠA, J. 1999. Rusec plamatý Phyllodromica maculata maculata (Schreber, 1781) (Blattodea: Ectobiidae: Ectobiinae) na Moravě a v Čechách [Phyllodromica maculata maculata (Schreber, 1781) (Blattodea: Ectobiidae: Ectobiinae) in Moravia and Bohemia]. Sborník Přírodovědného klubu v Uherském Hradišti 4: 107- 114. Ľubomír Vidlička Habilitačná práca 22 VIDLIČKA, Ľ. 2001. Blattaria – šváby; Mantodea – modlivky: (Insecta: Orthopteroidea). Veda SAV, Bratislava, 169 pp. (Fauna Slovenska) ISBN 80-224-0640-6 (Príloha č. 18) KOČÁREK, P., HOLUŠA, J., VIDLIČKA, Ľ. 2005: Blattaria, Mantodea, Orthoptera & Dermaptera of the Czech and Slovak Republics. Illustrated key 3. Blattaria, Mantodea, Orthoptera & Dermaptera České a Slovenské republiky. Ilustrovaný klíč 3. Kabourek, Zlín, 349 pp. ISBN 80-86447-05-7 (Príloha č. 19) VIDLIČKA, Ľ. 2005. Šváby (Blattaria) a modlivky (Mantodea), pp. 62-63. In: Fauna Devínskej Kobyly. Asociácia priemyslu a ochrany prírody, Bratislava. ISBN 80-968217- 1-7 VIDLIČKA, Ľ., REZBANYAI-RESER, L. 2005. Neuere Angaben zur Schabenfauna der Schweiz (Blattaria, Blattellidae: Ectobius). Entomologische Berichte Luzern 53: 123-134. VIDLIČKA, Ľ. 2007. Šváby (Blattaria) a ich parazitoidy (Hymenoptera: Evaniidae) na ostrove Kopáč (Bratislava-Podunajské Biskupice), pp. 113-118. In: Príroda ostrova Kopáč. Fytoterapia OZ pri Pedagogickej fakulte UK, Bratislava. ISBN 978-80-969718- 7-9 FEDOR, P., VIDLIČKA, Ľ., MAJZLAN, O., VARGA, L. 2010. Ucholaky (Dermaptera), modlivky (Mantodea) a šváby (Blattaria) PR Šúr, pp. 127-133. In: Majzlan, O., Vidlička, Ľ. (eds). Príroda rezervácie Šúr. Ústav zoológie SAV, Bratislava. ISBN 978-80-970326- 0-9. VIDLIČKA, Ľ., OZIMEC, R. 2011. Research of cockroaches (Blattaria) in PP Biokovo - first preliminary results [Istraživanje žohara (Blattaria) u PP Biokovo - prvi preliminarni rezultati], pp. 33-34. In: Protrka, K., Škrabić, H. & Srzić, S. (Eds) Znanstveno – stručni skup “Biokovo na razmeđi milenija: razvoj parka prirode u 21. stoljeću“ [Scientific and professional meeting "Biokovo at the turn of the millennium: the development of Nature Park in the 21st century”]. Park prirode Biokovo, Makarska. ISBN 978-953-56909-0-0 VIDLIČKA, Ľ. 2012. Sezónne zmeny vo výskyte švábika hôrneho (Ectobius sylvestris) (Blattaria) v Martinskom lese (Podunajská rovina), pp. 115-120. In: Fedor, P., Vidlička, Ľ. (eds) Príroda Martinského lesa (vybrané kapitoly). Ústav zoológie SAV, Bratislava. TOMKO, P., VIDLIČKA, Ľ., MOCK, A. 2013. Nové údaje k rozšíreniu švábov (Blattodea) a ucholakov (Dermaptera) na východnom Slovensku. Folia faunistica Slovaca 18(1): 47-53. VIDLIČKA, Ľ. 2014. Ectobius vittiventris – nový šváb (Blattaria) pre faunu Slovenska. Entomofauna Carpathica 26(1): 33-40. Ľubomír Vidlička Habilitačná práca 23 5. Šváby juhovýchodnej Ázie a Južnej Ameriky Juhovýchodná Ázia (orientálna faunistická oblasť) a Južná Amerika (neotropická faunistická oblasť) sú dve na šváby najbohatšie oblasti s množstvom endemických druhov a rodov. Štyri z nich si bližšie spomenieme. 5.1. Šváby z rodu Caeparia Stål, 1877 (Blaberidae: Panesthiinae) 1. C. saussurii (Wood-Mason, 1876) – India, Bután, Bangladéš 2. C. crenulata (Bruijning, 1948) – Indonézia (Sumatra), Malajzia 3. C. donskoffi Roth, 1979 – Vietnam, Laos, Thajsko 4. C. kaltenbachi Roth, 1979 – Thajsko, Laos 5. C. sausai Vidlička, 1999 – Laos Všetky druhy rodu Caeparia sú pomerne veľké šváby, ktoré majú dobre vyvinuté tegminy aj krídla. Nebolo u nich pozorované ohryzenie tegmín typické pre príslušníkov príbuzného rodu Panesthia, ako aj iných príslušníkov podčeľade Panesthiinae. Všetky druhy rodu Caeparia majú dvojfarebné tegminy, čo je tiež v rámci podčeľade nezvyklé. História rodu Caeparia sa začala odvíjať od omylu. Svetoznámy švajčiarsky ortopterológ Henri Louis Frederic de Saussure (*1829-†1905) opísal v roku 1863 z Číny švába Panesthia mandarinea (obr. 24). Pohlavie švába neuviedol, lebo opisovanému jedincovi chýbalo bruško (SAUSSURE 1863). O pár rokov neskôr sa mu dostala do rúk samička švába z východnej Indie. Priradil ju k tomu istému druhu, urobil jej pomerne obsiahly opis a v úvode doplnil poznámku, že v predchádzajúcom článku opísal samčeka (SAUSSURE 1869). Anglický zoológ James Wood-Mason (*1846-†1893) po skončení štúdia v Oxforde odišiel v roku 1869 do Indie a získal zamestnanie v Indickom múzeu v Kalkate. Dostal obsiahlu zbierku hmyzu zo štátu Johor v Malajzii s početnou sériou exemplárov Panesthia mandarinea. Pri ich štúdiu si všimol, že oba jedince z tohto druhu, ktoré opísal Saussure sú samičky, ale nepatria k tomu istému druhu. Samičke z Indie, ktorá bola opísaná neskôr, vytvoril v roku 1876 nové meno Panesthia Saussurii. Do tohto druhu zaradil aj exemplár práve sa zvliekajúceho samčeka zo štátu Sikkim ležiaceho v Himalájach na severovýchode Indie (WOOD-MASON 1876). O rok neskôr publikoval švédsky ortopterológ Carl Stål (*1833-†1878) prácu s opisom viacerých druhov švábov z Filipín a medzi nimi bol aj druh Panesthia saussurii (iný ako bol druh rovnako pomenovaný Wood-Masonom). Zároveň v rode Panesthia stanovil nový podrod Caeparia a zaradil do neho druh Panesthia mandarinea opísaný Saussurem. Nenapísal z ktorej Saussureho práce vychádzal, ale na základe diagnostických znakov podrodu je evidentné, že sa jednalo o samičku z Indie opísanú v roku 1869 (STÅL 1877). Ľubomír Vidlička Habilitačná práca 24 Obr. 24. Panesthia mandarinea (SAUSSURE 1863). V sérii omylov pokračoval aj Karl Brunner von Wattenwyl (*1823-†1914). V obsiahlej revízii ortopteroidného hmyzu, ktorú v roku 1893 vydal v Ženeve, povýšil Stålom vytvorený podrod Caeparia na samostatný rod s typovým druhom Caeparia mandarinea Saussure z lokality Teinzò (BRUNNER DE WATTENWYL 1893). Ktorý druh v skutočnosti myslel nie je isté, ale keďže sa odvoláva na Stålov opis supraanálnej platničky, tak pravdepodobne sa tiež jednalo o exemplár z Indie. Udávaná lokalita Teinzò (asi Teinzô) sa nachádza na severe Mjanmarska, neďaleko od Indie. Brunner uvádza v zozname použitých prác 6 Wood-Masonových článkov (3 o Phasmatodea a 3 o Mantodea), ale jeho prácu o Panesthia mandarinea a P. saussurii nepoznal (alebo prinajmenšom nepoužil). Približne v tom istom čase SAUSSURE (1895) spracovával revíziu Panesthinov. Na rozdiel od svojich predchodcov inkriminovaný článok Wood-Masona poznal a poznal aj práce Ståla a Brunnera von Wattenwyl o rode Caeparia. Preto poopravil Brunnerov údaj a za typový druh rodu určil Caeparia saussurei (upravil chybne vytvorené meno Saussurii na Saussurei, omylom však uviedol, že pôvodné meno bolo Sausseuri) (SAUSSURE 1895). Takže meno Panesthia mandarinea zostalo pre druh opísaný v roku 1863. William Forsell Kirby (*1844-†1912) vo svojom synonymickom katalógu ortopteroidného hmyzu uvádza v rode Caeparia len druh C. Saussurii Wood-Mason a pri rode Panesthia aj druh P. Saussurii Stål (KIRBY 1904). Situáciu opäť skomplikoval americký ortopterológ Andrew Nelson Caudell (*1872†1936). Domnieval sa, že typom rodu Caeparia je druh Panesthia mandarinea opísaná Saussurem v roku 1863 (a nie tá z roku 1869). Preto pre druh Panesthia Saussurii stanovený Wood-Masonom v roku 1876 vytvoril nový rod Neocaeparia (CAUDELL 1924). Vzniknutý problém sa podujal vyriešiť najvýznamnejší americký švábológ Louis Marcus Roth (*1918-†2003). Na základe článku 70(a) pravidiel medzinárodnej zoologickej nomenklatúry sa obrátil na Medzinárodnú komisiu. Keďže Stål zle identifikoval druh „mandarinea“ ako typový druh rodu Caeparia, navrhol Roth komisii akceptovať možnosť (i) článku 70(a) a designovať za typový druh rodu Caeparia druh Panesthia saussurii Wood-Mason (ROTH & GURNEY 1983). Toto riešenie bolo prijaté, keďže korešpondovalo aj s prácami SAUSSUREHO (1895) a KIRBYHO (1904). ROTH (1979) na základe tohto rozhodnutia pri revízii rodu Caeparia opätovne stanovil za typový druh rodu Panestia sausurii Wood-Mason [=Panesthia mandarinea Saussure, 1869 (nec 1863)]. Zároveň v zhode s PRINCISOM (1950) synonymizoval rod Neocaeparia Caudell, 1924 s rodom Caeparia. Zaujímavý je aj osud druhu Panesthia mandarinea Saussure, 1863. V roku 1932 sa nemecký ortopterológ Karl Richard Hanitsch (*1860-†1940) zaoberal zbierkami švábov Dr. Odoarda Beccariho a Dr. Elia Modiglianiho zo Sumatry (HANITSCH 1932). Na základe Modiglianim chytených exemplárov druhu Panesthia transversa zistil, že tento druh je totožný s jedincom opísaným Saussurem v roku 1863 pod menom Panesthia mandarinea. Druh Panesthia transversa opísal Burmeister už v roku 1838. Preto Hanitsch názov Panesthia mandarinea synonymizoval s názvom Panesthia transversa. Z názvu Panesthia mandarinae, ktorý bol použitý dvakrát pre dva rôzne druhy tak nezostal nakoniec platný ani jeden. Ľubomír Vidlička Habilitačná práca 25 Všetky doteraz uvedené údaje sa týkali len jediného druhu rodu Caeparia, typového druhu C. saussurii. Až v roku 1948 opísal holandský entomológ Conrad Friedrich Albert Bruijning (*1919-†2004) druh Neoceparia crenulata podľa samčeka chyteného na Mount Kerinci (v orig. Mount Indrapura) v pohorí Barisan na západe ostrova Sumatra (Indonézia). ROTH (1979a) revidoval aj samčeka tohto druhu z pevninskej časti Malajzie, z lokality Tapah Perak. BRUIJNING (1948) sa pri zaradení do rodu Neocaeparia pridŕžal Caudellovej práce z roku 1924. Do rodu Caeparia tento druh presunul až PRINCIS (1965). Na opis ďalších druhov z rodu Caeparia bolo treba počkať ďalších 31 rokov. Roth začal v roku 1977 vydávať rozsiahlu celosvetovú revíziu podčeľade Panesthinae. Celkovo vydal 4 monografické práce (ROTH 1977, 1979a, b, 1982). V druhom diele spracoval aj rod Caeparia. Tu pri druhu Caeparia saussurii dôkladne charakterizoval obe pohlavia a tiež pridal ďalšie lokality výskytu z Indie, Bangladéša, Bhutánu a Laosu. SAUSSUREM (1895) spomenutý výskyt tohto druhu na lokalite Malacca (JZ Malajzia) Roth spochybnil (podobne ako pred ním aj PRINCIS (1965)), lebo z okolia tejto lokality determinoval len druh Caeparia crenulata, ktorý však v dobe vyjdenia Saussureho práce nebol ešte opísaný. V práci, v ktorej ROTH (1979a) revidoval rod Caeparia, zároveň opísal aj dva nové druhy z tohto rodu: C. donskoffi (pomenovaný podľa odborníka na Orthoptera Michela Donskoffa z Muséum national d’Histoire naturelle v Paríži) a C. kaltenbachi (pomenovaný podľa Dr. Alfreda Kaltenbacha (*1920-†2005) z Naturhistorisches Museum vo Viedni). U druhu Caeparia donskoffi bola pôvodne opísaná iba samička (holotyp z Ko-Tichi z Južného Vietnamu, paratypy z Tonkinu zo severného Vietnamu) (ROTH 1979a). Samček bol opísaný až dodatočne zo severného Vietnamu a zo severného Laosu (VIDLIČKA 1999) a samička bola zistená aj v Thajsku (VIDLIČKA 1999). Druh Caeparia kaltenbachi bol opísaný tiež iba na základe samičiek. Holotyp pochádza zo severu Thajska (pohorie Khun Tan) a paratyp zo severného Laosu (Muong Pek) (ROTH 1979a). Samček nie je doteraz známy. ROTH (1982) uverejnil opis nepomenovanej nymfy z Thajska, ktorá by mohla patriť k jednému z ním opísaných druhov z rodu Caeparia. Farebným vzorom sa síce odlišuje od imág C. donskoffi (obr. 25) aj C. kaltenbachi, ale zadný okraj supraanálnej platničky (dôležitý pri determinácii) je podobný ako u C. donskoffi. Ľubomír Vidlička Habilitačná práca 26 Obr. 25. Samička druhu Caeparia donskoffi (VIDLIČKA 1999). Obr. 26. Caeparia sausai ♀ (VIDLIČKA 1999). Zatiaľ posledný, piaty druh z rodu Caeparia bol opísaný v roku 1999 na základe samičky zo severného Laosu (provincia Attapu, Bolaven Plateau, 15 km JV od Ban Houaykong). Pomenovaný bol Caeparia sausai (obr. 26) na počesť slovenského amatérskeho entomológa Ondreja Šaušu, ktorý tento druh objavil (VIDLIČKA 1999). Rozšírenie druhov rodu Caeparia ukazuje obrázok 27. 5.2. Šváby z rodu Chorisoserra (Blattellidae: Pseudophyllodrominae) 1. Ch. sagitaria (Hanitsch, 1927) – Vietnam 2. Ch. apicalis (Hanitsch, 1929) – Indonézia (Sumatra), východné Borneo 3. Ch. jendeki Vidlička, 2002 – Laos 4. Ch. biceps Wang, Zhang, Feng, 2006 – Čína 5. Ch. brevicaudata Wu, Wang, 2011 - Čína V roku 1927 Hanitsch spracoval zbierku švábov z južného Annamu (terajší stredný Vietnam). Jedným z 19 opísaných nových druhov bol aj druh Chorisoneura sagitaria. Opis urobil na základe samčeka z Langbian Peak (provincia Lam Dong) (HANITSCH 1927). Rod Chorisoneura vytvoril Brunner von Wattewyl v roku 1865. Je to veľký rod, v súčasnosti s 90 druhmi. V čase keď Hanitsch publikoval opis druhu Chorisoneura sagitaria obsahoval tento rod už 55 druhov. Na novoopísanom druhu bolo zaujímavé, že bol nájdený v orientálnej oblasti. Takmer všetky ostatné druhy tohto rodu pochádzali z neotropickej oblasti. Výnimkou boli vtedy 3 druhy z Tajvanu, Číny a Kambodže. Ďalší druh z orientálnej oblasti opísal Hanitsch zo zbierky švábov švédskeho zoológa Erica Georga Mjöberga (*1882-†1938). Zbierku nazhromaždil Mjöberg počas expedície na Sumatre v rokoch 1919-1922. Hanitschom opísaný druh Chorisoneura apicalis pochádzal z lokalít Medan a Boeloe-Tjina (HANITSCH 1929). Jedince z rodu Chorisoneura majú dosť charakteristický vzhľad a tak správnosť zaradenia týchto dvoch Hanitschom opísaných druhov, svojim rozšírením anomálnych, nikto dlhú dobu nespochybňoval. Dokonca ani jeden z najväčších švábológov sveta Lotiš Kārlis Aleksandrs Princis (*1893-†1978), autor zatiaľ neprekonaného 8 dielneho celosvetového katalógu švábov z rokov 1965-1972. V roku 1950 Princis spracovával zbierku švábov z orientálnej oblasti uloženú v entomologickom múzeu Univerzity v Lunde (Švédsko). V zbierke našiel aj druh, ktorý určil ako Chorisoneura apicalis. Jedinec pochádzal z východného Bornea (PRINCIS 1950). Na zaradení sa nič nezmenilo ani pri vydaní prvého dielu spomínaného katalógu švábov (PRINCIS 1965). Ľubomír Vidlička Habilitačná práca 27 Obr. 27. Rozšírenie švábov z rodu Caeparia v juhovýchodnej Ázii. V roku 1998 Roth revidoval zástupcov rodu Chorisoneura. Všimol si určité odlišnosti dvoch orientálnych druhov z rodu Chorisoneura od neotropických druhov, ale tiež aj odlišnosti druhov z Číny, Tajvanu a Kamerunu. Preto pre Hanitschom opísané druhy vytvoril nový rod Chorisoserrata a pre ostatné odlišné druhy vytvoril rody Chorisoneurodes a Sorineuchora (ROTH 1998). Tretí druh do rodu Chorisoserrata, Ch. jendeki (obr. 28), pribudol až v roku 2002. Opísaný bol na základe dvoch samčekov a jednej samičky z Laosu (provincie Bolikhamxai a Luang Namtha). Od predchádzajúcich druhov sa okrem iného líšil aj prítomnosťou nezreteľnej tergálnej žľazy na siedmom abdominálnom tergu (VIDLIČKA 2002). Druh dostal meno podľa slovenského entomológa Eduarda Jendeka, nálezcu holotypu. Čínsky entomológovia Zong-Qing Wang, Yan-Ning Zhang a Ping-Zhang Feng z Čínskej akadémie poľnohospodárskych vied opísali na základe 6 jedincov (4 ♂♂, 2 ♀♀) pochádzajúcich z provincie Hainan (ostrov Chaj-nan) a z autonómnej oblasti Guangxi Zhuang (Kuang-si, JV Čína) nový druh Chorisoserrata biceps. Od ostatných príslušníkov rodu sa odlišuje dlhou, zakrútenou mediánnou falomérou a zúbkami na konci prídavnej mediánnej faloméry (WANG et al 2006). Ke-Liang Wu a Zong-Qing Wang objavili v južnej Číne, v provincii Yunnan (Jün-nan) samčeka a samičku z rodu Chorisoserrata. Samčie genitálie obsahovali dlhú, úzku, na konci guľovito zhrubnutú mediánnu faloméru a prídavnú mediánnu faloméru zakončenú v tvare chĺpkov štetca. Druh pomenovali Chorisoserrata brevicaudata (WU & WANG 2011). Oba čínske druhy sú bez špecializácie na 7 abdominálnom tergite. Ľubomír Vidlička Habilitačná práca 28 Obr. 29. Rozšírenie švábov z rodu Chorisoserrata v juhovýchodnej Ázii. Obr. 28. Chorisoserrata jendeki - štít a tegmina (VIDLIČKA 2002). 5.3. Šváby z rodu Spelaeoblatta Bolívar, 1897 (Noticolidae) 1. S. gestroi Bolívar, 1897 – Mjanmarsko (Barma) 2. S. thamfaranga Roth, 1994 – Thajsko 3. S. myugei Vidlička, Vršanský & Shcherbakov, 2003 – Thajsko 4. S. thailandica Vidlička, Vršanský & Shcherbakov, 2003 – Thajsko V roku 1892 spracovával španielsky ortopterológ Ignacio Bolívar y Urrutia (*1850†1944) zbierku švábov, ktoré nazberal v marci a apríli 1890 francúzsky arachnológ Eugène Simon (*1848-†1924) v jaskyniach na ostrove Luzon (Filipíny). Materiál pochádzal z dvoch provincií – provincia Manila a provincia Morong. Boli to prvé naozaj jaskynné šváby prispôsobené plne životu v tomto netypickom prostredí – malé, dlhonohé, depigmentované, so silne redukovanými očami resp. bez očí (BOLÍVAR 1892). Bolívar opísal na ich základe nový rod Nocticola, ktorý zaradil do čeľade Blattidae. Zároveň v rode opísal dva druhy Nocticola simoni (na počesť zberateľa, na základe samčeka a samičky z jaskyne San Mateo, prov. Manila) a Nocticola caeca (na základe samičky z jaskyne Antipodo, prov. Morong). Samičky nemali vyvinuté tegminy ani krídla. Známy taliansky cestovateľ, zoológ, maliar a zberateľ prírodnín Leonardo Fea (*1852†1903) sa v roku 1871 stal asistentom na oddelení entomológie v Museo Civico di Storia Naturele di Genova v Janove. V roku 1885 sa vydal na cestu do Barmy, kde zotrval 4 roky (1885-1889). Nachytané živočíchy pravidelne odosielal do svojho domovského múzea. V decembri 1887 sa dostal do oblasti vrchu Carin medzi riekami Sittang a Saluin. Tu sa mu podarilo v januári 1888 v jaskyni Jaddò (Ya-dò) uloviť samičku jaskynného švába a tiež ho odoslal do múzea v Janove. Riaditeľom múzea bol v tej dobe Raffaello Gestro (*1845†1936). Ten spracoval skupinu Coleoptera a zistenia publikoval v muzeálnom časopise (GESTRO 1888, 1891). Zvyšok materiálu distribuoval na určenie špecialistom na dané skupiny. Švába zaslal na determináciu Bolívarovi. Na prvý pohľad bola zaslaná samička dosť podobná jedincom z rodu Nocticola, ale bola väčšia a hlavne mala vyvinuté, aj keď silne redukované, tegminy. Na základe tejto samičky opísal Bolívar nový rod jaskynných švábov Spelaeoblatta. Nový druh nazval Spelaeoblatta Gestroi (na počesť Raffaella Gestroa) (obr. 30) (BOLÍVAR 1897). Rod Spelaeoblatta zostal dlhú dobu monotypický. George C. McGavin1 sa špecializuje na výskum suchozemských článkonožcov v tropických lesoch a jaskyniach. V apríli až máji 1992 sa zúčastnil expedície usporiadanej CSCA (Combined Services Caving Association) nazvanej „Exercise Tham Farang“ do Ľubomír Vidlička Habilitačná práca 29 Obr. 30. Spelaeoblatta gestroi ♀ (BOLÍVAR 1897). 1 McGavin nie je špecialistom na šváby, zaoberá sa viac popularizačnou činnosťou. Má vlastnú reláciu v BBC a napísal viacero populárnych knižiek o hmyze. Jednu z nich – „Insects, spiders and other terrestrial arthropods“ (MCGAVIN 2000) som mal česť v roku 2000 preložiť pre vydavateľstvo IKAR do slovenčiny (spolu s L. Rollerom). Thajska. Cieľom expedície bolo zhromaždiť a identifikovať kavernikolné živočíchy jaskynných systémov v provincii Kanchanaburi. V jaskynnom systéme Tham Nam Farang bolo nájdené aj väčšie množstvo samčekov, samičiek aj nýmf jaskynných švábov neznámeho druhu. Preto McGavin požiadal o pomoc s identifikáciou amerického experta na šváby Louisa M. Rotha. Šváby boli identifikované ako nový druh z rodu Spelaeoblatta. Roth pomenoval tento druh Spelaeoblatta thamfaranga na počesť expedície. Thajské slová „Tham Farang“ znamenajú „jaskynný cudzinec“. Na základe tohto materiálu bol po prvýkrát charakterizovaný aj samček z tohto rodu. Na abdomene majú samčekovia vyvinutú pohlavnú tergálnu žľazu. Prítomnosť tergálnej žľazy na 2 a 3 tergite samčekov je dosť vzácny úkaz medzi švábmi. V práci bola tiež podrobnejšie opísaná aj samička. U tohto druhu na rozdiel od S. gestroi mali samičky vyvinuté facetové oči (ROTH & MCGAVIN 1993). Ruská expedícia skúmajúca jaskyne severného Thajska nazbierala v marci 1997 okrem iného aj neveľký materiál jaskynných švábov. Slovenská expedícia na Ďaleký východ do Primorského (Ussurijského) kraja (Vidlička, Vršanský, Roller – jún 1997) prevzala nazberané šváby na determináciu. Ako sa ukázalo materiál obsahoval minimálne tri druhy jaskynných švábov, z ktorých dva druhy boli zaradené do rodu Spelaeoblatta. Opisy oboch vyšli v roku 2003. Prvý dostal meno Spelaeoblatta myugei (obr. 31) po svojom zberateľovi N. Myugem (Н. Мюге), ktorý zbieral šváby v jaskyni Tham Pha Mon (provincia Mae Hong Son, región Nam Lang). Druhý bol pomenovaný Spelaeoblatta thailandica podľa krajiny pôvodu a opísaný bol z jaskyne Red Cliff (provincia Mae Hong Son, región Nam Lang). Oba druhy sa veľmi nápadnými a v rade švábov úplne unikátnymi výbežkami na tergitoch bruška výrazne líšili od predchádzajúcich dvoch druhov a preto bola pre nich vytvorená samostatná skupina druhov myugei (VIDLIČKA et al. 2003). Ľubomír Vidlička Habilitačná práca 30 Obr. 31. Spelaeoblatta myugei ♂ (VIDLIČKA et al. 2003). 5.4. Šváby z rodu Macrophyllodromia Saussure & Zehnter, 1893 (Blattellidae) 1. M. maximiliani (Saussure, 1873) – Mexiko, Guatemala, Honduras, Kostarika, Panama 2. M. splendida Hebard, 1920 – Panama 3. M. nigrigena Hebard, 1926 – Francúzska Guiana, Guyana, Bolívia (?) 4. M. ecuadorana Rocha e Silva, 1962 – Ekvádor, Honduras (?) 5. M. panamae Rocha e Silva, 1962 – Panama 6. M. lanceolata Lopes & Oliveira, 2006 – Brazília 7. M. multipunctata Lopes & Oliveira, 2006 – Brazília 8. M. amabile Anisyutkin, 2007 – Ekvádor 9. M. nobile Anisyutkin, 2007 – Ekvádor 10. M. beccalonii Anisyutkin, 2012 – Ekvádor 11. M. rufidula Anisyutkin, 2012 – Mexiko 12. M. onorei Vidlička, 2013 – Ekvádor Švajčiarsky ortopterológ Henri Louis Frederic de Saussure (*1829-†1905) sa výskumu ortopterofauny strednej Ameriky venoval dlhodobo. Už v roku 1854 podnikol spolu s ďalším švajčiarskym prírodovedcom Adrienom Jeanom Louisom Françoiscom de Sumichrast (*1828-†1882) expedíciu do „Západnej Indie“ (Karibské ostrovy) a do Mexika. Chytali hmyz a posielali ho do ženevského múzea. Saussure sa v roku 1856 z Mexika vrátil do Ženevy a začal nazberaný materiál spracovávať. V roku 1873 spracoval Saussure rozsiahlu zbierku švábov a modliviek, medzi ktorým bolo aj niekoľko exemplárov z Mexika. O ich pôvode sa bližšie nezmieňuje, ale nie všetky pochádzali z jeho vlastných zberov. Jedného zo švábov, charakteristického dvomi nápadnými čiernymi pozdĺžnymi pruhmi na pronóte, pomenoval Pseudophyllodromia Maximiliani (obr. 32). Holotyp bol poškodený, chýbalo mu bruško, takže pohlavie neuvádza (SAUSSURE 1873). Dá sa predpokladať, že druh dostal meno po Ferdinandovi Maximiliánovi Jozefovi Habsburskom (*1832-†1867), ktorý bol ako Maximilián I. v rokoch 1861-1867 mexickým panovníkom. Saussure a jeho spolupracovník Leo Zehntner (*1864-†1961), asistent v Natural History Museum v Ženeve, vydali v roku 1893 v rámci edície „Biologia Centrali Americana“ rozsiahle dielo o šváboch a modlivkách Strednej Ameriky. V rámci rodu Pseudophyllodromia uvádzajú dva druhy – P. venosa a P. maximiliani, oba z Mexika. Vzhľadom na odlišnú žilnatinu na tegminách a krídlach týchto druhov ako aj odlišné otŕnenie stehien zaradili druh P. venosa (=Euphyllodromia angustata (Latreille, 1811)) do nominátneho podrodu Pseudophyllodromia a druh P. maximiliani do novo vytvoreného podrodu Macrophyllodromia (SAUSSURE & ZEHNTNER 1893). Ľubomír Vidlička Habilitačná práca 31 Obr. 32. Macrophyllodromia maximiliani (SAUSSURE 1873). Robert Walter Campbel Shelford (*1850-†1944) zistil, že príslušníci rodu Pseudophyllodromia Brunner von Wattenwyl, 1865, ktoré sú rozšírené v indomalajskej (orientálnej) oblasti sa odlišujú od druhov pochádzajúcich z juhoamerickej oblasti, preto vytvoril pre druhy z tohto rodu z juhoamerickej oblasti nový podrod Euphyllodromia. Do podrodu Euphyllodromia bol zaradený aj druh P. venosa a zároveň bol synonymizovaný so starším druhom Euphyllodromia angustata (SHELFORD 1908). Saussurem a Zehntnerom stanovený podrod Macrophyllodromia bol následne povýšený na rod s jediným druhom M. maximiliani (SHELFORD 1908). Rodák z poľskej časti Sliezska Eugene Amandus Schwarz (*1844-†928) emigroval v roku 1872 do USA. Tu prešiel viacerými zamestnaniami až sa stal kurátorom pre chrobáky (Coleoptera) v United States National Museum vo Washingtone D.C. (súčasť Smithsonian Institution). Odtiaľ podnikol viacero dlhších expedícií do Panamy, Guatemaly, Mexika a na Kubu. Šváby, ktoré počas expedícií nazbieral, spracoval americký ortopterológ Morgan Hebard (*1887-†1946). Hebard sa tiež zúčastnil v roku 1913 kratšej expedície do oblasti Panamského prieplavu a zberal hmyz. V roku 1920 spracoval Hebard šváby Panamy v monografickom diele (HEBARD 1920). Medzi švábmi sa nachádzal aj samček zo zberov E. A. Schwarza z roku 1911, ktorý bol veľmi podobný jedincovi, ktorého opísal Saussure z Mexika. Hebard ho opísal pod názvom Macrophyllodromia splendida. Keďže mal k dispozícii celého jedinca, opísal rod aj druh obšírne, vrátane genitálií (HEBARD 1920). V ďalších rokoch sa Hebard pustil aj do spracovania švábov z Francúzskej Guiany. Mal vlastnú kolekciu a zároveň spracoval aj materiál od iných Amerických prírodovedcov a zberateľov. Tentoraz natrafil na väčšiu sadu (3 ♂♂, 3 ♀♀ a 2 nymfy) jedincov z rodu Macrophyllodromia. Ich genitálie sa značne líšili od predchádzajúceho druhu, takže opísal nový druh Macrophyllodromia nigrigena (obr. 33). Jeden samček a dve samičky pochádzali z Hebardovej zbierky z osady a francúzskeho trestaneckého tábora Saint Laurent du Maroni (Francúzska Guiana) a zvyšok jedincov nazberal v roku 1922 americký prírodovedec a entomológ Charles William Beebe (*1877-†1962) na lokalite Kartabo (oblasť Bartica, Britská Guyana). Samčekovia mali veľmi komplikovaným spôsobom utvárané výbežky na subgenitálnej platničke (HEBARD 1926). Práve tieto výbežky sú dobrým determinačným znakom. Isolda Rocha e Silva Albuquerque (*1935) začala už vo svojich 15-tich rokoch pracovať ako praktikantka v Národnom múzeu Brazílskej univerzity, kde v roku 1952 začala budovať zbierku neotropických švábov, ktorá existuje dodnes. V roku 1960 sa stala praktikantkou v United States National Ľubomír Vidlička Habilitačná práca 32 Obr. 33. Macrophyllodromia nigrigena ♂, habitus a subgenitálna platnička (HEBARD 1926). Museum u Dr. Gurneyho a pokračovala u Dr. Rehna v Academy of Natural Sciences vo Filadelfii. Počas pobytu v USA preštudovala zbierky neotropických švábov z viacerých múzeí. Po návrate z USA sa zamestnala v Museu Nacional v Rio de Janeiro. Tu publikovala prácu revidujúcu rod Macrophylloromia. Preštudovala 5 ♂♂ a 4♀♀ z druhu M. maximiliani z Hondurasu, Guatemaly, Kostariky a Panamy. V zbierke USNM objavila aj samčeka z Panamy, ktorý mal odlišne tvarovanú subgenitálnu platničku ako M. maximiliani. Opísala ho pod menom M. panamae. Holotyp pochádzal z ostrova Barro Colorado v Panamskom prieplave (ROCHA E SILVA 1962). Uloviť sa ho podarilo Jamesovi Zetekovi (*1886-1†959), synovi českých emigrantov v USA. V roku 1911 odcestoval Zetek do Panamy, kde sa ako entomológ stal základňovým riaditeľom Canal Zone Biological Area (CZBA). Základňa bola umiestnená na ostrova Barro Colorado. Zetek sa tu venoval hlavne výskumu termitov, ale zberal aj iné druhy hmyzu, okrem iného aj šváby. Pri štúdiu švábov v U.S. National Museum sa Rocha e Silva dostala aj ku švábom, ktoré boli do USA dovezené so zásielkami banánov z Hondurasu (?) a Ekvádoru. Na ich základe opísala druh Macrophyllodromia ecuadorana. Holotyp (♂) chytený v San Diegu pochádzal z Guayaquilu a allotyp (♀) chytený v Kalifornii pochádzal tiež z Ekvádoru. Okrem toho preštudovala ďalších 7 paratypov chytených na banánoch pochádzajúcich z Ekvádoru a v jednom prípade možno z Hondurasu (ROCHA E SILVA 1962). Na priložených obrázkoch zrejme zobrazila holotyp a allotyp. Je však možné (a vzhľadom na rôzny pôvod aj veľmi pravdepodobné), že všetky jedince označené ako paratypy nepatrili k rovnakému druhu. Z druhu Macrophyllodromia nigrigena preštudovala samičku chytenú na lokalite Tumupasa (Bolívia), čo tiež nie je (vzhľadom na umiestnenie lokality) pravdepodobne úplne spoľahlivá determinácia. Skôr ako v roku 1988 odišla Rocha e Silva na dôchodok, vychovala si niekoľko následníkov. Jej študentmi boli aj Sonia Maria Lopes a Edivar Heeren de Oliveira, ktorí momentálne tiež pracujú v Museu Nacional, Universisade do Rio de Janeiro v Brazílii a zaoberajú sa taxonómiou švábov. Zo zbierok múzea opísali dva druhy (oba druhy podľa samčekov) z rodu Macrophyllodromia: M. lanceolata a M. multipunctata zo štátu Acre ležiaceho na západe Brazílie (LOPES & OLIVEIRA 2006). Zo zvyšných 5 doteraz opísaných druhov z rodu Macrophyllodromia pochádzajú 4 z Ekvádoru. Väčšinu opísal ruský entomológ Leonid Anisyutkin podľa jedincov nazberaných jeho kolegami: M. amabile (1♂ a 1♀) z okolia vodopádu San Ľubomír Vidlička Habilitačná práca 33 Obr. 34. Rozšírenie rodu Macrophyllodromia. Podľa VIDLIČKU (2013a) – upravené a doplnené. Rafael na Rio Coca a M. nobile (1♂) z okolia jazera Lago Grande na Rio Cuyabeno, oba druhy z Ekvádoru (ANISYUTKIN 2007) a druhy M. beccalonii (1♂) z provincie Napo (Ekvádor) a M. rufidula (1♂) z Veracruz (Mexiko) (ANISYUTKIN 2012). Anisyutkin mal k dispozícii aj paratyp druhu M. ecuadorana, avšak podľa opisu sa zdá, že v tomto prípade sa jedná o iný druh. Výskyt jednotlivých druhov zobrazuje obrázok 34. Posledná spomínaná Anisyutkinova práca má síce vročenie 2012, ale vyšla s oneskorením až v roku 2013. Preto nemohla byť zohľadnená v revízii rodu Macrophyllodromia (VIDLIČKA 2013a). V rámci tejto revízie bol opísaný nový druh M. onorei podľa samčeka (obr. 35) z rezervácie Otongachi (okolie Santo Domingo de los Colorados) (VIDLIČKA 2013a). Paratyp M. ecuadorana študovaný Anisyutkinom za zdá byť práve z tohto novo opísaného druhu. Novo opísaný druh nebol zahrnutý do check-listu ekvádorských druhov švábov, ktorý vyšiel súbežne s opisom (VIDLIČKA 2013b). 5.5. Prehľad príspevkov autora k poznaniu švábov juhovýchodnej Ázie a Južnej Ameriky (hnedou farbou sú uvedené príspevky, ktoré sú súčasťou habilitačnej práce) VIDLIČKA, Ľ. 1999. Caeparia sausai sp.nov. from Laos, and description of the male Caeparia donskoffi (Blattaria: Blaberidae: Panesthiinae). Entomological Problems 30(2): 1-5. (Príloha č. 7) VIDLIČKA, Ľ. 2002. The new cockroach species from the genus Chorisoserrata from Laos (Blattaria: Blattellidae: Pseudophyllodromiinae). Entomological Problems 32(2): 145- 147. (Príloha č. 8) VIDLIČKA, Ľ., VRŠANSKÝ, P., SHCHERBAKOV, D.E. 2003. Two new troglobitic cockroach species of the genus Spelaeoblatta (Blattaria: Nocticolidae) from North Thailand. Journal of Natural History 37(1): 107-114. (Príloha č. 9) VIDLIČKA, Ľ. 2013a. New species of Macrophyllodromia (Blattaria, Blattellidae) from Ecuador and a key to males of the genus. Zootaxa 3635(2): 185-193. (Príloha č. 10) VIDLIČKA, Ľ. 2013b. Cockroaches (Blattaria) of Ecuador—checklist and history of research. Zootaxa 3599(5): 401-445. (Príloha č. 11) Ľubomír Vidlička Habilitačná práca 34 Obr. 35. Macrophyllodromia onorei ♂ (VIDLIČKA 2013a). 6. Fosílne šváby (Blaberidae, Blattellidae, Ectobiidae) Šváby (Blattaria) vznikli v karbóne v stupni Bashkirian (pred 323,20,4 až 315,20,2 miliónmi rokov). Najstaršie nálezy pochádzajú z Quilianshan v Číne (ZHANG et al. 2012, GUO et al. 2012). Typické mezozoické čeľade boli odvodené z Phyloblattidae pri P/T hranici a kmeň recentných čeľadí (a tiež všetkých modliviek a termitov) možno vysledovať z druhohornej čeľade Liberiblattinidae (VRŠANSKÝ 2010, VRŠANSKÝ et al. 2012a). Najstarším fosílnym záznamom o druhoch švábov recentnej čeľade je ectobiid (blattellid) Piniblattella vitimica (VISHNIAKOVA 1964) z neskorej kriedy (VRŠANSKÝ 1997). Súčasné rody boli známe až od skorého eocénu (ARCHIBALD & MATHEWES 2000) a moderná fauna švábov pochádza z obdobia okolo paleocénno-eocénneho teplotného maxima (PETM; VRŠANSKÝ et al. 2011, 2012b). V triase, jure a kriede (druhohory; pred 2510,4 až 65,50,3 miliónmi rokov) žili na Zemi obrovské terestrické plazy – dinosaury. Predpokladá sa, že tieto obrie plazy živiace sa rastlinnou potravou produkovali úmerne veľké množstvo exkrementov. V súčasnosti sú exkrementy odstraňované (rozkladané) hlavne koprofágnym hmyzom. V dobe dinosaurov však bol takýto hmyz zriedkavý. Pri štúdiu švábov z libanonského jantáru vznikla hypotéza, či by tými chýbajúcimi „čističmi po dinosauroch“ nemohli byť šváby. Libanonský jantár spred 125 miliónov rokov uchoval aj nymfu švába zatiaľ neznámeho druhu z vyhynutej čeľade Blattulidae. Nymfa je dokonale zachovaná (obr. 36) a zachovali sa aj jej skamenené exkrementy – koprolity. V týchto koprolitoch boli objavené synchrotrónovou mikrotomografiou zvyšky dreva s hladkými hranami, ktorých zdrojom by mohli byť práve výkaly bylinožravcov. Takže šváby sa pravdepodobne živili exkrementami (obr. 37) dinosaurov a napomáhali ich biodegradácii (VRŠANSKÝ et al. 2013a). Šváby živiace sa exkrementami poznáme aj zo súčasnosti, najčastejšie je to guáno po netopieroch (ROTH & WILLIS 1960, BELL et al. 2007, CHRISTOFFERSEN & DE ASSIS 2013). Podľa databázy fosílneho hmyzu (EDNA) je známych z paleocénu (pred 65,50,3 až 55,80,2 miliónmi rokov) 177 druhov hmyzu. Najviac sú to chrobáky (44), dvojkrídlovce a hemipterný hmyz (po 28 druhov). Šváby sa v tejto databáze donedávna vôbec nevyskytovali. Prvé dva druhy švábov z tohto obdobia boli opísané z danianských (paleocénnych) sedimentov pochádzajúcich z ruského Ďalekého východu (VRŠANSKÝ et al. 2013b). Orientálny (indomalajský) rod Morphna zahŕňa 12 Ľubomír Vidlička Habilitačná práca 35 Obr. 36. Nymfa švába z čeľade Blattulidae (VRŠANSKÝ et al. 2013a). Obr. 37. Koprofágne šváby v druhohorách (HTTPS://WWW.PHACTUAL.COM/9- CREEPY-COCKROACH-FACTS-YOU-DIDNT-WANT-TO- KNOW/). recentných druhov. Morphna paleo (obr. 38) bola opísaná na základe zachovanej fosílnej tegminy (VRŠANSKÝ et al. 2013b). Rod Ergaula obsahuje 7 recentných druhov, až na jednu výnimku tiež s rozšírením v orientálnej oblasti. Jeden druh (Ergaula atica) je známy z eocénu Izraela (ANISYUTKIN et al. 2008) a novoopísaná Ergaula stonebut je paleocénneho veku (VRŠANSKÝ et al 2013b). Chiapas, štát na najjužnejšom výbežku Mexika, je známy výskytom jantáru, pre ktorý je príznačné, že pomerne často obsahuje zvyšky rastlín, príležitostne huby, vzácne ulitníky, pavúky, kôrovce, pomerne hojný je hmyz a dajú sa objaviť aj obojživelníky, plazy, vtáčie perie a srsť cicavcov (POINAR 2003, ENGEL 2004, SOLORZANO KRAEMER 2007, VEGA et al. 2009a, b). Chiapaský jantár vznikol v dolnom miocéne (pred 23,030,05 až 15,970,05 miliónmi rokov). Z hmyzu zachovaného v tomto jantári bolo doteraz opísaných 235 druhov. Druhy, ktoré sa v tomto jantári vyskytujú, patria často do recentných rodov. To je aj prípad švába nájdeného v tomto jantári. Patrí do rodu Supella, kde patrí 10 recentných druhov. Súčasné druhy sú výskytom obmedzené na africký kontinent. Supella miocenica (obr. 39) z chiapaského jantáru je sesterským druhom ku druhu S. mirabilis, ktorý je široko rozšírený v štátoch rovníkovej Afriky. Rozdiel je iba v tvare stredovej škvrny na pronóte a vo veľkosti tela (VRŠANSKÝ et al. 2011). Výskyt rodu Supella v miocénnej Amerike naznačuje niekdajší kozmopolitný výskyt tohto rodu, ktorý sa zachoval len v Afrike. Eocénne (pred 55,80,2 až 33,90,1 miliónmi rokov) sedimenty rieky Green River v americkom Colorade sú bohaté na fosílie švábov. Z 11 tu zistených rodov švábov (17 druhov), až 9 rodov patrí aj k recentnej faune. Rod Blattella môžeme považovať za historicky starší, bol zaznamenaný už v druhohornej kriede (VRŠANSKÝ 2008). Ostatné recentné rody švábov sa objavujú až na začiatku eocénu a majú moderný charakter. K rodom, ktoré sa vyvinuli počas eocénu alebo tesne pred, patrí aj rod Cariblattoides. Rod v súčasnosti zahŕňa 13 recentných druhov rozšírených v Strednej a Južnej Amerike. Cariblattoides labandeirai (obr. 40) bol v skorom eocéne pri Green River bežným druhom. Našlo sa až 13 fosílií patriacich tomuto druhu. Prekvapivý bol objav švába z rodu Ectobius v eocénnych sedimentoch rieky Green River Ľubomír Vidlička Habilitačná práca 36 Obr. 38. Tegmina švába Morphna paleo (VRŠANSKÝ et al. 2013b). Obr. 39. Supella miocenica (VRŠANSKÝ et al. 2011). Obr. 39. Supella miocenica (VRŠANSKÝ et al. 2011). spred 49 miliónov rokov. Šváby rodu Ectobius sú v súčasnosti obmedzené výskytom na Euráziu a Afriku (palearktická oblasť). Opísaný bol druh Ectobius kohlsi (obr. 41). Jeho nález v Severnej Amerike (nearktická oblasť) indikuje kozmopolitné rozšírenie tohto rodu počas stredného paleogénu a jeho neskoršie vyhynutie (VRŠANSKÝ et al. 2014). Zástupcovia rodu sa reintrodukovali na Americký kontinent v 20. storočí (CHANDLER 1985, 1992, HOEBEKE & NICKLE 1981, HOEBEKE & CARTER 2010). Zo stredného eocénu (pred 47,8 až 38 miliónmi rokov) pochádzajú fosílie zberané pri Flathead River v Montane (USA). Našiel sa medzi nimi aj šváb z rodu Latiblattella. Recentné druhy rodu Latiblattella (18 druhov) sú rozšírené v Strednej Amerike a v Karibiku. Latiblattella avita predstavuje prvý fosílny nález druhu z tohto rodu (GREENWALT & VIDLIČKA 2015). 6.1. Prehľad príspevkov autora k poznaniu fosílnych švábov (Blaberidae, Blattellidae, Ectobiidae) (hnedou farbou sú uvedené príspevky, ktoré sú súčasťou habilitačnej práce) VRŠANSKÝ, P., CIFUENTES-RUIZ, P., VIDLIČKA, Ľ., ČIAMPOR, F., VEGA, F.J. 2011. AfroAsian cockroach from Chiapas amber and the lost Tertiary American entomofauna. Geologica Carpathica 62: 463-475. (Príloha č. 12) VRŠANSKÝ , P., VIDLIČKA, Ľ., ČIAMPOR, F., MARSH, F. 2012b: Derived, still living cockroach genus Cariblattoides (Blattida: Blattellidae) from the Eocene sediments of Green River in Colorado, USA. Insect Science 19: 143–152. (Príloha č. 13) VRŠANSKÝ , P., VAN DE KAMP, T., AZAR, D., PROKIN, A., VIDLIČKA, Ľ., VAGOVIČ, P. 2013a. Cockroaches Probably Cleaned Up after Dinosaurs. PLoS ONE 8(12): e80560. doi:10.1371/journal. pone.0080560 (Príloha č. 14) VRŠANSKÝ , P., VIDLIČKA, Ľ., BARNA, P., BUGDAEVA, E., MARKEVICH, V. 2013b: Paleocene origin of the cockroach families Blaberidae and Corydiidae: Evidence from Amur River region of Russia. Zootaxa 3635(2): 117-126. (Príloha č. 15) VRŠANSKÝ , P., ORUŽINSKÝ, R., BARNA, P., VIDLIČKA, Ľ. & LABANDEIRA, C.C. 2014. Native Ectobius (Blattaria: Ectobiidae) from the Early Eocene Green River Formation of Colorado and Its Reintroduction to North America 49 Million Years Later. Annals of the Entomological Society of America 107(1): 28-36. (Príloha č. 16) GREENWALT, D.E., VIDLIČKA, Ľ. 2015. Latiblattella avita sp. nov. (Blattaria: Ectobiidae) from the Eocene Kishenehn Formation, Montana, USA. Palaeontologia Electronica 18.1.16A: 1-9. (Príloha č. 17) Ľubomír Vidlička Habilitačná práca 37 Obr. 41. Ectobius kohlsi (VRŠANSKÝ et al. 2014). 7. Použitá literatúra ANISYUTKIN, L.N. 2007. New species of the genus Macrophyllodromia Saussure & Zehntner, 1893 (Dictyoptera: Blattina: Blattellidae) from Ecuador. Cockroach Studies 2: 27-41. ANISYUTKIN, L.N. 2012 (2013): Additional data on the genus Macrophyllodromia Saussure & Zehntner, 1893 (Dictyoptera: Blattina: Ectobiidae). Cockroach Studies 3: 14-21. ANISYUTKIN, L.N., RASNITSYN, A.P., VRŠANSKÝ, P. 2008. Cockroaches & mantises. Orders Blattodea (=Blattida) and Mantodea (=Mantida), pp. 199-209. In: Krassilov, V. & Rasnitsyn, A. [eds] Plant-Arthropod interactions in the early angiosperm history: Evidence from the Cretaceous of Israel. Pensoft, Sofia, Moscow. ARCHIBALD, S.B. & MATHEWES, R.W. 2000. Early Eocene insects from Quilchena, British Columbia, and their paleoclimatic implications. Canadian Journal of Zoology 78: 1441- 1462. BAZYLUK, W. 1976. Karaczany i Modliszki Blattodea et Mantodea. Katalog fauny Polski, Warszawa 17(1): 1-29. BAZYLUK, W. 1977. Blattodea et Mantodea: Karczany i modliszki (Insecta). Fauna PolskiFauna Poloniae 6: 1-173. BEIER, M. 1974. Blattaria (Schaben). In: Kükenthal, W. (ed.) Handbuch der Zoologie 4(2), 1/5: 1-17. BELL, W.J., ROTH, L.M. & NALEPA, Ch.A. 2007. Cockroaches Ecology, Behavior, and Natural History. The Johns Hopkins University Press, Baltimore, 230 pp. BEY-BIENKO, G. Ja. 1950. Nasekomyie Tarakanovyie. Fauna SSSR. N. Ser., 40: 1-342. BOHN, H. 1989. Revision of the Sylvestrys Group of Ectobius Stephens in Europe (Blattaria: Blattellidae). Entomologica Scandinavica 20: 317-342. BOHN, H. 1990. Revision of the Loboptera species of Spain (Blattaria, Blattellinae). Entomologica Scandinavica 21: 369-403. BOHN, H. 1992. Revision of the beatica-group of Phyllodromica in Spain (Blattaria: Blattellidae: Ectobiinae). Entomologica Scandinavica 23: 319-345. BOHN, H. 1993: Revision of the panteli-group of Phyllodromica in Spain and Marocco (Blattaria: Blattellidae: Ectobiinae). Entomologica Scandinavica 24(1): 49-72. BOHN, H. 1999. Revision of the carpetana-group of Phyllodromica Fieber from Spain, Portugal and France (Insecta, Blattaria, Blattellidae, Ectobiinae). Spixiana: Zeitschrift für Zoologie, Supplement. 25: 1-102. BOHN, H. 2004. The Blattoptera fauna of Switzerland and the adjacent regions of France, Italy and Austria I. The species of the sylvestris-group of Ectobius (Blattellidae, Ectobiinae). Spixiana – Zeitschrift für Zoologie 27(3): 253-285. BOHN, H., BECCALONI, G., DOROW, W.H.O. & PFEIFER, M.A. 2013. Another species of European Ectobiinae travelling north – the new genus Planuncus and its relatives (Insecta: Blattodea: Ectobiinae). Arthropod Systematics & Phylogeny 71(3): 139-168. BOHN, H., CHLÁDEK, F. 2011. Revision of the maculata-group of Phyllodromica: species from Central Europe (Insecta: Blattodea: Blattellidae: Ectobiinae). Arthropod Systematics & Phylogeny 69(1): 3-54. Ľubomír Vidlička Habilitačná práca 38 BOLIVAR, I. 1892. Orthopteres. In: Raffray, A., Bolivar, I. et Simon, E. [eds] Étude sur les Arthropodes cavernicoles de l'île de Luzon, pp. 27-34. In: Voyage de M.E. Simon aux îles Philippines. Annales de la Société Entomologique de France 61: 27-52. BOLIVAR, I. 1897. Viaggio di Leonardo Fea in Birmania e regioni vicine. LXXVIII. Nouvelle espece cavernicole de la famille des Blattaires. Annali del Museo Civico di Storia Naturale di Genova 38: 32-36. BROWN, V.K. 1973a. The overwintering stages of Ectobius lapponicus (L.) (Dictyoptera: Blattidae). Journal of the Entomology (A) 48: 11-24. BROWN, V.K. 1973b. Aspects of the reproductive biology of three species of Ectobius (Dictyoptera: Blattidae). Entomologia Experimentalis & Applicata 16: 213-222. BROWN, V.K. 1983. Developmental strategies in British Dictyoptera: Seasonal variation, pp. 111-125. In: Brown, V.K. & Hodek, I. (Eds) Diapause and life Cicle Strategies in Insects. Dr. W. Junk Publishers, The Hague / Boston / London. ISBN 90 6193 133 9 BRUIJNING, C.F.A. 1948. Studies on Malayan Blattidae. Zoologische Mededelingen 29: 1- 174. BRUNNER DE WATTENWYL, C. 1893. Révision du Systeme des Orthopteres et description des especes rapportées par M. Leonardo Fea de Birmanie. Annali del Museo Civico di Storia Naturale di Genova „Giacomo Doria“ XIII(33): 5-230. BRUNNER VON WATTENWYL, C. 1882. Prodromus der Europäischen Orthopteren. Verlag von Wilhelm Engelmann, Leipzig, 466 pp. CAUDELL, A.N. 1924. Malayan and East Indian Blattidae, I. Introductiuon and subfamily Panesthinae. The Philippine Journal of Science 24(6): 641-668. DREISIG, H. 1971. Diurnal activity in the dusky cockroach, Ectobius lapponicus (Blattodea). Entomologica Scandinavica 2: 132-138. EBNER, R. 1919. VI. Orthopteren aus Kleinasien. Archiv für Naturgeschichte 85A(8): 148- 176. ENGEL, M.S. 2004. Arthropods in Mexican amber, pp. 175-186. In: Llorente-Bousquets, J.E., Morrone, J.J., Yáñez-Ordóñez, O. & Vargas-Fernández, I. (Eds.) Biodiversidad, Taxonomía, y Biogeografía de Artrópodos, v. IV. UNAM/CONABIO First Edition, México D.F. ESCHSCHOLTZ, J.F. 1822. Entomographien. Erste Lieferung. Reimer, Berlin, 128+3 pp. FEA, L. 1888. Nei Carin Indipendenti. Estratto dal Bollettino della Societa Geografica Italiana 1-15. FEDOR, P., VIDLIČKA, Ľ., MAJZLAN, O., VARGA, L. 2010. Ucholaky (Dermaptera), modlivky (Mantodea) a šváby (Blattaria) PR Šúr, pp. 127-133. In: Majzlan, O., Vidlička, Ľ. (eds). Príroda rezervácie Šúr. Ústav zoológie SAV, Bratislava. ISBN 978-80-970326-0-9. FRIVALDSZKY, J. 1867. A magyarországi egyenesröpüek maganrajza (Monographia Orthopterorum Hungariae). Eggenberger Ferdinánd Magyar Akad. Könyvárusnál, Pest, 201 pp. GEMENO, C. & SCHAL, C. 2004. Sex pheromones of cockroaches, pp. 179-247. In: Carde, R.T. & Millar, J.G. (Eds) Advances in Insect Chemical Ecology. Cambridge University Press, New York. GESTRO, R. 1888. Viaggio di Leonardo Fea in Birmania e regioni vicine. IV. Nuove speciedi Coleotteri. Annali del Museo Civico di Storia Naturale di Genova 26: 87-13 Ľubomír Vidlička Habilitačná práca 39 GESTRO, R. 1891. Viaggio di Leonardo Fea in Birmania e regioni vicine. XXXVII.Enumerazione delle Cetonie. Annali del Museo Civico di Storia Naturale di Genova 2(10): 835-876. GMELIN, J.F. 1789. Caroli a Linné Systema Naturae per regna tria naturae, secundum Classes, Ordines, Genera, Species, cum characteribus, differentis, synonymis, locis. Editio decima tertia, aucta, reformata. Lipsiae, I, 500 pp, 3 Tom. GOEZE, J.A.E. 1778. Entomologische Beiträge zu des Ritter Linné zwölften Ausgabe des Natursystems. II. Theil. Weidmann, Leipzig, 72+352 pp. GREENWALT, D.E., VIDLIČKA, Ľ. 2015. Latiblattella avita sp. nov. (Blattaria: Ectobiidae) from the Eocene Kishenehn Formation, Montana, USA. Palaeontologia Electronica 18.1.16A: 1-9. GUO, Y., BETHOUX, O., GU, J.-J. & REN, D. 2012. Wing venation homologies in Pennsylvanian ‘cockroachoids’ (Insecta) clarified thanks to a remarkable specimen from the Pennsylvanian of Ningxia (China). Journal of Systematic Palaeontology 11(1): 41-46. HANITSCH, R. 1927. On a collection of Blattidae from southern Annam. The Journal of the Siam Society, Natural History Supplement 7(1): 7-48. HANITSCH, R. 1929. Dr. E. Mjäberg's zoological collections from Sumatra. 11. Blattidae. Arkiv för Zoologi 21A(2): 1-20. HANITSCH, R. 1933(1932). Beccari and Modigliani's collection of Sumatran Blattidae in the Museo Civico, Genoa. Annali del Museo Civico di Storia Naturale Giacomo Doria 56: 48-92. HARRIS, W.E. & MOORE, P.J. 2005. Female mate preference and sexual conflict: females prefer males that have had fewer consorts. The American Naturalist 165: 64-71. HARZ, K. 1976. Ordnung Blattoptera, pp. 169-305. In: Harz, K. & Kaltenbach, A. (Eds) Die Orthopteren Europas, Band 3. Junk, The Hague. HEBARD, M. 1920 (1919). The Blattidae of Panama. Memoirs of the American Entomological Society 4: 1-148. HEBARD, M. 1926. The Blattidae of French Guiana. Proceedings of the Academy of Natural Sciences of Philadelphia 78: 135-244. HERRICH-SCHÄFFER, G.A.W. 1840. Nomenclator entomologicus. Verzeichniss der europäischen Insecten, zur Erleichterung des Tauschverkehrs mit Preisen versehen. Heft II. Coleoptera, Orthoptera, Dermatoptera, Hymenoptera. Pustet, Regensburg, 40+244 pp. HERMAN, O. 1871. Die Dermapteren und Orthopteren Siebenbürgens. Verhandlungen und Mitteilungen des Siebenb. Vereins für Naturwissenschaften zu Hermannstadt 21: 30-43. HINTZE-PODUFAL, CH. & VETTER, R. 1996. Hormonal control of Courtship Behavior and Reproductive cycle in the cockroach species Blaptica dubia (Blattoidea: Blaberoidea: Blaberidae). Entomologia Generalis 20(3): 169-175. HOEBEKE, E. R. & NICKLE, D.A. 1981. The forest cockroach, Ectobius sylvestris (Poda), a Eur. species newly discovered in North America (Dictyoptera: Blattodea: Ectobiidae). Proceedings of the Entomological Society of Washington 83: 592-595. HOEBEKE, E.R. & CARTER, M.E. 2010. First North American record of Ectobius lucidus (Hagenbach) (Blattodea: Ectobiidae: Ectobiinae), with notes on recognition characters and seasonal history, and additional records for other Ectobius species in the Northeastern United States. Proceedings of the Entomological Society of Washington 112: 229-238. Ľubomír Vidlička Habilitačná práca 40 HOLUŠA, J., KOČÁREK, P. 2000. Seasonal dynamics of the dusky cockroach Ectobius lapponicus (Blattodea, Blattellidae) in the eastern part of the Czech Republic. Biologia 55(5): 483-486. HOLUŠA, J., KOČÁREK, P., VIDLIČKA, Ľ. 1999. Bibliography to the fauna of Blattaria, Mantodea, Orthoptera and Dermaptera of the Czech and Slovak Republics. Articulata 14(2): 145-176. HUČKOVÁ, A., KOZÁNEK, M., VIDLIČKA, Ľ., TAKÁČ, P. 1992. Histamine distribution in the nervous system of the cockroach Nauphoeta cinerea (Blattodea, Panchloridae) and its changes during development, pp. 129-134. In: Advances in regulation of insect reproduction. Institute of Entomology Czech Academy Sciences, České Budějovice. ISBN 80-901250-0-X HUČKOVÁ, A., VIDLIČKA, Ľ., KOZÁNEK, M. 1994. Mating of the cockroach Nauphoeta cinerea (Blattodea: Blaberidae): II. Histamine changes during courtship and copulation. Biologia 49(5): 691-695. CHANDLER, D.S. 1985. A new introduction of a European cockroach, Ectobius lapponicus (Dictyoptera: Blatellidae). Entomological News 96: 98-100. CHANDLER, D.S. 1992. New records of Ectobius lapponicus in North America (Dictyoptera: Blatellidae). Entomological News 103: 139-141. CHARPENTIER, T. DE 1825. Horae Entomologicae, adjectis tabulis novem coloratis. Gosohorsky, Wratislawiae, XVI+257 pp. CHLÁDEK, F. 1965. K rozšíření druhu Hololampra punctata (Charp. 1825), Blattodea, Ectobiidae v ČSSR. Zoologické Listy 14: 372. CHLÁDEK, F. 1986. K vertikálnímu rozšíření rovnokřídlých (Orthoptera) a škvorů (Dermaptera) v Belanských Tatrách. Zprávy Československé společnosti entomologické při ČSAV 22: 103-108. CHLÁDEK, F. 1996. Phyllodromica dobšiki sp. nov. aus der Slowakei (Blattoptera, Ectobiidae, Ectobiinae). Selene 5(5): 5-9. CHLÁDEK, F. 1998. K rozšíření druhu Phyllodromica maculata (Schreber, 1781) v České republice a na Slovensku (Insecta, Blattoptera, Ectobiidae) [Zur Verbreitung der Art Phyllodromica maculata (Schreber, 1781) in der Tschechischen Republik und in der Slowakei (Insecta, Blattoptera, Ectobiidae)]. Tetrix 1(2): 9-14. CHLÁDEK, F. 1998. Švábi (Blattodea) a škvoři (Dermaptera) CHKO Kokořínsko [Cockroaches (Blattodea) and earwigs (Demaptera) of Kokořínsko Protected Landscape Area]. Bohemia centralis 27: 251-254 CHLÁDEK, F. & HARZ, K. 1977. Zwei neue Phyllodromica - Arten aus der Slowakei. Articulata 1(4): 21-24. CHLÁDEK, F. & HARZ, K. 1980. Zur Variabilität der Oothek von Phyllodromica maculata (Schreb.) (Blattoptera). Articulata 1(16): 176-178. CHRISTOFFERSEN, M.L., DE ASSIS, J.E. 2013. A systematic monograph of the Recent Pentastomida, with a compilation of their hosts. Zoologische Mededelingen Leiden 87(1): 1-206. CHYZER, K. 1897. Zemplénvármegye Orthopterái. Rovartani Lapok 4: 99-101. Ľubomír Vidlička Habilitačná práca 41 KARABAG, T. 1958. Türkiyenin Orthoptera Faunasi. The Orthoptera fauna of Turkey. A synonymic and distributional Catalogue of Turkish Orthoptera. Ankara Üniversitesi Fen Fakültesi Yayinari 81(Zool. 4): 198 pp. KARAMAN, I., KARAMAN, M. 1987. Contribution to the knowledge of the species Complex Ectobius Erythronotus B. 1913. Articulata 3(1): 1-5 KHALIFA, A. 1950. Spermatophore production in Blattella germanica L. Proceedings of the Royal Entomological Society of London A 25: 53-61. KIRBY, W.F. 1904. A synonymic catalogue of Orthoptera. Vol.1. Orthoptera Euplexoptera, Cursoria, et Gressoria. (Forficulidae, Hemimeridae, Blattidae, Mantidae, Phasmidae). British Museum (Natural History), London, 501 pp. KLASS, K.-D., ZOMPRO, O., KRISTENSEN, N.P. & ADIS, J. 2002. Mantophasmatodea: a new insect order with extant members in the afrotropics. Science 296: 1456-1459. KOČÁREK, P., HOLUŠA, J., VIDLIČKA, Ľ. 1999. Check-list of Blattaria, Mantodea, Orthoptera and Dermaptera of the Czech and Slovak Republics. Articulata 14(2): 177- 184. KOČÁREK, P., HOLUŠA, J., VIDLIČKA, Ľ. 2005: Blattaria, Mantodea, Orthoptera & Dermaptera of the Czech and Slovak Republics. Illustrated key 3. Blattaria, Mantodea, Orthoptera & Dermaptera České a Slovenské republiky. Ilustrovaný klíč 3. Kabourek, Zlín, 349 pp. KOZÁNEK, M., TAKÁČ, P., VIDLIČKA, Ľ. 1990. Concentration changes of some monoamines and steroids during courtship and copulation of cockroach Nauphoeta cinerea. Invertebrate Reproduction & Development 18(1-2): 120. LOPES, S.M., de OLIVEIRA, E.H. 2006. Duas espécies novas de Macrophyllodromyia do Estado do Acre, Brasil (Blattaria, Blattellidae) coletadas em ninhos de vespas. Iheringia, Série Zoologia 96(2): 257-260. MAŘAN, J. & ČEJCHAN, A. 1977. Blattoptera – Mantoptera – Dermaptera – Orthoptera. In: Dlabola, J. (Ed.) Enumeratio Insectorum Bohemoslovakiae. Check list Tschechoslowakische Insektenfauna. Acta Faunistics Entomologica Musei Nationalis Pragae 15(Suppl. 4): 35-39. MACKERRAS, M.J. 1965. Australian Blattidae (Blattodea) I. General remarks and revision of the genus Polyzosteria Burmeister. Australian Journal of Zoology 13: 841-882. MONCEAU, K. & VAN BAAREN, J. 2012. Female teneral mating in a monandrous species. Ecology and Evolution 2(7): 1426-1436. MONTROSE, V.T., HARRIS, W.E. & MOORE, P.J. 2004. Sexual conflict and cooperation under naturally occurring male enforced monogamy. Journal of Evolutionary Biology 17: 443-451. MOORE, A.J., GOWATY, P.A. & MOORE, P.J. 2003. Females avoid manipulative males and live longer. Journal of Evolutionary Biology 16: 523-530. MOORE, A.J., GOWATY, P.A., WALLIN, W. & MOORE, P.J. 2001. Fitness costs of sexual conflict and the evolution of female mate choice and male dominance. Proceedings of the Royal Society of London B 268: 517-523. MOORE, A.J., HAYNES, K.F., PREZIOSI, R.F. & MOORE, P.J. 2002. The evolution of interacting phenotypes: genetics and evolution of social dominance. The American Naturalist 160: 143-159. Ľubomír Vidlička Habilitačná práca 42 MOORE, P.J. & MOORE, A.J. 2001. Reproductive ageing and mating: the ticking of the biological clock in female cockroaches. Proceedings of the National Academy of Sciences 98: 9171-9178. POINAR, G. Jr. 2003. Coelomycetes in Dominican and Mexican amber. Mycological Research 107(1): 117-122. PRINCIS, K., 1950. Indomalaiische und australische Blattarien aus dem Entomologischen Museum der Universität in Lund. Opuscula Entomologica 15(3): 161-188. PRINCIS, K., 1965. Blattariae: Subordo Blaberoidea: Fam.: Oxyhaloidae, Panesthiidae, Cryptocercidae, Chorisoneuridae, Oulopterigidae, Diplopteridae, Anaplectidae, Archiblattidae, Nothoblattidae. pp. 283-400. In: Beier, M. (ed.) Orthopterorum Catalogus. Pars 7. Dr. W. Junk, 's-Gravenhage. RAMME, W. 1951. Zur Systematik, Faunistik und Biologie der Orthopteren von SüdostEuropa und Vorderasien. Mitteilungen aus dem Zoologischen Museum in Berlin 27(1950): 1-431. ROCHA e SILVA Albuquerque, I. 1962. Synopsis of the neotropical cockroach genus Macrophyllodromia (Orthoptera: Blattoidea, Epilamprinae). Proceedings of the United States National Museum, Smithsonian Institution 113(3461): 421-428. ROTH, L.M. 1964. Control of reproduction in female cockroaches with special reference to Nauphoeta cinerea. I. First preoviposition period. Journal of Insect Physiology 10: 915-945. ROTH, L.M. 1969. The evolution of male tergal glands in the Blattaria. Annals of the Entomological Society of America 62: 176-208. ROTH, L.M. 1977. A taxonomic revision of the Panesthiinae of the world. I. The Panesthiinae of Australia (Dictyoptera: Blattaria: Blaberidae). Australian Journal of Zoology, Supplementary Series 48: 1-112. ROTH, L.M. 1979a. A taxonomic revision of the Panesthiinae of the world. II. The genera Salganea Stăl, Microdina Kirby, and Caeparia Stål (Dictyoptera: Blattaria: Blaberidae). Australin Journal of Zoology, Supplementary Series 69: 1-201. ROTH, L.M. 1979b. A taxonomic revision of the Panesthiinae of the world. III. The genera Panesthia Serville and Miopanesthia Sussure (Dictyoptera: Blattaria: Blaberidae). Australian Journal of Zoology, Supplementary Series 74: 1-276. ROTH, L.M. 1982. A taxonomic revision of the Panesthiinae of the world IV. The genus Ancaudelia Shaw, with additions to Parts I-III, and a general iscussion of distribution and relationships of the components of the subfamily (Dictyoptera: Blattaria: Blaberidae). Australian Journal of Zoology, Supplementary Series 82: 1-142. ROTH, L.M. 1998. The cockroach genera Chorisoneura Brunner, Sorineuchora Caudell, Chorisoneurodes Princis, and Chorisoserrata, gen. nov. (Blattaria: Blattellidae: Pseudophillodromiinae). Oriental Insects 32: 1-33. ROTH, L.M. & BARTH, R. 1967. The sense organs employed by cockroaches in mating behaviour. Behaviour 28 (1-2): 58-94. ROTH, L.M. & DATEO, G.P. 1966. A sex pheromone produced by males of the cockroach Nauphoeta cinerea. Journal of Insect Physiology 12: 255-265. ROTH, L.M. & GURNEY, A.B. 1983. Caeparia Stål, 1877 (Insecta,Dictyoptera): proposed designation of a type species under the plenary powers. Z.N. (S.) 2284 Bulletin of the Zoological Nomenclatur 40(4): 205-206. Ľubomír Vidlička Habilitačná práca 43 ROTH, L.M. & MCGAVIN, G.C. 1994. Two new species of Nocticolidae (Dictyoptera: Blattaria) and a rediagnosis of the cavernicolous genus Spelaeoblatta Bolivar. Journal of Natural History 28(6):1319-1326. ROTH, L.M. & WILLIS, E.R. 1954. The reproduction of cockroaches. Smithsonian Miscellaneous Collections 122(12): 1-49. ROTH, L.M., WILLIS, E.R. 1960. The biotic associations of cockroach. Smithsonian Miscellaneous Collections 141: 1-470. SAUSSURE, H. 1863. Mélanges Orthoptérologiques. I. Blattides. Mémoires de la Société de Physique et d'Histoire Naturelle de Genéve 17: 129-172. SAUSSURE, H. 1869. Mélanges Orthoptérologiques. IIme Fascicule. Mémoires de la Société de Physique et d’Histoire Naturelle de Geneve 20: 227-326. SAUSSURE, H. 1873. Mélanges orthoptérologiques. Vol. II, IVme Fascicule, Mantides et Blattides. Mémoires de la Société de Physique et d’Histoire Naturelle de Geneve 23(1): 1-164. SAUSSURE, H. 1895. Revision de la tribu des Panesthiens et de celle de Épilampriens. Revue Suisse de Zoologie 3: 297-366. SAUSSURE, H. & ZEHNTNER, L. 1893. Biologia Centrali-Americana. Insecta. Orthoptera. Vol. I. Blattidæ. Suborder Orthoptera genuina 1: 13-123. SHELFORD, R. 1908. Orthoptera Fam. Blattidae Subfam. Phyllodromiinae. Genera Insectorum, fasc. 73: 1-29. SCHAL, C. 1982. Intraspecific vertical stratification as a mate finding strategy in cockroaches. Science 215: 1405-1407. SCHAL, C. & BELL, W.J. 1984. Mate-finding in cockroaches: calling behavior inles (Dictyoptera: Blattaria). Journal of the Kansas Entomological Society SCHAL, C. & BELL, W.J. 1985. Calling behavior in female cockroaches (Dictyoptera: Blattaria). Journal of the Kansas Entomological Society 58(2): 261-268. SCHAL, C., BURNS, E.L. & BLOMQUIST, G.J. 1990. Endocrine regulation of female contact sex pheromone production in the German cockroach, Blattella germanica. Physiological Entomology 15: 81-91. SCHAL, C, BURNS, E.L., GADOT, M., CHASE, J. & BLOMQUIST, G.J. 1991. Biochemistry and regulation of feromone production in Blattella germanica (L.) (Dictyoptera, Blattellidae). Insect Biochemistry 21(1): 73-79. SCHÄFFER, J.Ch. 1769. Icones Insectorum circa Ratisbonam indigenorum coloribus naturam referentibus expressae. Natürlich ausgemahlte Abbildungen Regensburgscher Insecten. T. III, Zunkel, Ratisbonae, 6+80 pp. SIMON, D. & BARTH, R.H. 1977a. Sexual behavior in the cockroach genera Periplaneta and Blatta. I. Descriptive aspects. Zeitschrift für Tierpsychologie 44: 80-107. SIMON, D. & BARTH, R.H. 1977b. Sexual behavior in the cockroach genera Periplaneta and Blatta. III. Aggression and sexual behavior. Zeitschrift für Tierpsychologie 44: 306-322. SOLÓRZANO-KRAEMER, M.M.S. 2007. Systematic, palaeoecology, and palaeobiogeography of the insect fauna from Mexican amber. Paleontographica Abteilung A 282(1-6): 1-133. SRENG, L. 1993. Cockroach mating behaviors, sex pheromones, and abdominal glands (Dictyoptera: Blaberoidea). Journal of Insect Behavior 6(6): 715-734. Ľubomír Vidlička Habilitačná práca 44 STÅL, C. 1877. Orthoptera nova ex Insulis Philippinis descriptis. Öfversigt af Kongliga Vetenskaps Akademiens Förhandlingar 34(10): 33-58. TAKÁČ, P., KOZÁNEK, M., VIDLIČKA, Ľ. 1990. Circadian changes of some vertebrate-type hormones in cockroach Nauphoeta cinerea. Invertebrate Reproduction & Development 18(1-2): 130. TOMKO, P., VIDLIČKA, Ľ., MOCK, A. 2013. Nové údaje k rozšíreniu švábov (Blattodea) a ucholakov (Dermaptera) na východnom Slovensku. Folia faunistica Slovaca 18(1): 47- 53. US, P., MATVEJEV, S. 1967. Orthopteroidea. Catalogus Faunae Jugoslaviae III/6, Academia Scientarum et Artium Slovenica, Ljubljana, 47 pp. VEGA, F.J.T., NYBORG, T., COUTIÑO, M.A., SOLÉ, J. & HERNÁNDEZ-MONZÓN, O. 2009a. Neogene Crustacea from outheastern Mexico. Bulletin of the Mizunami Fossil Museum 35: 51-69. VEGA, F.J., ZÚÑIGA, L. & PIMENTEL, F. 2009b. First formal report of a crab in amber from the Mocene of Chiapas and other uncommon Crustacea. Geological Society of America Abstracts with Programs 41: 631. VIDLIČKA, Ľ. 1993. Seasonal dynamycs of vertical migration and distribution of cockroach Ectobius sylvestris (Blattaria: Blattellidae: Ectobiinae) in oak forest. Biologia 48(2): 163- 166. VIDLIČKA, Ľ. 1993. Phyllodromica hungarica sp.nov., a new cockroach species from Hungary (Insecta: Blattodea: Blattellidae: Ectobiinae). Entomological Problems 24(1): 63-68. VIDLIČKA, Ľ. 1994. Phyllodromica transylvanica sp. nov., a new cockroach species from Romania and key of the maculata-group of Phyllodromica in central Europe. Entomological Problems 25(2): 55-62. VIDLIČKA, Ľ. 1998. Seasonal flight pattern of the evaniid wasp Brachygaster minutus (Hymenoptera: Evaniidae) - parasitoid of cockroach egg cases. Entomofauna Carpathica 10: 65-69. VIDLIČKA, Ľ. 1999. Šváby (Blattaria) v hniezdach vtákov. Folia faunistica Slovaca 4: 41- 43. VIDLIČKA, Ľ. 1997. Výskum švábov na Muránskej planine [Research on native cockroach species in the Muránska planina Mts.] Výskum a ochrana prírody Muránskej planiny 1997: 89-92. VIDLIČKA, Ľ. 1999. Caeparia sausai sp.nov. from Laos, and description of the male Caeparia donskoffi (Blattaria: Blaberidae: Panesthiinae). Entomological Problems 30(2): 1-5. VIDLIČKA, Ľ. 2001. Blattaria – šváby; Mantodea – modlivky: (Insecta: Orthopteroidea). Veda SAV, Bratislava, 169 pp. (Fauna Slovenska) ISBN 80-224-0640-6 VIDLIČKA, Ľ. 2002. The new cockroach species from the genus Chorisoserrata from Laos (Blattaria: Blattellidae: Pseudophyllodromiinae). Entomological Problems 32(2): 145- 147. VIDLIČKA, Ľ. 2005. Šváby (Blattaria) a modlivky (Mantodea), pp. 62-63. In: Fauna Devínskej Kobyly. Asociácia priemyslu a ochrany prírody, Bratislava. ISBN 80-968217- 1-7 Ľubomír Vidlička Habilitačná práca 45 VIDLIČKA, Ľ. 2007. Šváby (Blattaria) a ich parazitoidy (Hymenoptera: Evaniidae) na ostrove Kopáč (Bratislava-Podunajské Biskupice), pp. 113-118. In: Príroda ostrova Kopáč. Fytoterapia OZ pri Pedagogickej fakulte UK, Bratislava. ISBN 978-80-969718- 7-9 VIDLIČKA, Ľ. 2012. Sezónne zmeny vo výskyte švábika hôrneho (Ectobius sylvestris) (Blattaria) v Martinskom lese (Podunajská rovina), pp. 115-120. In: Fedor, P., Vidlička, Ľ. (eds) Príroda Martinského lesa (vybrané kapitoly). Ústav zoológie SAV, Bratislava. VIDLIČKA, Ľ. 2013a. New species of Macrophyllodromia (Blattaria, Blattellidae) from Ecuador and a key to males of the genus. Zootaxa 3635(2): 185-193. VIDLIČKA, Ľ. 2013b. Cockroaches (Blattaria) of Ecuador – checklist and history of research. Zootaxa 3599(5): 401-445. VIDLIČKA, Ľ. 2014. Ectobius vittiventris – nový šváb (Blattaria) pre faunu Slovenska. Entomofauna Carpathica 26(1): 33-40. VIDLIČKA, Ľ., HOLUŠA, J. 1999. Rusec plamatý Phyllodromica maculata maculata (Schreber, 1781) (Blattodea: Ectobiidae: Ectobiinae) na Moravě a v Čechách [Phyllodromica maculata maculata (Schreber, 1781) (Blattodea: Ectobiidae: Ectobiinae) in Moravia and Bohemia]. Sborník Přírodovědného klubu v Uherském Hradišti 4: 107- 114. VIDLIČKA, Ľ., HUČKOVÁ, A. 1993. Mating of the cockroach Nauphoeta cinerea (Blattodea: Blaberidae): I. Copulatory behaviour. Entomological Problems 24(2): 69-73. VIDLIČKA, Ľ., MAJZLAN, O. 1992. Survey and geographical distribution of native cockroach species (Blattaria: Blattellidae: Ectobiinae) in Slovakia. Entomologické problémy 23: 21-29. VIDLIČKA, Ľ., MAJZLAN, O. 1997. Revision of the megerlei-group of the cockroach genus Phyllodromica Fieber (Blattaria: Blattellidae, Ectobiinae). Entomologica Scandinavica 28: 163-173. VIDLIČKA, Ľ., OZIMEC, R. 2011. Research of cockroaches (Blattaria) in PP Biokovo - first preliminary results [Istraživanje žohara (Blattaria) u PP Biokovo - prvi preliminarni rezultati], pp. 33-34. In: Protrka, K., Škrabić, H. & Srzić, S. (Eds) Znanstveno – stručni skup “Biokovo na razmeđi milenija: razvoj parka prirode u 21. stoljeću“ [Scientific and professional meeting "Biokovo at the turn of the millennium: the development of Nature Park in the 21st century”]. Park prirode Biokovo, Makarska. ISBN 978-953-56909-0-0 VIDLIČKA, Ľ., REZBANYAI-RESER, L. 2005. Neuere Angaben zur Schabenfauna der Schweiz (Blattaria, Blattellidae: Ectobius). Entomologische Berichte Luzern 53: 123-134. VIDLIČKA, Ľ., SZIRÁKI, Gy. 1997. The native cockroaches (Blattaria) in the Carpathian Basin. Folia Entomologica Hungarica 58: 187-220. VIDLIČKA, Ľ., VRŠANSKÝ, P., SHCHERBAKOV, D.E. 2003. Two new troglobitic cockroach species of the genus Spelaeoblatta (Blattaria: Nocticolidae) from North Thailand. Journal of Natural History 37(1): 107-114. VRŠANSKÝ, P. 1997. Piniblattella gen. nov. – the most ancient genus of the family Blattellidae (Blattodea) from the Lower Cretaceous of Siberia. Entomological Problems 28: 67-79. VRŠANSKÝ, P. 2008. Mesozoic relative of the common synanthropic German cockroach (Blattodea). Deutsche Entomologische Zeitshrift 55: 215-221. Ľubomír Vidlička Habilitačná práca 46 VRŠANSKÝ, P. 2010. Cockroach as the earliest eusocial animal. Acta Geologica Sinica 84: 793-808. VRŠANSKÝ, P., CIFUENTES-RUIZ, P., VIDLIČKA, Ľ., ČIAMPOR, F., VEGA, F.J. 2011. AfroAsian cockroach from Chiapas amber and the lost Tertiary American entomofauna. Geologica Carpathica 62: 463-475. VRŠANSKÝ, P., LIANG, J-H. & REN, D. 2012a. Malformed cockroach (Blattida: Liberiblattinidae) from the Middle Jurassic of Daohugou in Inner Mongolia, China. Oriental Insects 46(1): 12-18. VRŠANSKÝ, P., ORUŽINSKÝ, R., BARNA, P., VIDLIČKA, Ľ. & LABANDEIRA, C.C. 2014. Native Ectobius (Blattaria: Ectobiidae) from the Early Eocene Green River Formation of Colorado and Its Reintroduction to North America 49 Million Years Later. Annals of the Entomological Society of America 107(1): 28-36. VRŠANSKÝ, P., VAN DE KAMP, T., AZAR, D., PROKIN, A., VIDLIČKA, Ľ., VAGOVIČ, P. 2013a. Cockroaches Probably Cleaned Up after Dinosaurs. PLoS ONE 8(12): e80560. doi:10.1371/journal. pone.0080560 VRŠANSKÝ, P., VIDLIČKA, Ľ., BARNA, P., BUGDAEVA, E., MARKEVICH, V. 2013b: Paleocene origin of the cockroach families Blaberidae and Corydiidae: Evidence from Amur River region of Russia. Zootaxa 3635(2): 117-126. VRŠANSKÝ, P., VIDLIČKA, Ľ., ČIAMPOR, F., MARSH, F. 2012b: Derived, still living cockroach genus Cariblattoides (Blattida: Blattellidae) from the Eocene sediments of Green River in Colorado, USA. Insect Science 19: 143–152. WOOD-MASON, J. 1876. Descriptions of new Species of Blattidae belonging to the genus Panesthia. The Journal of the Asiatic Society of Bengal 45(2): 189-190. WANG, Z.-Q., ZHANG, Y.-N., FENG, P.-Z. 2006. A new record genus and a new species of Chorisoserrata Roth (Blattaria, Blattellidae, Pseudophyllodromiinae) from China. Acta Zootaxonomica Sinica 31(2): 408-409. WU, K.-L., WANG, Z.-Q. 2011. A new species of Chorisoserrata Roth (Blattodea, Blattellidae, Pseudophyllodromiinae) from China. Acta Zootaxonomica Sinica 36(3): 529-532. ZHANG, Z., SCHNEIDER, J.W. & HONG, Y. 2012. The most ancient roach (Blattida): A new genus and species from the earliest Late Carboniferous (Namurian) of China, with discussion on the phylomorphogeny of early blattids. Journal of Systematic Palaeontology 11(1): 27-40. Ľubomír Vidlička Habilitačná práca 47 Prehľad príloh (Publikácie autora, ktoré tvoria súčasť habilitačnej práce.) Tematický okruh 1: Etológia švábov Príloha 1: VIDLIČKA, Ľ., HUČKOVÁ, A. 1993. Mating of the cockroach Nauphoeta cinerea (Blattodea: Blaberidae): I. Copulatory behaviour. Entomological Problems 24(2): 69-73. Príloha 2: HUČKOVÁ, A., VIDLIČKA, Ľ., KOZÁNEK, M. 1994. Mating of the cockroach Nauphoeta cinerea (Blattodea: Blaberidae): II. Histamine changes during courtship and copulation. Biologia 49(5): 691-695. Tematický okruh 2: Rozšírenie a taxonómia švábov v strednej Európe a na Slovensku Príloha 3: VIDLIČKA, Ľ. 1993. Seasonal dynamycs of vertical migration and distribution of cockroach Ectobius sylvestris (Blattaria: Blattellidae: Ectobiinae) in oak forest. Biologia 48(2): 163-166. Príloha 4: VIDLIČKA, Ľ. 1993. Phyllodromica hungarica sp.nov., a new cockroach species from Hungary (Insecta: Blattodea: Blattellidae: Ectobiinae). Entomological Problems 24(1): 63-68. Príloha 5: VIDLIČKA, Ľ. 1994. Phyllodromica transylvanica sp. nov., a new cockroach species from Romania and key of the maculata-group of Phyllodromica in central Europe. Entomological Problems 25(2): 55-62. Príloha 6: VIDLIČKA, Ľ., MAJZLAN, O. 1997. Revision of the megerlei - group of the cockroach genus Phyllodromica Fieber (Blattaria: Blattellidae, Ectobiinae). Entomologica Scandinavica 28: 163-173. Tematický okruh 3: Šváby juhovýchodnej Ázie a Južnej Ameriky Príloha 7: VIDLIČKA, Ľ. 1999. Caeparia sausai sp.nov. from Laos, and description of the male Caeparia donskoffi (Blattaria: Blaberidae: Panesthiinae). Entomological Problems 30(2): 1-5. Príloha 8: VIDLIČKA, Ľ. 2002. The new cockroach species from the genus Chorisoserrata from Laos (Blattaria: Blattellidae: Pseudophyllodromiinae). Entomological Problems 32(2): 145-147. Príloha 9: VIDLIČKA, Ľ., VRŠANSKÝ, P., SHCHERBAKOV, D.E. 2003. Two new troglobitic cockroach species of the genus Spelaeoblatta (Blattaria: Nocticolidae) from North Thailand. Journal of Natural History 37(1): 107-114. Ľubomír Vidlička Habilitačná práca 48 Príloha 10: VIDLIČKA, Ľ. 2013a. New species of Macrophyllodromia (Blattaria, Blattellidae) from Ecuador and a key to males of the genus. Zootaxa 3635(2): 185-193. Príloha 11: VIDLIČKA, Ľ. 2013b. Cockroaches (Blattaria) of Ecuador—checklist and history of research. Zootaxa 3599(5): 401-445. Tematický okruh 4: Fosílne šváby (Blaberidae, Blattellidae, Ectobiidae) Príloha 12: VRŠANSKÝ, P., CIFUENTES-RUIZ, P., VIDLIČKA, Ľ., ČIAMPOR, F., VEGA, F.J. 2011. Afro-Asian cockroach from Chiapas amber and the lost Tertiary American entomofauna. Geologica Carpathica 62: 463-475. Príloha 13: VRŠANSKÝ, P., VIDLIČKA, Ľ., ČIAMPOR, F., MARSH, F. 2012b. Derived, still living cockroach genus Cariblattoides (Blattida: Blattellidae) from the Eocene sediments of Green River in Colorado, USA. Insect Science 19: 143–152. Príloha 14: VRŠANSKÝ, P., VAN DE KAMP, T., AZAR, D., PROKIN, A., VIDLIČKA, Ľ., VAGOVIČ, P. 2013a. Cockroaches Probably Cleaned Up after Dinosaurs. PLoS ONE 8(12): e80560. doi:10.1371/journal. pone.0080560 Príloha 15: VRŠANSKÝ, P., VIDLIČKA, Ľ., BARNA, P., BUGDAEVA, E., MARKEVICH, V. 2013b. Paleocene origin of the cockroach families Blaberidae and Corydiidae: Evidence from Amur River region of Russia. Zootaxa 3635(2): 117-126. Príloha 16: VRŠANSKÝ, P., ORUŽINSKÝ, R., BARNA, P., VIDLIČKA, Ľ. & LABANDEIRA, C.C. 2014. Native Ectobius (Blattaria: Ectobiidae) from the Early Eocene Green River Formation of Colorado and Its Reintroduction to North America 49 Million Years Later. Annals of the Entomological Society of America 107(1): 28-36. Príloha 17: GREENWALT, D.E., VIDLIČKA, Ľ. 2015. Latiblattella avita sp. nov. (Blattaria: Ectobiidae) from the Eocene Kishenehn Formation, Montana, USA. Palaeontologia Electronica 18.1.16A: 1-9. Monografie Príloha 18: VIDLIČKA, Ľ. 2001. Blattaria – šváby; Mantodea – modlivky: (Insecta: Orthopteroidea). 1. vyd., Veda, Bratislava, 169 pp. (Fauna Slovenska) ISBN 80-224-0640-6 Príloha 19: KOČÁREK, P., HOLUŠA, J., VIDLIČKA, Ľ. 2005. Blattaria, Mantodea, Orthoptera & Dermaptera of the Czech and Slovak Republics. Illustrated key 3. Blattaria, Mantodea, Orthoptera & Dermaptera České a Slovenské republiky. Ilustrovaný klíč 3. Kabourek, Zlín, 349 pp. ISBN 80-86447-05-7 Ľubomír Vidlička Habilitačná práca 49 Príloha č. 1 VIDLIČKA, Ľ., HUČKOVÁ, A. 1993. Mating of the cockroach Nauphoeta cinerea (Blattodea: Blaberidae): I. Copulatory behaviour. Entomological Problems 24(2): 69-73. Entomol. Probl. , 24(2): 69 - 73 , 1993. ISSN 0071-0792 Mating of the cockroach Nauphoeta cinerea (Blattodea: Blaberidae) I. Copulatory behaviour lubomlr VIDLICKA, Alica HUCKOVA Institute of Zoology and Ekosozology, Slovak Academy of Sciences, Dubravska cesta 9, 842 06 Bratislava, Slovakia Abstract. The copulatory behaviour of cockroaches Nauphoeta cinerea was observed in details. Four phases of copulation were identified. The durations of copulation and the duration of other copulatory events are under defined environmental conditions relatively fixed. Cockroach, copulatory behaviour, Nauphoeta , Blattodea, etology. Introduction and overview Sexual and especially mating behaviour of the cockroach Nauphoeta cinerea have been observed by many authors (ROTH & WILLIS, 1954; ROTH, 1964; ROTH & BARTH, 1964; ROTH & DATEO, 1966; FUKUI & TAKAHASHI, 1980; 1983 a,b; TAKAHASHI & FUKUI, 1980; 1983; 1991 ; SRENG, 1979, 1984, 1985, 1990, 1992, 1993). A distinct characteristic of N. cinerea males is their calling behaviour. Raising the flattened and elongated abdomen the males expose their sternal glands. From them a volatile sex pheromone, seducin (SRENG, 1990), attracting receptive females from a long distance is emitted. This calling posture is identical to the aggressive one, described by EWING (1967). However, SRENG (1990) suggest that the calling posture resembles the posture occupied by dominant males after winning a combat. That is why dominant males copulate more frequently than subordinate ones (SCHAL & BELL, 1983; MOORE, 1989; BREED, SMITH & GALL, 1980). Males recognize the difference between sexes by contact chemoreception, particularly via antennal contact with the antennae and body of the other individuals. Intermale contact usually results in agonistic behaviour and characteristic antennal fencing . Aggressive or subordinate status of cockroach male can by identified on the basis of the antennaI fencing pattern (EWING, 1967). Mature males are producing a male pheromone (nauphoetin) in the cuticular wax. This pheromone suppresses the wing-raising activity caused by hydrocarbons (FUKUI & TAKAHASHI, 1983a; TAKAHASHI & FUKUI, 1983), but it does not cause aggressive behaviour (SIRUGUE et ai., 1992). SIRUGUE et al. (1992) suggested the existence of another contact pheromone that triggers the male agonistic behaviour via antennal contact. Males in presence of mature females normally display courtship behaviour. During courtship the male raises his wings and tegmina. The chemical factor (wing-raising pheromone) respons ible for the wing-raising is present mainly in the hydrocarbon fraction of the cuticular wax of both sexes (FUKUI & TAKAHASHI, 1983). The receptive female is attracted to the male's back. She mounts and feeds (licks) on the male's tergal glands secretion - aphrodisiac sex pheromone (SRENG, 1990), or seducin (ROTH & DATEO, 1966; HARTMAN & ROTH, 1967). The feeding behaviour keeps the female in a proper position for a period sufficient for bringing her genitalia into the contact with those of the male. [Type A pattern of mating behaviour - female in upper position (SRENG, 1993)]. The © Entomological Problems 69 sex pheromone serves as an attractant as well as arrestant (ROTH & DATEO, 1966). As long as the female feeds on the tergal glands secretion, the male moves backward, pushes his abdomen telescopically under the female's abdomen and grasps her abdominal tip with a retractable hook, i.e. right phallomere (R2) (McKITTRICK, 1964). If the female is willing to mate she allows the contact with the hook. In case of rejecting the copulation attempt she dismounts from the male and prevents the genital contact (MOORE & BREED, 1986). Following several unsuccessful mating attempts the male lowers his tegmina and wings. Standing in a distance of about 2 cm from the female he pumps and elongates his abdomen and emits a faint but audible sound (HARTMAN & ROTH,1967). On the other hand, SIRUGUE at al. (1992) observed that if the female did not respond to the wing-raising of the male, the male resumed the calling posture again, followed by wing-raising . The females generally cease to respond to the male sex pheromone about 2 days after mating. When the genital contact with the receptive female was successful, the pair resumes in the typical false-linear position (end-to-end position) (SRENG, 1990; FUKUI & TAKAHASHI, 1983b; ROTH & DATEO, 1966) and the copulation starts. During copulation a spermatophore with non-motile sperm is transferred and firmly cemented into the genital chamber. Its presence inhibits the receptivity of females. Two to three days after mating the spermathecae (receptaculum seminis) are densely filled with motile spermatozoa. The empty spermatophore is extruded by the female several days after mating (ROTH, 1964). This paper reports the results of a study of the behaviour of cockroaches during copulation with special reference to the copulatory behaviour of males. Material and methods Observations were made on the cockroach Nauphoeta cinerea . Animals were reared at 29±1 ·C, 4S±1% RH and a 12L:12D light:dark cycle. Food (turkey "grower" diet) and water were provided ad libitum. Cockroaches were selected from stock colonies maintained at the Institute of Experimental Phytopathology & Entomology of the Slovak Academy of Sciences. Individuals of both sexes were selected at the last-instar nymph stage and kept in unisexual groups to last ecdysis. The time of adult ecdysis was recorded. About 10 adults were placed together in a 13 x 8 x 6 cm plexiglas container with a plexiglas cover (the same container was used for the observation of mating). Ethological observations were carried out during the light period. The mature cockroaches mated 14±1 days after the last moult. In the mating container only one male and one female were placed. The durations of different events of the copulatory behaviour were recorded. Direct observations were used in most cases. Some mating interactions (10% of observations) were recorded on a videotape using a Sony HVC-4000 P camera and Sony SL-C9E video cassette recorder and analysed at low speed. For the mating interruption experiment N. cinerea females were manually separated from their partners after being in copula for various times. Results The mean duration of the mating [the time from the resuming the end-to-end position to the release of the right phallomere (R2) from the female's body) was 12.5 min (N=100, SE=0.9). On the basis of the above mentioned results we interrupted the copulation manually in minute 4, 6, 8 and 10. When the copulation was interrupted in minute 4 (N=15), the male's right phallomere stayed pushed out from the male genital chamber and in minute 9 the spermatophore was extruded. After interrupting the copulation the male sometimes retracted the right phallomere into the body but in minute 9 the phallomere was pushed out again and the spermathophore was extruded. In minute 13 the phallomere was retracted into the male genital chamber. 70 When the copulation was interrupted in minute 6 (N = 15) or 8 (N = 15) the events were the same as mentioned above. In case the copulation was interrupted in minute 10 (N = 15), the phallomere stayed pushed out to minute 13 and then it was retracted. The spermatophore was not extruded. The spermatophore contained non-motile and twisted sperm. The diameter of spirals was 15 - 16 iJm. 2 hours later the sperm began to be active and was about 250 - 350 iJm in length. The frequency of male abdomen contractions and corresponding movement of tegmina and wings during mating were analysed from videorecordings using slow motion. The mean frequency of the abdomen contractions was 132 (N=1 0, SE= 9.1). The strength and frequency of contractions varied throughout mating (fig. 1). c 0 ';:0 u ~ +-' C 0 u 0 ~ OJ .D E ::::> c 30 r---------------------------------------------------------, 25 ~o I 5 I 0 5 2 3 4 5 6 7 8 9101112.13 minute Fig. 1. Mean number (±SE) of male abdomen contractions during copulation, N=10. On the basis of our results and previous data the following 4 phases of copulation can by identified: Phase 1 Minute 1 to 4 - establishment of the genital contact; Phase 2 Minute 5 to 8 - completion of the spermatophore, preparation of the spermatophore transfer; Phase 3 Minute 9 to 10 - transferring the spermatophore into the female's bursa; Phase 4 Minute 11 to 13 - spermatophore firmly inserted and cemented in female's bursa. 71 Discussion Different durations of copulation in cockroaches have been reported by different authors. ROTH (1964) has found mean duration of copulation 17±1 min at 28±2°C, while MOORE & BREED (1986) 9.5 min at 25-27'C. The closest results to the data reported here have been found by MOORE (1990 a,b) (11 to 11 .9 min). All above mentioned data were determined for the initial mating. When males mated 2 or 3 times consecutively, the average time spent in copula was 100±8 min and 141 ±2 min, respectively (ROTH, 1964). Dominant males copulated significantly longer than subordinate ones (MOORE & BREED, 1986; MOORE, 1990). The presence of dominant males inhibited the calling posture in subordinate individuals (SIRUGUE et aI. , 1992). Despite of variability in the duration of copulation in various experiments it is very important to note that this value is very constant under the same conditions. The durations of copulation and copulatory events are fi xed. It was not possible to influence the copulatory events by manual separation of the mating pair. Timing of spermatophore release and phallomere retraction was the same as if the female was present. In the subfamily Oxyhaloinae (Blaberidae) male genitalia are uniform. The hook (R2) is on the right side (McKITTRICK, 1964; ROTH, 1971). In the family Blattidae (Blatta orientalis, Periplaneta americana) the hooked titillator of the left phallomere is the first phallic organ which fastens to the ovipositor to achieve the connection (BAO & ROBINSON, 1990). GUPTA (1947) on the basis of the observation of P. americana mating behaviour suggested that the titillator was important to keep the female 's vestibulum open and the right phallomere was the main clasping organ to hold the valvae of the female genitalia during copulation. According to BAO & ROBINSON (1990) the right phallomere in B. orientalis keeps the first pair of valvae opened, so that the genital chamber is exposed . The male gonopore projects into the female genital chamber where the spermathecal sac and the female gonopore are located. This mechanism probable explains the fact that phallomere is always extended during the spermatophore release even in absence of female. ROTH (1964) was the first who interrupted the copulation of the cockroach N. cinerea manually and observed the mechanism of the loss of female's receptivity. He separated females from their partners after having been in copula for 10-12 min (the average time of copulation was 17 min). In this phase, three different stages of spermatophore transfer could be identified. In the first case the spermatophores were not transfered, in the second case the spermatophores were transfered but not cemented and in the third case they were transfered and firmly cemented. As the duration of copulation in our experiments was 12.5 min , the events recorded in minutes 7.5-9 could correspond to those observed by ROTH (1964) in minutes 10-12 (at the duration of copulation 17 min). The timing of behavioural events in phases 2 and 3 explains variability in termination of spermatophore transfer described by ROTH (1964). References BAO, N. & ROBINSON, W.H., 1990: Morphology and mating configuration of genitalia of the oriental cockroach Blatta orientalis L. (Blattodea: Blattidae). Proc. Entomol. Soc. Wash., 92(3): 416-421. BREED, M.O, SMITH, S.K. & GALL, B.G ., 1980: Systems of mate selection in a cockroach species with male dominance hierarchies. Anim. Behav., 28: 130-134. EWING, L.S., 1967: Fighting and death from stress in a cockroach. Science, 155: 1035-1036. FUKUI, M. & TAKAHASHI, S., 1980: Studies on the mating behavior of the cockroach Nauphoeta cinerea Olivier 1. Sex discrimination by males. Appl. Ent. Zool., 15(1): 20-26. FUKUI, M. & TAKAHASHI, S., 1983a: Studies on the mating behavior of the cockroach Nauphoeta cinerea (Olivier) (Oictyoptera: Blaberidae) III. Isolation and identification of intermale recognition pheromone. Appl. Ent. Zool., 18(3): 351-356. 72 FUKUI, M. & TAKAHASHI, S., 1983b: Studies on the mating behavior of the cockroach, Nauphoeta cinerea (Olivier) (Dictyoptera: Blaberidae). Mem. Coli. Agric., Kyoto Univ., 122: 25-36. FUKUI, M. & TAKAHASHI S., 1991 : The possibility of sex and nymph discrimination by the male cockroach, Nauphoeta cinerea. J. Ethol., 9(2): 57-66. GUPTA, P.D., 1947: On copulation and insemination in the cockroach, Periplaneta americana (Linn.). Proc. Nat. Inst. Science, India. 13: 65-71 . HARTMAN, H.B. & ROTH, L.M., 1967: Stridulation by the cockroach Nauphoeta cinerea during courtship behavior. J. Insect Physiol., 13: 579-586. McKITTRICK, F.A., 1964: Evolutionary studies of cockroaches. Mem. Cornell Univ. N. Y. Agric. Exp. Stat., 389: 1-197. MOORE, A.J., 1989: Sexual selection in Nauphoeta cinerea: Inherited mating preference? Behavior Genetics, 19(5): 717-724. MOORE, A.J. , 1990: Sexual selection and the genetics of pheromonally mediated social behavior in Nauphoeta cinerea (Dictyoptera: Blaberidae). Entomol. Gener., 15 (2): 133-147. MOORE, A.J., 1990: The inheritance of social dominance, mating behaviour and attractiveness to mates in male Nauphoeta cinerea. Anim. Behav., 39: 388-397. MOORE, A.J. & BREEO, M.D., 1986: Mate assessment in a cockroach, Nauphoeta cinerea. Anim. Behav., 34: 1160-1165. ROTH, L.M., 1964: Control of reproduction in female cockroaches with special reference to Nauphoeta cinerea -I. First pre-oviposition period. J. Insect Physio!., 10: 915-945. ROTH, L.M., 1971 : The male genitalia of Blattaria. VI. Blaberidae: Oxyhaloinae. Psyche, 78(1-2): 84- 106. ROTH, L.M. &BARTH, R.H., 1964: The control of sexual receptivity in female cockroaches. J. !nsect Physio!., 10: 965-975. ROTH, L.M. & DATEO, G.P., 1966: A sex pheromone produced by males of the cockroach Nauphoeta cinerea. J. !nsect Physiol., 12: 255-265. ROTH, L.M. & WILLIS, E.R., 1954: The reproduction of cockroaches. Smithson. Misc. Coli., 122: 1-49. SCHAL, C. &BELL, W.J. , 1983: Determinants of dominant- subordinate interactions in male of the cockroach Nauphoeta cinerea. BioI. Behav., 8: 117- 139. S,RUGUE, D., BONNARD, 0. , LE QUERE, J.-L., FARINE, J.-P. & Brossut, R., 1992: 2-methylthiazolidine and 4-ethylguaiacol , male sex pheromone components of the cockroach Nauphoeta cinerea (Dictyoptera, Blaberidae): a reinvestigation. J. Chern. Ecol., 18(2): 2261-2276. SRENG, L., 1979: Pheromones et comportement sexuel chez Nauphoeta cinerea (Olivier)(lnsecte, Dictyoptere). C.R. Acad. Sci., 289: 687-690. SRENG, L., 1984: Morphology of the sternal and tergal glands producting the sexual pheromones and the aphrodisiacs among the cockroaches of the subfamily Oxyhaloinae. J. Morpho!., 182: 279-294 . SRENG, L., 1985: Ultrastructure of the glands producing sex pheromones of the male Nauphoeta cinerea (Insecta, Dictyoptera). Zoomorphology, 105: 133-142. SRENG, L., 1990: Seducin, male sex pheromone of the cockroach Nauphoeta cinerea: isolation, identification, and bioassay. J. Chern. Ecol., 16(10): 2899-2912. SRENG, L., 1992: The evolution of cockroach mating behaviors correlated with sex pheromone glands. In BILLEN, J. (ed.), Biology and Evolution of Social Insects, Leuven University Press, Leuven, Belgium, pp. 223-226. SRENG, L., 1993: Cockroach mating behaviors, sex pheromones, and abdominal glands (Dictyoptera: Blaberidae). J. Insect Behav., 6(6): 715-735. TAKAHASHI, S. & FUKUI, M. , 1980: Studies on the mating behavior of the cockroach Nauphoeta cinerea Olivier 2. Wing-raising stimulant in cuticular wax. App!. Ent. Zool. , 15(2): 159-166. TAKAHASHI, S. & FUKUI, M., 1983: Studies on the mating behavior of the cockroach Nauphoeta cinerea (Olivier) (Dictyoptera: Blaberidae) IV. Synthesis and biological activity of nauphoetin and related compounds. Appl. Ent. Zoo!., 18(3): 357-360. 73 Príloha č. 2 HUČKOVÁ, A., VIDLIČKA, Ľ., KOZÁNEK, M. 1994. Mating of the cockroach Nauphoeta cinerea (Blattodea: Blaberidae): II. Histamine changes during courtship and copulation. Biologia 49(5): 691-695. Biologia, Bratislava, 49/5: 691- 695, 1994 Mating of the cockroach Nauphoeta cinerea (Blattodea: Blaberidae) II. Histamine changes during courtship and copulation Alica H UCKOVA, Lubomir VIDLICKA , Milan KOZANEK Institute of Zoology and Ecosozology, Slovak Academy of Sciences, Dubravska cesta 9, SK- 842 06 Bratislava, Slovakia HUCKOVA , A., VIDLICKA, L., KOZANEK , M. , Mating of the cockroach NaupilOeta cinerea (Blattodea: Blaberidae) II. Histamine changes during courtship and copulation.- Biologia, Bratislava, 49: 691- 695, 1994; ISSN 0006- 3088. The concentrations of biogenic amine histamine were measured in the supraoesophageal and the 6th abdominal ganglia of the cockroach Nauphoeta cinerea during courtship and copulation . In both sexes the highest concentration of histamine in their brains was found in the 5th minute of copulation. In the last abdominal ganglion of males a sharp increase in histamine level was recorded in the 5th and 10th minutes, at the time of spermatophore t ransfer into the female's bursa copulatrix. It suggests the direct involvement of histamine in the regulation of this process during copulation. Key words: Cockroach Nauphoeta cinerea, mating behaviour, histamine, central nervous syst.em, radioenzymatic assay. Introduction Biogenic amines are distributed throughout the nervous systems of both vertebrates and invertebrates and are generally considered to function as transmitters, neuromodulators and neurohormones (GERSCHENFELD, 1973; KLEMM, 1976; EVANS, 1980; ORCHARD, 1982). There is good evidence that these compounds play a key role in moduhtting behaviour and autonomic neural functions (MURDOCK , 1971; DAVID , VERRON, 1982; MERCER, MENZEL, 1982; MERCER, ERBER, 1983), they control the circadian rhytmus (MUSZYNSKA-PYTEL, CYMBOROWSKI, 1978; PREE, RUTSCHKE , 1983) and are involved in the insect's reaction to various stress stimuli (DAVENPORT, EVANS , 1984; KOZA NEK et al. , 1986). Histamine (HA) has been increasingly implicated as a putative neurotransmitter in insect visual systems (HARDIE, 1988; NASSEL et al., 1988; SIMM ONS, HARDIE, 1988). However, some other investigations have also shown that the HA level in insect CNS changes in response to various stress stimuli (KOZANEK et al. , 1985; HUCKOVA et al., 1992) and in addition, possible role for HA in reproduction of cockroach Naupboeta cinerea has also been suggested (HucKovA et al., 1992). In a previous study we described the ethological aspect of the mating behaviour of N. cinerea (VIDLICKA, HucKovA, 1993). The copulatory act alone was divided in 4 phases with strict duration according to the main internal physiological events e.g. spermatophore completion and its transfer into the female's bursa. In this paper we report the changes in HA concentrations in the brain and the 6th abdominal ganglion of N. cinerea in relation to the main copulatory events. 691 '2 !0 i5.. C> ~ (5 E .s CII c: 'E ~ :c: 120 100 80 60 40 20 A ** - males +females O~-'---r---'----r---.---.----r~ ~ - OC~~" 0.5 o Fig. 1. Ph. trensylvenice, male. (A. B) abdomen with gland opening. (A) dorsal view. (B) ventral view. (t5-t8) tergites 5-8; (e) subgenital plate with stylus (s): (D) hook - posterior end. Scale in mm. 2. Dark spot in the apical third of the forewings (Fig. 31); hindwings suddenly narrow in the apical third, black only at the tip (Fig. 3J); tergal gland as in Figs 5E, F. Occurrence: Slovakia - Slovensky Kras mountains Ph. harzi CHLAoEK, 1977 - Dark spot nearly extending over the whole length of the forewings (Fig. 21); hindwings not suddenly narrowed, apical third dark (Fig. 2J); tergal gland as in Figs 4E, F. Occurrence: Hungary - BOkkmountains and surroundings Ph. hungarica VIDLICKA, 1993 3. Tergite 7 in the middle of the anterior border not divided into two lobes 4 - Tergite 7 separated into two lobes 5 4. Narrow dark spot, at most slightly surpassing the apical half of the forewings (Fig. 3A), forewings tricoloured (yellow-brown-black); the hindwings almost entirely dark (Fig. 3B); tergal gland as in Figs 5A, B. Occurrence: Slovakia - Muranska planina plateau . ......................................................................................................... Ph. chladeki HARZ, 1977 57 0.25oc0.251.0 0.25~ GF 1.0'----"' 0.25L0.25'-------' J1.0L------..I Fig. 2. Forewings (A, C, E, G, I, K) and hindwings (B, 0 , F, H, J, L) of the Phyllodromica species. (A-D) Ph. maculata maran i, (A, B) male, (C, D) female; (E- H) Ph. maculata maculata, (E, F) male, (G, H) female; (I-L) Ph. hungarica, (I, J) male, (K, L) female. Scale in mm. 58 D1.0~ cB 0.25HGF 0.251.0K0.25~ J Fig. 3. Forewings (A, C, E, G, I, K) and hindwings (B, 0 , F, H, J, L) of the Phyllodromica species. (A-D) Ph. chladeki, (A, B) male, (C, D) female; (E-H) Ph. transylvanica, (E, F) mele, (G, H) female: (I-L) Ph. harzi, (I, J) male, (K, L) female. Scale in mm. 59 4A c Fig. 4. Tergites 7 of males with tergal glands. (A, C, E) dorsal view, (B, 0, F) ventral view; (A, B) Ph. maculata marani; (C, 0) Ph. maculata maculata ; (E, F) Ph. hungarica. Same scale (in mm) for (A- F). 60 SA 0.5 B Fig. 5. Tergites 7 of males with tergal glands. (A, C, E) dorsal view, (B, 0 , F) ventral view; (A, B) Ph. chladeki; (C, 0) Ph. transylvanica ; (E, F) Ph. harzi. Scale same (in mm) for (A-F). 61 Dark spot as long as the forewings (Fig. 3E); the hindwings almost entirely pale, transparent (Fig. 3F); tergal gland at the posterior border of the opening with bent rampart (Figs 5C, D). Occurrence: Romania - Transylvania Ph. transylvanica sp. nov. 5. Forewings black with narrow whitish lateromarginal bands (Fig. 2A); hindwings dark with widely rounded apex (Fig. 2B); tergal gland as in Figs 4A, B. Occurrence: middle and eastern Slovakia, north-eastern Hungary, Poland .. .............................. Ph. maculata marani CHLADEK& HARZ, 1980 Pale forewings with two clearly separated dark spots (Fig. 2E)(light-coloured individuals with inconspicuous spots); hindwings only in the apical third dark, apex narrowly rounded (Fig. 2F); tergal gland as in Figs 4C, D. Occurrence: western Slovakia, Austria, northwestern Hungary, Bohemia, Germany, Poland, Romania .. ............................................................................... Ph. maculata maculata (SCHREBER, 1781) Key for the identification of females of the central European species of the maculata - group 1. Forewings with one large spot (Figs 2C, K, 3E ) 2 - Forewings with 2 (exceptionally one) small spots 4 2. Apex of the hindwings black, wings narrow (Fig. 2L); forewings as in Fig. 2K. Occurrence: Hungary - BOkkmountains and surroundings Ph. hungarica VIDLICKA, 1993 - Apex of the hindwings without black spot 3 3. Hindwings narrow, pointed (Fig. 3H); forew ings subtruncate, dark spot less extended, yellow stripe along posterior and apical margin broader (Fig. 3G). Occurrence: Romania Transylvania Ph. transylvanica sp. nov. Hindwings broad (Fig. 2D); forewings broadly rounded with a large dark spot leaving only a narrow yellow stripe along the posterior and apical margin (Fig. 2C). Occurrence: middle and eastern Slovakia, north-eastern Hungary, Poland .. ................. Ph. maculata marani CHLADEK& HARZ, 1980 4. Apex of the hindwings black (Fig. 3L), forewings with two small spots at the anterior and posterior end (Fig. 3K). Occurrence: Slovakia - Slovensky Kras mountains .. ......................................................................................................... Ph. harzi CHLADEK, 1977 Apex of hindwings not darker than remaining part 5 5. Forewings obliquely truncated, tricoloured (Fig. 3C); hindwings with pale spots at the base (Fig. 3D). Occurrence: Slovakia - Muranska planina plateau .......... Ph. chladeki HARZ, 1977 - Forewings obliquely rounded with 2 larger or smaller spots (light-coloured individuals sometimes wholly without spots) (Fig. 2G); hindwings without pale spots at the base (Fig. 2H). Occurrence: western Slovakia, north-western Hungary, Austria, Bohemia, Germany, Poland, Romania Ph. maculata maculata (SCHREBER, 1781) Acknowledgements I thank Dr. Gyrgy Sziraki from the Zoologic al Department of the Hungarian Natural History Museum in Budapest (Hungary), Dr. Bela Kis from University "Babes-Bolyai" in Klausenburg (Romania) and Dr. Oto Majzlan from the Department of Biology and Pathobiology of Pedagogical faculty of Comenius University in Bratislava (Slovakia) for lending me the cockroach specimens. I am deeply grateful to Dr. Horst Bohn from Zoologisches Institut der Universitat MOnchen (Germany), for critically reviewing my manuscript. References BEY-BIENKO, G. JA., 1950: Nasekomyie Tarakanovyie. Fauna SSSR. N. Ser., 40: 1-342. CHLADEK, F. & HARZ, K., 1977 : Zwei neue Phyllodromica - Arten aus der Siowake i. Articulata, Bd.I., 4: 21-24. CHLADEK, F. & HARZ, K., 1980 : Zur Varlabllitat der Oothek von Phyllodromica maculata (Schreb.). (Blattoptera) . Articulata, Bd.l., 16: 176-178. VIDLICKA, 1:., 1993: Phyllodromica hungarica sp. nov., a new cockroach species from Hungary (Insecta: Blattodea: Blattellidae: Ectobiinae). Entomol. Probl., 24(1): 63-68. Manuscript received: 28. 9. 1994 62 Príloha č. 6 VIDLIČKA, Ľ., MAJZLAN, O. 1997. Revision of the megerlei - group of the cockroach genus Phyllodromica Fieber (Blattaria: Blattellidae, Ectobiinae). Entomologica Scandinavica 28: 163-173. Revision of the megerlei-group of the cockroach genus Phyllodromica Fieber (Blattaria: Blattellidae, Ectobiinae) L'UBOMIR VIDLICKA and OTO MAJZLAN Ent. scand. Vidlicka, L'. & Majzlan, 0 .: Revision of the megerlei-group of the cockroach genus Phyllodromica Fieber (Blattaria: Blattellidae, Ectobiinae). Ent. scand. 28: 163-173. Copenhagen, Denmark. August 1997. ISSN 0013-8711. The species of the megerlei-group are characterised by shortened wings with typical scattered dark spots and large simple glands on tergite 7 without inner structures . Two of the species are widely distributed from south-eastern Germany to Romania and Ukraine (P. megerlei Fieber) or from Turkey to Syria (P. asiatica Bey-Bienko), the third is endemic for eastern Bulgaria (P. pulcherrima sp. n.). The characteristics of the megerlei-group are described and the relationships with the tyrrhenica-group are discussed. L' .Vidlicka, Institute of Zoology SAS, Diibravska cesta 9,84206 Bratislava, Slovakia. O. Majzlan, Department of Biology and Pathobiology, PedFCU, Moskovska I, Bratislava, Slovakia. Introduction Phyllodromica megerlei (Fieber, 1853) was originally described by Charpentier (1825) as Blatta punctata. Since Eschsholz (1822) applied same name to another cockroach species (now Diploptera punctata) Charpentier's name is a homonym and the name suggested by Fieber is commonly used at the present time. Princis (1971) discerned five subgenera within the genus Phyllodromica. P megerlei is the type species of the genus Phyllodromica and the subgenus Phyllodromica. BeyBienko (1950) divided the subgenus Phyllodromica into 5 groups. The megerlei group included only one species - P megerlei. The second one was described by Bey-Bienko (1950) as a subspecies P megerlei asiatica. Ramme (1951) described the same species as P megerlei f. eryth- ronota. Collections made by the second author in Bulgaria have revealed one new species (P pulcherrima) in this group. Specimens used in this study are deposited in the following collections: BN - Collection of Dr Barnabas Nagy, Budapest, Hungary. L'V - Collection of first author. © Entomologica scandinavica (Grp.10) HNHM - Magyar Termeszettudornanyi Miizcum, Budapest, Hungary ; Dr Gyorgy Sziraky, MMG - Matra Muzeum, Gyongyos, Hungary ; Dr Tibor Kovacs. MNB - Museum fur Naturkunde, Berlin, Germany ; Dr Kurt K. GUnther. NMP - Narodnf muzeum v Praze, Prague, Bohemia; Dr Ivo Kovar. NMW - Naturh istorisches Museum zu Wien, Vienna, Austria; Dr Ulrike Aspock. OM - Collection of second author. PFUK - Prfrodovedecka fakulta Univerzity Komcnskeho, Bratislava, Slovakia; coli. Dr Jan Gulicka. SNMB - Slovenske narodne rmizeurn - Prfrodovedne rmizeum, Bratislava, Slovakia; Dr Ilja oisu. 55MB - Stredoslovenske muzeum, Banska Bystrica, Slovakia; Dr Tomas Kizek. Characteristics of the megerlei-group Bey-Bienko (1950) was the first to attempt a classification of Phyllodromica species living in the former Soviet Union and adjacent territories. His classification is based on differences in the degree of tegminal development, on different venation and on the structure of the male tergal gland. The last character is most important also for the division of the closely related genus Ectobius into various groups (Failla & Messina 1978). 164 vuua« L. & Majzlan , O. ENT. SCA ND. VOL. 28:2 (1997 ) I/ ) D Plate I. Phyllodromica spp., habitu s: (A) P. megerlei , male; (B) P. asiatica, male; (C) P. pulcherrima, male; (D) P. pulcherrima, female (orig . P. Kuliffay). Description. - Wings: Forew ings in males reaching to the middle of the fourth abdominal tergite or at most to the end of abdomen, in females more strongly shortened, reaching to the second abdominal tergite, with typical irregular net venation, the costo-radial area without oblique veins ; hindwings rudimentary. Coloration: Whitish to transparent with different small black or brown spots, subcostal area sparsely or not at all spotted. Legs: Front femur Type B2; pulvilli present on the 1-4 proximal tarsomeres of all legs, tarsal claw s asymmetrical (the posterior claw is longer than the anterior), arolia well developed. Males. Tergite structures: Posterior margin of ENT. SCAND. VOL. 28:2 ( 1997) sixth abdominal tergite mediall y deeply excavated, elevated dorso-medially, in its normal position overlapping part of the glandular pit. The glandular pit on tergite 7 simple, transversely oval, inner structures absent. Surface of the pit with sparsely dispersed long bristles with curved tips, the bristles in the center are more densely distribut ed. Genitalia: Visible part of subgenital plate slightly asymmetrical, broadly triangular, apex rounded, with a single style located to the left of the midline. Stylus well developed , relatively large. The end of the stylus curved and covered with dense short microtrichae (Figs IG, 31, 4E). Right stylus only indicated. Retractable hook (L3) slender (Figs IH, 3K, 4D), endophallic apodeme at the anterior end broadened, cleft sclerite (R2) present. Females. Genitalia (Fig. 3L): The valves narrow, bent; posterior lobes of valvifer conical with tip on the posterior end; paratergites short. Coloration: The pronotum with yellowish white to transparent borders and with black disk. Sternites black or with narrow whitish lateral borders, tergites black with narrow light posterior borders. On the lateral margins of tergites 5-7 bigger whitish spots. Legs in male brown to black with yellow regions at the coxa-trochanter jo int and at the tarsi, tibial spines and sometimes posterior end of tibia yellow. Legs in female brown to yellow, tibial spines yellow. Systematic relationships The lIlegerlei-group is very closely related to the tyrrhenica-group (P. tyrrh enica, P. clavata, P. pavani ). Similar characters are: the simple form of the glandular pit; a well developed stylus on the left side with dense short bristles, and the coloration of the forewings. The distinguishing character is the venation of the costo-radial area: in the lIlegerlei-group obliqu e veins are absent. The floor of the glandul ar pit is covered only with a small number of bristles and the absence of other structures in the glandular pit in both megerleiand tyrrh enica-groups suggest their partial separation from the remaining groups of the subgenus Phyllodromica. Key to males of the megerlei-group I . Forewings strongly reduced, reachin g at most to the middle of the fourth abdominal tergite ................................................. P. pulcherrima sp. n. - Forewin gs reachin g to the end of abdomen 2 Revision of the Phyllodromica megerlei-group 165 2. Disk of the pronotum black; sixth tergite with small, elongated whitish to tran sparent spots on the posterior lateral margins .. P. megerlei Fieber - Disk of the pro notum orange -yellow (ce ntral part) to yellowish (posterior part and corne rs); sixth tergite dark, without whitish to transparent spots on the posterior lateral margins ............................................. P. asiatica Bey-Bien ko I. Pltyllodromica megerlei (Fieber, 1853) (Plate I: A; Figs IA-H , 2, 4G, 5) Blatta punctata Charpentier, 1825: 77 (nee Esc hsc holtz, (822). Blatta (Phyllodromica) megerlei Fieber, 1853: 94. Aphlebia punctata (Charpentier): Brunner v. W. 1865: 71; 1882: 41 ; Jakobson & Biank i 1905: 126. Hololampra megerlei (Fieber): Bazyluk 1956: 28. Phyllodromica megerlei Fieber: Rehn 1903: 266; BeyBienko 1938: 26; 1950: 232; Prin cis 1971: 1094; Harz 1976: 276; Bazyluk 1977 : 103. Hololampra punctata (Charpenti er) : Kirby 1904 : 69; Shelford 1907 : II ; Harz 1957: 34; 1960: 17. Phyllodromica punctata (Ch arpentier) : Us & Matvejev 1967 : 8. Type material. - Missing. Material studied. - SLOYAKIA: Bucany, 150 m, I 0', 22.v.1994, L' . Yidlicka (L' Y); Piest' any, 160 m, 2 0' , 2 9, 16.v.1992, L'.Yidlicka (L'Y); Nova Bosaca, 350 m, 1 0' , 19, 30.v.1993, O. Majzlan (L' Y); Jakubov, 140 m, I 0' , 22.iv.1994, L' . Yidlicka (L' Y); Horne Plachtince, I 9 , 30.v.1990, o. Majzlan (OM) ; Modry Kamen, 1 9 , 13.vi.1990, Bitusfk (SSMB); Plavecke Podhrad ie, 190 m, 1 9, 15.v.1959, I. LobI (SNMB), 1 0', 23.v.1994, L' . Vidlicka (L' Y); Devin, Mt. Devfnska Kobyla, 250 m, 2 0' , 24.iv.1994, L' . Yidlicka (L' Y); Brati slava, YICie hrdl o, 130 m, I 0', 16.v.1992 , o. Majzlan (OM); Bratislava, 1 0' , 14.vi.1992, O. Majzlan (OM) ; Ivanka pri Dun aji, 130 m,) 0', 18.v.1992, L' . Yidlicka, I 9, 30.vi.1992, K. Sm idakova, 3 9, 19.v.1993, I 9, 2I.v.1993, L' .Yidlicka (L' Y); Kalinkovo, 130 m, I 9, Il.vi.1 975, I. Okali (SN MB); Oremov Laz - Lest' , I 9, 27.vi.1958, J.Gul icka (PFUK); _Ma lacky, I 9, 15.vi.1958, J.Guli cka (PFUK); Jur - Sur, pan6nsky haj, I 9, 8.ix.1957, J.Gul icka (PFUK); Studienka, 5 0', 10 9, 10.vi.1996, L' . Yidlicka (L' Y); Vel'ke Levarc, I 0' , 10.vi.1996, L' .Yidl icka (L' Y); Tisovec, I 9, 15.vi.1996, V. Jansky (L' Y); Zahorie, Rohoznfk, Obora, I 9, 4.vi.1 969, L.PospiSilova (MMB); Cajkov, 1 9, 5.vi.197I , 1.0kali (SNMB); CZECH REPUBLI C (part MORAYIA): Pavlovske kopce, 1 9, 2I.vii.1 957 , 10 0' , 37 9, 25.vi.1962 (NMP); Pouzdrany, I 0', 2 9 , 26.vi.1962 (NMP); AUSTRIA: MOdling, 2 0' , 2 9, H. TUrk, 2 9, 1862 (NMW) ; Eichkogl bei MOdling, I 0', 30. v.1909, I 9, vii.1912, I 9, 22.vii.1921, 2 9 , 7.vi.1950, R. Ebner (NMW); Guntramsdorf, 1 9, R. Ebner (NMW) ; Gurhofgraben bei Aggsbach, Wachau, Holdhaus, 1 9, 30.v. 1909 (NMW); Hackelsberg, Burgenland, 1 9, Koisi (NMW) ; Hermann skogel, I 9, 28.vii. 1907, Karny (NMW); Herzogenburg, I 0', before 1930, L. Mader (NMW) ; Ma uer, 20', 6 9, Brunn er v. w., I 0', 1870, TUrk (NMW) ; Plank am Kamp, I 9, vii.65, I 9, 12.v.1948 (NMW) ; Purgstall, I 9, 166 vidlicka, L'. & Majzlan. O. 17.vii.1955 , Sandbruch (NMW); Sulzer Berg bei Wien, I nymph, 25.v.1949 (NMW); surroundings Vorau, I 0', before 1952, H. Fran z (NMW); St. Veit bei Wien, 20', 4 9 (one with ootheca), Brunner v. W. (NMW); Wien, Weidling , I 0', I 9, before 1946, L. Mader (NMW); Wien, Lainzer Tiergarden, 500 m, 2 0', I 9, 26.v.1951, 2 nymphs, 20.v.1950, I nymph, 4.x.1951, R. Ebner (NMW); Eichkogl, I 9 with ootheca, 18.vi.1908 (MNB); Austria, Kat.-Nr.3724, coli. Schaum, 1 9 (MNB); HUNGARY: Nagyborzsony, Hosszii -volgy, I 9, 27-3I.vii.1975, J. Jablonkay & A. Varga (MMG); Szokolya, Szenpatak-volgy., 300 m, I 0', 3 9, 27.vi. 1965, B. Nagy (BN) ; Szokolya, Szenpatak-volgy, 300m, I 9 (HNHM); Budapest, Csucs-hcgy, 1 9, 26.vi.1983, B. Nagy (BN) ; Cserepfalu, Also-Csakany, I 9, Il.vi.1984 , Merkl, Korsos (HNHM); Balatonszepezd, 150 m, 10', 24.v.1990, B. Nagy (BN) ; Pilisszentkereszt, Dobogoko, 680m, 1 9, 16.vii.l961, B. Nagy (BN) ; Hcgyhatszcntrnarton, I 9, 2.vii.1982, B. Nagy (BN); Hortobagy, Ujszentmargita, I 0', 9.iv.-8.v.1974, Kaszab, 60',49, 9.v.-ll.vi.1974, Kaszab (BN) ; Keszthely, Koponar-teto, I 9, 28.vi.1994, B. Nagy (BN) ; Korosujfalu, I 9, 10.viii. 1980, B. Nagy (BN); Koszeg, Also-erdo, I 9, 13.vii.1937 , Visnya (HNHM); Hortobagy, Ohati-erdo, I 0', 3 9, I nymph, 15.v.1947 , B. Nagy (BN); Tard, Baba-volgy, I 9, I.vi .1959 , S. T6th (HNHM); Harornhuta, Istvan-kilt, I 9, 6-12.vi. 1955, Kaszab , Szekcssy (HNHM); Pomaz, I 9, 2.vii. 1978, B.Nagy, (BN); Szentendre, 2 9, 8.vii.1962, B. Nagy (BN) ; Ujszentmargita, 3 0', I 9, 26.v.1966, B. Nagy (BN); ROMANIA: Aiud, 1 9, 30.v.1909, 2 nymphs, 4.iii.191O, I. Nagy (HNHM), 29, 25.vi.1961, B. Kis (HNHM); Arcalia, 10', I 9 with ootheca, 16.vi. 1976, B. Kis (HNHM); Baisoara, I 9, 16.vii.1962, B. Kis (HNHM); Caraorrnan, 2 9, 27.vii.1967, B. Kis (HNHM); Cluj, Mt. Szaf, I 9, 22.vi.l943, Kolosvary (HNHM); Cluj, Bacsie, I 9, 22.vi .1943, Kolosvary (HNHM); Cluj, I 9, 10.vii.1962 , 29, 28.v.1964, I 9, 10.vii.1969, 2 9, 5.vi.1977 , B. Kis (HNHM); Cluj, Manastur, 1 0', 12.v.1963 , B. Kis (HNHM); Ciurtuci, I 9, 5.vii.1972 , B. Kis, (HNHM); Giurcuta de Jos, 2 9, 4.vii.1972 , 29, 8.vii.1972 , B. Kis (HNHM); Deva , 3 0', 7 9, 25.v.1959 , B. Kis (HNHM); Dezmir, I 0', I 9, 18.vi.1977, B. Kis (HNHM); Foeni, 19, 9.vii.1983 , B. Kis (HNHM); Cheile Turzii, 1 0', 24.v.1964, B. Kis (HNHM); Mociu, 10', I 9, 7.v.1976, B. Kis (HNHM); Mraconia, 2 0', I 9, 12.vi.l968, B. Kis (HNHM); Talagiu, I 9; Transilvania, I 0', I 9, Pungar, 2 0', I 9 (NMW); Heltau, I 9, 15.vi.1924, A. MUller (MNB); Hammersdorf, 19, lO.v.I923, A. MUller (MNB); Reghin, 19, 23.vii.1917, A. MUller (MNB); UKRAINE: Cherson, 19, lO.v.1903, Ewert (MNB). Literature records. - SLOVAKIA: Banska Stiavnica (Petricsk6 1892); Streda nad Bodrogom (Chladek 1965); Vinne (Gulicka 1967), Plesivecka planina (Chladek 1988); Muranska planina Mts: Tesna skala, Kl' ak (Cejchan 1992); Silicka planina, Koniarska planina (Chladek 1994); CZECH REPUBLIC: Chot'ovice, Tfemosnice, .Pal'fzov (Cejchan, 1959); Havlfckiiv Brod, Lednice, Zelesice (Chladek 1965); HUNGARY: Budaihegyscg (Frivaldszky 1867); Sarospatak, Satoraljaujhely, Budapest (Chyzer 1897, Pungur I~OO); Koszegihegyscg (Pongracz 1940); Egyek, Ujszentmargita (Nagy 1983); ROMANIA: Oradea - Jud. Crisana (FriENT. SCAND. VOL. 28:2 (1997) valdszky 1867); Cluj , Zsul de Cimcie, Baita, Marpod (Herman 1871); Baile I Mai (Mocsary 1871); Nusfalau, Zalau, Fetindia, Fagetul, Girceiu, Jac (Pungur 1891); Transilvania (Redtenbacher 1900); Babadag (Jaquet 1903) ; Marpod, Cluj , Zsul de Cimpie, Baita, Zalau, Nusfalau, Hunedoara, Reghin, Ocna Sibiului (MUller 1924) ; Zalau, Reghin, Nu~falau, Sibiu, Clui (Knechtel & Popovici-Biznosanu 1959) ; AUSTRIA: Pitten (Handlirsch 1889); Kalksburg, Mauer, Modling, Hainbach, Bruck a.d. Leitha (Redtenbacher 1900); Wien (Brunner v. W. 1885; TUmPlil 190I); Neusiedler See (Ebner 1951) ; GERMANY : SAXONY, BAVARIA: Regensburg (Ramwe 1927; Harz 1957; Harz 1960); SWITZERLAND : Saleve, Siders, Martigny (Fruhstorfer 1921; Harz 1957); MOLDAVIA: Chisinau-Kisinev, Baurci (Bey-B ienko 1938, 1950); UKRAINE: Kirovogradska oblast - Nerubajka (Bey-Bienko 1938, 1950); YUGOSLAVIA: Srem [Szerem] (Pungur 1900); CROATIA: Vinkovci [Nustar] (Graber 1870); SLOVENIA, BOSNIA-HERCEGOVINA (Us & Matvejev 1967). *The findings in Germany and Switzerland are very doubtful. Description. - Size (mm) : Body length: 0' 5.8- 6.5,96.2-7.4; pronotum length x width, 0' 1.9-2.1 x 3-3.2, 9 2.0-2.2 x 3.3-3.6; forewing length, 0' 4- 4.8,92.5-3.2 . Male (Plate 1: A). Head with few short setae, interocular width larger than the ocular length (IW/OL index =1.6). Pronotum semicircular (Fig. lC), widest near the hind margin, surface sparsely setose. Forewings partly shortened (Fig. ID), reaching at most to the end of abdomen, distal end narrowly rounded, veins in costo-radial area lost. Posterior margin of the tergite 6 strongly concave (Fig. IE). Tergite 7 is divided by two longitudinal furrows into three parts, middle part covered by the tergal gland (Fig. IF) . Glandular pit large, trapezoid-oval, reaching to the posterior margin of tergite. Hind margin of supraanal plate rounded, right and left paraprocts are dissimilar, right paraproct is much broader than the left. Cerci long, with 8-9 segments, very often at least one abbreviated. Genitalia: The curved hook portion long, slender, pointed (Fig. IH); cleft sclerite (R2) present on the right side. Coloration: Head black except for pale labrum, lower part of the clypeus and ocellar spots, proximal region of antennae yellowish (about 13 segments), distal part brownish to black. The maxillary palpomeres brown to black, labial palps brownish. Pronotum black except for narrow, yellowish, anterior and posterior borders and broad, yellowish to transparent, lateral margins. Forewings white to transparent with a great number of small spots, hindwings dark. Abdominal tergites black, sixth to eighth ENT. SCAN D. VOL. 28:2 (1997) Revision of the Phyllodromica megerlei-group 167 1 mm (A-F) E 0.1 mm (G -H) .' - <0 • \ • • '-rA\~? Fig.!. Phyl/odromica megerlei, (A-B) female, (C-H) male: Pronotum (A, C), right tegmen (B, D), tergite 6 (E), tergite 7 with glandular pit (F), part of subgenital plate with stylus (G), hook (H). 168 viaua « L'. & Majzlan, O. ENT. SCAND. VOL. 28:2 (1997) ex. Fig. 2. Seasonal dynamics of Phyllodromica megerlei.o oothecae • males EJfemales 60 I..N=219 70 r;=======:::::;--- - --- - -----;=============::;l 50 .. . . - . . . . 40 . -- -- -- 0- 30 20 10 o'--- ----'- 1--- o August September months tergites with small, elongated whitish to transparent spots on the posterior lateral margins. Abdominal sternites black. Subgenital plate pale to dark brown. Cerc i dark brown to black. Femur and tibia black, tarsal segments (tarsomeres) yellow with brown posterior ends, at the coxa-troc hanter joint white regio ns. Female. Head sparsely setose, interoc ular space distinctly wider than the ocular length (IW/OL index = 1.6-1.7 ). Forewings short, transversally truncated (Fig. I B). Genitalia very similar to P. pulcherrima. Coloration: Head black, interocular space brown. Antennae, pronotum and forewings as in male. Abdominal tergites and sternites black, tergites and sternites 2-7 with triangula r white lateral margins and often with narrow pale posterior margins. Subgenital plate black with pale lateral margins. Legs brown, tarsal segments yellow with brown posterior ends , tibial bristles yellow. Trochanter and adjacent part of coxa and anteroventral margins of all coxae whitish. Ootheca: Length 2.8 mm, width 2 mm . Surface brown, with 10-12 strong, longitudinal ridges on each side, the keel is serra ted, the teeth are small (Fig. 4G). Geographical distribution. - (Fig. 5) Phyllodrom ica megerlei is widely distributed: SE Germ any (Bavaria, Saxony - old, doubtful records only), Czec h Republic, Slovakia, Austria, Switzerland (old record s only), Hungary, Romania, nordeastern Italy, Slovenia, Croatia (Istria, Dalmatia), Yugoslavia (Serbia - Vojvodina), Bosnia-Hercegovina (Hercegovina), Moldavia, Ukraine (Kirovogradska oblast), but everywhere it is rare. On the territory of Slovak ia and Czec h Republic it reaches the northern border of its distri bution. Biology. - Pliyllodromica megerlei occurs at altitudes between sea level and about 700 m. The animals live most freq uently in tussocks of grass on xerotherm and mesohygrophilous meadows with bushes and trees, banks of rivers, brooks overgrown with grass, and clearings. Adults occur from April to August and are most abundant at the end of May and at the end of June (Fig. 2) . 2. Phyllodromica asiatica Bey-Bienko, 1950 stat. n. (Plate I: B; Figs 3A-E, 5) Phyllodromica megerlei asiatica Bey-Bienko, 1950: 233. Aphlebia pallida (Brunner v. W.): Brunner v. W. 1882: 42, partim; Jakobson & Bianki, 1905: 127. partim. Misidentifications. Aphlebia punctata (Charpentier): Bolivar 1899: 585. Misidentification. Hololamp ra punctata (Charpentier) var.: Ebner 1919: 152. Hololampra punctata f. erythronota Ramme, 1951: 324 (syn. Karabag 1958). ENT. SCAND. VOL. 28:2 (1997) Revision of the Phyllodromica megerlei-group 169 I II 8 c 0.1 mm (D-E) 1 mm (A-C) Fig. 3. Phyllodromica asiatica, (A-E) male: Pronotum and tegmina (A), tergite 6 (B), tergite 7 with glandular pit (C), hook (D), part of subgenital plate with stylus (E); ootheca of Phyllodromica pulcherrima (F) and P. megerlei (G). 170 vidlicka, L'. & Majzlan, O. ENT. SCAND. VOL. 28:2 (1997) H 1 mm F B (A-I) 0.1 mm (J-K) G Fig. 4. Phyllodromica pulcherrima sp. n., (A-D , L) female, (E-K) male : Pronotum (A, E), metanotum (B, F), subgenital plate (C), right tegmen (D, I), internal ovipositor (L), tergite 6 (G), tergite 7 with glandular pit (H), part of subgenital plate with stylus (1), hook (K). ENT. SCAND. VOL. 28:2 (1997) Material studied. - Holotypect of Hololampra punctata f. erythronota: Adana, Kleinasien, Rolleleg. (MNB). Literature records. - TURKEY: Amasya(Brunnerv. W. 1882); Akbes, Kahramanmaras (Bolivar 1899); Bahce, Amanos Mts (Ebner 1919); Gi.ilek (Bey-Bienko 1950); Adana (Ramrne 1951 ; Karabag 1958); SYRIA: El Ladhaqiye - Lattakia(Bey-Bienko, 1950). Description. - Size (mm). Body length: a 5.47; pronotum length x width, a 1.5 x 2.88; forewing length , a 3.97. Male (Plate I : B). Head with few short setae, interocular width larger than the ocular length (IW/OL index = 1.8). Pronotum trapeziform, surface sparsely setose. Forewings reaching to the end of abdomen, distal end narrowly rounded, veins in costo-radial area only indicated. Radial, medial and cubital veins can by discriminated. Posterior margin of tergite 6 concave (Fig. 3B). The middle part of tergite 7 covered with the tergal gland (Fig. 3C). Glandular pit large, trapezoid-oval, reaching to the posterior margin of tergite. Hind margin of supraanal plate rounded. Cerci long, with 8-9 segments. Coloration: Head brown , ocellar spots yellowish-white, antennal region pale . Proximal region of antennae yellowish-brown, distal part brown. First and second segments of maxillary palpomeres yellow, thirth black, labial palps brownish. Disk of the pronotum orange-yellow (central part) to yellowish (posterior part and comers). Anterior and posterior borders of pronotum white to transparent. Forewings white to transparent with a great number of small dark spots, basal part with big brownish-black spot (Fig. 3A). Costal field and outer margin of forewings without spots . Hindwings dark to transparent. Abdominal tergites black. Abdominal stemites black, lateral margins of sternite 2.-7. with yellow border. Subgenital plate pale-brown, in the middle white. Femur black, tibia brown-black, tarsal segments (tarsomeres) yellow with brown posterior ends. Cerci black, stylus brown with yellow tip. Female (not examined, description from BeyBienko 1950). Very like as a P. megerlei, but usually the disk of pronotum yellowish-orange, rarely blackish-brown. Posterior border of pronotum pale, equally wide as anterior border. Abdomen with pale lateral border equally wide as pale posterior border of pronotum. Ootheca: As in P. megerlei, but with 18-19 longitudinal ridges on each side. Revision of the Phyllodromica megerlei-group 171 Geographical distribution (Fig. 5). - Known only from Asia Minor - Turkey and Syria. 3. Phyllodromica pulcherrima sp, n. (Plate 1: C, D; Figs 3F,4A-L, 5) Type material. - Holotype cr, Bulgaria: Enime plane, Vias (near Nesebar), 150 m, 30.v.1995, Majzlan (SNMB). Paratypes: 6 ct , 8 9, same locality as holotype, 30.v.1995 and 26.v.1996, Majzlan (SNMB and authorscollection). Etymology. - The species name refers to its very decorative appearance (from latin pulcherrimus = nicelooking, magnificent). Description. - Size (mm) : Body length: a 5.2- 5.7,96.2-6.6; pronotum length x width, a 1.5 x 2.4,9 1.8 x 2.8; forewing length, a 2.3-2.5, 9 2.2- 2.3. Male (Plate 1: C). Head with few short setae, interocular space slightly greater than distance between ocellar spots, interocular width larger than the ocular length (IW/OL index = 1.7). Forewings strongly reduced, reaching at most to the middle of the fourth abdominal tergite, distal end widely rounded, veins in costo radial area absent (Fig. 41). Hindwings strongly reduced, nearly reach to posterior border of the metanotum (Fig. 4F). Posterior margin of the tergite 6 slightly concave (Fig. 4G). Seventh tergite with wide oblique lateral margins reaching to the tergal gland (Fig. 4H). Glandular pit large, oval. Genitalia : The curved end of hook is very narrow, the tip strongly bent (Fig. 4K), cleft sclerite present. Coloration: Head with clypeus, labrum and ocellar spots whitish, remainder shiny blackish. First, second and fifth maxillary palpomeres brown, third and fourth yellow. Labial palps blackishbrown. First ten segments of antennae yellow, remainder segments gradually brown to black. Pronotum (Fig. 4E) with black disc and yellow to transparent margins, anterior and posterior margins narrower than lateral margins. Forewings white to transparent with a great number of small spots, hindwings dark. Abdominal tergites black, tergites 2-5 with narrow, whitish posterior and lateral borders; tergites 6-8 with large, whitish to transparent spots in the posterior comers. Abdominal stemites black. Subgenital plate pale to dark brown. Femur and tibia dark brown to black, tarsomeres yellow with brown posterior ends, at the coxa-trochanter joint white regions. Female (Plate 1: D). Head sparsely setose, 172 Yidlicka, I..:. & Majzlan, O. ENT. SCAND . VOL. 28:2 (1997) 40· 20· MEDITERRANEAN 30· oe Ph. megerfei O. Ph. asiatica * Ph. pulcherrima Fig. 5. Geographical distribution of megerlei-group of cockroach genus Phyllodromica (data from literature - open marks, material studied - filled marks). interocular space distinctly wider than the ocular length (IW/OL index = 1.6). Forewings short, transversally truncated, their interior margins contacted (Fig. 4D). Genital ia as in Fig. 4L. Coloration: Head black, interocular space orange-brown. Labrum, lower part of clypeus and ocellar spots whitish. Antennae, pronotum (Fig. 4A) and forewings as in male. Abdominal tergites and sternites black, tergites and stemites 2-7 with white lateral margins and often with narrow pale posterior margins. Subgenital plate black with pale lateral margins. Femora yellow-brown, longitudinally striped Tibiae and tibial bristles yellow. Tarsal segments yellow with brown posterior ends. All trochanters, adjacent parts of coxae and their anteroventral margins whitish, remaining parts of coxae brownish. Ootheca: Length 2.3±0.2 mm, width 1.8±0.1 mm. Surface brown, with 11-12 strong, longitudinal ridges on each side. The keel is serrated, with 12-13 small teeth (Fig. 3F). Biology. - The Bulgarian species P. pulcherrima sp. n. lives at an altitude of about 150 m. It occurs in submediterranean, xero-termophilous oak woods (the alliance Quercion pubescentipetraeae). The specimens were found in grass during May. Geographical distribution (Fig. 5). - Known only from the type locality in Bulgaria. Acknowledgements For loan of material we are grateful to the following curators and private persons : Dr Gyorgy Sziraky (HNHM) , Dr Tibor Kovacs (MMG), Dr Kurt K. Gunther (MNB), Dr Ivo Kovai' (NMP), Dr Ulrike Aspock (NMW), Dr Ladislav Jedlicka (PFUK - Coli. Dr Jan Gulicka), Dr Ilja Okali (SNMB), Dr Tomas Kizek (SSMB), Dr Barnabas Nagy (Budapest). We would like to thank Dr Louis M. Roth and Dr Horst Bohn for valuable comments and linguistic help with the English text. References Bazyluk, W. 1956. Karaczany - Blattodea, Modliszki Mantodea. Klucze do oznaczania owad6w Polski. Czesc IX-X. 40 pp. Warszawa. - 1977. Blattodea et Mantodea: Karczany i modliszki (Insecta). Fauna Pol. 6, 173 pp. ENT. SCAND. VOL. 28:2 (1997) Bey-Bienko, G. Ya. 1938. Blattodea Nakhichevanskoj ASSR (sobrany D.V. Znojko) s obzorom vidov roda Phyllodromica Fieb. vstrechayushchikhsya v SSSR. Trudy zool. Inst. Baku 8: 21-31. - 1950. Nasekomye Tarakanovye. Fauna SSSR (N.S.) 40,342 pp. Bolivar, I. 1899. Orthopteres du voyage de M. Martinez Escalera dans I'Asie Mineure. Annls Soc. ent. Belg. 43: 583-607. Brunner von Wattenwyl, C. 1865. Nouveau systerne des Blattaires. 426 pp. Wien, Paris & Leipzig. - 1882. Prodromus der europaischen Orthopteren. 466 pp. Leipzig. Charpentier, T. de. 1825. Horae entomologicae, adjectis tabulis novem coloratis. 257 pp. Wratislaviae. Chladek, F. 1965. K rozsffenf druhu Hololampra punctata (Charp. 1825), Blattodea, Ectobiidae v CSSR. Zool. Listy 14: 372. - 1988. Rovnokndly hmyz (Orthoptera), svabi (Blattoptera) a kudlanky (Mantoptera) Plesiv ske planiny. Ochr. Prir., Vyskumne Pro Ochr. Prir:6B : 243-251. - 1994. Rovnokrfdlovce (Orthoptera), svaby (Blattoptra), modlivky (Mantoptera) a ucholaky (Derrnaptera). Pp. 157-163 in Rozloznfk & Karasova (Eds) : Slovensky kras Chranena krajinna oblast' biosfericka rezervacia. 479 pp. Banska Bystrica. Chyzer, K. 1897. Zemplcnvarmegyc Orthopterai, Rovart. Lap. 4: 99-101. Cejchan, A. 1959. Pffspevek k rozsfrenf nekterych vzacnych druhii orthopteroidnfho hmyzu v Cechach a na Slovensku. Pro kraj. Mus. Hradci Krdlove (Ser. A) 2: 173-182 . - 1992. Orthopteroidm, hmyz (s.l.) CHKO Muranska planina (Slovensko).Cas. ndrod. Mus . 161: 47-56. Ebner, R. 1919. VI. Orthopteren aus Kleinasien. Arch. Naturgesch. 85A: 148-176. - 1951. Kritisches Verzeichnis der orthopteroiden Insekten von Osterreich. Verh. zoot -bot. Ges. Wien 92: 143-165 . - 1953. Catalogus Faunae Austriae: Saltatoria, Dermaptera, Blattodea, Mantodea. Pt. XIIIa , 18 pp. Wien. Eschscholtz, J. F. 1822. Entomographien. Erste Lieferung. 128 + 3 pp., 2 pIs. Berlin. Failla, M. C. & Messina, A. 1978. Struttura della fossetta ghiandolare dei maschi delle specie italiane di Ectobius Steph. (Blattaria, Ectobiidae). Animalia 5: 357-394. Fieber, F. X. 1853. Synopsis der europaischen Orthopteren. Lotos 3: 90-104. Frivaldszky, J. 1867. A magyarorszagi Egyenespopuek Maganraiza (Monographia orthopterorum Hungariae). 201 pp. Pest. Fruhstorfer, H. 1921. Die Orthopteren der Schweiz und der Nachbarlander auf geographischer sowie oekologischer Grundlage mit Beriicksichtigung der fossilen Arten. Arch. Naturgesch. 87(A) : 1-262. Graber, V. 1870. Faunistische Studien in der syrmischen Bucht. I. Ueber Orthopteren. Verhand. zool-bot. Ver. Wien 20: 367-380. Gulicka, J. 1967. Orthoptera, B1attodea, Mantodea, Dermaptera zatopneho iizemia pod Vihorlatom. Acta Revised manuscript accepted May 1997. Revision of the Phyllodromica megerlei-group 173 Fac. Rerum nat. Univ. comen., Bratisl. (Zoo l.) 12: 41-62. Harz, K. 1957. Die Geradfliigler Mitteleuropas. 494 pp. Jena. - 1960. Geratfliigler oder Orthopteren (Blattodea, Mantodea, Saltatoria, Dermaptera). Tierwelt Dtl. 46, 231 pp. Harz, K. & Kaltenbach, A. 1976. The Orthoptera of Europe - Die Orthopteren Europas. Vol. 3. 305 pp. The Hague. Herman, O. 1871. Die Dermapteren und Orthopteren Siebenbiirgens. Verh. Mitt . siebenb. Ver. Naturw. 21: 30-43 . Jakobson, G. G. & Bianki, V. L. 1905. Prjamokrylyja i loznosetcatokrylyja Ross ijskoj Imperii i sopredelnyh stran, 952 pp. S.-Petersburg. Jaquet, M. 1903. Faune de la Roumanie . Orthopteres recoltes par Mr. Ie Dr Jaquet et determines par Mr. E. Frey-Gessner, du Musee d'histoire naturelle de Geneve. Bul. Soc. Sti. Buc. 12: 242-243. Karabag, T. 1958. Tiirkiyenin Orthoptera faunasi - The Orthoptera Faun a of Turkey. 198 pp. Istanbul. Kirby, W. F. 1904. A synonymic catalogue of Orthoptera. Vol. I. Orthoptera Euplexoptera, Cursoria, et Gressoria. (Forficulidae, Hemimeridae, Blattidae, Mantidae, Phasmidae) . 501 pp. London. Mocsary, S. 1877. Bihar es Hajdu megyek Hartya-, Kek-, Reczes-, Egyenes- es Felropui. F. Orthoptera (Egyenesropuek). Magy. Tud. Akad. Math. Termesz. K6zl. 14: 64-69. Miiller, A. 1924. Ober Herkunft und Verbreitung der Orthopteren Siebenbiirgens. Verh. Mitt. siebenb. Ver. Naturw. 74: 194-244. Petricsko, J. 1892. Selmeczbanya videke allattani tekintetben. 133 pp. Selmeczbanya. Pongracz, A. 1940. Adatok a Koszegi-hegyseg egycnesszarnyuinak ismeretehez (Beitrage zur Kenntnis der Orthopterenfauna der Umgebung von Koszeg), Dundntuli Szemle 7: 296-303. Princis, K. 197 1. Blattariae: Subordo Epilamproidea: Fam: Ectobiidae . In Beier (Ed.): Orthopterum Catalogus 14: 1039-1224. The Hague . Pungur, J. 1891. Adatok Szilagyvarmegye Orthopterafaunajahoz. Ert. erdel. Muz-Egyes. Orvos Term.Tudom. Szakoszt 16: 255-266. - 1900. Ordo Orthoptera. Pp. 1-16 in: Fauna Regni Hungariae III.Arthropoda. Budapest. Redtenbacher, J. 1900. Die Dermatopteren und Orthopteren (Ohrwiirmer und Geradfliigler) von OsterreichUngaro und Deutschland. 148 pp. Wien. Ramme, W. 1927. Ordnung: Geradfliigler, Orth6ptera. Tierwelt Mitteleur: 4 (2): 1-22. - 1951. Zur Systematik, Faunistik und Biologie der Orthopteren von Sudost-Europa und Vorderasien. Mitt. zool. Mus .Berl. 27: 1-431. Rehn, J. A. G. 1903. Studies in American Blattidae. Trans. Am. ent. Soc. 29: 259-290. Shelford, R. 1907. Orthoptera Fam . Blattidae Subfam. Ectobinae. Genera Insect. 55: 1-15. Us, P. & Matvejev, S. 1967. Orthopteroidea. Catalogus faunae Jugoslaviae IIV6. 47 pp. Ljubljana. 174 ENT. SCAND. VOL. 28:2 (1997) Journal and subscription to reprints of particular groups to be ordered from: APOLLO BOOKS. Kirkeby Sand 19, DK-5771 Stenstrup. Denmark. Príloha č. 7 VIDLIČKA, Ľ. 1999. Caeparia sausai sp.nov. from Laos, and description of the male Caeparia donskoffi (Blattaria: Blaberidae: Panesthiinae). Entomological Problems 30(2): 1-5. Entomological Problems. 30 (2): 1-5, December 1999 Caeparia sausai sp.nov. from Laos, and description of the male Caeparia donskofji (Blattaria: Blaberidae: Panesthiinae) Lubomir VIDLICKA Institute of Zoology Slovak Academy of Sciences, Dubravska cesta 9, 842 06 Bratislava, Slovakia. E-mail: uzaevidl@savba.savba.sk VIDLICKA, U. 1999. Caeparia sausai sp.nov, from Laos, and description of the male Caeparia donskoffi (Blattaria: Blaberidae: Panesthiinae). Entomol. Probl. 30(2): 1-5. - The female of a new cockroach species of Panesthiinae, Caeparia sausai is described from Laos. The male of Caeparia donskoJfi ROTH is described. Its habitus is similar to that of the female: pronotum bicolored with dense long hairs; hind margin of supraanal plate entire; genital phallomere L2d strongly toothed . The species is found in North and South Vietnam, Laos, and Thailand. Key words: Caeparia sausai,Caeparia donskoJfi, cockroaches, Blattaria, southeast Asia, Laos. Introduction Four species of Caeparia STAL, 1877, from mainland southeast Asia, are known. Both sexes are known for 2 species, namely C. saussurii (WOODMASON, 1876) and C. crenulata (BRUIJNING, 1948). The males of C. donskofji ROTH and C. kaltenbachi ROTH are unknown (ROTH 1979). ROTH (1982) described an unnamed nymph from Thailand which may prove to be either of these last 2 species; the colour pattern of this nymph differs from that of the adults of C. donskoffi or C. kaltenbachi, but the hind margin of its supraanal plate is similar to that of C. donskoffi. In this paper the female of new species of Caeparia (C. sausai) from Laos and the male of C. donskoffi are described. Caeparia sausai sp.nov, Holotype !jl (SNM, Bratislava): Laos south, Attapu prov., Bolaven Plateau, 18-30.IY.1999, 15 km SE of Ban Houaykong, NONG LOM (lake) env., N 15°02', E 106°35', alt. 800 m, E. Jendek & O. Sausa leg. Description of female (Figs 1 - 3). Head sparsely punctate, ocell i very obvious. Antennae short, thick, widest in the centre, consisting of 35 segments. Pronotum transverse, widest near the hind margin, the surface of pronotum hairless, sparsely covered with large pits, on the anterior parts cresFig. I: Caeparia sausai sp.nov. - habitus. cent-like groove. Lateral margins broadly rounded. Mesonotum "between tegmina densely foveolate. Tegmina reaching the hind margin of the 6th tergite, basal half enlarged, the apex rounded. Anterior parts of coxae wrinkled, densely hairy. Femora smooth, anterior and posterior margins with hairs; tibia armed. Euplatulae (pulvilli) present on tarsal segments 1 to 4; tarsal claws smooth, symmetrical, arolia absent. Abdominal tergites pitted, the hind margins of tergites 3-7 with tubercles, which become gradually longer in posterior tergites. Surface of tergites with large, round impressions'. On T7 two very large sublateral tubercles, th e lateral angles of T7 deflexed. Supraanal plate with round punctations, hind margin with lateral angles, the area between them subentire. Abdominal sternites narrow, surface medially punctate, laterally with larger pits. S2 in the middle with longitudinal keel. Cerci short, conical, dorsal surface non-setose, ventrally with long setae. StyIi not present. Measurements [mm]. Total length 29; pronotum length x width 5.5 x 9; tegmen length 22. Coloration. Vertex black, the longitudinal black band between ocelli continued over the clypeus and labrum, remaining parts of head yellow (Fig. 2). Eyes reddish brown , ocelli bright red. Maxillary and labial y palps yellow, apical segments black. First 15 antennomeres shiny black, the succeeding 15 segments dull black, 4 segments yellow and the last one dull black. Pronotum yellow, in the centre. with big Iyrelike black spot reaching to the hind margin. Fig. 2: Caeparia sausai sp.nov, - color pattern of head. Base of left tegmen black, central part with yellow triangular spot and black band, preapical pali membranous, yellowish and apex black. Anterior half of right tegmen near to the left one, posterior half dark with yellowish spot (Fig. 3). Legs black, apical parts of coxae and femora, and basal parts of tibiae yellow, spines black with reddish brown apex, tarsi and claws black. Abdominal tergites black, with small irregular reddish-yellow spots sub laterally. Supraanal plate 2 black, the hind margin brownish red. Abdominal sternites brownish black. Cerci brownish black. Fig. 3: Caeparia sausai sp .nov, - tegmina. Comments. The head colour of Caeparia sausai is similar to that of C. crenulata, and its pronotal colour pattern resembles those of C. donskoffi and C. kaltenbachi. The same colour combination is found in a male nymph from Thailand (Caeparia sp. - Ron -I 1982), but probably it is not the same species. The species is named in honour of O. Sausa, who caught this specimen. Caeparia donskoffi ROTH Caeparia donskofji R OTH, 1979: 101, Figs. 84A - F, 8SA - F, 89G. Male (Figs 4a - c, 5, 6a - c, 7a - c). Head sparsely punctate, vertex not foveolate, largely exposed. Clypeus with scattered, slender, long hairs; eyes large, protruded; ocell i well developed ; antennae short, consisting about 40 mostly broad, short segments. Pronotum transverse, anterior margin slightly concave, posterior margin slightly excised medially, lateral margins broadly rounded; anterior half of pronotum with a pair of oblique grooves; surface of pronotum densely covered with long hairs, some black-coloured areas hairless, lateroposterior angles th inly punctate. Mesonotum region between tegmina with long hairs. Tegmina constricted, surpassing the end of the abdomen, their apices rounded. Thoracic sternites and coxae with long hairs. Euplantulae (pulvilli) present on tarsal segments 1 to 4 on all legs; tarsal claws simple, symmetrical, arolia absent. Abdominal tergites pitted, the hind margins with some tubercles laterally, lateral margins of abdominal segment 7 with 2 bluntly rounded teeth on the anterior half, the lateral angle large, directed caudal. Posterior margin of the supraanal plate with collar-like elevation; medial part of hind margin weakly con vex, entire. Cerci small, dorsal surface non-setose, ventrally with long setae. Second sternite narrow, medially with a longitudinal keel. Hind margin of second sternite incised medially. 1 mm I .... Fig. 5: Caeparia donskoffi - genitalia of male from Viet- nam. Measurements [mm]. Total length 26 - 29.5; pronotum length x width 4 - 5 x 7.5 - 8.5; tegmen length 21 - 23. Coloration. Head yellow, labrum black, an incomplete or narrow complete black band on the front femur unarmed except for slender hairs. Genital phallomere L2d well developed, darkly sclerotized with many large spines alon g the posterior margin; L2vm long, narrow, stro ngly sclerotized; LI small, only lightly sclerotized; R2 lightly sclerotized, markedl y reduced, the curved part of the hook absent (Fig. 5). Right paraproct with two strongly scle rotized apical processes, left paraproct smaller, without apical processes. a Fig. 4 Caeparia donskoffi: a) habitu s of male from Vietnam, b - c) pronotum of males from Laos (a - leg. Kubao , b - leg. Jendek & Sausa). The surfaces of abdominal sternites thinly punctate, the lateral punctures denser; sternite 7 punctate on apical half. Subgenital plate small, almost hidden, non punctate. Styli absent. Antero-ventral margin of clypeus, a bro ader tran sverse black band between the antennae (split around ocelli); 4 broad black vertical bands extend from between the eyes over the vertex to the hind margin of the head, with a black spot behind the eye s (Fig. 6a - c). Eyes reddi sh brown, ocelli bright red. Maxillary palps yellow, apical segments black. First 10 antennomeres shiny black, the succeeding 20 seg ments dull blacki sh grey and about 10 apical segments browni sh to reddish-yellow. Pronotum yellow with black anterior and lateral margins, central part with two symmetrical Lshaped black spots, hind angles with black spots, the middle of the hind margin s with a black spot; hairs on the pronotum yellow. Left tegmen with a large black basal spot followed by a testaceous area, then 3 a b c d Fig. 6 Caeparia donskoffi - colour pattern of head: a) ma le from Laos (leg. Kuban); b) male from Laos (leg. Jendek & Sausa); c) ma le from Vietnam; d) female from Thai -land. a wide blackish to brownish band fo llowed by a transparent zone which reaches the apex of the tegmen. Right tegmen with a large black basal spot followed by a testaceous area, then ,a triangular spot followed by a wide brownish area (Fig. 7a - c). Abdominal tergites brownish black with large irregular reddish yellow spots laterally and medially. Supraanal plate brown to brownish red . Abdominal sternites brown, laterally w ith or without large yellow spots. Cerci dorsally brown ish black, ventrally yellow ish brown. Legs blackish with transverse yellowish bands, tarsi blackish brown; spines dark brown. Material examined : 1 e: Laos north, 24-30.Y.1997, 20 km NW Louang Namtha, N 21°09.2, E 101°18 .7, al. 900±100 m, E. Jendek & O. Sausa leg.; 1 e: Laos, Lou ang Namtha pr., 2 1°09' N, 101°19' E, Namtha-eMuang Sing, 5-3 I.Y. 1997, 900- 1200 m, Vit Kuban leg.; 1 «. Vietnam north , l5 .Y.-16 .VI.1991 , Tam Dao nat. park, 75 km NW from Hanoi , E. Jendek leg. Addition to description of female (Figs 6d, 7d, 8). Ocelli present, flat, less distinct than in ma le. Antennae 39 segmented; first 15 antennal segments shiny black, the succeeding 15 segments dull blackish grey and 9 apical segments brownish to yellow. . Pronotum nearl y hairless, but the coloration was typical for C. donskoffi. Coloration of tegmina is very similar to male with left-right colour asymmetry (Fig. 7 d). 4 Fig. 7 Caeparia donskoffi - colour pattern of tegmina: a) male from Vietnam ; b) mal e from Laos (leg. Jendek & Sausa); c) male from Laos (leg. Kuban); d) female from Thailand. Measurements [mm]. Total length 33; pronotum length x width 6.5 x 10.5; tegmen length 24. Material exa mined: 1 ~ : Thailand, Chiang Mai prov., 18°49 ' N, ~8°54 ' E, 1600 m, Doi Pui Mt., 2-6 .Y.1996. Vit Kuban leg. Comments. The male genital phallomeres are very similar to those of known males of Caeparia. Previously, C. donskoffi was known only from North and South Vietnam. The present specimens come from North Vietnam, Laos and Thailand. Thi s species is widely distributed in southeast Asi a. Acknowledgements I am grateful to Dr Ondrej Sausa, Dr Eduard Jendek and lng. Vit Kuban who gave me the cockroach material from their own collections from South East Asia and Dr Jan Kodada (Comenius University) for photos. I would like to thank Dr Louis M. Roth (Harvard University) for valuable comments and linguistic help with the English text. References ROTH, L.M., 1979. A taxonomic revision of the Panesthi inae of the wo rld II. Th e ge nera Salganea STAL. Microdina KIRBY. and Cae paria STAL (Dictyo ptera: Blattaria: Blaberidae). Australian Journal ofZoology, Supplementary Series No . 69 : 1-201. Fig. 8: Caeparia donskoffi - habitus female ROTH, L.M., 1982. A taxonomic revision of the Panesthiinae of the world IV. The genus Ancaudelia SHAW, with additions to parts I-III, and a general discussion of distribution and relationships of the compone.nts of the subfamily (Dictyoptera: Blattaria: Blaberidae). Australian Journal of Zoology, Supplementary Series No. 82: 1-142. 5 Manuscript received: 14.4. 1999 Príloha č. 8 VIDLIČKA, Ľ. 2002. The new cockroach species from the genus Chorisoserrata from Laos (Blattaria: Blattellidae: Pseudophyllodromiinae). Entomological Problems 32(2): 145-147. Eutomological Problems. 32(2): 145-147, March 2002 The new cockroach species from the genus Chorisoserrata from Laos (Blattaria: Blattellidae: Pseudophyllodromiinae) Lubomfr VIDLICKA lnstilLilc of Zoology, Slovak Academy of Sciences. 842 06 Bratislava, Slovakia. E-mail: uzaevidl@savba.sk VmuCKA, L. 2002. The new cockroach species from the genus Chorisoscrrat;) from Laos (Biattaria: Blattellidae: Pscudophyllodromiinac). Eutomol. Probl. 32(2): 145-147. - The genus Chorisosermta Rol'll. 1998 contained up to now only two species. Ch. CIJiicalis H ANITSCII from Sumatra and Ch. .mgiuaria H ANITSCII (only o known) from Vietnam and East Borneo. The male and female of third specie~ Chorisosermtajeudeki from Laos arc described here. Unlike Ch. sagiuaria the male or Ch. jeudeki have developed tergal gland on abdominal tergum?. The key or the genus Chorisosermta is presented. Key words: Blauaria. Chorisoserr(lla. Laos Introduction The genus C/l()risoserraw descri bed RoTH ( 1998). Symmetrical serrated tarsal claws, truncate vertex, maxillary palpomerc fourth longer that the fifth and unspecialiscd seventh abdominal tergum were used for separation of this genus from the genus Chorisoueura BRUNNER OE Wt~Tr~;Nwn. 1865. RoTH ( 1998) added into the genus Clwrisosermw two species: Ch. sagillaria described by HANITSCH ( 1927) from Vietnam and Ch. apicalis described by HANITSCH ( 1929) from Sumatra. PlliNCIS ( 1950) recordeel the second species from East 13orneo. Both species were previously inscnccl in Chorisoueura.Species that remained in the genusCltorisoueura arc distributed only in New Word (South, Central and North America). Key to males of Chorisoserrata Hind margin of supraanal plate w ith a distinct ushapcd excavation; apex of intcrstylar margin rounded (Fig. 21) ...................................................................... 2 Hind margin ofsupraanal plate without excavation; apex of intcrstylar margin more or less even. (Vietnam) .......... ................................................................ Ch. sagillaria 2 Rounded apex or interstylar margin with deep u-shapcd excavation; pronotum semicircular (Figs. 2C. D. I). (Laos) .......................................................... Ch.jendeki Rounded apex or intcrstylar margin without excavation; pronotum suboval. (Sumatra, East Borneo) ... Ch. apicalis Chorisoserratajendeki, sp. nov. (Figs. I . 2A- 1) Male: Head exposed, markedly triangular. compound eyes 1·elativcly small, intcrocular space wide. vertex flat, maxillary palpomcrc 2 short, palpomeres 3 and 4 very long and slender, palpomcrc 5 bulbous, more as 2 time shorter that previous. densely hairy (f-igs. 2G, H); antennae longer as the body, scapus 2 time longer as wide, pedicel short. 145 first segmcnl ol' f'lagcllum about thrice the length as following segments, the segments arc lengthen in the direct ol' apex; pronotum semicircular, posterior margin nearly straight; tegminanarrow, lanceolate. exceeding beyond the end of the abdomen, venation distinct. between veins and branches orcostall'icld obvious screens c1·catcd spatial cell pattern (Fig. 2A): hind wings well developed. costal t'icld narrow with indisttnct visible veins. radial vein simple. in the apex branched. median vein indistinct. visible only nca1· the apex, cubital vein in last fourthY-bifurcatc. on the apex bent upwards, intercalary apical triangle small but distinct ( { Fig. I. C/wri.,·o.50 % were retained. Results Systematic entomology Order: Blattida Latreille, 1810 (= Blattaria Latreille, 1810=Blattodea Brunner von Wattenwyl, 1882) Family: Blattellidae Karny, 1908 Subfamily: Pseudophyllodromiinae Hebard, 1929 Supella Shelford, 1911 Fig. 2. Supella miocenica sp. nov. from the Miocene Chiapas amber of Mexico. Holotype MUCAS-001. a – Dorsal view; b – Ventral view; c – Head; d – Fore leg; e – Fore tarsus. Original by PC and FV. Total specimen length (from the head to the end of wings) 10 mm. 466 VRŠANSKÝ, CIFUENTES-RUIZ, VIDLIČKA, ČIAMPOR Jr. and VEGA GEOLOGICA CARPATHICAGEOLOGICA CARPATHICAGEOLOGICA CARPATHICAGEOLOGICA CARPATHICAGEOLOGICA CARPATHICA, 2011, 62, 5, 463—475 Type: Blatta longipalpa Fabricius, 1798 (circumtropical, native in Africa).  = Blatta supellectilium (Serville, 1839) = Blatta incisa (Walker, 1868) = Ischnoptera quadriplaga (Walker, 1868) = Blatta extenuata (Walker, 1868) and numerous other synonyms of diverse specimens from the West Indies (see Rehn 1947). Composition: Besides the type; S. vicina Chopard, 1958 [Comores islands]; S. abbotti Rehn, 1947 [Kenya, Tanzania, Malawi]; S. dimidiata Gerstaecker, 1869 [Kenya, Congo, Angola, Rhodesia, Malawi, Mosambique, Botswana, Natal, Transvaal]; S. orientalis Grandcolas, 1994 [Saudi Arabia]; S. (Mombutia) chapini Rehn, 1947 [Congo]; S. (Nemosupella) gemma Rehn, 1947 [Ghana]; S. (Nemosupella) mirabilis [Cameroon, Gabon, Congo, Uganda, Kenya, Tanzania]; S. (Nemosupella) occidentalis Princis, 1963 [Guinea]; S. (Nemosupella) tchadiana Roth, 1987 [Chad]. All extant in Africa. Diagnosis (Rehn 1947, in part): “Pronotum ovate subtrapezoideal in outline. Tegmina of female varying in length from covering but half the abdomen to surpassing the abdominal apex by a distance equal to the pronotal length, in outline ranging from 1.5 times as long as broad. Apex well-rounded. Costal veins numerous, straight oblique, several of the more distal ones usually ramose, reduced in number in the abbreviated tegmined forms; discoidal sectors oblique, tending toward sublongitudinal in males of S. abbotti and S. mirabilis. Anal field pyriform, anal veins five or more, regular; discoidal sectors similarly developed, anal field always fully indicated. Cephalic femora with ventro-cephalic margin bearing a regular series of spines, evenly reducing in length and strength distad (sometimes replaced by setae (e.g. in one limb) – e.g. in S. mirabilis), apical spines of same margin two-three in number, the terminal one much the longer; median and caudal femora with ventral margins spined; caudal tarsi with metatarsus in length surpassing the other articles combined. Arolia well developed; tarsal claw of equal length, their margins unarmed, simple.” Subgenus: Nemosupella Rehn, 1947 Type: Phyllodromia mirabilis Shelford, 1908. Composition: Supella mirabilis, S. gemma, S. tchadiana, S. occidentalis. Diagnosis (ex Rehn 1947 in part – only relevant characters): “Females more robust with tegmina and wings broader and in length less markedly surpassing the apex of the abdomen, apex well rounded. Head pyriform in outline, transverse facial ridge nearly straight transverse; palpi with penultimate and antepenultimate articles elongate. Caudal tarsi moderately slender, metatarsus in length somewhat exceeding that of the remaining tarsal articles combined”. Supella (Nemosupella) miocenica sp. nov. (Figs. 2a—c, 3a—c) Holotype: MUCAS-001. A complete female. Type locality: Los Pocitos, Simojovel de Allende, Chiapas amber. Type horizon: Lower Miocene, Mazantic Shale, Tertiary. Differential diagnosis: The present species differs from its consubgeners, S. mirabilis in being smaller (total body length with wings ca. 10 mm vs. 16—25.5 mm in S. mirabilis), in having discoidal sectors oblique (oblique to sublongitudinal in S. mirabilis), and in having the central dark pronotal macula divided into two parts; from S. gemma in size (similar as S. mirabilis), in having wings more coloured and pronotal central macula smaller; from S. tchadiana of a comparable size (12 mm), in having pronotum without markings; and from S. occidentalis in colouration and size. Description: Very small species (overall body length without wings about 9 mm). Head small (length to width: 1.6/1.3 mm) with very fine antenna covered by a row (basal segments) or up to four rows with four short (roughly corresponding to segments’ width) sensilla chaetica in each. Pronotum ovate subtrapezoidal in outline, significantly vaulted (1.7/2.9 mm), pale, with dark macula covering the whole posterior margin and central macula, divided into two separate parts. Body slender, sterna (especially the posteriormost ones) widely carved, cerci with up to 16 segments, very long (1.8 mm) with dense fine sensilla chaetica of diverse length (0.2—2 times as long as the width of the median cercal segment). Legs slender, long (including fore legs), cursorial. Fore legs terminated with claw and arolium; femora (1.7/0.1 mm) with dense chaetica, tibia (0.9/0.07 mm) with at least 5 fine spurs (arrangement of spines along the tibiae in 3 rows), tarsi 5-segmented (0.7, 0.2, 0.1, 0.05, 0.2 mm). Front femur Type B2, with four proximal stout spines succeeded by a row of uniform piliform spinules, terminating in two large spines; pulvilli present only on the fourth tarsomere, tarsal claws symmetrical and unspecialized (simple), simple arolia present. Mid femora wide and with numerous sensilla (about 26 spines in two rows) (2.1/0.6 mm), tibia also robust (1.6/ 0.2 mm), with long fine spurs (10 or more); tarsi curious, extremely short (0.7/0.1 mm), with an indistinct claw and arolium. Hind legs long, femora robust (2.6/0.8 mm), with two rows with numerous (about 19 2) fine spurs and terminal two fine spurs; tibia long (2.9/0.2 mm), with numerous (up to 30) fine spines; tarsi long (1.3, 0.3, 0.1, 0.1, 0.3 mm), densely haired, with distinct claw and arolium. First third of the first Fig. 3. a—d – Supella miocenica sp. nov. from the Miocene Chiapas amber of Mexico. Holotype MUCAS-001. Ventral view. a – Complete specimen with curculionid beetle; b – detail on head with mycelia of parasitic fungus Cordyceps or Entomophthora (white “bubbles”); c – detail on cercus; d – dorsal view, total specimen length (from the head to the end of wings) 10 mm. e – Undescribed male of Allacta or Supella sp. from Central Laos. Total length ca. 12 mm. Nemosupella is even more similar in having the nearly identical pronotal shape and colouration (the central macula is divided into 2 parts only in S. miocenica). Photograph of the sister species, S. (Nemosupella) mirabilis is available free on the web (FOW). 467AFRO-ASIAN COCKROACH AND LOST TERTIARY AMERICAN ENTOMOFAUNA GEOLOGICA CARPATHICAGEOLOGICA CARPATHICAGEOLOGICA CARPATHICAGEOLOGICA CARPATHICAGEOLOGICA CARPATHICA, 2011, 62, 5, 463—475 Fig. 3. 468 VRŠANSKÝ, CIFUENTES-RUIZ, VIDLIČKA, ČIAMPOR Jr. and VEGA GEOLOGICA CARPATHICAGEOLOGICA CARPATHICAGEOLOGICA CARPATHICAGEOLOGICA CARPATHICAGEOLOGICA CARPATHICA, 2011, 62, 5, 463—475 tarsal segment sparsely (5) haired, the rest with at least 33 sensilla; second segment with 9, third with two, fourth with six and terminal one with at least two sensilla. Forewing dark, with characteristic pale anterior margins and central stripe making the illusion of the body being separated into two halves. Apex rounded. Venation simple, with minimum deformities. Total number of veins meeting the margin (without A) ca. 30. Sc simple, short, R nearly straight, R branches simple except for the few terminal branches (18 R veins meet margin). RS not clearly differentiated. Discoidal sectors oblique. M secondarily branched, with about 10 branches at the margin. CuA is fused with M and perhaps consists of a single terminally dichotomized branch. Anal field pyriform, fully indicated, anal veins simple, regular, apparently five or more. Intercalaries locally distinct (in basal R and CuA) and probably common. Remarks: For comparison and details see Discussion. Derivation of name: miocenica is after the Miocene epoch. Character analysis: (0 – plesiomorphy; 1—3 – apomorphies relative to other species within genera Supella and Allacta, and/or Cariblattoides Rehn & Hebard, 1927 and Symploce (and fossil Piniblattella Vršanský, 1997), which were chosen as outgroups based on high similarity, and based on retension of all original states of characters due to standard habitus (not derived like in Supella and Allacta): 1. Head with interocular (IO) space roughly identical with the distance between antennal sockets: apomorphy; plesiomorphic is partially reduced IO space (as in Symploce and most regular cockroaches); IO space nearly absent is a strong apomorphy (2), eyes very small and remote (3). 2. Pronotum large ovate subtrapezoidal in outline, significantly vaulted: plesiomorphic (as in most cockroaches including Symploce and Piniblattella); apomorphic states are 1) small and round; 2) subelliptical with margins parallel. 3. Pronotal colouration with basal dark stripe and two central maculas: plesiomorphic (central maculas are present in most primitive blattellids such as Piniblattella), derived states are alternative colourations (dark with cental pale macula). 4. Subgenital plate long: apomorphy (plate is plesiomorphically of normal length in Symploce, Piniblattella and most other blattellids). 5. Forewing with apex of radial area reduced to mostly simple branches (RS indistinct): apomorphy (RS distinct in primitive Symploce and Piniblattella). 6. Forewing M and CuA branched and curved: plesiomorphy (as in Mesozoic cockroaches); these branches are apomorphically longitudinal even in some Symploce; serrate (2). 7. Forewing colouration with characteristic transversal stripes: apomorphy at level of common ancestor of Supella and Allacta. Plesiomorphic state is colouration uniform but not strong as in Cariblattoides, and other primitive blattellids (Nahublattella, Neoblattella etc.). 8. Colouration of wings soft: plesiomorphy; pronotum strongly dark, with sophistic pale stripes on forewing is apomorphic (funebris spp. group). 9. Colouration of wings and pronotum with continuous colouration: plesiomorphy; derived apomorphic state is colouration in dark dots, lines and blotches. This character was found as a global irreversive reorganization of morphology and colouration and thus has been given higher weight in the cladistic analysis. 10. Hindwing R1 distinct: plesiomorhy (as in most primitive blattellids including Symploce and Piniblattella); R1 is apomorphically reduced to a single vein. 11. Fore tarsi of B-type: apomorphy (tarsi are plesiomorphically A-type in most primitive blattelids including most Symploce). 12. Pulvilli exclusively on 4th tarsomere: apomorphy (pulvilli are plesiomorphically on 4 tarsomeres in primitive blattellids including Symploce). In addition to diagnosis of Allacta (Saussure & Zehntner, 1895), this character was found unique, never occurring homoplastically in any other group (additionally unrelated with respect to size changes) and thus has been given higher weight in the cladistic analysis. 13. 1 or 2 terminal fore femoral spurs: apomorphy (plesiomorphic state is with 3 spines in both A- and B-types of Symploce). This character was found polymorphic within species and even on one specimen (L/R sides – Roth 1991, 1993, 1996 and our observation) and thus has been given lower weight in the cladistic analysis. 14. Habitus robust: plesiomorphy (as in Piniblattella), derived apomorphic states are slender (1), extremely fragile (2) and extremely elongated (3). Allacta Saussure & Zehntner, 1895 = Abrodiaeta Brunner von Wattenwyl, 1893 = Pseudochorisoblatta Bruijning, 1948 = Arublatta Bruijning, 1947 Type: Abrodiaeta modesta Brunner de Wattenwyl, 1893 from Carin Ghecu in Burma, by selection. Composition: Funebris species group (sensu Roth 1993): basivittata (Bruijning, 1947) [New Guinea, Aroe and Aru Islands], bipunctata (Walker, 1869) [Celebes, Aru Islands, New Guinea], funebris (Walker, 1868) [Borneo] (Roth 1993); grandcolasi Roth, 1995 [Irian-Jaya], megamaculata Roth, 1995 [Papua New Guinea], straatmani Roth, 1995 [Papua New Guinea] (Roth 1995), diagrammatica (Hanitsch, 1923) [Malacca, Singapore, Mentawai islands, Sumatra, Java]. Hamifera species group (sensu Roth 1993): bimaculata Bey-Bienko, 1969 [China], diluta (Saussure, 1863) [Ceylon, India], figurata (Walker, 1871) [Ceylon, India], hamifera (Walker, 1868) [Malacca, Java, Borneo, Philippinen], interrupta (Hanitsch, 1925) [Borneo], luteomarginata (Hanitsch, 1923) [Singapore], maculicollis (Hanitsch, 1927) [Vietnam], parva Shelford, 1906 [Borneo], pantherina (Hanitsch, 1933) [Borneo] (Roth 1993); svensonorum Roth, 1995 [Malaysia, Borneo] (Roth 1995). Polygrapha species group (sensu Roth 1993): fascia Roth, 1993 [Indonesia], immunda (Brunner von Wattenwyl, 1893) [Burma, Malacca], polygrapha (Walker, 1868) [Thailand, Malacca, Singapore, Sumatra, Borneo], picturata (Shelford, 1907) [Singapore, Sumatra, Thailand, Malaysia, Borneo], marmorata Walker, 1869 [Burma, Sumatra, Malaysia], mcgavini Roth, 1991b [Indonesia], robusta Bey-Bienko, 1969 [China], transversa Bey-Bienko, 1969 [Vietnam]; arborifera (Walker, 1868) [Malaysia, Java, Borneo, Mentawai Islands], 469AFRO-ASIAN COCKROACH AND LOST TERTIARY AMERICAN ENTOMOFAUNA GEOLOGICA CARPATHICAGEOLOGICA CARPATHICAGEOLOGICA CARPATHICAGEOLOGICA CARPATHICAGEOLOGICA CARPATHICA, 2011, 62, 5, 463—475 Cariblattoides with A-type and pulvilli on 4 tarsomeres, supporting this state as ancestral. Phylogenetically obscure is also the distribution of knee spines at the distal end of the femora – 2 in present species and some Allacta (see character matrix) and Supella, but more often 3 (also in figured most closely related Allacta sp.). The present amber species clearly differs from representatives of the A. funebris species group, which are very dark including the pronotum (eventually with a narrow pale margin only) and with basal narrow pale stripes. A. polygrapha spp. group differs in having a large symmetrical pronotal pattern of dark dots, lines and blotches and forewings chequered with dark cells between veinlets and with larger blotches (A. confluens placed here is somewhat different from other representatives of this species group, it has more coherent colouration and pronotum colouration most similar to the amber specimen. Nevertheless, the shape of the pronotum of S. miocenica is different: dissimilar to any described Allacta spp.). A. puncticollis is also completely different, with a subparabolic reddish brown pronotum with small yellowish spots, but has pulvilli limited to the 4th tarsomere. A. crassivenosa is categorized as incertae sedis and most likely belongs to another genus. The most related to the present amber species within Allacta is the A. hamifera spp. group, which differs in having smaller pronota with a different colouration pattern and in the shape of the subgenital plate which is never as long in Allacta. Even more similar, and hardly recognizable from the Nemosupella spp. is an undescribed representative putatively attributed to Allacta on the basis of identical legs (pulvilli limited to the 4th tarsomere – Figure 2b). Alternatively it can mean that this species belongs to Supella and is its only Asian representative, but more likely it is a transitional taxon leading to Allacta. The figured undescribed species (Fig. 3e) cannot be placed into any spp. groups of Allacta, but is most closely related to the A. hamifera spp. group in the shape of the head and underived colouration. It is apparent that A. funebris and A. polygrapha spp. groups were derived much later, the latter apparently derived via A. confluens, which has similar pronotum colouration and underived forewing colouration. It is clear, that there is no strict hiatus between these two genera, but this cannot be used as a reason for their synonymization or for the erection of additional genera. The problem is that there are known “missing link” taxa in all cockroach families and we also know a half-cockroach—half termite (Vršanský 2010) and also half-cockroach—half mantodean. All studied living cockroach genera with fossil records have these transitional stages too, and the present taxon is no exception. This is a half-Supella—half-Allacta, but better Supella than Allacta. So splitting or erecting does not have a proper place here just because the group is well studied. Paraphyletic taxa and incomplete hiati are present in the vast majority of studied cockroaches, which is a result of the extensive fossil record with ca. 100,000 specimens. So our specimen has synapomorphies of Allacta+Supella (colouration, venation), autapomorphies of Allacta (extremities), but major autapomorphies of Supella (pronotum, subgenital plate). The cladogram (Fig. 4) supports all the above-mentioned inferences, with nearly ideal separation of all spp. groups, but it australiensis Roth, 1991 [Queensland], confluens (Hanitsch, 1925) [Borneo], labyrinthica (Hanitsch, 1927) [Vietnam], loconti Roth, 1993 [Indonesia], megaspila (Walker, 1868) [Malacca, Mentawai Islands, Java, Borneo], ornata Bey-Bienko, 1969 [China], modesta (Brunner von Wattenwyl, 1893) [Burma; type], karnyi (Hanitsch, 1928) [Mentawai Islands, Sumatra] (Roth 1993), brossuti Roth, 1995 [Irian-Jaya], deleportei Roth, 1995 [Papua New Guinea], gautieri Roth, 1995 [Papua New Guinea], nalepae Roth, 1995 [Papua New Guinea], persoonsi Roth, 1995 [Papua New Guinea], srengi Roth, 1995 [Papua New Guinea] (Roth 1995). A. puncticollis (Brunner von Wattenwyl, 1898) [Borneo] (not placed sensu Roth 1993) and A. crassivenosa Bolívar, 1897 [India] (incertae sedis sensu Roth 1993). Except for problematic A. australiensis, all are extant in Asia. Diagnosis: Front femur Type B [B2 or B3 according to Roth 1993, or C (right and left femur can differ in type (B2-B3 or even B-C) according to Roth (1991, 1996))]; pulvilli present on fourth tarsomere only, tarsal claws simple, symmetrical, arolia present (Roth 1995). Discussion Supella-Allacta complex Because there is an immense similarity and relation between the genera Supella and Allacta, it is necessary to provide arguments for the categorization of the present fossil within Supella. These genera are clearly distinguished among other blattellids by autapomorphies including the characteristic colouration with a pale stripe appearing to divide the body into two (or, in combination with the pronotal colouration into 3) separate parts; M and CuA descending in an obtuse angle; mostly simple R branches with indistinct RS (homoplastic with Pseudomops Serville, 1831 and Ectobius Stephens, 1835); and in other characters unseen in the present fossil (see Rehn 1947). Supella restricted to Africa is much more diverse and polymorphic (including forms identical with Allacta) which suggests its direct ancestral position in respect to Asian and Australian Allacta (the latter is restricted to a single species A. australiensis from Queensland, which has an indicated hindwing R1 as in Supella, but is very different from both Supella and Allacta in having eyes nearly connected, and in subelliptical – with anterior and posterior margins parallel – form of pronotum; thus it can simply represent Supella or a different genus). The present amber species has fore legs of B type identical (!including the number of proximal spines and terminal spurs) with Allacta, dissimilar to most Supella (A-type), but these types can be polymorphic (L/R) in a single specimen of Allacta (B2/B3 or even B/C – see above), and the Supella subgenus Nemosupella can have this B-type pattern too. The most primitive living blattellid, Symploce has mostly A3 type, but ocassionally B3, thus it is likely A is the original type, but the above-mentioned polymorphisms are evidence for a convergent nature of this character changes. Closely related and perhaps derived from Supella is also the genus 470 VRŠANSKÝ, CIFUENTES-RUIZ, VIDLIČKA, ČIAMPOR Jr. and VEGA GEOLOGICA CARPATHICAGEOLOGICA CARPATHICAGEOLOGICA CARPATHICAGEOLOGICA CARPATHICAGEOLOGICA CARPATHICA, 2011, 62, 5, 463—475 was weak in the position of A. interrupta (well nested within hamifera group by intuition (Roth 1993), very closely related to A. hamifera) within the polygrapha group. The second problem is the terminal position of A. confluens which is expected to be the basalmost polygrapha group stem (it has a very basal position when all characters were equally weighted). Third, A. bimaculata+A. pantherina (hamifera spp. group) appear nested within Supella. Notably, all three problems are absent in the cladogram with the normal weight of character 13 (weight 1 in contrast to weight 5 of all other characters except weight 10 of characters 9 and 12), which is polymorphic (and thus has been given a lower weight), A. bimaculata+A. pantherina (hamifera spp. group) are nested (as basalmost offshots) within hamifera spp. group using the same weights but using different (500) number of maximal search trees. A. puncticollis (out of any spp. group) appears to be a sister taxon to A. svensonorum and A. luteomarginata (trichotomy at cladogram). When all characters were weighted normally and in many other options tried, S. dimidiata were often nested within Allacta. S. dimidiata is a good Supella, and this placement is evidence for numerous homoplasies within the group. Generally, the homoplasies wihin cockroaches are enormous. Paleogeographically, the basalmost blattellids were preserved in Asia, but their ancestors within the Mesoblattinidae were also common in Europe (Vršanský & Ansorge 2007). The basalmost Supella is up to recently clearly nested within Africa, but the present American species is clear evidence for the past circumtropic distribution. Allacta was possibly derived in Africa but radiation was apparently not limited to Asia (except for the mentioned synanthrope, Allacta is present in sediments of the Green River in Colorado). According to this cladogram A. australiensis was derived quite recently from one of the species in the polygrapha spp. group. From the most primitive blattellids, Nahublattella and Symploce (for position of these genera within Blattellidae see also Klass & Meyer (2006)), there is a significant reduction and simplification of venation, which is evidence of the very early divergence of the whole complex from the main blattellid stem. Another eventual conclusion considers the small size of the present species, which may be a plesiomorphic character, which would explain the significant simplification of venation even in large living species. Notably, in the derived genus Allacta, terminal radial veins are simplified only in the smallest species (A. parva). Notwithstanding, some living Supella and Nemosupella in particular have more primitive traits and likely diverged before the speciation of S. miocenica. Its single insignificant deformity (not clearly visible, insignificantly changing the wing geometry) supports the fact that Eocene and Miocene species have few accumulated wing deformities and their occurrence in living species represents support for them being inheritable mutations (see Vršanský 2005). Extinct American Supella In spite of the close relation of its 3 known subgenera, the general habitus of the respective taxa in Supella is very diverse. S. longipalpa is a slender, fine cockroach, while S. orientalis has extremely elongated wings (—1:4.5), and the subgenus Nemosupella is clearly differentiated by robust habitus with a robust unplain pronotum and more or less normal longitudinal veins. The present species share all the autapomorhies of the genus and subgenus Nemosupella and can be safely categorized within this taxon. The colouration and general appearance is hardly recognizable from females of S. mirabilis, its sister species, although the shape of the pronotum is somewhat transitional between its males and females. Except for the significantly smaller size of the present new species, the sole difference between the two taxa is the divided central pronotal macula. There are no additional plesiomorphies, which indicate the present as well as the living species of Nemosupella diverged near the Mid-Miocene. The other three representatives of the subgenus are closely related to S. mirabilis, but are dissimilar to the present fossil due to different colouration. On the other hand, other representatives of the genus such as S. longipalpa reveal significant divergence from the main morphological standard and suggest rapid phylogeny at the subgeneric level. The similarity with the undescribed representatives of the genus Allacta (Fig. 3e) is so striking (and involves size – Nemosupella are much larger), that it is apparent Allacta is derived from Nemosupella via the predecessors of this undescribed taxon and also via predecessors of Supella miocenica. Its direct ancestry can be excluded based on the derived pronotum of S. miocenica. While there is a standard Allacta placed within a living spp. group (polygrapha) present in much older Eocene Green River sediments, the Chiapas is apparently another case of the presence of primitive species in amber, when compared to isochronous sedimentary record. Relic character of amber cockroach (and all insect to some extent) assemblages is characteristic also for the only two studied Mesozoic ambers (Lebanon and Archingeay, but also in Baltic amber), which might either be caused by different methods of dating, or by the more humid, dark and colder source microclimates of amber forests. This is in contrast to Cretaceous ecosystems, where primitive cockroach forms of the Jurassic type are restricted to younger, but dry to semiarid ecosystems (Vršanský et al. 2002). Very little can be said about the ecology of the present species. Generally the ecosystems of Chiapas were perhaps diverse, ranging from lowland tropical dry forest tending toward open forest and mangroves (Solórzano-Kraemer 2007). The wide range of ecosystems from the rainforest down to savannas, of the closely related S. mirabilis, indicate this genus is highly adaptable to diverse conditions. This ecological plasticity could have resulted in invasions of early Supella (Nemosupella) into the Americas before the Mid-Miocene (and later into Asia as the genus Allacta). Living species of Supella are cavicolous (Grandcolas 1994) and the genus most likely also originated in Africa because the most primitive blattellid, Symploce Hebard, 1916 is circumtropic, but rare in America. On the other hand, the genus Nahublattella Bruijning, 1959 considered to be even more primitive by Klass (1997) is native to Central and South America, which could indicate the opposite. The parasitic (or predatory) fungus Entomophthora or Cordyceps is indeterminable, but the mycelium is richest in 471AFRO-ASIAN COCKROACH AND LOST TERTIARY AMERICAN ENTOMOFAUNA GEOLOGICA CARPATHICAGEOLOGICA CARPATHICAGEOLOGICA CARPATHICAGEOLOGICA CARPATHICAGEOLOGICA CARPATHICA, 2011, 62, 5, 463—475 Fig. 4. Parsimony analysis of all the known Supella and Allacta species (excluding obscure A. crassivenosa, S. occidentalis, S. vicina, and including 3 undescribed Allacta and/or Supella species) with their geographic distribution. S. miocenica and Piniblattella vitimica are extinct. Position of A. interrupta (top) is illusory due to numerous homoplasies with A. robusta and other polygrapha spp. group species, as this species apparently belongs to the hamifera spp. group. 50% majority consensus tree from 1000 equally parsimonious trees was gained with maximum parsimony search (PAUP). Numbers above branches represent clade frequencies in %. the junction of head and pronotum and could have its epicentre in the head. This fungus provides a contribution to the poorly known microorganisms of the Chiapas amber. Only a ?Bacillus-like cell and two types of budding-bacteria-like microrganisms were reported previously (Veiga-Crespo et al. 2007). Comments on synanthropism in cockroaches The fifty species of synanthropic cockroaches comprise only an insignificant fraction of the total of about 5000 (Bell et al. 2007) described species of living cockroaches. Nevertheless, they are important for their number and ecological significance. Most of the species had their genera recently limited to certain continents and only nowadays have become cosmopolitan (or circumtropical). On the contrary, their history on a geological scale is much richer than we would expect and their original distribution was also circumtropical. The genus Blattella was until very recently limited to Africa (26 species), Asia and the Pacific islands (23 species) (Roth 1985), and the synanthropic species B. germanica spread to the whole world from east Asia (Roth 1985). The occurrence of this genus in the Mesozoic of Europe as a single nymph (adult could eventually differ) (Vršanský 2008) and in the Eocene of the USA (Green River, Colorado) is thus surprising. Free Ectobius is limited to Europe, but in the Tertiary it was cosmopolitan. The same situation is found with the present Supella introduced from North Africa to Central America on 472 VRŠANSKÝ, CIFUENTES-RUIZ, VIDLIČKA, ČIAMPOR Jr. and VEGA GEOLOGICA CARPATHICAGEOLOGICA CARPATHICAGEOLOGICA CARPATHICAGEOLOGICA CARPATHICAGEOLOGICA CARPATHICA, 2011, 62, 5, 463—475 slave ships (Rehn 1947). The Miocene of Mexico is quite distant from the recent distribution limited to Africa. According to Princis (1954), Blatta originates from the Near and Middle East – the native place of the closely related Shelfordella Adelung, 1910, but the other predicted origin of this genus is North Africa (Rehn 1945; Cornwell 1968), and Blatta furcata Bohn, 1985 is known from the Near East and North Africa (Bohn 1985). Their close relative also occurred in the Eocene of the USA (Green River). The last significant synanthrop is Periplaneta, recently limited to Asia. The only viviparous cockroach group met the same fate: the Diplopteridae, now restricted to two genera (one African, one Asiatic), were common in America during the Eocene (in Green River). This family is also reported from the Eocene of Quilchena (Archibald & Methewes 2000), but the figured specimen (Q-0040) is very different from all known Diplopteridae (details to be provided elsewhere). Thus it is apparent that all the synanthropic species belong to cosmopolitan genera (cosmopolitan genera are otherwise rare), very likely with a broad environmental tolerance – and thus pre-adapted for synanthropism. Lost Tertiary American entomofauna The occurrence of some cosmopolitan synanthropic species in the Americas and their absence prior to re-introduction, triggered the present discussions about the causes of the extinction of these entomofaunas during the Tertiary. It was Eocene Ectobius from the Green River – a member of an extinct genus, but which was extremely easily reintroduced in North America several times (with 3 species), which concentrated our efforts on the search for this fauna in 2006. It was very rapidly supported by the discovery of a honey bee in the Miocene sediments of Nevada (Engel et al. 2009), a genus extinct in the Americas. Poinar et al. (1999) also noticed the Early Tertiary North American extinctions of species of living tropical ant genera Technomyrmex Mayr, 1872, Leptothorax Mayr, 1855 and Dolichoderus Lund, 1831, recorded in the Eocene of British Columbia. These records comprise only the species level, which is insignificant on the present time scale, but Technomyrmex is now, with the exception of a single Central American species (and its abundance in the Dominican amber), limited to the tropics of the old world; Leptothorax is holarctic today; Dolichoderus is cosmopolitan. The Eocene of the Okanagan Highlands reveals a representative of the Myrmeciinae, currently limited to the Australian region (Archibald et al. 2006). The only genus – determined hemipteran from Quilchena, Megymenum is today found in only in the Oriental biotic region and Australia (G. Gross, personal communication in Archibald & Mathewes 2000). The post-Miocene cooling was unlikely to be a reason for this extinction, as both Ectobius and Apis Linnaeus, 1758 occur in Northern Europe today. The loss of another taxon from North America is now apparent – Supella, in which case cooling could be the reason as nowadays this genus is restricted to Africa. On the other hand it is hardly possible that this taxon went extinct in warm Central and South America. Their historical absence in South America is also difficult to anticipate as other cockroach taxa from the Dominican amber are present in South America (see below). Thus, of fourteen studied cockroach genera (all still living) from the Eocene—Miocene of North America only two (Cariblattoides, Sigmella) survive nowadays in (South and Central) America and only Cariblattoides is characteristic for Central America (although it occurs in Brazil). It is perhaps not incidental that a representative of Sigmella was dominant during the Eocene and also in the present Mexican amber. An additional taxon reported from the Mexican amber is Ischnoptera sp., currently distributed in Central and South America, but this determination is obscure (determination may be correct, but no diagnostic characteristics for the genus are provided, and the species (Ischnoptera sp. 1 in Solórzano-Kraemer 2007) may well belong to Supella or some other blattellid taxon). All things being equal, the diversity of cockroaches in Chiapas amber was certainly high: 7 specimens belong to 7 different genera and species of the family Blattellidae. Another cockroach genus, exclusively African today, known from the Tertiary of North America is Namablatta Rehn, 1937. The closely related termites are ubiquitous in the present context. While Kalotermes nigritus still lives in South America, the whole cosmopolitan family Mastotermitidae (present as Mastotermes electromexicus Krishna & Emerson, 1983 and Mastotermes electrodominicus Krishna & Grimaldi, 1991 occurring in the Dominican amber according to Solórzano-Kraemer (2007)) went extinct in the Americas and survives only in Australia. Some other insect groups from the Mexican amber (Solórzano-Kraemer 2007) and Green River (our data) reveal a similar pattern, to be analysed in detail elsewhere. It is of special consideration that the Dominican amber shows a very different pattern in respect to the distribution of cockroach genera. If the determinations of Arillo & Ortun~o (2005) are correct, then there are no shared taxa (even on the generic level) between the Mexican and the Dominican amber, and all Dominican amber cockroach genera are not only highly advanced, but with the exception of the circumtropical Anaplecta Burmeister, 1838 all – Euthlastoblatta Hebard, 1917, Pseudosymploce Rehn & Hebard, 1927, Plectoptera Saussure, 1864, Cariblatta Hebard, 1916, Holocompsa Burmeister, 1838 (a single species (H. debilis (Walker, 1868)) also occurs in Ceylon, Java, Sumatra, Borneo and Phillipines) – are characteristic of Central and/or South America. Taxa described by Gorochov (2007), including obscure Agrabtoblatta Gorochov, 2007 and Erucoblatta Gorochov & Anisyutkin, 2007, also appear limited to South America. Taking all this preliminary information together, it is apparent that sometime after the Mid-Miocene some extensive environmental change influenced North and probably also Central and South America, resulting in the loss of cosmopolitan Early Tertiary entomofaunas. Judging from the modern composition of the Dominican amber, this may (if the abovementioned determinations are correct) mean a recovery occurred during the time between the Early Miocene Mexican amber (23—7.1 Ma) and the Dominican amber times 473AFRO-ASIAN COCKROACH AND LOST TERTIARY AMERICAN ENTOMOFAUNA GEOLOGICA CARPATHICAGEOLOGICA CARPATHICAGEOLOGICA CARPATHICAGEOLOGICA CARPATHICAGEOLOGICA CARPATHICA, 2011, 62, 5, 463—475 (20.5—16.4 Ma). The dating of both of ambers is still uncertain (the abovementioned datings are after EDNA database), more counterbalanced by the Late Barstovian (14.5—14 Ma) dating of the Nevada (with honeybee) sediments. Recently, the age of 23 Ma was designated for the basalmost amber bearing strata of Chiapas (Vega et al. 2009a). As it is very difficult to imagine some geological or ecological process which would be able to trigger such an extensive change (aridization and/or cooling would not influence some of the cockroaches), the change was probably biological – either caused by diversification of cockroach parasites which were consequently reduced (as reintroduction has been easy), or diversification of more progressive insect groups. The parasite hypothesis may be valid in the present case, as Comperia merceti eradicated populations of synanthropic cockroaches in Europe, even when its function as a control of Supella is still not validated (Goudey-Perriere 1991) and Encyrtidae and Eupelmidae parasitizing ootheca have Tertiary origin (A.P. Rasnitsyn, personal communication 2010), known only from Europe starting with the Eocene Baltic amber (Trjapitzin 1963). (These parasites could also cause extinctions of external ovipositor bearing cockroaches which did not lay eggs in ootheca.) The occurrence of advanced taxa in the Dominican amber (isochronous with the Mexican amber according to Solórzano-Kraemer (2007), however see above) would favour the diversification and radiation of the modern South-American cockroach taxa hypothesis. Nevertheless, Diploptera is the most advanced cockroach that has ever lived, and thus its extinction in the Americas falsifies the latter hypothesis. On the other hand, it is possible that its viviparity evolved only in the common ancestor of Asian and African species. Plants were perhaps not as influenced as fauna, as Eocene flora of British Columbia in Canada is characteristic of the modern eastern North American deciduous forest zone, principally the mixed mesophytic forest, but also including extinct taxa: taxa known only from eastern Asian mesothermal forests, and a small number of taxa restricted to the presentday North American west coast coniferous biome (Greenwood et al. 2005). Also, according to Solórzano-Kraemer (2007), all plants from the Chiapas amber are currently present in Pacific coastal forest. Conclusions The genus Supella with S. miocenica sp. nov. was native to America during the Miocene time of the Chiapas amber. It represents another case of rich cosmopolitan Early Tertiary entomofauna, which suddenly went extinct in America somewhere around the Miocene (but which still survives in other continents). Supella/Allacta complex (Allacta was derived from Supella) is another case of the genera which now includes synanthropic species, which were natively circumtropic, and can be easily reintroduced in America nowadays. S. (Nemosupella) miocenica sp. nov. is the earliest known cockroach which can be categorized within the living subgenus and also the first published direct evidence of transitional species (and thus incomplete hiatus) at the level of living genera. Acknowledgments: We thank the Museo Comunitario del Ámbar de Simojovel, Chiapas for making this material available for study; the generous support of Luis Zún~iga and Jorge Balcázar is greatly appreciated; Sonia Fraga Lopes (National Musem, Rio de Janeiro), Dong Ren (Capital Normal University, Beijing), Maria del Carmen Perrilliat (Institute of Geology, Mexico), Jozef Michalík (Geological Institute, Slovak Republic) and five anonymous reviewers for revision of the manuscript, Ladislav Roller (Institute of Zoology SAS, Bratislava) for literature supply, Ivona Kautmanová (Slovak National Museum, Bratislava) for fungus determination and Graeme Butler (Bratislava) for linguistic correction. Supported by the UNESCO, AMBA/NUUR, VEGA 6002, 2/0125/09, 2/0167/9, MVTS and the Literary Fund. References Archibald S.B. & Mathewes R.W. 2000: Early Eocene insects from Quilchena, British Columbia, and their paleoclimatic implications. Canad. J. Zool. 78, 8, 1441—1462. Archibald S.B., Cover S.P. & Moreau C.S. 2006: Bulldog ants of the Eocene Okanagan Highlands and history of the subfamily (Hymenoptera: Formicidae: Myrmeciinae). Ann. Entomol. Soc. Amer. 99, 3, 487—523. Arillo A. & Ortun~o V.M. 2005: Catalogue of fossil insect species described from Dominican amber (Miocene). Stuttgarter Beitr. Naturkunde B 352, 1—68. Bell W.J., Roth L.M. & Nalepa C.A. 2007: Cockroaches: ecology, behaviour, and natural history. Johns Hopkins University Press, Baltimore, 1—230. Bohn H. 1985: Blatta furcata (Karny), the nearest relative of the Oriental cockroach (Blatta orientalis L.) (Insecta: Blattodea: Blattidae). Israel J. Zool. 33, 1—2, 39—50. Bousfield E.L. & Poinar G.O. Jr. 1994: New terrestrial amphipod from Tertiary amber deposits of Chiapas province, southern Mexico. Historical Biology 7, 105—114. Calvillo-Canadell L., Cevallos-Ferriz S. & Rico-Arce L. 2009: Miocene Hymenaea flowers preserved in amber from Simojovel de Allende, Chiapas, Mexico. Rev. Palaebot. Palynol. 160, 3—4, 126—134. Castan~eda-Posadas C. & Cevallos-Ferriz C.R.S. 2007: Swietenia (Meliaceae) flower in Late Oligocene—Early Miocene amber from Simojovel de Allende, Chiapas, Mexico. Amer. J. Botany 94, 1821—1827. Clopton R.E. & Gold R.E. 1996: Host specificity of Gregarina blattarum von Siebold, 1839 (Apicomplexa: Eugregarinida) among five species of domiciliary cockroaches. J. Invertebr. Pathol. 67, 219—223. Cornwell P.B. 1968: The Cockroach. Vol. 1. A laboratory insect and an industrial pest. Hutchinson and Co., London, 1—391. Engel M.S. 2004: Arthropods in Mexican amber. In: LlorenteBousquets J.E., Morrone J.J., Yán~ez-Ordón~ez O. & VargasFernández I. (Eds.): Biodiversidad, Taxonomía, y Biogeografía de Artrópodos, v. IV. UNAM/CONABIO First Edition, México D.F., 175—186. Engel M.S., Hinojosa-Diaz I.A. & Rasnitsyn A.P. 2009: A honey bee from the Miocene of Nevada and the biogeography of Apis (Hymenoptera: Apidae: Apini). Proc. Cal. Acad. Sci., Ser. 4, 60, 1—20. Fabricius J.C. 1775: Systema entomologiae, sistems insectorum classes, ordines, genera, species, adiectis synonymis, locis, descriptionibus, observationibus. Officina Libraria Kortii, Flensburgi et Lipsiae, 1—832. 474 VRŠANSKÝ, CIFUENTES-RUIZ, VIDLIČKA, ČIAMPOR Jr. and VEGA GEOLOGICA CARPATHICAGEOLOGICA CARPATHICAGEOLOGICA CARPATHICAGEOLOGICA CARPATHICAGEOLOGICA CARPATHICA, 2011, 62, 5, 463—475 Fathpour H., Emtiazi G. & Ghasemi E. 2003: Cockroaches as reservoirs and vectors of drug resistant Salmonella spp. Fresenius Envi. Bull. 12, 7, 724—727. Ferrusquía-Villafranca I. 2006: The first Paleogene mammal record of middle America: Simojovelhyus pocitosense (Helohyidae, Artiodactyla). J. Vertebrate Paleontology 26, 989—1001. Frost S.H. & Langenheim R.L. 1974: Cenozoic reef biofacies; Tertiary larger foraminifera and scleractinian corals from Chiapas, Mexico. Northern Illinois University Press, De Kalb, 1—388. García-Villafuerte M.A. 2008: First fossil record of the genus Hemirraghus (Araneae, Theraphosidae) from the Tertiary amber of, Chiapas, México. Rev. Ibérica. Aracnología 16, 43—47 (in Spanish). Gorochov A.V. 2007: New and little known Orthopteroid Insects (Polyneoptera) from fossil resins: Communication 2. Paleontological J. 2, 39—50. Goudey-Perriere F. 1991: Comperia merceti (Hymenoptera, Chalcidoidea, Encyrtidae) parasitizes ootheca of the cockroach Supella longipalpa (Dictyoptera, Blattellidae). Bull. Soc. Zool., France 116, 3—4, 219—228. Grandcolas P. 1994: Blattaria (Insecta: Dictyoptera) of Saudi Arabia: a preliminary report. Fauna of Saudi Arabia, 14, 40—58. In: Büttiker W. & Krupp F. (Eds.): Fauna of Saudi Arabia. Riyadh, Basle. National Commission for Wildlife Conservation and Development, Pro Entomol., 454. Greenwood D.R., Archibald S.B., Mathewes R.W. & Moss P.T. 2005: Fossil biotas from the Okanagan Highlands, southern British Columbia and northeastern Washington State: climates and ecosystems across an Eocene landscape. Canad. J. Earth Sci. 42, 2, 167—185. Karny H. 1908: Orthoptera. A. Dictyoptera. In: Wissenschaftliche Ergebnisse der Expedition Filchner nach China und Tibet. Vol. 10, Part 1, Section 1. Zool. Sammlungen Hexapoda, 1903—05, Berlin, 1—56, pls. 1—2, figs. 1—25. Khrustalyova N.A. 1993: Study of the motility and distributional capacity of synanthropic cockroaches obtained from the natural biotops and kept together in laboratory conditions. Zool. Zh. 72, 10, 36—40.     Kinfu A. & Erko B. 2008: Cockroaches as carriers of human intestinal parasites in two localities in Ethiopia. Trans. Roy. Soc. Trop. Med. H 102, 11, 1143—1147. Klass K.-D. 1997: The external male genitalia and the phylogeny of Blattaria and Mantodea. Bonn Zool. Monogr. 42, 1—341. Klass K.-D. & Meyer R. 2006: A phylogenetic analysis of Dictyoptera based on morphological characters. Entomol. Abh. 63, 1— 2, 3—50. Langenheim J. 1966: Botanical source of amber from Chiapas, Mexico. Ciencia 24, 201—211. Langenheim J.H. 1995: Biology of amber-producing trees: focus on case studies of Hymenea and Agathis. In: Anderson K.B. & Krelling J.C. (Eds.): ACS symposium series 617: Amber, resinite, and fossil resins. Amer. Chem. Soc., Washington, 1—31. Melton R.H. 1995: Differential adaptation to water-deprivation in first instar nymphs of the German cockroach (Blattella germanica) and the brown-banded cockroach (Supella longipalpa). Entomol. Exp. Appl. 77, 1, 61—68. Meneses-Rocha J.J. 2001: Tectonic evolution of the Ixtapa graben, an example of a strike-slip basin in southeastern Mexico: implications for regional petroleum systems. In: Bartolini C., Buffler R.T. & Cantú-Chapa A. (Eds.): The Western Gulf of Mexico Basin: Tectonics, sedimentary basins, and petroleum systems. Amer. Assoc. Petrol. Geol., Mem. 75, 183—216. Moore J. & Gottelli N.J. 1992: Moniliformis-moniliformis increases cryptic behaviours in the cockroach Supella longipalpa. J. Parasitol. 78, 1, 49—53. Narasimham A.U. 1992: Comparative biological parameters of Comperia merceti (Compere) (Hym., Encyrtidae) and Anastatus tenuipes Bolivar (Hym., Eupelmidae), oothecal parasitoids of the cockroach Supella longipalpa (Fab.) Biol. Control. 2, 73—77. Perrilliat M.C., Vega F.J. & Coutin~o M.A. 2010: Miocene mollusks from the Simojovel area in Chiapas, southwestern Mexico. J. South Amer. Earth Sci. 30, 111—119. Poinar G. Jr. 1992: Life in Amber. Stanford University Press, Stanford, 1—350. Poinar G. Jr. 2003: Coelomycetes in Dominican and Mexican amber. Mycol Res. 107, 1, 117—122. Poinar G. Jr. & Brown A.E. 2002: Hymenaea mexicana sp. nov. (Leguminosae: Caesalpiniodeae) from Mexican amber indicates Old World connections. Botanical J. Linnean Soc. 139, 125—132. Poinar G., Archibald B. & Brown A. 1999: New amber deposit provides evidence of Early Paleogene extinctions, paleoclimates, and past distributions. Canad. Entomol. 131, 171—177. Prakash S., Mendki M.J., Rao K.M., Singh K. & Singh R.N. 1995: Sensilla on the maxillary and labial palps of the cockroach Supella longipalpa Fabricius (Dictyoptera: Blattellidae). Int. J. Insect. Morphol. Embryol. 24, 1, 13—34. Princis K. 1954: Wo ist die Urheimat von Blatta orientalis L. zu suchen? Opuscula Entomol. 19, 202—204. Rehn J.A.G. 1945: Man’s uninvited fellow traveller – the cockroach. Sci. Mon. 61, 265—276. Rehn J.A.G. 1947: African and Malagasy Blattidae (Orthoptera). Part IV. Proc. Acad. Nat. Sci. Philadelphia 99, 59—92. Roonwal M.L. & Rathore N.S. 1983: Wing micro-sculpturing in the small house cockroach, Supella longipalpa (Dictyoptera, Blattidae). Proc. Indian. Acad. Sci. (Anim. Sci.) 92, 333—342. Roth L.M. 1985: A taxonomic revision of the genus Blattella Caudel (Dictyoptera, Blattaria: Blattellidae). Entomol. Scand., Suppl. 22, 1—221. Roth L.M. 1991: New combinations, synonymies, redescriptions, and new species of cockroaches, mostly Indo-Australian Blattellidae. Invertebr. Taxon 5, 953—1021. Roth L.M. 1993: The cockroach genus Allacta Saussure & Zehntner (Blattaria, Blattellidae: Pseudophyllodromiinae). Entomol. Scand. 23, 4, 361—389. Roth L.M. 1995: New species of Allacta Saussure and Zehntner from Papua New Guinea, Irian Jaya and Sarawak (Blattaria, Blattellidae: Pseudophyllodromiinae). PNG J. Agric, For and Fish 38, 1, 51—71. Roth L.M. 1996: The cockroach genera Sundablatta Hebard, Pseudophyllodromia Brunner, and Allacta Saussure & Zehntner (Blattaria: Blattellidae, Pseudophyllodromiinae). Tijdschrift Entomol. 139, 215—242. Rudolphi C.A. 1819: Entozoorum Synopsis cui accedunt mantissa duplex et indice locupletissimi. Berolini, Sumtibus Augusti Rücker, 1—811. Santiago-Blay J.A. & Poinar G. Jr. 1993: First scorpion (Buthidae: Centruroides) from Mexican amber (lower Miocene to upper Oligocene). J. Arachnology 21, 147—151. Saussure H. & Zehntner L. 1895: Histoire naturelle des Blattides et Mantides. In: Grandidier A. (Ed.): Histoire physique, naturelle et politique de Madagascar. Vol. XXIII: Histoire Naturele des Orthopt res 1re partie. Blattides et Mantides. Paris, 1—244. Schmied H. 2009: Cockroaches (Blattodea) of the middle Eocene of Messel (Germany). Diploma Thesis, University of Bonn. Serville J.G.A. 1839: Histoire naturelle des insectes Orthopteres. Acc. de planches. Roret, Paris, 1—776. Solórzano-Kraemer M.M.S. 2007: Systematic, palaeoecology, and palaeobiogeography of the insect fauna from Mexican amber. Paleontographica Abt. A 282, 1—6, 1—133. Solórzano-Kraemer M.M. & Mohrig W. 2007: Schwenckfeldina 475AFRO-ASIAN COCKROACH AND LOST TERTIARY AMERICAN ENTOMOFAUNA GEOLOGICA CARPATHICAGEOLOGICA CARPATHICAGEOLOGICA CARPATHICAGEOLOGICA CARPATHICAGEOLOGICA CARPATHICA, 2011, 62, 5, 463—475 archoica n. sp. (Diptera, Sciaridae) from the middle Miocene Mexican amber. Alavesia 1, 105—108. Swofford D.L. 2002: PAUP*. Phylogenetic analysis using parsimony (* and other methods), version 4.0b10. Sinauer, Sunderland, MA. Tomasini-Ortíz A.C. & Martínez-Hernández E. 1984: Palinology of the Eocene-Oligocene of Simojovel, Chiapas. Univ. Nacional Autónoma de México, Inst. Geol. Paleont. Mexicana, 50, 60 (in Spanish). Trjapitzin V.A. 1963: A new hymenopterous genus from Baltic amber. Paleontol. J. 3, 89—95 (in Russian). Tsai T.J. & Chi H. 2007: Temperature-dependent demography of Supella longipalpa (Blattodea: Blattellidae). J. Med. Entomol. 44, 5, 772—778. Tungtrongchitr A., Sookrung N., Munkong N., Mahakittikun V., Chinabut P., Chaicumpa W., Bunnag C. & Vichyanond P. 2004: The levels of cockroach allergen in relation to cockroach species and allergic diseases in Thai patients. Asian Pac. J. Allerg. Immunol. 22, 2—3, 115—121. Vega F.J.T., Nyborg T., Coutin~o M.A., Solé J. & Hernández-Monzón O. 2009a: Neogene Crustacea from southeastern Mexico. Bull. Mizunami Fossil. Mus. 35, 51—69. Vega F.J., Zún~iga L. & Pimentel F. 2009b: First formal report of a crab in amber from the Mocene of Chiapas and other uncommon Crustacea. Geol. Soc. Amer. Abstr. Programs 41, 7, 631. Veiga-Crespo P., Blasco L., Poza M. & Villa T.G. 2007: Putative ancient microorganisms from amber nuggets. Int. Microbiology 10, 117—122. Vidlička . 2001: Blattaria – cockroaches, Mantodea – mantises (Insecta: Orthopteroidea). Fauna of Slovakia. [Fauna Slovenska.] Veda, Vydavate stvo SAV, Bratislava, 1—171 (in Slovak). Vršanský P. 1997: Piniblattella gen. nov. – the most ancient genus of the family Blattellidae (Blattodae) from the Lower Cretaceous of Siberia. Entomol. Probl. 28, 1, 67—79. Vršanský P. 2005: Mass mutations of insects at the Jurassic/Cretaceous boundary? Geol. Carpathica 56, 6, 473—781. Vršanský P. 2008: New blattarians and a review of dictyopteran assemblages from the Lower Cretaceous of Mongolia. Acta Palaeont. Pol. 53, 1, 129—136. Vršanský P. 2010: Cockroach as the earliest eusocial animal. Acta Geol. Sin. (EE) 84, 4, 793—808. Vršanský P. & Ansorge J. 2007: Lower Jurassic cockroaches (Insecta: Blattaria) from Germany and England. Afr. Invertebr. 48, 1, 103—126. Vršanský P., Mostovski M.B., Bazylev B.A. & Bugdaeva E. 2002: Early Cretaceous climate changes suggested on the Basis of Cockroach Wing Variations. Proceedings of the XVII. Congress of Carpathian-Balkan Geological Association, Bratislava, September 1st—4th 2002 (CD). Geol. Carpathica, (Spec. Issue) 33, 1—5. Vršanský P., Vidlička ., Čiampor F. & Marsh F. 2011: Derived, still living cockroach genus Cariblattoides (Blattida: Blattellidae) from the Eocene sediments of Green River in Colorado, U.S.A. Ins. Sci. 18, 2. DOI: 10.1111/j.1744-7917.2010.01390.x. Walker F. 1868: Catalogue of the specimens of Blattariae in the collection of the British Museum. British Mus. (Nat. Hist.), London, 1—239. Ware J., Litman J., Klass K.-D. & Spearman L.A. 2008: Relationships among the major lineages of Dictyoptera: the effect of outgroup selection on dictyopteran tree topology. Syst. Entomol. 33, 429—450. Zherikhin V.V. 1970: Zoogeographical relation of Paleogene insects. Doklady na 22. Ježegodnom čtenii pamâti N.A. Kholodkowskogo, 14th April 1969. Nauka, Leningrad, 29—88 (in Russian). Príloha č. 13 VRŠANSKÝ, P., VIDLIČKA, Ľ., ČIAMPOR, F., MARSH, F. 2012b. Derived, still living cockroach genus Cariblattoides (Blattida: Blattellidae) from the Eocene sediments of Green River in Colorado, USA. Insect Science 19: 143-152. Insect Science (2012) 19, 143–152, DOI 10.1111/j.1744-7917.2010.01390.x ORIGINAL ARTICLE Derived, still living cockroach genus Cariblattoides (Blattida: Blattellidae) from the Eocene sediments of Green River in Colorado, USA Peter Vrˇsansk´y1,2 , L ubom´ır Vidliˇcka3,4 , Fedor ˇCiampor Jr3 and Finnegan Marsh5 1 Geological Institute, Slovak Academy of Sciences, Bratislava, Slovakia, 2 Paleontological Institute, Russian Academy of Sciences, Moscow, Russia,3 Institute of Zoology, Slovak Academy of Sciences,4 Department of Biology, Faculty of Education, Comenius University, Bratislava, Slovakia,5 Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA Abstract Cariblattoides labandeirai sp.n. from the Eocene sediments of Green River in Colorado, USA bear only two plesiomorphies, but also several significant autapomorphies within the advanced and highly derived living cockroach genus. Thus, Cariblattoides with extant occurrence in the Caribbean and South America was historically common in the Nearctic, and represents important evidence for the occurrence of derived living genera of cockroaches ∼50 Ma ago. Generally, the vast majority of living genera were absent during the Palaeocene, thus the diversification of most living cockroach lineages near the Palaeocene/Eocene boundary must have been extremely rapid. Females of living C. suave, the type species, have identical (sophisticated) coloration of pronotum, but the most related living taxa are C. piraiensis and C. fontesi from Brazil (supported by phylogenetical analysis). Key words Blattida = Blattaria = Blattodea, Cariblattoides, Eocene, fossil insects, Green River, Tertiary cockroaches Introduction Among 11 cockroach genera (17 species) found in the Green River locality, Colorado, USA, nine represent still living recognised taxa (genera). Only the genus Blattella, although advanced in behavior (female bearing ootheca until nymphs emerge), can be considered historically primitive, because it is recorded from the Albian Cretaceous Mesozoic (Vrˇsansk´y, 2008). All other living genera of cockroaches are recorded only starting from the Eocene, and as with Ectobius among those found in Correspondence: Peter Vrˇsansk´y, Geological Institute, Slovak Academy of Sciences, D´ubravsk´a cesta 9, P.O. Box 106, 840 05 Bratislava, Slovakia. Tel: +421 2 59203620; email: geolvrsa@savba.sk This work was generated during the stay of the author in the NMNH, Washington, DC, USA. Green River, are modern. Nevertheless, one of two genera with derived morphology, the Cariblattoides, suggests that even derived cockroach genera evolved during or before the Eocene. Taking into consideration absence of any living genera except Blattella before the Eocene, and presence of relic Mesozoic taxa in the Eocene, it seems that the living cockroach fauna evolved extremely rapidly near the Palaeocene/Eocene boundary. This is supported by several thousands cockroaches known from the terminal Mesozoic, with occurrences of exclusively Mesozoic cockroach families except the primitive Blattellidae related to Symploce and Blattella. It is very unlikely that such a rich record would not reveal some other representatives of this, starting from the earliest Cretaceous, dominant cockroach family. The genus Cariblattoides is contemporary in Cuba, Puerto Rico, Guadaloupe, French Guiana and Brazil, and in the past was apparently distributed more widely, at least in North America, and was present in different remote localities at Green River. C 2012 The Authors Journal compilation C Institute of Zoology, Chinese Academy of Sciences 143 144 P. Vrˇsansk´y et al. sinnamariensis fontesi gruneri guyanensis minor unicolor suave belenensis instigator neoinstigator albomarginata matogrossensis labandeiraisp.n. piraiensis 100 38 7 23 15 30 23 53 30 15 46 38 46 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 Similarity Fig. 1 Cluster analysis of Cariblattoides species. Jaccard similarity measure, paired group algorithm, with cophenetic correlation coefficient 0.838 9. Material and methods The material was collected by David Kohls and Louis Pribyl in the Anvil Points (AP) – Labandeira Site (LS); Denson Site (DS) and Parachute Creek (PC) of the Green River Locality in Colorado, USA. All the 13 specimens of the present taxon are deposited in the National Museum of Natural History (NMNH), Washington, DC. The numbers represent official NMNH numbers, site number (40193 – Anvil Points; 41088, 41678 – Anvil Points – Labandeira Site; 41619 – Denson Site; 41142 – Denson Site 3, 4, 5; 40190 – Paleoburn; 41139 – Parachute Creek – Gunderson)/ official USNM catalogue number (these do not correspond with the numbers on the rocks). The photographs were made using an Olympus SZX12 stereozoom microscope and the figure represents redrawn photographs with Corel Draw 13 and Adobe Photoshop 6.0. Cluster analysis (Fig. 1) was made using PAST 1.43 (Hammer et al., 2001); parsimony analysis was performed using PAUP∗ software version 4.0b10 (Swofford, 2002), with a tree bisection reconnection (TBR) heuristic search of 10 000 replicates and the option ‘save multiple trees’ activated. All characters were treated as ordered (0 – plesiomorphic, 1 – apomorphic state). MaxTrees option was set to 500. All 13 morphological characters were set as ordered and equally weighted except character no. 10. As simple CuA (present in most living Cariblattoides, but not in C. labandeirai) is a strong apomorphy, homoplasically present also in some others, basal blattelid genera (e.g., in the primitive Supella this character is polymorphic), we set it at a higher (5) weight (branched CuA is a very strong plesiomorphy within Cariblattoides). Heuristic search produced 46 equally parsimonious trees with length 30 (consistency index [CI] = 0.5, retention index [RI] = 0.643). Majority rule consensus revealed most of the nodes resolved in more than 50% of the trees produced by heuristic search (Fig. 2). Terminology of wings follows Vrˇsansk´y (1997). Results Systematic paleoentomology Blattida Latreille, 1810 Blattellidae Karny, 1908 Cariblattoides Rehn et Hebard, 1927 C 2012 The Authors Journal compilation C Institute of Zoology, Chinese Academy of Sciences, Insect Science, 19, 143–152 Eocene Cariblattoides from North America 145 Fig. 2 Majority consensus tree of the parsimony analysis (46 equally parsimonious trees with length 30 [for details see Material and Methods]) of Cariblattoides species with Cariblatta used as outgroup. Numbers above branches show group frequencies (in %). Type species Cariblattoides suave Rehn et Hebard, 1927. Extant, Puerto Rico. Composition – Princis (1969) and additions In addition to the type species, C. albomarginata Rocha e Silva Albuquerque, 1967 (Brazil), C. belenensis Rocha e Silva Albuquerque, 1964a (Brazil); C. fontesi Rocha e Silva Albuquerque, 1954 (Brazil); C. gruneri Bonfils, 1975 (French Guiana); C. guyanensis Bonfils, 1975 (French Guiana); C. instigator Rehn et Hebard, 1927 (Cuba); C. matogrossensis Rocha e Silva Albuquerque, 1958 (Brazil); C. minor Rocha e Silva Albuquerque, 1964b (Brazil); C. neoinstigator Rocha e Silva Albuquerque, 1958 (Brazil); C. piraiensis Rocha e Silva Albuquerque, 1955 (Brazil); C. sinnamariensis Bonfils, 1975 (French Guiana); C. unicolor Rocha e Silva Albuquerque, 1964b (Brazil). All extant. Diagnosis – Rehn and Hebard (1927): “Size small, form depressed, females slightly broader and heavier than males, size approximately similar. Head subdepressed, distinctly and broadly visible cephalad of pronotum; interocular space wide . . . , . . . maxillary palpi with third palpomere (joint in the original text) elongate, slender; fourth palpomere shorter than third palpomere; first palpomere slightly shorter or slightly longer than fourth palpomere. . . . Tegmina elongate lanceolate, considerably surpassing the abdomen in both sexes. Costal margin moderately arcuate (proximad), sutural margin almost straight: radial (scapular in the original) field broad: mediocubital veins (discoidal sectors in the original) longitudinal, six to seven in number (including the media (median in the original) and cubital (CuA – ulnar in the original) and rami of the median veins); anal groove (sulcus in the original) strongly arcuate proximad, straight oblique in greater portion of length; anal field elongate pyriform; diagonal channel of right tegmen well indicated. Wings elongate, relatively narrow, moderately iridescent: subcosta (mediastine in the original) and a number of costal veins clavate; ulnar vein quadriramose; axillary vein with three rami in distal two-thirds; intercalated triangle small but distinctly and clearly defined . . . ” Character analysis (0 – plesiomorphy; 1 – apomorphy relative to other species within genus and/or Cariblatta, which was chosen as an outgroup based on high similarity, but retention of all original states of characters due to standard habitus (not derived like in Cariblattoides): 1. Head significantly elongated: apomorphy; plesiomorphic state is elongated, but more or less of normal cockroach appearance, i.e., less than 1.2 times longer than wide (head more or less standard in both Cariblatta Hebard, 1916 and Neoblattella Shelford, 1911) 2. Pronotum with coloration concentrated in cervical structures: apomorphy; plesiomorphic state is coloration simple or dark stripes are more primitive in the Blattellidae 3. Terminal palpomere short: apomorphy; plesiomorphic state is the terminal palpomere long (also in Cariblatta and Neoblattella) 4. Terminal palpomere cup-like: apomorphy; plesiomorphic state is normal shape of the terminal palpomere such as in Cariblatta and Neoblattella C 2012 The Authors Journal compilation C Institute of Zoology, Chinese Academy of Sciences, Insect Science, 19, 143–152 146 P. Vrˇsansk´y et al. (even when the terminal palpomere is homoplasically cup-like in several unrelated Blattellidae) 5. Forewing elongated more than 3.5:1: apomorphy (elongation itself is an autapomorphy of the genus); plesiomorhic state is the forewing normal, as in majority of cockroaches including the outgroup, Cari- blatta 6. Forewing with distinct costal margin: apomorphy (plesiomorphically absent in Cariblatta, Neoblattela and most Cariblattoides species) 7. Forewing monochromatically colored: apomorphy (plesiomorphic coloration of forewing is medial (with more dark central stripe) in some Cariblatta and Neoblattella; the coloration in the later two genera vary, except for the coloration mentioned, the coloration is different from those appearing in Cari- blattoides) 8. Forewing colored monochromatically medially, with more dark central stripe: plesiomorphy (see above), monochromatic median coloration without the central stripe is an apomorphy 9. Forewing RS indistinct, terminal R(+RS) branches not dichotomized: apomorphy (plesiomorphically is RS distinct and/or terminally branched like in all studied Cariblatta and Neoblattella – the eventual reduction is homoplasic) 10. Forewing M+Cu with over 10 branches: plesiomorphy (also in Neoblattella); apomorphy is reduced number 11. Forewing CuA branched: strong plesiomorphy in primitive Blattellidae (homoplasically simple in Cariblatta) 12. Hindwing with simplified RS: apomorphy (branched in otgroup Cariblatta and rest Blattellidae) 13. Hindwing monochromatic, pale: plesiomorphy (state in Neoblattella and Cariblatta); apomorphic is any other derived coloration pattern. Cariblattoides labandeirai sp. n. Holotype. 41619/542284-AB. Part and counterpart of a complete ?male (Figs. 3a, 4, 5). Type locality. Denson Site 1998, Green River, Colorado, USA. Type horizon. Green River Formation, Eocene, Ter- tiary. Paratypes: 40190/542285; 40193/542288 (AP), 542286, 542287, 542289; 41088/542290, 542291 (AP LS 95); 41139/542292 (PC) (Diptera collection databasis); 41142/542293, 542294 (DS 4); 41678/542295(8)9, 542297 (LS 99). All the same locality and horizon as the type (for sublocalities see M&M). Differential diagnosis The present species can be differentiated from all living Cariblattoides species by branched forewing median vein M, terminally branched CuA and strong, distinct and black, overlapping apex costa, and by differentiated hindwing R1. All other characters are present in some of the living species, but in different combinations (see discussion for remarks and comparison). Description Head free, often preserved in upright position; palps long, the last segment short and cup-like. Antennae very soft and long, with at least 90 segments. Pronotum coloration as in Fig. 3A. Both wings strongly elongated, with reduced venation. Forewing extremely elongated (length/width 9–10 mm/2.5 mm), with sharpened apex, with extremely short simple Sc. Radial field very narrow (not reaching half of the wing’s width) with main stem of R nearly straight; rich simple R (15 in holotype) ascending parallel, without secondary branches; M rich (10 in holotype), but short, with parallel branches descending directly from the main branch in angle comparable to ascendance of R, a single M is dichotomised, rest are simple; CuA reduced to a single branch dichotomised near margin (2 veins meet margin); few simple A present (4 or 5 in holotype), except for A1 all meet posterior margin. Dark forewing coloration restricted to longitudinal stripe along the clavus and central part of the medial and cubital areas, reaching to the apical part of the radial area. Hindwing Sc simple, very short – end before the wings halve; RS differentiated, mostly simple – a single branch is dichotomised (9 veins meet margin in the holotype). R1 consists of onerichlybranched(6veins at themargininthe holotype) branch vein, with dense secondarily branched veins; M simple, slightly curved; CuA reduced to 2 (possibly 3 branches, with 3–4 veins at margin), CuP simple, copying the posterior-most CuA; A1 widely branched (4). Vannus pleating veer-like. Body soft and thin. Sterna and terga colored posteriorly. Legs long with margins colored, hindleg femur very long. Remarks and comparison See discussion. Derivation of name After Conrad C. Labandeira, a superb teacher, scientist and one of the collectors of the Green River material. Character of preservation 13 complete specimens. Discussion In addition to characteristic unconfuseable elongated habitus and size with extremely long legs, strong autapomorphies such as elongated head, hindwing with widely branched A1 or A2, maxillary palps with characteristic ratio of respective palpomeres (?:1:0.9:1:0.8 – see Figs. 3A, 4D) with C 2012 The Authors Journal compilation C Institute of Zoology, Chinese Academy of Sciences, Insect Science, 19, 143–152 Eocene Cariblattoides from North America 147 Fig. 3 Cariblattoides labandeirai sp.n. Holotype. NMNH 41619/542284-A. (A) A complete ?male. Eocene. Green River, Colorado, USA. Forewing length 10 mm. (B) pronotum of the female allotype (Aibonito, Guayama, Puerto Rico, July 14–17, 1914; HG Barber; AMNH New York) of the type species, C. suave Rehn et Hebard, 1927, identical to that of the C. labandeirai sp.n. holotype. (C) palp of C. guayanensis Bonfils, 1975. terminal segment cup-like (homoplasically in Supella abotti Rehn, 1947) allow the cathegorization within the genus Cariblattoides. Large, deplanate pronotum, slender and narrow body, pale and widely arcuate base of forewing makes this genus with 13 living species a good monophylectic group originating from Supella or its precursors (retaining the original blattellid bauplan of both wings and the lack of autapomorphies characteristic for other genera of the Blattellidae, and synapomorphic reduction of forewing RS and CuA, differentiate this genus from the rest of Blattellidae). Alternatively, both genera can had a shared history during the Green River times. The present new fossil species share all the apomorphies with living representatives of the genus, except the simple CuA and branched hindwing R1. It additionally has some secondary characters limited to Cariblattoides, namely the sophisticated coloration of pronotum identical with C. suave, and the coloration of forewings with indistinct basal-most R, identical with C. fontesi. Thus it can be safely catherorized within the genus. On the other hand, there are some differences, which need clarification. While the general habitus, details of head and pronotum and wing coloration are characteristic for Cariblattoides, the wing venation pattern is identical with related Supella longipalpa (Fabficius, 1789) as figured by Rehn (1951) (as Supella supellectilium). Thus it is necessary to analyse the differences in detail. The forewing radial area is identical with Supella and closely related to (Supella) Namablatta Rehn, 1937 in having R simple and in undifferentiated RS. Nevertheless, some extinct as well as extant species of Supella (whole subgenus Nemosupella Rehn, 1947) have RS differentiated and venation expanded (Rehn, 1947) and this character is polymorphic even within species of Supella and could not be treated as diagnostic. Moreover, this character is polymorphic even within Cariblattoides and thus represents no contradiction of placing the present fossil within this genus. R branches are homoplastically simple in diverse other more or less related living cockroaches such as in Eustegasta, Pseudomops, Ectobius, Chorisoneura, Euphyllodromia and others, mostly with reduced venation and/or size. The more unusual is the character of branching of M and CuA, descending in an angle opposite to bifurcations of R. This character is different to that of the living Cariblattoides and is present exclusively in Supella and Ectobius. But again, in these genera this character of dichotomisation is polymorphic (Rehn, 1947), apparently due to reduction of venation in smaller species (e.g., in Supella longipalpa) and as such is without phylogenetic and/or taxonomic relevance. The most significant difference with phylogenetical information is the branched forewing CuA, suggesting that Cariblattoides (based on the present species) diverged before the divergence of Cariblatta and Neoblattella spp. Within the lineage, this character C 2012 The Authors Journal compilation C Institute of Zoology, Chinese Academy of Sciences, Insect Science, 19, 143–152 148 P. Vrˇsansk´y et al. is significantly plesiomorphic (branched) only in the very basal Symploce (Rehn, 1951), but polymorphic also in derived Supella (Rehn, 1947). Due to the terminal dichotomisation, and not a fully expressed branch, this can also eventually be a unique character reversal or deformity of the holotype. The clear separation of branched hindwing R1 is also different. In contrast to other characters, this one is plesiomorphic and polymorphic (polymorphic also in Supella), with R1 indicated (although not richly branched) in some living Cariblattoides species (see character 9), but reduced in the closest relative of Supella, the Namablatta (Rehn, 1937). R1 tends to reduce even within Polyphagidae and Blattidae – see Rehn (1951). Thus, Supella is similar in venation and palp, but not in general habitus, even when S. longipalpa, the most departured from the standard morphotype of the genus has also a slender habitus, and S. orientalis Grandcolas, 1994 has general habitus identical with the Cariblattoides (including the form of forewing, but head is not elongated, and coloration with characteristic central stripe, see Grandcolas, 1994). Thus it is possible that the precursors of Supella were direct ancestors of Cariblattoides. All this taken together does not contradict the placement within Cariblattoides, although eventually would allow us to erect a new subgenus, which we would not consider oblique. Additionally, Cariblattoides has flattened pronotum larger than the most related Cariblatta and Neoblattella, longer narrow tegmina, with subparallel margins (see Hebard, 1916 for Cariblatta). It can be further distinguished from Neoblattella by fewer discoidal sectors of the tegmina and strongly deplanate pronotum (Rehn & Hebard, 1927). Thus the sister genus is Cariblatta with Neoblattella a sister taxon to them (Rehn & Hebard, 1927). Both Neoblattella and Cariblatta are known from the Eocene sediments of Europe (Schmied, 2009, unpublished observation), with the whole group apparently derived from precursors of Supella (synapomorphic in elongated forewing with numerous parallel M branches descending directly from the main M branch in an angle comparable to descention of R, weakly separated RS; A except A1 ending in posterior margin; simple CuA (in advanced Supella); and in reduced hindwing CuA and general venation scheme of the hindwing with separation of basal-most RS, which is plesiomorphy of basal living Supella – subgenus Nemosupella. Cariblattoides labandeirai sp.n. resembles C. suave from Puerto Rico in maxillary palp fourth joint significantly longer than fifth, unlike in C. instigator from Cuba where both segments are of subequal length. Nevertheless, C. labandeirai has apical segment even shorter and much more oval. Females of C. suave also have identical coloration of pronotum, similar to some representatives of the genus Cariblatta, supporting indication about their relation (Rehn & Hebard, 1927). (Nevertheless, it must be noted that both Cariblattoides and Cariblatta contain species with pronota with two dark stripes as well as species with characteristic cervical coloration.) On the other hand, C. suave has coloured hindwing, which was apparently pale in C. labandeirai sp.n., and more expanded coloration of forewing, which reaches the posterior margin in C. suave. It is notable that in C. suave females have shorter and broader wings than in males, but the holotype of C. labandeirai has wings significantly elongate and thus is unlikely to represent a female (thus this specific coloration pattern appears plesiomorphic for both sexes). In seven collected individuals of C. suave, the forewing measurements (9.5–11.5/2.9–3.5 mm) of C. labandeirai were more elongate, similar to C. instigator (−9.6/−2.7 mm). The number of veins of C. suave and C. labandeirai in the radial area is approximately the same (14–19), but C. labandeirai apparently has less reduced venation in the medial and cubital area (12 M + CuA) compared to C. suave (6–7 discoidal veins – M + CuA), C. instigator (7 discoidal veins in holotype), C. minor (8), C. unicolor (7), C. guyanensis (6), C. fontesi (7) and C. sinnamariensis (9 discoidal veins in holotype) (for others, see below). The single extant species with expanded M is C. piraiensis (11 including one CuA). There are conservatively 5 anal veins present in all species of Cariblattoides. C. gruneri Bonfils, 1975 – a larger species (forewing length/width 11.7/3.2 mm) also has simple hindwing M, and 4 CuA branches (3 in C. labandeirai). Another larger species is C. guyanensis (forewing length/width 11.6– 12.5/2.9–3.1 mm), which has even more expanded venation in the radial area (±20), and reduced venation of Media (6). The process of reduction of CuA, characteristic for the genus, is nearly complete in this species (and also in C. sinnamariensis) – a single CuA fuses with the radial stem. Palp of C. guyanensis is very similar to C. labandeirai (perhaps a synapomorphy). Hindwing of C. guyanensis has apomorphically widened apexes of radial branches (even more expressed in C. sinnamariensis), present cross-veins (most likely an autapomorphy), but branched M (plesiomorphic even in respect to C. labandeirai). C. sinnamariensis has plesiomorphically (in respect to all the known species) branched hindwing CuA (7). C. minor is another comparatively large species, with less prolonged tegmina (12/3.5 mm) and pronotum coloration similar to C. labandeirai, but with finer dark pattern. C 2012 The Authors Journal compilation C Institute of Zoology, Chinese Academy of Sciences, Insect Science, 19, 143–152 Eocene Cariblattoides from North America 149 Fig. 4 Cariblattoides labandeirai sp.n. Holotype. NMNH 41619/542284. A complete ?male. Eocene. Green River, Colorado, USA. (A) general habitus; (B) forewing; (C) hindwing; (D) pronotum and head; (E) terminalia and hindwing. Forewing length 10 mm. Scales = 1 mm. C. unicolor differs in having uniform coloration of significantly elongated forewing (12/3 mm). C. fontesi has comparatively robust forewing (10/3 mm), but coloration similar to C. labandeirai. Similar lengths are present also in the palps, but the apical palpomere is not oval as in C. labandeirai and C. piraiensis. Hindwing of C. fontesi has more expanded venation in the RS area (plesiomorphy). C. piraiensis has palp entirely identical with C. labandeirai, with oval cup-like terminal segment and also identical forewing coloration (in some specimens – this character varies). It is also a single species with expanded forewing M (10). Pronotum coloration is also similar. Nevertheless, this species differs in having less elongated forewings (under 4:1) – a plesiomorphy and expanded hindwing RS (plesiomorphy). C. mattogrossensis and C. neoinstigator have pronotum with two dark stripes and expanded forewing RS. Their tegmina are less elongated (under 3.5:1). C. albomarginata with the forewing length 11 mm is likely the taxon with the most primitive characters, as it has shortest head, widest wing, rich R (20), and standard dichotomisation of M (with both branches descending at the same angle) resembling Neoblattella (in Cariblattoides posterior branches tend to descent from the straight stem). On the other hand, it has simplified M (6) and simple CuA (both synapomorphies of living representatives of the genus; expanded M is characteristic also for C. piraiensis) and uniformly colored center of the pronotum. C. belenensis with the most simplified M (5), simple CuA and (as with all known species) 5 anal veins, and simplified hindwing CuA (3), appears to be the most C 2012 The Authors Journal compilation C Institute of Zoology, Chinese Academy of Sciences, Insect Science, 19, 143–152 150 P. Vrˇsansk´y et al. Fig. 5 Cariblattoides labandeirai sp.n. (A) Holotype NMNH 41619/542284-B; (B) NMNH 41139/542292 (PC) (Diptera collection databasis); (C) NMNH 40193/542286 (AP); (D) NMNH 41142/542293 (DS 4). Eocene. Green River, Colorado, USA. Scales = 10 mm. Table 1 Cariblattoides character matrix of 13 extant and the present extinct species of Cariblattoides, and Cariblatta spp. as outgroup (OG) (the same dataset is provided for related Neoblattella and Supella as well as the rest of Blattellidae). sp/character 1 2 3 4 5 6 7 8 9 10 11 12 13 Cariblatta (OG) 0 0 0 0 0 0 0 0 0 0 ? 0 0 albomarginata 0 0 0 0 0 0 0 0 0 1 1 ? 1 belenensis 1 1 1 0 1 0 0 0 ? 1 1 ? 0 fontesi 1 0 1 0 0 0 0 1 1 1 1 1 0 gruneri 1 ? 0 0 1 0 1 ? ? 1 1 ? 0 guyanensis 1 1 1 0 1 0 1 ? 0 1 1 0 0 instigator 1 0 0 0 1 0 0 0 ? 1 1 ? 1 labandeirai sp.n. 0 1 1 1 1 1 0 1 1 0 0 1 0 matogrossensis 0 0 1 0 0 0 0 0 0 1 1 0 0 minor 1 1 1 0 1 0 1 ? 1 1 1 ? 0 neoinstigator 0 0 ? ? 0 0 0 0 1 1 1 ? 1 piraiensis 0 1 1 1 1 0 0 0 0 0 1 1 0 sinnamariensis 1 0 0 0 0 0 1 ? 0 1 1 1 0 suave 1 1 1 0 1 0 0 0 0 1 1 1 1 unicolor 1 1 1 0 1 0 1 ? 1 1 1 ? 0 0 – plesiomorphy; 1 – apomorphy; ? unknown character. Data were obtained basing on the present study, unpublished observations and the following references: Hebard (1916), Rehn and Hebard (1927), Rocha e Silva Albuquerque (1954, 1955, 1958, 1964ab, 1967) and Bonfils (1975). C 2012 The Authors Journal compilation C Institute of Zoology, Chinese Academy of Sciences, Insect Science, 19, 143–152 Eocene Cariblattoides from North America 151 derived species (in spite of its large size with forewing length 12 mm). To summarise, C. labandeirai has palp identical with C. piraiensis (synapomorphy) (nearly identical with C. fontesi), pronotum identical with females of C. suave (plesiomorphy) and forewing coloration identical with C. fontesi and similar to C. piraiensis (synapomorphies). Thus, the most related living taxon appears C. piraiensis from Brazil. The cluster analysis (Fig. 1) and the consensus tree of the parsimony analysis (Fig. 2) reveal results comparable with the empiric observation, but the relation of C. suave and C. belenensis appears artificial. Generally, variation within the genus includes diverse variations in the combinations of all studied characters (see Table 1) except for hindwing (with an exception of coloration, hindwing venation is principally identical in all living representatives – variable only in the number of veins in RS area), CuA (simple in all extant species) and colored costa of C. labandeirai. The conservative pattern of hindwing (with unmodified radial area [most significantly involved in flight], and more similar to that of Supella and primitive Symploce) in the earliest C. labandeirai infers the strong selection due to active flight (and elongated habits) in all living Cariblattoides. It is notable that extinct C. labandeirai has the hindwing radial area (most significantly involved in flight) unmodified, and is more similar to that of Supella and primitive Symploce. The present species can be more easily identified than other undescribed species – it is very distinct morphologically and as such is easily determinable (in contrast to most other species at the locality, which can be confused according to the preservation of body only, and as such belong to indetermined specimens). Otherwise the preservation is standard (with an exception of the holotype which is the only specimen at the locality with both wings visible), and even in these completely preserved specimens, venation is indistinct due to overlap with body structures. All specimens have size and coloration within normal intraspecific variability range as the type species and thus very probably belong to a single biological species. Nevertheless, a closely related taxon due to eventually belonging to slightly different layers cannot be excluded. This is a general problem of palaeoentomology and authors are not aware of any larger type series which would not face this problem. Thus the material is included in the type series, clearly representing the same morphospecies, but eventually not the biological species. The presence of a derived living genus in the Eocene suggests the radiation of newly evolved living genera after the Paleocene/Eocene boundary must have been extremely rapid (it indicates that nearly all living genera – even such advanced ones as Cariblattoides – evolved, speciated and radiated within 5 Ma at most). The earliest representative of such a derived genus, the present C. labandeirai cannot be considered more primitive than most of the living species. Radiation but also origination of modern genera of cockroaches thus could be associated with the thermal maximum (PETM) and massive invasions of tropical elements polewards – into unoccupied habitats. Conclusions • Cariblattoides labandeirai sp.n. was a common species in the Eocene assemblage of the Green River. Nevertheless, according to taphonomic advantages, 13 of 289 identified cockroaches may be a little overestimated figure compared to other species. • It was a rather advanced taxon within the genus, apomorphic in 8 of 13 characters, with only two significant plesiomorphies (dichotomized forewing CuA and branched hindwing R1). • Most closely related living species is C. piraiensis from Brazil. • The presence of this derived blattelid genus during the Eocene indicates the radiation of most living cockroach genera must have taken place in a short time interval near the Palaeocene/Eocene boundary. Acknowledgments We thank David Kohls and Louis Pribyl (NMNH Washingtn DC) for collecting the material, and Conrad Labandeira for organising the study; Alexandr P. Rasnitsyn (PIN Moscow), Sonia M. Lop´es (MN/UFRJ), Pavel ˇStys (CU Prague) and Heiko Schmied (SI Bonn) for fruitful advice and revision of the manuscript, and Ladislav Roller (ZI Bratislava) for literature supply. Supported by the UNESCO, Amba, National Museum of Natural History, Washington D.C. award, VEGA 6002, 2/0125/09, 2/0167/09, MVTS and the Literary Fund. References Bonfils, J. (1975) Blattopera (Orthopteroidea) r´ecolt´es en Guyane Franc¸aise par la mission du Mus´eum national d’Histoire naturelle. Annales de la Societe Entomologique de France (N.S.), 11(1), 29–63. Grandcolas, P. (1994) Blattaria (Insecta: Dictyoptera) of Saudi Arabia: a preliminary report. Fauna of Saudi Arabia 14 (eds. C 2012 The Authors Journal compilation C Institute of Zoology, Chinese Academy of Sciences, Insect Science, 19, 143–152 152 P. Vrˇsansk´y et al. W. B¨uttiker & F. Krupp), pp. 40–58. National Commission for Wildlife Conservation and Development, Pro Entomologia, Riyadh, Basle. Hammer, Ø., Harper, D.A.T. and Ryan, P.D. (2001) PAST: Palaeontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 1–9. Hebard, M. (1916) A new genus Cariblatta, of the group Blattellites (Orthoptera, Blattidae). Transactions of the American Entomological Society, 17, 147–186, pl. XI–XIII. Karny, H.H. (1908) Die zoologische Reise des Naturwissenschaftlichen Vereins nach Dalmatien im April 1906. B. Specieller Teil. Bearbeitung des gesammelten Materiales. 6. Orthoptera und Blattaeformia. Mitteilungen des Naturwissenschaflichen Vereins an der Universit¨at Wien, 6, 8, 101– 113. Latreille, P.A. (1810) Consid´erations g´en´erales sur l’ordre naturel des animaux composant les classes des Crustac´es, des Arachnides et des Insectes avec un tableau m´ethodique de leurs genres dispos´es en familles. Schoell, Paris. 1–444 pp. Princis, K. (1969) Blattariae: Subordo Epilamproidea: Fam.: Blattellidae. Orthopterorum Catalogus. Pars 13 (ed. M. Beier), pp. 711–1038. Dr. W. Junk N.V., ‘s-Gravenhage. Rehn, J.A.G. (1937) African and Malagasy Blattidae (Orthoptera). Part. III. Proceedings of the Academy of Natural Sciences of Philadelphia, 89, 17–123. Rehn, J.A.G. (1947) African and Malagasy Blattidae (Orthoptera). Part IV. Proceedings of the Academy of Natural Sciences of Philadelphia, 99, 59–92. Rehn, J.W.H. (1951) Classification of the Blattaria as indicated by their wings (Orthoptera). Memoirs of the American Entomological Society, 14, 1–134. Rehn, J.A.G. and Hebard, M. (1927) The Orthoptera of the West Indies: No.1. Blattidae. Bulletin of the American Museum of Natural History, 54(1), 1–320. Rocha e Silva Albuquerque, I. (1954) Uma esp´ecie de “Cariblattoides” Hebard, 1927 (Blattidae, Pseudomopinae). Revista Brasileira de Biologia, 14(4), 355–359. Rocha e Silva Albuquerque, I. (1955) Sˆobre uma nova esp´ecie de “Cariblattoides” Hebard, 1927 (Blattidae, Pseudomopinae). Revista Brasileira de Biologia, 15(1), 79–82. Rocha e Silva Albuquerque, I. (1958) Descric¸¯ao de um alotipo e duas esp´ecies novas de Cariblattoides Rehn & Hebard, 1927 (Blattidae – Pseudomopinae). Boletim do Museu Nacional, N.S., Zoologia, Rio de Janeiro, 184, 1–14. Rocha e Silva Albuquerque, I. (1964a) Sobre tres esp´ecies novas de Blattaria do Brasil (Epilampridae-Blattellinae). Boletim do Museu Paraense Emilio Goeldi, (N.S.), Zoologia, 44, 1–9. Rocha e Silva Albuquerque, I. (1964b) Duas esp´ecies de “Cariblattoides” Rehn & Hebard, 1927 (Epilampridae, Blattellinae). Revista Brasileira de Biologia, 24(2), 193–196. Rocha e Silva Albuquerque, I. (1967) Sobre quatro esp´ecies novas de baratas da Amazˆonia (Dictioptera: Blattaria). Boletim do Museu Paraense Emilio Goeldi, 65, 1–11. Serville, J.G.A. (1839) Histoire Naturelle des Insects. Orthopt`eres. Librairie Encyclop´edique de Roret, Paris, 776 pp. Shelford, R. (1911) Preliminary diagnoses of some new genera of Blattidae. The Entomologist’s Monthly Magazine, (Second series)22, 154–156. Schmied, H. (2009) Cockroaches (Blattodea) from the middle Eocene of Messel (Germany). Diploma thesis, University of Bonn. Swofford, D.L. (2002) PAUP ∗ . Phylogenetic Analysis Using Parsimony ( ∗ and Other Methods), Version 4.0b10. Sinauer, Sunderland, MA. Vrˇsansk´y, P. (1997) Piniblattella gen. nov. – the most ancient genus of the family Blattellidae (Blattodea) from the Lower Cretaceous of Siberia. Entomological Problems, 28, 67–79. Vrˇsansk´y, P. (2008) Mesozoic relative of the common synanthropic German cockroach (Blattodea). Deutsche Entomologische Zeitshrift, 55, 215–221. Accepted August 30, 2010 C 2012 The Authors Journal compilation C Institute of Zoology, Chinese Academy of Sciences, Insect Science, 19, 143–152 Príloha č. 14 VRŠANSKÝ, P., VAN DE KAMP, T., AZAR, D., PROKIN, A., VIDLIČKA, Ľ., VAGOVIČ, P. 2013a. Cockroaches Probably Cleaned Up after Dinosaurs. PLoS ONE 8(12): e80560. Cockroaches Probably Cleaned Up after Dinosaurs Peter Vrsˇansky´1,2 *, Thomas van de Kamp3 , Dany Azar4 , Alexander Prokin5,6 , L’ubomı´r Vidlicˇka7,8 , Patrik Vagovicˇ3,9 1 Geological Institute, Slovak Academy of Sciences, Bratislava, Slovakia, 2 Arthropoda Laboratory, Paleontological Institute, Russian Academy of Sciences, Moscow, Russia, 3 ANKA/Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany, 4 Faculty of Science II, Natural Sciences Department, Lebanese University, Fanar, Fanar-Matn, Lebanon, 5 I.D. Papanin Institute for biology of inland waters Russian Academy of Sciences, Borok, Russia, 6 Voronezh State University, Voronezh, Russia, 7 Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia, 8 Department of Biology, Faculty of Education, Comenius University, Bratislava, Slovakia, 9 Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Japan Abstract Dinosaurs undoubtedly produced huge quantities of excrements. But who cleaned up after them? Dung beetles and flies with rapid development were rare during most of the Mesozoic. Candidates for these duties are extinct cockroaches (Blattulidae), whose temporal range is associated with herbivorous dinosaurs. An opportunity to test this hypothesis arises from coprolites to some extent extruded from an immature cockroach preserved in the amber of Lebanon, studied using synchrotron X-ray microtomography. 1.06% of their volume is filled by particles of wood with smooth edges, in which size distribution directly supports their external pre-digestion. Because fungal pre-processing can be excluded based on the presence of large particles (combined with small total amount of wood) and absence of damages on wood, the likely source of wood are herbivore feces. Smaller particles were broken down biochemically in the cockroach hind gut, which indicates that the recent lignin-decomposing termite and cockroach endosymbionts might have been transferred to the cockroach gut upon feeding on dinosaur feces. Citation: Vrsˇansky´ P, van de Kamp T, Azar D, Prokin A, Vidlicˇka L, et al. (2013) Cockroaches Probably Cleaned Up after Dinosaurs. PLoS ONE 8(12): e80560. doi:10.1371/journal.pone.0080560 Editor: Ulrich Joger, State Natural History Museum, Germany Received April 23, 2013; Accepted October 4, 2013; Published December 4, 2013 Copyright: ß 2013 Vrsˇansky´ et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: Supported by UNESCO-Amba (MVTS), VEGA 6002, 02/0152, 2/0186/13, Literary fund, Schwarz stipend. This work was supported by the Slovak Research and Development Agency under the contract No. APVV-0436-12. This paper is a contribution to the team project (ER023: Biodiversity: Origin, Structure, Evolution and Geology) awarded to DA by the Lebanese University. Most funds covered the home institutions. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist. * E-mail: geolvrsa@savba.sk Introduction The Triassic, Jurassic and Early Cretaceous terrestrial ecosystems differed from extant ecosystems for various reasons, one of them being the presence of gigantic reptiles. The energy flow was principally less efficient (more rapid) and also the general appearance of the landscape was dissimilar [1,2]. Grasses, flowers with their fruits, large butterflies, and before the latest Jurassic, all eusocial insects (cockroaches, termites, ants, bees) were absent [3,4]. Discerning between dinosaur feces decomposers (which were not identified until now) is also essential as it changes the general appearance of our assemblage reconstructions. Moreover, the problem is of a principal, systemic importance. If nothing fulfilled this role, a large amount of dung would prevent soil regeneration just as it suffocated the pasture systems and prevented grass regeneration in present-day Australia [5]. Grasses were absent before the Early Cretaceous, but such influence will definitely alter extinct cenoses similar to some extent to the variety of living fern groups or perhaps taxa such as Gnetum and Ephedra. On the other hand, bird droppings are known to significantly (often positively) influence vegetation composition of ombrotrophic bogs [6]. Late Cretaceous biomes actually contain grasses and silicified plant tissues (phytoliths) preserved in the Maastrichtian coprolites (presumably from titanosaurid dinosaurs) from the Lameta Formation in India show that at least five taxa from extant grass (Poaceae) subclades were present during the latest Cretaceous [7]. Was the Mesozoic world full of sterile dinosaur dung, clean as a modern forest, or transitional between these two extremes? Circumstantial evidence of dinosaur (probably hadrosaur) coprolites [8,9] suggests that feces were used. The absence of dungbeetles during the Triassic and near-absence during most of the Jurassic [10] (roughly half of the age of dinosaurs) and their radiation associated only with the spread of modern grasslands [1] is still under discussion [2]. Feces have a greater capacity to retain moisture than the parent plant tissue [11] and coprophages exploit the microbial consortia concentrated on these recycled cellulose-based foodstuffs; the microorganisms serve not only as a source of nutrients and gut mutualists, but they also pre-digest recalcitrant substrates [12]. Microbial dominance is so pronounced that fecal pellets may be considered as living organisms [12]. They consist largely of living cells, they consume and release nutrients and organic matter, and they serve as food for animals higher on the food chain [13]. Any excrement is a valuable source of nitrogen, and its amount must have been huge [14] at least seasonally [15], during the age of dinosaurs. Each single separate dung might have had a volume of 7 liters [8]. Probably an important feature of dinosaur and pterosaur excrements (as in birds and reptiles when compared with mammals) was the large proportion of nitrogen compared with phosphorus [16]. The association with urine and thus with a high concentration of phosphoric acid, oxalic and carbonic acids and salts, primarily sodium chloride, leads to the recent conclusion PLOS ONE | www.plosone.org 1 December 2013 | Volume 8 | Issue 12 | e80560 about the association of dung-beetles and coprophagy with mammals (not with dinosaurs) since the very beginning [17]. On the other hand, some common (11 of the 15 deposits) fossilised dinosaur coprolites contain 13–85% of rotting conifer wood with only 0.20–0.30% of nitrogen (conifers are utilized by the living cockroach Cryptocercus – the most important wood-decomposing cockroach) with its attendant microbial and detritivore fauna and thus augmented the resource options of Cretaceous ecosystems that lacked fodder provided by grasses and other derived angiosperms [8,18]. The consistency of the coprolites during the deposition varied from fairly cohesive to viscous liquid and fluid to some extent – those containing a significant amount of wood are most easily recognizable as their high wood content prevented degradation [8]. In addition to dung, it has recently been proposed that the density of sauropods was high enough to produce the amounts of methane necessary for sustaining the warm climate during the Mesozoic [19]. The cockroach family Blattulidae, described by Vishniakova [20] originated in the Late Triassic and constitutes a (co-)dominant group of insects (,1%) throughout the whole Jurassic and Cretaceous [21]. They are often completely preserved [22–24] and contributed to knowledge of some general patterns such as the decreasing variability of species over time, and mass mutations [25,26]. The Blattulidae constitute the sole cockroach fossils preserved in several Cretaceous localities such as Shin Khudukh and some others in Mongolia and Verchnebureinskaja Vpadina in Russia, and are the dominant insect fossils in diverse Mesozoic ambers [27,28]. The hypothesis tested and supported in the course of the present research was the heterogeneous character of the diet of these Mesozoic cockroaches (in contrast to homogeneous one of all the studied Cenozoic and present ones). There are numerous Tertiary (Cenozoic) cockroaches preserved with the gut-content, but all of them have a homogeneous diet. The same holds for the studied living cockroaches. The occurrence of any wood (digested twice, a second time by cockroaches, after it was previously digested by herbivores; Figs. 1E, S1) was entirely unexpected. Protozoan cysts and helminth eggs preserved in the Early Cretaceous Iguanodon coprolite represent the only reported case of dinosaur parasites [29], but the discovered trophic relation of dinosaur-age vertebrate herbivore and insects might appear important also due to the structuring of the extinct ecosystems via parasites (and pathogens) transferred. Trophic association of Mesozoic vertebrates and insects suggest endoparasite transfer as well. A similar transfer is known from numerous living species, e.g., from Blatta orientalis and Periplaneta americana feeding on human excrement that contained cysts of Chilomastix mesnili and rats eating food that had been contaminated with feces from these cockroaches became infected with this protozoan [30]. Materials and Methods The material studied herein is from Mdeirij-Hammana, Baabda District Governorate Mount Lebanon, Central Lebanon - detailed coordinates for the localities of completely studied specimens (mostly immatures: (59, 76A, 623i-m, 778AB, 799, 800, 810CD, 845AB, 934AB, 1062, 1274B,D, FAL -3C (Falougha), 133.C, JEZ.F-14 (Wadi Jezzine, Jezzine District, Governorate Southern Lebanon), 1669-B, RIH-33 (Rihane outcrop, Jezzine District, Governorate Southern Lebanon), (deposited at the Lebanese University); AMNH Lebaneese amber 22, 77, 84, 91 (Bcharreh District, Governorate North of Lebanon; Jouar Ess-Souss, Bkassine, Jezzine District, Governorate Southern Lebanon, all deposited in the American Museum of Natural History), J. lebani holotype (Jouar Ess-Souss, Bkassine, Jezzine District, Governorate Southern Lebanon, Acra collection) can not be revealed due to site protection [31], in a Lower Cretaceous (ca. 120 Ma) amberbearing deposit. An enicocephalid assassin bug, three ceratopogonid biting midges, and two male coccids occur as syninclusions. Examined specimen (1094A-I) was not embedded in epoxy resin due to ST examination, but for photography a drop of maple sirup and a coverslip glass was attached to see inside. It is deposited at the Lebanese University, Faculty of Sciences II, Lebanon. We performed a microtomographic scan of the amber piece (0.185 g, well transparent dark yellow-red sample) at the full-field X-ray imaging station TopoTomo beamline of the ANKA light source. The scan covered 180 angular degrees with 2,800 radiographic projections measured. We used a filtered white beam radiation with a spectrum peak at ,20 keV. A sample-to-detector distance of 35 cm resulted in both absorption contrast and edge enhancing phase contrast in the projection images. These were recorded by an indirect detector system based on a scintillator coupled to an optical microscope and a CCD detector [32]. The magnification factor of the optical microscope was 22.4 which led to an effective pixel size of 0.4 mm with attached CCD camera pco.4000 with 400862672 pixels. We processed each radiographic projection using a single distance phase retrieval algorithm [33] integrated in ANKA phase plugin [34] for ImageJ and reconstructed the volume by PyHST reconstruction software [35]. The triangle algorithm is unknown, but the original surfaces contain so many polygons that the details lost to a reduction to 10% are negligible. For segmentation of the coprolites we used software Amira 5.4. After loading the volume data as an image stack of virtual slices, we labelled the whole coprolites and the dense particles with the segmentation editor of the program. We exported and reassembled the surface models from the labels with the software Cinema 4D R12. Volumes were calculated from the polygon meshes using the GeoTools2010 plug-in. Before creating the interactive 3D graphics, we reduced the surface polygons once more to 10%. The objects were saved as Collada files and opened with the software Right HemisphereH Deep Exploration 6. After creating the object hierarchy, we saved the data as Universal 3D files, opened with AdobeH AcrobatH 9 Pro Extended, and integrated into PDF files. Results Distribution of the Blattulidae is associated with the abundance of dinosaurs (fig. 2F). In the Lebanese amber, the Blattulidae constitute 8 of the 15 identified (21 studied) cockroach samples including Ocelloblattula ponomarenkoi Anisyutkin et Gorochov, 2007 [36], in addition to the Umenocoleidae (n = 1), Caloblattinidae (n = 2), Raphidiomimidae (n = 1), Liberiblattinidae (n = 1), Blattellidae (n = 2), and Mesoblattinidae (n = 2; Nymphoblatta azari) [37]. The present fossil (Fig. 1) can be categorized as belonging to Blattulidae on the basis of small size, chaetotaxy and a significant comparative specimens of amber which include both immatures and adults [28,38]. Its characteristics are a small size, large head, antennae with corrugated surfaces, and with 2–3 rows of long sensilla (Fig. 1BC), pronotum and abdomen with two longitudinal stripes, cerci with long spurs and extremely long sensilla, legs short. Especially notable are round elevated pronotal structures of the present nymph (see Fig. 2B), somewhat resembling lanterns (A lantern is a specialised light-producing organ of cockroaches.) of the luminescent cockroaches of the genus Lucihormetica [39,40]. The diet of the Blattulidae is revealed for the first time. Five coprolites (the last one still protruding from the abdomen) that are Dinosaur Cleaner-Ups PLOS ONE | www.plosone.org 2 December 2013 | Volume 8 | Issue 12 | e80560 elliptical in shape and circular in cross section (volumes 847,381 mm3 , 2080,512 mm3 , 2401,192 mm3 , 3435,904 mm3 , 4597807 mm3 ) (Fig. 1E, S1) amounting to a total volume of 13362,796 mm3 , and about 0.35 mm long contain heterogeneous material. They are preserved in a single piece of amber, adjacent to a fossil of the Early Cretaceous cockroach, and represent a new type of trace fossil (coprolite adjacent to a preserved dead organism) that will be designated elsewhere. 1.06% (141,081 mm3 ) is filled by partially digested particles of wood. The structure of the wood is revealed on the largest particles and the lignin bilayer (part of the numerous parenchymatous tangential ray cells) is apparent on Fig. 2a and S1. The distance among parenchymatous tangential cells is roughly 10 mm. The surfaces are smooth and the edges of the particles are rounded even in the largest particles (and also inside of cavities). The size of them (ca. 30,000 mm3 ) is still very small when compared to the mouthpart and mouthful size (e.g., particles of the cockroaches of this size often reach 0.4 mm at the widest point). Wood within the present coprolites has a characteristic, possibly power law distribution of particles larger than 100 mm3 (distribution curve at Fig. 2F can be characterised with the equation y = 21.964x +10.695; y = log (size); x = log (number of debris)), but the frequency of smaller particles decreases (Fig. 2D) at 100 mm3 , which is far enough to be recorded by the present technique (effective pixel sizes below 0.5 mm are common for the present synchrotron (ST)). The wood particles are not distributed concentrically and/or in an otherwise ordered way. Additionally, this wood is apparently decayed in the hind gut (intestine and/or rectum - as in termites - not in mid gut or stomach) as the last incompletely formed coprolite (caused by stress-defecation and still extruding from the body) contains numerous larger wood particles (S1). This enhanced gut activity is documented by the amorphous structure of the coprolite apparent in the sections (Fig. 2C). The distribution curve of the wood particles is ambiguous. The gut-processed particles are diminished below 100 mm3 , which is the rough limit for the smooth edges caused by the cockroach gutprocessing. On the other hand, the linear (in log scale) distribution of particles, combined with rounded edges in larger scale (up to 10,000 mm3 ) and the absence of small particles and isolated tracheae (only 3 linear particles are present, and they probably do Figure 1. Dinosaur-age cockroach of the extinct family Blattulidae. (A – head to leg end length: 3.8 mm) with antennal sensory system (B, C) and five preserved coprolites (D – optical, E – surface rendering of numbered coprolites and dense particles based on the image stack from synchrotron X-ray microtomography; F – ST orthoslice with labelled boundaries and fragments). Lebanon amber 1094A-I. Scales 0,5 mm. doi:10.1371/journal.pone.0080560.g001 Dinosaur Cleaner-Ups PLOS ONE | www.plosone.org 3 December 2013 | Volume 8 | Issue 12 | e80560 not represent tracheae) in the present coprolite suggests external pre-digestion. Dinosaurs apparently had consumed leaves along with the twigs, but the soft parts of leafs are unrecognizable in the ST signal. Only the hard and dense wood particles are distinct. Discussion The most effective exploiters of nitrogen in animals are cockroaches, often capable of nitrogen extraction and symbiont transfer even from their own feces or from feces of vertebrates including the popular guano of diverse vertebrates. Its storage and transfer to conspecifics is thought to be used as currency in mating and parental investment strategies [12]. Cockroaches feed on the droppings of frugivorous, insectivorous, and haematophagous bats, but not carnivorous bats [41]. Insect communities on the dung of crocodiles, varanid lizards and big turtles are virtually unstudied, and bird dung is generally too small to be utilized by a specialized dung cohort [17]. Nevertheless, several living cockroaches are associated with bird nests and presumed to feed on bird dung [12,42–46]. The only large volume bird dung of the oil bird Steatornis caripensis or guacharo (see Tab. 1) is processed by cockroaches [47], which is another (indirect) support for the present inferences as birds are direct descendants of dinosaurs (often systematically cathegorized directly inside them). Numerous authors [48] note explicitly but without specification direct utilisation of reptile dung. Christoffersen & De Assis [49]summarise pentastomid parasites transferred to cockroaches via feeding on reptile and amphibian feces (see Tab. 1). Although appearing trivial, cockroaches, one of the dominant insect orders during the Mesozoic were never examined as representing top candidates for partial processors of dinosaur dung. The present specimen represents a derived secondary trace within a trace (traces of microorganisms on wood preserved in a coprolite–a trace of a cockroach within amber–a trace of a tree). Figure 2. Dinosaur-age wood decomposing cockroach with coprolite and its ecological context. A) wood fragment no. 123 (coprolite no. 3), volume 23077 mm3 (TRC- parenchymatous tangential ray cells); B) Lebanese amber (Blattulidae 1094A-I), length (head to leg end): 3.8 mm; C) a virtual synchrotron section (,1.2 mm) through coprolite no. 3, wood particles are pale; D) percentual representation of volume of the respective wood particles; E) distribution analysis of simple particle count of 280 wood fragments present in all five coprolites plotted over the fragment size; F) Ratios of the Blattulidae and ‘‘Voltziablatta’’- group – families that replaced each other during the Triassic (interrupted arrow) – to all cockroaches, plotted over the timescale (in Ma). The origin and extinction of dinosaurs are pointed with arrows. ‘‘N in %’’ means percentual representation of number of specimens, ‘‘spp in %’’ is a percentual representation of species. Original data. doi:10.1371/journal.pone.0080560.g002 Dinosaur Cleaner-Ups PLOS ONE | www.plosone.org 4 December 2013 | Volume 8 | Issue 12 | e80560 Table 1. Distribuition of living dung-feeding cockroaches supporting their common and cosmopolitan distribution [41], exclusively in dark (nocturnal, cave or under dung) environments. Species Family Locality Country Dung Host Habitat Continent Reference Arenivaga grata Corydiidae Tucson Mountains, USA, Arizona guano Bat Bat cave North America [83] Blabverus discoidalis Blaberidae Bogor, Java Indonesia feces Flat-tailed gecko Outdoors Asia [84] Blatta orientalis Blattidae Johannesburg Hospital South Africa dung Human Hospital Africa [30] Blattella germanica Ectobiidae ? Egypt feces Human Villages Africa [85,86] Ergaula scarabaeoides Corydiidae Selangor Malaysia guano Bat Bat cave Asia [87,88] Eublaberus distanti Blaberidae Guanapo Cave Trinidad and Tobago dry guano Fruit bat Bat cave South America [4] Eublaberus posticus Blaberidae Trinidad island Trinidad and Tobago feces Bat Indoors South America [89] Eublaberus posticus Blaberidae Tamana cave Trinidad and Tobago guano Oilbird Bird cave South America [52] Euthyrrhapha nigra Corydiidae Antsinomy grotto Madagascar guano Bat Bat cave Africa [90] Gyna kazungulana Blaberidae ? East Africa guano Bat Bat cave Africa [91] Gyna maculipennis Blaberidae Lualaba Dem Rep Congo guano Bat Bat cave Africa [92] Opisthoplatia maculata Blaberidae Formosa Formosa ( = Taiwan) dung Human Outside Asia Shikano in [93] Paratemnopteryx kookabinnensis Ectobiidae Kookabinna George Western Australia guano Bat Cave Australia [94] Paratemnopteryx rufa Ectobiidae Nullarbor Plain Australia guano Bird Cave Australia [95] Paratemnopteryx weinsteini Ectobiidae Rope Ladder Cave Queensland guano Bat Cave Australia [94] Parcoblatta bolliana Ectobiidae Texas USA dry dung Cow Pine woods North America [96] Parcoblatta fulvescens Ectobiidae Florida USA dry dung Cow Pine woods North America [97] Periplaneta australasiae Blattidae Sarawak Mt. Jibong Malaysia guano Bird Cave Asia [98] Periplaneta australasiae Blattidae Malaysia feces Small reptiles Outdoors Asia [99] Periplaneta australasiae Blattidae Punta Gorda, Florida South Africa dung Goat Outside; vacant house North America [100] Periplaneta americana Blattidae Formosa Formosa ( = Taiwan) feces Macaca cyclopis Indoors Asia [101] Periplaneta americana Blattidae Vengurla India guano Bat Bat cave Asia [102] Periplaneta americana Blattidae Sumatra Sawah Lunto Indonesia feces Human Coal mine Asia [103] Periplaneta americana Blattidae western Bengal India feces Human Coal mine Asia [104,105] Periplaneta americana Blattidae Johannesburg Hospital South Africa dung Human Hospital Africa [30] Periplaneta americana Blattidae ? Egypt feces Human Villages Africa [85,86] Periplaneta americana Blattidae Accra – laboratory Ghana (Gold Coast) feces Erythrocebus patas Indoor (glass jars) Africa [106] Periplaneta americana Blattidae Araripe Brazil feces Worm lizard Outdoors South America [107] Perisphaerus sp. Blaberidae Jalor caves Malaysia guano Bat Cave Asia [108] Pycnoscelus surinamensis Blaberidae St. Croix USA, Virgin Islands feces Chicken Chicken roosts CentralAmerica [109] Pycnoscelus surinamensis Blaberidae Puerto Rico Mona Island USA dry dung Cow Pine woods CentralAmerica [43] Dinosaur Cleaner-Ups PLOS ONE | www.plosone.org 5 December 2013 | Volume 8 | Issue 12 | e80560 Although it represents a unique find in respect to both quality of preservation in amber as well as the incidental character of the preserved ‘‘act’’, coprolite feedings of Mesozoic cockroaches from other families can be excluded based on the positive evidence in the form of preserved gut contents. Several dozen species from the sedimentary record of diverse families (Mesoblattinidae, Caloblattinidae, Ectobiidae, Liberiblattindiae, Umenocoleidae) were found with the gut content. All of them contain unprocessed heterogenous organic debris, but no wood (unpublished observation), which is irreconcilable with coprophagy. Thus the only family adept for such duties is the family Blattulidae–the last ecologically significant family with unstudied gut content. The generic diversity of this family was significantly low, namely only 12 genera are present in their 80 million years of ecological dominance. This low diversity is also represented in the fossil inventory of the Lagersta¨tten and is direct evidence for very uniform, constant niches and probably also for a more or less uniform diet. This phenomenon is also visible in the unusually minor differences between genera of the sedimentary and amber records. This minimal diversity is highlighted to a greater extent by the sparse disparity. With the exception of two rare species, all Blattulidae are very similar. Uniformity is especially shown by the transversally striated extremities. This coloration dominates in the whole Mesozoic, but was lost at the K/Pg boundary along with the extinction of dinosaurs, although this colouration occurs in extant, nocturnal and arboreal Allacta australiensis under different body colors. Just a lack of diversity could mean it had a limited niche, one that could be seen in modern roaches, but combined with the longest lasting ecological dominance within cockroaches and unique morphology (such as corrugated surface of antennae– Fig. 2B,C), indicating the niche of the Blattulidae was different from that of living cockroaches. Generally, during the Mesozoic representatives of the family Blattulidae usually comprise ,1% of all insects and over 30% of cockroaches (Fig. 2F), and thus were probably associated with a dominant group of vertebrates–probably sauropod dinosaurs. Special features of the present specimen such as extremely short and wide body with very long cerci suggest it is closely related to Grandocularis kurnubinsi from Jordanian amber (described based on a nymph [50] of a similar stage and size). It apparently represents a closely related species, but differs in the form of the pronotum, eye size, coloration and chaetotaxy. In adults, bioluminescent ‘‘lanterns’’ were apparently absent–adults of at least several species of the Blattulidae were documented as crepuscular or diurnal, not nocturnal–on the basis of the eye morphology and common occurrence together with diurnal species within a single pterosaur and/or dinosaur coprolites and/or regurgites [51]. Cockroach nymphs occurring in dung would signal to adult ovipositing females by a lantern system. But the detection of luminescence of lanterns embedded in amber would be difficult. Unfortunately, the ST signal in a large piece of amber is too weak even to reveal morphological details and thus the presence of these morphofunctional units cannot be validated. One can imagine the distinct contrast coloration characterized by distinct alternating light-and-dark stripes would be advantageous (for communication) in an open and confined habitat of dung surfaces. On the other hand, neither cockroach guano dwellers nor recent ‘‘external’’ coprophages have any conspicuous coloration. Additionally, all living coprophagous cockroaches live concealed within and/or under dung. In nocturnal conditions of caves, nymphs also burrow in the surface of loose guano. They may be completely concealed, or may rest with their heads on the surface with their antennae extended up into the air; if the guano is compacted, the cockroaches remain on its surface and are attracted to irregularities such as the edge of a wall, a rock, or even a footprint [52]. In these dark conditions, guano cockroaches Table 1. Cont. Species Family Locality Country Dung Host Habitat Continent Reference Pycnoscelus striatus Blaberidae Selangor Malaysia guano Bat Cave Asia [87,88] Simandoa conserfariam Blaberidae Simandou Mts. Guinea guano Fruit bat Cave Africa [110] Symploce cavernicola Ectobiidae Sarawak Mt. Jibong Malaysia guano Bird Cave Asia [98] Tivia macracantha Corydiidae Katanga Province Dem Rep Congo guano ? Cave Africa [92] Tivia sp. Corydiidae Antsinomy grotto Madagascar guano ? Cave Africa [90] Trogloblattella nullarborensis Ectobiidae Nullarbor Plain Australia guano Bird Cave Australia [95] Xestoblatta hamata Ectobiidae La Selva Costa Rica dung Bird ? Cental America [4] Xestoblatta immaculata Ectobiidae Chilibrillo Panama guano Bat Cave Cental America [111] unidentified ? ? ? dung Horse, Cow Desert ? [112] unidentified Corydiidae ? Ecuador dung Bird Outdoors South America [12] unidentified ? ? Malaysia feces House gecko Indoors Asia [113] unidentified ? Hawai USA feces Giant toad Outdoors North America [114] Feeding of diverse cockroaches on bird excrements and also facultative feeding on reptile and amphibian dungs is apparent. Based on Bell et al. [12], Christoffersen & De Assis [49] and Roth & Willis [115]. doi:10.1371/journal.pone.0080560.t001 Dinosaur Cleaner-Ups PLOS ONE | www.plosone.org 6 December 2013 | Volume 8 | Issue 12 | e80560 are also present on dung and mostly are absent from cave zones of dry soil, stones, or pebbles [53,54]. The low diversity may be a consequence of a heterogenous diet and/or low specialization of herbivorous animals of which dinosaurs were the most abundant (suggesting there was relatively little nutritional variability in their excrement and thus less need for specialized roaches). Low specialization of at least some dinosaurs is confirmed by phytoliths extracted from the Upper Cretaceous coprolites (from dicotyledons, conifers, and palms) from India, suggesting that the suspected dung producers (titanosaur sauropods) fed indiscriminately on a wide range of plants, including grasses [7]. With the diversification of mammals [55], diverse specialized dung-beetles co-evolved [2] and these cockroaches, possible with low specialization in their feeding behaviors became extinct. Generally, before the massive radiation of the Blattulidae at the beginning of the Jurassic, their niche was occupied by the superficially similar ‘‘Voltziablatta’’ group of cockroaches, which became extremely rare along with the radiation of the Blattulidae. In all Mesozoic sites, ‘‘Voltziablatta’’ and the Blattulidae occur in congeneric species pairs, discretely differing in size, but not in general appearance, thus doubtfully representing nocturnal and diurnal cohorts (occurrence of both sexes in both groups was validated earlier [51]). This enigmatic observation is unexplained and needs further investigation. The Voltziablatta group phylogenetically connects its descendants, the herein studied Blattulidae and living cockroaches which bear endosymbionts; namely termites, Sociala and Cryptocercus all descended from Liberiblattinidae. If this mutualism had a single origin, it must have been in the Voltziablatta group (fixed to flora and wood of Voltzia plants), where the lignin consumption must have originally evolved. In the opposite case, we would need to consider three independent origins of endosymbionts, which molecular data do not support [56]. Coprolite and Dung Decomposition Presence of related endosymbionts in termites and cockroaches of the family Cryptocercidae was postulated to be an evidence for their direct relation. Nevertheless, the probable presence of endosymbionts in the Mesozoic clade which diverged from stem of higher cockroaches explains the monophyletic origin of these symbionts in both groups also in the phylogenetic reconstructions where they are not directly related [3]. The question is why was this capability lost in most regular cockroaches? The hypothesis that lignin-decomposing insect and their endosymbionts originated via the consumption of wood predigested by herbivore animal needs explanation. Feeding on lignified wood and also foliage-eating became more widespread in both dinosaurs and insects only with the radiation of angiosperms at the Early Cretaceous/Late Cretaceous boundary [1]. Dung consumption by Mesozoic termites, assisting in decomposition of processed plant matter was already proposed [14]. Even the wood decay is preserved in a single sample, it is clear that these cockroaches might have employed at least a semisocial way of life to provide the horizontal endosymbiont transfer (thus supporting the view that it evolved just once, as confirmed by the phylogenetical scheme). In recent tropics, where food is available for bats throughout the year, guano deposition is predictable and also supports very large, persistent groups of cockroaches– guanobies [57]. To summarize the arguments supporting dung processing, this single sample is decisive in showing a coprolite still extruding from the body (and thus belonging to the body fossil as a producer, excluding incidental preservation) and containing modified wood fibres with typical parenchymatous tangential ray cells. Lignin can not be processed this way without endosymbionts and even in the case it has been modified to some extent by some fungi, it must have been pre-processed externally. The wood was apparently processed before it entered the cockroach digestive tract as indicated by the large extent of digestion apparent in cavities (which definitely exclude the mechanical processing) and the fragment preservation plotting fragment volume over the fragment number–Fig. 2e; additional indirect support comes from dungprocessing of living cockroaches, Tab. 1. It must be stressed, that the extent of smoothing of large particles including large cavities excludes the exclusively within insect processing and is evidence for external pre-digestion. In this respect, a source of the wood directly from the environment can be excluded. There are only three possibilities for the pre-digestion, namely the fungal (excluded below based on selective disadvantage of preference of large indigestible particles and absence of wood damages before the Late Cretaceous contrasting with plethora of coprolites containing wood) and vertebrate pre-processing or their combination. Large particles are numerous indicating that they were not selectively avoided during consumption. Underrepresentation of smaller particles was apparently due to biochemical digestion of wood lignin as do their eusocial (extinct cockroaches of the family Socialidae and termites) and semisocial (Cryptcercidae) descendants. Although it is very probable that dinosaurs preferred wood processed by fungi, fungi-only pre-digestion and feeding of these cockroaches can be excluded based on the presence of large fragments combined with low partition of wood. Such a small amount would suggest selective feeding on fungi-modified wood, in which circumstances large particles are contradictive; on the contrary, unselective feeding on coprolites would contain the expected spectrum of particles of diverse size. The only possible explanation is that these were caused by herbivorous vertebrates. Due to the dominance of these cockroaches for the same 200 million years as dinosaurs, no other vertebrate group is as promising for this candidature. It can not be excluded that cockroaches also cleaned up after some small, unknown vertebrate herbivores, but these can be excluded from the present study as small vertebrates can not digest wood. Certainly, in such a case, in any solitary taxa the capability of symbiont transfer and thus utilizing lignin was necessarily lost. Termites did not exist before the Middle Jurassic, but their precursors under study were apparently pre-adapted for wood decomposition – and thus possessed one of the necessary conditions for the origin of a eusocial way of life. Nevertheless, termites were diversified in the very beginning of the Cretaceous as evidence from the presently studied locality in Lebanon also indicates [3,58,59]. Transfer of microflora within dinosaurs was proposed via juvenile coprophagy [60], which facilitates microflora but also endoparasite transfer with cockroaches. It is actually the intestinal bacteria and metabolic by-products [61,62] of the herbivore gut (perhaps dinosaurs), which likely allowed for lignin digestion in Blattulidae (by protozoans). The small proportion of wood content (,1% is of only partially processed wood remnants and up to 5% of completely processed wood, not recognized in the ST) in the cockroach coprolite indicates that wood was not the primary constituent of the diet of the present individual, and rather supports the derived source. This is also indicated by the Late Cretaceous dung of herbivorous reptiles [63], probably dinosaurs (entirely of comminuted plant tissue with the predominance of secondary conifer xylem tissues of Cupressaceae). The unmodified state of the cells and the absence of gymnospermous wood in dung [64] is still problematic, but the small size of the plant fragments Dinosaur Cleaner-Ups PLOS ONE | www.plosone.org 7 December 2013 | Volume 8 | Issue 12 | e80560 infilling the fossil burrows suggests comminution or sorting by invertebrates [63]. Also several gymnosperms remains (Cheirolepidiacae and Araucariacae) were found in the unstudied coprolite (larger than the present ones) from the same deposit in Lebanese amber. The distance among parenchymatous tangential cells of the wood in the present coprolite is roughly 10 mm, which is comparable to the structure of wood of fossil Taxodioxylon vanderburghii or Metasequoia glyptostroboides (20–30 mm [65]). Even more similar parenchymatous tangential cells (10–20 mm) are found in unidentified conifer wood from dinosaur coprolites (as indicated in Fig. 5B, upper part of [8]). Interestingly, this wood originates from trees growing in warm and semiarid Late Cretaceous environments preserved in the sediments of the Two Medicine Formation [8], which is in contrast to the warm and humid amber-producing Early Cretaceous forest of Lebanon. Anyway the specific determination of fossil conifer woods is very difficult and requires comparisons of many features that do not seem to be present in the small particles of wood in the fecal pellets. The wood (the length of the largest fragment was 13 cm) preserved in dinosaur coprolites is characterized by absence of cylindrical wood stems (no terminal twigs were digested); damage to lignin such as the presence of pliant tracheids, uneven cell walls and deformed and missing cells is also characteristic [8]. This, along with the fact that the vertebrate gut cannot hold complex lignolytic organisms, because these protists are anaerobic suggests fungal decay prior to consumption [8]. On the contrary, the small amount of small wood particles in these coprolites indicates they were processed within dinosaurs and support decomposition of the smallest particles both in dinosaur and cockroach coprolites. Coprolite and Dung Decomposition-defecation In spite of the diversity of behaviors reported from amber, a review by Arillo [66] contains a single defecation, reported from a Dominican amber termite [67]. Nevertheless, there is a rich Cretaceous termite record of distinctive fecal pellets with diagnostic hexagonal cross-sections that commence during the Hauterivian or Barremian [68] and continue to occur in various woods to the end of the Cretaceous. Some of these pellets may have originated from individuals belonging to taxa such as the eusocial cockroach Sociala that occurs in Mesozoic amber [3]. Fecal pellets from wood are known [69], and most amber coprolites contain wood remains and are assigned to wood borers among termites, beetles or some other insects [70,71]. Additional pellets are known from the Dominican amber [72] and frass containing fungi are known from Archingeay amber [73]. Defecation was probably often associated with escaping behaviour, because more than 60 samples of Lebanese amber (coprolites are often separated) contain coprolite of diverse size and shape (large elongate, oval). Lots of them were preserved with wood fibers. In the same piece there are insects like ceratopogonids, chironomids, archizelmerids (extinct flies) and wasps, but these coprolites are not associated with insects and are mentioned here to demonstrate the common defecation behaviour, not the wood processing. No trace fossils documenting specialized dung provisioning are known before the Late Cretaceous [2]. General Ecology of Dung Provisioning Detritic food chains strongly predominated in the Mesozoic [2] and the dominance of the Blattulidae among cockroaches seems to be associated with dung being the most valuable source of nitrogen. It is improbable that there were specialized guilds of dung feeders in the Mesozoic comparable with modern regarding structural complexity and ecological efficiency: Sciaridae and Scatopsidae (flies) with rapid larval development were remarkably rare [74], as well as dung beetles, although both are present in the Lebanese amber [75] along with decomposer flies of the families Psychodidae and Sciaridae. However, they were absent before the Jurassic and extremely rare during the entire Jurassic [10,64,75]. Alternative opportunistic exploiters of dinosaur dung were snails. Multiple associations of 132 (with 0–66 specimens each) fossils (Megomphix, Polygyrella, Hendersonia, Prograngerella, and three aquatic taxa) have also been observed on or within 6 of the 15 herbivorous dinosaur coprolite deposits [15]. Despite the great diversity and quantity of scarabeid beetles in the Mesozoic ([10] especially in the Middle Jurassic locality Daohugou in Inner Mongolia, China), only a few species can be considered as possibly coprophagous. Only 3 dung ball-makers from the subfamily Scarabaeinae are known: Prionocephale deplanate (Upper Cretaceous Lanxi formation, Zhejiang, China [76]), Cretonitis copripes (Early Cretaceous Zaza Formation, Baissa, Russia) and an undescribed species [72,77] of the living coprophagous genus Trypocopris. Representatives of the Geotrupidae were probably coprophagous: Parageotrupes incanus from the Yixian Formation [78], and Cretogeotrupes convexus and Aphodius (s.l.) (Aphodiinae) from Baissa [77,79]. An alternative hypothesis claiming mainly aquatic plant diet of dinosaurs [80] and thus water defecation does not explain at least some damage to terrestrial plants. The dung of known Mesozoic herbivores is composed mainly of undigested fern and gymnosperm tissues and was utilized by opportunistic detritivores together with other plant litter [2]. The specialized coprophagy by beetles is recorded as late as the Late Cretaceous when the diet of grazing dinosaurs apparently contained angiosperms other than grasses and ecosystems were based on biomes similar to grasslands [1]. Based on our investigations, pollen and angiosperms in the Lebanon amber are indicated by at least 5–6 different taxa. The decay of wood pre-digested in dinosaur gastrointestinal tracts explains and predicts the single origin of lignin consumption in the common ancestor of termites, eusocial cockroaches (Sociala), and semisocial cockroaches of the family Cryptocercidae. It would also explain a huge number of termite-like fecal pellets (containing wood) in Mesozoic ambers with parallel absence of any termite damage to wood [68]. The fact that termites were a major lineage responsible for the degradation of plant tissues (when compared with cockroaches) is irrelevant in this respect as they originated not earlier than in the Middle Jurassic when their ancestors, certain Liberiblattinidae appear in the fossil record [4] and thus can not play any role in the decomposition of early sauropod dung. In contrast, blattulid cockroaches and their ecological equivalents originated as early as the Permian–Triassic boundary. The contemporary robust appearance of Cryptocercidae does not require a major morphological shift from anticipated dungbeetle-habits. It is likely that dung processors will also lose wings like Cryptocercidae, but in caves, wing loss and associated morphological changes occur more frequently in organisms that rely on plant debris than those that rely on guano [81]. Under all circumstances it is apparent, that termite and cryptocercid ancestors were pre-adapted for lignin decay and, likely, provided a limited sanitation to herbivorous reptiles. Based on the correlation of distribution of reptiles and the dominance of the blattulid cockroaches in Mesozoic ecosystems, and their coeval occurrence in the present amber-bearing strata [82], these herbivorous reptiles were most likely the dominant sauropod dinosaurs. Dinosaur Cleaner-Ups PLOS ONE | www.plosone.org 8 December 2013 | Volume 8 | Issue 12 | e80560 Supporting Information Figure S1 Synchrotron imaging of 5 coprolites of dinosaur-age immature cockroach from the Lebanese amber (Blattulidae 1094A-I). Select transparent mode for 3D visualization and rotation. (PDF) Acknowledgments We thank Georgy V. Nikolajev (Al-Farabi Kazakh National University, Almaty, Kazakhstan) for the literature supply and fruitful discussion; Vladimı´r Sˇimo and Adam Toma´sˇovy´ch (both GlU SAV, Bratislava, Slovakia), Toma´sˇ Holu´bek and Marthe Kaufholz (both ANKA/IPS, Eggenstein-Leopoldshafen, Germany) for technical help, Russell Garwood (IC, London, UK), Ralf Kosma (SNHM, Niedersachsen, Germany) and five anonymous reviewers for revision as well as Graeme Butler and Martin Styan for linguistic revisions. The ANKA Synchrotron Radiation Facility is acknowledged for providing beamtime. Author Contributions Conceived and designed the experiments: P. Vrsˇansky´ TV P. Vagovicˇ. Performed the experiments: P. Vrsˇansky´ TV P. Vagovicˇ. Analyzed the data: P. Vrsˇansky´ TV LV P. Vagovicˇ. Contributed reagents/materials/ analysis tools: P. Vrsˇansky´ TV DA AP P. Vagovicˇ. Wrote the paper: P. Vrsˇansky´ TV DA AP LV P. Vagovicˇ. Initiated the research, identified and drew the immature cockroach with coprolite, and erected and validated the present hypotheses: P. Vrsˇansky´. Provided the material and dinosaur information from the locality: DA. Provided and designed the mST experiment, and provided particle measurements and volume segmentation of reconstructed mST data and edited the text: TV P. Vagovicˇ. Provided information on dung beetles and ecology: AP. References 1. Zherikhin VV (1978) Development and change of Cretaceous and Cenozoic faunistic complexes: Tracheata, Chelicerata. Nauka, Moscow. 2. Zherikhin VV (2002) Ecological History of the Terrestrial Insects. In: Rasnitsyn AP, Quicke DLJ, editors. History of Insects. Kluwer, Dodrecht, pp. 331–388. 3. Vrsˇansky´ P (2010) Cockroach as the earliest eusocial animal. Acta Geol SinEngl Ed 84: 793–808. 4. Vrsˇansky´ P, Aristov D (2014) Termites from the Jurassic/Cretaceous boundary; evidence for the longevity of their earliest genera. Eur J Entomol 111(1). In press. 5. Bornemissza GF (1960) Could dung eating insects improve our pastures? J Aust Inst Agric Sc 26: 54–56. 6. Tomassen HBM, Smolders AJP, Lamers LPM, Roelofs JGM (2005) How bird droppings can affect the vegetation composition of ombrotrophic bogs. Can J Bot 83: 1046–1056. 7. Prasad V, Stro¨mberg CAE, Alimohammadian H, Sahni A (2005) Dinosaur Coprolites and the Early Evolution of Grasses and Grazers. Science 310, 1177– 1180. 8. Chin K (2007) The paleobiological implications of herbivorous dinosaur coprolites from the Upper Cretaceous Two Medicine formation of Montana: Why eat wood? Palaios 22, 5: 554–566. 9. Krell FT (2006) Fossil record and evolution of Scarabaeoidea (Coleoptera: Polyphaga). Coleopterists Society Monograph Number 5: 120–143. 10. Bai M, Ahrens D, Yang X-K, Ren D (2012) New fossil evidence of the early diversification of scarabs: Alloioscarabaeus cheni (Coleoptera: Scarabaeoidea) from the Middle Jurassic of Inner Mongolia, China. Insect Sci 19: 159–171. 11. McBrayer JF (1973) Exploitation of deciduous leaf litter by Apheloria montana (Diplopoda: Eurydesmidae). Pedobiologia 13: 90–98. 12. Bell WJ, Roth LM, Nalepa CA (2007) Cockroaches: Ecology, Behavior, and Natural History. BaltimoreMD: The John Hopkins University Press. 230 p. 13. Johannes RE, Satomi M (1966) Composition and nutritive value of fecal pellets of a marine crustacean. 11: 191–197. 14. Beland P, Russell DA (1978) Paleoecology of Dinosaur Provincial Park (Cretaceous), Alberta, interpreted from the distribution of articulated vertebrate remains: Can J Earth Sci 15: 1012–1024. 15. Chin K, Hartman JH, Roth B (2009) Opportunistic exploitation of dinosaur dung: fossil snails in coprolites from the Upper Cretaceous Two Medicine Formation of Montana. Lethaia 42: 185–198. 16. Vidlicˇka L9 (2001) Blattaria - sˇva´by, Mantodea – modlivky (Insecta: Orthopteroidea). Fauna Slovenska. Veda, Bratislava. In Slovak. 17. Arillo A, Ortun˜o VM (2008) Did dinosaurs have any relation with dungbeetles? (The origin of coprophagy). J Nat Hist 42 (19–20): 1405–1408. 18. Dix NJ, Webster J (1995) Fungal Ecology. London: Chapman & Hall. 549 p. 19. Wilkinson DM, Nisbet EG, Ruxton GD (2012) Could methane produced by sauropod dinosaurs have helped drive Mesozoic climate warmth? Curr Biol 22: 292–293. 20. Vishniakova VN (1982) Yurskie tarakanovye semyeistva Blattulidae fam. nov. (Insecta: Blattida) [Jurassic cockroaches of the family Blattulidae fam.nov. (Insecta: Blattida)]. Paleontol J: 69–79. In Russian. 21. Vrsˇansky´ P (2005) Insect in a drilling core – cockroach Kridla stastia sp.nov. from the Verkhne-Bureinskaya Depression in Eastern Russia. Entomol Probl 35: 115–116. 22. Vishniakova VN (1968) Mesozoic cockroaches with an external ovipositor and pecularities of their reproduction (Blattodea). In: Rohdendorf BB, editor. Jurassic Insects of Karatau. Nauka, Moscow. pp. 55–86. In Russian. 23. Wang TT, Liang JH, Ren D (2007) Variability of Habroblattula drepanoides gen. et. sp nov (Insecta : Blattaria : Blattulidae) from the Yixian Formation in Liaoning, China. Zootaxa 1443: 17–27. 24. Wang TT, Liang JH, Ren D, Shi C (2007) New Mesozoic cockroaches (Blattaria: Blattulidae) from Jehol Biota of western Liaoning in China. Ann Zool 57: 483–495. 25. Vrsˇansky´ P (2000) Decreasing variability-from the Carboniferous to the Present! (Validated on independent lineages of Blattaria). Paleontol J 34 (Suppl. 3): 374–379. 26. Vrsˇansky´ P (2005) Mass mutations of insects at the Jurassic/Cretaceous boundary? Geol Carpath 56: 473–781. 27. Vrsˇansky´ P (2008) Mesozoic relative of the common synanthropic German cockroach (Blattodea). Deut Entomol Z 55: 215–221. 28. Vrsˇansky´ P (2009) Albian cockroaches (Insecta, Blattida) from French amber of Archingeay. Geodiversitas 31: 73–98. 29. Poinar G, Boucot AJ (2006) Evidence of intestinal parasites of dinosaurs. Parasitology 133: 245–249. 30. Porter A (1918) A survey of the intestinal entozoa, both protozoal and helminthic, observed among natives in Johannesburg, from June to November, 1917. South African Inst Mem 11: 1–58. 31. Azar D, Ge`ze R, Acra F (2010) Chapter 14: Lebanese amber In: Biodiversity of Fossils in Amber from the Major World Deposits, D Penney, ediotor. Manchester: Siri Scientific Press. pp. 271–298. 32. Bonse U, Bush F (1996) X-ray computed microtomography using synchrotron radiation Prog Biophys Mol Biol 65: 133–169. 33. Paganin D, Mayo SC, Gureyev TE, Miller PR, Wilkins SW (2002) Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J Microsc 206: 33–40. 34. Weitkamp T, Haas D, Wegrzynek D, Rack A (2011) ANKAphase: software for single-distance phase retrieval from inline X-ray phase-contrast radiographs. J Synchrotron Rad 18: 617–629. 35. Chilingaryan H, Mirone A, Hammersley A, Ferrero C, Helfen L et al. (2011) A GPU-Based Architecture for Real-Time Data Assessment at Synchrotron Experiments. IEEE Trans Nucl Sci 58: 1447–1455. 36. Anisyutkin LN, Gorochov VN (2007) A New Genus and Species of the Cockroach Family Blattulidae from Lebanese Amber (Dictyoptera, Blattina). Paleontol J 42(1): 43–46. 37. Vrsˇansky´ P (2004) Cretaceous Gondwanian Cockroaches (Insecta, Blattaria). Entomol Probl 34: 49–54. 38. Vrsˇansky´ P (2008) A complete larva of a Mesozoic (Early Cenomanian) cockroach from the Sisteron amber. Geol Carpath 59, 3: 269–272. 39. Vrsˇansky´ P, Chorva´t D, Fritzsche I, Hain M, Sˇevcˇı´k R (2012) Light-mimicking cockroaches indicate Tertiary origin of recent terrestrial luminescence. Naturwissenschaften 99(9): 739–749. 40. Vrsˇansky´ P, Chorva´t D (2013) Luminescent system of Lucihormetica luckae supported by fluorescence lifetime imaging. Naturwissenschaften 100(11). In press. 41. Gnaspini P, Trajano E (2000) Guano communities in tropical caves. In: Wilkens H, Culver DC, Humphreys WF, editors. Ecosystems of the World. Vol. 30: Subterranean Ecosystems. Amsterdam: Elsevier. pp. 251–268. 42. Paulian R (1948) Observations sur la faune entomologique des nids de Ploceinae. Proceedings of the 8th International Congress of Entomology, Stockholm: 454–456. 43. Wolcott GN (1950) The insects of Puerto Rico. Journ Agr Univ Puerto Rico (1948) 32: 1–224. 44. Rehn JAG (1965) A new genus of symbiotic cockroach from southwest Africa (Orthoptera: Blattaria: Oxyhaloinae). Notulae Naturae 374: 1–8. 45. Roth LM (1973) Brazilian cockroaches found in birds nests, with descriptions of new genera and species. Proc Entomol Soc Washington 75: 1–27. 46. van Baaren J, Deleporte P, Grandcolas P (2002) Cockroaches of French Guiana Icteridae birds nests. Amazonia 17: 243–248. 47. Darlington JPEC (1995) A review of current knowledge about the Oropouche or Cumaca cave, Trinidad, West Indies. Studies in Speleology 10: 65–74. 48. Schal C, Bell WJ (1982) Ecological correlates of paternal investment in a tropical cockroach. Science 218: 170–172. Dinosaur Cleaner-Ups PLOS ONE | www.plosone.org 9 December 2013 | Volume 8 | Issue 12 | e80560 49. Christoffersen ML, De Assis JE (2013) A systematic monograph of the Recent Pentastomida, with a compilation of their hosts. Zool Med Leiden 87(1): 1–206, figs. 1–4. 50. Kaddumi HF (2005) Amber of Jordan – the oldest prehistoric insects in fossilised resin. Amman: Publications of the Eternal River Museum of Natural History. 168 p. 51. Vrsˇansky´ P (2003) Unique assemblage of Dictyoptera (Insecta- Blattaria, Mantodea, Isoptera, Mantodea) from the Lower Cretaceous of Bon Tsagaan Nuur in Mongolia. Entomol Probl 33: 119–151. 52. Darlington JPEC (1970) Studies on the ecology of the Tamana Caves with special reference to cave dwelling cockroaches. Ph.D. thesis, University of the West Indies, Trinidad. 224 pp. 53. Gautier JY (1974) Etude comparee de la distribution spatiale et temporelle des adultes de Blaberus atropos et B. colosseus (Dictyopteres) dans cinq grottes de l’ile de Trinidad. Revue du Comportement de Animale 9: 237–258. 54. Gautier JY (1974) Processus de differenciation de l’organi zation sociale chez quelques especes de Blattes du genre Blaberus: aspects ecologiques et ethologiques. These de doctorat d’etat, L’Universite de Rennes. 55. Sahney S, Benton MJ, Ferry PA (2010) Links between global taxonomic diversity, ecological diversity and the expansion of vertebrates on land. Biol Lett 6(4): 544–547. 56. Ballor NR, Leadbetter JR (2012) Analysis of extensive [FeFe] hydrogenase gene diversity within the gut microbiota of insects representing five families of Dictyoptera. Microbial Ecology 63(3): 586–595. 57. Poulson TL, Lavoie KH (2000) The trophic basis of subsurface ecosystems. In: Wilkens H, Culver DC, Humphreys WF, editors. Ecosystems of the World. Vol. 30: Subterranean Ecosystems. Amsterdam: Elsevier. pp. 231–249. 58. Engel MS, Grimaldi D, Krishna K (2009) Termites (Isoptera): Their Phylogeny, Classification, and Rise to Ecological Dominance. Am Mus Novit 3650: 1–27. 59. Engel MS, Nel A, Azar D, Soriano C, Tafforeau P et al. (2011) New primitive termites (Isoptera) from Early Cretaceous amber of France and Lebanon. Palaeodiversity 4: 39–49. 60. Rogers KL (1985) Possible physiological and behavioural adaptations of herbivorous dinosaurs. Journal of Vertebrate Paleontology 5: 371–372. 61. Halftter G, Matthews EG (1966) The natural history of dung beetles of the subfamily Scarabaeinae (Coleoptera, Scarabaeidae): Folia Entomol Mexic 12–14: 1–281. 62. Hanski I, Cambefort Y (1991) Competition in dung beetles. In: Dung Beetle Ecology, Hanski I, Cambefort Y, editors. Princeton Univ. Press, New Jersey, pp. 305–329. 63. Chin K, Gill BD (1996) Dinosaurs, Dung Beetles, and Conifers: Participants in a Cretaceous Food Web. Palaios 11: 280–285. 64. Ponomarenko AG (2006) Evolution of phytophagy. Assemblage palaeoecology and evolution: 257–270. 65. Dolezych M, Estrada S (2012) A fossil wood of Taxodioxylon vanderburghii Dolezych in Paleogene sediments of Ellesmere Island (Nunavut, Canada). Z dt Ges Gewiss 163(3): 283–292. 66. Arillo A (2007) Paleoethology: fossilized behaviours in amber. Geologica Acta 5: 159–166. 67. Poinar GO Jr (1998) Trace fossils in amber: a new dimension for the ichnologist. Ichnos 6: 47–52. 68. Colin JP, Ne´raudeau D, Nel A, Perrichot V (2011) Termite coprolites (Insecta: Isoptera) from the Cretaceous of western France: A palaeoecological insight. Revue de micropale´ontologie 54: 129–139. 69. Conwentz H (1890) Monographie der Baltischen Bernsteinba¨ume. Leipzig: Wilhelm Engelmann. 70. Weidner H (1956) Kotballen von Termiten im Bernstein. Vero¨ffentlichungen aus dem U¨ berseemuseum in Bremen (Naturwissenschaften) 2A: 363–364. 71. Nuorteva M, Kinnunen KA (2008) Insect frass in Baltic amber. Bull Geol Soc Fin 80: 105–124. 72. Grimaldi DJ (1996) Amber. Window to the past. New York: Abrams, AMNH. 73. Schmidt AR, Do¨rfelt D, Struwe S, Perrichot V (2010) Evidence for fungivory in Cretaceous amber forest from Gondwana and Laurasia. Palaeontographica Abt B 283: 157–173. 74. Kirejtshuk G, Azar D, Montreuil O (2011) First Mesozoic representative of the subfamily Liparochrinae (Coleoptera: Hybosoridae) from the Lower Cretaceous Lebanese amber. Zoosystematica Rossica 20: 62–70. 75. Nikolaev GV (2007) Mesozoic stage of the scarab evolution (Insecta: Coleoptera: Scarabaeoidea). Kazakh Univ., Almaaty. In Russian. 76. Lin QB (1980) Mesozoic insects from Zhejiang and Anhui. In: Division and Correlation of Mesozoic Volcano-sedimentary Formation in Zhejiang and Anhui Provinces. Beijing: Science Press. pp. 211–238. 77. Nikolajev GV (2008) A new species of the subfamily Aphodiinae (Coleoptera: Scarabaeidae) from the Lower Cretaceous of Transbaikalia. Caucas Entomol Bull 4: 291–293. 78. Nikolajev GV (1992) Taxonomic criteria and generic composition of Mesozoic lamellicorn beetles (Coleoptera, Scarabaeidae). Paleontol J 26(1): 96–111. 79. Nikolajev GV, Ren D (2010) New genus of the subfamily Geotrupinae (Coleoptera: Scarabaeoidea: Geotrupidae) from the Jehol Biota. Acta Geol SinEngl Ed 84: 673–675. 80. Ponomarenko AG (2010) Arthropods in the evolution of continental basins. Her Russ Acad Sci 80(5): 438–446. 81. Culver DC, Kane TC, Fong DW (1995) Adaptation and natural selection in caves: the evolution of Gammarus minus. CambridgeMA: Harvard University Press. 223 p. 82. Buffetaut E, Azar D, Nel A, Ziade´ K, Acra A (2006) First nonavian dinosaur from Lebanon: a brachiosaurid sauropod from the Lower Cretaceous of the Jezzine District. Naturwissenschaften 93: 440–443. 83. Ball ED, Tinkham ER, Flock R, Vorhies CT (1942) The grasshoppers and other Orthoptera of Arizona. Univ Arizona Coll Agr Exp Stat Techn Bull 93: 257–373. 84. Ali JH, Riley J (1983) Experimental life-cycle studies of Raillietiella gehyrae Bovien, 1927 and Raillietiella frenatus Ali, Riley and Self, 1981: pentastomid parasites of geckos utilizing insects as intermediate hosts. Parasitology 86: 147– 160. 85. DeCoursey JD, Otto JS (1956) Some protozoan organisms in cockroaches in the Cairo, Egypt area, with special reference to Endamoeha histolytica. US Nav Med Res Unit 3, Res Rep NM 005 050.60.01, 7 pp. 86. DeCoursey JD, Otto JS (1957) Endamoeba histolytica and certain other protozoan organisms found in cockroaches in Cairo, Egypt Journ New York Ent Soc 64: 157–163. 87. Chopard L (1919) Zoological results of a tour in the far east. Les Orthopteres cavernicoles de Birmanie et de la Peninsule Malaise. Mem Asiatic Soc Bengal 6: 341–396. 88. Chopard L (1929) Fauna of the Batu caves, Selangor. XII. Orthoptera and Dermaptera. Journ Fed Malay States Mus 14: 366–371. 89. Princis K, Kevan DKMcE (1955) Cockroaches (Blattariae) from Trinidad, B.W.I., with a few records from other parts of the Caribbean. Opusc Ent 20: 149–169. 90. Chopard L (1949) Les Orthopteroides cavernicoles de Madagascar. Mem Inst Sci Madagascar 3A: 41–56. 91. Chopard L (1936) Biospeleologica. LXIII. Orthopteres et Dermapteres. Premiere serie. Arch Zool Exp et Gen 78: 195–214. 92. Leleup N (1956) La faune cavernicole du Congo Belge et considerations sur les Coleopteres reliques d’Afrique intertropicale. Ann Mus Roy Congo Belge, Tervuren (Belgique), ser. in-8u, Zool 46: 171 pp. 93. Takahashi R (1926) Observations on the aquatic cockroach Opisthoplatia maculata. Dobuts Zasshi Tokyo 38: 89–92. In Japanese. 94. Slaney DP (2001) New species of Australian cockroaches in the genus Paratemnopteryx Saussure (Blattaria, Blattellidae, Blattellinae), and a discussion of some behavioural observations with respect to the evolution and ecology of cave life. J Nat Hist 35: 1001–1012. 95. Richards AM (1971) An ecological study of the cavernicolous fauna of the Nullarbor Plain Southern Australia. J Zool London 164: 1–60. 96. Hebard M (1917) The Blattidae of North America north of the Mexican boundary. Mem Amer Ent Soc 2: 284. 97. Blatchley WS (1920) Orthoptera of Northeastern America. Indianapolis: The Nature Publishign Company. 784 p. 98. Moulton JC (1912) ‘‘Where Wallace trod’’: Being some account of an entomological trip to Mt. Serambu, Sarawak, Borneo. Entomologist 45: 213– 217, 246–251. 99. Rajamanickam C, Lavoipierre MMJ (1965) Periplaneta australasiae as an intermediate host of the pentastomid Raillietiella hemidactyli. Med J Malaysia 20: 171. 100. Rehn JAG, Hebard M (1914) Records of Dermaptera and Orthoptera from west central and southwestern Florida, collected by William T. Davis. Journ New York Ent Soc 22: 96–116. 101. Morischita K, Tsuchimochi K (1926) Experimental observations on the dissemination of diseases by cockroaches in Formosa. Taiwan Igakkai Zasshi, Journ Med Assoc Formosa 255: 566–599. (In Japanese; English summary, pp. 2–6). 102. Abdulali H (1942) The terns and edible-nest swifts at Vengurla, West Coast, India. Journ Bombay Nat Hist Soc 43(3): 446–451. 103. Hanitsch R (1929) Fauna Sumatrensis. (Beitrag No. 63). Blattidae. Tijdschr Ent 72: 263–302. 104. Chandler AC (1926) Some factors affecting the propagation of hookworm infections in the Asansol Mining Settlement with special reference to the part played by cockroaches in mines. Indian Med Gaz 61: 209–212. 105. Chopard L (1938) La biologie des Orthopteres. Encycl Ent Paris A 20: 541 pp. 106. Macfie JWS (1922) Observations on the role of cockroaches in disease. Ann Trop Med Parasitol 16: 441–448. 107. Almeida WO, Ferreira FS, Brito SV, Christoffersen ML (2006) Raillietiella gigliolii (Pentastomida) infecting Amphisbaena alba (Squamata, Amphisbaenidae): a first record for northeast Brazil. Braz J Biol 66: 1137–1139. 108. Annandale N (1900) Notes on Orthoptera in the Siamese Malay States. Ent Rec and Journ Var 12: 75–77. 109. Beatty HA (1944) Fauna of St. Croix, V. I. Journ Agr Univ Puerto Rico 28: 103–185. 110. Roth LM, Naskrecki P (2003) A new genus and species of cave cockroach (Blaberidae: Oxyhaloinae) from Guinea,West Africa. J. Orthop Res 12: 57–61. 111. Caudell AN (1924) Some insects from the Chilibrillo bat caves of Panama. Insecutor Inscitiae Menstruus 12: 133–135. 112. Schoenly K (1983) Arthropods associated with bovine and equine dung in an ungrazed Chihuahuan desert ecosystem. Ann Entomol Soc Am76: 790–796. Dinosaur Cleaner-Ups PLOS ONE | www.plosone.org 10 December 2013 | Volume 8 | Issue 12 | e80560 113. Jefferey J, Krishnasamy M, Oothuman P, Ali J, Baker AE et al. (1985) Preliminary observations on the cockroach intermediate host of a house gecko railietiellid in Peninsular Malaya. Malaysian Journal of Medical and Laboratory Sciences 2: 83–84. 114. Barton DP, Riley J (2004) Raillietiella indica (Pentastomida) from the lungs of the giant toad, Bufo marinus (Amphibia), in Hawaii, U.S.A. Comparative Parasitology 71: 251–254. 115. Roth LM, Willis ER (1960) The biotic associations of cockroach. Smith Misc Coll 141: 1–470. Dinosaur Cleaner-Ups PLOS ONE | www.plosone.org 11 December 2013 | Volume 8 | Issue 12 | e80560 Príloha č. 15 VRŠANSKÝ, P., VIDLIČKA, Ľ., BARNA, P., BUGDAEVA, E., MARKEVICH, V. 2013b. Paleocene origin of the cockroach families Blaberidae and Corydiidae: Evidence from Amur River region of Russia. Zootaxa 3635(2): 117-126. Accepted by F. Crespo: 11 Feb. 2013; published: 26 Mar. 2013 ZOOTAXA ISSN 1175-5326 (print edition) ISSN 1175-5334 (online edition)Copyright © 2013 Magnolia Press Zootaxa 3635 (2): 117–126 www.mapress.com/zootaxa/ Article 117 http://dx.doi.org/10.11646/zootaxa.3635.2.2 http://zoobank.org/urn:lsid:zoobank.org:pub:B74B0B78-911E-41FE-879F-7D41C8A77DBF Paleocene origin of the cockroach families Blaberidae and Corydiidae: Evidence from Amur River region of Russia PETER VRŠANSKÝ1,2 , ĽUBOMÍR VIDLIČKA3,4 , PETER BARNA2 , EUGENIA BUGDAEVA5 & VALENTINA MARKEVICH5 1 Arthropoda Laboratory of the Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya 123, 117868 Moscow, Russia 2 Geological Institute, Slovak Academy of Sciences, Dúbravska cesta 9, P.O.BOX 106, 840 05 Bratislava, Slovakia. E-mail: geolvrsa@savba.sk 3 Institute of Zoology, Slovak Academy of Sciences, Dúbravska cesta 9, 845 06 Bratislava, Slovakia. E-mail: uzaevidl@savba.sk; 4 Department of Biology, Faculty of Education, Comenius University, Moskovská 3, Bratislava, 813 34, Slovakia. E-mail: vidlicka@fedu.uniba.sk 5 Institute of Biology and Soil Science, Far East Branch, Prosp. 100-letiya 159, 690022 Vladivostok, Russia. E-mail: bugdaeva@ibss.dvo.ru Abstract Morphna paleo sp. n., the earliest winged representative of any living cockroach genus and the earliest representative of the family Blaberidae, is described from the Danian Arkhara-Boguchan coal mine in the Amur River region (Russian Far East). The branched Sc and A suggest Ectobiidae (=Blattellidae) probably is not the ancestral family because Blaberidae were derived directly from the extinct family Mesoblattindae. The associated Danian locality Belaya Gora yielded Ergaula stonebut sp. n., the earliest record of the family Corydiidae. Both species belong to genera codominant in the Messel locality, thus validating their dominance in early Cenozoic assemblages. Key words: fossil insects, fossil cockroaches, Tertiary, Blaberidae, Corydiidae, Morphna, Ergaula Introduction The Paleocene epoch, with 177 known extinct insect species: 44 coleopterans, 28 dipterans, 28 hemipterans, 27 hymenopterans, 15 odonates, 10 orthopterans, 8 neuropterans, 6 trichopterans, 5 mecopterans, 2 dermapterans, and 1 lepidopteran (EDNA fossil insect database; http://edna.palass-hosting.org; active 2.5. 2012) is the least known Tertiary period in terms of insect diversity. No cockroaches, only two related termite species and a single mantodean Arvernineura insignis have been described from Menat (Piton 1940). In contrast, 6124 Eocene, 2663 Miocene and 2550 Oligocene species have been recorded. Pliocene and Pleistocene species are also numerous, but in EDNA underrepresented due to the presence of living species in these Epochs (EDNA catalogise only original designations of species). Cockroaches originated in the Bashkirian Carboniferous, with the oldest record originating from the Quilianshan in China (Zhang et al. 2012, Guo et al. 2012). Typical Mesozoic families were derived from the Phyloblattidae near the P/T boundary and the stem of the living families (but also the stem for all mantodeans and termites) can be traced from the Mesozoic family Liberiblattinidae (Vršanský 2002, 2010, 2012). The earliest record of any living family is the ectobiid (blattellid) Piniblattella vitimica (Vishniakova, 1964) from the earliest Cretaceous (Vršanský 1997). Before this study, living cockroach genera, including highly advanced forms, were known starting from the early Eocene (Archibald & Mathewes 2000) and the modern fauna is considered to originate around the Paleocene-Eocene Thermal Maximum (PETM—Vršanský et al. 2011, 2012b). (The amber fossil ?Blattella lengleti, is a nymph and may represent a separate genus.) The present study provides evidence for the occurrence of at least some extant genera before the Palaeocene side of the PETM, and in parallel provides earlier evidence for the two living families Corydiidae and Blaberidae. VRŠANSKÝ et al.118 · Zootaxa 3635 (2) © 2013 Magnolia Press Material and methods Two joined forewings were collected by Yu.L. Bolotsky in the stratotype section of the Tsagayan Formation (Belaya Gora locality). This specimen is deposited in the Amur Natural History Museum of the Institute of Geology and Nature Management, Far Eastern Branch Russian Academy of Sciences (ANHM IGNM FEB RAS), Blagoveshchensk, Russia. One isolated wing was collected by E.V. Bugdaeva in the upper plant-bearing bed in the Arkhara-Boguchan coal mine. This specimen is deposited in Paleontological Institute of Russian Academy of Sciences, Moscow, Russia. Comparative living material provided in the photograph originates from the collection of Vít Kubáň (Thailand, Mae Hong Son Province, Soppong, 7–12.V.1996) deposited in collection of the second author (ĽV) in the Institute of Zoology, SAS, Bratislava. Geological background The Zeya-Bureya Basin is located in the middle course of the Amur (Heilongjiang) River (Fig. 1B–D). Development of its sedimentary cover began in the Late Cretaceous with accumulation of the Kundur Formation (Santonian-Campanian). This stratigraphic unit is represented by sandstones, siltstones, and mudstones containing abundant freshwater fauna. These sediments in some structures are oil-and-gas bearing. Over them is the Tsagayan Formation, which is divided into three subformations. The lower Tsagayan Formation consists of conglomerates, mainly clays with sandstone interbeds; its geological age is the early-middle Maastrichtian (Bugdaeva 2001; Markevich 1994, 1995; Markevich et al. 2004, 2010, 2011). The late Maastrichtian part of the middle Tsagayan Formation includes conglomerates, sandstones siltstone, and lenses with plant remains. The Danian upper part of the Tsagayan Formation is represented by conglomerates, sandstones, clays and coal seams. The plant-bearing beds occur here. The fossil plants have been studied since the 19th century (Heer 1878; Kryshtofovich & Baikovskaya 1966; Krassilov 1976). This flora was named Tsagayan flora. The stratotype section of Tsagayan Fm is outcropped in the mouth of the Darmakan River, along the northern and north-eastern slopes of Belaya Gora Mount. It is represented by conglomerates, sandstones, siltstones, and mudstones. We obtained from each bed abundant fossil spores and pollen that allowed us to define the Maastrichtian and Danian age of deposits and the position of the K-T boundary (Bugdaeva 2001). The clay with bedded plant remains lies 37 m above that boundary (Fig. 1C); the thickness of this bed is 3 m. The following fossil plants were collected: Podocarpus tsagajanicus Krassil., Taxodium olrikii (Heer) Brown, Metasequoia disticha (Heer) Miki, Androvettia catenulata Bell, Potamageton cf. nordenskioldii Heer, Hydrocharis sp., Limnobiophyllum scutatum (Dawson) Krassil., Trochodendroides arctica (Heer) Berry, Carinalaspermum bureicum Krassil. and Nyssa bureica Krassil. The burial is dominated by leaves of Limnobiophyllum and shoots and leaves of Taxodium. Other remains occur rarely. Remains of fossil insects have been found in this locality, including Buprestidae, Chironomidae, as well as caddisworm cases of Folindusia cf. communita Cockerell, 1925 and Terrindusia minuta Vialov et Sukacheva, 1976. The upper part of the upper Tsagayan Fm contains productive coal seams and several coal mines. One of the mines (Arkhara-Boguchan coal mine) is located near Arkhara settlement. It has three plantbearing beds with abundant fossil plants; the cockroach wing was found in the upper plant-bearing bed (Figs. 1B–C). The family name Ectobiidae is used instead of Blattellidae and Corydiidae is substituted for Polyphagidae, based on ICZN Ruling (see Beccaloni & Eggleton 2011; but with reservations of inclusion of termites within order of cockroches). Systematic palaeoentomology Blattaria Latreille, 1810 (= Blattodea Brunner von Wattenwyl, 1882) Blaberidae Brunner von Wattenwyl, 1865 Epilamprinae Princis, 1960 Zootaxa 3635 (2) © 2013 Magnolia Press · 119PALEOCENE COCKROACHES Epilamprini Handlirsch, 1925 Morphna Shelford, 1910 = Morphnina Princis, 1958 Diagnosis (after Shelford 1910): Form rather dorsoventrally flattened. Vertex of head covered or almost covered by pronotum, which is trapezoidal, sub-cucullate and posteriorly produced obtusely. Tegmina and wings fully developed, exceeding the apex of the abdomen. Supra-anal lamina of typical Epilamprine shape. Cerci moderately long. Femora moderately armed with spines beneath. Posterior metatarsus equal in length to succeeding joints; all the joints entirely unarmed beneath, their pulvilli large, pulvillus of metatarsus apical but produced towards the base of the joint. Type species. Morphna maculata (Brunner von Wattenwyl, 1865). Composition (updated from Princis 1967, 1971). Morphna amplipennis (Walker, 1868) (India) = Epilampra amplipennis Walker, 1868 Morphna auriculata (Brunner von Wattenwyl, 1865) (India) = Epilampra auriculata Brunner von Wattenwyl, 1865 Morphna badia (Brunner von Wattenwyl, 1865) (Thailand, Malaysia, Sumatra, Java, Borneo) = Epilampra badia Brunner von Wattenwyl, 1865 = Epilampra ramifera Walker, 1869 Morphna clypeata Anisyutkin & Gorochov, 2001 (Vietnam) Morphna decolyi (Bolívar, 1897) (India) = Molytria decolyi Bolívar, 1897 Morphna dotata (Walker, 1869) (Thailand, Malaysia, Borneo) = Epilampra dotata Walker, 1869 Morphna humeralis Bruijning, 1948 (Sumatra) Morphna imperatoria (Stål, 1877) (Philippines) = Epilampra imperatoria Stål, 1877 Morphna maculata (Brunner von Wattenwyl, 1865) (Malaysia, Sumatra, Java, Borneo) = Epilampra maculata Brunner von Wattenwyl, 1865 = Epilampra polyspila Walker, 1868 = Molytria shelfordi Kirby, 1903 Morphna moloch (Rehn, 1904) (Thailand) = Epilampra moloch Rehn, 1904 Morphna plana (Brunner von Wattenwyl, 1865) (India, Sri Lanka) = Epilampra plana Brunner von Wattenwyl, 1865 = Homalopteryx biplagiata Bolívar, 1897 = Epilampra punctifera Walker, 1868 = Homalopteryx templetoni Kirby, 1903 Morphna pustulata Hanitsch, 1930 (Sumatra) Morphna sp. (Germany) extinct, Eocene (MES 10188) Morphna paleo sp. n. (Figs. 1A, 2C) Holotype. PIN 5142/12. Right forewing fragment; type locality, Archara-Boguchan, Far East, Russia; type horizon, Tsagayan Formation, Danian Paleocene. Diagnosis. Forewing with length about 23 mm, width 9 mm. Numerous cross-veins present in M and CuA. Anal intercalaries punctuated. VRŠANSKÝ et al.120 · Zootaxa 3635 (2) © 2013 Magnolia Press FIGURE 1. A) Morphna palaeo sp. n., holotype PIN 5142/12; Danian sediments (or Paleocene sediments) of ArcharaBogučan in the Far East of Russia. Forewing length 23 mm; B) sections of Danian localities Belye Gory: Belaya Gora (1) and Arkhara-Boguchan (2) (1—conglomerate; 2—sandstone; 3—siltstone; 4—claystone; 5—coal; 6—acid tuff; 7—strata with cross-bedding; 8—locality of fossil flora; 10—locality of fossil insects); C) Profiles of Belaya Gora locality, the stratotype section of Tsagayan Formation (1—conglomerate; 2—sandstone; 3—siltstone; 4—claystone; 5—coal; 6—acid tuff; 7—deposits of the Maastrichtian middle Tsagayan Formation; 8—deposits of the Danian upper Tsagayan Formation; 9—locality of fossil flora; 10—locality of fossil insects; D) Localization (Japan to the Right). Zootaxa 3635 (2) © 2013 Magnolia Press · 121PALEOCENE COCKROACHES FIGURE 2. A) Ergaula stonebut sp. n. Holotype ANHM 4/7; Danian sediments (or Paleocene sediments) of Belaya Gora, Far East, Russia. Left forewing 31mm long. B) Males of Ergaula capucina, Thailand (Mae Hong Son prov., Soppong, 7.–12.V.1996, Vít Kubáň leg., coll. Ľ. Vidlička, ZIN SAS). Note significant folding line on right forewingand strong fold along Sc, apparent also in fossil. C) Morphna palaeo sp. n. Holotype PIN 5142/12; Danian sediments (or Paleocene sediments) of Archara-Bogučan in the Far East of Russia. Forewing length 23 mm. VRŠANSKÝ et al.122 · Zootaxa 3635 (2) © 2013 Magnolia Press Description. Forewing without coloration. Venation distinct with apparent intercalaries and rich cross-veins in M and CuA. Subcostal area wide, with Sc richly branched (secondarily). R regular, parallel; M (5) slightly curved, running close to R (apomorphy), fusing to CuA. CuA rich (8). Anal veins simple with punctuated intercalaries. Remarks. The combination of parallel forewing margins, wide and branched Sc, fusion of M with CuA running close to R, basalmost branches of CuA running parallel to CuP and simple A place this taxon in Morphna. Morphna has been considered to be a comparatively terminal taxon of Epilamprinae (Rehn 1951). Nevertheless, the new species points to a very initial stage of the evolution of Blaberidae, since compared with Ectobiidae (=Blattellidae) fusion of M with CuA running close to R and wide, branched Sc are apomorphies. In the living fauna, Morphna is restricted to southeast Asia (India, Sri Lanka, Malaysia, Sumatra, Java, Borneo, Philippines and Thailand). The genus is quite diverse in species and some seem to have little in common (e.g., M. pustulata is elongated, with curved forewing posterior margin). On the other hand, the most closely related living species, M. plana (Brunner von Wattenwyll, 1865) from Sri Lanka, differs only in possessing numerous cross-veins (plesiomorphy) and in size. All the living representatives of the genus are considerably larger than M. paleo sp. n. (apomorphy), with forewing lengths of 41–50 mm. Two basal branches of R have teratological fusion of veins (see Vršanský 2005: this particular parallel fusion of two ascending R branches is unknown in fossils), but this character is without systematic value. Irregularity between R and M is interpreted as an apomorphy based on the absence of this character in Cretaceous cockroaches. Etymology. From Greek palaios: ancient or primitive. Corydiidae Saussure, 1864 (= Polyphagidae Walker, 1868) Corydiinae Saussure, 1864 (= Polyphaginae Walker, 1868) Corydiini sensu Rehn, 1951 Diagnosis (after Rehn 1951). Both sexes with at least tegmina present, wings usually present, but sometimes considerably reduced. Tegmina varying from normal to somewhat reduced, obovate and densely coriaceous (mostly in females). Humeral area more developed than in Polyphagini, if coriaceous then broadly expanded. Sc rami regular, not crowded. R without posterior branches, most branches terminating anteriorly, some apically, instead of curving posteriorly. M with free base, its branching regular and direct. Cu not curving distinctly away from plical furrow, CuP not joining cubitus. Diagnosis (after Walker 1868). Female: Body short-elliptical, convex, dull, very thickly and minutely punctured. Head shining, impressed between the eyes, with a transverse furrow near the mouth. Eyes not far apart. Second joint of the palpi subclavate; third slightly securiform, very much longer than the second. Antennae setaceous, submoniliform, not more than half the length of the body; first, second and third joints short; following joints very short. Prothorax extending somewhat beyond the head and over the basal part of the fore wings when they are expanded, rounded in front and on each side, slightly furrowed along each side; its breadth along the hind border more than twice its length; hind border hardly rounded; hind angles slightly falcate; a lyre-shaped mark in the disk. Mesothorax, metathorax, pectus and abdomen shining, mostly smooth. Abdomen with the segments above and beneath near the tip retracted in the middle towards the disk; sides fringed, with bristles; subanal lamina small, bilobed. Cerci lanceolate, submoniliform, setose. Legs stout; tibiae armed with some strong spines; first joint of the tarsi twice the length of the fifth, which is very much longer than the second. Fore wings coriaceous, membranous towards the border; costa much rounded; tips conical; principal veins distinct in the coriaceous part; transverse sectors numerous, irregular. Hind wings membranous, strongly and thickly reticulated; transverse sectors numerous, irregular. Type species. Ergaula carunculigera (Gerstaecker, 1861) Composition (updated from Princis 1963). Ergaula Walker, 1868 = Dyscologamia Saussure, 1893 (type is cesticulata = pilosa) = Parapolyphaga Chopard, 1929 (type is erectipilis = pilosa) ?= Netherea Vršanský et Anisyutkin, 2004 (type is haatica) Zootaxa 3635 (2) © 2013 Magnolia Press · 123PALEOCENE COCKROACHES Ergaula capensis (Saussure, 1893) (Nigeria, Cameroon, Democratic Republic of the Congo, Congo, Uganda, Kenya, Tanzania, Zambia, Zimbabwe, Angola) =Dyscologamia capensis Saussure, 1893 =Dyscologamia wollastoni Kirby, 1909 Ergaula capucina (Brunner von Wattenwyl, 1893) (Myanmar) =Homoeogamia capucina Brunner von Wattenwyl, 1893 Ergaula carunculigera (Gerstaecker, 1861) (Philippines (Luzon)) =Corydia carunculigera Gerstaecker, 1861 =Ergaula scaraboides Walker, 1868 Ergaula funebris (Hanitsch, 1933) (Borneo) =Dyscologamia funebris Hanitsch, 1933 Ergaula nepalensis (Saussure, 1893) (Nepal, Myanmar) =Dyscologamia nepalensis Saussure, 1893 Ergaula pilosa (Walker, 1868) (Sumatra, Malaysia, Java, Borneo) =Zetobora pilosa Walker, 1868 =Dyscologamia cesticulata Saussure, 1893 =Dyscologamia chopardi Hanitsch, 1923 =Parapolyphaga erectipilis Chopard, 1929 =Polyphaga sumatrensis Shelford, 1908 Ergaula silphoides (Walker, 1868) (Cambodia) =Polyphaga silphoides Walker, 1868 Ergaula atica Vršanský et Anisyutkin, 2008 (Israel) extinct, ?Eocene (based on male) ?= Netherea haatica Vršanský et Anisyutkin, 2008 (Israel) extinct, ?Eocene (based on female) Ergaula spp. (Germany) extinct, Eocene (common in Messel, based on both sexes) Ergaula stonebut sp. n. Holotype. IGNM FEB RAS ANHM 4/7. Both forewings; type locality, Archara-Boguchan, Belaya Gora locality, stratotype of the Tsagayan Formation, Far East, Russia; type horizon, Tsagayan Formation, Danian. Diagnosis. Forewing narrow, length/width: 31/11 mm, its venation reduced to approximately 50 veins at margin. Sc branched broadly. Intercalaries distinct, coloration indistinct. Description. Forewing fore margin slightly arcuate. Sc with both anterior (3 on left forewing, 1 on right forewing) and posterior (4, 4) branches. R more or less regularly branched, with venation more dense towards apex; veins secondarily branched (19, 16). M with secondary branches, curved posteriorly (11, 12). CuA largely simplified, reduced to 3 branches at most. Anal veins sparse (6, 7). Remarks. E. stonebut sp. n. differs from Therea Bilberg, 1820 (India) (the same tribe) in having costal space comparatively narrow and Sc less expanded and with branches running more longitudinally, M and R reduced to some extent and fused. Eucorydia Hebard, 1929 (SE Asia) and Miroblatta Shelford, 1906 (Borneo) have exclusively straight stem of R (without any posterior branches), the latter comprises deviant forms with extremely wide forewings, sometimes reduced to some extent. Homoeogamia Burmeiser, 1838 is limited to America (Mexico and South America) today. Ergaula stonebut sp. n. can be placed within Ergaula by simple exclusion and differs from its congeners only in minor characters. It is generally very similar to E. atica from the sediments of Israel (presumably Eocene in age), including the narrowness of forewings with distinct intercalaries and wide space between respective Sc branches (3 symplesiomorphies). E. atica also is very large, (forewing length 35 mm). The single preserved individual is distinctly coloured and posses numerous deformations. Undescribed specimens from the Messel, Germany are also very similar (H. Schmied, in preparation). The E. stonebut sp. n. forewing is without deformities; it is narrower than in any living species. The type species E. carunculigera differs in having a considerably smaller forewing (21–27 / 13.5 mm) (Gerstaecker 1861). Ergaula. capucina differs in having all Sc venation dense; E. pilosa has dense Sc venation in the anterior region only (Rehn 1951). Males of E. capensis are much larger (55–57 mm in total body length) (Hanitsch 1938). VRŠANSKÝ et al.124 · Zootaxa 3635 (2) © 2013 Magnolia Press The much smaller forewing of E. funebris (forewing length 22 mm: (Hanitsch 1933)) is monochromatic a character likely shared by E. stonebut sp. n. However, the wing of E. funebris is much wider. Ergaula nepalensis is unique in having discoidal veins straight and longitudinal (Saussure 1893), and E. silphoides, like most living species, has a rounded fore-margin of the forewing (Walker 1868). Some distinct characters revealed in the course of study of living E. capucina are seen in forewing of the present fossil. The most distinct among them are asymmetrical sclerotisation (due to folding of wings over each other) and invagination in the base of R, which represents the huge ventral ridge serving for folding of the hind wing. Visible are also reticulations caused by sclerotisation in the costal area. Etymology. stonebut is derived from some Slavic languages (means something). Discussion Based on study of terminal Mesozoic as well as Eocene cockroaches, it follows that most living cockroach genera originated directly at or around PETM (Vršanský et al. 2011, 2012b). Warming not only expanded the geographical range and the thermic optimum in more northern latitudes, but also produced conditions different from those present in the original source area. Changes on land resulted in a higher evolutionary tempo as evidenced by cockroaches (Vršanský 2011, 2012ab). Nevertheless, the present observations are direct evidence for the prePETM origin of some of cockroach genera, which was unexpected. It is notable that both of the species described herein belong to genera present (as codominants) in the Eocene Messel (47Ma) assemblage of Germany (Schmied 2009, unpublished observation), suggesting the characteristic Eurasian assemblage was already formed before the Paleocene side of the PETM. Ergaula occurs also in the presumably Eocene or Oligocene mangals of Israel (Anisyutkin et al. 2008) and a leathery wing described as Netherea haatica Vršanský & Anisyutkin, 2008 seems to represent the smaller female of living Ergaula—a common sexual dimorphism of this genus. This associations are likely very similar unless identical in respect to generic content and support the Eocene stage for obscure (originally presumed to be Mesozoic) locality in Israel. Different were some Eocene North American localities, where predominantly smaller species were preserved (Vršanský et al. 2011a, 2012). Very little can be learned from the geography of the two specimens. Ergaula currently is widely distributed in Africa and Asia, but apparently was also present also in Europe in PETM, but absent in the Americas during the Eocene. Morphna has a similar wide pattern in Asia (absent in Africa), with occurrence in Europe during PETM. The important aspect of deformed wings is ambiguous in this respect. While no wing deformation (developmental change modifying wing geometry, most often fusion of veins or irregularity), is reported in hundreds of Eocene individuals from the Green River in Colorado, very few are present in Early Miocene localities. Deformations are common and abundant in more recent fossils and in living cockroaches. The single specimen of Morphna from the Paleocene possesses at least one such deformity, which may be stochastic. Morphna is peculiar also in another respect in that it is not only the earliest occurrence of any living genus, but also the first occurrence of the family Blaberidae. It is possible that the original blaberid genera, representing the most advanced cockroaches of the time, survived with minor modifications to the present. In any case, the traces of plesiomorphies are valuable: branched A, branched Sc and punctuated intercalaries are all characteristics of Mesoblattinidae, and were lost in the initial stage of the evolution of the family Ectobiidae (=Blattellidae). Therefore, it seems likely that Blaberidae originated directly from the extinct Mesoblattinidae, and not from Blattellidae as has been generally accepted (see Djernaes et al. 2012). These results do not contradict with living material-based analyses, as Blattellidae are direct descendants of the Mesoblattinidae. Acknowledgements We thank Yurij Bolotskij for collecting the material, Prof. Alexandr P. Rasnitsyn (PIN, Moscow) for initiating this study, Prof. Ernest Bernard (UTK) for thorough editing, Prof. Sonia M. Fraga Lopes (Museu Nacional, UFRJ) and an anonymous reviewer for revision of the manuscript. Research supported by UNESCO/AMBA (MVTS), VEGA 125, Literary fund, Presidium of Russian Academy of Sciences (grant 12–I–P28–01) and Russian Foundation for Zootaxa 3635 (2) © 2013 Magnolia Press · 125PALEOCENE COCKROACHES Basic Research (grant 12–04–01335), Slovak Research and Development Agency through financial support no. APVV-0213-10. References Anisyutkin, L.N., Rasnitsyn, A.P. & Vršanský, P. (2008) Cockroaches and mantises. Orders Blattodea (= Blattida) and Mantodea (= Mantida). In: Krassilov, V. & Rasnitsyn, A. (Eds.), Plant-Arthropod Interactions in the Early Angiosperm History: Evidence from the Cretaceous of Israel. Pensoft, Sophia – Moscow, pp. 199–216. Archibald, S.B. & Mathewes, R.W. (2000) Early Eocene insects from Quilchena, British Columbia, and their paleoclimatic implications. Canadian Journal of Zoology, 78, 1441–1462. http://dx.doi.org/10.1139/z00-070 Becalloni, G.W. & Eggleton, P. (2011) Order Blattodea Brunner von Wattenwyll, 1882. In: Zhang, Z.O. (Ed.), Animal Biodiversity: An outline of higher-level classification and survey of taxonomic richness. Zootaxa, 3148, 199–200. Brunner de Wattenwyl, C. (1865) Nouveau système des Blattaires. G. Braumüller, Wien, Paris & Leipsig, 426 pp. Brunner de Wattenwyl, C. (1893) Révision du Système des Orthoptères et description des especes rapportées par M. Leonardo Fea de Birmanie. Annali del Museo Civico di Storia Naturale di Genova „Giacomo Doria“, XIII (33), 5–230. Bugdaeva, Z. (2001) Flora and dinosaurs at the Cretaceous-Paleogene boundary of Zeya-Bureya Basin. Daľnauka, Vladivostok, 162 pp. Djernaes, M., Klass, K.-D., Picker, M.D. & Damgaard, J. (2012) Phylogeny of cockroaches (Insecta, Dictyoptera, Blattodea), with placement of aberrant taxa and exploration of out-group sampling. Systematic Entomology, 37, 65–83. http://dx.doi.org/10.1111/j.1365-3113.2011.00598.x Gerstaecker, A. (1861) Ueber das Vorkommen von ausstülpbaren Hautanhängen am Hinterleibe von Schaben. Archiv für Naturgeschichte, 27, 107–115. Guo, Y., Béthoux, O., Gu, J.-J. & Ren, D. (2012) Wing venation homologies in Pennsylvanian ‘cockroachoids’ (Insecta) clarified thanks to a remarkable specimen from the Pennsylvanian of Ningxia (China). Journal of Systematic Palaeontology, 11(1), 41–46. Hanitsch, R. (1933) On a collection of Bornean and other oriental Blattidae from the Stockholm Museum. Entomologisk Tidskrift, 54, 230–245. Hanitsch, R. (1938) Blattids. In: Exploration du Parc National Albert. Mission G.F. de Witte (1933–1935), Fascicule 18, 26 pp. Handlirsch, A. (1925) Ordnung: Blattariae Latr. (Schaben). In: Schröder, Ch. (Ed.), Handbuch der Entomologie, Band 3. Verlag von Gustav Fischer, Jena, pp. 481–493. Heer, O. (1878) Beitrage zur fossilen Flora Sibiriens und des Amurlandes. Flora fossilis arctica, 5, 1–58. Krassilov, V.A. (1976) Tsagayanskaya flora Amurskoi oblasti (The Tsagayan flora of Amur River region). Nauka, Moscow, 92 pp. (in Russian) Kryshtofovich, A.N., Baikovskaya, T.N. (1966) Verkhnemelovaya flora Tsagayana v Amurskoi oblasti (Upper Cretaceous flora of Tsagayan in the Amur River region). In: Kryshtofovich, A.N. (Ed.), Selected Works, Vol. 3. Nauka, Moscow-Leningrad, pp. 184–320. (in Russian) Latreille, P.A. (1810) Considérations générales sur l’ordre naturel des animaux composant les classes des Crustacés, des Arachnides et des Insectes avec un tableau méthodique de leurs genres disposés en familles. Schoell, Paris, 444 pp. Markevich, V.S. (1994) Palynological zonation of the continental Cretaceous and lower Tertiary of eastern Russia. Cretaceous Research, 15, 165–177. http://dx.doi.org/10.1006/cres.1994.1008 Markevich, V.S. (1995) Melovaya palynoflora severa vostochnoi Azii (The Cretaceous palynoflora of the north of Eastern Asia). Dalnauka, Vladivostok, 200 pp. (in Russian) Markevich, V.S., Bugdaeva, E.V., Ashraf, A.R. & Sun, G. (2011) Boundary of Cretaceous and Paleogene continental deposits in Zeya-Bureya Basin, Amur (Heilongjiang) River region. Global Geology, 14, 144–159. http://dx.doi.org/10.1134/S0031030110100084 Markevich V.S., Bugdaeva E.V., Bolotsky Yu.L. & Sorokin A.P. (2004) Problems of the Cretaceous biostratigraphy of Amur River Region. Bulletin of Moscow Society of Naturalists. Geological series, 79, 18–29. Markevich V.S., Bugdaeva E.V., Nichols D.J. & Sun G. (2010) Paleogene Coal-forming Plants of the Zeya–Bureya Basin (Amur River Region). Paleontological Journal. 44, 1321–1331. http://dx.doi.org/10.1134/S0031030110100084 Piton, L. (1940) Paléontologie du Gisement Éocéne de Menat (Puy-de-Dôme) (Flore et Faune). Imprimeries P. Vallier, Clermont-Ferrand, 303 pp. Princis, K. (1960) Zur Systematik der Blattarien. Eos, Revista Espaňola de Entomología, 36, 427–449. Princis, K. (1963) Blattariae: Subordo Polyphagoidea: Fam.: Homeogamiidae, Euthyrrhaphidae, Latindiidae, Anacompsidae, Atticolidae, Attaphilidae. Subordo Blaberoidea: Fam. Blaberidae. In: Beier, M. (Ed.), Orthopterorum Catalogus, Pars 4. Dr. W. Junk, 's-Gravenhage, pp. 75–172. Princis, K. (1967) Blattariae: Subordo Epilamproidea. Fam.: Nyctiboridae, Epilampridae. In: Beier, M. (Ed.), Orthopterorum VRŠANSKÝ et al.126 · Zootaxa 3635 (2) © 2013 Magnolia Press Catalogus, Pars 11. Dr. W. Junk, 's-Gravenhage, pp. 615–710. Princis, K. (1971) Blattariae: Subordo Epilamproidea: Fam.: Ectobiidae. In: Beier, M. (Ed.), Orthopterorum Catalogus, Pars 14. Dr. W. Junk N.V., 's-Gravenhage, pp. 1039–1224. Rehn, J.W.H. (1951) Classification of the Blattaria as indicated by their wings (Orthoptera). Memoirs of the American Entomological Society, 14, 1–134. Saussure, H. (1893) Revision de la tribu des Hétérogamiens (Orthoptéres de la Famille des Blattides). Revue Suisse de Zoologie, 1, 289–318. Schmied, H. (2009) Cockroaches (Blattodea) from the middle Eocene of Messel (Germany). Diploma thesis, University of Bonn. Shelford, R. (1910) Orthoptera Fam. Blattidae Subfam. Epilamprinae. Genera Insectorum, fasc. 101, 1–21. Vršanský, P. (1997) Piniblattella gen. nov. – the most ancient genus of the family Blattellidae (Blattodea) from the Lower Cretaceous of Siberia. Entomological Problems, 28, 67–79. Vršanský, P. (2002) Origin and the Early Evolution of Mantises. Amba projekty, 6, 1–16. Vršanský, P. (2005) Mass mutations of insects at the Jurassic/Cretaceous boundary? Geologica Carpathica, 56, 473–481. Vršanský, P. (2008) Mesozoic relative of the common synanthropic German cockroach (Blattodea). Deutsche Entomolgische Zeitshrift, 55, 215–221. http://dx.doi.org/10.1002/mmnd.200800022 Vršanský, P. (2010) Cockroach as the earliest eusocial animal. Acta Geologica Sinica (english edition), 84, 793–808. http://dx.doi.org/10.1111/j.1755-6724.2010.00261.x Vršanský, P., Liang, J-H. & Ren, D. (2012a) Malformed cockroach (Blattida: Liberiblattinidae) from the Middle Jurassic of Daohugou in Inner Mongolia, China. Oriental Insects, 46 (1), 12–18. http://dx.doi.org/10.1080/00305316.2012.675482 Vršanský, P., Vidlička, Ľ., Čiampor, F. Jr. & Marsh, F. (2012b) Derived, still living cockroach genus Cariblattoides (Blattida: Blattellidae) from the Eocene sediments of Green River in Colorado, U.S.A. Insect Science, 19, 143–152. http://dx.doi.org/10.1111/j.1744-7917.2010.01390.x Vršanský, P., Cifuentes-Ruiz, P., Vidlička, L., Čiampor, F. Jr. & Vega, F.J. (2011) Afro-Asian cockroach from Chiapas amber and the lost Tertiary American entomofauna. Geologica Carpathica, 62, 463–475. http://dx.doi.org/10.2478/v10096-011-0033-8 Walker, F. (1868) Catalogue of the specimens of Blattariae in the collection of the British Museum. British Museum (Natural History), London, 239 pp. Zhang, Z., Schneider, J.W. & Hong, Y. (2012) The most ancient roach (Blattida): A new genus and species from the earliest Late Carboniferous (Namurian) of China, with discussion on the phylomorphogeny of early blattids. Journal of Systematic Palaeontology, 11(1), 27–40. http://dx.doi.org/10.1080/14772019.2011.634443 Príloha č. 16 VRŠANSKÝ, P., ORUŽINSKÝ, R., BARNA, P., VIDLIČKA, Ľ. & LABANDEIRA, C.C. 2014. Native Ectobius (Blattaria: Ectobiidae) from the Early Eocene Green River Formation of Colorado and Its Reintroduction to North America 49 Million Years Later. Annals of the Entomological Society of America 107(1): 28-36. SYSTEMATICS Native Ectobius (Blattaria: Ectobiidae) From the Early Eocene Green River Formation of Colorado and Its Reintroduction to North America 49 Million Years Later P. VRSˇANSKY´ ,1,2 R. ORUZˇ INSKY´ ,3 P. BARNA,1 L’. VIDLICˇ KA,4 AND C. C. LABANDEIRA5,6,7 Ann. Entomol. Soc. Am. 107(1): 28Ð36 (2014); DOI: http://dx.doi.org/10.1603/AN13042 ABSTRACT Ectobius kohlsi sp. n. and three undetermined species of the common Eurasian cockroach genus Ectobius Stephens, 1835 are reported from the lower middle Eocene of North America. This species indicates a cosmopolitan distribution of the genus during the mid Paleogene, and supports its current relict distribution in modern north-temperate and African ecosystems. When compared with the living species, E. kohlsi was either neutral or plesiomorphic in all characters, but exhibited a close relationship to the extant Ectobius kraussianus Ramme, 1923 Species Group in the identical structure of the pronotum. E. kohlsi also was similar to extant Ectobius ticinus Bohn, 2004, in the character of its wing venation (see Bohn 2004), in particular the forewing vein M, and to extant Ectobius vittiventris (Costa 1847) in details of forewing coloration. These latter two species are members of the Ectobius sylvestris Species Group (Bohn 1989). Ectobius balticus Germar et Berendt, 1856Ña conspicuously dominant cockroach from mid-Eocene Baltic amberÑalso appears plesiomorphic in all characters despite being a few million years younger than E. kohlsi. One reason for the complete disappearance of this dominant genus from North America is the peculiar consequence that, after 49 million years, a cool-adapted Ectobius lapponicus (L.) was capable of being reintroduced to a signiÞcantly cooler North America than that its antecedents which inhabited North America during a warmer European Eocene. Modern E. lapponicus is synanthropic in North America, even though no synanthropism is recorded for this species in its native habitat throughout Europe. KEY WORDS cockroach, Europe, fossil insect, paleoclimate, relict distribution The global cockroach fauna can be differentiated historically into three distinct phases that collectively form deep and varied evolutionary trajectories. These phases are the late Paleozoic, the Mesozoic, and the Cenozoic; the latter, or modern fauna, is overwhelmingly composed of extant taxa. The late Paleozoic and Mesozoic faunas are characterized by oviposition of isolated eggs through use of an external ovipositor, which was long and prominent in Paleozoic forms and comparatively short to blunt in Mesozoic taxa, with eggsdepositedinaconglomeraticfashion.Bycontrast, the Ectobiidae (ϭBlattellidae), originating near JurassicϪCretaceous boundary, and possibly some of their predecessors, the Mesoblattinidae (Vrsˇansky´ 1997, Wei and Ren 2013), in addition to the entire modern cockroach fauna, are characterized by taxa that lay their eggs within a hardened egg-case, the oo¨theca.MostMesozoicfamilies,suchasthedominant Blattulidae and Caloblattinidae, disappeared before the KϪPg boundary at the end of the Cretaceous, which responded to a major ecological crisis, at least in North America (Labandeira et al. 2002). Extant genera of the modern cockroach fauna evolved during the beginning of the Paleogene Period (Vrsˇansky´ 2002; Vrsˇansky´ et al. 2002, 2011, 2012, 2013), and after the KϪPg event. The early Paleogene fauna consisted of transitional taxa, predating the origin of most exclusively modern families, but also consisting of uniquely ancestral, extinct, and primitive genera. During the mid-Eocene, rare Mesozoic relicts such as the Mesoblattinidae and Skokidae persisted, although at that time most other taxa were afÞliated modern families and genera. It was during the latest early Eocene that the genus Ectobius appears in the Palearctic fossil record of Baltic amber (Statz 1939) as a dominant species. As it now turns out, this also is the time interval of the earliest record of the genus in the Nearctic. 1 Geological Institute, Slovak Academy of Sciences, Du´bravska c. 9, P.O. Box 106, 840 05 Bratislava, Slovakia. 2 Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya 123, 117868, Moscow, Russia. 3 Geological Institute, Slovak Academy of Sciences, Dˇ umbierska 1, 974 01 Banska´ Bystrica, Slovakia. 4 Institute of Zoology, Slovak Academy of Sciences, Du´bravska c. 9, 845 06 Bratislava, Slovakia. 5 Department of Paleobiology, MRC-121, P.O. Box 37012, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012. 6 Department of Entomology and BEES Program, University of Maryland, College Park, MD 20742. 7 Corresponding author, e-mail: labandec@si.edu. Materials and Methods Our study accessed specimens from the Parachute Creek Member of the Green River Formation, in the Piceance Creek Basin, in GarÞeld County, northwestern Colorado, Ϸ20 km west of Riße, and in cliffs overlooking the Colorado River. The material originates from the upper portion of the Parachute Creek Member, a regionally ponded lacustrine deposit characterized by a distinctive organic-rich “mahogany zone” that is 20Ð60 m thick, which extends throughout theBasinandservesasastratigraphicreferencedatum at Ϸ48.8 million years old (Ma), to which insectbearing subjacent localities can be compared (Smith et al. 2010). The Parachute Creek Member consists of evaporates and especially laminated, organic-rich, often kerogenous, shales, and Þne-grained siltstones (Hail 1992). A recent study (Smith et al. 2010) analyzing the “Curly tuff” immediately below the mahogany zone yielded a 40 Ar/39 Ar age date with a weighted meanvalueof49.02Ϯ0.30MawithaϮ2␴errormargin (Smith et al. 2010). These results suggest a date of 49 Ma for the collective insect deposits mentioned herein, which would vary minimally, attributable to their subtle variation in stratigraphic position from the 49 Ma data. This date is equivalent to the latest Ypresian Stage of the early Eocene Epoch (Gradstein et al. 2012). Although insect fossils were frequently revealed along splits in the bedding planes, additional preparation of occluding matrix by thin needle-like picks was necessary in most instances for further preparation. Prepared specimens were photographed with an Olympus SZH stereomicroscope attached to an Olympus 5060 camedia camera with 5.1 megapixel storage capability. Lighting was provided by a Þber-optic illuminator with plane polarized light and a ßuorescentstyle ring light to occasionally capture cuticular details. Images of specimens were taken with and without ethanol immersion, the latter to enhance specimen contrast with the surrounding rock matrix. Characters were polarized based on the genus Symploce Hebard, 1916, which is one of the basalmost and primitive living representatives of the family Ectobiidae (Vrsˇansky´ 1997, Klass 1997, Vrsˇansky´ et al. 2011). Venational nomenclature follows Comstock and Needham (1898); Vrsˇansky´ (1997); Rasnitsyn (2002); and Vrsˇansky´ et al. (2012, 2013). Results Blattaria Latreille, 1810 (‫؍‬Blattida Latreille, 1810 ‫؍‬ Blattodea Brunner von Wattenwyl, 1882) Ectobiidae Brunner von Wattenwyl, 1865 Ectobius Stephens, 1835 Type Species. Blatta lapponica L., 1758 (ϭBlatta lapponicus lapponica). Ectobius kohlsi Vrsˇansky´, Vidlicˇka et Labandeira, sp. nov. (Figs. 1Ð3) HOLOTYPE. 41679/53274; a complete female. Deposited in the Department of Paleobiology, National Museum of Natural History (NMNH), Smithsonian Institution, Washington, DC. Type Horizon. Green River Formation, lower middle Eocene, equivalent to the latest early Eocene (Gradstein et al. 2012). Type Locality. Piceance Creek Basin, Ϸ20 km west of Riße, northwestern Colorado. Additional Material. 41075/27701; 25971ϩ-, 31499; 41228; 41087/105061ϩ-; 41088/25457; 41093/75726; 41142/55491;57239;57545;58123;41222/27865;41225/ 30376; 41227/137007ϩ-; 41236/139337; 41237/147735; 41679/53476, 52833; 41822/53843; SAV97/147911. The general locality for the additional material is the same as the type, although specimens were taken from several stratigraphically adjacent horizons. Differential Diagnosis. A new species most closely resembling Ectobius bruneri Seoane, 1879, superÞcially with partially punctate pronotum, identical coloration, and three, characteristically large maculae (a plesiomorphy). It differs in M fused with the R (an apomorphy). Same venation in E. kohlsi occurs in Ectobius ticinus Bohn, 2004, possessing a separate and distinct M vein (a plesiomorphy). Description. Head coloration as in Figs. 1 and 2. Antennae delicate; long, at least 6.5 mm; and 0.7 mm wide. Pronotum transverse; width 1.3 mm, length 1.9 mm, nearly ovoid; distinctively colored (Fig. 2). Forewing (length5.9Ð6.0infemales,and6.5inmales),withRvein expanded, reaching the proximal part of apex. M vein separatedfromRapically;reducedtoasimplevein.CuA vein expanded and fused directly to main R branch. Coloration with characteristic dark dots and four, large, dark maculae; apex veins pale, with dark margins. Hindwing angulate, tip somewhat rounded and colored in posterior aspect. Body width 2.5Ð3.0 mm. Comparisons. The present species is assigned to the extant, exclusively Eurasian and African genus, Ectobius, based on characteristic forewing venation, including coloration (Figs. 1Ð3). The specimen signiÞcantly differs from the extant subgenus Ectobiola, such as Ectobius duskei Adelung, 1904, which has numerous dark spots on the forewing, the absence of punctae on the pronotum, and possession of a characteristic horseshoe-like pattern of coloration on the forewing. Females bear reduced wings. Owing to a zone of distinct coloration, Ectobiola is linked to the Ectobius lapponicus (L.) Species Group by an autapomorphy consisting of a sharp, pronotal posterior margin; dark maculae investing the R vein; and slender punctation expanded to the entire surface of the wing. We suggest that Ectobiola is distantly related to the extant species, Ectobius tuscus Galvagni, 1978, which has a pronotum with sparse punctation, short forewings, and an odd, reduced venation with large, numerous maculae, perhaps indicating that this latter taxon should be referred to a separate derived species group not closely related to the present species. January 2014 VRSˇANSKY´ ET AL.: EOCENE Ectobius AND ITS REINTRODUCTION 29 Fig. 1. E. kohlsi Vrsˇansky´, Vidlicˇka et Labandeira sp. n. (a) HOLOTYPE. 41679/53274; negative relief; complete female specimen. (b) 41142/57545; positive relief; complete male specimen. (c1Ð2) 41142/57239; positive relief, complete female specimen and detail of terminalia. (d) 41075/27701 (negative, sex unknown). (e) 41679/53274; ?positive relief, probable female. (f) 41142/58123; detail of female terminalia. All specimens are deposited at the National Museum of Natural History (NMNH), Washington, DC. C2, d, and f photographed under alcohol immersion. The material is from the Green River Formation, of latest early Eocene age; Piceance Creek Basin, Northwestern Colorado. Scale bars represent 1 mm. 30 ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA Vol. 107, no. 1 Another extant apomorphic species is Ectobius semenovi Bei-Benko, 1935, bearing an extremely enlarged pronotum without punctuation and monochromatic forewings. Another aberrant species is Ectobius tadzhicus Bei-Bienko, 1935, with pronotal coloration and extremely shortened wings similar to that of EcFig. 2. aÐg, E. kohlsi Vrsˇansky´, Vidlicˇka et Labandeira sp. nov. (a) 41075/27701; positive relief; detail of head and pronotum. (b) 41142/57545; positive relief; male specimen with pronotum. (c) HOLOTYPE. 41679/53274; negative relief, female specimen with pronotum. (d1Ð2) 41093/75726; positive relief; female specimen. (e1Ð2) 41087/105061; positive relief; male specimen. (f) 41075/25971; positive relief; female specimen. (g) 41088/25457; negative relief, female specimen, with detail of terminalia. All specimens deposited in the NMNH, Washington, DC, Green River Formation, latest early Eocene. All specimens photographed while immersed under alcohol, and originate from Green River Formation, northwestern Colorado. Scale bars represent 1 mm. January 2014 VRSˇANSKY´ ET AL.: EOCENE Ectobius AND ITS REINTRODUCTION 31 tobiola duskei. The Subgenus Capraiellus of the Ectobius panzeri Stephens 1835 Species Group is similar to the present species, possessing punctae, pronotal darkening, a horseshoe-like pattern of coloration and short female forewings, similar to Ectobiola. The Ectobius corsorum Ramme, 1923 Species Group, is a more derived lineage that has a punctate pronotum with a sharply curved posterior margin, and spots on fore- wingsthatareplacedmorebasallythanothertaxa.The Ectobius minutus Failla et Messina, 1977, Species Group is related to Ectobius montanus (Costa 1866), the Ectobius sylvestris Species Group (Bohn 1989) and Ectobius friesanus Princis, 1963, all of which have sim- ilarglands,butdifferinsensillardistribution,theshape of the cerci and the presence of a boss at the center of glandular pits. E. friesanus may deserve placement in a separate species group but is not directly related to the present species. Instead, E. kohlsi possesses a combination of characters that occur in two lineages. The Þrst lineage is the Ectobius kraussianus Ramme 1923 Species Group, such as Ectobius lagrecai Failla et Messina, 1981, and Ectobius aetneus Ramme, 1927, whose venation differs in having a punctate forewing radial area. The pronotum in this species group has characteristically dense punctae, and two, symmetrical, arcuate ridges identical in some individuals to those found in the present species. The second lineage is the E. sylvestris (Poda 1761) Species Group that lacks pronotal punctae, although the forewing venation (Fig. 4) is nearly identical with the new species (Fig. 1). E. sylvestris females differ in having shortened wings, and in the form and coloration of the pronotum. The most similar character to the present species is venation, also occurring in E. ticinus, with a separate and distinct M vein (a plesiomorphy). E. sylvestris also is similar in pronotal ridge features, but strongly differs by having brachypterous females (an apomorphy; Fig. 4). E. bruneri has a partially punctate pronotum, but the M is fused with the R (an apomorphy). Coloration is identical to the present species, bearing three, characteristically large maculae (a plesiomorphy), but with an unseparated M (an apomorphy). In E. vittiventris (Costa 1847, Baur et al. 2004), the females have distinct, long wings (a plesiomorphy; Figs. 4 and 5). By contrast, extinct E. glabelus Statz, 1939, from the Oligocene of Rott-am-Siebengebirge, differs in having rather angulate forewings. Ectobius balticus Germar et Berendt, 1856, from middle Eocene Baltic amber, possesses all characters, including pronotal morphology and coloration, which resembles the most basal Ectobiidae (Fig. 6) (Germar and Berendt 1856). Undescribed species, presumably assignable to Ectobius, also are present in middle Eocene strata of Messel, in central Germany (Schmied 2009), of age slightly younger than Ectobius mentioned in this re- port. Remarks. An investigation of a single population of living males of E. sylvestris in Slovakia revealed female brachyptery (Fig. 4), a broad variability of forewing area (CoefÞcient of Variation ϭ 13.36%, n ϭ 41), a distinctive venational pattern (Fig. 4), and a distincFig. 3. E. kohlsi Vrsˇansky´, Vidlicˇka et Labandeira n. sp. HOLOTYPE. 41679/53274; A complete female. The repository is the NMNH, Washington, DC, Green River Formation, latest early Eocene, Piceance Creek Basin, northwestern Colorado. Dots correspond to dorsal sensilla. Negative compression; the right forewing is outstretched; length 5.9 mm. 32 ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA Vol. 107, no. 1 tive pattern of sensillar distribution on both surfaces of fore- and hind wings (Fig. 4) (Quercetum Mtns. of Jur, Slovakia, collected in 2008 by O. Majzlan and LÕ. Vidlicˇka). Another analysis revealed the presence of dorsal mechanoreceptors on minute dark maculae, which correspond to dark dots preserved on the forewing surface of the new species (Fig. 3). Surprisingly, except for microscopic openings (punctae) on the ventral side, there are no macroscopic sensilla on posterior three-quarters of the wings. Etymology. The species designation honors David Kohls, a collector of considerable Green River fossil insect material deposited at the National Museum of Natural History, in Washington, DC. Character of Preservation. Twenty-one complete specimens; Þve with wings, and one laterally pre- served. Discussion LivingspeciesofthegenusEctobiusappearasrelicts of a richer, ancient fauna that are closely related to European Oligocene species. Currently, only E. sylvestris and E. lapponicus are widely distributed throughout the forested Palearctic Region (Zherikhin 1970). However, during the Eocene, the genus Ectobius apparently was widely distributed in the Palearctic as well as in the Nearctic. In North America, it became extinct and typically was not replaced by othercockroachtaxa.WithintheUnitedStates,similar cool-temperate habitats were colonized within the past several decades by Parcoblata cockroaches (12 species), preferring forests under bark. Other Ectobius species have been found in association with herbaceous vegetation, such as tansy, Tanacetum vulgare L. (Asteraceae), in coastal New Hampshire, with males predominating in a sex ratio of Ϸ2:1. Adults of this species were seen at or near the crowns of various plants and on ßowers or leaves, but when disturbed, quickly dropped to the ground (Chandler 1992). Fig. 4. (aÐk) Modern forewings of one population of males of E. sylvestris males, occurring at Jur, near Bratislava, Slovakia. Collection of the Zoological Institute SAS, Bratislava. Specimens Es01/1Ð26/2. Fig. 5. Left and right forewing of the sensillar system of a modern male of E. sylvestris, from Jur, near Bratislava, Slovakia. The collection is from the Zoological Institute SAS, Bratislava. Specimen Es1Ð2. Black dots represent ventral sensillae; red dots are dorsal structures providing for the presence of dorsal sensilla exclusively on dark dots. The right wing is missing dorsal sensilla in area overlapped by the left wing. January 2014 VRSˇANSKY´ ET AL.: EOCENE Ectobius AND ITS REINTRODUCTION 33 Nielsen (1987) found individuals on ßowers of wild raspberries, Rubus idaeus L. (Rosaceae). By contrast, in Europe, nymphs and adult males of the “dusky cockroach” are found on low lying vegetation, with adult females commonly found on the ground in leaf litter (Roth and Willis 1960). The reintroduction of Ectobius into the United Statesafter49millionyearsispeculiar.E.sylvestriswas established in the northeast United States (Hoebeke and Nickle 1981); E. pallidus also was established in the Northeast and, in addition, the Midwest; and E. lapponicus as well became a denizen of the Northeast (Atkinson et al. 1991, Chandler 1985, 1992). In particular, E. pallidus appears to have been established in Massachusetts sometime in 1951, and it occurs in houses and other domestic effects surrounding human habitation (Helfer 1987). In 1984 the “dusky cockroach,” E. lapponicus, was found in southeastern New Hampshire by Chandler (1985), the Þrst North American record of this European immigrant. A subsequent collection in eastern Vermont was noted by Nielsen (1987), and this species has now been collected repeatedly in coastal and central New Hampshire (Chandler 1992). Ectobius lucidus was reported recently from the eastern United States (Hoebeke and Carter 2010). Interestingly, these reintroduced species in the United States are associated with human habitation and thus possess synanthropic behaviors. By contrast, no synanthropism was recorded for the same species throughout their native European habitats, and only rare cases of building infestation are known from Europe (Mielke 2000). During the latest middle Eocene, at least four distinct species that signiÞcantly differed in size were present at the various Green River localities of Colorado. Of these species, three were poorly preserved and larger than E. kohlsi, but remain undescribed. (These specimens are represented by preliminary specimen numbers 41088/26584, 41221(2)/27865, and 41221/87663.) However, it is impossible to conclude whether these additional species occurred contemporaneously with E. kohlsi or otherwise were allopat- ric.ThereasonsforthedisappearanceofEctobiusfrom theNorthAmericancontinentremainobscure.Atemperature change is known to be responsible for a similar pattern of extinction and after human-based reintroduction in some aquatic organisms (Strasser 1998). Cooling could be responsible for the extinctions of diverse Ectobius taxa in North and Central America, as the thermophilic representatives of the genus have specialist associations and have a high degree of endemism in contrast to more northerly, widely distributed European generalists (Vidlicˇka and Szira´ki 1997, Bohn 2004, Scholczova´ 2013). Nevertheless, the current distribution of Ectobius from northernmostEuropeextendssouthwardtothesouthernmost Africa, with a latitudinal biogeographical discontinuity along an equatorial belt (Bei-Benko 1950), suggesting that a warming temperature change would enable survival of the genus in the southern North and Central America in the near future. In the late early Eocene Green River ecosystem, E. kohlsi had a similar wing size for both sexes (a plesiomorphy), with females of slightly smaller size than males, the difference being Ͻ1 mm. Representation of both sexes is roughly equal in the fossil population, indicating similar ßight activity. This condition contrasts to living representatives of the genus, wherein Fig. 6. E. balticus Germar et Berendt, 1856, from the early middle Eocene Baltic amber. Gusakov collection no. VI-008. Original image courtesy of D. S. Shcherbakov. 34 ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA Vol. 107, no. 1 the sex ratio is variable but different from equality. Such a nonequilibrial sex ratio perhaps is associated with conspeciÞc males involved in active ßight. Acknowledgments We thank David Kohls for collecting the specimens described herein. We are grateful to the staff of the Paleontological Institute in Moscow, Russia, particularly A. P. Rasnitsyn, who gave fruitful advice; A. Gusakov loaned amber material; and D. S. Shcherbakov provided technical help and a revision of the manuscript. Finnegan Marsh assisted in tracking down locality information and Þnal sharpening of images. Heiko Schmied and Adam Toma´sˇovy´ch provided advice and an entry into the literature. This research was supported by Amba Projects of the United Nations Educational, ScientiÞc and Cultural Organization and its Medzina´rodna´ Vedecko-Technicka´ Spolupra´ca (MTVS) supporting program in Slovakia. A Short-Term Visitor Award from the National Museum of Natural History, Washington, DC; a Vedecka´ Grantova´ Agentu´ra (VEGA) grant from 6002, 2/0125/09, and 2/0186/13 funds; an Agentu´ra pre podporu Vedy a Vy´skumu (APVV) grant from the 0436-12 fund, and support from the Literary Fund provided resources for completion of this project. This is contribution 268 from the Evolution of Terrestrial Ecosystems Consortium at the National Museum of Natural History, in Washington, DC. References Cited Adelung, N. 1904. Eine neue Ectobia, E. duskei n. sp. (Or- thoptera,Blattodea),vomBogdo,sovieeinigeBemerkungen u¨ber russischen Varieta¨ten der E. perspicillaris Herbst (livida Fabr.). Lebensbild Eines gro§en Russischen Entomologen 37: 127Ð137. Atkinson, T. H., P. G. Koehler, and R. S. Patterson. 1991. Catalog and atlas of the cockroaches of North America north of Mexico. Misc. Publ. Entomol. Soc. Am. 78: 1Ð85. Baur, H., I. Landau-Lu¨scher, G. Mu¨ller, M. Schidt, and A. Coray. 2004. Taxonomie der BernsteinÑWaldschabe Ectobius vittiventris (A. Costa, 1847) (Blattodea: Ectobiidae) und ihre Verbreitung in der Schweiz. Revue Suisse de Zoologie 111: 395Ð424. Bei-Benko, G. 1935. Description of six new species of Palearctic Blattodea. Konowia 14: 117Ð134. Bei-Benko, G. 1950. Insects: cockroaches, pp. 332Ð336. In A. A. Shtackelberg (ed.), Fauna U.S.S.R., New Series. U.S.S.R. Academy of Sciences, Moscow, Russian. Bohn, H. 1989. Revision of the Sylvestrys group of Ectobius Stephens in Europe (Blattaria: Ectobiidae). Entomol. Scand. 20: 317Ð342. Bohn, H. 2004. The Blattoptera fauna of Switzerland and the adjacent regions of France, Italy and Austria. I. The species of the sylvestris-group of Ectobius (Ectobiidae, Ectobiinae). Spixiana 27: 253Ð285. Brunner von Wattenwyl, W. C. 1865. Noveau syste`me des Blattaires. G. Bramu¨ller, Vienna, Austria. Brunner von Wattenwyl, W. C. 1882. Prodromus der europa¨ischen Orthopteren. Wilhelm Engelmann, Leipzig, Germany. Chandler, D. S. 1985. A new introduction of a European cockroach, Ectobius lapponicus (Dictyoptera: Blatellidae). Entomol. News 96: 98Ð100. Chandler, D. S. 1992. New records of Ectobius lapponicus in North America (Dictyoptera: Blatellidae). Entomol. News 103: 139Ð141. Comstock J. H., and J. G. Needham. 1898. The wings of insects. Am. Nat. 32, 376: 231Ð257. Costa, A. 1847. Memorie entomologiche. Estr. degli Ann. dellÕ Accad. Degli Aspiranti Naturalisti 2. Ser. (Ortotteri) 1: 80. Costa, A. 1866. [1860Ð70]. Fauna del Regno di Napoli ossia enumerazione di tutti gli animali che abitano le diverse regioni di questo Regno e le acque che le bagnano e descrizione deÕnuovi o poco esattamente conosciuti con Þgure ricavate da originale viventi e dipinte al naturale. Nevrotteri. Stamperia di Antonio Cons, Naples, Italy. Failla, M. C., and A. Messina. 1977. Ectobius minutus, nuova specie di Blattodea delle isole ponziane (Insecta, Blattodea, Ectobiidae). Animalia 4: 217Ð222. Failla, M. C., and A. Messina. 1981. Una nuova specie di Ectobius di Sicilia e redescrizione de Ectobius aetneus Ramme. (Insecta, Blattaria, Ectobiidae). Animalia 8: 43Ð 49. Galvagni, A. 1978. Ectobius tuscus nuova specie dellÕIsola Capraia (Insecta, Blattoptera, Ectobiinae). Atti della Accademia Roveretana degli Agiati 16/17B: 187Ð192. Germar, E. F., and G. C. Berendt. 1856. Die im bernstein beÞndlichen hemipteren und orthopteren der vorwelt, pp. 1Ð110. In G. C. Berendt (ed.), Die im Bernstein BeÞndlichen Organischen Reste der Vorwelt, vol. 2. Commission der Nicholai Schen Buchhandlung, Berlin, Germany. Gradstein, F. M., J. G. Ogg, M. D. Schmitz, and G. Ogg. 2012. The Geologic Time Scale 2012. Elsevier, Boston, MA. Hail, W. J., Jr. 1992. Geology of the central roan plateau area, northwestern Colorado. U.S. Geol. Surv. Bull. 1787-R: 1Ð26. Helfer, J. R. 1987. How to know the grasshoppers, crickets, cockroaches and their allies. Dover, New York, NY. Hoebeke, E. R., and D. A. Nickle. 1981. The forest cockroach, Ectobius sylvestris (Poda), a Eur. species newly discovered in North America (Dictyoptera: Blattodea: Ectobiidae). Proc. Entomol. Soc. Wash. 83: 592Ð595. Hoebeke, E. R., and M. E. Carter. 2010. First North American record of Ectobius lucidus (Hagenbach) (Blattodea: Ectobiidae: Ectobiinae), with notes on recognition characters and seasonal history, and additional records for other Ectobius species in the Northeastern United States. Proc. Entomol. Soc. Wash. 112: 229Ð238. Klass K.-D. 1997. The external male genitalia and the phy- logenyofBlattariaandMantodea.BonnZool.Monogr.42: 1Ð341. Labandeira, C. C., K. R. Johnson, and P. Wilf. 2002. Impact of the terminal Cretaceous event on plant-insect associations. Proc. Natl. Acad. Sci. U.S.A. 99: 2061Ð2066. Latreille, A. 1810. Conside´rations ge´ne´rales sur lÕorde naturel des animaux composant les classes des Crustace´s, des Arachnides, et des Insectes. Avec un tableau me´thodique de leurs genre, dispose´es en familles. F. Schoell, Paris, France. Linneaus, C. 1758. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentis, synonymis, locis, vol. 1, 10th ed. Holmiae, Sweden. Mielke, V. U. 2000. U¨ ber das auftreten der lapplandschabe (Ectobius lapponicus (Linne 1758)) in Gebaeuden. Anz. Schaedlingsk 73: 152Ð154. Nielsen, G. R. 1987. [No title given.] Vermont Entomol. Pl. Pathol. News 8: 22Ð23. 10: 26Ð27. Poda, N. 1761. Insecta musei graecensis, quae in ordines, genera et species juxta Systema Naturae Caroli Linnaei. Widmanstadius, Graz, Austria. January 2014 VRSˇANSKY´ ET AL.: EOCENE Ectobius AND ITS REINTRODUCTION 35 Princis, K. 1963. Ergebnisse der Albanien-expedition 1961 des Deutschen Entomologischen Institutes. 9. Beitrag Blattariae. Beitr. Entomol. 13: 65Ð71. Ramme, W. 1923. Vorarbeiten zu einer monographie des blattiden genus Ectobius Steph. Archiv Naturges 89A: 97Ð145. Ramme, W. 1927. Die dermapteren und orthopteren Siziliens und Kretas. Mit kritischen Beitra¨gen und Revision aus den Gattungen Hololampra Sauss., Acrometopa Fieb., Pholidoptera Br., Platycleis Fieb. u. a. Eos. 3: 111Ð200. Rasnitsyn, A. P. 2002. Superorder Blattidea Latreille, 1810, pp. 260Ð270. In A. P. Rasnitsyn and D. L. J. Quicke (eds.), History of Insects. Kluwer, Dordrecht, The Netherlands. Roth, L. M., and E. R. Willis. 1960. The biotic associations of cockroaches. Smithson. Misc. Coll. 141: 1Ð470. Schmied, H. 2009. Cockroaches (Blattodea) from the middle Eocene of Messel (Germany). Diploma thesis, University of Bonn, Germany. Scholczova´, L. 2013. Sˇva´by rodu Ectobius a ich rozsˇõ´renie v Euro´pe. B.A. thesis, Comenius University, Bratislava, Slo- vakia. Seoane, V. L. 1879. Description de deux orthopte´re`s nouveaux dÕE´ spagne. Mitt. Schweiz. Entomol. Ges. 5: 485Ð 487. Smith, M. E., A. R. Carroll, and B. S. Singer. 2010. Synoptic reconstruction of a major ancient lake system: Eocene Green River Formation, Western United States. Geol. Soc. Am. Bull. 120: 54Ð84. Statz, G. 1939. Geradßu¨ger der oligoca¨nen Ablagerungen von Rott. Decheniana 99A: 1Ð102. Stephens, J. F. 1835. [1836Ð1837]. Illustrations of British Entomology; or, a synopsis of indigenous Insects: containing their generic and speciÞc distinctions; with an account of their metamorphoses, times of appearance, localities, food, and economy, as far as practicable. vol. 6. Mandibulata. Baldwin & Cradock, London, United King- dom. Strasser, M. 1998. Mya arenaria: an ancient invader of the North Sea coast. Helgola¨nder Meeresuntersuchungen. 52: 309Ð324. Vidlicˇka, L’., and G. Szira´ki. 1997. The native cockroaches (Blattaria) in the Carpathian Basin. Folia Entomol. Hungarica 58: 187Ð220. Vrsˇansky´, P. 1997. Piniblattella gen. nov.: the most ancient genus of the family Blattellidae (Blattodea) from the Lower Cretaceous of Siberia. Entomol. Prob. 28: 67Ð79. Vrsˇansky´, P. 2002. Origin and the evolution of mantises. AMBA Proj. 6: 1Ð16. Vrsˇansky´, P., V. N. Vishniakova, and A. P. Rasnitsyn. 2002. Order Blattida Latreille, 1810, pp. 263Ð270. In A. P. Rasnitsyn and D.L.J. Quicke (eds.), History of Insects. Kluwer Academic, Dordrecht, The Netherlands. Vrsˇansky´, P., P. Cifuentes-Ruiz, L’. Vidlicˇka, F. Cˇ iampor Jr., and F. J. Vega. 2011. Afro-Asian cockroach from Chiapas amber and the lost Tertiary American entomofauna. Geol. Carpath. 62: 463Ð475. Vrsˇansky´, P., L’. Vidlicˇka, J. R. Cˇ iampor, Jr., and F. Marsh. 2012. Derived, still living cockroach genus Cariblattoides (Blattida: Blattellidae) from the Eocene sediments of Green River in Colorado, USA. Ins. Sci. 19: 143Ð152. Vrsˇansky´, P., L’. Vidlicˇka, P. Barna, E. Bugdaeva, and V. Markevich. 2013. Paleocene origin of the cockroach families Blaberidae and Corydiidae: evidence from Amur River region of Russia. Zootaxa 3635: 117Ð126. Wei, D.-D., and D. Ren. 2013. Completely preserved cockroaches of the family Mesoblattinidae from J/K Yixian Formation, China. Geol. Carpath. 64: 291Ð304. Zherikhin, V. V. 1970. Zoogeographical relations of Palaeogene insects, pp. 29Ð88. In Lectures on the Twelfth Annual Readings in Memory of N.A. Kholodkovsky, 14 April 1969, Nauka, Leningrad, U.S.S.R. Russian. Received 1 April 2013; accepted 27 September 2013. 36 ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA Vol. 107, no. 1 Príloha č. 17 GREENWALT, D.E., VIDLIČKA, Ľ. 2015. Latiblattella avita sp. nov. (Blattaria: Ectobiidae) from the Eocene Kishenehn Formation, Montana, USA. Palaeontologia Electronica 18.1.16A: 1-9. Palaeontologia Electronica palaeo-electronica.org http://zoobank.org/11628551-F184-435E-8B57-748EB630B6C7 PE Article Number: 18.1.16A Copyright: Palaeontological Association April 2015 Submission: 24 September 2014. Acceptance: 5 March 2015 Greenwalt, Dale E. and Vidlička, Ľubomír. 2015. Latiblattella avita sp. nov. (Blattaria: Ectobiidae) from the Eocene Kishenehn Formation, Montana, USA. Palaeontologia Electronica 18.1.16A: 1-9. palaeo-electronica.org/content/2015/1118-new-eocene-cockroach Latiblattella avita sp. nov. (Blattaria: Ectobiidae) from the Eocene Kishenehn Formation, Montana, USA Dale E. Greenwalt and Ľubomír Vidlička ABSTRACT Latiblattella avita Greenwalt and Vidlička, 2015, sp. nov., and the first fossil of the genus, is described. The discovery of a fossil representative of this genus suggests that Latiblattella was more widely distributed in the Eocene. The Eocene American cockroach fauna is mostly comprised of what are today, cosmopolitan genera while the extant genus Latiblattella Hebard, 1917 is restricted in its geographical distribution to Central America, Mexico, Florida and Arizona. The discovery of Latiblattella avita, in combination with the recent description of Cariblattoides labandeirai Vršansky et al., 2012, also documents the presence of rather derived representatives of the family Ectobiidae as early as the Middle Eocene. Dale E. Greenwalt. Department of Paleobiology, NMNH, Smithsonian Institution, Washington, District of Columbia, U.S.A. 20013-7012, GreenwaltD@si.edu. Ľubomír Vidlička. Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia, lubomir.vidlicka@savba.sk and Department of Zoology, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Bratislava, 811 04, Slovakia Keywords: Fossil insect; Cenozoic cockroaches; Pseudophyllodromiinae; new species INTRODUCTION Cockroaches form one of the taxonomically smaller insect orders with only about 5,000 living species, the majority of which are found in tropical forests (Vidlička, 2001; Vršanský et al., 2002; Roth, 2003; Grimaldi and Engel, 2005; Beccaloni and Eggleton, 2013). This contrasts with the high diversity of ecological and behavioral niches occupied by this clade, as exemplified by the recent discoveries of eusocial, jumping, aquatic, extinct predatory, pollinating, troglobitic and luminescent species (Vishniakova, 1973; Zompro and Fritzsche, 1999; Bohn et al., 2010; Vršanský, 2007; 2010; Vršanský and Chorvat, 2013 – but see Greven and Zwanzig, 2013). Extinct species number over 1,000 but nearly 80% of these are Paleozoic “roachoids” (Mitchell, 2013). The modern cockroach fauna is thought to have evolved immediately after the Cretaceous-Paleogene boundary (Vršanský et al., 2002, 2011, 2012, 2013) although only 53 fossil species have been described from the Cenozoic era (Mitchell, 2013; Arillo and Ortuño, GREENWALT & VIDLIČKA: NEW EOCENE COCKROACH 2 2005; Solórzano Kraemer, 2007; Gorochov, 2007). Undescribed material includes that presently studied from the Green River (e.g., the genera Blattella Caudell, 1903, Namablatta Rehn, 1937, Diploptera Saussure, 1864, Sigmella Hebard, 1940 and Symploce Hebard, 1916) in Colorado (Vršanský et al., 2011, 2012). The most speciose family within Blattaria is Ectobiidae (= Blattellidae) with approximately 2,400 species in about 220 genera (Beccaloni and Eggleton, 2013). Ectobius Stephens, 1835 and Phyllodromica Fieber, 1853, two genera in the subfamily Ectobiinae, provide most of the extant cockroach diversity in the Palaearctic (Bohn et al., 2013). Ectobiidae, which originated from the family Mesoblattindae, first appeared in the Early Cretaceous and became dominant during the Cenozoic (Vršanský, 1997; 1999; 2002; Anisyutkin et al., 2008; Wei and Ren, 2013). Fifteen different genera and 13 described and a number of undescribed species representing all five subfamilies of Ectobiidae have been reported in the Cenozoic record (Table 1). Of these, 10 genera have been reported from the New World with the majority, seven, in TABLE 1. The Cenozoic fossils of Ectobiidae.  Subfamily* Genus Species Epoch Location Reference Anaplectinae Anaplecta sp. Miocene Dominican amber Gutiérrez and PérezGelabert, 2000 Blattellinae Ischnoptera sp. Miocene Chiapas amber (Mexico) Solórzano Kraemer, 2007 Blattellinae ?Symploce rete Pleistocene African copal Gorochov, 2007 Ectobiinae Agrabtoblatta symmetrica Pleistocene African copal Gorochov, 2007 Ectobiinae Ectobius arverniensis Paleocene Menat (France) Piton, 1940 Ectobiinae Ectobius balticus Eocene Baltic amber Germar and Berendt, 1856 Ectobiinae Ectobius menatensis Paleocene Menat (France) Piton, 1940 Ectobiinae Ectobius glabellus Late Oligocene Rott (Germany) Statz, 1939 Ectobiinae Ectobius kohlsi Early Eocene Green River (USA) Vršanský et al., 2014 Ectobiinae Ectobius spp. (3) Early Eocene Green River (USA) Vršanský et al., 2011 Ectobiinae Isoplates longipennis Middle Eocene Gieseltal (Germany) Haupt, 1956 Ectobiinae Telmablatta impar Middle Eocene Gieseltal (Germany) Haupt, 1956 Nyctoborinae Nyctibora elongata Late Oligocene Rott (Germany) Statz, 1939 Pseudophyllodromiinae Cariblatta spp. (2) Miocene Dominican amber Gutiérrez and PérezGelabert, 2000 Pseudophyllodromiina Cariblattoides labandeirae Early Eocene Green River (USA) Vršanský et al., 2012 Pseudophyllodromiina Euthlastoblatta sp. Miocene Dominican amber Gutiérrez and PérezGelabert, 2000 Pseudophyllodromiinae Latiblattella Avita sp. nov. Middle Eocene Kishenehn Formation (USA) Vidlička and Greenwalt (This study) Pseudophyllodromiinae Plectoptera sp. Miocene Dominican amber Gutiérrez and PérezGelabert, 2000 Pseudophyllodromiinae Plectoptera electrina Miocene Haitian amber Gorochov, 2007 Pseudophyllodromiinae Pseudosymploce sp. Miocene Dominican amber Gutiérrez and PérezGelabert, 2000 Pseudophyllodromiinae Supella miocenica Miocene Chiapas amber (Mexico) Vršanský et al., 2011 *Subfamily assignments based on Beccaloni (2014) PALAEO-ELECTRONICA.ORG 3 Miocene amber from either Mexico or Hispaniola. Only Cariblattoides labandeirae Vršanský et al., 2012 and Ectobius kohlsi Vršanský et al., 2014 from the Green River Formation in Colorado, and Latiblattella avita Greenwalt and Vidlicka, 2015 sp. nov. from the Kishenehn Formation in Montana, are from North American Eocene deposits. Dates of the Coal Creek Member of the Kishenehn Formation of northwestern Montana have been estimated to be 46.2 ± 0.4 Ma (middle Eocene) by 40Ar/39Ar analysis and 43.5 ± 4.9 Ma by fission-track analysis (Constenius, 1996). Deposition of the fossiliferous deposits of the middle sequence of the Coal Creek Member occurred in a shallow near-shore setting that exhibited little or no water flow in a seasonal subtropical/tropical environment (reviewed in Greenwalt et al., 2015, in press). The Kishenehn fossil insect fauna is quite diverse with 15 different orders identified to date although only a single specimen (USNM 595139) out of 6,558 is from the order Blattaria (Greenwalt et al., 2015, in press). MATERIALS AND METHODS Specimen USNM 595139 was collected at the Dakin site on the Middle Fork of the Flathead River near Pinnacle, Montana in 2013 in accordance with USFS Authorization HUN281. The piece of oil shale that contained the fossil also contained a fossil notonectid (Heteroptera) and a leg of a tipulid (Diptera). The specimen was photographed with an Olympus SZX12 microscope equipped with a QColor5 Olympus camera. Image-Pro Plus 7.0 software (Media Cybernetics, Inc., Bethesda, MD) was used to capture and record the images. The specimen was immersed in 95% ethanol for examination and photography. Measurements were made with the Image-Pro Plus 7.0 software. All measurements are in millimeters (mm). Venational terminology is from Vršanský (1997) as originally developed by Comstock and Needham (1898). SYSTEMATIC PALEONTOLOGY Order BLATTARIA Burmeister, 1829 (= Blattariae Latreille, 1810; = Blattodea Brunner von Wattenwyl, 1882) Family ECTOBIIDAE Brunner von Wattenwyl, 1865 Genus LATIBLATTELLA Hebard, 1917 Type Species. Latiblattella rehni Hebard, 1917 Diagnosis of the genus (after Hebard, 1917), relevant material only. Size moderately large to medium, form moderately broad to very broad, for the group. Tegmina (in fully developed condition, found in numerous species only in the male) delicate, moderately broad, with costal and sutural margins straight and subparallel in greater part, scapular field very broad; discoidal (radial) sectors numerous (usually, including their branches, eight to ten), moderately oblique. Ventral margins of median and caudal femora supplied with elongate, moderately stout spines. First three tarsal joints supplied distad with small pulvilli, brief ventral surface of fourth joint occupied by a pulvillus. Moderately large arolia present. Latiblattella avita sp. nov. (Figures 1-3) zoobank.org/7225896D-EC71-4088-8B05-008C85F3A7B6 Etymology. The new species name is derived from the latin avitus meaning ancient or ancestral. Holotype. USNM 595139; a fragment containing an intact tegmen attached (?) to an intact middle leg. Deposited in the Department of Paleobiology, National Museum of Natural History (NMNH), Smithsonian Institution, Washington, District of Columbia. Type Horizon. Kishenehn Formation, middle Eocene (Lutetian). Type Locality. Dakin site, Middle Fork of the Flathead River, near Pinnacle, Montana. Differential Diagnosis. The significantly less oblique radial sectors of the tegmen of Latiblattella avita sp. nov. distinguish it from species in the closely related genera Neoblattella, Shelford, 1911 and Lupparia Walker, 1868. Species of the genus Balta Tepper, 1893 differ from Latiblattella in having a protruded clavus. In addition, the marginal and scapular fields of the tegmina are narrower in Latiblattella than those in Eoblatta Shelford, 1911 (=Balta Tepper, 1893; synonymized by Roth, 1990). L. avita differs from most living representatives of the genus Latiblattella in having a basally forked, wide and darkly pigmented Sc vein as well as a more pronounced coloration. Description. Tegmen (forewing) elongated, 15.1 mm long and 4.4 mm wide (width measured at the distal terminus of the anal field) with a length/width ratio = 3.40. Sc wide and heavily pigmented, arcuate basally with a slight inflection near the anterior margin of the tegmen (Figure 1). Basal of Sc, the tegmen is mottled with black pigmentation (Figures 2, 3.1). Sc itself is 4.75 mm long and 0.45 mm in width at the point where it diverges from R, and extends to a point about 66% of the length of the anal field. Sc has no anterior branches. The humeral field is 4.79 mm long, arcuate basally and without anterior branches. Sc has a single posterior branch which diverges from Sc at a point GREENWALT & VIDLIČKA: NEW EOCENE COCKROACH 4 approximately 1/2 the distance from its origin; this vein is heavily pigmented and is 2.18 mm long and 0.12 mm wide. Both Sc and its single branch reach the wing’s margin. The basal portion of the radius is distinctly curved and is pigmented to a point 4.5 mm from the wing’s base. There are 10-12 apical branches of the radius – the origins of these branches are not preserved. These branches are oblique, evenly spaced and approximately half of them are branched. The apical radial branches are complexly branched and, with the anterior branches of M, parallel to subparallel to the anterior margin of the tegmen. Overall number of R branches meeting margin is 26. Posterior branches of M and those of Cu subparallel to the tegmen’s longitudinal margin. The radial field is 8.5 mm long. The apex of the tegmen is evenly curved. Intercalated veins and crossveins are invisible throughout the membrane. The anal field is 6.58 mm long and 2.51 mm wide at its widest point and contains at least 10 near parallel simple longitudinal veins. The plical furrow is subangulate and pigmented basally. The plical notch is distinct although the posterior margin of the tegmen is poorly preserved. The tegmen is brown in coloration, more darkly brown within a wide longitudinal stripe along the central part of the wing with the margins of the wing lighter in color. The anal field is dark brown except for the postero-apical third which is essentially the same color as the shale matrix. Given the poor preservation of the posterior tegminal margin, the distribution of color may have been affected by taphonomic processes. Given the length of the tegmen of this specimen, the insect may have been a male (see Discussion). In cockroaches, the dorsal aspect of the base of the coxa is very closely apposed to the base of the forewing and, given its size and association with the forewing, the leg of this fossil may be a mesothoracic appendage (Figure 1). It is 13 mm in total length. The coxa, which is attached to the preserved thoracal-coxal joint, is 4.05 mm long, 2.14 mm wide and black/dark brown in color. The basal portion of the coxa and the trochanter are light brown. The trochanter is triangular in shape, 1.13 mm long, 0.80 mm wide and overlaps the basal femur by about 0.5 mm. Its shape resembles that of Ectobiinae [vs. species in Blattellinae (Bazyluk, 1977)]. The femur is brown in color, slightly fusiform in shape, 3.76 mm long and 1.0 mm wide. Its posterior margin contains seven or eight relatively short spines approximately 0.4 mm long and 0.04 mm wide, mostly on the apical half of the femur. The tibia, also brown in color, is 3.3 mm long and slightly wider apically (0.49 mm vs. 0.56 mm). The tibia contains 14 visible spines, evenly distributed FIGURE 1. Latiblattella avita sp. nov. (USNM 595139). Tegmen attached (?) to an intact middle leg. Scale bar equals 5 mm. PALAEO-ELECTRONICA.ORG 5 over its length, 0.8 mm long and 0.08 mm wide. Four of the tibial spines originate at the terminus of the tibia and lie parallel to the first tarsal segment (Figure 3.2). The dimensions of the five tarsal segments are 1.3 mm x 0.31 mm, 0.5 mm x 0.2mm, 0.35 mm x 0.22 mm, 0.2 mm x 0.2 mm and 0.46 x 0.17 mm increasing distally to 0.24 mm wide. T1, T2 and T3 have triangular distal extensions, which may contain remnants of tarsal pads (pulvilli). T4 is bilobed basally, as in Ectobiinae [vs. species in Blattellinae in which the apical and basal margins are parallel (Bazyluk, 1977)]. The single asymmetrical claw that is preserved/visible is approximately 0.36 mm long. The arolium is about 0.2 mm in length and black/dark brown. DISCUSSION Assignment of the New Species to the Genus Latiblattella The present specimen is categorized within the genus Latiblattella based on the generally unspecialized appearance of the comparatively robust leg, including an asymmetrical claw, nearly identical venation of tegmen with branched Sc, short, pigmented and distinctly curved R, more or less straight M and CuA, very distinct and arcuate boundary between clavus and rest of the tegmen. It differs from the related genera Eoblatta and Supella Shelford, 1911 in the decidedly less strongly oblique radial sectors of the tegmen. In addition, the marginal and scapular fields are narrower in Latiblattella than those in Eoblatta. It differs from the related genera Neoblattella and Lupparia in the degree of the obliqueness of the radial sectors of the tegmen; those of Latiblattella are decidedly less oblique. The closely related genus Balta is characterized by a protruded clavus, a morphological character absent in Latiblattella. Nevertheless it is necessary to note that the present specimen has coloration and general appearance somewhat similar to Lupparia adimonialis Walker, 1868 (see plate 1, figure 12 in Shelford, 1908) suggesting a close relationship to the colored representatives of Latiblattella such as the present species. The present specimen is, in contrast to living representatives of the genus, somewhat coloured, but coloration varies greatly within the related cockroach genera. For example, Balta varies from completely colorless to strongly coloured species. The number of veins falls within the variation of the genus (see Rehn, 1951; Brunner von Wattenwyl, 1865). Branching of Sc occurs within the genus, although the basal branching is considered to be a plesiomorphy (i.e., present in ancestral Mesoblattinidae) (Vrsansky et al., 2002). FIGURE 2. Latiblattella avita sp. nov. (USNM 595139). 2.1. A photograph of the tegmen. 2.2. A line drawing of the forewing venation. The arrow denotes the boundary between the radial and medial fields. M, medial veins; R, radial veins; Sc, subcostal vein. Scale bar equals 3 mm. GREENWALT & VIDLIČKA: NEW EOCENE COCKROACH 6 L. avita sp.n. has venation almost identical with L. rehni. Unfortunately, the data do not reveal enough information for a phylogenetic analysis. While the Sc vein is often simple in extant species of Latiblattella, it exhibits a single posterior branch in both L. avita and L. vitrea Brunner von Wattenwyl, 1865. The posterior branch originates closer to the forewing margin than the origin of Sc in both species. Similarly, in both species, both Sc and the distinctly curved basal portion of the radius are heavily pigmented. Dark pigmentation of the single posterior branch of Sc is however unique to L. avita. Extant species of Latiblattella, in addition to exhibiting sexual dimorphism relative to body and wing length such that females often have significantly reduced wings, vary significantly in size (Hebard, 1917, 1921, 1922, 1932). The holotype of Latiblattella vitrea (♂) was reported to have a tegmina length of 10 mm while that of L. mexicana Saussure, 1864 is 16 mm (Brunner von Wattenwyl, 1865; Saussure, 1864). L avita sp. n. is 15.1 mm in length and therefore amongst the largest of the species of this genus. The tegmina length/width ratio of extant species ranges from 3.0 (L. pavida Rehn, 1903) to 4.53 (L. azteca Saussure and Zehntner, 1893) although this latter species is unusual in that most species exhibit a ratio between 3.0 and 3.5 (Rehn, 1903); the tegmina of L. avita sp. n. fits comfortably within this range. The length of the humeral field, defined as the distance, on a line parallel to the wing’s anterior margin, from the tegmina’s base to the fusion of the primary Sc vein with the wing’s margin, relative to that of the anal field, is another potentially valuable morphometric measurement. Unfortunately, most holotypes and paratypes have not been figured in the literature and, as a result, the data is limited. This ratio is equal to 0.92-0.94 (L. rehni), 0.92 (L. lucifrons Hebard, 1917), 0.79 (L. vitrea) and 0.66 (L. avita sp. n.) (Hebard, 1917; Rehn, 1951; Brunner von Wattenwyl, 1865). Given this limited available data and the single fossil specimen, the significance of L. avita’s smaller ratio is unknown. Latiblattella avita sp. nov. and the Fossil Record Different extant species of Latiblattella have extraordinarily diverse habitats given their small number. L. rehni is found under cracks in the bark of Pinus caribea and within strands of Dendropogon usneoides (Spanish moss), L. chichimeca Saussure and Zehntner, 1893 is found on bromelias, L. lucifrons feeds on pollen and detritus on the flowers of Yucca elata and L. zapoteca Saussure, 1862 is found under stones along the margins of rivers (Rehn, 1906; Hebard, 1917; Ball et al., 1942; Blatchley, 1920; Picado, 1913). The conserved fragment of L. avita appears to be a remnant that could have been dropped from a predator or washed into the margins of the lake via a small stream and it is impossible to know the niche occupied by the insect. Although pine leaves - yet to be identified - are found in the shales and siltstones of the Kishenehn Formation, none are known from the Dakin site although a single pine seed has been collected there. Most Cretaceous cockroach clades (e.g., Blattulidae, Caloblattinidae and nearly all of the Mesoblattinidae and Skokidae) are not present in the fossil record of the Cenozoic; only the single extant genus Blattella has a fossil record in the Cretaceous (Vršanský, 2008). On the other hand, nearly all (9/11) cockroach genera from the Green River FIGURE 3. Latiblattella avita sp. nov. (USNM 595139). 3.1. The subcostal field of tegmen showing the wide and darkly pigmented Sc vein. 3.2. The five segmented tarsus. The arrows denote tarsal segments 1 – 5 and the end of the single visible claw. Scale bars equal 1 mm. PALAEO-ELECTRONICA.ORG 7 Formation and all genera from Dominican Republic and Mexican amber are extant. The marked differences in the composition of the Cenozoic and Cretaceous entomofauna suggest a very rapid evolution and radiation of the cockroach biota in the Paleocene and early Eocene (Vršanský et al., 2011; 2012; 2013; Gorochov, 2007). Interestingly, Namablatta, Diploptera, Ectobius, Allacta Saussure and Zehntner, 1895, Blattella and Supella are all extant genera that were present in the North and Central American Paleogene that are now, except for recent reintroduction, extinct in those areas (Vršanský et al., 2011). Their absence, in combination with the highly advanced nature and restricted geographical distribution of the Dominican fauna (Central and South America), led Vršanský et al. (2011) to suggest that an environmentally/biologically-mediated extinction event precipitated extinction of Paleogene fauna and set the stage for the evolution of a distinctly American fauna. On the other hand, Cariblattoides labandeira, present in the lacustrine sediments of the early Eocene Green River Formation, is an extant species with a present-day distribution in South America and the Caribbean (Vršanský et al., 2012). Latiblattella avita sp.n. is a species from yet another genus that was able to persist from the middle Eocene to present-day in Central America (An alternative explanation would be the migration of L. avita from its Eocene territory to its present day location sometime over the last 46 million years due to the cooling temperatures of the latter half of the Cenozoic.). Extant species of Latiblattella, restricted to Central America, Cuba, Mexico, the Bahamas, Florida and Arizona (Princis, 1969), may be restricted in distribution relative to that of the Eocene. So too, Cariblattoides Rehn and Hebard, 1927, which is presently restricted to Cuba, Puerto Rico and Brazil (Bonfils, 1975). Given their preference for the tropics and the near universal subtropical/ tropical environments of the Eocene (Wolfe, 1995; Zachos et al., 2001), the presence of these genera in Eocene North America is not unexpected. Although recent molecular phylogenetic data has indicated a close relationship between Latiblattella and the oriental genus Balta (Inward et al., 2007), there is no fossil record for the latter genus and a paleobiogeographical link between the two has yet to be established. ACKNOWLEDGEMENTS We thank C. Labandeira and F. Marsh for administrative support and P. Vršanský (GlU SAV, Bratislava) for review of the manuscript. We are also indebted to two anonymous reviewers whose efforts greatly improved the manuscript. This is contribution number 326 of the Evolution of Terrestrial Ecosystems Consortium of the USNM. This research was supported by VEGA 2/0186/13. REFERENCES Anisyutkin, L.N., Rasnitsyn, A.P., and Vršanský, P. 2008. Cockroaches and mantises. Orders Blattodea (= Blattida) and Mantodea (= Mantida), p. 199-209. In Krassilov, V. and Rasnitsyn, A. (eds), Plant-Arthropod interactions over the Early Angiosperm history. Evidence from the Cretaceous of Israel. Pensoft, Sofia-Moscow. Arillo, A. and Ortuño, V. M. 2005. Catalogue of fossil insect species described from Dominican amber (Miocene). Stuttgarter Beiträge zur Naturkunde B, 352:1-68. Ball, E. D., Tinkham, E.R., Flock, R., and Vorhies, C.T. 1942. The grasshoppers and other Orthoptera of Arizona. University of Arizona, College of Agriculture, Agricultural Experiment Station, Technical Bulletin, 93:257-373. Bazyluk, W. 1977. Blattodea and Mantodea. Polish Academy of Science, Institute of Zoology, State Scientific Publishing, Warsaw. Beccaloni, G. W. 2014. Cockroach Species File Online. Version 5.0/5.0. World Wide Web electronic publication. [accessed 06 June 2014]. Beccaloni, G.W. and Eggleton, P. 2013. Order Blattodea. Zootaxa, 3703:46-48. Blatchley, W.S. 1920. Orthoptera of Northeastern America with especial reference to the faunas of Indiana and Florida. The Nature Publishing Company, India- napolis. Bohn, H., Picker, M., Klass, K.-D., and Colville, J. 2010. A Jumping Cockroach from South Africa, Saltoblattella montistabularis, gen. nov., spec. nov. (Blattodea: Blattellidae). Arthropod Systematics and Phylogeny, 68:53-69. Bohn, H., Beccaloni, G., Dorow, W.H.O., and Pfeifer, M.A. 2013. Another species of European Ectobiinae travelling north – the new genus Planuncus and its relatives (Insecta: Blattodea: Ectobiinae). Arthropod Systematics and Phylogeny, 71:139-168. Bonfils, J. 1975. Blattopera (Orthopteroidea) récoltés en Guyane Francaise par la mission du Muséum national d’Histoire naturelle. Annales de la Societe Entomologique de France (N.S.), 11(1):29–62. Brunner von Wattenwyl, C. 1865. Nouveau Système des Blattaires. G. Braumüller, Vienne. Brunner von Wattenwyl, C. 1882. Prodromus der Europäischen Orthopteren. Verlag von Wilhelm Engelmann, Leipzig. Burmeister, H. 1829. De Insectorum systemate naturali. Dissertatio inauguralis. Halis Saxonum, Typis Grunertorum Patris Filiique. GREENWALT & VIDLIČKA: NEW EOCENE COCKROACH 8 Caudell, A. N. 1903. Notes on nomenclature of Blattidae. Proceedings of the Entomological Society of Washington, 5:232-234. Comstock, J.H. and Needham, J.G. 1898. The Wings of Insects. Chapter III. The Specialization of Wings by Reduction. The American Naturalist, 32:231-257. Constenius, K. 1996. Late Paleogene extensional collapse of the Cordilleran foreland fold and thrust belt. Geological Society of America Bulletin, 108:20-39. Fieber, F. X. 1853. Wissenschaftliche Mittheilungen. Synopsis der europäischen Orthoptera. Lotos. Zeitschrift für Naturwissenschaften, 3: 90-104, 115- 129, 138-154, 168-176, 184-188, 201-207, 232-238, 252-261. Germar, E.F. and Berendt, G.C. 1856. Die im Bernstein befindlichen Hemipteren und Orthopteren der Vorwelt, p. 1-110. In Berendt G.C. (ed.), Die im Bernstein befindlichen organischen Reste der Vorwelt, vol. 2. Commission der Nicholai Schen Buchhandlung, Berlin, Germany. Gorochov, A.V. 2007. New and little known Orthopteroid Insects (Polyneoptera) from fossil resins: Communication 2. Paleontological Journal, 41:156-166. Greenwalt, D.E., Rose, T.R., Siljestrom, S.M., Goreva, Y.S., Constenius, K.N., and Wingerath, J.G. 2015.Taphonomic studies of the fossil insects of the Middle Eocene Kishenehn Formation. Acta Palaeontologica Polonica, in press. dx.doi.org/10.4202/ app.00071.2014 Greven, H. and Zwanzig, N. 2013. Courtship, Mating, and Organisation of the Pronotum in the Glowspot Cockroach Lucihormetica verrucosa (Brunner von Wattenwyl, 1865) (Blattodea: Blaberidae). Entomologie heute, 25:77-97. Grimaldi, D. and Engel, M.S. 2005. Evolution of the insects. Cambridge University Press, New York. Gutiérrez, E. and Pérez-Gelabert, D.E., 2000. Annotated checklist of Hispaniolan cockroaches. Transactions of the American Entomological Society, 126:423-445. Haupt, H. 1956. Beitrag zur Kenntnis der eozänen Arthropodenfauna des Geiseltales. Nova Acta Leopoldina NS, 18:1-90. Hebard, M. 1916. Studies in the group Ischnopterites (Orthoptera. Blattidae, Pseudomopinae). Transactions of the American Entomological Society, 42:337–383. Hebard, M. 1917. The Blattidae of North America, north of the Mexican boundary. Memoirs of the American Entomological Society, 2:1-284. Hebard, M. 1921. Mexican Records of Blattidae (Orthoptera).Transactions of the American Entomological Society, 47(3):199-220. Hebard, M. 1922. Dermaptera and Orthoptera from the State of Sinaloa, Mexico: Part I. Dermaptera and Non-Saltatorial Orthoptera. Transactions of the American Entomological Society, 48(3):157-196. Hebard, M. 1932.New Species and Records of Mexican Orthoptera. Transactions of the American Entomological Society, 58(3):201-371. Hebard, M. 1940. New generic name to replace Sigmoidella Hebard, not of Cushman and Ozana (Orthoptera: Blattidae). Entomological News, 51:236. Inward, D., Beccaloni, G., and Eggleton, P. 2007. Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biology Letters, 3:331-335. Latreille, P.A. 1810. Considérations générales sur l’ordre naturel des animaux composant les classes des Crustacés, des Arachnides et des Insectes avec un tableau méthodique de leurs genres, disposés en familles. Schoell, Paris. Mitchell, A.A. 2013. Blattaria occurrence data, accessed 27 July, 2011. EDNA, The Fossil Insect Database. edna.palass-hosting.org/ Picado, C. 1913. Les Broméliacees épiphytes. Considerees comme milieu biologique. Bulletin Scientifique de la France et de la Belgique, 47:215-360. Piton, L.E. 1940. Paleontologie du gisement eocene de Menat (Puy-de-Dom) (Flore et Faune). Memoires de la Societe d'Histoire Naturelle d'Auvergne, 1:1-303. Princis, K. 1969. Blattaria: Subordo Epilamproidea: Fam.: Blattellidae, p. 711-1038. In Beier, M. (ed.) Orthopterorum Catalogus, Pars 13. Dr. W. Junk, The Hague. Rehn, J.A.G. 1903. Studies in American Blattidae. Transactions of the American Entomological Society, 29:259-290. Rehn, J.A.G. 1906. Notes on the Orthoptera of Costa Rica, with descriptions of new species. Proceedings of the Academy of Natural Sciences of Philadelphia, 57:790-843. Rehn, J.A.G. and Hebard, M. 1927. The Orthoptera of the West Indies. Number 1. Blattidae. Bulletin of the American Museum of Natural History, 54:1-320. Rehn, J.W.H. 1951. Classification of the Blattaria as indicated by their wings (Orthoptera). Memoirs of the American Entomological Society, 14:1-134. Rehn, J. A. G. 1937. African and Malagasy Blattidae (Orthoptera): Part III. Proceedings of the Academy of Natural Science of Philadelphia, 89:17-123. Roth, L.M. 1990. Cockroaches from the Krakatau Islands (Dictyoptera: Blattaria). Mémoirs of the Museum of Victoria, 50(2):357-378. Roth, L.M. 2003. Systematics and phylogeny of cockroaches (Dictyoptera: Blattaria). Oriental Insects, 37:1-186. Saussure, H. 1862. Orthoptera nova Americana (Diagnoses praelimiinares). Revue et Magasin de Zoologie Pure et Appliquée, 2(14):163-171. Saussure, H. de. 1864. Blattarum novarum species aliquot. Revue et Magasin de Zoologie Pure et Appliquée, 2:305-326. Saussure, H. and Zehntner, L. 1893-1899. Orthoptera. Biologia Centrali Americana: Zoology, Botany and Archeology, 1:13-122. PALAEO-ELECTRONICA.ORG 9 Saussure H. and Zehntner L. 1895. Histoire naturelle des Blattides et Mantides, p. 1-244. In: Grandidier A. (ed.), Histoire physique, naturelle et politique de Madagascar. Vol. XXIII: Histoire Naturelle des Orthopteres: Premier Partie: Blattides et Mantides. Paris. Shelford, R. 1908. Orthoptera Fam. Blattidae Subfam. Phyllodromiinae. Genera Insectorum, 73:1-29. Shelford, R. W. C. 1911. Preliminary diagnoses of some new genera of Blattidae. Entomologists Monthly Magazine, 22:154-156. Solórzano Kraemer, M.M. 2007. Systematic, palaeoecology, and palaeobiogeography of the insect fauna from Mexican amber. Palaeontographica (A), 282:1- 133. Statz, G. 1939. Geradflügler und Wasserkäfer der Oligozänen Ablagerungen von Rott. Decheniana, 99A:1- 102. Stephens, J. F. 1835. [1836–1837]. Illustrations of British Entomology; or, a synopsis of indigenous Insects: containing their generic and specific distinctions; with an account of their metamorphoses, times of appearance, localities, food, and economy, as far as practicable, vol. 6. Mandibulata. Baldwin & Cradock, London, United Kingdom. Tepper, J.G.O. 1893. The Blattarae of Australia and Polynesia. Transactions of Royal Society of South Australia, 17:25-130. Vidlička, Ľ. 2001. Fauna Slovenska Blattaria - šváby Mantodea - modlivky (Insecta: Orthopteroidea). Veda vydavateľstvo SAV, Bratislava. Vishniakova, V.N. 1973. New cockroaches (Insecta: Blattodea) from the Upper Jurassic sediments of Karatau ridge, p. 64-77. In Narchuk, E.P. (ed.), Problems of the Insect Palaeontology. Lectures on the XXIV Annual Readings in Memory of N.A. Kholodkovsky (1-2 April, 1971). Nauka, Leningrad. Vršanský, P. 1997. Piniblattella gen. nov. - the most ancient genus of the family Blattellidae (Blattodea) from the Lower Cretaceous of Siberia. Entomological Problems, 28:67-79. Vršanský, P. 1999. Lower Cretaceous Blattaria, p. 167- 176. In Vršanský, P. (ed.), Proceedings of the First International Palaeoentomological Conference, Moscow 1998. AMBA projects monograph, Bratislava. Vršanský, P. 2002. Origin and the early evolution of mantises. AMBA Projects, 6:1-16. Vršanský, P. 2007. Jumping cockroaches (Blattaria, Skokidae fam. n.) from the Late Jurassic of Karatau in Kazakhstan. Biologia, Bratislava, 62:588-592. Vršanský, P. 2008. Mesozoic relative of the common synanthropic German cockroach (Blattodea). Deutsche Entomologische Zeitschrift, 55 (2):215-221. Vršanský, P. 2010. Cockroach as the earliest eusocial animal. Acta Geologica Sinica (english edition), 84:793-808. Vršanský, P. and Chorvát, D. 2013. Luminescent system of Lucihormetica luckae supported by fluorescence lifetime imaging. Naturwissenschaften, 100(11):1099-1101. Vršanský, P., Vishniakova, V.N., and Rasnitsyn, A.P. 2002. Order Blattida Latreille, 1810, p. 263-270. In Rasnitsyn, A.P. and Quicke, D.L.J. (eds). History of Insects. Kluwer Academic Publishers. Vršanský, P., Cifuentes-Ruiz, P., Vidlička, L., Čiampor, F. Jr., and Vega, F.J. 2011. Afro-Asian cockroach from Chiapas amber and the lost Tertiary American entomofauna. Geologica Carpathica, 62:463-475. Vršanský, P., Vidlička, L., Čiampor, F. Jr., and Marsh, F. 2012. Derived, still living cockroach genus Cariblattoides (Blattida: Blattellidae) from the Eocene sediments of Green River in Colorado, USA. Insect Science, 19:143-152. Vršanský, P., Vidlička, L., Barna, P., Bugdaeva, E., and Markevich, V. 2013. Paleocene origin of the cockroach families Blaberidae and Corydiidae: Evidence from Amur River region of Russia. Zootaxa, 3635:117-126. Vršanský, P., Oružinský, R., Barna, P., Vidlička, L., and Labandeira, C.C., 2014. Native Ectobius (Blattaria: Ectobiidae) from the early Eocene Green River Formation of Colorado and its reintroduction to North America 49 Million years later. Annals of the Entomological Society of America, 107:28-36. Walker, F. 1868. Catalogue of the specimens of Blattariae in the collection of the British Museum. British Museum (Natural History), London. Wei, D. and Ren, D. 2013. Completely preserved cockroaches of the family Mesoblattinidae from the Upper Jurassic-Lower Cretaceous Yixian Formation (Liaoning Province, NE China). Geologica Carpathica, 64:291-304. Wolfe, J.A. 1995. Paleoclimatic estimates from Tertiary leaf assemblages. Annual Review of Earth and Planetary Sciences, 23:119-142. Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K. 2001. Trends, rhythms and aberrations in global climate 65 Ma to present. Science, 292:686- 693. Zompro, O. and Fritzsche, I. 1999. Lucihormetica fenestrata n.gen., n.sp., the first record of luminescence in an orthopteroid insect (Dictyoptera: Blaberidae: Blaberinae: Brachycolini). Amazoniana, 15:211-219. Príloha č. 18 VIDLIČKA, Ľ. 2001. Blattaria – šváby; Mantodea – modlivky: (Insecta: Orthopteroidea). 1. vyd., Veda, Bratislava, 169 pp. (Fauna Slovenska) ISBN 80-224-0640-6 Blattaria - šváby Mantodea - modlivky (lnsecta: Orthopteroidea) LUBOMÍR VIDLIČKA VEDA vydavateľstvo Slovenskej akadémie vied SLOVENSKÁ AKADÉMIA VIED Ústav zoológie Vedecký redaktor RNDr. Milan Kozánek, CSc. Recenzenti Prof. RNDr. Ivan Országh, DrSc. RNDr. Ilia Okáli, CSc. © Ľubomír Vidlička 2001 ISBN 80-224-0640-6 FAUNA SLOVENSKA Blattaria - šváby Mantodea - modlivky (lnsecta: Orthopteroidea) lubomír Vidlička VEDA, vydavatel'stvo Slovenskej akadémie vied Bratislava 2001 Obsah Rad: BLATTARIA Burmeister, 1829- šváby ............................................................................ 7 Úvod ......................................................................................................................................... 7 A. Všeobecná časť .......................................................................................................................... 8 l. Morfologická charakteristika imág ................................................................................ 8 2. Anatomická charakteristika imág ................................................................................ 20 3. Charakteristika nedospelých štádií .............................................................................. 23 4. Etológia a ekológia ......................................................................................................... 25 Obydlia- biotopy ............................................................................................................. 25 Potrava .............................................................................................................................. 26 Sociálne správanie ............................................................................................................ 28 Rozmnožovanie ............................................................................................................ ... 29 Embryonálny vývoj ................................ .......................................................................... 32 Postembryonálny vývoj .................................................................................................... 32 Starostlivosť o potomstvo ................................................................................................. 33 Prirodzení nepriatelia ........................................................................................... ............ 34 Obrana .............................................................................................................................. 35 S. Geografické rozšírenie švábov........................................................................... 37 Pôvod synantropných druhov a ich rozšírenie ................................................................. 38 6. Hospodársky význam ..................................................................................................... 39 Ochrana pred synantropnými švábmi .............................................................................. 40 Chov švábov ..................................................................................................................... 41 Šváby a povery .............................................................................................................. .. 42 Šváby v medicíne ................................... .......................................................................... 43 7. Prehľad histórie poznania švábov do roku 1758 ............................................................ 43 Vznik národných mien švábov ......................................................................................... 45 8. Vývoj názorov na systematické usporiadanie švábov po roku 1758 ................ ............ 46 9. Klasifikácia švábov a modliviek ....................................................................................... 49 10. Fylogenéza švábov .......................................................................................................... 52 Fylogenetické vzťahy švábov a modliviek k iným radom ................................................ 54 Spoločný predkovia švábov a termitov ............................................................................ 55 ll. História výskumu švábov na Slovensku ....................................................................... 56 B. Systematická časť .......................................... .......................................................................... 60 Rod Blatta Linnaeus, 1758- šváb ................................................................................ 60 Rod Periplaneta Burmeister, 1838 -šváb .................................................................... 62 Rod Blattella Caudell, 1903 - rus ................................................................................. 66 Rod Supella Shelford, 1911 -šváb ...... ......................................................................... 68 Rod: Ectobius Stephens, 1835 - švábik ........................................................................ 70 Rod: Phyllodromica Fieber, 1853 - švábik ...................................................... ............ 80 Rad: MANTODEA Burmeister, 1838- modlivky ................................................................... 94 Úvod ................................................................................................................................ ...... 94 A. Všeobecná časť ........................................................................................................................ 95 l. Morfologická charakteristika imág ............................................................................. 98 2. Anatomická charakteristika imág .............................................................................. l02 3. Charakteristika nedospelých štádií ............................................................................ l03 4. Etológia a ekológia ....................................................................................................... l04 Obydlia - biotopy ..................................................................................... ..................... 105 Potrava ............................................................................................................................ l05 Rozmnožovanie ................................................................................................... ........... 107 Postembryonálny vývoj .................................................................................................. II O Prirodzení nepriatelia ..................................................................................................... III Obrana a mimikry .......................................................................................................... 11 2 5. Geografické rozšírenie ........................ ......................................................................... 11 5 6. Hospodársky význam ................................................................................................... l 15 Chov modliviek .............................................................................................................. 11 6 7. Prehľad histórie poznania modliviek do roku 1758 .................................................. l 16 Etymológia vedeckého a národného mena modliviek ................................................... 118 Ludové názvy modlivky a rôzne povery ...................................................................... 11 9 8. Vývoj názorov na systematické usporiadanie modliviek po roku 1758 .................. 11 9 9. História výskumu modliviek na Slovensku ................................................. ............... 12 1 10. Fylogenéza modliviek ................................................................................................... 122 B. Systematická časť ................................................................................................................. 124 Rod Mantis Linnaeus, 1758- modlivka................................................................. 124 Systematický prehľad švábov a modliviek ............................................................. ........... 126 Smn1nary ............................................................................................................................... 127 Key to the families and genera of cockroaches .................................................................... 131 Použitá literatúra ................................................................................................................ 133 Príloha .................................................................................................................................. 157 Register švábov (Biattaria) ................................................................................................. 161 Register modliviek (Mantodea) .......................................................... .................... ........... 164 Register húb, rastlín a živočíchov (okrem švábov a modliviek) ..................................... 166 Rad: BLATTARIA BuRMEISTER, 1829 - šváby Úvod Šváb, rus, tarakán- kto by nepoznal aspoň jeden z týchto názvov označujúcich malé zvieratko, ktoré sa cíti dobre práve v ľudských príbytkoch a sprevádza človeka už niekoľko storoč í (č i možno tisícročí) na jeho cestách. Tieto synantropné druhy majú často kozmopolitné rozšírenie, ale ich bližšiemu poznaniu bráni skrytý nočný spôsob života a veľká rýchlosť, akou unikajú pred svetlom. Iba nepatrné percento ľudí, zväčša iba tí, ktorí sa zaoberajú biológiou, vedia, že prevažná väčšina druhov švábov žije voľne v prírode a viacero druhov dokonca aj u nás. Napriek tomu, že sú blízkymi príbuznými už spomínaných synantropných druhov, ich pôsobenie v prírode môžeme hodnotiť kladne. Všežravosť švábov je v prirodzených podmienkach, najmä v trópoch a subtrópoch, kde má prevažná väčšina druhov svoj domov, ideálnou vlastnosťou z hľadi ska rozkladu organických látok. Šváby sú jednou z najstarších hmyzích skupín. Ich prví prapredkovia sa objavili na Zemi pred viac ako 300 miliónmi rokov v karbóne (prvohory) a zanedlho sa stali jedným z n ajväčšíc h hmyzích radov. V súčasnosti žijúce šváby (4 500- 5 000 druhov z asi 460 rodov) sú v porovnaní s inými radmi hmyzu iba malou skupinou, ale ich zástupcovia sú rozšírení takmer po celej Zemi. Šváby sú z hospodárskeho a medicínskeho hľadiska významnou skupinou. Aj preto sa v 20. storočí stali jedným z najčastej ších hmyzích objektov biologického vedeckého výskumu. Značná pozornosť, ktorá im je venovaná, sa prejavuje vo veľkom počte publikovaných prác a samozrejme i v množstve poznatkov o tejto skupine. Celosvetový katalóg švábov zahrnujúci približne 3 800 dovtedy opísaných druhov zostavil švédsky blattológ Karlis PRINCIS ( 1962, 1963, 1964, 1965, 1966, 1967, 1969, 1971 ). Komplexnému spracovaniu švábov východného palearktu sa venoval BEY-BIENKO ( 1950). Jeho práca sa stala spolu so staršou Rammeho revíziou rodu Ectobius (RAMME 1923) základom pri štúdiu stredoeurópskych druhov švábov. Prvý kľúč stredoeurópskych druhov švábov vypracoval HARZ ( 1957). Následne boli spracované šváby Európy (PRINCIS 1965 a HARZ 1976). Od vydania spomínaných prác bolo z Európy opísaných viacero druhov švábov z rodov Phyllodromica a Ectobius. Revízii niektorých skupín rodu Phyllodromica sa v posledných rokoch venovali BoHN ( 1992, 1993, 1999) a VIDLIČKA a MAJZLAN (1997). Mnohé z publikovaných prác majú podobu obsiahlych monografií zaoberajúcich sa predovšetkým biológiou švábov a ochranou pred nimi - ROTH & WILLIS (1960), BEIER( 1961 , 1974), CORNWELL (1968, 1976), BELL & ADIYODI (1981 ), RusT et al. (1995) a ďalšie . Najstaršie údaje o výskyte švábov z územia dnešného Slovenska pochádzajú spred takmer 200 rokov (BARHIOLOMAEIDES 1806- 1808). Do súčasnosti sa nahromadilo množstvo najmä faunistických údajov, ktoré bolo potrebné v prvom rade sumarizovať a kriticky zhodnotiť (VIDLi č KA a MAJZLAN 1992; VIDLIČKA a SZIRÁKY 1997). Až nás ledne mohlo vzniknúť monografické spracovanie švábov. Predložená práca vzhľadom na svoj rozsah a svoje poslanie zďaleka nie je a ani nemôže byť úplným súhrnom poznatkov o tejto zaujímavej skupine hmyzu. Snahou bolo podať ucelenú a prehľadnú charakteristiku celého radu Blattaria a v systematickej časti zhrnúť a obohatiť doterajšie poznatky o šváboch žijúcich na území Slovenska. Dúfam, že sa to aspoň čiastočne podarilo. 7 A. Všeobecná časť l. Morfologická charakteristika imág Veľkosť. Šváby dosahujú väčšinou stredne veľké až veľmi veľké rozmery, malé druhy sú zriedkavejšie. Najmenšie sú v termitiskách žijúce druhy z rodu Nocticola (asi 3 mm) a v mraveniskách žijúce druhy z rodu Attaphilla (asi 4 mm). Najväčší známy šváb je Megaloblatta longipennis s rozpätím krídiel viac ako 18 cm a šváby z rodu Blaherus dlhé okolo 120 mm. Najťažším švábom je bezkrídly austrálsky druh Macropanesthia rhinoceros, ktorý dosahuje dÍžku 65 mm a hmotnosť okolo 20 gramov (DAY 1950). lntegument (integumentum). Šváby, ako aj ostatné článkonožce, majú vonkajšiu kostru (exosceletum). Exoskelet je tvorený na povrchu nebunkovou kutikulou, ktorá je vylučovaná vonkajšou (ektodermálnou) vrstvou telových buniek -epidermou. Pod epidermou je tenká bazálna membrána. Epiderma s kutikulou a bazálnou membránou tvoria integument. Aby bola zabezpečená pohyblivosť, kutikula netvorí homogénny celok, ale jednotlivé čl ánky sú kryté malými pl atni čkami (skleritmi) navzájom pospájanými mäkkými a pružnými blankami - intersegmentálnymi membránami. [ntegumentje u švábov obyčajne mäkký, ale u niektorých skupín, najmä u bezkrídlych foriem môže dosahovať značnú tvrdosť (napr. Polyphaginae, Panesthinae). Kutikula švábov, tak ako u ostatného hmyzu, sa skladá z troch hlavných vrstiev. Periplaneta americana má kutikulu hrubú 40 1-1m. Jej najvnútornejšia vrstva- endokutikula- je hrubá 20- 30 1-1m a skladá sa z vonkajšej a vnútornej vrstvy. Nad ňou je lO- 20 1-1m hrubá exokutikula, ktorá obsahuje č i erne pigmenty- melaníny. Extrémne tenká vonkajšia vrstva- epikutikula má 2 flm. Skladá sa z dvoch chemicky odlišných vrstiev. Tenká vonkajšia vrstva (0,02- 0,03f.lm) je priehľadná, hygrofobická a odolná voči kyseline. Vnútorná vrstva je jantárovo sfarbená a nie je odolná voči kyseline. Na povrchu epikutikuly je vosková vrstva, ktorá má dôležitú funkciu pri priepustnosti vody. Vosková vrstva u švábov sa obnovuje počas celého ich života. Predpokladá sa, že vosk je u švábov vylučovaný na povrch kutikuly v roztoku, ktorý sa vyparuje len veľmi pomaly. Vosková vrstva u švábov je zložená z nenasýtených uhľohydrátov, mastných kyselín a z rôznych aldehydov. U posledného nymfálneho instaru Periplaneta americana je táto vrstva hrubá 0,4 1-1m a u dospelých l - 2 1-1m. Podobne je to aj u Blatta orientalis, kde vosková vrstva dosahuje na brušku hrúbku 0,6 1-1m (BEAMENT 1945 ; DENNELL & MALEK 1955a, 1955b, 1956). Povrch tela švábov je väčšinou hladký a lysý. Hustejšie ochlpenie sa vyskytuje iba zriedkavo, častejš ie je iba u púštnych a stepných druhov. Rôzne výrastky a tŕne na kutikule sú veľmi vzácne. Ojedinelá je i zrnitá štruktúra. Sfarbenie. Šváby majú takmer výlučne pigmentózne sfarbenie. Najbežnejšie je slamovožlté, žltohnedé a tmavohnedé, zriedkavejšie čierne. Väčšina švábov je sfarbená veľmi nenápadne. Kovové sfarbenie je veľmi zriedkavé (napr. Eustegasta buprestoides z Kamerunu a Konga alebo niektoré Plectopterinae). Občas sa vyskytuje i mimetické sfarbenie (bližšie pozri časť Obrana). Sfarbenie švábov nie je dobrým diagnostickým znakom, vykazuje vysoký stupei'1 variability. Bežné je odlišné sfarbenie jedincov toho istého druhu z rôznych lokalít. Hlava (caput) (obr. 3) je voľná, väčšinou hypognátna (caput hypognathale), prieč ne stl ačená s typickými švami a s dobre vymedzenými skleritmi . Epikraniálny šev (sutura epicranialis) nie je u dospelých vždy prítomný. Čelo (frons) a čelový štítok (clypeus) sú veľké, dobre vyvinuté. Tentórium (vnútorná kostra hlavy) je charakteristické otvorom v stredovej časti (v tele tentória). Zhoraje hlava buď úplne zakrytá štítom alebo je predná časť hlavy čiastoč ne vid iteľná. Zložené oči (oculi compositi) sú skoro vždy vyvinuté, veľké sú najmä u krídlatých foriem. Bezkrídle formy majú oči výrazne menšie a medziočný priestor veľmi široký. Zriedkavo môžu byť oč i redukované alebo 8 Obr. l. Ectobius sylvestris o - dorzálny pohl'ad. a - pronótum, b - disk pronóta, c - kostálne pole, d - análne pole, e - análna brázda, f- subkostálna žilka, g- radiálna+ mediálna žilka, h- zadná holeň , i - l'avé predné krídlo (tegmina), j - pravé predné krídlo (tegmina), k- zadné chodidlo, l - vankúšik, m - tykadlo. Orig. Fig. l. Ectobius sylvestris o - dorsal view. a- pronotum, b- disc of pronotum, c- costa] area, d - ana] area, e - ana! furrow, f- subcostal vein, g- radia]+ media] veins, h- hi nd tibia, i - left fore wing (tegmen), j - right fore wing (tegmen), k - hind tarsus, l - arolium, m- antenna. Orig. 9 Obr. 2. Ectohius sylvestris o - ventrálny pohrad. a - hlava, b - čerusťové hmatadlo, c - predné stehno, d - predný trochanter, e - zadná panvi čka, f- zadné stehno, g - zadný trochanter, h - vejárovito zložené zadné krídlo, i - siedme sternum, j -siedme tergum, k - subgenitálna pl atnička, l - cerkus. Orig. Fig. 2. Ecrobius sylvestris ô - ventral view. a - head, b - maxillary palp, c- front femur, d - front trochanter, e - hind coxa, f- hi nd femur, g - hind Lrochanter, h- folding hind wing, i- sternum 7, j- tergum 7, k- subgenital plate, 1- cercus. Orig. lO chýbajú, najmä u myrmekofilných a kavernikolných foriem (napr. u zástupcov rodu Spelaeoblatta z Barmy a Thajska alebo Trogloblattella zo Sarawaku). Zložené oči sú vytvorené z množstva malých omatídií, každé omatídium má bikonvexnú šošovku vytvorenú z priehl'adnej kutikuly. U niektorých druhov švábov sú vyvinuté dve jednoduché očká (ocelii), ale častejš ie sú na ich mieste iba 2 bledé, na svetlo citlivé, ocelliformné škvrny (fenestrae) pri vnútornom okraji očí. Fenestrae sú nervami spojené s mozgom a ich histologická štruktúra pripomína degenerované očká redukované na pigmentovanú kutikulu. U foriem s plne vyvinutými krídlami sú očká obyčajne dobre vyvinuté, u bezkrídlych (apterných) foriem hrabajúcich v zemi zvyčajne chýbajú. Tykadlá (antennae) sú mnohočlánkové, vel'mi dlhé (často dlhšie ako telo), nitkovité, smerom ku koncu sa zužujú. Zriedkavejšie sú v strede zhrubnuté, vretenovité (napr. u tropického rodu Pseudothyrsocera). Ku hlave sa pripájajú približne v strede vnútorného okraja očí. Vyrastaj ú z okrúhlej tykadlovej jamky ohraničenej tykadlovým švom (sutura antennalis), ktorý má uprostred Obr. 3. Ecto!Jius sylveslris ó - hlava. a- epikraniálny šev, b - zložené oko, c - skapus, d - pedicel, e - bičík tykadla, f- líce, g - čelový štítok, h- horná pera, i- spodnoperové hmatadlo, j- če ľusiové hmatadlo, k- epikránium, l - ocelliformná škvrna (očko), m- tykadlová jamka, n- čelo, o- čeľusťový kmeň , p- hryzadlo, r- galea, s - paraglosa. Orig. Fig. 3. Ecto!Jius sylvestris ó - head. a- epicranial suture, b - compound eye, c - scape, d - pedicel, e - antennal flagellum, f- gena, g- clypeus, h- Iabrum, i - Iabial palp, j - maxillary palp, k- epicranium, I - fenestra, m - antennal pit, n- frons, o- stipes, p- mandible, r- galea, s - paraglossa. Orig. ll vnútorného okraja apofýzu. Prvý tykadlový článok, skapus (scapus) je najdlhší, druhý článok, pedicel (pedicellus) má tvar guličky, ostatné články sú obdÍžnikovité, navzájom podobné. Všetky články sú zvyčajne pokryté jemnými krátkymi chÍpkami. Sfarbené sú spravidla jednofarebne tmavo, ale časté je i biele sfarbenie niekol'kých článkov v strednej časti tykadla. Tykadlá sú orgánom čuchu a hmatu. Sú veľmi pohyblivé. Ústne orgány (trophi) (obr. 4) smerujú pri odpočinku dozadu a dolu. Sú hryzavého typu (trophi masticatorii). Tvorí ich 5 dobre oddelených častí- horná pera (labrum), hryzadlá (mandibulae), čeľuste (maxillae),jazýčok (hypopharynx) a spodná pera (labium). Hryzadlá sú veľké, nepravidelne štvoruholníkovité, silne sklerotizované, na vnútornej strane ozubené, na báze s dobre vyvinutými žuvacími plochami. Hryzadlá švábov nesú prívesky (prostheca). Na zadnom povrchu každého hryzadla sú pozdÍžne rady štetín. Čeľuste sa skladajú z viacerých častí. Čap (cardo) je krátky, rozdelený. Na predÍženom kmeni (stipes) je sformovaný osobitný sklerit nazývaný subgalea. Na kmeni sú na malých palpiferoch umiestnené S-článkové čeľusťové hmatadlá (palpi maxillares). Galeaje pomerne mäkká, cylindrického tvaru. Lacínia má na vnútornej strane dva dobre vyvinuté do stredu smerujúce zúbky, v strede je na jej povrchu množstvo dlhých štetín. Jazýčok je vel'ký s bočnými sklerotizovanými výbežkami (suspenzóriami) a stredovou priehlbinou (sitophora). Spodná pera tvorí najväčší diel zadnej časti hlavovej kapsuly. Skladá sa z vel'kého, širokého a oválneho podbradku (submentum), malej brady (mentum) a prementa nesúceho na palpigeroch pár 3-článkových spodnoperových hmatadiel (palpi labiales). Na distálnom konci spodnej pery sú dobre vyvinuté párové glosy (glossae) a paraglosy (paraglossae). Na ich vrchole sú rady jemných, k ústnemu otvoru smerujúcich štetín. B f g Obr. 4. Ectobius sylvestris ô - ústne orgány. A - čeľusť ; B - hryzadlo; C- spodná pera. a- čap, b - krner'í, c- lacínia, d - galea, e- čel\rsťové hrnatadlo, f- ostrie, g- rezáky, h- podbradok, i -brada, j- palpiger, k- prernenturn, l -glosa, rn - paraglosa, n - spodnoperové hrnatadlo. Orig. Fig. 4. Ectobius sylvestri.1· ô - rnouth par1S. A - rnaxilla; B - rnandible; C - labiurn. a- cardo, b - stipes, c - lacinia, d- galea, e - rnaxillary palp, f- mola, g- denticles, h- submentum, i- menturn, j- palpiger, k- prementum, l - glossa, m - paraglossa, n - labial palp. Orig. Kŕčok (cervix). Hlava je na predohruď pripojená dlhým kŕčkom . Dorzálna strana kŕčka je zrete!'ne kratšia ako ventrálna strana. To umožňuje ohnutie hlavy pod hruď i jej horizontálne vysunutie. Kŕčok je pokrytý arthrodiálnou membránou. Na spevnenie kŕčka slúžia dva páry bočných cervikálnych skleritov (cervicalia) ležiace medzi záhlavnými kondylami a latero-anteriornými rohmi predohrudného sterna. Keď je hlava zatiahnutá pod hruď, cervikálna membrána na spodnej 12 strane kŕč ka sa prehne pod predný a zadný okraj ventrálnych cervikálnych skleritov. Tým sa dosahuje skrátenie funkčnej dÍžky ventrálnej strany kŕčka (POPHAM 196 1). Hruď (thorax). Predohruď (prothorax) nesie dorzálne vel'ký, silne sklerotizovaný predohrudný štít (pronotum), ktorý väčšinou prekrýva hlavu. Povrch pronóta je slabo klenutý, buď hladký alebo s nevel'kými hrbo l čekmi v zadnej časti nad základmi prvého páru krídiel. Inokedy môže byť povrch zrnitý alebo jemne ochlpený. B oč né okraje a prípadne i predný okraj pronóta bývajú často jasnejšie sfarbené ako jeho stred (disk) a obyčajn e sú pri ezrač n é (napr. Ectobius). Mezoa metanótum sú viac alebo menej pravouhlé a navzájom podobné, u krídlatých foriem slabo sklerotizované a úplne zakryté tegminami a krídlami. Obe sú rozdelené na akrotergit (acrotergit), predštít (prescutum), štít (scutum) a obyčaj ne vypuklý štítok (scutellum). Postnóta nie sú vyvinuté. Na bokoch sú závesné kÍby (kondyly) na uchytenie tegmín a krídiel. U brachypterných a apterných foriem je mezo- a metanótum silne sklerotizované, bez akýchkol'vek štruktúr. Vzhl'adom sú podobné na abdominálne tergá za nimi. Pleury sú vďaka silne sploštenému telu a mohutnému rozvoju hrudných tergov malé. Episternity sú omnoho väčšie ako epimeróny. Stredo- a zadohrudné spirákulá sú prítomné. Sterná sú slabo sklerotizované, trochu stl ačené, väčšin ou zakryté silne vyvinutými panv i čkami. Prosternit je tvorený drobnou, úzkou, pretiahnutou pl atni č kou rozdelenou priečnym švom na dve časti - predný eusternit (basisternit) a zadné sternellum (furcasternit). Vzadu je malé prosternellum (spinasternit). U mezo- a metasternitu je bazisternit redukovaný a po dÍžke rozdelený na dve malé pl atni čky, furkasternit (sternellum)je silne redukovaný, vo vnútri má furku v tvare písmena Y. Mezospinasternit je vyvinutý, metaspinasternit chýba. Nohy (pedes) sú väčšinou behavé (pedes cursorii), nemodifikované, všetky tri páry stavané podobne (homonómne). Zriedkavejšie sú prispôsobené hrabaniu v zemi (pedes fossorii), najmä predný pár (napr. u Arenivaga, Panchlora, Nymphytria). Holene sú v tom prípade vpredu zhrubnuté a vyzbrojené silnými tŕň mi . Panvičky (coxae) sú dlhé, uložené vel'mi blízko pri sebe, často sú obrúbené. Trochanter je veľmi malý, pripojený k zadnej časti stehien. Stehná (femora) sú dlhé, po celej dÍžke približne rovnako široké, spodná (ventrálna) strana často s dvomi kýlovitými okrajmi, vyzbrojenými mnohými dlhými tŕň mi. Otfnenie je charakteristické najmä na spodnom prednom (anteroventrálnom) okraji predného páru stehien. Typ otŕneni a je dôležitý aj taxonomicky. Vzhľadom na charakter otŕneni a sú známe 3 typy predných stehien - pôvodnejší typ A a odvodené typy B a C. Typ A je charakterizovaný radom silných, dlhých tŕňov, ktoré sa postupne mierne skracuj ú od bázy stehna k jeho vrcholu (napr. Blatta, Periplaneta, Supe/la). Typ B je charakteristický zmenou väčšiny tŕňov na jemné štetinky, zachovávajú sa iba bazálne tŕne (napr. Phyllodromica, Ectobius). Pri type C sú všetky tŕne zmenené na štetinky (napr. Nocticola). V rámci typov môžeme ďal ej roz li šovať rôzne obmeny základného typu (ozn ačované A l, A2, A3, B l , B2 atď.) . Pri všetkých typoch je distálny vrchol stehna vyzbrojený 2-3 dlhými vrcholovými tŕň mi . Zadný spodný okraj stehna sa nevyzn ačuj e žiadnymi osobitosťami , otŕneni e je rovnakého typu a rovnakej vel"kosti. Podobné otŕneni e ako na predných stehnách sa nachádza i na stredných a zadných stehnách. Na distálnom konci stredných a zadných stehien v mieste pripojenia holene sa nachádza vel'ký kolenný tŕň (chýba len pri niektorých špecializovaných skupinách, napr. podče ľaď Panesthiinae). Kolenný tŕň nie je nikdy na predných stehnách. Holene (tibiae) sú vždy vyzbrojené mnohými tŕň mi. V äčš inou sú dlhé, ale u druhov hrabajúcich v zemi sú krátke a široké. Chodidlá (tarsi) sú vždy S-čl ánkové. Menší počet chodidlových č l ánkov je výsledkom regenerácie, ak bola noha poškodená alebo prišlo k jej strate počas nymfálneho vývoja. Prvý chodidlový č lánok býva väčš í ako ostatné a označuj e sa ako basitarzus alebo metatarzus. Koncový piaty chodidlový č l ánok nesie pár viac alebo menej zahnutých pazúri kov, medzi ktorými je alebo nie je prítomné arólium. Pazúriky (unguiculi) sú buď symetrické - rovnako dlhé alebo asymetrické- jeden je skrátený. Len vel'mi zriedkavo pazúriky chýbajú (rod Nymphytria) alebo je vyvinutý iba jeden (rod Mononychoblatta). Vnútorná strana pazúrikov môže byť hladká alebo so zúbkami . Chodidlové články (tarsomerae) 13 1 - 4 majú obyčajne na ventrálnej posteriornej strane vankúšikovité orgány- plantulae (u švábov niekedy nesprávne označované aj pulvili). Plantulae a aróliá pomáhajú pri pohybe na hladkých alebo strmých povrchoch. U kavernikolných foriem sú často redukované alebo chýbajú, ale môžu chýbať aj u epigeických foriem. Krídla (alae) (obr. 5) sú na stredo- a zadohrudi rôzne utvárané (heteronómne). U druhov s plne vyvinutými letovými orgánmi sú krídla prvého páru (tegminy, mezotorakálne krídla, alae anticae) obyčajne viac alebo menej sklerotizované, kožovité. Ich úlohou je predovšetkým chrániť blanité zadné krídla a bruško. Iba u niekoľkých druhov majú oba páry krídiel rovnakú štruktúru (napr. Cardacus willeyi). Tvar a rozmery tegmín môžu byť často u rôznych pohlaví odlišné, pričom je badateľná tendencia k ich redukcii. Skrátenie alebo úplnú stratu tegmín (ale aj krídiel) môžeme R+M Cu A ab Se c vt Ju CuP+A1 CuA M R Se c Obr. 5. Ectobius sylvestris ô - tegmina a zadné krídlo. C - kostálna žilka, Se - subkostálna žilka, R- radiálna žilka, M - mediálna žilka, Cu - kubitálna žilka, CuA -predná kubitálna žilka, CuP- zadná kubitálna žilka, A -análne žilky, A1 - prvá análna žilka, A2 - druhá análna žilka, Ju- jugálne žilky, ab- análna brázda, vt- vsunutý troj uholník. Orig. Fig. 5. Ectobius sylvestris ô - tegmen and hind wing. C -costa, Se - subcosta, R - radius, M - media, Cu - cubitus, CuA- cubitus anterior, CuP- cubitus posterior, A- ana! veins, A1- first ana! vein, A2 - second anal vein, Ju- jugal veins, ab - ana] furrow, vt- intercalated triangle. Orig. 14 pozorovať najmä u sami či ek, vďaka čomu je u švábov bežný veľký pohl avný dimorfizmus (napr. tegminy sami č iek rodov Escala a Robshelfordia (Biattellidae) a Blatta (Biattidae) sú redukované na okrajové l a l ôč iky a zadné krídla chýbajú; u Laxta granicollis (Biaberidae) a Arenivaga bolliana (Polyphagidae) sú sami čky bezkrídle; samčekovi a týchto druhov majú úplne vyvinuté tegminy aj krídl a). Zriedkavejšie dochádza u oboch pohlaví ku skráteniu (napr. Loboptera) alebo úplnému vymi znutiu (napr. Cryptocercus, Gromphadorhina) tegmín i krídiel. Nie je známy žiadny prípad, že by redukcia tegmín nekorelovala s redukciou krídiel. Tegminy nie sú použitel'né na aktívn y let, môžu slúžiť nanajvýš na plachtenie. Žilnatina je zvyčajne vel'mi hustá, dobre vyvinutá. Ak sú tegminy kožovité, jednotlivé žilky sú dobre viditel'né (napr. Ectobius), ak sú silne sklerotizované, žilnatina sa stáva nezreteľnou alebo sa úplne stráca (napr. Phyllodromica). Časť jednej z tegmín, ktorá je pri odpoč inku zakrytá, je obyčajne viac blanitá alebo prinajmenšom menej kožovitá ako zvyšok tegminy. V prevažnej väčš in e je to pravá tegmina. V niektorých prípadoch môže byť bazálna časť tegmín nepriehl'adná, ochlpená, bez viditel'ných žiliek a vrcholová časť je priehJ'adn á so zretel'nými žilkami (napr. Holocompsa nitidula z tropickej Ameriky). Kostálna žilka (C) tvorí okraj tegmín, subkosta (Se) je krátka, radi álna žilka (R) o byčajn e s viacerými prednými hrebeiíovitými vetvami. M edi álna (M ) a kubitálna (Cu) žilka zaberajú vel'kú čas ť tegmín. Krátka, zahnutá postkubi tálna žilka (CuP; PCu) odde ľuj e zretel'ne utvárané análne pole - clavus. An álna brázda (sulcus analis; línia prechodu žiliek C uP+ A 1 ) je na rozdi el od rovnokrídlovcov oblúkovitá. V análnom poli je výrazne vyvinutá iba druhá análna žilka (A2) a jej vetvy. Jugálne žilky (Ju) sú vel'mi slabé a nejasné. (V zátvorkách sú uvedené skratky názvov žiliek. ) Zadné (metatorakálne) krídl a (alae posticae) sú väčš in ou blanité, prispôsobené lietaniu. Zriedkavo môžu byť zhrubnuté. Podl'a ich tvaru rozoznávame 2 hlavné typy. Prvý, polyfagoidný typ má veľké preaxilárne (remígiové) pole a malé análno-jugálne pole. Druhý typ sa vyskytuje u všetkých ostatných švábov a je charakteri stický relatívne vel'kým preaxilárnym poJ'om a veJ'mi vel"kým análno-jugálnym poJ'om. Počas odpoč inku je análne pole zložené v mieste medzi CuP a A1 • A1 (prvá análna žilka) je atrofovaná a zliata s CuP. U niektorých druhov švábov je na konci tejto žilky vyvinutý menší alebo väčš í tzv. vsunutý trojuholníK: (tri angulum intercalare). Análno-jugálne pole je od zvyšku krídla oddelené análnym záhybom (plica ana]is). Z análnych žil iek je dobre vyvinutá iba A2, aj to nanajvýš len s krátkymi vetvi č kami. Jugálne žilky sú uspori adané radiálne. V pokoji je análno-jugálne pole obyčajne naskl adané do tvaru vejára a zložené pod predanálnu obl asť krídla. Poskl adané zadné krídl a sú obyčajn e kratšie ako tegminy a sú úplne zakryté. Zri edkavo sú krídla výrazne dlhšie ako tegminy. V tom prípade sú v pokoji bud"v strede zložené a celé prekryté tegminami (napr. Diploptera), alebo nie sú zložené a vzadu vytŕčajú spod tegmín (napr. Euthyrrhapha). Žilnatin a zadných hídi el je taxonomicky dôležitá. Kubitálna žilka je, alebo nie je vetvená. Ak je vetvená, môže mať rôzny počet vetiev, ktoré sú buď úplné (t. j. dosahuj ú vrchol krídl a), alebo neúplné (nedosahuj ú vrchol). Druh môže m ať aj brachypterné aj makropterné fo rmy. Niek torí taxonómovi a kl adú vel'ký dôraz na redukciu letových orgánov a považujú ju za zákl ad ný rodový alebo druhový znak. Bruško (abdomen) (obr. 6, 7) je silne dorzoventrálne sploštené. Pôvodne sa skl adalo z ll č l ánkov. U súčas n ých druhov je zretel'ných desať tergov (T l - T l0), jedenásty (epiprokt) je spl ynutý so supraanálnou pl atni č kou (Jamina supraanalis = T l0). Preto sa lalokovitý výbežok supraanálnej pl atni č ky vyskytujúci sa u niektorých švábov niekedy ozn ač uj e ako epiprokt. Tergá T8 a T9 sú u oboch pohlaví malé a sú skryté pod T7. Sami čky mn ohých druhov majú vyvinuté rôzne abdominálne žľazy používané pri obrane alebo na prilákanie samčeka ( R OTH 1969; R OTH & ALSOP 1978; BRossuT & R OTH 1977). Tergálne ž ľazy používané pri sexuálnom správaní sa vys kytuj ú len u sam čekov. Vyluč ujú feromón atraktívny pre sami č ky. Ich príto mn osť alebo neprítom nost a ich umiestne nie a tvar sú taxonomicky dôležité. Tergálne žl'azy vytvárajú často preli ačeninu v strede terga. U podčel'ade Blattellinae sú často na 5. alebo 7. tergu, ale môžu byť na ktoromko J'vek tergu. U sam čekov rodu Ectobius a Phyllodromica je tergálna žJ'aza vždy na 7. tergu. 15 A Obr. 6. Ectobius lapponicus o - bruško. A - dorzálny pohl"ad; B - ventrálny pohl"ad. a - vyústenie tergálnej žl"azy, b - cerkus, c - stilus. Orig. Fig. 6. Eclobius lapponicus o - terminal segments of abdomen. A - dorsal view; B - ventral view. a - tergal gland, b- cercus, c- stylus. Orig. Obr. 7. Eclobius lapponicus S' -bruško. A- dorzálny pohl"ad; B - ventrálny pohl"ad. a- subgenitálna pl atni čka (S7), b - cerkus. Orig. Fig. 7. Eclobius lapponicus S' - terminal segments of abdomen. A - dorsal view; B- ventral view. a - subgenital plate (S7), b - cercus. Orig. Prvé sternumje malé alebo chýba, siedme sternum u samičiek a deviate u samčekov je predÍžené a vytvára subgenitálnu platničku (Jamina subanalis). Jedenáste sternum je rozdelené na paraprokty, ktoré sú ventrálne kryté subgenitálnou pl atni čkou. Z tohto č l ánku vyrastajú i cerkusy. Cerkusy (cerci) sú väčšinou krátke, niekoľkočlánkové, u rodu Panesthia sú j ednoč l ánkové. 16 Výnimočne môžu byť úzke a dlhé - u Periplaneta americana až viac ako 20-článkové . Zo spodnej strany sú zvyčajne pokryté množstvom rôznych hmatových , čuchových a sluchových senzíl. Spirákulá 2.-7. článku sú otvorené na pleurálnej membráne, na l. a 8. článku sú pripojené k bočnému okraju tergov. Na samčej subgenitálnej platničke (S9 = hypandrium) sú obyčajne dva stilusy (styli), ktoré môžu byť špecificky rozdielne. Samčekovia rodov Ectoneura, Stenectoneura a druhu Richanitschia luteomarginata (Biattellidae) majú iba jeden stilus. U všetkých zástupcov podčeľade Panesthiinae (Biaberidae) a u viacerých rodov čeľade Blattellidae (Arawakina , Neoloboptera, Loboptera, Astyloblatta, Astylella, Caffroblatta, Jacobsonina, Parascalida, Phymatosilpha a Pseudoceratinoptera) nemajú samčekovia stilusy vôbec vyvinuté (ROTH 1977, 1989, 1993). Niektoré druhy (napr. Shelfordina orchidae a niektoré ďalšie druhy tohto rodu) majú výbežok vznikajúci pri báze každého stilusu, takže sa zdá, akoby mali 4 stilusy (ROTH 1990). U dospelých samičiek nie sú stilusy nikdy vyvinuté. Vonkajšie genitálie (organa genitalia externa). Samčie genitálie (falické orgány) (obr. 8) sa skladajú zo skupiny asymetrických sklerotizovaných falomér, medzi ktorými leží genitálny otvor (gonoporus). Faloméry (phallomerae) sú skryté v blanitom genitálnom vaku ležiacom nad deviatym sternom a pred paraproktami. Často poskytujú vynikajúce druhové znaky. U čeľade Blattidae a Polyphagidae sú faloméry zložité, u čeľade Blattellidae a Blaberidae sú jednoduchšie (McKITTRICK 1964). Homológiu samčích genitálnych skleritov študovali MIZUKUBO & HIRASHJMA ( 1987) a BoHN (1987). Falické orgány druhotne vyrastajú z prednej blanitej steny genitálneho vaku. Vyskytujú sa v niekoľkých odlišných typoch. Primárne sa skladajú z 3 lalokov alebo falomér, ktoré sú rôzne obkľúčené skleritmi, z ktorých niektoré majú tvar tŕňov, hákov a gombíkov. Pravá a ľavá faloméra je prítomná u všetkých švábov. Tretia, ventrálna faloméra, ktorá leží pod otvorom semenometu (ductus ejaculatorius), čiže pod falotrémou (phallotreme), je prítomná len u Blattidae a Polyphagidae. U niektorých Blattellidae je posteriorným pokračovaním semenometu kónický blanitý penis (phallus) medzi pravou a ľavou falomérou. Sklerity sa pre lepšiu orientáciu číslujú v smere od dorzálnych k ventrálnym, na pravej falomére ako Rl, R2, R3 a mediálne až laterálne, na ľavej falomére ako L l, L2, L3 . Výnimočne u Polyphagidae existuje i prídavný sklerit L4 (SNODGRASS 1937; McKnTRICK 1964). Funkciu gonopod prevzali stilusy. Samičie vonkajšie genitálie (obr. 9) sú usporiadané symetricky. Subgenitálna platnička (7. sternum- S7) je zväčšená, ohnutá a spolu s redukovanými a čiastočne blanitými S8, S9 a S lO je pohltená do stien veľkého genitálneho átria. Genitálny vak (atrium) je rozdelený do dvoch široko spojených komôrok - veľké posteriorné vestibul um, kde je vytváraná ootéka a menšia anteriorná kopulačná komôrka (bursa copulatrix) s otvorom spoločného vajíčkovodu a otvorom spermatéky. Strecha vestibulaje zložená z pomerne pevného rámu skleritov podopierajúcich tri páry ovipozičných valvúl. Podlaha, hoci sa skladá čiastočne zo stredového vestibulárneho skleritu, je väčšinou blanitá. Podlaha kopulačnej komôrky skladajúca sa zo sklerotizovanej laterosternálnej plošiny je trocha vyvýšená nad podlahu vestibula. Strecha kopulačnej komôrky je primárne stavaná z troch zliatych skleritov, ktoré sú anteriorne pripojené k laterosternálnej plošine. Skrytý, vnútorný ovipozitor je zložený z troch párov malých, prstovitých valvúl vo vnútri komôrky. Prvý pár valviferov leží vždy bočne od báz prvého páru valvúl a je s nimi zliaty alebo spojený. Druhý pár valviferov leží hneď za prvým párom valviferov. Je zliaty s kruhovitou štruktúrou, ktorá je zložená z predného oblúka, podporujúceho druhý, vnútorný pár valvúl a z páru zadných lalokov, ktoré podporujú bázy tretieho páru valvúl. Prvý (ventrálny) pár valvúl má ontogenetický pôvod v 8. sterne a druhý a tretí pár (bočné a vnútorné valvuly ovipozitora) sa vytvárajú z deviateho sterna (NEL 1929). Malá vyčnievajúca plošina (centrálna apodéma) vzniká medzi bázami druhého a tretieho páru valvúl. Medzi bázami druhého páru valvúl ústia dve kolateriálne žľazy a malý vestibulárny orgán. Valvuly a valvifery sú držané na mieste pomocou páru dlhých, úzkych apodém, ktoré sú natiahnuté 17 A ht'li'i:'+- f ~~,--g k:.;:\·&.-h B 11-----lt----.----- - b 11--- - - - c Obr. 8. Samčie vonkajšie genitálie. A, B - subgenitálna pl atni čka s falomérami , hák je č iastočn e odsunut ý; C, D - posteriorný koniec háku. A - Phyllodromica maculalll maculata; B - Ectobius lapponicus; C - Phyllodromica hungarica; D - Phyllodromica megerlei. a - endofalická apodéma ravej faloméry (L2vm - virga), b - ravá anteriorná apodéma, c- pravá anteriorná apodéma, d- hák (L3), e- pravá faloméra R2, f- helmet sklerit, g- pravá faloméra R3, h - subgenitálna platnička, i - stilus. Orig. Fig. 8. Male external genitalia. A, B - subgenital plate with phallomeres, hook is partly displace; C, D - posterior end of hook. A - Phyllodromica maculata maculata; B - Ectobius lapponicu.ľ; C - Phyllodromica lumgarica; D- Phyllodromica megerlei. a - endophalic apodeme of left phallomere (L2vm - virga), b - left anterior apodeme, c - right anterior apodeme, d - hook (L3), e - right phallomere R2, f- helmet sclerite, g - right phallomere R3, h - subgenital plate, i - stylus. Orig. 18 Obr. 9. Samičie vonkajšie genitálie u švába Phyllodromica macu/ata mantlata. a- rameno prvého valviferu, b - ventrálna ča~ť k.ladielka, c - bazivalvula, d- zadný lalok druhého valviferu, e - laterosternit, f- paratergit, g- val.vula, h - siedme sternum (subgenitálna platnička), i - paraprokt, j - cerkus. Orig. Fig. 9. Female external genitalia of Phyllodromica macu/ata macu/ata. a- first valvifer arm, b- ventral pan of ovipositor, c- basivalvula, d- hind lobus of valvifere II, e- laterosternite, f- paratergite, g- valve, h- sternit 7 (subgenital plate), i - paraproct, j - cereus. Orig. 19 anteroventrálne z bočných okrajov ôsmeho a deviateho terga. Tieto hrebeňovité apodémy sú zložené zo zliatych predÍžených paratergitov článkov VIII a IX. Paratergity IX sú často dlhšie ako paratergity VIII. Stredné konce paratergitov VIII sú spojené s prvým párom valviferov. Samičie genitálie sú u takmer všetkých švábov trochu asymetrické, stupeií asymetrie varíruje od druhu k druhu (MCK!TTR!CK 1964). 2. Anatomická charakteristika imág Dýchacia sústava (systema respiratorium). Vzdušnicová (tracheálna) sústava švábov je holopneustická. S vonkajším prostredím je spojená s desiatimi pármi spirákul- 2 hrudnými a 8 abdominálnymi. Cez spirákulá vstupuje vzduch do vzdušnicovej sústavy švábov. Spirákulá sú pripojené k trom párom veľkých paralelných tracheálnych kmeňov spojených pomocou prekrížených komisúr. Vzdušnice (tracheae) a jemnejšie vzdušničky (tracheolae) respiračného systému švábov tvoria rozvetvenú sieť rúrok ležiacu vo vnútri hemocelu. Rozvetvujú sa po celom tukovom telese, prenikajú tkanivá telových stien a vnútorností a privádzaj ú kyslík do všetkých častí tela švábov. Keďže na hlave nie sú spirákulá, vzdušnica zásobujúca prednú časť tela švábov je tvorená vetvami pochádzajúcimi z hrude. Obehová sústava (systema circulatorium). Primárnou funkciou cievnej sústavy je zásobovať vnútorné orgány a tkanivá hemolymfou. Hemolymfa privádza produkty trávenia a odoberá odpadový materiál z metabolizmu do exkrečných orgánov. Hemolymfa tvorí tiež médium pre cirkuláciu hormónov produkovaných neuroendokrinnými orgánmi. U hmyzu je tzv. otvorený systém cirkulácie hemolymfy. Cirkulujúca tekutina sa pohybuje voľne v telovej dutine (haemocoel). Pohyb hemolymfy zabezpečuje pulzujúca chrbtová cieva (vas dorsale), ktorej zadný koniec je uzavretý a predný koniec je otvorený. Chrbtová cieva leží pod dorzálnym povrchom integumentu, jej predná časť (srdcovnica- aorta) je umiestnená v hrudi a zadná časť (srdce- cor) v prvých deviatych abdominálnych článkoch. Upevnená je (u Periplaneta) pomocou 12 párov krídlových svalov (musculi alares). Má tvar priamej rúrky, rozdelenej na srdcové komôrky. Hemolymfa z peri kardiálneho sinusu vstupuje pri diastole do srdca cez 12 párov otvorov (ústie- ostium). Tri párové laterálne otvory sú v hrudnej časti a deväť v abdominálnej časti. Zo srdca vychádza šesť párov ciev - 2 hrudné (mezo- a metatorakálne) a 4 abdominálne (v článkoch 3. - 6.). Tie vedú hemo lymťu zo srdca do okrajových častí tela. Okrem chrbtovej cievy existujú rôzne prídavné cirkulačné orgány, ktoré zásobujú hemolymťou dlhšie telové výbežky. U švábaPeriplanetaamericanaje známe tzv. tykadlové srdce umiestnené v hlave pred mozgom. Skladá sa z dvoch pri báze tykadiel ležiacich baniek (ampullae) spojených s rytmicky sa sťahujúcim priečnym svalom. Z baniek vychádzajú tykadlové cievy do tykadiel. Počas relaxácie priečneho svalu tlačia elastické banky hemolymfu do tykadiel (HERTEL & PENZL!N 1992). Hemolymfa švábov je číra tekutina s vysokým obsahom aminokyselín a dioxidov. Nemá funkciu nosiča kyslíka, a preto neobsahuje krvné farbivá - pigmenty. Hemolymfu tvorí tekutá plazma a množstvo rôznych typov buniek - hemocytov. Tráviaca sústava (systema digestorium). Tráviaca rúra (tractus intestinalis) zač ína ústnou dutinou (cavum oris) a končí konečníkom (rectum). Šváby sú všežravé (omnivorné), a preto nie sú ich ústne ústroje špecializované (podrobnejší opis pozri Morfologická charakteristika). Samotná tráviaca rúra je točitá a asi dvakrát dlhšia ako telo. Zvyčajne rozlišujeme tri dobre odlíšiteľné časti - predné, stredné a zadné črevo. Predné a zadné črevo majú ektodermálny pôvod, stredné črevo má endodermálny pôvod. Črevo je dobre zásobované vzdušnicami, ktoré ho držia v telovej dutine medzi lalokmi tukového telesa. Svalové steny predného čreva sú inervované sympatickým nervovým systémom a zadné črevo nervami z terminálneho abdominálneho ganglia (CORNWELL 1968). 20 Predné črevo (stomodeum) sa začína ústnou dutinou (cavum oris). V jej hornej časti je hypofarynx a epifarynx. Odtiaľ potrava prechádza do dolnej časti - do slinovníka (salivarium) a po premiešaní slinami prechádza do hltanu. Hltan (pharynx) je vybavený rozťahovacími svalmi umožňujúcimi jeho značné zväčšenie (veľká žravosť je pre šváby typická). Ďalej prechádza potrava cez pažerák (oesophagus) a dobre vyvinutý hrvoľ (ing!uvies) do puchorčeka (proventriculus). Puchorček sa skladá vpredu z armária a vzadu zo stomodeálnych valvúl. Armárium je charakteristické 12 veľmi komplikovanými, špecializovanými kutikulárnymi záhybmi. Každý záhyb má vpredu sklerotizované zúbkovanie, v strede je vankúšik pokrytý chÍpkami a vzadu chlopnička. Zúbkovanie a vankúšiky sú u švábov druhovo špecifické. S výnimkou druhov čeľade Blaberidae je zúbkovanie veľké alebo stredne veľké, u čeľade Blaberidae je veľmi malé. Prechod medzi puchorčekom a stredným črevom tvorí chlopnička predného čreva (valvula cardiaca). Táto chlopničkaje vsunutá do stredného čreva a tvorí prechod medzi ektodermálnou a endodermálnou časťou čreva . Stredné črevo (mesenteron) tvorí žalúdok (ventriculus). Vpredu má 8 slepých výbežkov (coeca). Na rozdiel od predného a zadného čreva je hemocélový povrch stredného čreva zásobovaný viscerálnymi vzdušnicami idúcimi od všetkých párov abdominálnych spirákul. Stredné črevo nemá kutikulárny lem. Jeho epitelový lem je zložený zo sekrečných a absorbčných buniek. Zadná časť stredného čreva je lemovaná Malpighiho rúrkami (vasa Malpighii; tvoria vylučovaciu sústavu). Je ich okolo 60-100 a sú usporiadané v skupinách po 6 (Biattidae), po 4 (Blattellidae) alebo po 3 (Biaberidae) (LECONTE et al. 1967). Zúčastňujú sa na regulácii iónovej rovnováhy a obsahu vody v hemolymfe. U švábov z rodu Periplaneta rúrky obsahujú intracelulárne enzýmy . Zadné črevo (proctodeum) má za úlohu odčerpávať vodu zo strávenej potravy. Výsledkom sú suché granule trusu. Zadné črevo je rozdelené na tri časti- tenké črevo (ileum), hrubé črevo (co!on) a konečník (rectum). Tenké črevo je najkratšou časťou čreva. Hrubé črevo sa od ostatných častí ľahko rozozná podra tmavej farby jeho obsahu. Na konečníku je 6 konečníkových papíl (papillae recti) (CoRNWELL 1968; OscHMAN & WALE 1969). Slinné žľazy sú dobre vyvinuté, ležia v hrudi po oboch stranách pažeráka (oesophagus). Majú zvláštne vývody spojené do spoločného vývodu vyúsťujúceho v záhybe medzi hypofaringom a spodnou perou. Na každej strane je jeden veľký rezervoár. Vylučovacie orgány (organa uropoetica). Vylučovanie je regulačný mechanizmus, pomocou ktorého sa udržuje množstvo dusíkatých látok, anorganických solí a vody v hemolymfe v uspokojivej rovnováhe a takto zabezpečuje stabilnú skladbu iónov a osmotický tlak. Konečným produktom metabolizmu je dusík. Jeho odstránenie v podobe kyseliny močovej je primárnou funkciou hmyzieho vylučovacieho systému. U švábov existujú štyri miesta zabezpečujúce reguláciu vylučovania: l. Malpighiho rúrky, ktoré v spojení so zadným črevom sú zodpovedné za elimináciu odpadov cez konečník (anus), 2. určité bunky tukového telesa, ktoré sú schopné zadržiavať dusík v procese označovanom ako "vylučovanie skladovaním", 3. močové žľazy, špeciálne rúrky prídavných žliaz samčekov určitých druhov švábov, ktoré odstraňujú uráty (močovinu) v spojení so spermatoťórom počas kopulácie a 4. kutikula, do ktorej môže byť odkladaný odpadový materiál , ktorý je následne počas zvliekania eliminovaný. Nie je možné povedať, ktoré z týchto miest vylučovania je u švábov primárne zodpovedné za reguláciu odpadov. Ak uvážime, že v Malpighiho rúrkach švábov nebola zistená kyselina močová ako základný konečný produkt exkrécie hmyzu, tak potom by veľkú úlohu pri regulácii odpadov mohlo hrať tukové teleso. Tukové teleso (corpus adiposum) je u švábov silne vyvinuté, uložené je predovšetkým v abdominálnej oblasti. Vonkajšiu vrstvu tukového telesa tvoria dva typy buniek- troťocyty (tukové bunky) a urocyty (urátové bunky). Troťocyty sú zapojené do syntézy, skladovania a mobilizácie tukov a bielkovín, zatiaľ čo funkciou urocytov je zhromažďovanie urátov (kyselina močová a jej soli). Samičky švábov inkorporujú počas oogenézy kyselinu močovú do svojich ooték, kde je za pomoci bakteriocytov využitá počas embryogenézy. Bakteriocyty (mycetocyty alebo všeobecne symbiocyty) tvoria vnútornú časť tukového telesa. Obsahujú špeciálne intracelulárne bakteriálne 21 symbionty nazývané bakteroidy (Blattabacterium cuenoti), ktoré sú obalené vakuolárnou membránou produkovanou eukaryotickými bunkami hostitel'a (BIGLIARDI et al. 1989). Bakteroidy sú vel'mi dôležitou skupinou mikroorganizmov pravdepodobne všeobecne rozšírenou medzi švábmi. Doteraz boli zistené v desiatkach druhov švábov z mnohých rodov. Švábom poskytujú rôzne výživné látky a tak sa spolupodiel'ajú na ich normálnej výžive- recyklujú dusíkaté odpadové látky uložené v urátových bunkách. Odstránenie bakteroidov pomocou antibiotík spôsobuje zmeny v správaní, predÍženie vývoja, zvýšenie mortality a neschopnosť reprodukcie. Bakteroidy prenikajú i do vajíčkových buniek a transovariálne sa dostávajú i do embryí švábov. Nervová sústava (systema nervosum). Nervová sústava švábov zodpovedá typicky hmyziemu vzoru nervovej sústavy. Skladá sa z troch sústav. Najznámejšia je centrálna nervová sústava (somatická sústava), ktorú tvorí mozg, ventrálna nervová páska a jej gangliá (nervové uzly). Ďalšie sú periférna (obvodová) a sympatická (viscerálna) nervová sústava. Mozog (nadhltanový nervový uzol - ganglion supraoesophagale) leží nad pažerákom. Vznikol splynutím 3 hlavových ganglií a je rozdelený na tri časti. Predný mozog (protocerebrum), reprezentujúci splynutý pár ganglií optického článku (prozocefalónu), je rozdelený do dvoch hemisfér so zrakovými lal ôčikmi (lobi optici) po stranách. Stredný mozog (deutocerebrum), reprezentujúci splynuté gangliá tykadlového č lánku (deutocefalónu), sa skladá z č uchovýc h l a l ôč ikov (lobi olfactori), z ktorých vybiehajú tykadlové nervy. Najmenší je zadný mozog (tritocerebrum). Vznikol z ganglií tretieho hlavového č l ánku (tritocefalónu) a leží boč ne od čreva. Ventrálna nervová páska je u švábov zložená z lOganglií pospájaných párovými konektívami . Prvé ganglium (podhltanový nervový uzol- ganglion suboesophagale) vzniklo splynutím ganglií zvyšných troch hlavových článkov a leží pod pažerákom. S mozgom je spojené pomocou párových konektív (cirkumezofageálnych konektív) prechádzajúcich cez otvor v tentóriu. Tri gangliá sú v hrudi (ganglion thoracicum primum, secundum et tertium) a inervujú hrudné svaly (aj svaly nôh a krídiel). Jedno (prípadne až tri ) z predných abdominálnych ganglií splýva so zadohrudným gangliom, čo má za následok prítomnosť iba 6 samostatných abdominálnych ganglií (bruškové nervové uzly - ganglia abdominales). Prvých 5 inervuje telové svalstvo. Šieste, terminálne abdominálne ganglium je väčšie ako predchádzajúcich 5 ganglií, lebo vzniklo splynutím ganglií viacerých terminálnych článkov. Periférna nervová sústava sa skladá z nervov, ktoré vychádzajú z ganglií a inervujú všetky časti tela. Sympatická nervová sústava vykazuje tak nervovú, ako aj endokrinnú (hormonálnu) aktivitu a skladá sa zo senzorických, motorických a asociačných nervov. Tvoria ju tri čas ti: a) stomatogastrická sústava obsahujúca gangliá a nervy inervujúce prednú časť čreva, b) ventrálny viscerálny nervový systém- nervy, ktoré vznikli z ventrálnej nervovej pásky, inervujú a spájajú spirákulá a c) kaudálna (proktodeálna) sústava, ktorá sa skladá z nervov vznikajúcich z terminálneho abdominálneho ganglia a inervujúca zadnú časť čreva (CoRNWELL 1968). Stomatogastrická nervová sústava je u švábov dobre vyvinutá. Skladá sa zo 4 ganglií - čel ového ganglia (ganglion frontale), záhlavného ganglia (ganglion hypocerebrale), ingluviálneho ganglia a páru ganglií ležiacich na povrchu puchorčeka, z návratného nervu (nervus recurrens) a pažerákového nervu (nervus oesophagealis). Vnútorné pohlavné orgány (organa genitalia interna). U samčekov švábov sa párové semenníky (testes) skladajú zo 4 alebo viacerých semenníkových folikulov (folliculi testiculares) obyčajne uzavretých v peritoneálnom obale. Semenovody (vasa deferentia) smerujú dozadu a ústia do semenometu (ductus ejaculatorius). Na prednom konci semenovodu je jeden alebo viac párov semenných váčkov a väčš í počet tubulárnych prídavných žliaz (glandulae accesoriae) rôznej dÍžky. Tieto žl'azy vylučujú materiál, z ktorého je vytvorený spermatofór. Sú očividne mezodermálneho pôvodu, u nýmf sa vyvíjajú z ampulky na konci každého semenovodu. U samčekov sa nachádza aj nepárová "chumáčová žl'aza" rôzneho tvaru, ktorá leží pod prídavnými žl'azami a ústi oddelene medzi falomérami . 22 Príloha č. 19 KOČÁREK, P., HOLUŠA, J., VIDLIČKA, Ľ. 2005. Blattaria, Mantodea, Orthoptera & Dermaptera of the Czech and Slovak Republics. Illustrated key 3. Blattaria, Mantodea, Orthoptera & Dermaptera České a Slovenské republiky. Ilustrovaný klíč 3. Kabourek, Zlín, 349 pp. ISBN 80-86447-05-7 Petr Kocarek Jaroslav Holusa I:ubomir Vidlicka Blattaria, Mantodea Orthoptera & Dermaptera ofthe Czech and Slovak Republics Ceske a Slovenske republiky ~~KaBOUREK Zlfn, 2005 Peer reviewers Pavel Pecina, Praha, Czech Republic t llja Okali, Bratislava, Slovak Republic Barnabas Nagy, Budapest, Hungary Gtinter Kohler, Jena, Germany Sigfried lngrisch. Bad Karlshafen. Germany Blattaria. Mantodea. Orthoptera & Dermaptera ofthe Czech and Slovak Republics. Illustrated key 3. 60 I figs. incl. 2 1 colour plates. 349 pp. Blattaria. Mantodea. Orthoptera & Dennaptera Ceske a Slovenske republiky. llustrovany klic 3. 60 I obr. vc. 2 1 barev. tabulf. 349 str. © Petr Kocarek, Ostrava, 2005 © Jaroslav Holusa, Frydek-Mistek, 2005 © L',ubomir Yidlicka, Bratislava, 2005 Translation © David Boukal, Ceske Budejovice, 2005 Photographs © Jifi Tronecek, Bysti'ice pod Host)'nem, 2005 Cover design © Vaclav Zalesak, Zlin, 2005 Editor © Vit Kabourek, Zlin, 2005 Publisher © Nakladatelstvi KABOUREK, s.r.o., Sokolska 3923, 760 0 I Zlin www.kabourek.cz ISBN 80-86447-05-7 18 Blattaria The order Blattaria I..:ubomir Vidlicka Introduction Extant cockroaches (Blattaria) are a relatively small insect group encompassing about 4,000-4,500 species described and classified in approximately 460 genera. They belong to the exopterygote Neoptera and, together with the orders Grylloblattodea, Mantodea, Isoptera. Phasmatodea, Orthoptera, Dermaptera, Embioptera and Zoraptera, to the series Polyneoptera. Most extant cockroaches inhabit warm forests of the tropics and subtropics. Only about 2-3% of the known species inhabit the temperate zone. In Europe, cockroaches only received more attention when the synanthropic species Blatta orienta/is and Blattel/a germanica entered major European ports with Greek merchant vessels and unstoppably invaded the entire continent. Various forms of the word "kakerlac", apparently derived from the Spanish "cucaracha", have been used as vernacular names for cockroaches. Besides the English name, its equivalents are still used to denote a cockroach in other countries, such as kakerlac in the Netherlands and Denmark, kackerlacka in Sweden, kackerlackor in Finland and cackerlac and cancrelat in France. The Czech and Slovak common name "svab" comes from the German "Schwab(e)" and "Schabe" . The generic name Blatta, which is also the stem of the order' s name. is derived from the Greek PJ.mrrco (to harm, be harmful, injure, damage). Any harmful and cryptic domiciliary insects used to be called by that name in old Latin literature. The systematics of cockroaches is rather disparate, although two approaches are most frequently used at present. The first one developed by Princis ( 1962-197 1) divides cockroaches into 28 fami lies. The other one recognises 6 families: Polyphagidae, Blattellidae, Blaberidae, Blattidae, Cryptocercidae and Nocticolidae (McKittrick, 1964, Roth, 1988). In the Czech and Slovak Republics, one may find only the native representati ves of the fami ly Ectobi idae (sometimes included in the family Blattellidae) freely in nature; our domiciliary species belong to the families Blattidae and Blattellidae. Members of the family Polyphagidae inhabit more southern and arid parts of the Palaearctic and Nearctic regions. The family Cryptocercidae has only 5 species distributed in the Palaearctic and earctic regions; Grandcolas ( 1994) included this family in Polyphagidae. The speciose family Blaberidae is distributed mainly in the Neotropical, Indomalayan and Ethiopian regions. Species of a small family Nocticolidae are similarly distributed. Bey-Bijenko ( 1950) treated cockroaches of the eastern part of the Palaearctic region, including most central European species in his revision. A key to central European species was published by Harz ( 1957). Princis (1965) and Harz & Kalten- Blattaria 19 Rad Blattaria I..:ubomir Yidlicka Uvod Svabi (Blattaria) tvoi'i v soucasnosti relativne malou skupinu hmyzu zahrnuj ici okolo 4 000-4 500 popsanych druhu v pfiblime 460 rodech. Patri mezi exopterygotni Neoptera. Spolu s fady Grylloblattodea, Mantodea, Isoptera, Phasmatodea, Orthoptera, Dermaptera, Embioptera a Zoraptera nalezi do kohorty Polyneoptera. Pro vetsinu recentnich druhu svabu jsou domovem vlhke a teple lesy tropicke a subtropicke zony. Mirne pasmo obyvaji jen asi 2-3% znamych druhtr. Y Evrope se svabi dostali do centra pozornosti az tehdy, kdyz synantropni druhy Blatta orienta/is a Blattella germanica pronikly i'eck)'mi obchodnimi lodemi do velk)'ch evropskych pi'istavu a odtud se nezadrzitelne sifily po cele Evrope. Y minulosti byli svabi oznacovani ruznymi variantami vyrazu ,kakerlac", odvozeneho zrejme od spane lskeho , cucaracha" . I v soucasnosti se pouzivaji varianty tohoto jmena na omacovani svabu v rtrmych zemich - kakerlac (Holandsko a Dansko), kackerlacka (Svedsko), kackerlackor (Finsko), cackerlac, cancrelat (Francie), cockroach (Anglie). Nemecke vyrazy Schwab(e) a Schabe se staly zakladem pro slovenske i ceske pojmenovani , svab". Rodove jmeno Blatta, ktere tvori i slovni zaklad nazvu celeho radu, je odvozeno z reckeho slova ~A 343 o 344 c;> 346 c;>