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Abstrakt

V tomto pfehledu jsou obsazeny nékteré vysledky zjedné monografie a Ctyt
¢asopiseckych praci, vnichz jsou vysetfovany dvoubodové okrajové ulohy pro
funkciondlni diferencidlni rovnice jak v regularnim, tak i siguldrnim pfipadé (napt.
Dirichletova, smiSend, fokalni, periodicka). Jsou zde uvedeny efektivni podminky
zarucujici feSitelnost, jednoznac¢nou resitelnost, a také Fredholmovost studovanych
uloh. Uvedené vysledky byly v dobé jejich publikace originalni, nové a rozsitovaly

znalosti v daném oboru.

Abstract

The present survey considers four papers and a monograph where various kinds
of boundary value problems (Dirichlet, periodic, mixed, focal) for linear and
nonlinear functional differential equations are studied in both regular and singular
cases. The works mentioned contain results on the solvability, unique solvability and
Fredholm property of the problems under consideration. The results obtained, at the
time of publication, had been new and contributed essentially to the knowledge of

the problems mentioned.
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UvVOoD

Predlozena prace obsahuje ptrehled nékterych mych vysledki tykajicich
se otazek Tesitelnosti, jednoznac¢né resitelnosti a korektnosti nékterych okra-
jovych tloh pro funkcionéalné-diferencialni rovnice. Nejprve stru¢né popiseme
pét vybranych publikaci.

V ¢lanku The Dirichlet BVP for second order nonlinear ordi-
nary differential equation at resonance. Italian J. Of Pure and
Appl. Math., 2011, No. 28, 177-204 je, narozdil od ptedeslych praci
uvazovana nelinedrni diferencidlni rovnice tvaru u” = p(t)u + f(¢,u) + h(t),
v niz je funkce f sublinearni v druhé proménné, v pripadé kdyz homogenni
Dirichletova tloha pro rovnici v” = p(t)u mé netrividlni feSeni (tzv. rezona-
néni pfipad). V tomto ¢lanku se nepfedpoklada, ze koeficient p je konstantni
funkce, coz je omezeni pro vysledky tohoto typu obvyklé v existujici lite-
ratufe. V praci A periodic boundary value problem for functional-
differential equations of higher order. Georgian Math. J., Vol. 16,
2009, No. 4, 651-665 (spoluautor R. Hakl), v niz jsou nalezena
efektivni kritéria jednoznac¢né fesitelnosti periodické tlohy pro funkcionalné-
diferencialni rovnice vyssich fadu s nemonotonnimi operatory na pravé strané
Kusano, a které jsou nezlepsitelné pro rovnice fadu n < 7. Metoda, ktera je
zde pouzita k diikazu hlavnich tvrzeni, je vyvinuta v nékolika ptfedeslych pub-
likacich. V monografii Two-point boundary value problems for second
order functional differential equations. Mem. Differential Equati-
ons Math. Phys., 20, 2000, 1-112 je studovana Dirichletova a smiSena
okrajova tloha pro linearni singularni funkcionalné-diferencialni rovnice dru-
hého tadu. V prvni kapitole jsou uvedeny postacujici podminky zarucujici
jednoznacnou fesitelnost danych tloh a je ukazano, ze nékteré z efektivnich
podminek jsou v jistém smyslu nezlepsitelné. V druhé kapitole jsou pak do-
kazany véty o korektnosti danych tloh. V ¢lanku Two-point boundary
value problems for strongly singular higher-order linear differen-
tial equations with deviating arguments. E. J. Qualitative Theory
of Diff. Equ., 2012, No. 38, 1-34 (spoluaturka N. Partsvania)
jsou dokézéana tvrzeni typu Agawala—Kiguradzeho pro dvoubodové a fokalni
ulohy pro silné singularni diferencialni rovnice vyssich radd s odklonénymi
argumenty. Tato tvrzeni obsahuji postacujici podminky zarucujici, ze studo-
vané ulohy maji tzv. Fredholmovu vlastnost. Déle jsou v tomto ¢lanku nale-
zeny efektivni nezlepsitelna kritéria jednoznacné fesitelnosti téchto linearnich
uloh. Je znamo, ze mame-li prostudovanou otazku jednoznacné fesitelnosti



dvoubodovych okrajovych tloh pro linearni diferencialni rovnice, je mozné
odvodit kritéria fesitelnosti nelineadrnich tloh, v nichz jsou nelineérni rovnice
v jistém smyslu ,,blizké“ odpovidajicim rovnicim linedrnim. Vysledky tohoto
typu pro nelinearni funkcionalné-diferencidlni rovnice jsou prezentovany v
praci The Dairichlet boundary value problems for strongly singu-
lar higher-order nonlinear functional-differential equations. Cze-
choslovak Mathematical Journal, Vol. 63, 2013, No. 1, 235-263.
Pomoci vysledki znamych v linedrnim ptipadé jsou zde odvozeny efektivni
postacujici podminky, zarucujici jednoznacnou fesitelnost Dirichletovy tlohy
pro silné singularni nelinearni funkcionalné-diferencialni rovnice vyssich radu.

Pro lepsi pfehlednost a citelnost textu je na zac¢atku kazdého oddilu uve-
deno oznaceni, které je v ném pak jednotné pouzivano.



INTRODUCTION

In the present survey I review my several studies exploring solvability,
unique solvability and correctness of some boundary value problems for
functional-differential equations. First I will briefly characterize five selec-
ted studies.

In the article The Dirichlet BVP The second Order Nonlinear
Ordinary Differential Equation At Resonance. Italian J. Of Pure
and Appl. Math., 2011, No. 28, 177-204, in difference with the previ-
ous paper, the nonlinear equation v” (t) = p(t)u(t)+ f (¢, u(t))+h(t) under Di-
richlet boundary value problem conditions is studied in the case when f is sub-
linear function in the second argument and the homogeneous linear equation
u”(t) = p(t)u(t) under homogeneous Dirichlet boundary value conditions has
a nontrivial solution, i.e. in the resonance case. It is noteworthy that unlike
this article, similar problems are studied in literature only in the concrete case
when p = Const. In the paper A Periodic Boundary Value Problem
For Functional-Differential Equations Of Higher Order (with R.
Hakl). Georgian Math. J. Vol.16, (2009), No.4, 651-665, the effi-
cient sufficient conditions guaranteeing the unique solvability of the periodic
problem are established in the case of nonmonotone linear operators, which
improve the results of Lasota - Opial and Kiguradze-Kusano and are optimal
for n < 7. The method used for the investigation of the considered problem
is based on the method developed in my previous papers. In the monograph
Two-point boundary value problems for second order functional
differential equations. Mem. Differential Equations Math. Phys.
20 (2000), 1-112, the Dirichlet and mixed problems for second order li-
near singular functional-differential equations are studied. In the first chapter
the sufficient conditions of unique solvability of the named problem are es-
tablished and some of them are sharp in some sense. The correctness of
the above mentioned problem is studied in the second chapter of the mono-
graph. In the paper Two-point boundary value problems for stron-
gly singular higher-order linear differential equations with devi-
ating arguments (with N. Partsvania). E. J. Qualitative Theory
of Diff. Equ., 2012, No.38, 1-34, for strongly singular higher-order di-
fferential equations with deviating arguments, under two point conjugated
and right-focal boundary conditions, Agarval-Kiguradze type theorems are
established, which guarantee the presence of Fredholm’s property for the
above mentioned problems. Also we provide easily verifiable best possible
conditions that guarantee the existence of a unique solution of the studied



problems. As is known, if we have studied the unique solvability of the linear
functional-differential equations under some two-point boundary value pro-
blem, it simplifies study of the question of solvability of the same two-point
boundary value problem for nonlinear functional-differential equations if the
nonlinear equation is in a some sense ”close”to this linear equation. Results
of this type for the nonlinear functional-differential equations are presented
in the study The Dirichlet Boundary Value Problems For Strongly
Singular Higher-Order Nonlinear Functional-Differential Equati-
ons. Czechoslovak Mathematical Journal, vol. 63 (2013), No. 1,
pp. 235-263, where by using the results proved for the linear equations,
the efficient sufficient conditions guaranteeing the unique solvability for Dir-
richlet problem are established for the strongly singular higher-order nonli-
near functional differential equations.

The notation used in the survey is introduced separately for every single
section at its beginning.



Kapitola 1

Two-point boundary value
problems for regular
functional-differential equations

1.1 The Dirichlet BVP For The Second Or-
der Nonlinear Ordinary Differential Equation
At Resonance

In this chapter first we consider the paper [4], in which on the set I = [a, b
where the second order ordinary differential equation

u’(t) = p(t)u(t) + f(t,u(t)) + h(t) (1.1.1)
are studied under the boundary conditions
u(a) =0, wu(b) =0, (1.1.2)

where h,p € L([a,b]) and f € K(I X R; R).

By a solution of the problem (1.1.1), (1.1.2) we understand a function
u € C"([a,b]), which satisfies the equation (1.1.1) almost everywhere on I
and satisfies the conditions (1.1.2).

Along with (1.1.1), (1.1.2) we consider the homogeneous problem

w"(t) = p(t)w(t) for tel, (1.1.3)

5



w(a) =0, w(b)=0. (1.1.4)

The case when the problem (1.1.3), (1.1.4) has the nontrivial solution is
still little investigated and in the majority of articles, the authors study the
case with p constant in the equation (1.1.1), i.e., when the problem (1.1.1),
(1.1.2) and the equation (1.1.3) are of type

u”(t) = =N2u(t) + f(t,u(t)) + h(t) for te (0,7, (1.1.5)
u(0) =0, wu(r)=0, (1.1.6)

and
w’(t) = —Nw(t) for te]0,n] (1.1.7)

respectively, with A = 1.

In this work, the solvability of the problem (1.1.1), (1.1.2) is studied in
the case when the function p € L(]a, b]) is not necessarily constant, under the
assumption that the homogeneous problem (1.1.3), (1.1.4) has the nontrivial
solution with an arbitrary number of zeroes. For the equation (1.1.7), this is
the case when A is not necessarily the first eigenvalue of the problem (1.1.7),
(1.1.4), with a = 0, b= .

Throughout the paper the following notation are used:

K (I x R; R) is the set of functions f : I x R — R satisfying the Carathé-
odory conditions. Also having the function w : I — R, we put:

N, €a,b[: w(t) = 0},
QY erwe >0, QY el wi) <o)

Also, to formulate the main results of this paper we need the following
definitions:

Definition 1.1.1. Let A be a finite (eventually empty) subset of 7. We say
that f € E(A), if f € K(I X R; R) and, for any measurable set G C [ and
an arbitrary constant r > 0, we can choose € > 0 such that if

/ |f(s,x)|ds #0 for x>r (z < -—r)
G
then

/ |f(s,x)|ds — |f(s,z)|lds >0 for z>r (z<—r),
G\U- Ue

where U, = I N (Uzzl]tk —&/2n, t + 6/2n[) if A= {t1,ts,....t,}, and
U.=0 if A=0.



Remark 1.1.1. It is clear that if f(¢,z) o fo(t)go(x), where fy € L([a,b])
and gy € C(R), then f € E(A) for every finite set A C I.

Now we can consider the main result of our paper. The first theorem deals
with a case when N,, = (), which for problem (1.1.7),(1.1.6) corresponds to
the case A = 1.

Theorem 1.1.1. Let w be a nonzero solution of the problem (1.1.3), (1.1.4),
N, =0, (1.1.8)

there exist a constant r > 0, nonnegative functions f~, f+ € L([a,b]) and
g,ho € L(I; 10, +00] ) such that

f(t, z)sgnz < g(t)|z| + ho(t) for |z|>r (1.1.9)
" flt.x) < —f7(0) for w<
x) < — or < —r
T - 1.1.10
@) < ft,z) for x>r ( )
on I. Let, moreover, there exist € > 0 such that
b b
—/ o (s)|w(s)lds + el 7| < —/ h(s)|w(s)|ds <
b
< / FH(w(s)lds — el iz (11.11,)
where
v (t) = sup{|f(t,z)| : |z| < r}. (1.1.12)

Then the problem (1.1.1), (1.1.2) has at least one solution.
Example 1.1.1. It follows from Theorem 1.1.1 that the equation
u”(t) = —\2u(t) + olu(t)|*sgnu(t) + h(t) for 0<t<7 (1.1.13)

where 0 = 1, A = 1, and « €]0, 1], with the conditions (1.1.6) has at least
one solution for every h € L([0, 7]).

And finally let us consider two theorems for the case when N, is not
necessarily empty set, where in the second theorem we assume, that for the
function f the representation f(t,z) = fo(t)go(x) is valid.



Theorem 1.1.2. Let i € {0,1}, w be a nonzero solution of the problem
(1.1.3), (1.1.4), f € E(N,), there exist a constant v > 0 such that the
function (—1)'f is non-decreasing in the second argument for |x| > r,

(=1)'f(t,x)sgnx >0 for tel, |z|>r, (1.1.14)
/ |f(s,7)|ds + / |f(s,—r)|ds # 0, (1.1.15)
Q3 Q0
and Lo
lxlligloom/a |f(s,z)|ds = 0. (1.1.16)

Then there exists 0 > 0 such that the problem (1.1.1), (1.1.2) has at least one
solution for every h satisfying the condition

/b h(s)w(s)ds| < . (1.1.17)

Example 1.1.2. From Theorem 1.1.2 it follows that the problem (1.1.13),
(1.1.6) with 0 € {—1,1}, A € N, and « €]0,1] has at least one solution if
h € L([0,7]) is such that [ h(s)sinAsds = 0.

Theorem 1.1.3. Let i € {0,1}, w be a nonzero solution of the problem

(1.1.3),(1.1.4), f(t,») déf fo(t)go(x) with nonnegative fo € L([a,b]), go €
C(R), there exist a constant r > 0 such that (—1)'gy is non-decreasing for
|x| > r and

(—1)'go(x)sgnz >0 for || >r. (1.1.18)

Let, moreover,

lgo(r)] /Q+ fo(s)ds + |go(—r)| . fo(s)ds # 0 (1.1.19)

and
lim [go(z)| = 400, Tim P& _ g (1.1.20)

|x| =400 || —=+oc0 T

Then, for every h € L(I; R), the problem (1.1.1), (1.1.2) has at least one
solution.

Example 1.1.3. From Theorem 1.1.3 it follows that the equation
u"(t) = po(t)u(t) + p1(¢)|u(t)|*sgnu(t) + h(t) for t¢el, (1.1.21)

where « €]0,1[ and pg,p1,h € L([a,b]), with the conditions (1.1.2) has at
least one solution provided that p;(t) >0 for ¢ € I.



1.2 A Periodic Boundary Value Problem For
Functional Differential Equations Of Higher
Order

One of the most significant problem among two point boundary value pro-
blems is the periodic problem. In the paper [5] the problem of existence
and uniqueness of solution is studied for the higher-order linear functional-
differential equation

u™(t) = Ze(u@'))(t) +q(t) (1.2.1)

under the periodic boundary conditions
u(0) =u (W) +¢;  (j=0,...,n—1), (1.2.2)

where n > 2, ¢ : C(]0, w]) — L(]0, w]|) are linear bounded operators,
g€ L([0, w]),and ¢; € R (1,7 =0,...,n—1).

By a solution to the problem (1.2.1), (1.2.2) we understand a function
u € C" ([0, w]), which satisfies the equality (1.2.1) almost everywhere in
[0,w] and the boundary condition (1.2.2).

The problem on the existence of a periodic solution to ordinary and functi-
onal differential equations was studied very intensively in the past. The first
important step was made for linear ordinary differential equations of the type

u™(t) = p(t)u(t) + q(t) (1.2.3)

by Lasota and Opial. They showed that the problem (1.2.3), (1.2.2) is uniquely
solvable for n > 4 if the function p € L(]0, w]) has a constant sign, p # 0,

and the inequality
/ 2\"' 2.4 (n—2)
— 1.24

is fulfilled. This result is far from being optimal

Below we consider conditions guaranteeing the unique solvability of the
problem (1.2.1), (1.2.2), even in case when the operators ¢; are not mono-
tone, which improve the results of Lasota — Opial and Kiguradze — Kusano
and are optimal for n < 7. The method used for the investigation of the
considered problem is based on the method developed in our previous papers
for functional differential equations.




Definition 1.2.1. We will say that a linear operator ¢ : C([0, w]) —
L(]0, w]) belongs to the set P, if it is non-negative, i.e., for any non-negative
z € C([0, w]) the inequality ¢(x)(t) > 0 for ¢ € [0, w] is fulfilled.

The following notations is used throughout this part of our survey:

N is a set of all natural numbers.
If ¢:C([0, w]) = L([0, w]) is a linear bounded operator, then

14l = sup [[(z)]|z -

lzllc<1

mi1+1 mgj— 2+1

1
LR IEE IR S SR S T

mi1=1ma=1 mjll

for j > 2, where
n(t) = (2t +1)(2t + 3).

Let
dy=1, di=4, dy=32, dy=192, (1.2.5)
and for p € N put
d 1
2p+2 — 9
’ max { (hy (H)hy(1 = £))"* 0 <t <1}
) (1.2.6)

d2 +3 — )
" max{(fp(s,t)f,,(l—s,1—t))1/2:ogsg1, 0§t§1}

where the functions f, : [0,1] x [0,1] — R4, h, : [0,1] — Ry are defined as
follows:

Fols.) =Y gt b s by () = B0 (1.2.7)
Jj=0 =0
and
Aj Aj .
;= . = =0,....p—1
Qpj 3. 4J+1d2(;0—j)+1 ) ﬁp] 3. 4J+1d2(p—j) (j ) » P )7
A, B,
app:3.4p+l’ 51’1’:3.4p+1'

(1.2.8)

10



Now we can formulate our main theorem on unique solvability of problem
(1.2.1), (1.2.2).

Theorem 1.2.1. Let j € {0,1}, the operator ¢y admit the representation
by = €071 — €072, where €071, €072 € P,, and let ¢; (’l =1,...,n— 1) be bounded
linear operators. Let, moreover, the conditions

[[Co,1]| + [|€o2]| # O (1.2.9)
wn—l

T oasll +2 < 1, (1.2.10)
(

Vo, < Dol (12.11)

1-Q— 4 1||501+g|

an wn—l
Hos-il] < 2nh (1—Q+\/( _q) (1—Q—d_1||eo,l+j||)> (1.2.12)

hold with

0= Z . ||ei|| (1.2.13)
and d; (i = 0,...,n — 1) be defined by (1.2.5)-(1.2.8). Then the problem
(1.2.1), (1.2.2) has a unique solution.

In the case when the operator ¢y is monotone from our theorem it follows:

Corollary 1.2.1. Let 0 € {—1,1} and oy € P,,. Let, moreover, the condi-
tions

ol # 0, (1:2.14)
nlz
1, 1.2.15
Zdn“nmw (1.2.15)
and
4dn
6ol < = < d |€-||> (1.2.16)
n—1—1i

hold. Then the problem (1.2.1), (1.2.2) has a unique solution.

To illustrate our theorem, we consider also one corollary for the equation

u™(t) = lo(u)(t) + qt). (1.2.17)

11



Corollary 1.2.2. Let 0 € {-1,1}, oly € C([0, w]). Let, moreover, the
conditions

[[4o] # 0, (1.2.18)
and ad
leoll < —= (1.2.19)

hold. Then the problem (1.2.17), (1.2.2) has a unique solution.

12



Kapitola 2

Two-Point Boundary Value
Problems For Singular

Functional-Differential
Equations

2.1 Two-point boundary value problems for
second order functional-differential equati-
ons

First we consider some results from the monograph [1], where the second
order linear singular functional-differential equation

u’(t) = po(tyu(t) + pr()u'(t) + g(u)(t) + p2(t) (2.1.1)
is studied under the boundary conditions
u(a) =c¢1,  u(b) =co (2.1.2)

u(a) =c¢1,  u(b) = co, (2.1.3)

and separately for the case of homogeneous conditions
u(a) =0, wu(b) =0, (2.1.4)

u(a) =0, wu(b) =0, (2.1.5)

13



where ¢1,¢2 € Rp;j € Lioe(Ja, b)) ( =0,1,2) and g : C(]a, b[) = Lic(|a, b])
is a continuous linear operator. In this short survey we consider only four
theorems and its corollaries about unique solvability of problems (2.1.1),
(2.1.2), and (2.1.1), (2.1.4), from twelve theorems and its corollaries proved
in this monograph. We do not consider problems (2.1.1), (2.1.3), and (2.1.1),
(2.1.5), and theorems on the correctness of the above mentioned problems.

Throughout the work the following notations are used:

() = (jal +2), [ol- = 3(je] ).

C(Ja, b]) is the space of continuous and bounded functions u :]Ja, b[— R
with the norm

lulle = sup{Ju(t)] : a <t <b};

C(Ja, b[) is the set of functions u :Ja, b[— R absolutely continuous on
each subsegment of ]a, b|.

C'(Ja, b]) is the set of functions u :Ja, bj— R absolutely continuous on
each subsegment of |a, b, along with their first order derivative.
L([a, b]) is the space of summable functions u : [a, b] — R with the norm

|wu=/m@w.

L. ([a, b]) is the space of essentially bounded functions w : [a, b — R
with the norm

[ull oo = essupflu(t)| : ¢ € [a, D]}

Lio(Ja, b]) is the set of measurable functions u : [a, b] — R, summable
on each subsegment of |a, b|.

Let z,y :]a, b[—]0, +oo[ be continuous functions.

C.(Ja, b]) is the space of continuous u € C(]a, b[) such that

|u(®)]

|ullc,e = Sup{m ra<t< b} < +o0;

L,(Ja, b]) is the space of functions u € Lj,.(]a, b]) such that

b
|mmy=/MMMMﬁ<+w;

a

L(C,, L) is the set of linear operators h : Cy(]a, b[— Ly(]Ja, b[) such
that

sup{|h(z)(-)] : [|ullca <1} € Ly(Ja, b]);
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o 1 Lie(Ja, b)) = C(Ja, b]) is the operator defined by

t

o(p)(t) = exp ( / p(s)ds) for a<t<b.

a+b
2

If o(p) € L([a, b]), then we define the operators oy and oy by

t b

[owisids [ otysids

a

1

70 = 50w

t
1

W/a(p)(s)ds for a<t<b

a2(p)(t) =

a

Let, f,g € C(la, b]) and ¢ € [a, b], than we write
f)=0(g@®)  (ft)=0(g()) as t—c,
if
|f(@)l

O] 104 s L0 < yoc),

lim sup 7—=+ < +00 (O < liminf msup +——=- < 400
e |9(t)] t=e|g(t)] e |9(2)]

Now note that the problems (2.1.1), (2.1.2), and (2.1.1), (2.1.4) are stu-
died under the assumptions

pj € Lise(Ja, b)) (=0,1,2),
U<p1> S L([av b])v Do € LUl(IUl)([a7 b])?

by the method of Nagumo’s upper and lower functions, and we find the
conditions under which Fredholm’s alternative is valid, introduce the sets
of nonoscillation V; ¢, and describe sets of two-dimensional vector functions
(po, p1) :Ja, b|— R?, and linear operators h, for which our problem is uniquely
solvable.

(2.1.6)

Definition 2.1.1. We will say that w € C(Ja, b[) is the lower (upper)
function of the problem (2.1.1), (2.1.2) if:

(a) w’ is of the form w'(t) = wo(t) + wi(t), where wy :Ja, b[— R is
absolutely continuous on each segment from |a, b, the function w, :|a, b[— R
is nondecreasing (nonincreasing) and its derivative is almost everiwhere equal
to zero;

15



(b) almost everywhere on ]a, b the inequality
w”(t) > po(t)w(t) + pr(t)w'(t) + g(w)(t) + pa(t)

(w”(t) < po(H)w(t) + pr(t)w'(t) + g(w)(t) + pa(t))
is satisfaed;
(c) there exists the limit w'(b—) and

w(a) <ecp, wb—0)<c (w(a) > c1, w(b—0)> cy).

Definition 2.1.2. We will say that two-dimensional vector function (pg, p1) :
Ja, b= R* belongs to the set V; o(Ja, b]) if the conditions (2.1.6) are fulfilled,
the solution of the problem

u”(t) = po(t)ult) + pr(t)u'(t), (2.1.7)
/
t
u(a) =0, lim w(t) =1,
t=a o(p1)(t)

has no zeros in the interval ]a, b and u(b—) > 0.
Definition 2.1.3. Let h : C(]a, b[) = Li(]a, b[) be a continuous linear
operator. We will say that a two-dimensional vector function (py, p1) :|a, b[—

R? belong to the set Vi g(]a, b[, h) if the conditions (2.1.6) are satisfied and
the problem

u”(t) = po(t)u(t) + pr(t)u'(t) — h(u)(?)
u(a) =0, u(b—) =0
has a positive upper function w on the segment [a, b|.

Definition 2.1.4. Let h : C(]a, b[) = Lic(]a, b[) be a continuous linear
operator. We will say that a two-dimensional vector function (po, p1) :Ja, b[—
R? belong to the set Vy 5(Ja, b[, h) if

(p07 pl) S VI,O(]av b[7 h)
and there exists a measurable function ¢z :]a, b[— [0, +oo[ such that

/ G(t, )lgs(s)ds = O"(2(1))

ast — a, b — b, where G is Green’s function of the problem (2.1.7), (2.1.4),

and
t

z(t) = /a(pl)(s)ds/a(pl)(s)ds (2.1.8)

a

fora <t <hb.
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Now we can consider some basic results of our monograph.

Theorem 2.1.1. Let
p2 € LU1(p1)([a> b]) (2'1'9)

and the constants o, B € [0, 1] connected by the inequality

a+p<1 (2.1.10)
be such that
(o, 1) € Vig(la, B[, h), (2.1.11)
where
h € ﬁ(Cxﬂ, L%) N ﬁ(C, L01(p1)> (2112)

is a nonnegative operator and the function x is defined by (2.1.8).

Let moreover a continuous linear operator g : C(la, b)) = Lo, ([a, b])
be such that for any function u € C(Ja, b[) almost everywhere in the interval
la, b[ the inequality

lg(w)(£)] < h(lul)(?) (2.1.13)

is satisfied. Then the problem (2.1.1), (2.1.2) has one and only one solution.

From this theorem follows a few efficient sufficient conditions of unique
solvability. Let us consider one of these corollaries:

Corollary 2.1.1. Let the function x is defined by (2.1.8), the constants
a, B €10, 1] by connected by (2.1.10), the function p; :la, bj— R (j = 0,1, 2)
satisfy conditions (2.1.6), (2.1.9),

[po] - € L == ([a, b)), (2.1.14)

a(p1)

and for any function v € C(]a, b]) almost everywhere in the interval |a, b
the inequality (2.1.13) be satisfied, where a nonnegative operator h satisfies
(2.1.12).

17



Let moreover,

b t

([ otoman)” [Lnle I [ et ass

t
t

([otopan)” [ AL EREII ([ o) pan)as] <

a(p1)(s)

a

s (afba@lxn)dn)%aw)
: .

a(p1)(n)dn

8 =

(2.1.15)
Then the problem (2.1.1), (2.1.2) has one and only one solution.

The next theorem shows us that in the case of boundary conditions (2.1.4)
the singularity of functions pg, p; and operator h, can be stronger as in the
case of the boundary conditions (2.1.2).

Theorem 2.1.2. Let the constants a, § € [0, 1] connected by the inequality
(2.1.10) be such that
p2 € L,-5([a, b]) (2.1.16)

a(p1)

and the functions po, p1 :Ja, b|— R satisfy the inclusion (2.1.11), where

he L(Chs, L oo ) (2.1.17)
o(p1
is a nonnegative operator and the function x is defined by (2.1.8).
Let moreover a continuous linear operator g : Cps(Ja, b]) — L%([a, b))
o(py

be such that for any functionu € Cys(]a, b[) almost everywhere in the interval
la, b[ the inequality (2.1.13) is satisfied. Then the problem (2.1.1), (2.1.4) has
one and only one solution in the space C,s(]a, b]).

Corollary 2.1.2. Let the function x is defined by (2.1.8), the constants
a, B € [0, 1] by connected by (2.1.10), the function p; :la, b|— R (j =
0,1,2) satisfy conditions (2.1.6), (2.1.16),(2.1.14) and for any function u €
C,s(la, b[) almost everywhere in the interval Ja, b[ the inequality (2.1.13) be
satisfied, where the nonnegative operator h satisfies the inclusion (2.1.17).
Let moreover (2.1.15) be satisfied. Then the problem (2.1.1), (2.1.4) has one
and only one solution in the space Cys(|a, b).
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For clearness we will give two corollaries for the equation

u’(t) = go(H)u(7(t)) + pa(t), (2.1.18)

the first in the case of boundary conditions (2.1.2), and the second in the
case of (2.1.4).

Corollary 2.1.3. Let the constants «, € [0, 1| by connected by (2.1.10),
7 :|a, b] — [a, b] be a measurable function and

9o, P2 € Ly([a, b)), (2.1.19)

where

z(t)=(t—a)b—t) for a<t<b. (2.1.20)

Let, moreover,

b

[l ~ o= )Pl - s <
< 41—a—ﬁ(b_ a)2(a+ﬁ)—1.

Then the problem (2.1.18), (2.1.2) has one and only one solution.

Corollary 2.1.4. Let the constants o, € [0, 1| by connected by (2.1.10),
7 :|a, b] — [a, b] be a measurable function and

pa € Lyi-5([a, b]), (2.1.22)

where the function x be defined by (2.1.20). Let, moreover condition (2.1.21)
be satisfied. Then the problem (2.1.18), (2.1.4) has one and only one solution
in the space Cs(la, b[).

In the monograph a different method of study of our boundary value
problems is also developed, the method of minimums and maximums. The
next two nonimprovable theorems are proved by this method

Theorem 2.1.3. Let vy € [0, 1]
p2 € Ly([a, b)) (2.1.23)

and
g € L(C, L) (2.1.24)

be a nonnegative operator, where the function x is defined by (2.1.20).
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Let, moreover, there ezist constants «v, B € [0, 1/2] such that

0<pB<1—n, (2.1.25)
at+pf<1/2 (2.1.26)
and ,
16 /b — a\2@+h)
/:Bo‘(s)g(xﬁ)(s)ds < QBb — a( 1 a) " : (2.1.27)

a

Then the problem (2.1.18), (2.1.2) has one and only one solution.

Theorem 2.1.4. Let v € [0, 1], § €]0,1 — 7],
p2 € Lya([a, b)) (2.1.28)

and
g€ L(Cys, L) (2.1.29)

be a nonnegative operator, where the function x is defined by (2.1.20).
Let, moreover, there exist constants o € [0, 1/2],5 €0, 1/2] such that
the conditions (2.1.26) and

b

/:Bo‘(s)g(xﬁ)(s)ds < 25[)

a

16 (b — a>2(a+/3)

: (2.1.30)

—a
are satisfied. Then the problem (2.1.18), (2.1.4) has one and only one solution
in the space Cys(]a, b]).

The conditions (2.1.27) and (2.1.30) are unimprovable in the sense that
it cannot be replaced by the conditions

+ée

2(s)g(2%)(s)ds < 2°—0 (b - “)QW)

b—a\ 4

S

b
([ e <220 (4 4,
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2.2 Two-point boundary value problems for
strongly singular higher-order linear di-
fferential equations with deviating argu-
ments

In this section we consider the main results from the paper [2], where the
differential equation with deviating arguments

m

ul () = " pi(tul D (7(t) + q(t) for a<t<b, (2.2.1)

j=1
is studied with the two-point boundary value conditions
uVa)=0@G=1,---,m), v VB =0(G(=1,---,n—m), (2.2.2)

W @) =0 (=1 m), w0 VB) =0 (G=m+1,,n). (223)

Here n > 2, m is the integer part of n/2, —oo < a < b < 400, p;,q €
Lipe(la, b)) (j = 1,---,m), and 7; :]a, b[—]a, b] are measurable functions.
By vV (a) (Y=Y (b)) we denote the right (the left) limit of the function
uU~Y at the point a (b). Problems (1.2.9), (1.2.10), and (1.2.9), (2.2.3) are
said to be strong singular if some or all the coefficients of (1.2.9) are non-
integrable on [a, b], having singularities at the end-points of this segment and
the conditions

/@—QW4®—SV”WPD”WMSRMS<+m,

/(s —a)" (b —8)*"|p;(s)|ds < +oo (j=2,---,m), (2.2.4)

b
/ (5 — @)™ V2(h — $y"12g(s)|ds < +oo,
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in the case of conditions (2.2.2), and

/(s —a)"|p;(s)|ds < +o0 (j=2,--+,m), (2.2.5)

b
/(s — a)"_m_1/2\q(s)|ds < 400,

a

in the case of conditions (2.2.3), are not fulfilled.

Here we consider only the case of problem (2.2.1), (2.2.2), by using the
following notations

RT =0, 4o0[;

[z] is an integer part of z;

L, 5(Ja,b]) is the space of integrable (square integrable) with the weight
(t —a)®(b — t)? functions y :Ja, bj— R, with the norm

b

9llz, = / (s — ) (b — 5)°ly(s)|ds:

a

L(la, b]) = Loo(Ja,b[), L*([a,b]) = L o(]a, b]);
M(Ja, b) is the set of measurable functions 7 :Ja, b[—]a, b[;

L2 5(Ja, ) is the Banach space of functions y € Lioc(]a,b[) (Lioc(]a, b])),
satisfying

,ulEmax{[/(s—a)a</y(£)d£>2ds]l/2 et a;—b}+
b s
—I—max{[/(b—s)5</y(§)d§)2dsr/2:a;—b Stgb} < 400,

The norm in this space is defined by the equality || - |72 , =

C*(la, b)) is a set of functions u : [0,w] — R, which are absolutely conti-
nuous together with their derivatives up to the k-th order.
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5”_1”“(]&, b[) is the space of functions y € o '(Ja, b)), satistying

loc

/\y §)Pds < +oo. (2.2.6)

When n = 2m, we assume that
p; € Lioe(Ja, b)) (7=1,---,m), (2.2.7)

and if n = 2m + 1, we assume that along with (2.2.7), the condition

lim s }(b )zt / pl(s)ds} < too (=2 ; % (2.2.8)

t1

is fulfilled.
Along with (1.2.9), we consider the homogeneous equation

m

V() =Y it (r(t) for a<t<b. (1.1o)

J=1

In the case where conditions (2.2.4) and (2.2.5) are violated, the question
on the presence of the Fredholm’s property for problem (2.2.1), (2.2.2) in
some subspace of the space C’Z;‘)cl(]a b[) remains so far open. This question
is answered in Theorem 2.2.1 formulated below which contains optimal in a
certain sense conditions guaranteeing the Fredholm’s property for problem
(2.2.1), (2.2.2) in the space C"""™(]a, b[).

A solution of problem (2.2.1), (2.2.2) is sought in the space C"™(]a, b]).

In order to formulate the above-mentioned theorem we need following
definitions:

Let h; :]a, b[x]a, b]— Ry and f; : R x M(]a,b]) = Ciec(Ja,b[x]a,b]) (j =
1,...,m) be the functions and the operators, respectively, defined by the
equalities

mt,s) = / (€ — )" (1) "y (€)] e
(2.2.9)

ts_)/ Q)" 2p(E)de| (=2, ,m),
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and,

t 7;(§)
, 1/2
plem)ts)=| =@l [ @-cprrag| | (=1 m)
) ‘ (2.2.10)
Let, moreover,
" 1 for m <0
e 1-3-5---m for m>1"

if m=2k+ 1.

Definition 2.2.1. We will say that problem (2.2.1), (2.2.2) has the Fred-
holm’s property in the space 6’"‘1””(]@, b[), if the unique solvability of the
corresponding homogeneous problem (1.1y), (1.2.10) in that space implies the
unique solvability of problem (2.2.1), (2.2.2) for every ¢ € Z%n_Qm_sz_z(]a, bl).

Theorem 2.2.1. Let there exist ag €|a, b, by €]ag, b], numbersly; >0, v, >
0, and functions 7; € M(Ja, b)) (k=0,1,j=1,...,m) such that

(t —a)®*™ T hi(t,s) <loy; for a<t<s<a,

limsup(t — a)™ 7 f;(a, 7,)(¢, 5) < +o0, (22.11)
t—a
(b—t)*"Thi(t,s) < ly; for by<s<t<b,
lim sup(b — t)m—%—%jfj(b’ 7)(t, s) < +o0, (2.2.12)
t—b
and ; 1
m 2m ,])2 m—j+
l- 1 (k=0,1). 2.2.13

J=1

Let, moreover, (1.1p), (2.2.2) have only the trivial solution in the space C"2™(|a, b]).
Then problem (2.2.1), (2.2.2) has the unique solution u for every q € L3, ., 5 om_o(]a, D[),
and there exists a constant r, independent of q, such that

11|12 < rllallz (2.2.14)

2n—2m—2,2m—2

Remark 2.2.1. There exists an example which demonstrates that strict
inequality (2.2.13) is sharp because it cannot be replaced by nonstrict one.

The next theorem (the theorem of unique solvability) is proved on the
basis of Theorem 2.2.1 which gives us the sharp sufficient conditions under
which our problem has the Fredholm’s property.
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Theorem 2.2.2. Let there exist numbers t* €la, b[, ly; > 0, ly; > 0, and
Yej >0 (k=0,1; j =1,...,m) such that along with

m

B - Z ( (2m _j)22m—j+1 le
0= (2m — D)(2m — 25 + 1)1

=t . (2.2.15)
(2m — 25 — DI(2m — 3N /27g;/ 2’

m

B - Z ( (2m _j)22m—j+1 llj
b (2m — D)(2m — 25 + 1)1l

=t ) (2.2.16)
N 22m—y—1(b o t*)’YOj llj ) - 1
(2m — 25 — D)IN(2m — 31 /27, / 2

the conditions
(t—a)2m_jhj(t, S) S l()j,
(t—a)m_VOJ_l/ij(a, 7)(t,s) < Zoj for a<t<s<t",
(b—t)2m_jhj(t, S) S llja
(b—t)y™ =2 (b, 7)(t,8) < Ty for t"<s<t<b
hold. Then for every q € Z%n—2m—2,2m—2(]a’7b[) problem (2.2.1), (2.2.2) is
uniquely solvable in the space 5’"‘1””(]61, b).

To illustrate this theorem, we consider the problem (2.1.18), (2.1.4). From
Theorem 2.2.2, with n =2, m = 1, t* = (a + b)/2, v = y11 = 1/2, ln =
Ly = ko, lon = l11 = V2k1/v/b — a, we get

Corollary 2.2.1. Let function T € M(]a,b]) be such that
26 a+b

(2.2.17)

(2.2.18)

OST(t)—tS(b_a)ﬁ(t—a)7 for a<t< 5
06 h (2.2.19)
- b—t) <t—r(t) < 0 <<
o St <0 for T <ia
Moreover, let function p :Ja,b|— R and constants ko, k1 be such that
272(b — a)?ky 277(b — a)bky
— < go(t) < t<b 2.2.20
G-ni-ap =*VSGone-ap T et=t 2220
and ]
dkg 4+ k1 < 5 (2221)

Then for every ps € Zao(]a, b[) problem (2.1.18), (2.1.4) is uniquely solvable
in the space C**(]a, b[).
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2.3 The Dirichlet Boundary Value Problems
For Strongly Singular Higher-Order Non-
linear Functional-Differential Equations

Now we’ll consider the paper [3] that is based on the results received for the
linear equations. Namely, let us consider the article The Dirichlet Boundary
Value Problems For Strongly Singular Higher-Order Nonlinear Functional-
Differential Equations dealing with the issue of solvability of nonlinear functional-
differential equation

u™(t) = F(u)(t) (2.3.1)

under the two-point boundary conditions
wVa)=0@G=1,---,m), v Vb)) =0@G=1,---,n—m). (23.2)

Here n > 2, m is the integer part of n/2, —oo < a < b < +00, and the
operator I acting from the set of (m — 1)-th time continuously differentiable
on Ja, b[ functions, to the set Ljo.(]a, b[). By uV="(a) (u¥=1(b)) we denote
the right (the left) limit of the function "~V at the point a (b).

The singular ordinary differential and functional-differential equations,
have been studied with sufficient completeness under different boundary con-
ditions, but the equation (2.3.1), even under the boundary condition (2.3.2),
is not studied in the case when the operator F' has the form

Fa)(t) = ij(t)fr(j_”(% (1) + f(@)(1), (2.3.3)

where the singularity of the functions p; : Ljs.(]a, b[) be such that the inequa-
lities
b
/(s —a)" 1 (b — &) H(—=1)"""py(s)]+ds < +o0,

. (2.3.4)

/(s ) (b= 8 py(s)|ds < 400 (j=2,--- ,m),

a

are not fulfilled (in this case we sad that the linear part of the operator F' is
a strongly singular), the operator f continuously acting from C}"~*(]a, b]) to

Ly . 2(]a, b[), and the inclusion
n—2m—2, 2m—

sup{f(@)(t) : [|zlcp1 < P} € L3, symn 2] B). (2.3.5)
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holds.

For the description of the result on the solvability of problem (2.3.1),
(2.3.2) we need the following notations and definitions:

L, (]a,b]) is the Banach space of y € Lj,.(]a, b]) functions, with the norm

t

LL:sup{us—axb—fﬂm—VZ/}g—avf%wy@ﬂdg: a<@9§t<<b}<:+aa

s

Iyl

C1a, b)), (C’ﬁ)cl(]a b[)) is the space of the functions y :la, b[— R,
which are continuous (absolutely continuous) together with ¢/, ", -+, y™b
on [a + ¢€,b — ¢] for arbitrarily small ¢ > 0.

C"Y(]a, b]) is the Banach space of the functions y € C;""'(]a, b[), such

loc
that

(=1 (¢
limsup|x—(.)|12<—|—oo (i=1,---,m),
e {8~ @y (2.3.6)
(i—l)t e
lim sup [z ()] <40 (i=1,---,n—m),

1o (b — t)m—it1/2

with the norm:
11— 1
x|l m-1 = su |x ()| a<t<b
JEd1Pe: Z p :

Whe£e a;(t) = (t — a)m—i+1/2(b _ t)m—i+1/2'
" (a, b)) is the Banach space of the functions y € cm- L(Ja, b]), such

loc

that conditions f ))?ds < +00, and (2.3.6) hold, with the norm:

. 20D ()] / )2
Am—1 = — . a<t< b d
||xHC1 | ;:1 sup{ ord) a |22(™) s

D, (]a, b[x RT) is the set of such functions 0 :]a, b[x R™ — L,(]a, b) that
d(t, -) : RT — R is nondecreasing for every t €]a, b[, and (-, p) € L,(]a, b])
for any p € R™.

Dop—om—2 2m—2(]a, b[xRT) is the set of such functions 0 :|a, b[x RT —
Z%n—2m—2,2m—2(]a’ b[) that d(¢, -) : R¥ — R™ is nondecreasing for every ¢ €
Ja, b, and 6(-, p) € L2, _ 2.om_o(]a, b]) for any p € R*.
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In this paper, we prove a priori boundedness principle for the problem
(2.3.1), (2.3.2) in the case where the operator has form (2.3.3). For formulate
this a priori boundedness principle we have to define the set

Ay ={z € C7 "l b)) : l|zllgp+ < 7} (2.3.7)

for any v > 0, and the operator P : C1""!(]a, b[) x C7"*(Ja, b]) — Lio(]a, b])
by the equality

ij D(r(t))  for a<t<b, (2.3.8)

where p; : C’{”_l(]a, b)) = Lic(Ja, b[), 75 € M(]a, b]), and introduce the
definition:
Definition 2.3.1. Let 79 and v be the positive numbers. We said that the
continuous operator P : 7" !(]a, b[) x C7"*(Ja, b[) — L, (]a, b]) to be 7o,
consistent with boundary condition (2.3.2) if:

i. for any = € A, and almost all ¢ €|a, b[ the inequality

Z P (@) ()] < 66t Ilellgp)llellan (2.3.9)

holds, where & € D, (Ja, b[xRT).
ii. for any z € A, and q € L3, _5,, 5 opm_s(la, b[) the equation

= > pi(@) )y ((0) + () (2.3.10)

under boundary conditions (2.3.2), has the unique solution y in the space
C"tm(]a, b]) and
lyllam—1 < 7llallz . (2.3.11)

2n—2m—2,2m—2

In the sequel it will always be assumed that the operator [}, defined by
equality

Fyp(2)(t) = Z (7)),

continuously acting from C7*~'(Ja, b]) to Lz (Ja, 0]), and

2n—2m—2,2m—2

Ey(t,p) = sup{Fp(@)(t) : ||zllept < p} € L3uomon 2m—2(a; D) (23.12)

for each p € [0, +o0].
Then the following theorem is valid
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Theorem 2.3.1. Let the operator P be vy, v consistent with boundary con-
dition (2.3.2), and there exists a positive number py < 7o, such that

[1F,(+, min{2p0,70})] I3 <X (2.3.13)

n-om-2,2m-2 ~ 7y
Let moreover, for any A €]0, 1], an arbitrary solution x € A, of the equation
2™ (t) = (1 = \)P(z, 2)(t) + \F(2)(1) (2.3.14)

under the conditions (2.3.2), admits the estimate

||2]|gm-1 < po- (2.3.15)

Then, problem (2.3.1), (2.3.2) is solvable in the space C"4™(]a, b]).

On the bases of this theorem we can prove some efficient theorems. Let us
consider one of them. In order to consider them we define the operators: h; :
Cin_l(]av b[)x]a, b[x]a, b[_> Lloc(]av b[X]CL, bDv fj : Cin_l(]av bD X [av b] X
M (Ja,b]) = Cioe(]a, b[x]a, b]) (j =1,...,m) by the equalities

antss) = | [(€ = 0 21 "o

t (2.3.16)
hats) = | [(€ = @©ds| (=2 m)
and
fi(z, e, m)(t,s) =
/ n N (2.3.17)
~| [ arm@@l| [ - raa|
s ¢

Theorem 2.3.2. Let the continuous operator P : C{"~*(la, b[)xC7"*(]a, b[) —
L,(Ja, b)) admits to the condition (2.3.9) where § € D,(Ja, b|xRT), 7; €
M(Ja, b)) and the numbers o, t* €la, b], l; > 0, l; > 0, v; > 0(k =
1,2; 5 =1,---,m), be such that the inequalities

(t — a)Qm_jhj (x,t,s) <loj,

limsup(t — a)™ 27 f(x, a,73)(t, s) < I,
t—a

(2.3.18)
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fora<t<s<th ||l’||5;nfl <,

(b — t)2m_jhj(ll§', t, S) S l1j>
limsup(b — )27 f;(2,b,7;)(t, 5) < I

t—b

(2.3.19)

fortt < s <t<b |z gm-1 < 0, and conditions (2.2.15), (2.2.16) hold.

Let moreover the operator F' and function n € Dap_om—2 om—2(]a, b[x RT) be
such that condition

|F(2)(t) — ij(x)(t)x(j_”(Tj(t))(t)\ <, [|z]lgm-1), (2.3.20)

and inequality

Yo
(-, 70)|| 72 < =

Y
2n—2m—2,2m—2 /r’n

(2.3.21)
be fulfilled, where

m 2m—j+1/2
" ( +; (m —)H(2m — 25 + 1)1/2(b — a)m—3+1/2 x

2"(1+b—a)(2n—2m —1)
(v, — 2max{ By, B1})(2m — 1)’

Then problem (2.3.1), (2.3.2) is solvable in the space C™~+™(]a, b]).

To illustrate this theorem, we consider its corollary for the equation

ey Alu(t)]*
u'(t) = — =)0 75)]2%/2u(7'(t)) +q(z)(t), (2.3.22)

where A, k € R™, the function 7 € M(]a, b), the operator ¢ : C Ya, b)) —
L o(Ja, b[) is continuous and
n(t, p) = supfla(@)(®)] : ||zllgp+ < p} € Lgo(Ja, b).
Than from Theorem 2.3.2 it follows

Corollary 2.3.1. Let the function T € M(]a, b[), the continuous operator

q: C7" (a, b)) — Zao(]a, b)), and the numbers v > 0, A\ > 0, k > 0, by
such that

(1) — 1] < {(t —a)’? for a<t<(a+b)/2 (2.3.23)

(b—1)32 for (a+b)/2<t<b’
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n(t, )|z <

T\ (b— ) — 160+ 200 — )] (2.3.24)
) 21 +b—a)(b—a)? ’

and
(b—a)

A :
S B+ RO -
Then the problem (2.3.22),(2.3.2) is solvable.

(2.3.25)
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1. Introduction

Consider on the set I = [a,b] the second order nonlinear ordinary differential
equation

(1.1) u"(t) = p(t)u(t) + f(t,u(t)) + h(t) for tel
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with the boundary conditions
(1.2) u(a) =0, wu(b) =0,

where h,p € L(I; R) and f € K(I X R;R).

By a solution of the problem (1.1), (1.2) we understand a function u €
C'(I, R), which satisfies the equation (1.1) almost everywhere on I and satisfies
the conditions (1.2).

Along with (1.1), (1.2) we consider the homogeneous problem

(1.3) w'(t) = p(t)w(t) for tel,
(1.4) w(a) =0, w(b)=0.

At present, the foundations of the general theory of two-point boundary value
problems are already laid and problems of this type are studied by many authors
and investigated in detail (see, for instance, [1], [4], [5], [8], [12],[13], [14]-[16],
[17] and references therein). On the other hand, in all of these works, only the
case when the homogeneous problem (1.3), (1.4) has only a trivial solution is
studied. The case when the problem (1.3), (1.4) has also the nontrivial solution is
still little investigated and in the majority of articles, the authors study the case
with p constant in the equation (1.1), i.e., when the problem (1.1), (1.2) and the
equation (1.3) are of type

(1.5) u”"(t) = =Nu(t) + f(t,u(t)) + h(t) for te]|0,7]
(1.6) w(0) =0, u(r)=0,

and

(1.7) w’(t) = —Nw(t) for te€0,7]

respectively, with A = 1. (see, for instance, [2], [3], [4], [6]-[11], [14]-[16], and
references therein).

In the present paper, we study solvability of the problem (1.1), (1.2) in the
case when the function p € L(I; R) is not necessarily constant, under the assump-
tion that the homogeneous problem (1.3), (1.4) has the nontrivial solution with
an arbitrary number of zeroes. For the equation (1.7), this is the case when A is
not necessarily the first eigenvalue of the problem (1.7), (1.4), with a =0, b = 7.

The obtained results are new and generalize some well-known results (see,[2],

3], [4], (6], [10]).
The following notation is used throughout the paper: N is the set of all
natural numbers. R is the set of all real numbers, R, = [0,+o00[. C(I;R) is

the Banach space of continuous functions u : I — R with the norm |jull¢ =
max{|u(t)| : t € I}. C'(I; R) is the set of functions u : I — R which are absolutely
continuous together with their first derivatives. L(I; R) is the Banach space of

Lebesgue integrable functions p : I — R with the norm ||p||, = ff Ip(s)l|ds.
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K(I x R;R) is the set of functions f : I x R — R satisfying the Carathéodory
conditions, i.e., f(-,xz) : I — R is a measurable function for all z € R, f(¢,-) :
R — R is a continuous function for almost all ¢ € I, and for every r > 0 there
exists ¢- € L(I; Ry) such that |f(t,z)| < ¢-(t) for almost all ¢t € I, |z| <r.

Having w : I — R, we put: Nwdéf{t €la,b[: w(t) = 0},

e Towt) > 0,
e T w(t) <o,
and [w(t)]+ = (Jw(t)] +w(t)/2, [w(?t)]- = (lw(t)| —w(t))/2 for t € I.

Definition 1.1. Let A be a finite (eventually empty) subset of I. We say that
feE(A),if f € K(I x R;R) and, for any measurable set G C I and an arbitrary
constant r > 0, we can choose € > 0 such that if

/G|f(s,x)|ds;£0 for o >7r (v < —7)

then
/ |f(3,x)|ds—/ |f(s,z)lds >0 for z>r (z<—r),
G\U- Ue

n

where U, = I N (U]tk —€/2n, t +6/2n[> if A={ty,ts,...,t,}, and U. = 0 if
k=1

A=0.
Remark 1.1. If f € K(I x R; R) then f € E(0).

Remark 1.2. Tt is clear that if f; € L(I; R) and f(t,a:)déffl(t) then f € E(A)
for every finite set A C I.

Remark 1.3. It is clear that if f(t,x)dgfo(t)go(x), where fy € L(I; R) and g €
C(I; R), then f € E(A) for every finite set A C I.

The example below shows that there exists a function f € K(I x R; R) such
that f & E({t1,...,tx}) for some points ¢y, ..., t; € I.

Example 1.1. Let f(t,z) = [t|"/?g(t,x) for t € [~1,0[U]0,1], z € R, and
f(0,.) =0, where g(—t,z) = g(t,z) for t€]—1,1], x € R, and

x for z<1/t, t>0

gt x) = :
1/t for x>1/t, t>0

Then f € K([0,1] x R; R) and it is clear that f & E({0}) because, for every ¢ > 0,
if x > 1/e then f; fls,x)ds — [ f(s,x)ds = 4(e71/? — 21/?) =2 < 0.
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2. Main results
Theorem 2.1. Let w be a nonzero solution of the problem (1.3), (1.4),
(2.1) Ny, =0,

there exist a constantr > 0, functions f~, f € L(I; Ry) and g, hg € L(I; ]0,+0o0])
such that

(2.2) [t x)sgne < g(t)|x] + ho(t)  for || =
and
flt,x) < =f7(t) for x<-—r
@) < ft,x) for xz>r

on 1. Let, moreover, there exist € > 0 such that

(2.3)

b b
—/ [~ (8)lw(s)|ds + e[l < —/ h(s)[w(s)|ds <

2:4) < [ FEl)ids - il
where
25) (t) = sup{f ()| s ] < r).

Then the problem (1.1), (1.2) has at least one solution.
Example 2.2. It follows from Theorem 2.1 that the equation
(2.6) u’(t) = =N2u(t) + o|u(t)|*sgnu(t) + h(t) for 0<t<m

where ¢ = 1, A = 1, and « €]0, 1], with the conditions (1.6) has at least one
solution for every h € L([0, 7], R).

Theorem 2.2. Let w be a nonzero solution of the problem (1.3), (1.4), condition
(2.1) hold, there exist a constant r > 0, functions f~, f € L(I;Ry) and q €
K(I x R; Ry) such that q is non-decreasing in the second argument,

(27) |f(t,:L’)’ < Q(t7x) for ‘l’| >,
@) < f(t,x) for x<—r,
(2.8)
ft,x) < —fH(t) for z>r
on I, and

1 b
(2.9) lim —/ q(s,z)ds = 0.

|z|——+oc0 T



THE DIRICHLET BVP FOR THE SECOND ORDER ... 181

Let, moreover, there exist € > 0 such that

— [ s+l < [ Hs)us)ds <

2.4) < [ r©ulds - |l

where 7, is defined by (2.5). Then the problem (1.1), (1.2) has at least one solu-
tion.

Example 2.3. From Theorem 2.2 it follows that the problem (2.6), (1.6) with
oc=—1,A=1, and a €]0,1] has at least one solution for every h € L([0, 7]; R).

Remark 2.4. If f # 0 the condition (2.4;) of Theorem 2.i (i = 1,2) can be
replaced by

- [ £ Eueds < (1) [ hs)u(s)ids <
(2.10,) e ‘

b
g/ﬁ@@@m,

because, from (2.10;) there follows the existence of a constant € > 0 such that the
condition (2.4;) is satisfied.

Theorem 2.3. Let i € {0,1}, w be a nonzero solution of the problem (1.3),
(1.4), f € E(Ny), there exist a constant r > 0 such that the function (—1)'f is
non-decreasing in the second argument for |z| > r,

(2.11) (=1 f(t,x)sgnx >0 for tel, |x|>r,
. d —r)|d
(2.12) L enids s [ 1g(s s 0
and
N
(2.13) |wli>rEoom/a |f(s,z)|ds = 0.

Then there exists 0 > 0 such that the problem (1.1), (1.2) has at least one solution
for every h satisfying the condition

(2.14) < 0.

/a ’ h(s)w(s)ds




182 S. MUKHIGULASHVILI

Corollary 2.1. Let the assumptions of Theorem 2.3 be satisfied and

b
(2.15) / h(s)w(s)ds = 0.

Then the problem (1.1), (1.2) has at least one solution.
Example 2.4. From Theorem 2.3 it follows that the problem (2.6), (1.6) with
o€ {-1,1}, A € N, and a €]0,1] has at least one solution if h € L([0, 7], R) is

such that / h(s)sin Asds = 0.
0

Theorem 2.4. Let i € {0,1}, w be a nonzero solution of the problem (1.3),(1.4),

f(t, x)dgfo(t)go(a:) with fo € L(I; Ry), go € C(R; R), there exist a constant r > 0
such that (—1)'gg is non-decreasing for |z| > r and

(2.16) (—=D'go(z)sgnz >0 for || >

Let, moreover,

(2.17) 190(r)] / fo()ds + lao(—r)| [ fol(s)ds #0
Qb Qu

and

(2.18) Jim_[go(z)] = +oo, i go;x) _o

Then, for every h € L(I; R), the problem (1.1), (1.2) has at least one solution.
Example 2.5. From Theorem 2.4 it follows that the equation
(2.19) U (t) = po(t)u(t) + p1(t)|u(t)|*sgnu(t) + h(t) for tel,

where a €10, 1] and pg, p1, h € L(I; R), with the conditions (1.2) has at least one
solution provided that p(t) >0 for ¢ e [I.

Theorem 2.5. Let i € {0,1} and w be a nonzero solution of the problem (1.3),
(1.4). Let, moreover, there exist constants r > 0, e > 0, and functions a, f+, f~ €
L(I; Ry) such that the conditions

(=1)f(t,x) < —f(t) for < —r,

(2.20;) |
) < (=)' ft,z) for x>,

(2.21) sup{|f(t,z)| : x € R} < «(t)
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hold on I, and let
b
= [ OG- + £ Olus))ds + <lalls <
(2.92,) < (—1)i#! / h(s)w(s)ds <

< / (S () w(s)]- + f7(s)w(s)]4)ds — ellal]L.

Then the problem (1.1), (1.2) has at least one solution.
Remark 2.5. If f # 0 then the condition (2.22;) (¢ = 1,2) of Theorem 2.5 can
be replaced by
b
- [+ 1 G l))ds <
b
(2.23,) < (1) / h(s)w(s)ds <

b
</(f‘(S)[w(S)]—+f+(8)[w(8)]+)d8'

because from (2.23;) there follows the existence of a constant € > 0 such that the
condition (2.22;) is satisfied.

Remark 2.6. If f(t) = min{f*(¢), f~(¢)} then the condition (2.22;) of Theorem
2.5 can be replaced by

b b
‘ [ hsutsids| < [ Folu(olds - =falle
Example 2.6. From Theorem 2.5 it follows that the equation
(2.24) u’(t) = —\ul(t) + Msgnu(t) +h(t) for 0<t<m,
1+ Ju(t)|~ - -

where A € N and «a €10, +oo[ , with the conditions (1.6) has at least one solution
if h € L([0, 7], R) is such that |h(t)] < 1for 0 <t <.

3. Problem (1.5), (1.6).

Throughout this section we will assume that a = 0, b = 7, and I = [0, 7]. Since
the functions Fsin At (§ € R) are nontrivial solutions of the problem (1.7), (1.4),
from Theorems 2.1-2.5 it immediately follows:

Corollary 3.2. Let A = 1 and all the assumptions of Theorem 2.1 (resp. Theo-
rem 2.2) except (2.1) be fulfilled with w(t) = sint. Then the problem (1.5), (1.6)
has at least one solution.
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Now, note that
0 for A=1

Nsinae = .
{mn/A:n=1,..,A—1} for A>2

Corollary 3.3. Let i € {0,1}, A € N, f € E(Ngnxt), there exist a constant
r > 0 such that the function (—1)'f is non-decreasing in the second arqument for
|z| > 7, and let the conditions (2.11)—(2.13) be fulfilled with w(t) = sin A\t. Then
there exists 6 > 0 such that the problem (1.5), (1.6) has at least one solution for
every h € L(I; R) satisfying the condition |f07r h(s)sin Asds| < 0.

Corollary 3.4. Leti € {0,1}, A € N, and let all the assumptions of Theorem
2.4 be fulfilled with w(t) = sin A\t. Then, for any h € L(I; R), the problem (1.5),
(1.6) has at least one solution.

Corollary 3.5. Let i € {0,1}, A € N and let there exist a constant r > 0 such
that (2.20;)—(2.22;) be fulfilled with w(t) = sin A\t. Then the problem (1.5), (1.6)

has at least one solution.

Remark 3.7. If f # 0 then in Corollary 3.2 (resp. Corollary 3.5), the condition
(2.4;) (resp. (2.22;)) can be replaced by the condition (2.10;) (resp. (2.23;)) with
w(t) = sint (resp. w(t) = sin At).

4. Auxiliary propositions

Let u, € C'(I; R), |lunllc # 0 (n € N), w be an arbitrary solution of the problem
(1.3), (1.4), and r > 0. Then, for every n € N, we define:

de de
At el u, ) <ry,  AnE{tel: [u () >r),

B2t € Aps tsgnun(t) = (1) sgnw(t)} (i = 1,2),

de de
Con =t € Auzt lw(®) 2 1/n},  CopZ{t € Aua: lw(t)] < 1/n},
def _
={teI:wt)] > rllualc’ +1/2n},
Afzdif{t 2 1 Fun(t) >}, BiidéfAiz N B,
CEEAx,nCy (i = 1,2), Dt e I 2w(t) > rl|un||g" + 1/2n},
From these definitions it is clear that, for any n € N, we have

Anl mAnQ @ AnQHA»;Q (D; Bn,l ﬁBn,2 = @, C(n,l an,Q = 07

(4.1) DynD, =0, Bf,NB,,=0,C,nC,,=0(i=1,2),

and

An,l U An,Z = I; A:LF,Q U A;L,z = An,27 Bn,l U Bn,Z = An,Q \ NuM
le U Cn72 — Amg, B;:Q U Bn_,Z - Bmg, C Ci — 14i

4.2 n,27
) Cri UG, = Cui (i =1,2), D;fUD;:Dn.
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Lemma 4.1. Let u, € C'(I;R) (n € N), r > 0, w be an arbitrary nonzero
solution of the problem (1.3), (1.4), and

(4.3) \|\un|lc = 2rn for n € N,

(4.4) ||on, —wlle <1/2n  for n € N,

where v, (t) = u,(t)||un| 5. Then, for any ng € N, we have

(4.5) Dy C A, D, CA.,, for n>ny,
(4.6) Cho,CDS C.,CD, for n>n.
Moreover
(4.7) lirf mesA, 1 =0, hrf mesA, » = mes/,
(48) Cn,l C Bn,la Bn,2 C Cn,27
(4.9) Bf, c Cr,, B, CC,,,
(4.10) Ciy C By, Co1 C By,
lim mesC,; = lim mesB,; = mes/,
(4.11) e e
lim mesC), 2 = lim mesB, s =0,
n—-+00 n—-+o00
(4.12) r < |un(t)| < ||unllc/2n for te€ B,
(4.13) lun(t)| > ||un||c/2n > r for teC,a,
(4.14,) Cry={t€ A,2:0< uw(t) <1/n},
(4.15) CE cQE,  lim mesCyH, = mesQ;.
b n_>+m K

Proof. From the unique solvability of the Cauchy problem for the equation
(1.3) it follows that the set N, is finite. Consequently, we can assume that

k41

Ny = {t1, ... tx}. Letalsoto = a, tyo1 = band T, 1N <U[ti —1/n, t+ 1/n]> .
=0

We first show that, for every ng € N, there exists n; > ng such that

(4.16) A1 CT,, for n>n,.
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Suppose on the contrary that, for some ng € N, there exists the sequence t;bj €
An;1 (7 € N) with n; < njyq, such that t%j ¢ T,, for j € N. Without loss of

generality we can assume that lim t;j = t;. Then from the conditions (4.3),
Jj—+o00

(4.4), the definition of the set A,; and the equality w(ty) = (w(ty) — w(ty,,)) +
(w(ty,,) —vn, (t7,,)) +n, (8,)), we get [w(ty)| = 0, ie., tg € {to, t1, ..., tp1}. But this
contradicts the condition ¢, ¢ T, and thus (4.16) is true. Since hl}_’l mesT,, =0,
it follows from (4.2) and (4.16) that (4.7) is valid.
Let to € D;}. Then from (4.4) it follows that
un(tO) T 1 1 T

> w(ty) — |vnlte) —w(ty)| > —— + 7— — — >
||U’n0||C 2nO 2n ||un0||C

for n > ng, and thus ty € A, for n > ng, ie., D} C A}, for n > ng. The
second relation of (4.5) can be proved analogously. Now suppose that ¢y € C),1
and ty & By,1. Then, in view of (4.1) and (4.2), it is clear that ¢ty € B,, 2, and thus

(4.17) [on(to) = w(to)] = [on(to)] + [w(to)| > 1/n

which contradicts (4.4). Consequently, C,,1 C B, for n € N. This, together
with the relations C, 0 = A,2\ Cpa, Bua € Ano \ Bp, implies B, o C C,, 9, ie.,
(4.8) holds. The conditions (4.9) and (4.10) follow immediately from (4.8). In
view of the fact that lim mesC,,; = (2 —i)mes!, from (4.8) we get (4.11). Now,

n—-+oo

let ty € B, and suppose that |v,(to)| > 1/2n. Then from (4.4) we obtain the
uallo)]
[|unle

1
lun(to)| < o and using the definitions of the sets B, » and A, > we obtain (4.12).

A 012 8] foa(8) = wlo)] by (1), (40
and the definition of the sets C,,; and A, » we obtain (4.13).

Let there exist t, € C,f, such that to & {t € App : 0 < w(t) < 1/n}.
Then from the definition of the sets )2 and the inclusion C’I o C Chao we get
—1/n < w(t) < 0 and ty € A ,. In this case the inequality (4.17) is fulfilled,
which contradicts (4.4). Therefore C, C {t € Ap3 : 0 < w(t) < 1/n}. Let now
to € {t € Aps: 0 <w(t) < 1/n} and tg € C;f,. Then from the definition of the set
Cn and (4.2) it is clear that ty € C,, ,,1.e., tg € A, ,, and that the inequality (4.17)
holds, which contradicts (4.4). Therefore {t € An5 : 0 < w(t) < 1/n} C Cp,.
From the last two inclusions it follows that (4.14;) holds for C;/,. From (4.2) and
(4.14;) for Cp | it is clear that (4.14) is true for C | too. Analogously one can
prove that

contradiction 1/2n > |v,(to) — w(to)| = |va(to)] + |w(to)| > 1/2n. Thus

Also, from the inequality

(4.145) Coy={teA,s:tw(t)>1/n} for neN.

From (4.14,), the definition of the sets D and (4.3) we obtain (4.6). From the
definition of the set Q% and (4.142) we have Cy; C Q. Hence

mesCE, < mesQ.
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On the other hand C,; = {t € I : w(t) > 1/n} \ (I \ A,2) and thus
mesCi1 > mesE — mes(1\ A,5).
In view of (4.7) from last two inequalities we conclude that (4.15) holds. n

Lemma 4.2. Leti € {1,2},r > 0, k € N, wg be a nonzero solution of the problem
(1.3), (1.4), Ny, = {t1, ..., tx}, the function fi € E(Ny,) be non-decreasing in the
second argument for |x| > r, and

(4.18) fi(t, z)sgnx >0 for tel, |z|>r.
Then:
a) If G C I and

(4.19) / (s, (=1)r)wo(s)]ds £ 0,

then there exist 0o > 0 and 1 > 0 such that

az) UGV [ fsausids — [ Il ool = 6
G\U. 0.
for (=1)'z >r and 0 < & < &1, where U. = I N <U§?:1 (t; —e/2k, t; + 8/2/€]>.

b) If u, € C'(I;R) (n € N), r>0, wis an arbitrary nonzero solution of the
problem (1.3), (1.4), and the condition (4.3) holds, then there exist eo €0, 1] and
ng € N such that

J
(4.21;) (DS, US z) > _EO for x>,

4
(4.215) (D, U ,x)> —50 for x < —r

forn>ng and 0 <e < ey, where UX={t € U.:+w(t) >0}

Proof. First note that, for any nonzero solution w of the problem (1.3), (1.4),
there exists 5 # 0 such that w(t) = fwy(t) and thus N, = Ny,.

a) For any o € Ry, we put Gy = ([a,a+ o] U[b — a,b]) N G. In view of
the condition (4.19), we can choose v €]0, (b — a)/2[ such that if Gy = G \ Gj,
t, = inf{G,} and t;, = sup{G-}, then

(4.22) a <ty t,<b,

and [, |fi(s, (=1)'r)wo(s)|ds # 0, [o, |fi(s,(=1)"r)|ds # 0. From these inequal-
ities, by virtue of conditions (4.18) and f; € E(N,,), where f; is non-decreasing
in the second argument, there follows the existence of §y > 0 and €* > 0 such that

(4.23) /G\U ]fl(s,x)|ds—/ fi(s,2)[ds > 0 for (—1)iz > r,

U.s
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(4.24) /G\U |f1(s, 2)wo(s)|ds > 6 for (=1)'a >r.

a + min(t,, ty) max (g, tp) + b

Now we put I* = [t¥, t;], where t} = 5 and t; = 5 . In
view of (4.22), we obtain
(425) Gy C ]*, Nwo C I*, wo(tj;) 7é 0, ’LU()(tZ) 7£ 0.

Then it is clear that there exists 7; > 0 such that, for any v €]0, v1[, the equation
[wo(t)| = v has only ¢, ¢, € I* (i = 1,..., k) solutions such that

(426) t%i <t < tj;ﬂ (Z =1,.., k’),
(4.27) lwo(t)] <~ for teH,, lwo(t)| >~ for tel"\ H

where H, U vir 53], and

=1

(4.28) lim t,;= lim ¢, =t (i=1,...,k).

The relations (4.26) and (4.28) imply that there exist v €]0,7] and £, €]0,¢"]
such that

(4.29) U, C H, CU..
Moreover, in view of the inclusion G; C G, it is clear that

G\U., = [(G\G)\U,]U (G:\Us,), [(G\G)\ U] N (G \U.,) =0,

and thus
I(G,U.,,z) = / |f1(s, z)wo(s)|ds + I(Ge, Ue,,z) for (—l)ix >
G1\Us,

By virtue of (4.23), (4.25), (4.27), and (4.29), we get

H(G27U517I) Z 7</G \
2 H'y

29[ s = [ 1) 20

for (—1)'z > r. In view of the last two relations, (4.24), (4.29), and the fact that
U. C U, for e < g, we conclude that the inequality (4.20) holds.
b) First consider the case when

s, )l ds — /H fs2)ds) =

(4.30) / fu(s, 2)wo(s)|ds = 0 for = > 7, ne N,
Dy
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From (4.3) and the definitions of the sets DX and U* we get
(4.31) lilf mes(UF \ DF) = 0.

Then, in view of (4.30) and the fact that for any ¢ > 0 and n € N

(432)  UF=(UFND)UUI\Dy), (UXnDy)n(UZ\Dy)=0,

we have [,+ [fi(s, )wo(s)|ds = ij\Di | f1(s, 2)wo(s)|ds for x > r, n € N, and
e > 0. Thus by virtue of (4.31), we get fU: | f1(s, x)wo(s)|ds = 0. From the last
equality and (4.30) we conclude that

(4.33) I(D}F, U 2)=0 for x>r,neN,e>0.

Therefore, in this case the condition (4.21;) is true.
Now consider the case when for some r; > r there exists ng € N such that

(4.34) / | fi(s,z)wo(s)|ds # 0 for x> 1y, n > ny.
D

n

It is clear that there exist > 0 and £3 €]0,¢;] such that
| el < 3 for r <o <nn c<a
and thus 5
(4.35) I(D,’:,Uj,x)z—% for r<az<r +mn n>ng e<ey.

On the other hand, from (4.34) it is clear that fD% | f1(s,m1 + n)wo(s)|ds # 0.
Therefore, from the item a) of our lemma with G = D;', and the inclusions
D} c Df, U C U, for n > ng, e >0, we get I(D,},UF,x) > 0y for x > ry + 1,
n > ng, 0 < ¢ < 9. From this inequality and (4.35) we obtain (4.21;) in second
case too.

Analogously one can prove (4.21,). .

Lemma 4.3. Let all the conditions of Lemma 4.1 be fulfilled and there exist r > 0
such that the condition (4.18) holds, where f; € K(I x R; R). Then

t

(4.36) limJirnf f1(& un(§))senu, (§)dE >0 for a<s<t<hb.
Proof. Let
(4.37) O sup{|fi(t,2)| < 2] <} for tel

Then, according to (4.1), (4.2), and (4.18), we obtain the estimate

/ £1(6, 1 (€) )sgnun, (€)dE >

> /[ PGS / (€, un€)))de

[s,t]ﬁAn’z
fora < s <t <b,ne N. This estimate and (4.7) imply (4.36). n
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Lemma 4.4. Let r > 0, the functions f; € K(I x R;R), hy € L(I; R), fT,f” €
L(I; R;) be such that

fltx) < =f~(@t) for x<-—r

(4.38) FH0) < Ata) for v

on I, and there exist a nonzero solution wqy of the problem (1.3), (1.4) and e > 0
such that

(4.39) Ny, = 0

and

- [ £ Outs)ids el < - [l <

b
(4.40) < / £ (5)|wo(s)lds — el 7L

where v} is defined by (4.37). Tfien, for every nonzero solution w of the problem
(1.3), (1.4), and functions u,, € C'(I; R) (n € N) such that the conditions (4.3),

(4.41) WD) —wD () <1/2n for tel, neN, (i=0,1)
where v, (t) = u, (t)||un||o" fort € I and

(4.42) up(a) =0, u,(b)=0

are fulfilled, there exists ny € N such that

def

(4.43) M, (w) = / (hi(s) + fi(s,un(s)))w(s)ds >0 for n > n;.

Proof. First note that, for any nonzero solution w of the problem (1.3), (1.4),
there exists 3 # 0 such that w(t) = Pwy(t). Also, it is not difficult to verify that
all the assumptions of Lemma 4.1 are satisfied for the function w(t) = Bwy(t).
From the unique solvability of the Cauchy problem for the equation (1.3) and the
conditions (1.4) we conclude that w'(a) # 0 and w’(b) # 0. Therefore, in view of
(4.41) and (4.42), there exists ny € N such that

(4.44) un (t)sgnfwo(t) > 0 for n>mngy, a<t<b.
Moreover, by (4.1) and (4.2) we get the estimate

M, (w)
3]

> [ lmlaso | " h(sun(s)ds+

(4.45)
+o /A f1(s,un(s))wo(s)ds,
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where 7 is given by (4.37) and o = sgnf. Now note that f~ = 0, f* =0 if
fi(t,z) = 0. Then by virtue of (4.7), we see that there exist ¢ > 0 and n; €

b
N (n1 > 1) such that / 7 () ha(s)lds — Sllglle < / £ (8)wo(s)|ds and
a An,?

§||7:HL > / Y (8)|wo(s)|ds for n > ny. By these inequalities, (4.3), (4.38) and
An,l
(4.44), from (4.45) we obtain

Mn(w)
3]

if n > ny, owy(t) > 0, and

b b
> —ellglle+ [ mlwo(olds + [ F(lwols)lds

Mn w i b b B
> el = [ mllds + [ (Gl
if n > ny, owe(t) < 0. From the last two estimates in view of (4.40) it follows
that (4.43) is valid. .

Lemma 4.5. Let wy be a nonzero solution of the problem (1.3), (1.4), r > 0,
the function fi € E(Ny,) be non-decreasing in the second argument for |z| > r,
condition (4.18) hold, and

(4.46) /Q |f1(s,r)|ds+/ a5, —1)[ds £ 0.

w( Qwo

Then there exist § > 0 and ny € N such that if

<9

(4.47) ‘ / hy(s)wo(s)ds

then, for every nonzero solution w of the problem (1.3), (1.4) and the functions
un, € C'(I; R) (n € N) fulfilling the conditions (4.3), (4.41), (4.42), the inequality
(4.43) holds.

Proof. It is not difficult to verify that all the assumption of Lemma 4.1 are
satisfied. Then, by the definition of the sets B, 1, B2, the conditions (4.1), (4.2),
and (4.18), we obtain the estimate

(4.48) Q/ﬁ@w@m®%2—é 72 ()| (s)ds + B, (w),
where

Mwm@—é mu%@m@m+/ (5 tn(3))0(s) ds.

Bn,l
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On the other hand, from the unique solvability of the Cauchy problem for the
equation (1.3) it is clear that

(4.49) w'(a) #0, w'(b)#0, w(t;)#0  for i=1,.. .k

if Ny, = {t1,...,tx}. Now note that, for any nonzero solution w of the problem
(1.3), (1.4), there exists [ # 0 such that w(t) = Pwy(t). Consequently,

(4.50) Qp=Qp if >0 and Qf =05 if B<0.

Then in view of (4.15) and (4.46), there exists ny > ng such that

(4.51) /C 1l P)uo(s)lds # 0 and/or / 1 (5, —rYwo(s)|ds 2 0.

ng,l Cn2,1

From (4.51), in view of (4.6), it follows that

(4.521) / |fi(s,m)wo(s)|ds #0 for n > ny
Dy
and /or
(4.525) / |f1(s, —r)woe(s)|ds #0 for n > ns.
Dy

Consequently, all the assumptions of Lemma 4.2 are satisfied with G = D, and/or
G = D,,. Therefore, there exist gy €]0, 5[, n3 > ng, and Jy > 0 such that

(DS, Ut x) > & for #>7r, n>ns,

€0’

(4.53)
(D, Uz, x) > —8/2 for o< —r, n>ny

if (4.52;) holds, and

I(D,,U._,x) >0y for x<—r, n>ng,

€0’

(4.54)
(D, Us,x) > —b/2 for x>r, n>ng

if (4.525) holds.
On the other hand, the definition of the set U. and (4.14;), imply that there
exists ng > ng, such that

(4.55) CryCcUS

€0’

Cho CU, for n=>ny
By these inclusions, (4.2), and (4.5) we obtain

(4.56) Cy = AF,\ €y D DI\ UL

n,2 €0’

Crn = A2\ Cry D Dy \ Uy
for n > ny. First suppose that N, # () and there exists n > ny such that

(4.57) B # 0.
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Then, by taking into account that f; is non-decreasing in the second argument
for x| > 7, (4.3), (4.12), (4.18) and the definitions of the sets B, ,, B, ,, we get

n,2)

|Hﬁmamzﬁﬁw»s
< f t,M A6 for t e B,
(459 ( ﬁuio>(ﬁm lm<

< -—filt,— ||Un||c ‘f ( —HUQHHC)’ for t € B, ,.
n )

Analogously, from (4.3), (4.13), (4.18), and the definitions of the sets C,;, C\~

n,1» ~'n,1»
we obtain the estimates
U
fi <t, %) ‘ for teCyy,

fi (t,—”“"”c)‘ for teC,,.

2n

[1(t, un(t))] =

(4.59)
|1t un ()] =

Then from (4.1), (4.2), (4.9), (4.58) and respectively from (4.1), (4.2), (4.8), and
(4.59) we have

/B | f1(s,un(s))w(s)|ds <

(4.60) < /B+ fi (S, %) w(s)’ ds + / fi (s,—%) w(s)’ ds <

</ Ny ( —”“;l‘c) wlo)|as+ [ |1 <s,__|‘?;1;l‘0) w(S)‘ds

and respectively |
/ M@%@m@mz/ 115, tn(s))w(s)|ds >
B

Ch,1
(4.61) > /C+ fi (3, HU;TUC) w(s) fi (3, - ”7«;‘!0) w(s)’ ds.

ds + /
o
If the condition (4.57) holds, from (4.60) and (4.61) we obtain
ds)

B ([ o e [ o 15 o

+</m i <57_||“2nn||c) wo(s) ds—/c fi (S’_||u2n7l|()) wo(s) d5>7

n,2
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Whence, by (4.55) and (4.56) we get

(4.62) M (w) >1 (D+ Ut ”“””C) +]I<D;4,U— —””"”C)

|ﬁ| na?TE0T 9y €0 m
for n > ny. From (4.62) by (4.53) and (4.54) we obtain
~ d
(4.63) M, (w) > O|2ﬁ| for n > ny.

On the other hand, in view of (4.10), (4.18), the definition of the sets A, 2, By1,
and the fact that f; is non-decreasing in the second argument, we obtain the
estimate

/B | f1(s, un(s))w(s)|ds >

",

(1.64) > [ nsnulds+ [ s (s >

> /Ci,l |f1(8,7”)w(s)|d$+/_ | fi(s, —r)w(s)|ds.

n,1

Now suppose that there exists n > ny4 such that
(4.65) B2 = 0.

Then from (4.51) and (4.64), (4.65) there follows the existence of §* > 0 such
that M,,(w) > |3]6*. From this inequality and (4.63) it follows that, in both cases
when (4.57) or (4.65) are fulfilled, the inequality

(4.66) M, (w) > |B]d for n>mny

holds with § = min{dy/2,0*}. From (4.48) by (4.7) and (4.66), we see that for any
e €]0, [ there exists ny > n4 such that

b
/ fi(s,up(s)w(s)ds > |B|(6 —e) for n > ny,

and thus

ML, (w)
S5 —e—
g 207

If Ny, = 0 then |w(t)] > 0 for a < t < b and in view of (4.3), (4.41), (4.42) and

(4.49), the condition (4.65) holds, i.e., the inequality (4.67) also holds.
Consequently, since € > 0 is arbitrary, the inequality (4.43) from (4.67) and

(4.47) follows. .

(4.67)

for n > n,.

/a ’ ha(8)wo(s)ds
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Lemma 4.6. Let wy be a nonzero solution of the problem (1.3), (1.4), r > 0, and

the conditions (4.18), (4.47) hold with fi(t, :E)diffo( t)g1(x), where fo € L(I; Ry),
f |fo(s)|ds # 0 and a non-decreasing function g1 € C(R; R) be such that

(4.68) | |liI£_l lg1(x)| = +o0.

Then, for every nonzero solution w of the problem (1.3), (1.4) and functions

u, € C'(I;R) (n € N) fulfilling the conditions (4.3), (4.41), (4.42), the inequality
(4.43) holds.

Proof. From the assumptions of our lemma it is clear that the relations (4.48)—
(4.56), (4.58)-(4.61) and (4.64) with fi(t,z) = fo(t)gi(z) and w(t) = Lwy(t)
(B # 0) are fulfilled.

Assuming [+ 1 |f1(s,m)wo(s)|ds # 0, the condition (4.52;) is satisfied i.e.,
(4.53) holds. |

Now notice that from (4.15) and the equality C;; = Qf\ (Q5\ C;r)) it follows
that there exist ¢ > 0 and ng € N such that

(1.6 [ 1auslds = [ 1fushuolds — < >0
n,l Qw
for n > nyg.
First consider the case when there exists n > n4 such that the condition
(4.65) holds. Without loss of generality we can assume that ns > ng. Then by
(4.50), (4.64), (4.65) and (4.69), we obtain

(4.70) M, (w) > |5]|g1(r)] (/ | fo(s)wo(s)|ds — 5) >0,
Op
where ©g = Qf if 3> 0and ©5 = Q if 5 <0.

Consider now the case when there exists n > n4 such that (4.57) holds. From
(4.3) and the definition of the set D; it follows that D;f C D}, and since g, is
non-decreasing, from (4.53) we obtain I(D,}, U}, z) > |g1( Nw=1D,, Ut r) >
do for & > r, with p = [+ Uz | fo(s)wo(s)|ds — [+ | fo(s)wo(s)|ds. By the last

nyg \Veqg €0
inequality, (4.3), (4.53), and (4.62) we get u > 0 and

(4.71) M, (w) > |8](|g1(r) |1 — 60/2)-

Applying (4.70), (4.71) in (4.48) and taking (4.7) into account, we conclude
that there exist £ > 0 and n; > n4 such that

3] <|91( N — — —€1> / fi(s,un(s))w(s)ds for n>mny

with g1 = min(u, [o+ |fo(s)wo(s)|ds — ). From (4.68) and the last inequality
wo

it is clear that, for any function h;, we can choose r > 0 such that the ine-

quality (4.43) will be true. Analogously one can prove (4.43) in the case when

fo;%l | f1(s,m)wo(s)|ds # 0. .



196 S. MUKHIGULASHVILI

Lemma 4.7. Let r > 0, there exist functions a, f~, fT € L(I, Ry) such that the
condition (4.38) is satisfied,

(4.72) sup{|fi(t,z)| : x € R} = a(t) for tel,

and there exist a nonzero solution wq of the problem (1.3), (1.4) and € > 0 such
that

—/Xf%@maﬂ_+f1@ma@um&wﬂmns
(4.73) SﬁWM@%@“S

< [ o)) + Gl )ds = elall

Then, for every nonzero solution w of the problem (1.3), (1.4) and functions
u, € C'(I;R) (n € N) fulfilling the conditions (4.3), (4.41), and (4.42), there
exists ny € N such that the inequality (4.43) holds.

Proof. First note that, for any nonzero solution w of the problem (1.3), (1.4),
there exists 3 # 0 such that w(t) = Bwy(t). Moreover, it is not difficult to verify
that all the assumptions of Lemma4.1 are satisfied for the function w(t) = Swy(t).
From (4.1), (4.2), and (4.72) we get

M, (w) > — a(s)|w(s)|ds + f1(s, up)w(s)ds+
(4.74) A"'1UB"’2 /B"’l

b
+/ hi(s)w(s)ds.
On the other hand, by the definition of the set B, ; we obtain
(4.75) sgnu,(t) = sgnw(t) for te By UB, .

Hence, by (4.1), (4.2), (4.10), (4.38), and (4.75), from (4.74) we obtain the estimate

MW@—/M@M@%E—A a(s)]w(s)|ds+

n,lUBn,2

(1.76) o[ e [ e

v

—:meﬁw&wﬂwﬁﬂmv%[%lfWﬁWNQWs+/ng@MwGM%-

Now, note that f~ =0 and f* = 0if fi(¢t,z) = 0. Therefore by (4.7), (4.11),
(4.15), and the inclusions C}f; € QF, C,; C Q, we see that there exist ¢ > 0

w?
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and ny € N such that

1

Sellofls > / a(s)]wo(s)|ds
(4.77) i”JUB"Q
/Q PO lwo(s)lds — zellolls < /  FE(s) o (s)]ds

for n > ny. By virtue of (4.76) and (4.77), we obtain
M, (w)
16l

> —cllallu+ [ Fr()un)lds+

# [ @i o [ h(oues

for n > ny, where o = sgnf. Now, by taking into account that

/%Z(S)WO(S)MS = /i 1(s)|wo(s)|ds = /abl(s)[wo(s)]ids

wo

if >0 and

/ un(s)lds = [ 1(s)wo(lds = | 1(5) ()]s

wo

if 5 < 0 for an arbitrary [ € L(I, R), from the last inequalities we get

T el b+$ws ~(8)[wo(s s
7] > —¢| HL—i—/a(f()[ ()] + £ (5)wo(s)])ds-+
+/bh1(s)w0(s)ds for n>ny
if o =1, and
M, (w) b . )
5] - _€||a||L+/a (f7(s)[wo(s)]- + F7(s)[wo(s)]+)ds

b
—/ hi(s)wo(s)ds for n > ny
if 0 = —1. From the last inequalities and (4.73) we immediately obtain (4.43). =

Now we consider the definitions of the sets Vig((a,b)) introduced and de-
scribed in [12] (see [Definition 1.3, p. 2350])

Definition 4.2. We say that the function p € L([a, b]) belongs to the set Vio((a, b))
if for any function p* satisfying the inequality p*(t) > p(t) for ¢t € I the unique
solution of the initial value problem

(4.78) u"(t) = p*(t)u(t) for tel, wula)=0, u'(a)=1,

has no zeros in the set |a, b].
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Lemma 4.8. Let i € {1,2}, p € L(I;R), pu(t) = p(t) + (=1)'/n, and w, €
C'(I; R) (n € N) be a solution of the problem
(079 wlt) =paliun(t) for teT, wala)=0, wa(b)=0.

n

Then:

a) There exists ng € N such that the problem (4.79,) has only the zero solution
for n > ny.

b) If i = 2 and N,, = 0, where w is a solution of the problem (1.3), (1.4),
then the inclusion p, € Vig((a,b)) for every n € N holds.

Proof. a) Let N be the number of zeros of the function w, on I. Assume on
the contrary that there exists a sequence {w,} 2 = of nonzero solutions of the
problem (4.79,).

If i = 1 then from the facts that p,(t) < pp41(t) and w, # 0, by Sturm’s
comparison theorem, we obtain Ny, — Ny =~ >1 (n € N). Now notice that, in
view of (4.79,,), the inequality N, > 2holds. Hence there exist kg > 2 and ng > 2
such that Nj, == ko. Therefore, we obtain the contradiction ko = Ny, > Ny, =~ —

Wn

Ny = (No =N (NG~ Ny )4t (NG = Ni ) > h.

If © = 2, from the fact that p,_1(t) > p.(t) > p(t) and w, # 0, by Sturm’s
comparison theorem, we obtain Nj — Nj ~>1and Nj > N; —1(n € N) if
w is a nonzero solution of the equation (1.3). Now notice that, in view of (4.79,),
the inequality N; > 2 holds for every n € N. Therefore, if we denote N; = ko,
we obtain the contradiction kg = N > N;j,wko —1> N:;Hko — Ny > ko.

The contradiction obtained proves the item a) of our lemma.

b) Assume on the contrary that there exists n € N such that p, & Vip([a, b]).
If p*(t) > pn(t) and w is a solution of the problem (4.78), then there exists t, €|a, b
such that u(tg) = 0. Since p(t) < p*(¢), by Sturm’s comparison theorem, we obtain
that w, the solution of the problem (1.3), (1.4), has a zero in the interval |a, to],
which contradicts our assumption N,, = (). The contradiction obtained proves the

item b) of our lemma. .

5. Proof of the main results

Proof of Theorem 2.1. Let p,(t) = p(t) +1/n and, for any n € N, consider the
problem

(5.1) ul (t) = pu(O)un(t) + f(t,un(t)) + h(t) for tel,

(5.2) un(a) =0, u,(b) =0.

In view of the condition (2.1) and Lemma 4.8, the inclusion p,, € Vio((a,d)) holds
for every n € N. On the other hand, from the conditions (2.2) and (2.3) we find

(5.3) 0 < f(t,z)sgnx < g(t)|x| + ho(t) fort eI, |z| >r.
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Then the inclusion p, € Vig((a,b)), as is well-known (see [12, Theorem 2.2,
p.2367]), guarantees that the problem (5.1), (5.2) has at least one solution, sup-
pose u,. In view of the condition (2.2), without loss of generality we can assume
that there exists £* > 0 such that ho(t) > &* on I. Then g(t)|z| + ho(t) > &* for
x € R, t € I. Consequently, it is not difficult to verify that w, is also a solution
of the equation

(5:4) U (t) = (Pn(t) + po(t, un(£))sgun (t))un(t) + pa(t, un(t))

St x)g(t) St x)ho(t)
(@)lz] + ho(t) g(®)]x] + ho(t)’

with po(t, x) = p , pi(t,z) = h(t) +

Now assume that

(5.5) lim ||un||c = +oo

n—-+00

and v,,(t) = U, (t)||un]|g'. Then

(5.6) Un(t) = (Pu(t) + polt, un(t))sgnun () va(t) + mm(t, un(t)),
(5.7) vp(a) =0 v, (b) =0,

and

(5.8) lvallc =1

for any n € N. In view of the condition (5.3), the functions py,p; € K(I X R; R)
are bounded respectively by the functions ¢(t) and h(t) + ho(t). Therefore, from
(5.6), by virtue of (5.5), (5.7) and (5.8), we see that there exists ry > 0 such that
|V, ||c < ro. Consequently in view of (5.8), by Arzela-Ascoli lemma, without loss
of generality we can assume that there exists w € C'(I, R) such that nl_1£100 v (t) =

w?(t) (i = 0,1) uniformly on I. From the last equality and (5.5) there follows
the existence of an increasing sequence {ay};> of a natural numbers, such that

||ta, ||c > 2rk and ||v(()2 —wW||¢ < 1/2k for k € N. Without loss of generality
we can suppose that w, = u,, and v, = v,,. In this case we see that w, and
v, are the solutions of the problems (5.1), (5.2) and (5.6), (5.7) respectively with
pn(t) = p(t) + 1/, for t € I, n € N, and that the inequalities

(5.9) un|lc > 2rn,  [|o9 —w||c <1/2n for ne N

are fulfilled. Analogously, since the functions pg, p; € K (I x R; R) are bounded, in
view of (5.5), we can assume without loss of generality that there exists a function
p € L(I; R) such that

(5.10;) lim L/ P, (s, un(s))sgnu,(s)ds = (1—j)/ p(s)ds

n=t20 [[uy [
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uniformly on I for j = 0,1. By virtue of (5.8)-(5.10;) (j =0,1), from (5.6) we
obtain

(5.11) w”(t) = (p(t) + p(t)w(t),
(5.12) w(a) =0, w(b) =0,
and

(5.13) llw||lc = 1.

From the conditions (2.3) and (5.9) it is clear that all the assumptions of Lemma
4.3 with fi(t,x) = f(t,x) are satisfied, and thus we obtain from (5.10;) (j = 0)
the relation fst p()de >0 for a<s<t<b,ie,

(5.14) Bt) >0 for tel.

Now assume that p # 0 and wy is a solution of the problem (1.3), (1.4). Then
using Sturm’s comparison theorem for the equations (1.3) and (5.11), from (5.14)
we see that there exists a point ¢y €|a, b| such that wy(tg) = 0, which contradicts
(2.1). This contradiction proves that p = 0. Consequently, w is a solution of the
problem (1.3), (1.4). Multiplying the equations (5.1) and (1.3) respectively by w
and —u,,, and therefore integrating their sum from a to b, in view of the conditions
(5.2) and (1.4), we obtain

(5.15) S w@%@mzfamwﬁgmﬁmmmm

On J,

for n > ng. Therefore by virtue of (5.9) we get

(5.16) / (h(s) + f(s,un(s)))w(s)ds <0 for n > ny.

On the other hand, in view the conditions (2.1)-(2.41), (5.2), and (5.9) it is clear
that all the assumption of Lemma 4.4 with fi(¢t,z) = f(¢t,z), hi(t) = h(t) are
fulfilled. Therefore, the inequality (4.43) is true, which contradicts (5.16). This
contradiction proves that (5.5) does not hold and thus there exists r; > 0 such that
||un||c < ry for n € N. Consequently, from (5.1) and (5.2) it is clear that there
exists 7} > 0 such that ||u]||c < 7 and |u.(t)] < o(t) for t € I, n € N,
where o(t) = (1+|p(t)])r1+]|h(t)|+7 (t). Hence, by Arzela-Ascoli lemma, without
loss of generality we can assume that there exists a function uy € C’ (I; R) such
that nl_lgloo uld(t) = u(()i) (t) (¢ = 0,1) uniformly on I. Therefore, it follows from

(5.1) and (5.2) that ug is a solution of the problem (1.1), (1.2). .
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Proof of Theorem 2.2. Let p,(t) = p(t) — 1/n and, for any n € N, consider
the problems (5.1), (5.2) and (4.79,,). In view of Lemma 4.8, the problem (4.79,,)
has only the zero solution for every n > ng. Therefore, as is well-known (see [9,
Theorem 1.1, p.345]), from the conditions (2.7), (2.9) it follows that the problem
(5.1), (5.2) has at least one solution, suppose u,,.

Now assume that (5.5) holds and put v,,(t) = u,(t)||u.]|5'. Then the condi-
tions (5.7) and (5.8) are fulfilled, and

1

(5.17) v (t) = pu(t)v,(t) + ———
||tnllc

(f(t,un(t))) + h(1))-

In view the conditions (2.7) and (2.9), from (5.17) there follows the existence of
ro > 0 such that ||v]||c < 7ro. Consequently, in view (5.8) by Arzela-Ascoli lemma,
without loss of generality we can assume that there exists a function w € C'(1, R)
such that lim v (t) = w(t) (i = 0,1) uniformly on I. Analogously as in

n—+

the proof of Theorem 2.1, we can find a sequence {ay}> of natural numbers

such that, if we suppose u,, = u,, then the conditions (5.9) will by true when the
functions w,, and v,, are the solutions of the problems (5.1), (5.2) and (5.17), (5.7)
respectively with p,(t) = p(t) — 1/ay, for t € I, n € N. From (5.17), by virtue of
(5.7), (5.9) and (2.9), we obtain that w is a solution of the problem (1.3), (1.4).
In a similar manner as the condition (5.15) in the proof of Theorem 2.1, we show
that

1 s b
(5.18) = [ wlunls)ds = [ (h(s) + Fls.un(s))uls)ds

An Ja a
for n > ny. Now note that, in view of the conditions (2.1), (2.8), (2.42), (5.2), and
(5.9), all the assumptions of Lemma 4.4 with fi(t,z) = —f(t,z), hi(t) = —h(t)
are satisfied. Hence, analogously as in the proof of Theorem 2.1, from (5.18) we
show that the problem (1.1), (1.2) has at least one solution. .

Proof of Theorem 2.3. Let p,(t) = p(t) + (—1)'/n and for any n € N, consider
the problems (5.1), (5.2) and (4.79,,). In view of the condition (2.13) and the fact
that (—1)°f(¢, ) is non-decreasing in the second argument for |x| > 7, we obtain

1
(5.19) lim
n—to0 ||zn|c

[ 116 zlo)ids =0

for an arbitrary sequence z, € C(I;R) with lirf l|znllc = 4o00. Moreover,
n—-roo

in view of Lemma 4.8, the problem (4.79,,) has only the zero solution for every
n > ng. Therefore, as it is well-known (see [9, Theorem 1.1, p. 345]), from the
inequality (5.19) it follows that the problem (5.1), (5.2) has at least one solution,
SUPPOSE Uy,

Now assume that (5.5) is fulfilled and put v, () = wu,(t)||u,||5'. Then (5.7),
(5.8) and (5.17) are also fulfilled. Hence, by the conditions (5.8) and (5.19), from
(5.17) we get the existence of ry > 0 such that ||v]||c < r9. Consequently, in view
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of (5.8) by the Arzela-Ascoli lemma, without loss of generality we can assume that
there exists a function w € C'(I, R) such that nkrfm v () = wO(t) (i =0,1)
uniformly on /. Analogously as in the proof of Theorem 2.1, we can find a sequence
{ax}F2S of natural numbers such that, assuming u, = u,,, the conditions (5.9)
is true and the functions u,, and v,, are the solutions of the problems (5.1), (5.2)
and (5.17), (5.7) respectively with p,(t) = p(t) + (—=1)"/ay, for t € I, n € N. From
(5.17), by virtue of (5.7), (5.9) and (2.13), we obtain that w is a solution of the
problem (1.3), (1.4). In a similar manner as the condition (5.15) in the proof of
Theorem 2.1, we show

1 b b
(5.20) - w(s)u,(s)ds = (—1)1/ (h(s) + f(s,un(s)))w(s)ds
for n € N > ng. Now note that, in view the conditions (2.11), (2.12), (2.14), (5.2),
and (5.9), all the assumptions of Lemma 4.5 with fi(¢,z) = (=1)"f(t,z), hi(t) =
(—1)'h(t) are satisfied. Hence, analogously as in the proof of Theorem 2.1, from
(5.20) by Lemma 4.5 we obtain that the problem (1.1), (1.2) has at least one

solution. "

Proof of Corollary 2.1. From the condition (2.15) we immediately obtain
(2.14). Therefore all the conditions of Theorem 2.3 are fulfilled. n

Proof of Theorem 2.4. The proof is the same as the proof of Theorem 2.3. The
only difference is that we use Lemma 4.6 instead of Lemma 4.5. n

Proof of Theorem 2.5. From (2.21) it is clear that, for an arbitrary sequence
zn € C(I; R) such that lirJlrn ||znllc = 400, the equality (5.19) is holds. From

(5.19) and Lemma 4.7, analogously as in the proof of Theorem 2.3, we show that
the problem (1.1), (1.2) has at least one solution. .
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A PERIODIC BOUNDARY VALUE PROBLEM FOR
FUNCTIONAL DIFFERENTIAL EQUATIONS OF HIGHER
ORDER

ROBERT HAKL AND SULKHAN MUKHIGULASHVILI

Abstract. On the interval [0, w], consider the periodic boundary value prob-
lem

i=0
u0)=u (W) +e;  (5=0,...,n—1),

where n > 2, 4; : C([O,w};R) — L([O,w];R) (i=0,...,n—1) are linear

bounded operators, ¢ € L([O,w]; R)7 ¢; €ER(j=0,...,n—1). The effective

sufficient conditions guaranteeing the unique solvability of the considered

problem are established.

2000 Mathematics Subject Classification: 34K06, 34K10.
Key words and phrases: Functional differential equation, boundary value
problem, periodic solution.

STATEMENT OF THE PROBLEM

Consider the problem on the existence and uniqueness of a solution to the
equation

u™(t) = nz_lﬁi(u(i))(t) +q(t) for 0 <t <w (0.1)

satisfying the periodic boundary conditions
u?(0) =u (W) +¢;  (j=0,...,n—1), (0.2)

where n > 2, ¢; : C([O,w];R) — L([O,w];R) are linear bounded operators,
q € L([O,w];R), and ¢; € R (1,7 =0,...,n—1).

By a solution to problem (0.1), (0.2) we understand a function u €
5”_1([0,(,0];]%), which satisfies equality (0.1) almost everywhere on [0,w] and
the boundary condition (0.2).

It is well-known that if the linear operators ¢; : C ([O,cu]; R) — L([O,w]; R)
(1=0,...,n— 1) are strongly bounded, i.e., if there exist summable functions
n; : [0,w] — [0, 4o00[ such that

[0 () ()] < ni(®)||x]lc for 0<t<w, =ze€ C’([O,w]; R),
then the following theorem on the Fredholm property is valid (see, e.g., [1,10,18])

ISSN 1072-947X / $8.00 / © Heldermann Verlag www.heldermann.de
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Theorem 0.1. Problem (0.1), (0.2) is uniquely solvable iff the corresponding
homogeneous problem

o™ (t) = %Z&(v“’)(t), (0.3)
vD(0) =0 (w)  (j=0,....,n—1), (0.4)

has only the trivial solution.

The above-mentioned Fredholm property for functional differential equations
with general bounded linear operators (i.e., not necessarily strongly bounded)
had not been investigated before 2000 despite of the fact that in 1972 H. H.
Schaefer [17, Theorem 4] proved that there do exist linear bounded operators
(. C ([O, wl; R) — L([O, wl; R) which are not strongly bounded. The first impor-
tant steps in this direction were made by Bravyi in [2], and later in [5], where,
among others, the Fredholm property was proved for the first order boundary
value problems for functional differential equations with general bounded linear
operators. These results were generalized for the n-th order functional differen-
tial systems in [7]. Therefore, Theorem 0.1 is also valid if ¢; (i =0,...,n — 1)
are bounded (not necessarily strongly bounded) linear operators.

The problem on the existence of a periodic solution to ordinary and func-
tional differential equations was studied very intensively in the past. The first
important step was made for linear ordinary differential equations of the type

u™(t) = p(t)u(t) + q(t) (0.5)
by Lasota and Opial in [11]. They showed that problem (0.5), (0.2) is uniquely
solvable for n > 4 if a function p € L([0,w]; R) has the constant sign, p # 0,

and the inequality
[ o\N"' 2. 4. (n—2)
d z 0.6
0

is fulfilled. This result is far from being optimal, and in [12], condition (0.6)

was improved to
[ 2 (2m\"2
d — | — ) .
[ <2 (%) (0.7)
0

The next step was made by Kiguradze and Kusano in [8], where the results
of [11,12] were essentially improved. In particular, they proved following propo-
sitions.

Proposition 0.1. Let eithern = 2m, (—1)™"!p(t) > 0 fort € [0,w], p(t) # 0
orn =2m—1, op(t) > 0 fort € [0,w], p(t) # 0, where o € {—1,1}. Then
problem (0.5), (0.2) has a unique solution.

Proposition 0.2. Let n = 2m, (—=1)"p(t) > 0 fort € [0,w], p(t) # 0 and
inequality (0.7) be fulfilled. Then problem (0.5), (0.2) has a unique solution.
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Other results on the existence of a periodic solution to differential equations
of higher order can be found, e.g., in [3,9,13,15, 16].

However, condition (0.7) in Proposition 0.2 is not yet optimal and, moreover,
Proposition 0.1 is not true for functional differential equations, which follows
from the fact that the equation with deviating argument

u"(t) = —| cost|u(r(t))
with

(t) = /2 for t € [0, 7/2[U]37/2,27]
T(1) = 3n/2 for t € [r/2,37/2| ;

has a nonzero 2m-periodic solution sin t.

Below we will establish the new conditions guaranteeing the unique solv-
ability of problem (0.1), (0.2), which improve the results of Lasota-Opial and
Kiguradze-Kusano and are optimal for n < 7. The method used for the in-
vestigation of the considered problem is based on the method developed in our
previous papers (see [3,4,13-16] ) for functional differential equations.

The following notation is used throughout the paper:

N is a set of all natural numbers.

R is a set of all real numbers, R, = [0, +o0o].

C ([O,w]; R) is a Banach space of continuous functions v : [0,w] — R with
the norm

lullc = max{\u(t)| te [O,w]}.

L([O, wl; R) is a Banach space of Lebesgue integrable functions p : [0,w] — R
with the norm

nmLz/m@ws

Ck ([0,w]; R) is a set of functions u : [0,w] — R which are absolutely contin-
uous together with their derivatives up to k-th order.
If ¢ : C([O, wl; R) — L([O, wl; R) is a linear bounded operator, then

1l = sup [[¢(z)]lz -

lzllc<1

e]s = (] + ). [al- = 4(jal - 2).

[x] is an integer part of .

All equalities and inequalities between the measurable functions are under-
stood as lying almost everywhere in an appropriate interval.

Definition 0.1. We will say that a linear operator /¢ : C’([O,w];R) —
L([0,w]; R) belongs to the set P, if it is non-negative, i.e., for any non-negative
z € C([0,w]; R) the inequality £(z)(t) > 0 for 0 < ¢ < w is fulfilled.
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In the sequel, the following notation is used:

mi+1 mj_o+1

Ao=1, A= 117 A—Alzz Z mjfl)’

mi=1mo=1 mjll

1 mi+1  mj_2+1 mj_1+1 1
Bi=g. B Alzz Z prees H(HQZ)

mi=lma=1 my =1 3111
for 7 > 2, where
n(t) = (2t +1)(2t + 3).

Let
dy =1, dy = 4, dy = 32, ds =192, (0.8)
and for p € N put
1
d2p+2 - 1/2 )
max {(hp(t)hp(l )20 <t< 1}
1 (0.9)

Goprs = 1/2 )
maX{(fp(‘Sat)fp(l —5,1—1)?:0<s<1,0<t< 1}

where the functions f, : [0,1] x [0,1] — Ry, h, : [0,1] — R, are defined as
follows:

p—1 p

fo(s,t) = O‘pjt2(j+1) + appt s, hy(t) = Zﬁpth(jH)a (0.10)
j=0 '

and
A; 4;
Qpj 3. 4J+1d2(p—j)+1 ) ﬁp] 3. 4j+1d2(p—j) (] ) P )7
(0.11)
Q. _= —Ap /6 _= Bp
PP g o+l PP g gpt+1

Now we formulate the result from [6] in the form suitable for us.

) =v9(w) (i=0,....k),
11

1). Let moreover,

Theorem 0.2. Let k € N, veék([o wl; R), v(0
and let dy, (k € N) be given by the equalities (0.8)—(0.

v(t) # Const.

Then
A (vW) < k_fA (W®)  (i=0,...,k—1),
where -
A (v¥) = max {v(i) () :t€[0,w]} —min {oD(t): t € [0,w]} (0.12)

fori=0,...,k.
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Remark 0.1. In [6], it was shown that

211_3 216‘32‘5
dy= "%, ds=2°-3-5, dg="—""""

olt.32.5.7
L dp=— 2
61 17

1. MAIN RESULTS

Theorem 1.1. Let j € {0,1}, the operator £y admit the representation {y =
lo1 — Lo, where y1,boo € Py, and let {; (i =1,...,n — 1) be bounded linear
operators. Let, moreover, the conditions

€01l + [[€o.2]| # O (1.1)
wn—l
pi loassll + Q2 <1, (1.2)
n—1
140,145l
< [lo2—;1l, (1.3)
1—Q— 26144 ’
2d,,_ wn—1
loa—sl < =5 (1 -0+ \/(1 - Q) <1 —0 - Hﬁo,w\l) ) (1.4)
n—1
hold with
not n-1-i
a=3 T—I4l (15)
i=1 it

and d; (i =0,...,n—1) defined by (0.8)—(0.11). Then problem (0.1), (0.2) has
a unique solution.

In the case, where all the operators ¢; (i =0,...,n — 1) admit the represen-
tation
bi="Lix — o (1.6)
with ¢;1,4;2 € P,, i.e., they are strongly bounded, the following assertion im-
proves Theorem 1.1.

Theorem 1.2. Let j € {0,1} and the operators ¢; (i =0,...,n — 1) admit
representations (1.6) where €;1,0; 2 € P,,. Let, moreover, conditions (1.1)—(1.4)
hold with

nol n-1-i
w
0=3 o max{llsall |16z}
i=1 Tt
and d; (i =0,...,n—1) defined by (0.8)~(0.11). Then problem (0.1), (0.2) has
a unique solution.

Remark 1.1. It is clear that if ¢, = 0 (i = 1,...,n — 1), then Q = 0 in
Theorems 1.1 and 1.2.

Corollary 1.1. Leto € {—1,1} and oly € P,,. Let, moreover, the conditions
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(1.8)

n—1l  n 1

W
>l <1,

i=1

and
4d,,_ —1=
Jeol < 1(1—Zd — e H) (19)

hold. Then problem (0.1), (0.2) has a unique solution

(1.10)

For the equation
0<t<w,

ul™ () = Lo(u)(t) + q(1),

with ofy € P, and o € {—1, 1}, from Theorem 1.1 we immediately obtain

Corollary 1.2. Let 0 € {—1,1}, oly € P,. Let, moreover, conditions (1.7)
4d,,_

. (1.11)

wh— 1

and
14 <

hold. Then problem (1.10), (0.2) has a unique solution
The special case of equation (0.1) is an equation with deviating argument of

the form
u™(t) = p(t)u(r(t)) + (1), (1.12)
[0,w] is a measurable function. The

where p,q € L([0,w]; R) and 7 : [0, w]
following assertion immediately follows from Theorem 1.1

Corollary 1.3. Let [ |p(s)|ds # 0 and let the conditions
0

1

n
/ +d$< nl’
0

f +d8 w
2d,,_ W 1
— < [lon(s)ds < =2t 1+ / 9eds |,
1 - ﬁn f[ap( N+ds % 0
hold with o =1 or 0 = —1. Then problem (1.12), (0.2) has a unique solution
If lo(z)(t) = p(t)x(t), then Corollary 1.2 also improves Proposition 0.2. In

particular we get
Corollary 1.4. Let either the assumptions of Proposition 0.1 be fulfilled or

let n =2m, (—1)"p(t) > 0 fort € [0,w], p(t) # 0, and let the inequality
ds <
[ Intolas < -
0

4dn71
e (1.13)
hold. Then problem (0.5), (0.2) has a unique solution
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Remark 1.2. It is not difficult to verify that condition (1.13) improves (0.7)
forn <7.

Remark 1.3. Let Iy = 1 and the numbers [, (n € N) be defined by the
equalities

_1)pHig2r1 _{)ptig2e
”Z (—1)i160 ”Z (—1)i16i
& 2Dl £ p= 20l
Then the equality
dy 1 =1, (1.15)

guarantees the optimality of condition (1.11) (and, consequently, also the opti-
mality of (1.4)) in a sense that it cannot be replaced by the condition

4d,,—
o] < — + ¢ (1.11,)
w
no matter how small € €]0, 1] is.
Remark 1.4. According to [6, On Remark 1.3] it follows that the equality
d =1; (1.16;)

is true for ¢ < 7, i.e., in view of Remark 1.3, condition (1.11) (and also condition
(1.4)) is optimal for n < 7.

In [6], it is also proved (see On Remark 1.4 therein) that if (1.16;) holds for
1=1,...,n—1and

max {hy,(t)h,(1 — 1) : 0 < ¢t < 1} = h2(1/2), (1.16)

max { f,(s,8) fp(1 —5,1=1): 0<s <1, 0<t <1} = f}(1/2,1/2) (1.17)

for p < [252], where the functions f, and h,, are defined by (0.10), then equality
(1.16,,) holds.

However, in a general case (starting with p = 3, i.e., for n > 8), the proof of
(1.16) and (1.17) is not known to the authors. One can find more details about
this problem in [6].

2. PROOFS

To prove the main theorems we need two auxiliary propositions. The first is
rather trivial and we omit the proof.

Lemma 2.1. Let ¢ € P,. Then for an arbitrary v € C([O, wl; R) the inequal-
ities
—ml(1)(t) < L(v)(t) < ML(1)(¢) for 0<t<w
0

hold, where m = —min{v(t) : 0 <t <w}, M = max{v(t) : 0 <t < w}.
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Lemma 2.2. Let v € C"([0,w]; R) and
v(t) # Const, vD(0) = v (w) (1=0,...,n—1). (2.1)
Then each of the functions v (i =1,...,n— 1) changes its sign and therefore
[0 |c < A (vD) (t=1,...,n—1).

Proof. Tt is clear that if v® # Const and v®(0) = v®)(w) then v*+Y £ 0 and
J v* ) (s)ds = 0 for any fixed k € {0,...,n — 1}. Thus v changes its
sign. From this fact and (2.1) it follows by mathematical induction that the
functions v (i = 1,...,n — 1) change their signs. From this fact and (0.12),
the second part of the lemma immediately follows. U

Proof of Theorem 1.1. We will prove the theorem case when conditions (1.2)—
(1.4) are fulfilled with j = 0. The case where j = 1 can be proved analogously.

According to Theorem 0.1 it is sufficient to show that problem (0.3), (0.4)
has only a trivial solution. Assume to the contrary that problem (0.3), (0.4)

has a nontrivial solution v and put

M; =max {v@(¢) : t € 0,w|r,
{ () | ]} (1=0,...,n—1). (2.2)
m; = —min {v(’)(t) € [0,w]}

First assume that v is still non-negative or still non-positive. Without loss
of generality we can assume that v(¢) > 0 for ¢ € [0,w]. Obviously, My > 0,

mo < 0. If v = Const, from (0.3) we get ||€o1] = ||loz2]|, which contradicts
(1.1)-(1.3). Thus v # Const and from Lemma 2.2 it follows that
M;>0, m>0 (i=1,...,n—1). (2.3)
Choose t;,ts € [0,w] such that
U(nil)@l) = —Mp_1, U(nil) (tQ) = Mn—l- (24)
Obviously, either
11 < 9 (25)
or
t1 > to. (26)

Let (2.5) be fulfilled. Then, in view of (0.12), (2.2), (2.4), and Lemmas 2.1, 2.2,
the integration of (0.3) from t; to ty yields

to [2)

A (D) = /fo,l(v)(S)ds—/50,2("0)(8)053+Z/€i(v(i))(3)ds

t1 t1

n—1

< Molltoa ]|+ A () 4]l (2.7)

i=1
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If (2.6) is fulfilled, then analogously to (2.7) the integration of (0.3) from 0 to
t, and from ¢; to w results in

n—1 2

to

Mn—l - U(n_l)(O) S M0/€0,1(1 dS + Z/ |£ (l ‘dS
0

U(n 1)( )‘l—mn 1<M0/€01 d$+2/|€ ’dS
t1

Summing the last two inequalities, on account of (0.4), (0.12), and (2.2) we get

n—1

A (v"Y) < Mollboall + ZA N4l (2.8)

Thus for both (2.5) and (2.6) inequality (2.8) is fulfilled.
Furthermore, from (2.8), according to Theorem 0.2, we get

A (v(”_l)) (1—Q) < Myl (2.9)

where  is defined by (1.5). Now from (2.9), again using Theorem 0.2, we
obtain

d,_
= = (M +mo) (1 — Q) < My|| o],
whence we get
n—1
M, (1 —Q- ‘; ||eo,1||) < —m(1 - Q). (2.10)
n—1

On the other hand, in view of (0.4), (2.2), and Lemmas 2.1, 2.2, the integra-
tion of (0.3) from 0 to w yields

n—1
—mollloall < Molloall + > A (07) [t (2.11)
i=1
According to Theorem 0.2, from (2.11) we obtain
—mo||ozll < Mollloall + A (v"*7V) @, (2.12)
where € is defined by (1.5). Now, (2.12) and (2.9) result in
—mo(1 = )[[loz]] < Mol lo, ]| (2.13)

Multiplying the corresponding sides of the inequalities (2.10) and (2.13), in view
of (1.1), (1.2) and the fact that —mgy > 0 (see (2.10)), we obtain

wnfl
<1 SO ||£o,1u) ozl < ol
n—1

which contradicts (1.3) with j = 0.
Now suppose that v assumes both positive and negative values. Then accord-
ing to Lemma 2.2 it follows that M; > 0, m; > 0 (¢ = 0,...,n — 1). Choose

t1,ts € [0,w] such that (2.4) holds and without loss of generality we can assume
that (2.5) is fulfilled.
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In view of (2.2), and Lemmas 2.1 and 2.2, the integration of (0.3) from 0 to
ty, from t; to t9, and from ¢, to w, respectively, yields

M1 + 0™ (0) < M, / lo2(1)(s)ds + mo / lo1(1)(s)ds

n—1 t

+) / 10:(0 D) (s)]ds, (2.14)
=17
to to
Mn—l + Myp—1 S Mo/f(),l(l)(S)dS + m0/£072(1>(8)d8
t1 t1
n—1
+> AW, (2.15)
i=1
M,y — v V(W) < Mo/ﬁ(),g(l)(S)dS + mO/EU,l(l)(s)ds
to t2

n—1 Y

+Z/|€ s)|ds. (2.16)
Summing (2.14) and (2.16), on account of (0.4), (0.12), and (2.2) we get

A (U("—l)) < MO/EOQ(l)(s)dS—|—m0/€071(1)(8)d8

I I
n—1
+ ) AD)14], (2.17)
i=1

where I = [0, t1] U [t2,w]|. However, according to Theorem 0.2, (2.17) and (2.15)
result in

A (o) (1 - Q) < My /502(1)(5)615 +mo /£01(1)(s)ds, (2.18)
A((n D)(l—Q <M0/£01 d8+m0/£02 (219)

Now we note that (1.2) and Theorem 0.2 imply & T (Mo + mo)(1 — Q) <
A (D) (1 — Q). In view of (1.2) and the latter inequality, from (2.18) and
(2.19) we get
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O<m0<1—

to

0 < M0(1 —0- ‘;nl /60,1(1)(3)@)

n—1
t1

< m0<‘;:_11 fﬁogu)(s)ds_ (1 —Q)), (2.21)

t1

which immediately imply the inequalities % Jrlo2(1)(s)ds > 1 —Q, d":1
Ji2 lo2(1)(s)ds > 1 = Q, and thus
wnfl
g 1€o2]| > 2(1 — Q). (2.22)
n—1

Multiplying the corresponding sides of the inequalities (2.20) and (2.21) we
obtain

(a7 fuon) -0 fuco)
( /502 s)ds — (1 — Q )( /602 s)ds — ( 1—9)). (2.23)

On the other hand, since (o — 8)(av — ) > oo — (B + 7)) if By € R, we have

(- (- )

n—1

> (1-9Q) (1 - Q- C;n_l |Wo,1||>7 (2.24)

and, furthermore, in view of the inequality 4o < (a + )2, we have

(;’:_11 /eo,gu)(s)ds (- Q)) (‘;:_11 7@072(1)(3)615 (- Q))

t1

<1 (5 lal-20-0)) . 2
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Then, using (2.24) and (2.25) in (2.23), in view of (2.22) we get

wn—1 w1
11— (1-0- ¢ losl — (1 =),
\/< ) (1= 2= S al) < 7ol = (1= 9)

which contradicts (1.4) with j = 0. Consequently, our assumptions fail, and so
v =0. U

Proof of Theorem 1.2. First note that if conditions (2.3) with M; and m; defined
by (2.2)are fulfilled, then, in view of (0.12), for any measurable set A C [0,w]
the estimates

1y / 6(0)(s)ds = / s O))ds — [ a0 (s)ds

M; /él 145(1 d5+m1/&2 i(1)(s)ds < A( ’)) max{|[|€; 1], [|€; 2]}

hold for j=0,1,4=1,...,n— 1. Consequently, all the arguments hold true
in the proof of the inequalities (2.9), (2.8), (2.12), (2.18), and (2.19) using
the above estimates, and thus Theorem 1.2 can be proved in the same way as
Theorem 1.1. More precisely, at the end of the proof of Theorem 1.2 we obtain

1
the contradiction with the assumptions for {2 = Z dn - -max{||l; 1], |42}
U

Proof of Corollary 1.1 immediately follows from Theorem 1.1 with j= HT" OJ
Proof of Corollary 1.2 immediately follows from Corollary 1.1 with ¢; =0 (i =
1,...,n—1). O

On Remark 1.3. Define the functions Wy, Wix @ [0,1] — [0,1] and the
numbers ;. (i,k € N) by

1 for Ogtg}l—sik
Wor(t) = sinkm(l —4t) for 3 — & <t <1+ 5, (2.26)
= begsis
1 1 1
Wok -+t :ng - —1 for OS'LLS—, (227)
T\ 2 T\ 2 2
1/4
/Wmlk Yds — O, /Wmlk for t € [0,w], meE N,
where
0 if =2u—1
b=, T e,
1 if m=2u
1 1
pEN. (2.28)

lop1p = —————, lopr = 55—,
B T Wy 1 4 (1/4)] PE T Wape(1/2))]
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To show the validity of Remark 1.3 we use the properties of Wy, Wi, and
l; x which are proved in [6]. In particular, the following equalities are valid for

i,k € N (see Lemmas 2.3 and 2.4 in [6]):
Wi k(0) = Wi k(1),
WOt) = Wijut)  for tel0,1] 5 <i,

lim l@k = li,

k—4o00
1
A(Wig) = EA(WO,k),
Wi (-t = (=1)'W; Ly for 0< 1<
i,k 9 — i,k 9 or ="=9 )
Wi (21 = (-1 'w; 1+t for 0< 1<
’l,k‘ 4 - 7,7k; 4 or -~ -~ 4 .

According to Theorem 0.2, in view of (2.29) and (2.30), we have

1 a1
AWig) < AW = =

d diA(WQk)a

whence, with respect to (2.32), we obtain

l@k > dz

(2.29)

(2.30)
(2.31)

(2.32)
(2.33)

(2.34)

Now, assuming that (1.15) holds, on account of (2.31), it follows that for every

€ > 0 there exists ky € N such that

loot = dpy < ly1o < dpoy + Z for k > ko.
Put

00(t) = (dut + =) Waraot) - for ¢ € [0,1],
According to (2.28) and (2.35) we get

lvolle > lu—1.ho W10l > 1.
Thus in view of (2.33) and (2.34) we have
fte0 w1} £0,  {te(0,1]: () < —1} £,
which implies the existence of t1,t, € [0, 1] such that
vo(ty) = 1, vo(t2) = —1.

Now let w =1, o(x)(t) = |vén)(t)|x(7(t)) with

(1) = t; for W67k0 (t)>0
)ty for Wik () <0

(2.35)

(2.36)
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Then fy € P, [[fo]| # 0, in view of (2.36) we have vo(7(t)) = sgn W, (t), and
from the definition of the function Wy (see (2.26) and (2.27)) we have

1

n 9
ol = [ 10§75 ids = 4 (s + 5)

1
1
/ |'sin’ mko(1 — 4s)|ds
0 1

8ko

NI

= 4d, 4 +e. (2.37)

Thus, all the assumptions of Corollary 1.2 are satisfied except (1.11), instead
of which condition (1.11.) is fulfilled with w = 1. On the other hand, by (2.30)
we get

0" (£) = Wi 1, (£) = W g, (1)) 580 W, (6) = ™ [uo( (1)) = Lo(uo) (8)-
Therefore vy is a nontrivial solution to the homogeneous problem
V() = bo()(t),  vP0)=0P(1)  (i=0,...,n—1),

which contradicts the conclusion of Corollary 1.2.
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MAIN NOTATION

R =]—o00,+oc[, RT =]0,+o0].
Let ao € R.
[a] is the integral part of the number «,
o]+« o] -«
o] = 22 gy el

C(]a,b]) is the space of continuous and bounded functions u :]a, b[— R
with the norm
lullc = sup{|u(t)| : a <t < b}.

Choc(Ja, b)) is the set of the functions u :]a, b[— R absolutely continuous
on each subsegment of |a, b].

51'“( Ja,b[) is the set of the functions u : ]a, b — R absolutely continuous
on each subsegment of Ja, b[ along with their first order derivatives.

L(Ja,b]) is the space of summable functions « : [a,b] — R with the norm

b
Jullz = / fu(s)ds.

Lo (Ja, b]) is the space of essentially bounded functions u :]a, b — R with

the norm
|lu|| = esssup|u(t)].
t€la,b]

Lipc(Ja, b)) (Lioc(]a, b])) is the set of the measurable functions v : Ja, b[ — R
(u :]a,b] — R), summable on each subsegment of |a, b[ (]a, b]).

Let z,y :]a, b[—]0, +o0o[ be continuous functions.

Cyx(Ja,b]) is the space of functions u € C(]a, b[) such that

Ju(®)]

c@:sup{—: a<t<b}<+oo.

(t)

Ly([a,b]) is the space of the functions u € L(]a, b[) such that

[[ul

b
lullzy = / y(5)[u(s)|ds < +oo.

L(Cy; Ly) is the set of the linear operators h : Cy(]a, b]) — Ly ([a, b]) such
that
sup {|h(u) ()] : |[ullc.e <1} € Ly([a,b]).
o Lioc(]a, b]) — 6100(](1, b[) is the operator defined by

o) = eso ([ o) o a<r

a+b

2



where p € Lioc(]a, b]).
If o(p) € L([a, b]), then we define the operators o1 and oy by

t b
1
o)) = o / 7(p)(5)ds / o(p)(5)ds,
1 t

o2(p)(t) = /a(p)(s)ds for a <t <b.

a

a(p)(t)
Let f, g € C(Ja,b]) and ¢ € [a,b]. Then we write

f)=0(g(t)) (f(t)=07(g(1)) as t—c,
if

OL 1 s VO o)

/()] L
lim sup < 40 (0 < lim inf msup 7—— < +00
t—e " [g(d)] t—e  |g(t)] t—e " |g(t)]

Let A and B be normed spaces and let U : A — B be a linear operator.
Then we denote the norm of the operator U as follows:

U] a—B-



INTRODUCTION

During the last two decades the boundary value problems for functional
differential equations attract the attention of many mathematicians and are
intensively studied. At present the foundations of the general theory of
such kind of problems are already laid and many of them are investigated
in detail (see [1], [2], [19]-[23], [44] and references therein). Despite this fact,
there remains a wide class of boundary value problems on the solvability of
which not much is known. Among them are the two-point boundary value
problems for linear singular functional differential equations of second order,
and we devote our work to the investigation of these problems.

It should be noted that the present monograph is tightly connection with
the works of I. T. Kiguradze [17], L. B. Shekhter [23] and A. G. Lomtatidze
[27] in which for singular ordinary differential equations we developed the
method of upper and lower Nagumo’s functions in the case of boundary value
problems and found the conditions under which Fredholm’s alternative is
valid in the case of linear equations. We introduced and described the set
Vo,; (see Definition 1.1.2).

In the present work we consider the equation

u(t) = po(t)u(t) + p1(t)u'(t) + g(u)(t) + pa(t) (0.0.1)
under the boundary conditions
u(a) =c1, u(b) =co (0.0.2)
or
u(a) =c1, u'(b—) = co, (0.0.22)
and separately for the case of homogeneous conditions
u(a) =0, wu(b) =0,
u(a) =0, u'(b—)=0,
where ¢1, c2 € R, pj € Lige(Ja,b]) (7 =0,1,2) and g : C(]a,b]) — Lioc(]a, b])

is a continuous linear operator. In studying these problems the use is made
of the auxiliary equation

u”(t) = po(t)u(t) + pr(t)u'(t) — h(u)(t),

where h : C(Ja,b]) — Lioc(Ja, b]) is the nonnegative linear operator.

The question of the unique solvability of problems (0.0.1), (0.0.2;) is
studied in Chapter I. We introduced sets of two-dimensional vector functions
(po,p1) :Ja, b[— R2, V; 5(]a, b; h), B € [0,1] (see Definitions 1.1.3 and 1.1.4),
which were found to be useful for our investigation. In Section 1.1, in terms
of the sets V; g(]a, b[; h) we established theorems for the unique solvability
of problems (0.0.1), (0.0.23;). The question on the unique solvability of
problems (0.0.1), (0.0.2,9) in the space with weight Cj(Ja,b]) is studied
separately. In the same chapter we can find corollaries of basic theorems



and and also the effective sufficient conditions for the unique solvability
of the above-mentioned problems. Among them there occur unimprovable
conditions and those which generalize the well-known results for ordinary
differential equations.

In Chapter II we consider the question dealing with the correctness of
problems (0.0.1), (0.0.2;) under the assumption that (pg,p1) € V; g(]a, b[; h).
The effective sufficient conditions guaranteeing the correctness of the above-
mentioned problems are presented.

Everywhere in our work, special attention is given to the case, when the
operator g in equation (0.0.1) is defined by the equality

g(W)(t) = D ge(t)ulmu(t)),
k=1

where gx € Lioe(]a, b)), 7 : [a,b] — [a,b] (k = 1,...,n) are measurable
functions.



CHAPTER

UNIQUE SOLVABILITY OF TWO-POINT BOUNDARY
VALUE PROBLEMS FOR LINEAR SINGULAR
FUNCTIONAL DIFFERENTIAL EQUATIONS

§ 1.1. STATEMENT OF THE PROBLEM AND FORMULATION OF BASIC
RESuLTS
In this chapter we consider the linear equation
u”(t) = po(t)u(t) + pr(t)u'(t) + g(u)(t) + p2(t) (1.1.1)
under the boundary conditions
u(a) =1, u(b) =co (1.1.29)
or
u(a) =c1, u'(b—)=co, (1.1.25)
where pg, p; € Lioc(]a,b]), ¢; € R (j =1,2) and ¢ : C(Ja,b]) — Lioc(]a, b])

is a continuous linear operator.
The equation (1.1.1) will also be studied separately in the weighted space
C,s(]a, b]) under the homogeneous boundary conditions

u(a) =0, u(b)=0 (1.1.210)
u(a) =0, u'(b—)=0, (1.1.290)

where 4 €]0,1] and

(%) :/tU(pl)(s)ds(/ba(pl)(s)ds)Q_i for a<t<b.

When considering the problems (1.1.1), (1.1.21) and (1.1.1), (1.1.241¢), it
will always be assumed that
Dy S LIOC(]a7bD (] = 0) 172);
o(p1) € L([a,b]), po € Loy (py) ([a, b]),

and when considering the problems (1.1.1), (1.1.22) and (1.1.1), (1.1.24)
we will assume that

(1.1.31)

pj € LIOC(]avb]) (] = 0; 172)a
o(p1) € L([a,b]),  po € Loy (py)([a, b]).

Introduce the following definitions.

(1.1.3,)



Definition 1.1.1. Let i € {1,2}. We will say that w € C(]a, b[) is the lower
(upper) function of the problem (1.1.1), (1.1.2;) if:

(a) w’ is of the form w'(t) = wo(t) + wi(t), where wy :]a,b[— R is
absolutely continuous on each segment from ]a, b[, the function w; :]a, b[—
R is nondecreasing (nonincreasing) and its derivative is almost everywhere
equal to zero;

(b) almost everywhere on |a, b[ the inequality

w" () > po(H)w(t) + p1(L)w' (t) + g(w)(t) + pa(t)
(w”(t) < po(t)w(t) +pr(t)w'(t) + g(w)(t) + p2(t))

is satisfied:
(c) there exists the limit w’(b—) and
w(a) < e, wY(b=) < ey (w(a) > ¢, w D (h—) > c2).
Definition 1.1.2. Let i € {1,2}. We will say that a two-dimensional vector

function (po,p1) :]a, b — R? belongs to the set V; o(]a,b[) if the conditions
(1.1.3;) are fulfilled, the solution of the problem

W"() = po(Hyu(t) + pr (' (1), (1.1.4)

u(a) =0, lim w(t)

oo ®

has no zeros in the interval Ja, b[ and u(~1 (b—) > 0.

Note that this definition is in a full agreement with that of the set
Vio(Ja,b[) given in [23] as the set of three-dimensional vector functions
(po,p11,P12) :a,b[— R if p11(t) = p1a(t) = p1(t) almost everywhere on
Ja,b[.

Definition 1.1.3. Let ¢ € {1,2} and h : C(Ja,b[) — Lioc(Ja,b]) be a con-
tinuous linear operator. We will say that a two-dimensional vector function
(po,p1) :]a, b — R? belongs to the set V; o(]a, b[; k) if the conditions (1.1.3;)
are satisfied and the problem

u”(t) = po(t)u(t) +p1(O)u'(t) — h(u)(t)
u(a) =0, wVb-)=0
has a positive upper function w on the segment [a, b].

Definition 1.1.4. Let ¢ € {1,2}, § €]0,1] and h : C(]a,b[) — Lioc(]a,b])
be a continuous linear operator. We will say that a two-dimensional vector
function (po, p1) :]a, b[ — R? belongs to the set V; 5(]a, b[; h) if

(po,p1) € Vi,()(]a; b)),



there exists a measurable function ¢g :]a, b[ — [0, +oo[ such that

b
/wmﬂ%@@:owﬂm

ast —a,t —bifi=1,and ast — b if i = 2, where GG is Green’s function
of the problem (1.1.4), (1.1.2;9) and

b

mwjamxgw</a@xgw)2imragtga

and the problem

u”(t) = po(t)u(t) + pr (W) (t) — h(u)(t) — ga(t),
u(a) =0, uV(b-)=0

on the interval ]a, b[ has a positive upper function w such that
w(t) = O* (z°(t))

ast —a,t—bifi=1landast —aifi=2.

1.1.1. Theorems on the Unique Solvability of the Problems (1.1.1), (1.1.2;)
(i =1,2).

Theorem 1.1.1;. Let i € {1,2},

D2 € Lai(pl)([a,b]) (1.1.50

and let the constants a, B € [0,1] connected by the inequality

at+pf<1 (1.1.6)
be such that
(po,p1) € V; 5(]a,bl; h), (1.1.7,)
where
he £(Cori Lo )N L(C; Lup) (1.1.8;)

is a nonnegative operator and

t

x(t) = /o(pl)(s) ds(/ba(pl)(s) ds)Qi for a<t<b. (1.1.9;)

a
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Let, moreover, a continuous linear operator g:C(]a,b[)—Le, ) ([a,b]) be
such that for any function v € C(Ja,b]) almost everywhere in the interval
la, b| the inequality

lg(u)(®)] < h(lul)(t) (1.1.10)

is satisfied. Then the problem (1.1.1), (1.1.2;) has one and only one solu-
tion.

Theorem 1.1.1;9. Leti € {1,2} and let the constants o € [0,1[, 8 €]0, 1]
connected by the inequality (1.1.6) be such that

p2 € La-5 ([a, b]) (1.1.11)

o(p1)

and the functions po, p1 :]a,b][— R satisfy the inclusion (1.1.7;), where
heL(Cps; L _so) (1.1.12)

a(p1)

is a nonnegative operator and the function x :]a,b[— RT is defined by the

equality (1.1.9;). Let, moreover, a continuous linear operator g:Cys(]a, b[) —

L s ([a, b)) be such that for any function u € Cys(Ja,b]) almost everywhere
o(pP1

in the interval ]a,b| the inequality (1.1.10) is satisfied. Then the problem
(1.1.1), (1.1.20) has one and only one solution in the space Cys(]a,bl).

Remark 1.1.1;. Let ¢ € {1,2} and all the requirements of Theorem 1.1.1;
be satisfied. Then for any function vy € C(Ja,b[) there exists a unique
sequence vy, : [a,b] — R, n € N, such that for every n € N, v, is a solution
of the problem

0" (t) = po(t)vi(t) +p1(t)v'(t) + g(vn—1)(t) + pa(t),

) 1.1.13;
v(a) =c1, Vb)) = ey, ( )

and uniformly on ]a, b]

lim (v, (t) — u(t)) =0, lim o;(p1)()(W],(¢) — /() =0,  (1.1.14)

where u is a solution of the problem (1.1.1), (1.1.2;).

Remark 1.1.1;9. Let ¢ € {1,2} and all the requirements of Theorem 1.1.1;9
be satisfied. Then for any function vy € C,s(]a,b[) there exists a unique
sequence vy, : [a,b] — R, n € N, such that for every n € N, v, is a solution
of the problem

v (t) = po(t)u(t) + pl(t)UfEtl) +9(vn-1)(t) + p2(t), (1.1.13)
v(a) =0, v~ (b—)=0,
and uniformly on ]a, b]
lim Un —ul) _, 0 ) —w'@) =0,  (1.1.15)

e T 2 e o(p)(D)
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where w is a solution of the problem (1.1.1), (1.1.2;).
We can easily give examples of the operator h and the function p; such
that h € E(Cxe;L%) and h & L(C; Ly, (p,))-
o(pP1
Example 1.1.1. Let € > 0, p1(t) = 0, h(u)(t) = [(b — t)(t — a)]727¢ for
a <t <bandlet 7: [a,b] — {a,b} be a measurable function.
Example 1.1.2. Let a = =1, b=1, o = 8 = £, p1(t) = 0 and h(u)(t) =

(1 —t3)Bu(r(t), 7(t) = /1 — (1 —2)10 for —1 < t < 1. Then it is clear

that
olp)®) =1, z@t)=1—1>, z'/5(r@t) =1 —t*)? for —1<t<1

and

1
< —-.
a+f 5

In such a case if uy € C ([-1,1]) it follows from the inequality

luy (7(1))| < 02M/5(7(t)) for —1<t<1,
where
5=SUPH ‘: —1<t<1},
that
1
[ muneas <5 [0 as < 4o,
A Y

i.e., the condition (1.1.11;) is satisfied.
Let now ug(t) = 1. Then ug € C(] — 1,1[) and

/1x(8)h(W)(S)d5 = /1(1 — %) ds,

i.e., owing to the fact that the last integral does not exist, the condition
(1.1.84) is violated.

Consider the case where po(t) = 0, p1(t) = 0, i.e., when the equation
(1.1.1) has the form

u”(t) = g(u)(t) + p2(t). (1.1.16)
Then the following theorem is valid.

Theorem 1.1.2;. Let v € [0, 1],
p2 € Ly([a,b]) (1.1.17)

and

g€ L(C; L) (1.1.18)
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be a nonnegative operator, where
z(t)=(t—a){t—>b) for a<t<b. (1.1.194)

Let, moreover, there exist constants a, 5 € [0, %] such that

0<f<1—n, (1.1.20)
oHrﬂS% (1.1.21)
and
b
/xa(s)g(xﬁ)(s) ds < 2° 176(1 (b - a>2(a+6), (1.1.22)

a

Then the problem (1.1.16), (1.1.21) has one and only one solution.

Remark 1.1.2. Theorem 1.2.2; will remain valid if we replace the condi-
tions (1.1.20) and (1.1.22) respectively by

0<p<l—n, (1.1.23)

and

b

/ma(s)g(xﬁ)(s) ds < 261)

a

16 (b — a)Q(a+ﬁ)

. (1.1.24,)

—a

Theorem 1.1.25. Let v € [0,1] and let a function pa and a nonnegative
operator g satisfy respectively the inclusions (1.1.17) and (1.1.18), where
z(t)=t—a for a<t<hb. (1.1.199)

Let, moreover, there exist constants «, 8 € [0, %] such that the conditions
(1.1.20), (1.1.21) are fulfilled and

b
8 (b—a\ots
«a 16 <
[ oo < (030t
Then the problem (1.1.16), (1.1.22) has one and only one solution.
Theorem 1.1.2;0. Leti € {1,2}, v €[0,1], § €]0,1 —~],
p2 € Ly ([a,b]) (1.1.25)

and let

g € L(Cys; L) (1.1.26)
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be a monnegative operator, where the function x is defined by the equality
(1.1.19;). Let, moreover, there exist constants o € [O,%], 3 €]0, %], such
that

§<B<1—vy (1.1.27)

and the conditions (1.1.21), (1.1.24;) are satisfied. Then the problem
(1.1.16), (1.1.29) has in the space Cps(]a,b]) one and only one solution.

Remark 1.1.3. The condition (1.1.22) is unimprovable in the sense that
it cannot be replaced by the condition

b
/za(s)g(zﬁ)(s) ds < Qﬁ%

a

(bia)Q(awﬁs (1.1.28)

4

with no matter how small ¢ > 0.

Indeed, let
1 1
=0 =0 = —_ b= =
a=0, =0, a=—g, 5
€ 1
= =16\ 1+ ——
A(16+e) M V'@
1 1
642(16p2 — (1 +41)2)~% for te } —g-A g+ A[
1
go(t) = { 64p2(16p> — (1 —48)%)"3% for te€ hﬂ, Z“[ ,
1 1 1 1 1 1
0 for [—gmg=Aul-gHa g ulpa g
1 1
p2(t) =0, 7(t) = 716+Esignt for — 5 <t< 3
and
g(u)(t) = go(t)u(r(t)).
Then the problem (1.1.16), (1.1.219) can be rewritten as
u”(t) = go(t)u(r(t)), (1.1.29)
1 1
u(—a) =0, u(§> = 0. (1.1.30)

Note that for the operator g defined in such a way the condition (1.1.18) is
satisfied for v = 0 and

1

g(1)(s)ds = /go(s) ds =16 + ¢,

|
= \MI»—‘

1
2
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i.e., instead of (1.1.22) the condition (1.1.28) is satisfied. In spite of this
fact we can check directly that the function

t

u(t)c{/ Sgo(n)sign(*n)dndsf (‘”Z)(“%ﬂ

1
2

is for any ¢ € R a solution of the problem (1.1.29), (1.1.30), i.e., the unique
solvability is violated.

1.1.2. Effective Sufficient Conditions for the Unique Solvability of the Prob-
lem (1.1.1), (1.1.2;) (i = 1, 2).

Corollary 1.1.14. Let the function x be defined by (1.1.91), the constants
a, 3 € [0,1] be connected by (1.1.6), the functions p; :]a,b[— R (j =0,1,2)
satisfy (1.1.31), (1.1.51),

[po]— € L_se_([a,0]) (1.1.31)

a(p1)

and for every function u € C(]a,b]) almost everywhere on interval ]a, b[ the
inequality (1.1.10) is satisfied, where a nonnegative operator h satisfies the
inclusion (1.1.8;). Let, moreover,

[(/ba(pl)(n)dn) a/t ([po(S)]-:f(Z()sl)):;)h(xﬁ)(s)) (/U(pl)(n)dn)“dH

o fomon) I f o) ]

b
4 Ja(pr)(m)dn, s(a+p)
< = ) for a<t<b (1.1.32)

fb a(p1)(n)dn ?

Then the problem (1.1.1), (1.1.21) has one and only one solution.

Corollary 1.1.15. Let the function x be defined by (1.1.92), the constants
a, 3 € [0,1] be connected by (1.1.6), the functions p; :]a,b[— R (j =0,1,2)
satisfy (1.1.32), (1.1.52), (1.1.31) and for every function u € C(]a,b[) almost
everywhere in the interval ]a,b[ the inequality (1.1.10) be satisfied, where a
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nonnegative operator h satisfies (1.1.82). Let, moreover,

/t ))(J;)h(zﬁ)(s)) (/so(m)(n)dn)adﬁ
+( )’ / 0 M)

b

< </a(p1)(77)d77) e for a<t<b. (1.1.329)

Then the problem (1.1.1), (1.1.22) has one and only one solution.

Corollary 1.1.1;0. Let i € {1,2}, the function = be defined by (1.1.9;),
the constants o € [0,1[, B €]0,1] be connected by (1.1.6), the functions
pj t]a,b[— R (j = 0,1,2) satisfy (1.1.3;), (1.1.11), (1.1.31) and for any
function u € Cys(]a,b]) almost everywhere in the interval |a, b[ the inequality
(1.1.10) be satisfied, where the nonnegative operator h satisfies the inclusion
(1.1.12). Let, moreover, (1.1.32;) be satisfied. Then the problem (1.1.1),
(1.1.250) has in the space Cys(]a,b]) one and only one solution.

Remark 1.1.4. Corollary 1.1.1; remains valid if we replace the conditions
(1.1.8;) and (1.1.32;) respectively by the conditions

h € L(C; Ly (p1))s (1.1.33)

and

/b (lpo(s)] - 7(s) + 2 (s)h(z")(5))

J 7)) e
b 2(a+p)
A [ a(p1)(n)dn
< S (1.1.34;)

b
[ o(p1)(n)dn

for i =1 or by

/b (Ipo(s)]-a*"(s) +z"()h(a?)(s) 4, (/b U(pl)(n)dn)aw_l

(p1)(s) (1.1.345)

a a

for ¢ = 2, where the function z is defined by (1.1.9;).

Remark 1.1.4¢. Corollary 1.1.1,9 remains valid if we replace (1.1.32;) by
(1.1.34;) and reject the condition (1.1.12) at all.
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Consider the case where the equation (1.1.1) has the form

u(t) = po(t)u(t) + p1(t) +ng )) + pa(t). (1.1.35)

Corollary 1.1.24. Let the function x be defined by (1.1.91), the constants
a, f €10,1] be defined by the inequality (1.1.6), the functions p; :]a,b[— R
( = 0,1,2) satisfy the conditions (1.1.31), (1.1.51), (1.1.31), 7% : [a,b] —
[a,b] (k=1,...,n) be measurable functions and

gkxﬁ(rk) S L#al)([a,b]), gk € Lgl(pl)([a,b]) (k’ =1,... ,n). (1.1.361)

Let, moreover,

¢ (fpo()]-27(s) + - lg(s)]a?(s(5)))

(/ “(p”(")d")a/ o) *

a

X </80(p1)(n)dn)ad5+ (/ta(pl)(n)dn)a x

a a

b ([po(s)]-2(s) + 3 lgu(s)la? (7e(s)) , @

< e (/ (’“’1)(”)‘”7) i<

t s
b
4 Jolp (a+B)
< g ) for a<t<b (1.1.37)

fa(pl)(n)dn

Then the problem (1.1.35), (1.1.21) has one and only one solution.

Corollary 1.1.25. Let the function x be defined by (1.1.92), the constants
a, B € [0,1] be connected by (1.1.6), the functions p; :]a, b[—> R (j =
0,1,2) satisfy (1.132), (1.1.52), (1.1.31), 7% : [a,b] — [a,b] (k=1,...,n) be
measurable functions and

9r0”(1) € Lo (08]), gk € Loyipuy(fasB]) (k=1,...,m). (1.1362)

Let, moreover,

()] )+ Z gk (s)|27 (e (s)) ,

j = ([ otwionin) as+

a
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[Po(s)] )+ Z |91 (5)|2” (i (5))

</ 7 d”)/ 7 e

< (/a(pl)(n)dn) e for a<t<hb. (1.1.372)

Then the problem (1.1.35), (1.1.29) has one and only one solution.

Corollary 1.1.2;9. Let i € {1,2}, the function x be defined by (1.1.9;),
the constants o € [0, 1], B €]0, 1] be connected by the inequality (1.1.6), the
functions p; :]a,b[— R (j = 0,1,2) satisfy the conditions (1.1.3;), (1.1.11),

(1.1.31), 7% : [a,b] — [a,b] (k=1,...,n) be measurable functions and
grrP () € Lo ([ab]) (k=1,...,n). (1.1.38)

Let, moreover, the conditions (1.1.37;) be satisfied. Then the problem
(1.1.35), (1.1.20) has in the space Cys(]a,b]) one and only one solution.

Remark 1.1.5. Corollary 1.1.2; remains valid if we replace the conditions
(1.1.36;) and (1.1.37;) respectively by the conditions

Gk € Loy (a,b]) (k=1,....n) (1.1.39)
and
b [po(s)]-z* 7 (s) + a* é:l |91 (s) |27 (7k(5))
a/ 7o) e
b 2(a+pB)
4 Jo(po)(m)dn
<= 3 5 (1.1.404)
Jo(p1)(n)dn
for i =1 or by
b Ipo(s)]-2 () + 27(5) 3 law(s)le? ()
a/ o) e
b a+6—1
< (/a(pl)(n)dn) (1.1.409)

for ¢ = 2, where the function x is defined by (1.1.9;).
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Remark 1.1.5¢. Corollary 1.1.2,9 remains valid if we replace (1.1.37;) by
(1.1.40;) and reject the condition (1.1.38) at all.

Corollary 1.1.31. Let the function x be defined by (1.1.91), the constants
a, B € [0,1] be connected by (1.1.6), the functions gx, p; :]a,b[— R (k =
1,...,n; 7 =0,1,2) satisfy (1.1.31), (1.1.51), (1.1.361), where 7% : [a,b] —

[a,b] (k=1,...,n) are measurable functions and
po(t) >0 for a<t<b. (1.1.41)
Let, moreover, for any m € {1,...,n} the condition
n T b 5
gk\s
— o d o d X
S [ 2L ([ ewman [ o)
k=1 a 75 (s)
s b
(03 [0
< [onman) as( [ o) +
a Tm (t)
n | Tr(s) b 3
D> / L ( / sondn [ o)min) x
RO 7k (8)
b Tm(t) -
X</O’ dn) ds< p1)(77)d77> <
b 2(a+pB)
A Jo(p1)(n)dn
<5 < 5 , a<t<b, (1.1.42)
Jo(p1)(n)dn

be valid. Then the problem (1.1.35), (1.1.21) has one and only one solution.

Corollary 1.1.32. Let the function x be defined by the equality (1.1.92),
the constants o, § € [0,1] be connected by (1.1.6), the functions gy, p; :
Ja,b|— R (k=1,...,n; j =0,1,2) satisfy the conditions (1.1.33), (1.1.53),
(1.1.362), (1.1.41), where 1 : [a,b] — [a,b] (kK = 1,...,n) are measurable

functions. Let, moreover, for any m € {1,...,n} the condition
T (t) Tr(S) s
> | (] 0(p1)(n)dn>ﬁ< [ toon) " as +
2 | Gl

b Tk () Tm (t)

W a a
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< (/a(pl)(n)dn)a+ﬂ_ , a<t<hb, (1.1.425)

be valid. Then the problem (1.1.35), (1.1.23) has one and only one solution.

Corollary 1.1.3;0. Let i € {1,2}, the function x be defined by (1.1.9;),
the constants o € [0,1[, B8 €]0,1] be connected by (1.1.6), the functions g,
pj tla,b[— R (k=1,...,n; j =0,1,2) satisfy (1.1.3;), (1.1.11), (1.1.38),
(1.1.41), where 1% : [a,b] — [a,b] (k = 1,...,n) are measurable functions.
Let, moreover, for anym € {1,...,n} the condition (1.1.42;) be valid. Then
the problem (1.1.35), (1.1.240) has in the space Cs(]a,b[) one and only one
solution.

Remark 1.1.6. The condition (1.1.42;) consisting of n separate inequali-
ties can be replaced by one inequality

Tr(S)

x| for teO, . (1.1.43;)
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b

< (/U(pﬂ(n))a-m_l for te@, . (1.1.43,)

if ¢ = 2, where

n
Orpm = kgl{rk(m a<t<b}.
For clearness we will give one corollary for the equation

u’(t) = go(t)u(r(t)) + pa(t). (1.1.44)

Corollary 1.1.4;. Let i € {1,2}, the constants o, § € [0,1] be connected
by the inequality (1.1.6), 7 : [a,b] — [a,b] be a measurable function and

P2, 90 € Ll‘([aab])a (1'1'45)

where
z(t) = (a—t)(b—1)*"" for a<t<b. (1.1.46)
Let, moreover,

b

/ l9()[[(7(5) = a)(b = 7())*7] " [(s — @) (b — $)>77] “ds <

a

2\ 2(1—a—p)
< (;> (b—a)}a+d)-1, (1.1.47;)

Then the problem (1.1.44), (1.1.2;) has one and only one solution.

Corollary 1.1.4;9. Let i € {1,2}, the constants o € [0,1], 8 €]0,1] be
connected by (1.1.6), 7 : [a,b] — [a,b] a be measurable function,

p2 € Lyi-s([a, b)), (1.1.48)

where the function x is defined by (1.1.46). Let, moreover, the condition
(1.1.47;) be satisfied. Then the problem (1.1.44), (1.1.2,0) has one and only
one solution in the space Cys(]a,b[).

Remark 1.1.7. In the case of the equation
u(t) = go(t)u(t) + p2(t) (1.1.49)

the conditions (1.32;), (1.1.341), (1.1.401), (1.1.421), (1.1.471) will take for
a = 3 =0 the form

b
[l ds < ;7.
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As is known, this condition is unimprovable in the sense that no matter how
small € > 0 is, the inequality

b
4
/|90(8)|d5 N

does not guarantee the unique solvability of the problem (1.1.49), (1.1.21).
This implies that the corollaries corresponding to the above conditions are
unimprovable in the above-mentioned sense.

Corollary 1.1.51. Let the function x be defined by (1.1.91), the constants
a, B € [0, 1] be connected by the inequality (1.1.6), the functions p; :Ja, b[— R
(j =0,1,2) satisfy the conditions (1.1.31), (1.1.51) and for any function u €
C(Ja,b]) almost everywhere in the interval ]a,b] (1.1.10) be satisfied, where
the nonnegative operator h satisfies the inclusion (1.1.81). Let, moreover,
in case B <1,

a(t) (h(xﬁ)(t)
o?(pr)(t) \ z7(t)

and in case B =1,

—po(t)> <28%* for a<t<b, (1.1.50)

z(t)  hz)(t)
t

s o (e )] <2 01sw

be satisfied. Then the problem (1.1.1), (1.1.21) has one and only one solu-
tion.

Remark 1.1.8. The condition (1.1.51) is unimprovable in the sense that
the validity of Corollary 1.1.5; is violated if we replace it by the condition

wt) @) 2
st [ Coon@ e~ P0)] <2 L)

Indeed, let A(u) =0, p; =0, po = 0. Then
op1)(t) =1 and z(t) = (b—t)(t —a) for a <t <b
and the condition (1.1.52) will take the form

etses]s%}[) (= (=t)(t—a)po(t)) <2. (1.1.53)
If )
po(t) = —

G-Di—a)

then the condition (1.1.53) is satisfied in the form of the equality, and at
the same time, for any ¢ € R the function ¢(b—¢)(¢ — a) is a solution of the
equation

u(t) = — ult), (1.1.54)

(b—1)(t—a)
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that is, the uniqueness of solution of the problem (1.1.54), (1.1.2;9) is vio-
lated although the condition (1.1.52) along with the other requirements of
Corollary 1.1.57 is satisfied.

Corollary 1.1.55. Let the function x be defined by (1.1.92), the constants
a, B € [0,1] be connected by (1.1.6), the functions p; :]a,b]— R (j =
0,1,2) satisfy (1.1.32), (1.1.52) and for any function w € C(]a,b[) almost
everywhere in the interval ]a,b[ the inequality (1.1.10) be satisfied, where a
nonnegative operator h satisfies the inclusion (1.1.82). Let, moreover,

Vz[m(t) (hg&()t) po(t))] <B1-8), (1.1.509)

ast L7 P10
2P
W[@OL € Loo([a,b]) (1.1.55)
if0< B <1 and
0 <po(t) —h(1)(t) for a<t<b (1.1.515)

if B = 0 be satisfied. Then the problem (1.1.1), (1.1.22) has one and only
one solution.

Remark 1.1.9. In the case 8 = 1, the condition (1.1.55) follows automat-
ically from the condition (1.1.503).

Corollary 1.1.51¢. Let the function x be defined by (1.1.91), the constants
a € [0,1], B €]0,1] be connected by (1.1.6), the functions p; :]a,b[— R (j =
0,1,2) satisfy (1.1.31), (1.1.11) and for any function u € C,s(]a,b]) almost
everywhere on the interval |a,b| the inequality (1.1.10) be satisfied, where
the nonnegative operator h satisfies the inclusion (1.1.12). Let, moreover,
in case 0 < B < 1 the condition (1.1.501) and in case B = 1 the condition
(1.1.514) be satisfied. Then the problem (1.1.1), (1.1.219) has in the space
C,e(]a,b]) one and only one solution.

Corollary 1.1.52¢. Let the function x be defined by (1.1.92), the constants
a € [0,1], B €]0,1] be connected by (1.1.6), the functions p; :]a,b[— R (j =
0,1,2) satisfy (1.1.32), (1.1.11) and for any function u € C,s(]a,b]) almost
everywhere on the interval |a,b| the inequality (1.1.10) be satisfied, where
the nonnegative operator h satisfies the inclusion (1.1.12). Let, moreover,
the conditions (1.1.502) and (1.1.55) be satisfied. Then the problem (1.1.1),
(1.1.290) has one and only one solution in the space Cys(]a,b[).

Corollary 1.1.61. Let the functions 7 : [a,b] — [a,b] (k=1,...,n) b
measurable and the functions p;, pr € Lioc(]a,b]) (k=1,...,m;j=0,1,2
as well as the constants A, €]0,+0[, Bm € [0,1] (I,m = 1,2), ¢ €]a, b] be
such that the conditions (1.1.31), (1.1.51) are satisfied,

—

gk € Loy (py)([a, b)) (1.1.56,)
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and

ds - (c—a)t=h
A11 + A2s + s? 1-6

(1.1.57,)
ds - (b— )t
A21 + Aaas + s2 1— (s

O\-é— o\-é—

Let, moreover,

(t = ) [po(t) = Y lgn(®)]] = ~Aus,

k=
(t—a)™ [pl(t) TR D lgrO(i(t) - t)} > =12

for a<t<e,
n (1.1.584)

6= 1% [p1(0) 2 = S Ol() ~ )] <
k=1
for ¢ <t<b.

Then the problem (1.1.35), (1.1.21) has one and only one solution.

Corollary 1.1.62. Let the functions 7y : [a,b] — [a,b] (K =1,...,n) be
measurable and the functions p1, p;j, gr € Lioc(Ja,b]) (K =1,...,n;j =
0,1,2) as well as the constants A\, €]0,+o00[, (I,m = 1,2), G, € [0,1]
(r=1,2,3), c €| max(a,b—1);b], € > 0 and the dependent on them constant
a € [0,1] be such that the conditions

o(p1) € L([a,b]), pjo2(p1) € L([a,b]) (5 =0,2),

- 1.1.56
Gos () € L(ab]) (k=1,....n) (1.1.565)
and
—+o00
/ ds - (c—a)t=h
A1+ dgs + 82 1-6
. (1.1.572)

/ ds - (b— )t
21 + Aggs + 52 1— 0
0
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are satisfied. Let, moreover,

NE

(t —a)* [po(t) - ng(t)l} > — i1,

1

P S @l -] =
k

=1

3
Il

(t—a)* [ () +

for a<t<e,

. (1.1.582)
(b= 1) [po(t) = D lgw(®)l] > —adar,
k=1
0= 0[R2 - S lakOl0) -] 2 2
B for c<t<b.
Then for any function p1 € Lige(]a,b]) such that
p1(t) > pi(t) for a<t<b, (1.1.59)

the problem (1.1.35), (1.1.22) has one and only one solution.
Consider now corollaries of Theorems 1.1.2; and 1.1.2;¢ for the equation

u"(8) = gr(t)ulTi(t) + pa (D). (1.1.60)
k=1

Corollary 1.1.74. Let v € [0,1[, the function pa :]a,b]— R satisfy the
inclusion (1.1.17),

gk € Ly-([a,b]) (k=1,...,n) (1.1.61)
and
ge(t) >0 (k=1,...,n) for a<t<b, (1.1.62)
where
z(t)=0b—-t)(t—a) a<t<b. (1.1.634)

Let, moreover, there exist constants a, 8 € [0, %] such that

1
0<f<l-7 a+f<y (1.1.64)

and

n b
5 [ b= s () ~ (0= )" (s — ) ds <

k=1

<28

16 (b — a)Q(a+ﬁ)

(7 (1.1.65)
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Then the problem (1.1.60), (1.1.21) has one and only one solution.

Remark 1.1.10. Corollary 1.1.7; remains valid if for 5 €]0,1 — [ we re-
place the condition (1.1.65) by the following one:

b

D [ ()b —i()) (ri(s) — @)’ (b — 5)*(s — a)*ds <

k=1

< 9B 16 (b—a)Q(aJrﬁ).
~— b—al\ 4
Corollary 1.1.75. Let v € [0,1], the functions pa, pi :]a,b[— R (k =
1,...,n) satisfy the conditions (1.1.17), (1.1.61), and (1.1.62), where

(1.1.66,)

z(t)=t—a for a<t<hb. (1.1.632)

Let, moreover, there exist constants «, 8 € [0, %] such that the conditions
(1.1.64) and

n

b
Z/gk(s)(rk(s) —a)f(s —a)’ds < bfa(b;afw (1.1.665)

k=17,

are satisfied. Then the problem (1.1.60), (1.1.22) has one and only one
solution.

Corollary 1.1.7;0. Let i € {1,2}, v € [0,1[, § €]0,1 — 7],
p2 € sz([a,b]), gkl'é(’rk) € Lz’*([aab]) (k = 17 < -an)a

and the condition (1.1.62) be satisfied, where the function x is defined by
(1.1.63;). Let, moreover, there exist constants o € [0, 1], B €]0, 3] such that
the conditions

1
5<A<1-7, a+fs<s
and (1.1.66;) are satisfied. Then the problem (1.1.60), (1.1.2;9) has in the
space Cys (Ja,b]) one and only one solution.
§ 1.2. AUXILIARY PROPOSITIONS

1.2.1. Statement of Auxiliary Problems and Some of Their Properties. Let
us consider the linear equations

v"(t) = po(t)v(t) + pr(t)V(t) — h(v)(t) + p2(2), (1.2.1)
V(1) = po(t)olt) + P (8 (£) — h(v)(2) (1.2.1)
under the boundary conditions

u(a) =1, u(b) = ca, (1.2.21)
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or
u(a) =c1, u'(b—)=co, (1.2.25)
as well as under the conditions

v(a) =0, wv(b) =0, (1.2.210)
U(a) =0, ’Ul(b—) =0, (12220)

where ¢1, c2 € R and h : C(]a,b[) — Lioc(]a,b]) is a continuous linear
operator and

Pj € Lioe(Ja, b)) (7 = 0,1,2), o(p1) € L([a,0]), po€ Lo, (py)([a,0])  (1.2.31)
or
p; € Lioe(Ja,b]) (j =0,1,2), o(p1)€L(la,b]), po€Lgyp)([a,b]). (1.2.32)
For this purpose we will need the homogeneous equation
o (£) = po(t)o(t) + pr () (2) (1.2.4)

under the initial conditions

v'(t)

v(a) =0, lim P =1, (1.2.5)
_ vit)

v(b) =0, lim O -1, (1.2.51)
v(b)=1, '(b—)=0. (1.2.55)

The facts mentioned in the remarks below or their analogues have been
proved in [23], pp. 110-158.

Remark 1.2.1. Let measurable functions pg, p1 :]a,b[— R satisfy the
conditions (1.2.31) and the functions v; and ve be respectively solutions
of the problems (1.2.4), (1.2.5) and (1.2.4), (1.2.51). Then any linearly
independent with v;, (j = 1,2) solution v of the equation (1.2.4) satisfies
the condition

v(a) #0 for j=1
and

v(b) #0 for j=2.
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Remark 1.2.2. Let i € {1,2} and

(po,p1) S V@Q(]LL,Z)D. (1.2.60
Then the problem (1.2.4), (1.2.2,0) has only the trivial solution and the
unique Green’s function GG can be represented as:

,M for a<s<t<b

G(t,s) = “215;‘()50)%’11(%3) (1.2.7)

————-— for a <t<s<hb,
va(a)o(p1)(s)
where v; and vy are respectively the solutions of the problems (1.2.4), (1.2.5)
and (1.2.4), (1.2.5;), and

G(t,s) <0 for (¢,s)€la,b]x]a,b[, (1.2.8)
G(a,s) =0, G(b,s)=i—1 for a<s<b. (1.2.9))
Remark 1.2.3. Let i € {1,2} and the inclusion (1.2.6;) be satisfied. Then

there exist constants c,, d, € Rt such that the estimates

d < - v1(t) <e. do<— va(t) <o (1210)
Jopi)(s)ds (J otpr)(s) ds)>
for a<t<b,
[0} (8)] /
s =TT / [po(s)[o2(p1)(s) ds,

(1.2.11,)

o(p1)(t a(p1)(s

b b ;
o4 (8) | &)l (], s
jeive, )</ (m)(n)dn) a

S

for a<t<bd

are valid, where v; and vy are respectively the solutions of the problems
(1.2.4), (1.2.5) and (1.2.4), (1.2.5;), and

e <

S e onmpT V= b2 for (s) Easblxa, b (t#5). (12.12:)

Remark 1.2.4. Let i € {1,2}, the conditions (1.2.3;) be satisfied and the
problem (1.2.4), (1.2.2;) have lower wy and upper ws functions such that

wi (t) <wsq(t) for a<t<h.
Then the problem (1.2.4), (1.2.2;) has at least one solution v such that

wy(t) <o(t) <ws(t) for a<t<b.
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Remark 1.2.5. Let i € {1, 2} and the inclusion (1.2.6;) be satisfied. Then
every upper function w of the problem (1.2.4), (1.2.2,0) is nonnegative in
the interval |a, b[; moreover, if

w(a) +w "V (b=) £0,
then w is positive on the interval ]a, b].

Remark 1.2.6. Let ¢ € {1,2}, the functions py, p1 :]a,b[ — R satisfy the
conditions (1.2.3;) and

po(t) >0 for a<t<b.
Then the inclusion (1.2.6;) is valid.
Lemma 1.2.1. Let i € {1,2} and
h e L(C; Lo, (py)) (1.2.13;)
where h is a nonnegative operator. Then
Vio(la,b[; h) C V; 0(Ja, b]).

Proof. Let (po,p1) € V,;o(Ja,b[;h). Then the problem (1.2.1p), (1.2.2)
has a positive upper function w which because of the nonnegativeness of
the operator h will at the same time be an upper function of the problem
(1.2.4), (1.2.2;0).

Consider first the case ¢ = 1. For the equation (1.2.4) we pose the
problem

v(a) =0, v(b) =w(b), (1.2.14)

for which 5(t) = 0 and w are respectively lower and upper functions. Then
by virtue of Remark 1.2.4, the problem (1.2.4), (1.2.14) has a solution vg
such that

0<w(t) <w(t) for a<t<b.

If we assume that vg(tg) = 0 for some ty, €la,b[, then we will get the
contradiction with the unique solvability of the Cauchy problem, i.e.,

vo(t) >0 for a<t<b. (1.2.15)

As is seen from Remark 1.2.1 and the conditions (1.2.14) that vy a solution
of the problem (1.2.4), (1.2.51), and vy are linearly dependent, hence by
virtue of (1.2.15),

vi(t) >0 for a<t<b,

i.e., as is seen from Definition 1.1.2, (pg,p1) € V1 (], b]).
Let now ¢ = 2, and for the equation (1.2.4) we pose the initial problem

v(b) =0, V'(b—)=-1
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which, with regard for the conditions (1.2.32), has a unique solution ¥ de-
fined on the whole interval [a,b]. Then we choose ¢ > 0 such that the
inequality

ev(t) <w(t) for a<t<b (1.2.16)

is satisfied; this is possible because the function w is positive. It is clear
from (1.2.16) that
w (t) = w(t) — ev(t)
is an upper function of the problem (1.2.4), (1.2.29) and
wi(b—) >0, wi(t)>0 for a<t<bh.
We consider now for the equation (1.2.4) the problem
v(a) =0, o'(b—)=wi(b-), (1.2.17)

for which 8(t) = 0 and w; are respectively lower and upper functions. Hence
by virtue of Remark 1.2.4, the problem (1.2.4), (1.2.17) has a solution vg
such that

0<w(t) <wi(t) for a<t<b

and
vo(a) =0, wo(b) >0, vj(b—) > 0.
Reasoning in the same way as for ¢ = 1, we see that (po,p1) € Va,0(Ja,b]). O

Along with Lemma 1.2.1 we have proved the following

Lemma 1.2.2. Let i € {1,2}, the functions po, p1 :]a,b|— R satisfy the
conditions (1.2.3;) and, moreover, let the problem (1.2.4), (1.2.2;0) have a
positive upper function. Then the inclusion (1.2.6;) is satisfied.

Lemma 1.2.3. Let i € {1,2}, the functions po, p1 :]a,b[— R satisfy
the inclusion (1.2.6;) and the nonnegative operator h satisfy the inclusion
(1.2.13;). Let, moreover, po € C(]a,b[) such that

po(t) >0 for a<t<b (1.2.18)

and

b
1
sup {po—(t) / |G(t,8)|h(po)(s)ds: a<t< b} <1, (1.2.19)

where G is Green’s function of the problem (1.2.4), (1.2.2;9). Then there
exists a continuous function p : a,b] — RT such that

1

max { o0

b
/|G(t,s)|h(p)(s)ds L a<t< b} <1 (1.2:20)
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Proof. First of all we note that the existence of Green’s function G of the
problem (1.2.4), (1.2.2;9) follows from Remark 1.2.2, and the boundedness
of the integrals in the inequalities (1.2.19) and (1.2.20) for any continuous
function p follows from the estimates (1.2.12;) and the inclusion (1.2.13;).
Consider now separately the case ¢ = 2. By virtue of the equalities
(1.2.92), the inequality (1.2.19) can be satisfied only under the conditions

po(a) >0, po(b) > 0. (1.2.21)
Then (1.2.19) can be rewritten as

b
/|G(t, s)|h(po)(s)ds < po(t) for a <t <b. (1.2.22)

As is seen from the equalities (1.2.92), there exist positive constants r; and
0 such that

b
/|G(t,s)|h(1)(s)d5 —1<0 for a<t<a+$ (1.2.23)

and
b
/|G(t, s)|h(1)(s)ds —1 <ry for a<t<b. (1.2.24)

On the other hand, from (1.2.22) it follows the existence of a constant ry > 0
such that

b
r2 < po(t) —/|G(t,s)|h(p0)(s)ds for atd<t<b (1.2.25)

Then from (1.2.22)—(1.2.25) we obtain

b b
:—j(/IG(t, s)|h(1)(s) ds — 1) SPo(t)—/|G(t, $)|h(po)(s)ds for a<t<b,

which implies the validity of the inequality (1.2.20) for the function p(t) =
€+ po(t), where e = 2.

To complete the proof of the lemma we note that for ¢ = 1, unlike the
case ¢ = 2, the inequality (1.2.19) by virtue of (1.2.9;) can be satisfied also

for
and for

as well.
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In these cases the above lemma can be proved similarly to the case of the
conditions (1.2.21) with the only difference that the inequality (1.2.22) will
be valid for ¢ € [a,b] or ¢ €]a,b], the inequality (1.2.23) for t € [b — J,b] or
t € [a+6; b—0], and the inequality (1.2.25) will be considered for ¢ € [a,b—J]
ort€la+d,b—46[ O

Lemma 1.2.4. Let i € {1,2},

(po,pl) S Vi70(]a,b[; h), (1.2.261')

where the nonnegative operator h satisfies the inclusion (1.2.13;). Then
there ewists a continuous function p : [a,b] — RT such that the inequality
(1.2.20) holds, where G is Green’s function of the problem (1.2.4), (1.2.2;9).

Proof. As is seen from the definition of the set V; o(]a,b[;h), the problem
(1.2.1p), (1.2.249) has on the interval [a, b] a positive upper function w. Then
we introduce a continuous operator x : C(]a, b]) — C(]a, b[) by the equality

x)(t) = %[Iy(x)l = w(t) —y@®) + w(t)} for a<t<b (1.227)
which for any v € C(Ja, b]) satisfies
0< x(w)(t) <w(t) for a<t<b, (1.2.28)
and consider the problem
v"(t) = po(t)v(t) + p1(t)v'(t) — h(x(v))(1), (1.2.29)
v(a) = w(a), vV (b-)=wlY (). (1.2.30;)

Note that from Lemma 1.2.1 and Remark 1.2.2 it follows the existence of
Green’s function of the problem (1.2.4), (1.2.2;). Introduce the operator
H : C(]a,b[) — C(Ja,b]) by the equality

b
H(g)(t) :vo(t)+/|G(t78)lh(x(y))(8)d87

where vg is a solution of the problem (1.2.4), (1.2.30;), and consider the
equation

o(t) = H(v)(?) (1.2.31)

which is equivalent to the problem (1.2.29), (1.2.30;). Let us show that the
operator H is compact. Let ¢, be a constant mentioned in Remark 1.2.3,

b

r=c. [ alp)(s)h(w)e)ds,

a

B, = {z € C(a,b): |z—wollc <r},
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and (z,,)22; be any sequence from B,.. Then from the estimate (1.2.12;) for
the sequence y, (t) = H(z,)(t), n € N, we have

lvo = yulle <7, meN. (1.2.32)

Consider separately the case ¢ = 1. By virtue of (1.2.9;), (1.2.28) and the
fact that the function vy is continuous, for any constant € > 0 there exist
a1, by €]a,bl, a; < by such that

max {|vo(t1) — vo(t2)| : a <ty <ty <ay, by <ty <ty <b} <

| M

and

col ™

e = max{/bIG(t,S)Ih(x(ﬂfn))(S)ds pa<t<a, b <t< b} <

Then for any n € N the estimate

€ €
[Yn(t1) — yn(t2)| < 1 +2e" < >
for a <t <ty <ap, by <t; <ty <b,

is valid.
In the same way, by virtue of the estimates (1.2.12;), there exists a con-
stant 6, 0 < § < min(ay — a, b — by), such that for any n € N

|yn(t1)*yn(t2)| <
< (1+r)ymax {[v)(t)| + o7 " (p1)(#) : a1 —F <t <b+5}ta —t1] <
for |t1—t2|§5, al—égtjgbl—i—é (j=1,2).

N ™

It follows from the last two estimates that if ¢; € [a,b] (j = 1,2) and
[t1 — ta] <9,

then
lyn(t1) —yn(t2)| <&, meN.

From this and from the inequality (1.2.32) we obtain that the sequence
(yn)22; is uniformly bounded and equicontinuous. In case ¢ = 2, the same
follows from the possibility to choose for any ¢ > 0, owing to (1.1.92),
(1.2.28), a1 €]a,b[ and 0 < ¢ < a; — a such that

max{|vo(t1) —wvo(t2)]: a<t;<ta<a

}
maX{/blG(t,S)lh(w)(S)dS: aétéal} <
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and
|yn(t1)*yn(t2)| §
< (L4 r)max {[v)(t)] + o5 ' (p1)() : a1 — 5 <t < b}ty —ta] <
for |t17t2|§5, alfégtj §b (j:].,Q)

| ™

Then according to the Arzella—Ascoli lemma, the operator H which is, as it
is not difficult to show, continuous, transforms the ball B,. into its compact
subset. In this case the equation (1.2.31), i.e., the problem (1.2.29), (1.2.30;)
has at least one solution, say v. Show that

0<v(t) <w(t) for a<t<b.
Let
v1(t) = w(t) — v(t).

Then from the nonnegativeness of the operator h and also from the inequal-
ity (1.2.28) we have

vy (t) < po(t)vr(t) + p1(t)v1(t) — h(w — x(v))(t) < po(t)vr(t) + pr(t)vi(t)
and
vi(a) =0, v\"V(b-)=0.

Hence v1 is an upper function of the problem (1.2.4), (1.2.2;9), and due to
Remark 1.2.5,
vi(t) >0 for a<t<b,

ie.,
v(t) > w(t) for a<t<b. (1.2.33)

On the other hand, taking into account the inequality (1.2.28) and the fact
that the operator h is nonnegative, from (1.2.29) and (1.2.30;) we conclude
that v is an upper function of the problem (1.2.4), (1.2.2;), i.e., by virtue
of Remark 1.2.5,

v(t) >0 for a<t<hb. (1.2.34)
It follows from (1.2.33) and (1.2.34) that the inequality 0 < v(t) < w(t) is

valid and hence
x()(t) =v(t) for a<t<h,
i.e., v as a solution of the equation (1.2.31) has the form
b
v(t) = vo(t) + / |G(t,s)|h(v)(s)ds for a <t <b, (1.2.35)
a

where by Remark 1.2.5,
vo(t) >0 for a<t<h. (1.2.36)
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If we introduce the notation p(t) = v(t) and take into consideration (1.2.36),
then in view of (1.2.35) we can see that our lemma is valid. O

Lemma 1.2.5. Let i € {1,2}, the constants a € [0,1] and B €]0,1] be
connected by the inequality

a+f<1, (1.2.37)
(po,pl) S Vi,g(]a, b[; h), (1.2.381-)

where
he L:(Cl.g;L#i)) (1.2.39,)

s a nonnegative operator and

z(t) = /ta(pl)(s) ds(/bo(pl)(s) ds>2i for a<t<b. (1.2.40;)

Then there exists a positive function p € C(]a,b]) such that the inequality
(1.2.20) is satisfied, where G is Green’s function of the problem (1.2.4),
(1.2.2;) and

p(t) = O* (2P (t)) (1.2.41)
ast —a,t—bifi=1,and ast — a if i = 2.
Proof. As is seen from the definition of the set V; g(]a, b[; h), the functions
po, P1 :a, b — R satisfy the inclusion (1.2.6;) from which by virtue of Re-
mark 1.2.2 it follows the existence of Green’s function of the problem (1.2.4),

(1.2.249), and there exists a measurable function ¢g :]a,b[— [0, +o0[ such
that the problem

v"(t) = po(t)o(t) + pr ()0’ (t) — h(v)(t) — gs(t), (1.2.42)
v(a) =0, v V(b-)=0 (1.2.43;)

has in the interval ]a, b a positive upper function w, where
b
w(t) = O*(z°(t)) and /|G(t, 8)|qp(s) ds = O* (2P (1)) (1.2.44)
a

ast —a,t—bifi=1,and ast — a if i = 2.
Introduce the operator x as in the previous proof and let

b

H(y)(t):/IG(t,S)I(%(S)+h(x(y))(8))d8-

a
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As we can see from the conditions (1.2.39;), (1.2.44), the operator x trans-
forms the space C(]a, b[) into Cys(Ja,b]). Consider now the equations

v"(t) = po(t)v(t) +p1()V'(t) — h(x(v))(t) —qp(t),  (1.2.45)
(t) = H(v)(?) (1.2.46)

and note that the problem (1.2.45), (1.2.43;) is equivalent to the equation
(1.2.46).

From the equality (1.2.7) by means of which Green’s function is ex-
pressed, as well as from the estimates (1.2.10;) and the conditions (1.2.44),
for any y € C(]a, b[) we have

t

H@)O! <o) [

a

_2(8) 4BV (s) ds

(s OB
b

+/|G(t,s)|qg(s) ds < 400 for a<t<b, (1.2.47)

a

where

c? w(t)
ro = d_*suP{:cﬁ—(t)' a<t<b}.

It follows from (1.2.37), (1.2.44) that the operator H transforms the space
C(Ja, b)) into Cps(Ja,b]). Noticing that the right-hand side of the estimate
(1.2.47) is independent of the function y, we make sure that a constant r
exists such that for any y € C(]a, b[)

[H @)l cze <7
It is clear that this estimate is the more so valid if y belongs to the ball
B, = {z € Cpalla,b]) : |2llc,en <7}

Repeating now the reasoning of the previous proof, we can see that the
operator H : Cys(Ja,b]) — Cyus(]a,b]) is compact and hence there exists a
solution v of the equation (1.2.46) such that

v € Cps(la, b)), (1.2.48)
x(v)(t) =v(t) for a<t<b,

and

v(t) >0 for a<t<b. (1.2.49)

Then the following representation is valid:

o(t) = / 1G(t, 9)| (h(0)(5) + q5(5)) ds, (1.2.50)
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whence with regard for (1.2.49) we obtain the inequality
b
v(t) > /|G(t,s)|qﬁ(s) ds for a<t<b
a

which together with the conditions (1.2.44) and (1.2.48) implies that
v(t) = O* (2P (t)) (1.2.51)

fort - a,t — b, if i =1, and for t — a if i = 2. If we now take into
consideration that owing to the conditions (1.2.44) and (1.2.51) we have

b
inf{%/@(t,sﬂqg(s)ds: a<t<b} > 0,

then from (1.2.50) we obtain

b
Sup{% / G(t, s)|h(v)(s)ds : a<t< b} <1 (1.252)

Introducing the notation p(t) = v(t), from (1.2.49), (1.2.51) and (1.2.52) we
see that our lemma is valid. [

Lemma 1.2.6. Let i € {1,2}, the function z be defined by (1.2.40,), the
constants o € [0,1[, B €]0, 1] be connected by (1.2.37) and the functions po,
p1 :]a, b — R satisfy (1.2.38;), where

he £<Cxﬁ; LL) N E(C; Lai(pl)) (1.2.53)

o(p1)

is a nonnegative operator. Then there exists a continuous function p :
[a,b] — RY such that the inequality (1.2.20) is satisfied, where G is Green’s
function of the problem (1.2.4), (1.2.2;9).

Proof. By Lemma 1.2.5, from the fact that h € £L(C,s; Lg(c_a) it follows

a(p1)

the existence of the function py € C(Ja,b]) such that
po(t) >0 for a<t<b

and
b
1
sup{po—(t) a/ |G(t, s)|h(po)(s)ds: a<t< b} < 1.

Then, taking into account that the operator h also belongs to £(C, Lgi(pl)),
we can see by Lemma 1.2.3 that our lemma is valid. O
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Lemma 1.2.7. Let i € {1,2}, the function x :]a,b|— RT be defined by
(1.2.40;) and the functions po, p1 :]a,b[— R satisfy the inclusion (1.2.6;).
Then for any B €]0,1] we have

b
/|G(t, sN% ds = O* (2% (s)) (1.2.54)

ast—a,t—bifi=1, and ast — a if i = 2, where G is Green’s function
of the problem (1.2.4), (1.2.2;9).

Proof. By Remark 1.2.2 and the inclusion (1.2.6;) there exists Green’s func-
tion G of the problem (1.2.4), (1.2.2;0) which is expressed by the equality
(1.2.7).

Consider the case ¢ = 1 separately and note that

b b
/a(pl)(s) ds > / o(p1)(s)ds for a<t< aT—i—b. (1.2.55)

t

Then, taking into consideration (1.2.7), (1.2.10;) and (1.2.55), for any 8 €
]0, 1] we obtain for ¢ € [a, “£] the estimates

{ zP(t) N

b
ﬁa{b o(p1)(s)ds

(f o) (s) ds) (folon)(s)ds)" ™
+ ‘s +— xﬁ(t)} <
(=B ] o)) d) ™ ([ o(p)(s)ds)*?
, -

§ ﬁUCQ*(a) (ﬁ * (a/O'(p1)(S) ds)l_ﬁ< a/ U(pl)(S) ds)ﬁ_Q) xﬁ(t)
and
b 2 b g, b 1-8
/|G(t,3)|a 2(17[13)((8‘;) ds > UQ(’;) (/o‘(pl)(s) ds) ( / a(pl)(s)ds) X
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b
(Itﬂmﬂ$d$Lﬁ

d? atb
> X
~ Pua(a) (
The last two estimates imply the validity of (1.2.54) as t — a. Reasoning
analogously for ¢ € [“TH’, b], we can see that this equality is also valid as

t — b. Consider the case § = 1. With regard for the equalities (1.2.7) and
the estimates (1.2.10;) we obtain

P (t).
a(p1)(s) ds)2_ﬁ

Q —0 |V

b
d3</wun2<xm 1 < &
S0 < ,8)|o?(p1)(s)dsx < 5

for a <t <b. (1.2.56)

*

It follows from (1.2.56) that our lemma is valid in the case 8 = 1 as well.
Reasoning similarly, we can prove the lemma for ¢« = 2. [

1.2.2. Auxiliary Propositions to Theorems (1.1.2;), (1.1.2;0) (¢ = 1,2).
Consider in the interval ]a, b[ the equation

V" (t) = g(v)(t), (1.2.57)

where g : C(Ja,b]) — Lioc(]a,b[) is a continuous linear operator. We will
also need the equation

V'(t)=0 for a<t<b. (1.2.58)

Note that Green’s function of the problem (1.2.58), (1.2.2;9) has the form

b—1t\2—t
f(sfa)<b ) for a<s<t<b,
G(t,s) = b gvai (1.2.59;)
—(t—a)( _5> for a<t<s<b
b—a - -
Lemma 1.2.8;. Let v € [0,1[, A € [0;1 — [ and
g € L(Cyr; Laov) (1.2.60)
be a nonnegative operator, where
z(t)=0b—-t)(t—a) for a<t<b. (1.2.614)
Let, moreover, there exist constants a, 5 € [0, %] such that
A<B<1—7, (1.2.62)

1
a+ < 2’ (1.2.63)
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and
b

/x“(s)g(xﬁ)(s) ds < Qﬁb

a

16 (b — a>2(a+ﬁ).

1 (1.2.64;)

—a

Then the problem (1.2.57), (1.2.210) has only the zero solution in the space
Coxr(]a, b]).

Proof. Suppose to the contrary that the problem (1.2.57), (1.2.2,9) has a
nonzero solution vy € Cyx(]a, b[).

If vg is a function of constant signs, then from the nonnegativeness of the
operator g we obtain

vy (t) signvg(t) >0 for a<t<b,

which together with the conditions (1.2.2;9) contradicts the assumption
vo(to)Z 0, i.e., vg is a function of constant signs.

Using Green’s function of the problem (1.2.58), (1.2.2;9), vg can be rep-
resented as follows:

¢ b
w(t) =52 (00 (= g6 ds+ (- a) [0 slgtun)(s)as )
’ for a < ttS b
and hence for any (§ the estimate
’Uo(t)
G0t a) -

b

/[(b = 5)(s = a)]"g(a™)(s) ds|voll o,

a

< o=

for a<t<bd

is valid.
In the above estimate, taking into account the condition (1.2.60), if g8
satisfies the inequality (1.2.62), we get

lim —Uo(t)
t—a [(b — t)(t — a)]ﬁ

o
=0 e —ap

These equalities imply the existence of points t1, t2 €]a, b] such that

[ (tl) _ ) (t) .
(b—tl)oﬁ(tl —a)f S“p{m s a<t<bf,
vo(t2) . vo(t) .
(b— tg)ﬁ(tQQ —a)f mf{m Da<t< b},



40

Without loss of generality we assume ¢; < t2 and notice that by (1.2.614)
which defines the function x, we have

v tg)
) 0) o s <

< g(wo)(t) < g(mﬁ)(t) (b— tllv)oﬁ(ftll) |— a)ﬁ

for a<t<b. (1.2.65)

Recall also one simple numerical inequality

A+ B)?
A.p<AHBS Z © (1.2.66)
where A > 0 and B > 0.

Suppose ¢ €]ty, ta] and vo(c) = 0. Then the following representations are
valid:

w(t) = =2 [(s = alg(-w)(s)ds + =2 [ (e~ 9g(-un)(s)ds
and
bty [ t /
ot = 52 [(s = gy ds + =2 [ b= 9)g(un)(s) ds.

These representations with regard for the inequality (1.2.65), for any «,
satisfying the conditions of the lemma, result in

[(c—t)(t1 —a)]'*

B /xa(s)g(ﬂcﬁ)(S) ds - [uo(t2)] < +00

vo(t) < (c—a)[(b—ta)(t2 — a)] /
and
(b—to)(ts — ) [
Voll2) < —l2)(l2 — C 2%(s l’ﬁs s - lvo(ty -
(t2) < (b—c)[(b—tl)(tl—a)]ﬁ/ ()g(z°)(s) ds - [vo(t1)| < +

Multiplying the above inequalities, by means of (1.2.66) we obtain

b
)\/xa(s)g(xﬁ)(s) ds > 1, (1.2.67)

a

A= # [(b—t2)(t2 — e — 1)t — )] D) [(ta — e — ta))?
e - a)b— )t — a)f '
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Then by (1.2.66) we get the estimate

; \/[(b —)(c— )2 HD(t; — 1)

A< o
S\ BRI ) (ts — @)

whence using once more the inequality (1.2.66) and taking into consideration
the fact that

(ta —t1)?P < [(b—t1)(t2 — a)]?, (1.2.68)

we arrive at

b*a( 1 )2(a+ﬁ). (1.2.69)

A<
~16-26\b—a
Substituting the last inequality in (1.2.67), we obtain the contradiction with

the condition (1.2.64;), i.e., our assumption is invalid and vo(t) =0. O

Lemma 1.2.85. Let v € [0,1[, A € [0,1— [ and the nonnegative operator
g satisfy the inclusion (1.2.60), where

z(t)=t—a for a<t<hb. (1.2.612)

Let, moreover, there exist constants o, 8 € [0, %] such that the conditions
(1.2.62), (1.2.63) are satisfied and

8 (b — a)aJrﬁ.

b
/x“(s)g(xﬁ)(s) ds < o\ (1.2.642)

Then the problem (1.2.57), (1.2.290) has only the zero solution in the space
Coxr(]a, b]).

Proof. Suppose to the contrary that the problem (1.2.57), (1.2.290) has a
nonzero solution vy € Cyx(]a,b[). Similarly to the previous lemma we make
sure that vg is of constant signs and the equality

im v®) _
t=a (t—a)f

is valid for any 8 € [A\,1 — 4[. On the other hand, in any sufficiently small
neighborhood of the point b, since v,(b—) = 0, the equality

sign ((tUO(Z))ﬁ )/ = —signwg(t)

vo (t)
(t—a)P
attains neither its minimum nor its maximum at the points a and b. Let

’U(t) . o Uo(tl)

is satisfied. It follows from the last two equalities that the function
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and

t
m{ vo(?) : agtgb}:M.
(t —a)? (t2 —a)’
Then from the above-said it is clear that 1, to €]a,b[. Without loss of

generality we assume t; < to and let the point ¢ €]t1,t2] be such that
vo(c) = 0. Then from the inequality

v (t2)]

9@ )0 g S 9wl (1) < o))t

0 B for a<t<b
1—a

and from the equalities

() = 52 [(s = agl-w)s)ds + 2= [ (= s)g(-m)(s)ds,
2 ' b !
wolta)] = [ (5= lalen)(s)ds + (t2 = o) [ glon)(s)ds
we obtain
(c—t)tr—a)= [ ,
vo(t1) < (¢ —a)(ty — a)B a/z (5)9(a”)(s) ds - [vo(t2))|
oa) < G5 [a @ty o).

Multiplying these inequalities, with regard for (1.2.66) we get
b

)\/xo‘(s)g(ac“)(s) ds > 1, (1.2.70)

a

where

A= 1\/[(“ —a)(c— )]ty — )~ (c — t)*HP
2 (c—a)(tz — a)P '

Then by (1.2.66) and t3 — a > ta — ¢ we have

L J (c— a)i=2oFB) (1, — )2 P [(c — 11)(ts — )]°FP
A< = .
- 41— (a+p)

Applying once more (1.2.66), we can see that

(ty — a) =2 4B) (ty — ¢;)otP

A< TECT : (1.2.71)
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Notice that from the conditions t1, t2 €]a,b| as well as from the fact that

for none of «, 8 € [0, %] the expressions o +  and 1 — 2(« + ) vanish

simultaneously, we obtain the estimate
(ty — a)!720FB) (1) — ))HF < (b — o)t = (@FF),
with regard for which in (1.2.71) we get

(b—a)s 4 \otB
A< ( ) .
8 b—a
Substituting the latter inequality in (1.2.70), we obtain the contradiction
with the condition (1.2.645), i.e., our assumption is invalid and vo(t) = 0. O

Remark 1.2.7. Lemma 1.2.8; remains valid if for § # 0 we replace the
condition (1.2.641) by

/b 2 ()l (s) ds < 2710 (L)

a

Proof. If 8 # 0, then the inequality (1.2.68) will be strictly satisfied and
hence the estimate (1.2.69) will take the form

(1.2.72)

b—a 4 \2(atB)
< 16 - 28 (b—a) '

Taking into consideration the last inequality in (1.2.67), we obtain the con-
tradiction with the condition (1.2.72) which indicates the possibility to re-
place in case 3 # 0 the condition (1.2.641) by (1.2.72). O

8 1.3. PROOF OF PROPOSITIONS ON EXISTENCE AND UNIQUENESS

1.3.1. Proof of Basic Theorems on Existence and Uniqueness of Solution of
Two-Point Problems.

Proof of Theorem 1.1.1;. From the inclusions (1.1.7;) and (1.1.8;) and also
from the fact that the operator h is nonnegative, for 3 = 0 by virtue of
Lemma 1.2.4 and for § > 0 by virtue of Lemma 1.2.6 it follows that there
exists a function p € C(]a, b[) such that

p(t) >0 for a<t<b (1.3.1)

and

b
1
sup{m a/ |G(t,s)|h(p)(s)ds: a<t< b} <1, (1.3.2)

where G is Green’s function of the problem (1.2.4), (1.2.2;9). Note that for
any function y € C,(]a,b]) the inequality

ly@®)] < p®)llyllc,y for a<t<b (1.3.3)
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is valid and, owing to the estimates (1.2.10;), the representation (1.2.7) of
Green’s function and the conditions (1.1.5)—(1.1.8;) and (1.1.10), we have

b b

\ [ Gt simats)as] < +oc, } [ ate s as

a a

< Ho00,

< +00.

\ / C(t, $)h(y)(s) ds

Introduce the continuous operators Uy, U : Cy(Ja, b[) — C,(Ja, b]) by the
equalities

b
Ua(u)(t) = [ Gt s)alu)(s)ds.
a
. (1.3.4)
Ulg)(t) = ua(t) + Uo(w)(t) + [ Gt s)pats) ds,
a
where g is a solution of the problem (1.2.4), (1.2.2;). Clearly every solution
of the problem (1.1.1), (1.1.2;) is a solution of the equation
u(t) = U(u)(t) (1.3.5)

and vice versa.
From the definition of the norm of the operator it follows that

C,p = 1}

1Uollc,—c, <1, (1.3.6)

||UOHcp_’Cp =

b
:sup{H/G(t,S)g(y)(S)dSHap1 x € Cyllabl), [yl

which with regard for (1.1.10), (1.3.1)—(1.3.3) implies

i.e., the operator U contracts the space C,(]a,b]) into itself for any ps €
L, (py)([a,b]) and any operator g satisfying (1.1.10). Then by virtue of the
theorem on contracting map the equation (1.3.5) has in the space C,(]a, b])
and hence in C(]a, b[) a unique solution because, by (1.3.1), any function
from C(]a,b]) belongs to the space C,(]a,b[) as well. It remains to notice
that the unique solvability of the problem (1.1.1), (1.1.2;) follows from the
equivalence of that problem and the equation (1.3.5). O

Proof of Theorem 1.1.1;9. The inclusions (1.1.7;), (1.1.8;) and the nonneg-
ativeness of the operator h imply by virtue of Lemma 1.2.5 the existence of
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a positive function p € C(]a, b[) such that
p(t) = 0" (2" (1)) (1.3.7)

ast — a,t — b, if ¢ =1, and as t — a if ¢ = 2. Moreover, the condi-
tion (1.3.2) is satisfied, where G is Green’s function of the problem (1.2.4),
(1.2.20). It is also clear that for any y € C,(]a, b[) the inequality (1.3.3) is
satisfied, and due to the estimates (1.2.10;) and the representation (1.2.7)
of Green’s functions we have

‘/bG(tS)h(y)(S) ds Srlwl_a(t)/b%h(wﬁ)@ ds ||yl
ab . (1.3.8)
'/G(t,s)pg(s)ds §r1mﬁ(t)/j(lp17ﬁ)((z)) |p2(s)|ds for a <t <b,
Wh:re ' )
= %&),

and the existence of integrals follows from the conditions (1.1.6), (1.1.11),
(1.1.12). From (1.3.8) and (1.1.6), (1.1.10), (1.3.7) we also have that the
operators

b
Us(y)(t) = / G(t, 5)g(y)(s) ds

and
b

U(y)(t) = Uo(y)(t) + / G(t, 5)pa(s) ds

a
transform continuously the space C,(]a, b[) into itself. Repeating word by
word the previous proof, we can see that the problem (1.1.1) (1.1.2;9) has a
unique solution u in the space C,(]a, b[). But as is seen from (1.3.7), u will
be a unique solution in the space Cys(]a,b[) as well. O

Proof of Remark 1.1.1;. Under the conditions of Theorem 1.1.1;, as is seen
from its proof, the operator U contracts the space C,([a, b]) into itself. Then
from the theorem on contracting map it follows that for any function vg €
C\y(]a, b)) the sequence v, : [a,b] — R, where v, is the unique solution of
the equation

Un(t) = U(vp—1)(¢) (1.3.9)
tends to the unique solution u of the equation (1.3.5) with respect to the
norm || - |l¢,,. We introduce the notation

[Uollc,~c, = and [lu —viflc, = w,
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and notice that by virtue of (1.3.6), we have u < 1. Then, as is known, the
estimate

n

I
1 —

lu—vnllc,p <w n €N, (1.3.10)

is valid and for any n € N with regard for (1.3.3) we obtain
lu(t) — v (1)) gwlu— Ipllc for a<t<b. (1.3.11)
— p

Differentiating the difference of the equations (1.3.5) and (1.3.9) and tak-
ing into account the inequalities (1.1.10), (1.3.11) and the estimates (1.2.12;)
of Green’s function, we obtain

n
sup {oi (p) ()l (£) — /' (£)] : a <t<Db} <o 1“ , neN, (13.12)

where
b

o =welplle [ p)(s)n(1)(s) ds,
The inequalities (1.3.11), (1.3.12) imply the validity of the estimates
(1.1.14), and after differentiating twice the equality (1.3.9) we see that v,
is a solution of the problem (1.1.13;). O

Proof of Remark 1.1.1,9. Let p be the function appearing in the proof
of Theorem 1.1.1;p. Introduce the constants p and w and the functions
Up ¢ [a,b] — R, n € N, as in the previous proof. Reasoning as above, we
make sure that the estimate (1.3.10) is valid, and by virtue of the condition
(1.3.7) for any n € N we have

|u(t) — va (D)) 08 { p(t)
< D a<t<bf. (1313

) Swq—— sup ) a<t< ( )
On the other hand, differentiating the difference of the equations (1.3.5)
and (1.3.9), with regard for the equality (1.2.7) and the estimates (1.2.10;),

(1.2.11;), for any n € N we obtain
z?(t)

o(p1)(t)

[u'(t) — v, ()| < rllu—wvy|lc, for a<t<b, (1.3.14)

where
b

b
r = c*)? mxsa ssmxﬁss
1+ >/a<p1><s> (5) + o(p1)(s) d /0@1)(5)’“ )(s) ds.

a a

The inequalities (1.3.10), (1.3.13) and (1.3.14) imply the validity of the
estimates (1.1.15), and having differentiated twice the equality (1.3.9) we
see that vy is a solution of the problem (1.1.13;9). O
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Proof of Theorem 1.1.2;. Let G be Green’s function of the problem (1.2.58),
(1.2.2,0). Introduce the operator Uy and the function ¢ by the equalities

b b

Us(y)(t) = / G(t, 5)g(y)(s) ds, q(t) = / G(t, s)pa(s)ds.  (1.3.15)

a a

From the representation (1.2.59;) of Green’s function and from the con-
ditions (1.1.17), (1.1.18) it follows that the operator Uy transforms contin-
uously the space C(]a,b]) into itself and ¢ € C(]a, b]).

Consider now the equation

u(t) = Uo(u)(t) + uo(t) + q(t), (1.3.16)

where uo(t) is a solution of the problem (1.2.58), (1.1.2;). Every its solution
is a solution of the problem (1.1.16), (1.1.2;), and vice versa.

Let r > 0, B, = {y € C(la,b]) : |lyllc < r} and choose any sequence
(24,)52 from B,.. Let, moreover, y,(t)=Uq(z,)(t), n € N. Then

lynllc <r1, neN, (1.3.17)

where
b

ry = r/ (Z:Z)Q_Z(s —a)g(l)(s)ds.

a

Consider the case ¢ = 1 separately. From the definition of Green’s func-
tion G, for any € > 0 it follows the existence of a1, b1 €]a, b[, where a1 < by,
such that

] ™

b
maX{/|G(t,s)|g(1)(s) ds: a<t<ay, b <t< b} <

which implies the validity of the estimate
€
Yn(t1) —yn(t2)| < 5, neEN, for a<t; <ty <ay, by <t <il2<h
2

It is also clear that there exists a constant ¢, 0 < 6 < min(a; —a,b— by) for
which the following inequality is valid:

[yn(t1) — yn(te)| <

1
a1—5§t§b1+5}|t1—t2|§%

b—t)(t—a)

for |t1—t2|§5, al—égtjgbl—i—é (j=1,2).

<nr max{

From the last two estimates we obtain that if ¢; € [a,b] (j = 1,2) and

[t1 —ta| <6,
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then

|yn(t1) - yn(t2)| < €, nec N.
This and the inequality (1.3.17) imply that the sequence (y,)5; is uni-
formly bounded and equicontinuous. In case i = 2 the same follows from

the possibility of choosing for any € > 0, a; €]a,b[ and 0 < § < a; — a such
that

)

I

maX{/blG(t,S)lg(l)(S)ds: aétgal} <

1 €
|yn(t1) — yn(t2)] < max{l—i— o Dap—o0<t< b} [t1 —ta| < 5

for |t17t2|§5, alfégtjgb (j:].,Q)

Then by the Arzella—Ascoli lemma we obtain that Uy is a compact operator.
Consequently, taking into account Fredholm’s alternatives, the equation
(1.3.16) is uniquely solvable if the homogeneous equation

u(t) = Up(u)(t) (1.3.160)

has only the trivial solution in the space C(]a, b[).

It remains to note that by virtue of the conditions (1.1.18)—(1.1.21)
and (1.1.22) if ¢ = 1 and (1.1.245) if ¢ = 2, all the requirement of Lem-
ma 1.2.8; are satisfied for A = 0, whence it follows that the problem (1.2.57),
(1.2.249), i.e., the equation (1.3.16¢) has only the trivial solution in the space
C(Ja,b). O

Proof of Remark 1.1.2 follows directly from Remark 1.2.7.

Proof of Theorem 1.1.2;5. Let z be a function defined by (1.1.19;) and let
G be Green’s function of the problem (1.1.58), (1.1.2;9) which is expressed
by (1.2.59;). Introduce the operator Uy and the function ¢ by the equality
(1.3.15). Then for any y € Cy»(]a,b[) the estimates

b
z1 (1)

(b—ap [ @) 6 ds e

a
b

lg(t)] < aclfv(t)/xv(s)|p2(s)| ds for a<t<b
are valid, from which by the conditions A €]0,1 —~[ and (1.1.25), (1.1.26)
it follows that Uy transforms continuously the space Cyx(]a,b[) into itself
and ¢ € Cya(Ja, b]).
Consider now the equation

u(t) = Ug(w)(t) + q(t) (1.3.18)

[Uo(y)(®)] <
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which is equivalent to the problem (1.1.16), (1.1.2;9), and the corresponding
homogeneous equation (1.3.16¢).

As is seen from Lemma 1.2.8; and Remark 1.2.7, by virtue of the con-
ditions A €]0,1 — 4[, (1.1.21), (1.1.24;) and (1.1.25)—(1.1.27) the problem
(1.2.57), (1.1.29), i.e., the equation (1.3.16p), has in the space Cyx(]a,b[)
only the trivial solution. Then according to Fredholm’s alternatives, to
prove the validity of our theorem it remains to show that the operator Uy
is compact. Let r > 0,

B, ={z € Cpr(lab]) : [llc,er <7}

(2r)221 be a sequence from B, and y,(t) = Up(zy,)(t) for n € N.
Then as is seen from the definition of G, for any n € N the estimate

w90 < (bf)(% [@ @) eds G=0.1) (1319

for a<t<b

is valid, which by virtue of the condition A €]0,1 — ~[ yields

[yn®)llcer <71, (1.3.20)

where

b

a

r =
Consider now the case i = 1 separately. From (1.3.197) for j = 0 and for
any ¢ > 0 follows the existence of a1, by €]a, b[, where a; < by, such that
() < 5. nEN, for a<t<an, bi<t<b,
which implies the estimate
€
|yn(t1) - yn(t2)| < 97 n €N,
for a<ti <ty <a, by <ty <ty <bh

Moreover, from (1.3.19;) for j = 1 it follows the existence of a constant §
such that

3
|yn(t1) 7yn(t2)| < 7"2|tl 7t2| < 5; ne Na
for a1 —0<t;, <b1+46 (I1=1,2),

where

b
Ty = r/gﬂ(s)g(:cA)(s) ds max{z~7(t): a1 —6 <t <bi+46}.
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It is clear from the last two estimates that if ¢; € [a,b] (I = 1,2) and

[t1 — ta| <6,

then for any n € N
|yn(t1) - yn(t2)| <e.

This and the estimate (1.3.20) imply that the sequence (y,)52  is uniformly
bounded and equicontinuous. In case ¢ = 2, by virtue of the estimates
(1.3.192) the same follows from the possibility of choosing, for any € > 0, of

ay €la,bl and 0 < 6 < a3 — a such that

|yn(1f)|§i7 ne€N for a<t<b,
and
[yn(t) —n(t2)| < rafty 12| < 5. mEN,
for a1 —6<t; <b (j=1,2),
where

b
ro = r/x’y(s)g(p)(s) ds max {z~7(t): a1 — & <t <b}.

Then by the Arzella—Ascoli lemma we have that Uy is a compact opera-

tor. [

1.3.2. Proof of Effective Sufficient Conditions for Solvability of the Prob-
lems (1.1.1), (1.1.2;) and (1.1.1), (1.1.2;0) (¢ = 1,2). Before we pro-
ceed to proving the corollaries, we note that Green’s function of the problem

v"(t) = pr(t)V' (1),
v(a) =0, v V(b-)=0

has the form

GO (t, S) =

S

7wl Fop)mdn?

for a <s<t<hb,

t b

1 1

B RTA a(p1)(n)dn
o) / <f‘a<p1><n>dn s

for a<t<s<hb.

*#/o(m)(n) dn(*/bo(pl)(n)dn)”

o(p1)(n) dn) a

(1.3.21)
(1.3.22,)

(1.3.23;)
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Proof of Corollary 1.1.17. It is clear that all the requirements of Theo-
rem 1.1.11, except (1.1.71), follow directly from the conditions of our corol-
lary. It remains only to show that the conditions (1.1.31), (1.1.32;) imply
the inclusion (1.1.71) as well.

Indeed, let 8 > 0 and

a0 = /b U(pl)(n)dn)a x

) / a0+ 5%() + ia () /Sg(pl)(n)dn)“ ot

J 7)) J
t b b
* Fipo(s)]_ (O + 2 (s)) + h(a(5)
+( a/o(pl)(n)dn) / s ( S/U(m)(n)dn) ds x
(Joon)(s)ds) 2
x 2 . (1.3.24)

92—2(a+p)

Then, as is seen from the conditions (1.1.31), (1.1.32;), we can choose A > 0
such that

z2(t) <1 for a<t<b (1.3.25)
be satisfied.

Introduce also the notation

b
03(0) = i w0 =< [ 1Ga(t9las(s) ds,

b

w(t) =/IGo(tS)I([po(S)]—(/\+fcﬁ(8)) + h(z%)(s)) ds + we (1),

a

where ¢ € RT, Gy is Green’s function of the problem (1.3.21), (1.3.22;)
which is defined by the equality (1.3.231), and by Lemma 1.2.7,

we(t) = O*(z”(t)) as t—a, t—b (1.3.26)

for any € > 0. From the conditions (1.3.25), (1.3.26) we have the possibility
of choosing the constant € > 0 such that

we(t)

2f(t)

By virtue of (1.3.231) we easily get the estimate

zk(t)—l—sup{ a<t<b}<1 for a <t<b. (1.3.27)

0 <w(t) < zx(t)zP(t) +we(t) for a<t<b
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which with regard for (1.3.27) results in
0 <w(t) <z(t) for a<t<b. (1.3.28)
The last inequality together with (1.3.26) means that
w(t) = 0*(z?(t)) as t—a, t—b. (1.3.29)
On the other hand, it is clear that
w"(t) = =[po(t)]- (A + 2 (1)) + p1 ()w' (1) — h(z”)(s) — ¢p(t).

Taking into account the inequality (1.3.28) and the fact that the operator
h and the constant A are nonnegative, the above equality results in

wt)” < po(tyult) + pi (0w (1) — h(w)(®) — galt).  (1.3.30)
If we introduce the notation w(t) = A 4+ w(t), then
() < po((t) + pr ()T (1), (1.3.31)
where
@(t)>0 for a<t<b (1.3.32)

From the inequalities (1.3.31) and (1.3.32), by Lemma 1.2.2 we obtain the
inclusion

(po,p1) € V10(]a, b]). (1.3.33)

Then, as is seen from Remark 1.2.2, the problem (1.2.4), (1.2.2;9) has
Green’s function G which is expressed by the equality (1.2.7). Using now
the inequalities (1.2.101), we arrive at

for a<t<b
which with regard for the equality (1.3.26) yields
b
/|G(t7 8)|qs(s)ds = O*(2°(s)) as t—a, t—b. (1.3.34)
a

It remains to note that the conditions (1.2.28), (1.3.29), (1.3.331), (1.3.34)
and the inequality (1.3.30), owing to Definition 1.1.4, ensure the inclusion
(1.2.71) for 5 > 0.

Assume now that =0 and

b
w(t) :/|G0(t, 9l(lpo(s))- + h(1)(s)) ds + ev(t),  (1.3.35)
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where v is a solution of the equation (1.3.21) under the boundary conditions
v(a) =1, wv(b) =1,

and

S

alt) = ([ ot ain) / It BN ([ o)) s+

a

+</0(p1)(n)dn>a/b ([po(s()j@j)(};gl)(s)) </b0(p1)(n)dn)ad8} X

(fo(p1)(s) dsy =2

41701

X

Then, as is seen from the condition (1.1.32;),
zo(t) <1 for a<t<b,
and hence we can choose € > 0 small enough for the inequality
zo(t) +ev(t) <1 (1.3.36)

to be fulfilled for a < ¢ < b. Notice that by virtue of the equalities (1.3.23;),
we obtain the estimate

0<w(t) <z(t)+ev(t) for a<t<b
which with regard for (1.3.36) implies
O<w(t) <1 for a<t<hb. (1.3.37)
On the other hand,
w” () = —[po(t)] + pr(t)w'(t) — h(1)(),

whence, taking into account (1.3.37) and the fact that the operator h is
nonnegative, we obtain

w”(t) < po(t)w(t) + pr(t)w'(t) — h(w)(t).

Consequently, owing to Definition 1.1.3, the inclusion (po, p1)€V1,0(]a, b[; k)
is valid. O

Proof of Corollary 1.1.15. It is clear that all the requirements of Theo-
rem 1.1.12, except (1.1.73) follow directly from the conditions of our corol-
lary. It remains to show that the conditions (1.1.31), (1.1.321) imply the
inclusion (1.1.75) as well.
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To this end, we introduce for 3 > 0 the functions z) and w by the
equalities

a0 | / (poe)- 0 - 26) ) ja<p1><n>dn)“ s

o(p1)(s)

a
t

+< /U(pl)(n)dn)a /bqpo(s (A +58(5)) + ha?)(5) ds] )
b (p

o))
X (a/O'

)= (
1—(a+pB)
1)(77)d77)

and
b
uKﬂ::”/IGanSH(@o@HA(A4*Zﬁ@))+’KxﬁXSDdS%*ws@%

where Gy is Green’s function of the problem (1.3.21), (1.3.222), and w, is
defined just as in the previous proof. Then reasoning in the same manner
as when proving Corollary 1.1.1;, we make sure that the inclusion (1.1.72)
is valid for g > 0.

In the case § = 0, we consider the function z for A = 0 and the function
w defined by (1.3.35), where v is a solution of the equation (1.3.21) under
the boundary conditions

Then reasoning just in the same way as in proving Corollary 1.1.1; for g = 0,
we can see that the inclusion (po, p1) € Va,0(Ja,b[;h) is valid. O

Proof of Corollary 1.1.1;9. Coincides completely with that of Corolla-
ry 1.1.1; for > 0. O

Proof of Remark 1.1.4. Denote the left-hand side of (1.1.32;) by w. Then it
is obvious that

b
[po(s)]-x* TP (s) + z(s)h(z”)(s)
w(t) §/ T ds for

a<t<b,

a

i.e., it follows from (1.1.34;) that the condition (1.1.32;) is valid. On the
other hand, (1.1.34;) implies the inclusion

he£(Conilen )

a(p1)

which together with (1.1.33) means that (1.1.8;) is satisfied. O
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Proof of Remark 1.1.4y. As is seen from the proof of Remark 1.1.4, the
conditions (1.1.32;) and (1.1.12) follow simultaneously from (1.1.34;). O

Proof of Corollary 1.1.2;. Introduce the notation
g(u)(t) = ki:lgk (B)u((t)) (1.3.38)

and
h(u)(t) = é |91 (8) [u(7k (1)) (1.3.39)

Then for any v € C(]a,b[) almost everywhere on the interval ]a,b| the
inequality (1.1.10) is satisfied, and as is seen from (1.1.36;), the inclusion
(1.1.8;) is valid. Tt is also clear that the condition (1.1.37;) in our notation
can be rewritten as (1.1.32;). Hence all the requirements of Corollary 1.1.1;
are fulfilled and our corollary is valid. O

Proof of Corollary 1.1.2;9. Define the operators g and h by the equalities
(1.3.38) and (1.3.39) and note that from the condition (1.3.38) it follows the
inclusion (1.1.12). Reasoning similarly as when proving the above corollary,
we can see that our corollary is valid. O

Proof of Remark 1.1.5. Denote the left-hand side of (1.1.37;) by w. Then it
is evident that

b pos)l-2 () + () 3 lou(e)le” (7 (s)
w(t) < / T ds for a<t<b,

a

ie., (1.1.40;) implies the validity of the condition (1.1.37;). On the other
hand, (1.1.40;) implies the inclusion

g2’ (i) € Lo _([a,b])

a(p1)

which together with (1.1.39) means that (1.1.36;) is satisfied. O

Proof of Remark 1.1.59. As is seen from the proof of Remark 1.1.5, the
conditions (1.1.37;) and (1.1.38) follow simultaneously from (1.1.40;). O

Proof of Corollary 1.1.31. It is clear that all the requirements of Theo-
rem 1.1.1;, except (1.1.7;), follow directly from the conditions of our corol-
lary. It remains to show that the conditions (1.1.41), (1.1.421) imply the

inclusion (1.1.71) as well, where h(u)(t) = ];::1 |gr (t) |u(Tr(t)).
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Indeed, let 8 > 0 and

n U

2(t) = [Z %xﬁ(m(s))(/sa(pl)(n)dn)ads(j0(1?1)(77)d77)a+

k=17 a

+Zn: b%xﬁ(m(s))(/bo(pl)(ﬂ)dn>ad8</tg(pl)(n)dn>a] §
k=1 J /
(f 0(p1)(n)dn)1—2(a+ﬁ>

x 93—2(ath)

Then as is seen from (1.1.42;), for every m € {1,...,n}
2(tm(t)) <1 for a <t <h. (1.3.40)

Moreover, let

n b
w) =3 [ 1Galt,lan(s)o (rs) ds + . 0)
k=1 p

where the function w. is defined in the same way as in proving Corolla-
ry 1.1.11, € > 0, Go is Green’s function of the problem (1.3.21), (1.3.221)
defined by the equality (1.3.23;) and by Lemma 1.2.7,

w.(t) = O* (2P (t)) as t—a, t—0b, (1.3.41)
for any € > 0. From the conditions (1.3.40), (1.3.41) it follows that we can
choose a constant £ > 0 such that for every m € {1,...,n}

we (T (1))

Z(Tm(t))—i—sup{m: a<t<b} <1 for a<t<b  (1.342)

Using the equality (1.3.231) we can easily obtain the estimate

0 <w(t) < z(t)x’(t) +w.(t) for a<t<b, (1.3.43)
whence by virtue of (1.3.42) for every m € {1,...,n} the inequality
0 < w(Tm(t)) < 2P (m(t)) for a<t<b (1.3.44)
is valid. Analogously, from (1.3.41) and (1.3.43) it follows the estimate
0 <w(t) <rezP(t) for a<t<b, (1.3.45)
where
To = Sup {z(t) + 5;?3 Da<t< b} < +o0,

and according to (1.3.41) we get
w(t) = 0*(2’(t)) as t—a, t—b. (1.3.46)
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On the other hand, it is clear that
n
w(t) = pr(&)w'(t) = Y lge()]2” (1 (t)) — g5 (D),
k=1
which with regard for the conditions (1.1.41) and (1.3.44) results in

w”(t) < po(tyw(t) + pr(t)w’ (1) = D lge(Dw(m(t) = gs(t), (1.3.47)
k=1

where, as is seen from Remark 1.2.6,

(po, 1) € Vio(la, b]). (1.3.48)

Then, as we have shown in proving Corollary 1.1.11,
b
/|G(t, s)|qp(s)ds = O* (2P (t)) as t —a, t—b, (1.3.49)
a

where G is Green’s function of the problem (1.2.4), (1.2.2;9). It remains
to notice that the conditions (1.3.45), (1.3.46), (1.3.48), (1.3.49) and the
inequality (1.3.47) by virtue of Definition 1.1.4 imply the inclusion (1.1.7;)
for g > 1.

Suppose now that 3 =0 and

n b
w(t) = Z/|Go(t,s)||gk(s)|ds—i—sv(t), (1.3.50)
k=17,

where v is a solution of the equation (1.3.21) under the boundary conditions
v(a)=1 and w(b)=1.
Then, as is seen from the condition (1.1.42;), for every m € {1,...,n}
2(tm(t)) <1 for a<t<b

and hence for every m € {1,...,n} we can choose € > 0 small enough for
the inequality

2(tm(8)) + ev(rm(t)) <1 for a <t <h. (1.3.51)

to be fulfilled. Note that from the positiveness of v and also from (1.3.23;)
we have the estimate

0<w(t) <z(t)+ev(t) for a<t<b
which by virtue of (1.3.51) for every m € {1,...,n} yields

0<w(rm(t) <1 for a<t<b. (1.3.52)
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On the other hand,
w(t) = pr()w' (t) = Y lgn(t)|
k=1
which with regard for (1.1.41) and (1.3.52) gives
w"(t) < po(t)w(t) + pr(t)w'(t) — Z |91 (8) [w (7 (1))
k=1

Hence, owing to Definition 1.1.3, the inclusion (po,p1) € Vi,0(]a,b[;h), is
valid, where h(u)(t) = Y |ge(®)|u(m(t)). O
k=1

Proof of Corollary 1.1.35. It is clear that all the requirements of Theo-
rem 1.1.12, except (1.1.73), follow directly from the conditions of our corol-
lary. Tt remains to show that the inclusion (1.1.73) follows from the condition
(1.1.41), (1.1.427) as well.

To this end, we introduce for § > 0 the functions z and w by the equalities

(t) = [; / I st / 0(p1)(n)dn)ad5+

o(p1)(s

t

" (o) U | s
+Z/mﬁ(m(s))dS(/U(pl)(n)dn) K/U(pl)(n)dn)

k=1% a a

n b
w(t) =) / |Go(t, )] g (s)|2” (i (s)) ds + we (1),
k=1

where Gy is Green’s function of the problem (1.3.21), (1.3.223) and w. is
defined in the same way as in proving Corollary 1.1.1;. Reasoning just as
in proving Corollary 1.1.31, we make sure that the inclusion (1.1.72) is valid
for g > 0.

In the case B = 0 we consider the function w defined by the equality
(1.3.50), where v is a solution of the equation (1.3.21) for the boundary
conditions

v(@)=1, V' (b—)=1.
Then, reasoning analogously as in proving Corollary 1.1.3; for 8 = 0, we
can see that the inclusion (po,p1) € Va(Ja,b[;h) is valid. O

Proof of Corollary 1.1.3;9. Coincides completely with that of Corolla-
ry 1.1.3; for > 0. O

Proof of Remark 1.1.6. If the inequality (1.1.43;) is satisfied for t € 6, .,
then it will especially be satisfied on each of the sets 6, , where m €
{1,...,n}, i.e., each of the n inequalities of (1.1.42;) will be satisfied. O
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Proof of Corollary 1.1.4; (1.1.4;0). It is sufficient to substitute py = 0,
p1 =0, k=1 in Remark 1.1.5; (1.1.5,0). O

Proof of Corollary 1.1.51. It is clear that all the requirements of Theo-
rem 1.1.17, except (1.1.77), follow directly from the conditions of our corol-
lary. It remains to show that the inclusion (1.1.71) follows from the condi-
tions (1.1.501) for 0 < 8 < 1 and (1.1.51;) for 5 =1 as well.

Consider first the case 0 < # < 1. Let = be a function defined by the
equality (1.1.91). Then

(xﬁ(t))// _ pl(t)(acﬁ(t))' _ 252 ajl(pié)(it))

b b
50-0) 22 (( [ otwian) = ( [ otooman)’). a5

a

From the condition (1.1.50;) and the fact that the operator h is nonnegative
it follows that

b

po(t) < 252</a(p1)(77)d77) o for a <t <b.

a

2> A (1)
o?(p1)(t)
Moreover,

0 < (0)+ 801 =~ Aymin { [ atpr)(n)in) "+

a

b
+(/0(p1)(n)dn)2 ta<s< b}a;(fi;)(it)), (1.3.54)

where

A= ﬂ</b0(p1)(77)dn) o x
s b

canin{ ([ oto)man)”+ [ otmman) s a<s<o}

a s

Let w(t) = 2%(t) + A, and rewrite the identity (1.3.53) as
w(t) = po(tyw(t) + pr(B)w (8) — (po(t)” (1) + 2ﬁ221(p7;)(g)) -

Pm@+ﬂu6((/E@nmm@2+<jdmxwmf>§£%—.
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Then, taking into account the fact that the operator h is nonnegative, from
the condition (1.1.501) and the inequality (1.3.54) we obtain

w”(t) < po(H)w(t) + p1(t)w'(¢), (1.3.55)
i.e., owing to Lemma 1.2.2 the inclusion

(po,p1) € Vio(]a, b)) (1.3.56)

is satisfied. Then, as is seen from Remark 1.2.2, there exists Green’s function
G of the problem (1.2.4), (1.2.249), and by Lemma 1.2.6,

b
/|G(t,s)|q3(s)ds:O*(:vﬁ(t)) for t—a, t—b (13.57)

where

Let now

e = (1 — ) min {(/50(171)(77)@)2 +

a
b

#([onman)’s a<es<s) (1358)

S

and rewrite (1.3.53) in the form

(@7()" = o)z’ (t) + p1(t)(@” () — h(z”)(t) — eqs(t) —

(o020 -na(0)+252 L) - sa-n(( / (o0 n)in) o
+</b0(p1)(n)dn>2) €:|J;2(E)7;)(it))' (1.3.59)

Taking into account (1.1.50;) and (1.3.58), we obtain
(@ ()" < po(t)a” () + pr(8) (2" (1)) — hl(a”)(t) — eqs(t)  (1.3.60)
for a <t <b.

From (1.3.56), (1.3.57), and (1.3.60), by virtue of Definition 1.1.4 we con-
clude that the inclusion (1.1.7;) is satisfied for 0 < 5 < 1.
Assume now that § = 0. Then the condition (1.1.50;) takes the form

0 <po(t)—h(1)(t) for a<t<b,
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from which we can see that the function w(t) = 1 satisfies the inequality
w”(t) < po(t)w(t) + pr(t)w' (1) — h(w)(1),

i.e., owing to Definition 1.1.3 we can conclude that the inclusion (1.1.7;) is
satisfied for g = 0.
Finally we consider the case § = 1 and note that

2" (t) = p1(t)2’ () — 202 (p1)(t). (1.3.61)

It follows from (1.1.51;) that there exist constants e, u €10, 1[ such that

esssup< 2(t) (h(:c)(t) po(t))) < 2u? (1.3.62)

telapl \O2(p1)(t) \ =(t)

and

wt) @) )
Tﬁiﬁ(a%mxw< ) <2e a6

Taking into account the fact that the operator h is nonnegative, from the
condition (1.3.62) we get

x27H(L)

b 2(1—p)
—mm(ﬂ < 2M2(/U(p1)(77)d77) for a<t<b.

a

Reasoning in the same way as for 0 < 8 < 1, from the last inequality as
well as from (1.3.62) we can see that the function w(t) = z*(t) + A, where

- b —2(1-p)
A= =78 (/0(p1)(n)dn) X

a

xmm{(ja@ﬂmm®2+(]a@ﬂmm®2:aéséb}

a S

satisfies (1.3.55), i.e., the inclusion (1.3.56) is satisfied and there exists
Green’s function G of the problem (1.2.4), (1.2.2;0). As is seen from Lem-
ma 1.2.7, if ¢1(t) = o2(p1)(¢), then

/|G(t,s)|q1(s)ds=O*(ac(s)) as t—a, t b (13.64)

We rewrite now the identity (1.3.61) as follows:

2" (t) = po(t)x(t) + pr (1)’ (t) — h(w)(t) —equ(t) +
+ (h(2)(t) = po(t)a(t) — (2 = £)a® (p1)(t)).-
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The latter with regard for (1.3.63) yields
2/ () < po(t)x(t) + p1(t)x' (t) — h(z)(t) —eqi(t) for a<t<b. (1.3.65)

From (1.3.56), (1.3.64), and (1.3.65), according to Definition 1.1.4 we con-
clude that the inclusion (1.1.74) is satisfied for § =1. O

Proof of Corollary 1.1.55. It is clear that all the requirements of Theo-
rem 1.1.12, except (1.1.73), follow directly from the conditions of our corol-
lary. It remains to show that the inclusion (1.1.75) follows from the condi-
tions (1.1.502), (1.1.56) for 0 < § < 1 and from (1.1.513) for 8 = 1.

First we consider the case 0 < § < 1. Let = be the function defined by
(1.1.92). Then

0'2 1
(2 ()" = pr () (= (1)) — A1 — mxﬁ’i}(g). (1.3.66)

From (1.1.502) it follows the existence of a constant € > 0 such that

2 B
[02(19?))(0 (hiﬁ(zt()t) —m(®)] <AL= -c (1367

and likewise from the inclusion (1.1.55) it follows the existence of a constant
A such that

ess sup
t€]a,b|

f)\Lﬁ(t)po(t) <e for a<t<b. (1.3.68)
o?(p1)(t)
Let w(t) = 28(t) + A, and rewrite the identity (1.3.66) in the form
0'2 1
W0 =palt)u(®) + (00 () = (mo(01a” () + Aol) + 01— 2.

whence with regard for (1.3.67), (1.3.68) and the fact that the operator h is
nonnegative we can see that the inequality (1.3.55) is valid, i.e., by virtue
of Lemma 1.2.2 the inclusion

(po,p1) € Va(]a, b)) (1.3.69)

is satisfied. Then, as is seen from Remark 1.2.2, there exists Green’s function
G of the problem (1.2.4), (1.2.299), and by Lemma 1.2.7,

b

/|G(t,s)|qﬁ(s)d5:O*(xﬁ(s)) as t—a, (1.3.70)
where
0‘2 1 t
Qﬁ(t) = xg(pg)(i))'

Rewrite now (1.3.66) as

(@ ()" = po(t)2” (1) + p1(t)(2” (1)) — h(”) — eqs(t) +
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2
+ (ha®)®) - po(0”(t) — (801 - §) - o) ZLID,
22=8(t)

This equality by virtue of the condition (1.3.67) enables us to see that
(1.3.60) is satisfied. From the conditions (1.3.60), (1.3.69), (1.3.70) and
according to Definition 1.1.4, we can conclude that the inclusion (1.1.72) is
satisfied for 0 < 8 < 1.

Assume now that 8 = 1. From the condition (1.1.503) for 5 = 1 it follows
the existence of a constant € > 0 such that

S om0 <= asm

Then it is clear from the negativeness of the operator h that

po(t) >0 for a<t<b,

i.e., by virtue of Remark 1.2.6, the inclusion (1.3.69) is satisfied and hence
there exists Green’s function G of the problem (1.2.4), (1.2.299). As is seen
from lemma 1.2.7, if ¢1(¢) = 0(p1)(¢), then

b
/|G(t, s)gi(s)ds = O*(z(t)) as t— a. (1.3.72)

Note that

2 (t) = po(t)x(t) + p1(t)a’ (t) — h(z)(t) —equ(t) +
+ (h(@)(t) — po(t)z(t) + eo®(p1) (1)),

whence with regard for (1.3.71) we see that (1.3.65) is satisfied.

From the conditions (1.3.65), (1.3.69), (1.3.72), owing to Definition 1.1.4
we conclude that the inclusion (1.1.73) is satisfied for § =1 as well.

The proof of the given and of the previous corollary is identical for the
case 0 =0. O

Proof of Corollary 1.1.5;9. Coincides completely with that of Corolla-
ry 1.1.5; for 0< 8 <1. O

Proof of Corollary 1.1.61. Let

n

h(u)(t) =D lgr(®)|u(mi(t))- (1.3.73)

k=1

Then we can see from (1.1.561) that the inclusion (1.1.8;) is satisfied for
[ = 0. It is also clear that all the requirements of Theorem 1.1.1; for a = 1,
3 =0, except (1.1.7;), follow directly from the conditions of our corollary. It
remains to show that the conditions (1.1.571), (1.1.58;) imply the inclusion
(1.1.71) as well.
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Without restriction of generality we assume that ¢ €]a, b[.

(1.1.574) there exist Vi, nm (m = 1,2) such that

0<Ym <nm <400 (Mm=1,2)

and
n
ds (c—a)t™™
M1+ Aes+s2 0 1-p
Y1
n
i ds (b=t
Aot + Aaas +52 1 — [
Y2

Introduce the functions ¢1 and o by

mn
ds (t—a) f <t<
= or a c
A1+ dgs + s2 1-5 -
p1(t)
and
72
_ £\1-B2
ds :(b ) for e<t<hb.
A21 + A28 + 52 1-75
p2(t)

From (1.3.74) we have

Then by

(1.3.74)

1 <@1(t) <m for a<t<ec, 72 <pat)<me for c<t<b and

om(€) =vm (m=1,2).
Introduce also the function w by

t

w(t) = exp (/(s —a) P (s) ds> for a<t<ec,

c

w(t) = exp (/c(b — 5)P2py(s) ds) for ¢<t<b.

Then

w'(t) >0 for a<t<ec, w'(t)<0 for ¢<t<b,
w(t) >0 for a<t<b,

w € Choe(Jayef) N Clo(Jes B, wle—) = w(e),

(1.3.75)

(1.3.76)
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and the equalities

A1 A12 631
1 !
=) — t
W) = =g v [(tfa)ﬁl +iL o
for a<t<e, (1.3.77)
o1 A2 B2 .
1 /
= - - - - - t
Wit = -G+ [(bft)ﬁz + e
for e<t<d
are valid.
From the above equalities, by virtue of (1.3.75) it follows that
w”(t) <0 for a<t<b. (1.3.78)

On the other hand, taking into account the conditions (1.1.581) in the equal-
ities (1.3.77), we obtain

w’(t) < (polt Zwk ) w(t) + ity (1) -
Z|gk (t)—t) for a<t<b. (1.3.79)

Analogously, from (1.3.78) it follows
Tk (t)
w'(s)ds < w'(t)(re(t) —t) (k=1,...,n) for a<t<b.
t

Taking this inequality into consideration, from (1.3.79) we can see that

w(t) < po(t)w(t) + pi(t) Z|gk |w7'kt)fora<t<b.

The latter inequality together with (1.3.75), (1.3.76) and by virtue of Defi-
nition 1.1.3 shows that the inclusion (po, p1) € V1,0(]a, b[; h) is satisfied. O

Proof of Corollary 1.1.65. We define the operator h by the equality (1.3.73).
Note also that if py € Lioc(]a,b]), then from the conditions (1.1.56) and
(1.1.59) we obtain

o(p1) € L([a,b]), pjoz(p1) € L(la,b]) (j =0,2),
ngQ(pl) € L([a,b]) (k = 17 .. 'an)a
i.e., the conditions (1.1.33), (1.1.52), and (1.1.82), are satisfied where 8 = 0,

« = 1. Then just as in the previous proof it remains to show that from the
conditions (1.1.573)—(1.1.59) it follows the inclusion (1.1.72) for 5 = 0.
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Without restriction of generality we assume that ¢ €]a, b[. Then by virtue
of (1.1.575) there exist constants Y, nm (m = 1,2) such that
el <m <400, 0<vyy<n <400

and (1.3.74) is satisfied. Introduce the functions ;1 and @9 by

n
/ . *(tia)liﬁl for a<t<ec
M1+ Aes+s2 1= - ’
p1(t)
p2(t)
_ #\1-B2
ds :(b ) for e<t<hb.
21 + A28 + 52 1-75
Y2

From (1.3.74) we have
M <@1(t) <m for a<t<c, y2<pat)<n for c<t<b,
pi(c) =m w2(c) = na.

Introduce likewise the function w by the equalities

w(t) = exp (/t(s —a) P (s) ds) for a<t<ec,

a
t

w(t) = exp (a/(b — 5) Papy(s) ds) for ¢<t<b,

where 0 < o < min (1; L(b- e) P (c— a)’ﬁl), ie.,
a €0, 1]. (1.3.80)
Then
w'(t) >0 for t €la,c[U]e,b, w(t) >0 for a <t<b, (1.3.81)
w € Clo(a, ) N Coelesb)), wle—) > wlet), w'(b=) >0,  (1.3.82)

and the equalities

7 )\11 )\12 ﬁl /
w’(t) = —mw(t) - {(t — oy + = a}w (t)  (1.3.83)

for a<t<ec

and

7 adg A22 6 /
w'(t) =~ g ) - [ﬁ + () -

—all—alb— t)ﬁﬁﬁﬂ (b— 1) P2uw(t)pa(t), for c<t<b (1.3.84)
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are valid. Note also that the condition ¢ € [max(a,b — 1);b] and (1.3.80)
imply

1—ab—t)2*P >0 for ¢<t<b.
Taking this into account in the equality (1.3.84), we obtain

" a1 A22 B3
W) s — Gy ) - [(b—t)ﬁa T

for a<t<hb.

}w'(t). (1.3.85)

From (1.3.83) and (1.3.85), according to the condition (1.3.81), it is clear
that the inequality (1.3.78) is satisfied.

On the other hand, taking into account in (1.3.83) and (1.3.85) the con-
ditions (1.1.583), we get

w'(t) < (po() = D lax(®) )w(t) + i (0w’ (1) -
k=1

—w' ()Y lgr(®)|(re(t) —t) for a<t<b,
k=1

which with regard for (1.3.81) and (1.1.59) imply that (1.3.79) is satisfied.
Reasoning in the same way as in the previous proof, we see that the inclusion
(po,p1) € Vao(Ja,b[; h) is valid. O

Proof of Corollary 1.1.7;. It is not difficult to notice that if we introduce
the notation

gu)(t) = gr(tu(m(t),
k=1

then the inequality (1.1.22) will be satisfied, and from (1.1.61), (1.1.62)
it follows that the conditions (1.1.17) and (1.1.18) are valid. That is, all
the requirements of Theorem 1.1.2; are fulfilled and this implies that our
corollary is valid. O

Proof of Remark 1.1.10. Follows directly from that of Remark 1.1.2. O

Corollaries 1.1.79 and 1.1.7;9 are proved analogously to Corollary 1.1.7;.
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CHAPTER II

CORRECTNESS OF TWO-POINT PROBLEMS FOR LINEAR
SINGULAR FUNCTIONAL DIFFERENTIAL EQUATIONS
OF SECOND ORDER

§ 2.1. STATEMENT OF THE PROBLEM AND FORMULATION OF MAIN
RESULTS

2.1.1. Statement of the Problem.
Let us Consider the functional differential equations

u”(t) = po(t)u(t) + pr (' () + g(u)(t) + pa(1), (2.1.1)
u”(t) = por(t)u(t) + prr(t)u' () + gr(u)(t) + par(t), k€N, (2.1.1;)

under one of the following the boundary conditions

u(a) =0, u(=b) =0, (2.1.210)
u(a) =0, u'(b—)=0; (2.1.250)
u(a) = c1, u(d)=ca, (2.1.2))
u(a) =c1, u'(b—) = cz; (2.1.2,)
u(a) = cig, u(b) = cax, (2.1.21%)
u(a) = cig, u'(b=) = ca, (2.1.241)

where ¢, ¢, € R, (1=1,2;k €N), g, g : C(Ja,b]) = Lioc(Ja,b]), k € N, are
continuous operators,
p1,P;5 € Lioc(la, b)) o(p1) € L([a, b)),
, (2.1.34)
pj € Lﬂl(m)([a’b]) (] =0, 2)
ifi=1,
P1,Pj S LIOC(]a7b]) U(pl) S L([a7b])7
pj € L02(p1)([a7b]) (] =0, 2)
if i =2, and pji :]a,b[— R (j = 0,1,2; k € N) are measurable functions.
The correctness of the problem (2.1.1), (2.1.2;) will be studied under the
assumption that the inclusion

(po,p1) € Vio(Ja,b[; h)

is satisfied. (Effective sufficient conditions for the above inclusion to be
fulfilled are given in §1.1, where

lg() ()] < h(]=[)(t)

almost everywhere in the interval |a, b[ for every z € C(]a,d]).)
Consider also the following linear equation

u”(t) = Pok (t)u(t) +p1k(t)u'(t) + ka(t). (214k)

(2.1.35)
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Let G, be Green’s function of the problem (2.1.4%), (2.1.2;0) and r € R™.
Then we denote the set

{y(t)r y() =aﬁk(t)+/Gk(t,8)9k(fv)(5)ds7 ar € [0,7], [lzfe < 7“}

by B,k if Uk is a solution of the problem (2.1.4x), (2.1.2j), and by Bj , if
U, is a solution of the problem (2.1.4%), (2.1.2;x).
Throughout this chapter the use will also be made of the notation

Ii(z)(t) = /t:c(s) ds</b:c(s) ds>2i for a<t<b,

a

where z € L([a, b]).
2.1.2. Formulation of Main Results.

Theorem 2.1.1;. Leti € {1,2}, the continuous linear operators g, g, h :
C(Ja,b]) — Lioc(Ja, b)) (k € N), the measurable functions p;, pji ]a,b[— R
(j =0,1,2; k € N) and the constants « € [a,b], v €]1,400[, B, € R be
such that

1
0§ﬂ<u<3 : (2.1.5)

—

b
o (p1) € L([a, b)), /%If(aa(m))(s) ds < +o00 (j=0,2),

(2.1.6)

b
M (0" s)as 00
[ A0 <o

a

where h is a non-negative operator and uniformly on the segment [a, b]

t
lim /|p1(s) —p1x(s)| ds =0,
k—o0

. (2.1.7)

i [P B) o )y (s) s =0 (G =0.2),

a

Jim (sup{‘a/g(y)(;)(p_l)g(zgy(s)) I7 (0% (p1))(s) ds| :

a<t<b, ye&k}) =0. (2.1.8)
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Moreover, let

(po,pl) S Vi70(]a, b[, h), (2.1.9)

where for every x € C(]a,b]) almost everywhere in the interval |a,b| the
inequality

lg(z)(®)] < h(l|)(t) (2.1.10)

is satisfied. Then there exists a number kg such that if k > kg, then the
problem (2.1.1g), (2.1.2;0) has a unique solution uy and uniformly in the
interval |a, b|

1—ap

Jim 1 (0T (pa)) () (ut) — uk (1)) = 0, (2.1.11)

L T )
k—oo  o(p1)(t)

where u is the solution of the problem (2.1.1), (2.1.2;9).

(W' (t) — ul(t)) = 0, (2.1.12)

Theorem 2.1.2;. Leti € {1,2}, the continuous linear operators g, g, h :
C(Ja,b]) = Lioc(]a, b)) (k € N), the measurable functions p;, pjx : (Ja, b)) —
R (j =0,1,2; k € N) and the constans « € [a,b], v €]1,4+00], ¢, cx, 5,
weR( =12 keN) be such that conditions (2.1.5)—(2.1.7), (2.1.9),
(2.1.10) and also

lim (sup{‘a/g(y)(j)(pl)izgy(s)) 17 (0% (p1))(s) ds| :

a<t<hb, erB%’lk}) =0 (2.1.13)
and
khm Clp = C] (l == 1, 2) (2.1.14)

are satisfied. Then there exists a number kg such that if k > ko, the problem
(2.1.1), (2.1.240) has a unique solution ug, and uniformly on the interval
la,b[ the equalities (2.1.12) and

lim (u(t) — ug(t)) =0 (2.1.15)

k—o0

are satisfied, where u is the solution of the problem (2.1.1), (2.1.2;).

2.1.3. Corollaries of Theorems (2.1.1;) (2.1.2;) (¢ = 1, 2).

Corollary 2.1.1;. Leti € {1,2}, the continuous linear operators g, gi, h :
C(Ja,b]) = Lioc(]a,b]) (k € N), the measurable functions n, p;, pjk |a, b[—
R (j =0,1,2; k € N) and the constants « € [0,1], v €]1,+oc[, 3, p € RT



71

be such that the conditions (2.1.5)—(2.1.7), (2.1.9), (2.1.10) are satisfied and
for every y € C(Ja,b]) almost everywhere on the interval |a, b]

|9r()(&) = g @) < n@®)lyllc (ke N) (2.1.16)

and uniformly on the segment [a,b]

t

a0 g0 -
k1—>ooa o(p1)(s I7 (0% (p1))(s) ds = 0, (2.1.17)
where
[ (o)
) 1862 (1)) (s) ds ~. N
/0(171)(5) 17 (0%(p1))(s) ds < + (2.1.18)

a

Then there exists a number ko, such that for k > ko the problem (2.1.1;),
(2.1.2,0) has a unique solution uy, and uniformly on the interval |a,b[ the
equalities (2.1.11), (2.1.12) are satisfied, where u is the solution of the prob-
lem (2.1.1), (2.1.2,0).

Corollary 2.1.2;. Leti € {1,2}, the continuous linear operators g, gi, h :
C(Ja,b[) = Lioc(]a,b) (k € N), the measurable functions n, p;, pjx :a, b[—
R, (j = 0,1,2; k € N) and constants « € [0,1], v €]1,4+00[, 8, p € RT
be such that the conditions (2.1.5)—(2.1.7), (2.1.9), (2.1.10), (2.1.14), and
(2.1.16)—(2.1.18) are satisfied. Then there exists a number ko such that
for k > ko the problem (2.1.1;), (2.1.2;;) has a unique solution ug, and
uniformly on the interval |a,b| the equalities (2.1.12), (2.1.15) are satisfied,
where u is the solution of the problem (2.1.1), (2.1.2;).

Consider now the case where the equations (2.1.1) and (2.1.1;) are of the
form

u” (t) = po(t)ult) + pr () (t) + ZgOm u(tom (t)) +p2(t)  (2.1.19)
and
" (t) = po(t)u(t) + prx(t) +ngm Tk (1)) + par(t), (2.1.19%)
where gom, gkm :]a,b[— R and Tom, Tem ¢ [a,0] — [a,0] (m = 1,...,n,

k € N) are measurable functions.

Corollary 2.1.3;. Let i € {1,2}, the measurable functions 1, gom, Gkm.,
Pjs Pik 1@, b[—= R, Tom, Tem : [a,0] — [a,b], (m=1,...,n;j =0,1,2; k €
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N) and the constants a € [0,1], v €]1,400[, B, 1 € R be such that condi-
tions (2.1.5), (2.1.7), (2.1.18) as well as

o (p1) € L([a, b]),

b
n “ (o (1)) (s , 2.1.20
J 61+ X o 22D g e 5209, 1

o(p1)(s

b

(gom(t) — gkm(t))‘ <n(t) (keN) (2.1.21)

m=1

are satisfied, and uniformly on the segment [a,b]

m S [ 9 (5) — gom(s) 8o (n))(s) ds
k1~>oo oo} ! U(p1)(s) Iz ( (pl))( )d 0, (2122)
Tkm(t)
esssup 4 I+ (o™ - o (p1)(s sl a .
o{1 w0 2| | st ast<of—o
as k — +oo. (2.1.23)

Let also the condition (2.1.9) be satisfied, where
h(z)(t) = Z |gom ()] (Tom (£))-
m=1

Then there exists a number ko such that for k > ko the problem (2.1.19y),
(2.1.2,0) has a unique solution uy, and uniformly on the interval |a,b[ the
equalities (2.1.11), (2.1.12) are satisfied, where u is the solution of the prob-
lem (2.1.19), (2.1.2,0).

Corollary 2.1.4;. Let ¢ € {1,2}, the measurable functions 1, gom, Gkm,
Pj; Pjk :]aab[*) ]R; Tom, Tkm * [avb] - [avb]’ (m =1,...,n;5=0,1,2 ke
N) and the constants o € [0,1], v €]1,4+00[, ¢, e, B, peR (1 =1,2; k €
N) be such that the conditions (2.1.5), (2.1.7), (2.1.9), (2.1.14), (2.1.18),
(2.1.20)(2.1.23) are satisfied, where h(z)(t) = Y0 _ |gom )|z (Tom (t)).
Then there exists a number ko such that for k > ko the problem (2.1.19;),
(2.1.2;) has a unique solution uy, and uniformly on the interval Ja,b| the
equalities (2.1.12), (2.1.15) are satisfied, where u is the solution of the prob-
lem (2.1.19), (2.1.2;).

Corollary 2.1.5;. Let i € {1,2}, the measurable functions 1, gom, Gkm.,
Dj; Pik 1]a, b[—= R, Tom, Tkm : [a,0] — [a,b], (m=1,...,n;j =0,1,2; k €
N) and the constants o € [0,1], v €]1,+00[, 8, p € R be such that the
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conditions (2.1.5), (2.1.7), (2.1.18), (2.1.22) as well as

b
o (p1) € L([a,b]), /%I;‘(aa@l))(s)ds <400 (j=0,2), (2.1.24)

a

Z (Igkm (&)] + |gom (t)]) < n(t) (k€N) for a<t<b (2.1.25)

m=1

and
esssup{ Z [Tom (t) — Tem (£)] : a <t < b} — 0 for k— 400 (2.1.26)
m=1

are satisfied. Let also the condition (2.1.9) be satisfied, where h(x)(t) =
> lgom )|z (1om (t)). Then there exists a number ko such that for k > ko
=1

m=

the problem (2.1.19%), (2.1.2,0) has a unique solution uy, and uniformly on
the interval ]a, b[ the equalities (2.1.11), (2.1.12) are satisfied, where u is the
solution of the problem (2.1.19), (2.1.2;9).

Corollary 2.1.6;. Let i € {1,2}, the measurable functions 1, gom, Gkm.,
Djs Pim 16, b[— R Tom, Tkm :[a,b] — [a,b], (m=1,...,n; j =0,1,2; keN)
and the constants o€ [0,1], y€ |1, +o0[, a, ik, B, p € R (1 =1,2; keN) be
such that the conditions (2.1.5), (2.1.7), (2.1.9), (2.1.14), (2.1.18), (2.1.22)
and (2.1.24)—(2.1.26) are satisfied, where h(x)(t) = > |gom(t)|z(Tom(t)).

m=1

Then there exists a number ko such that for k > ko the problem (2.1.19;),
(2.1.2;) has a unique solution uy, and uniformly on the interval Ja,b| the
equalities (2.1.12), (2.1.15) are satisfied, where u is the solution of the prob-
lem (2.1.19), (2.1.240).

For more clearness, let us consider the equations

u”(t) = go(t)u(ro(t)) + pa(t), (2.1.27)
u(t) = gor(t)u(7i(t)) + p2x(t), (2.1.27;)

where go, gok, D2, D2k; Ja,b[— R, and 79, 7ok; [a,b] — [a,b] (kK € N) are
measurable functions.

Corollary 2.1.7;. Let i € {1,2}, the measurable functions n, go, gok, P2,
paor Ja,b[— R, 19, 7k : [a,b] — [a,b], (k € N) and the constants 3, u € R
be such that the conditions

B<p<l, (2.1.28)
l90(8)| + lgor ()] < n(t) for a<t<b, (2.1.29)
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b
[ )]s = a6 = 570 ds < v,

\ (2.1.30)

/ n(s)(s — @) (b — 5)°@ ds < 4o

a
are satisfied, and uniformly on the segment [a, b]

lim (pg(s) — pgk(s))(s — a)ﬁ(b — S)B(Q_i) ds =0,

k—o0

(2.1.31)

klirgo/ (90(s) — gor(s))(s — a)?(b—5)’2"Dds =0

and
esssup {|ro(t) — 7e(t)| : a<t<b} —0 as k— +oo. (2.1.32)
Let, moreover, the inclusion
(0,0) € Vi o(la,bl; h) (2.1.33)

be satisfied, where h(xz)(t) = |go(t)|x(70(t)). Then there exists a number kg,
such that for k > ko, the problem (2.1.27y), (2.1.2,0) has a unique solution
ug, and uniformly on the interval |a,b| the conditions (2.1.11), (2.1.12) are
satisfied, where u is a solution of the problem (2.1.27), (2.1.2;).

Corollary 2.1.8;. Let ¢ € {1,2}, the measurable functions 1, gom, 9ok,
p2, Dok 1la,b|— R, 1, % : [a,b] — [a,b], (k € N) and the constants ¢,
car, B, p € R (I =1,2; k € N) be such that the conditions (2.1.14) and
(2.1.28)(2.1.33) are satisfied, where h(z)(t) = |go(t)|z(70(t)). Then there
exists a number ko such that for k > ko the problem (2.1.27;), (2.1.2;)
has a unique solution ug, and uniformly on the interval |a,b] the equali-
ties (2.1.12), (2.1.15) are satisfied, where u is the solution of the problem
(2.1.27), (2.1.2;).

§ 2.2. AUXILIARY PROPOSITIONS

2.2.1. Correctness of the Initial Problem for Linear Second Order Ordinary
Differential Equations. Consider on the interval ]a, b[ the equations

o (t) = po(t)u(t) + pr(t) (1) (2.2.1)

and

’U”(t) = pOk(t)v(t) +p1k(t)’u'(t), keN, (22]—k)
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where

po, 1 € Lioc(Ja, b)), o(p1) € L([a,b]), po € Loy (py), ([a,b])  (2.2.21)
Dok, P1k € Lioc(Ja,b), k€N, (2.2.31)

or

po, p1 € Lioe(Ja,b]), o(p1) € L([a,b]), po € Loypy)([a,b]), (2.2.22)
Dok, Pik € Lioc(]a, b)), k€N, (2.2.32)

and the following initial conditions:

v(a) =0, lim a(i;fizt) _1, (2.2.4,)

v(a) =0, lim U(Z;S))(t) =1, (2.2.4z)
o(b) =0, lim U(";Szt) — 1, (2.2.5))
v(B) =0, lim % =1, (2.2.515)
v(b) =1, o'(b) =0. (2.2.59)

Remark 2.2.1. Tt has been shown in [23] that for the conditions (2.2.2;)
the problems (2.2.1), (2.2.4) and (2.2.1), (2.2.5;) are uniquely solvable.
Analogously, if

Pok, P1k € LIOC(]avbDv 0(p1k) € L([aab])a Pok € Lm(;vlk)([aab])a

then the problems (2.2.1;), (2.2.4;) and (2.2.1;), (2.2.51%) are uniquely
solvable, and if

Dok, P1k € LIOC(]aab])7 U(plk‘) S L([aab])7 Dok € LO'Q(plk)([a/ab])a

then the problems (2.2.1;), (2.2.4;) and (2.2.1;), (2.2.52) are uniquely solv-
able as well.

For brevity we introduce the notation

Apir(t) =pi(t) —px(t) (1 =0,1,2; keN) for a <t <b.

Lemma 2.2.1y. Let the measurable functions p;, pjr :]a,b[— R (j =
0,1; k € N) and the constants o € [0, 1], v €]1, +o0[, B, u € R such that

v—1

0<pB<pu< ;
e’

(2.2.6)

o7 (p1) € L([a,b]), /% I'(c®(p1))(s)ds < 400 (2.2.771)
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and uniformly on the segment [a,b] the conditions

t

t
. Apor(s) 5 . /
1 ———=I{ (" ds=0, 1 A ds=0 (2.2.8
Jim [ S o ) s) ds 0. Jim [ |Apu(s)lds =0 (2:28)
a a

be satisfied. Then there exists a number ko such that for k > ko the prob-
lem (2.2.1y), (2.2.41%) has a unique solution viy and the problem (2.2.1;),
(2.2.51k) has a unique solution vog, and uniformly on the interval ]a, b|

i (x(0) = 1(0) / op)e)ds) =0, 2290)

i (vas(0) — 2(0) /b o) ds) =0 229:)
nd

i a0 A / o p1)(s)ds) =0 2210,)

i 2200 ( / o (pr)(s)ds) =0, (2210,

where v1 and vy are the solutions of the problems (2.2.1), (2.2.41) and
(2.2.1), (2.2.51), respectively.

Proof. Tt is clear from the definition of the constants «, (3, v, u that

l—af 1-—au

- 0, O < 2.2.11
8—p<0, <1*5<1*N_7 ( )
Hence
1-af l-op
o%(p1), o7 (p1), o=+ (p1) € L([a,]). (2.2.12)
Using the Holder inequality, we obtain
to to 1—u
/ o(p1)(s)ds < ( / oTH (pl)(s)ds) x
t1 tl
ta M
X </00‘(p1)(s) ds) for a <t <ty <D, (2.2.13)

t1
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(o (1) n) dn)”
b b
N R & B N
: (a/a o )d) (a/ (jao‘(pf)(n)dn)ﬁ d)
(ﬁ)“(/bgﬂiﬁ(pl)(s)ds)lM(/bga(pl)(s)dsyﬁ, (2.2.14)
b
a(p1)(s) s

a/(fboa@l)(n)dn)ﬁd )

< (=25)( /b o= () (5) d)( /b a%pl)(s)ds)”_ﬁ, (2.2.15)

a a

where the existence of the integrals follows from (2.2.12). By means of
(2.2.14), (2.2.15) we easily get

b
a(p1)(s) g a+b
[ i <2 e ()

a

x </bg (p1)(s) ds>1#</boa(p1)(s)ds) " < 4oo.  (2.2.16)

a a

It is also evident that for every § € [0, 1]

_op)(s)
/If(oa(pl))(s)d < oo (2.2.17)

a

By virtue of condition (2.2.81), for every £ > 1 there exists a number kg
such that for k > ko

et <o(Apip)(t) <e for a<t<b. (2.2.18)

We now proceed to the proof of the lemma. Taking into account the condi-
tions (2.2.71), (2.2.12) and the inequality (2.2.13), the inequality

b b
D0 i a1 de
a/ po(s)ler (01)() ds < / S I (p)()
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x (/ai‘i“ (p1)(s) d3>2(1 Y < +00 (2.2.19)

a

is valid, i.e. the conditions (2.2.21) are satisfied. In this case, owing to
Remark 2.2.1, the problems (2.2.1), (2.2.4) and (2.2.1), (2.2.51) are uniquely
solvable. Integrating by parts and using (2.2.18), we arrive at

\ / POS) _ pu e (,4)) (5) | <

plk

b
+/le(aa(plk))(s) ds <

b
‘/ Apo(s) I (0% (p1x))(s) ds o(p1k)(s)

o(pik)(s)

a

i (0%(p1x))(5) Y’
o(Ap; = S
PO o)) |
Po(s)|
+e a/U(Zh)(S) I'(e®(p1))(s)ds for k> ko, (2.2.20)

where

A = sup{}/ Apo (s) (c%(p1))(s)ds|: a<t1 <tz < b}.

S

In view of (2.2.81)

lim Ay =0, (2.2.21)

k—o0

and by virtue of (2.2.18) the estimate

w / 3 u—p o®
If(oa(pl))(t)> ‘ < & lAp I (@ ()(®) +

b

(o(ap®

+(u+ﬂ)53/aa(p1)(5) d5111+ﬁ(iiiz;2¢)((2))(t)

a

for a<t<b

is valid. Substituting the latter in (2.2.20) and taking into account (2.2.71),
(2.2.81), (2.2.17) and (2.2.21), we can see that a constant 79 € RT exist,
such that

b
M K o s)ds : ,
sup{ (o) (s) I (0% (p1x))(s) ds : k>ko}< 0. (2.2.22)
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In the same way we get
Pok € Lo, (pyy)([a,b]) for k> ko,
where in view of (2.2.18)
o(pik) € L([a,b]) for k> ko,

which together with the conditions (2.2.3;) and Remark 2.2.1 imply that
the problems (2.2.1%), (2.2.4x) and (2.2.1%), (2.2.51%) are uniquely solvable
for k > k.

Note that the function wj,(t) = v,;(t) —vx(t) (j = 1,2; k > ko) is a
solution of the equation

v"(t) = pox(t)v(t) + prr(t)v'(t) +

+Apok (t)v; (1) + Ap1x(t)vj(t) (5 =1,2) (2.2.23)
and
_ . wi () -
wig(a) =0, tlgr}l o)D) o(Apix)(a) — 1, (2.2.247)
wr(b) = 0, lim % =1 - o(Api)(b), (2.2.245)
where in view of (2.2.81),
Jim |1 = o(Apue), = 0. (2.2.25)

Consider first the case j = 1. From (2.2.23), (2.2.24;) we have

ROI i [ a0 e
@~ Are0) ”a/ Aron(s) = o) T

; po(s)wik(s) + Apik(s)vi(s)
+/ (P)(5)

ds for a<t<b,  (2.2.26)

a

where the existence of integrals follows from the estimate (1.2.104), (1.2.114)
and the conditions (2.2.71), (2.2.81). From (2.2.26), integration by parts
results in

ds +

RLTUS Y a / vi(s) —wik(s) o)
o(pie)(t) < ‘1 (Ap1k)( )‘ JrAka/‘(Ilﬁ(Uo‘(pl))(s) (Ap1r)( ))

t
/
+/ [Po(s)wik(s) + Api(s)v (s)] ds for a<t<b, (2.227)

o(pix)(s)
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where in view of (2.2.18),

/ (M U(Aplk)(5)>/

(0 () (s)
/W% '*M— + (oae()] + fon ()] ra(s) ds

ds <

with

hi(t)= Iﬁ|§51;1 Jrﬂ/ (p1)( 1+3 1(17(1)))(75) for a <t <b.

Substituting the latter inequality in (2.2.27), with regard for (2.2.18) we get

()] 2 [wig(s)] s
a(p1)(t) = /Iﬁ(aa(m))( )d "

+e2 {Hl - J(Aplk)HC + /fk(s)|w1k(s)| + qr(s) ds] , (2.2.28)

where
[pox(2)|
B0 = Gy A0
_ @) o(p1)(t)
a(t) = ¢ 1)(t)(mplk( I+ egm e (t))+Akhk(t)|v1(t)|

for a<t<b.

From (2.2.28), using Gronwall-Bellman’s lemma, it follows that

i (8)] < reo(p)(t Qqumﬂb+

+/fk(s)|w1k(s)| + qx(s) ds) for a<t<b, (2.2.29)

where
b

rkg2[1+exp(52Aka/%ds)] for k> ko

and by virtue of (2.2.16), (2.2.21),

sup{rr : k> ko} < +oo. (2.2.30)
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Let us now introduce the notation

t

2z = |w1k(t)|</a(p1)(s)ds)1 for a<t<b.

a

t
Integrating (2.2.29) from a to ¢, dividing by [o(p1)(s)ds and using inte-
a

gration by parts, by virtue of the inequalities (2.2.13) and

j o0 (5) s / o) (s) ds>1 <

§/ba(pl)(s)ds(/ba(pl)(s)ds)_l for a<s<t<b

we obtain

zi(t) < 7"/fk(s)I{‘(aa(pl))(s)zk(s) ds+7 for a<t<b,

a

where

b 201-p) , b -1
r=swfns ke n)( [oTFen@as)( [amea)

[(f(,a“: (p1)(s) ds)' ™

b /qk(s)(/baa(pl)(n) dn)uds+

Jo(p)(s)ds @

a

H+ oo

Applying Gronwall-Bellman’s lemma, from the latter inequality we get

b
2(t) < T exp (r/fk(s)lf(aa(pl))(s) ds) for a <t<b (2.231)

By virtue of (2.2.18) we note that the estimate

b b

[nte e as < [ % 1(0 (p1)) (s) ds +

a
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a

b b
ra([o o as)" ™ [1apucolas+
b b
a o (p1)(s)
+ﬂa/a (p1)(s)ds/lll+ﬁ_u(p e ds] for k> ko

o%(p1

a

is valid, which with regard for the conditions (2.2.81), (2.2.17) with § =
1+ 8 — p and the condition (2.2.22) results in

sup{ /b Fe(s) (0% (p1))(s)ds : k> ko} < too.  (2.2.32)

Just in the same way, taking into account the estimates (1.2.104), (1.2.11;)
and the inequality (2.2.13), we obtain

/ka(s)(/bO'a(pl)(n) dn)u ds <
/lAplk 9 + A ﬁ(; n { /b )#+
/ |po pt 5) ds /ball = o) ds) #] .

*“’“(/ 7 (p”(s)d) W ol ds/ e

a

b

+([ormas)™” / A (o) ds] for > ko

a a

By virtue of the inequalities (2.2.16), (2.2.17) with 6 = 1 + 8 — p and the
conditions (2.2.71), (2.2.81) and (2.2.21)

i / a6 / m)(n)dn)“ds:o (2.2.33)

which together with (2.2.25) implies

lim 7 = 0. (2.2.34)
k—oo
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Substituting (2.2.32) and (2.2.34) in (2.2.31) we get

lim ||2]lc = 0, (2.2.35)
k—oo

i.e., the condition (2.2.911) is satisfied.
Applying (2.2.13), we see from (2.2.29) that

SO o)’

= / o (p1)(s) d ) [EE / Sl (pr))(s) ds +

b

+/bqk<s>(/aa<p1><n> dn)”ds] n

a S

b
uw
+7|1 - U(Aplk)||c</aa(p1)(s)ds> for a <t <b,

a

where 7 = sup{rx : k > ko}. The above inequality with regard for (2.2.25),
(2.2.32), (2.2.33) and (2.2.35) implies that the condition (2.2.1011) is valid.

Consider now the case j = 2. Let £k > kg. Then for ws, i.e., for a
solution of the problem (2.2.23), (2.2.245) the representation

__wy(B) _
o(pix)(t)

v2(8) — wak(s)

co)s) ot

b
o(Apu)(t) — 1 + / Apor(s)

b
Pok () w2k (s) + Ap1xvs(s)
- / (p1r)(s)

ds for a<t<bd

is valid. Repeating the arguments presented for j = 1, where f, hi are
defined as before,

/

() = (8pue(0)] + 44 757 P 'f“fz'ﬁAkhk(nw(tn,
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and
b l—ap 1—
(o™ (o) (s)ds) ™" o : )
T =12 a(s)( [ o%(p1)(n)dn) ds+
k fao‘(pl)(s)ds a/ k <“/ )

a

+||1+0(Ap1k)|lc],

we see that the conditions (2.2.912), (2.2.1012) are valid. O

Lemma 2.2.15. Let the measurable functions p;, pjr :]a,b[— R (j =0,1;
k € N) and the constants « € [0,1], v €]1,+o0[, B, u € R be such that the
conditions (2.2.6) are satisfied,

b
ol a |p0(8)| 1 Ua s s 00
o™ (p1) € L([a,b]), o1)(s) I (o™ (p1))(s)ds < +oo  (2.2.73)

a
and uniformly on the segment [a,b] the conditions

t

im 7Ap0k(s) Boe s)ds =
kgma/a(pl)(s) 1 (0" (p1))(s) ds = 0,

(2.2.8,)

¢
klim /|Ap1k(s)|ds =0

are satisfied. Then there exists a number ko such that for k > ko the problem
(2.2.1y), (2.2.4%) has a unique solution vy and the problem (2.2.1y), (2.2.52)
has a unique solution vay, and uniformly on the interval |a, b]

Jim. (vi(t) — vi(t)) (/ta(pl)(s)ds) - =0, (2.2.921)

Jim (vag (1) = v2(t)) =0 (2.2.902)
and
g ) —u(t)
Jm o) 0, (2.2.1047)

t

lim Vo (1) — v5(t) (/Ua(pl)(s) ds)u =0, (2.2.1029)

where v1 and vy are the solutions of the problems (2.2.1), (2.2.4) and (2.2.1),
(2.2.59), respectively.
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Proof. Repeating word by word the previous proof for the case j = 1 and re-
placing everywhere I by I3, we can see that the problems (2.2.1;), (2.2.4)
and (2.2.1;), (2.2.52) are uniquely solvable, the condition (2.2.92;) is satis-
fied and for the function wyx(t) = v1(t) — v1x(¢) the representation

[l <m(||z~k|c/fk ([ weman)” s+

a
t

+/qk(s) ds + ||1 — O'(Aplk)||c> for a<t<b (2.2.36)

a

is valid, where the functions fi, qx and zj are defined in the previous proof.
Using the same technique as when proving the relations (2.2.25), (2.2.32),
(2.2.33), we obtain

sup{/fk 0% (pr))(s)ds k> ko} < too,

Jim %(5) ds =0, lim |[1—0o(Apw)lc =0
a
and
lim ||zx|lc =0,
k—oo

from which it follows with regard for (2.2.36) that the condition (2.2.102;)
is valid.
Note that the function way (t) = va2(t) — vai(t) satisfies the conditions

wa(b) =0, wh(b) =0,
i.e., the representation

b

b
M:*/Amk@) U’?’f /APOk _va(s) ds —

/ o(pw)(s)

ds for a<t<b

_/po(S)wlk(S) + Apik(s)vs(s)
o(pik)(s)

is valid. Repeating the arguments taking place in the proof of Lemma 2.2.1
for j = 2, we come to the conclusion that the conditions (2.2.912) and
(2.2.1092) are valid. But owing to the condition p1 € Ljs.(]a, b)), it follows
from (2.2.912) that (2.2.992) is valid. O
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Lemma 2.2.2. Let i € {1,2}, the measurable functions p;, pk :]a,b[—
R and the constants o € [0,1], v €]1,400[, B, p € R be such that the
conditions (2.2.6), (2.2.7;), (2.2.8;) and

(po,p1) € V;0(]a, b) (2.2.37;)
are satisfied. Then there exists a number ko such that for k > kg
(pok, p1k) € Vio(]a, b]). (2.2.38;)

Proof. Let i = 1 and vy, v, v1g, vax be solutions of the problems (2.2.1),
(2.2.4), (2.2.1),(2.2.51), (2.2.13),(2.2.45), (2.2.13),(2.2.51x) respectively,
whose existence and uniqueness follow from Remark 2.2.1.

As is seen from Definition 1.1.2 of the set V1 ¢(]a,d[) and Remark 1.2.1,
v1(b) > 0 and vy (a) > 0. Then by virtue of Remark 1.2.5 and the inclusion
(2.2.37;),

v1(t) +v2(t) >0 for a<t<b,

hence if
c=min{vi(t) +v2(t): a<t<b},
then
¢>0. (2.2.39)

On the other hand, by Lemma 2.2.1;, there exists a number ky such that
for any k > kg

7% <) —vi(t) (j=1,2) for a<t<b. (2.2.40)
Thus for the solution vy of the equation (2.2.1;), where
Vg (t) = v1g(t) + vor(t),
the estimate
o (t) = (vik(t) = vi(t) + (var(t) — v2(t)) + (v1(t) +v2(t))
is valid from which with regard for (2.2.39) and (2.2.40) we obtain
vg(t) >0 for a<t<b.

This inequality by virtue of Lemma 1.2.2 means that the inclusion (2.2.38;)
is true. [

Consider now the boundary conditions
u(a) =0, u(d)=0 (2.2.414)
and
u(a) =0, u'(b—)=0. (2.2.415)

The following Lemma is valid.
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Lemma 2.2.3. Leti € {1,2}, the measurable functions f, p;, pjx :]a,b[—
R and the constants a € [0,1], v €]1, 400, B, u € R satisfy the conditions
(2.2.6), (2.2.7,), (2.2.8,), (2.2.37;) and

b
M M o s)ds o
/0(201)(5) L7 (o (p1))(s) ds < +o0. (2.2.42)

Then there exists a number ko such that for k > ko the problem (2.2.1;),
(2.2.41;) has a unique Green’s function Gy, and uniformly in the interval
Ja, b

b
lim If_l(alli—a:(pl))(t) / |G(t,s) — Gi(t,8)| |f(s)|ds =0, (2.2.43)

k—o0

k—oo

b
)W) [|9G ) ~ Grlts)|
lim 5 /‘ ~ If(s)|ds =0, (2.2.44)

where G is Green’s function of the problem (2.2.1), (2.2.41;).

Proof. By Lemma 2.2.2;, for k > kg the inclusion (2.2.38;) is satisfied. Then
as is seen from Remark 1.2.2, the inclusions (2.2.37;) and (2.2.38;) imply
the existence of the functions G and Gy, respectively, where G is defined by
the equality (1.2.7), and

— vk (1) V1 (5) or a<s
Grlt,s) = “%(“()f(p”z)gs) oeseiEt (2.2.45)
V1k\l)V2k (S
7ng(a)a(p1k)(s) for a <t<s<hb,

where vy, is the solution of the problem (2.2.13), (2.2.4;;) and vgy is that
of the problem (2.2.13), (2.2.51;) for ¢ = 1 and of the problem (2.2.1;),
(2.2.59) for i = 2.

From the estimates (1.2.10;), (1.2.11;) and the equalities (2.2.9;1),
(2.2.9:2), (2.2.10,1), (2.2.10;2) it follows the existence of constants d; and
da, such that on the interval |a, b] the estimates

onelo)( / o) (s) ds>1 <, oo / o) (s) d) <d,

a
for k>ko,  (2.2.46)
t

a®( [oe ds>1 <, ualo) / ey T ea

a
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and
b ) t

%(/‘7& Pt ds) M(Q_I)S o %(/Ua (p1)(s) ds) MS dy

t a
for k> ko, (2.2.47)
¢

JZ;IS zl) ( j o (p1)(s) ds> M(H)g da, U'E’;Szl) ( / o®(p1)(s) ds) #g di,

a

as well as
’ng(a) > dy for k> ko, ’Ug(a) > dy (2.2.48)

are valid. 4 ‘ ‘
Introduce now the notation wl(,i)(t) = vl(J)(t) - vl(,g)(t) (1=1,2,7=0,1;
k € N) and

Why, = sup{(lfu(};];)(zg (/ta“(pl)(s) ds)u Da<t< b}.

a
Then as is seen from Lemma 2.2.1;,

lim wj, =0, lim wj =0 (j=1,2). (2.2.49)

k—o0 k—o00

It is also clear that the equality

/‘aﬁ Wt s) — G(t,s)) ‘|f )| ds =
_ M WOl O |
- (e )/m() o matelon | fds
(J) o)
vy, (B)vak(s vy (t)va(s) Y i
/‘v% o(pix)(s)  v2(a)o(pi)(s) |f(s)|ds (j=0,1) (2.2.50)

for a<t<b
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is valid.
Let j = 0. With regard for the inequalities (2.2.18) and (2.2.46) we
obtain the estimate

tvlk ) _ Ug(t)’l)l() s
/‘v% 06 m@o(Bpi)(s) | N4

(s)|ds +

< [| s
o [ @] [ G
+ 2“”(!0@1)(5)' I T S S ™ ias)| +
+||1_U(Ap1k)||c,u2(t)/ |f(3)| |’U1(S)|d$§

va(a) J o(p1)(s)

< I (e T (p1)(t) for a <t <b,

where

do da

b
< [ I o s as

a(p)(s) *

b
d d d
=g [ww + wag (1 + = /U(pl)(s)d5> + ?1 [T = o(Apwx)|

a

and in view of the conditions (2.2.8;), (2.2.42), and (2.2.49),

lim 7y, = 0. (2.2.51)

k—oo

Having analogously estimated the second integral in (2.2.50) for j = 0,
we obtain for any k > kg

l—ap

Yo" (pl))(t)/|G(t,s) — Gi(t,s)||f(s)|ds <21 for a<t<b

which in view of (2.2.51) implies the validity of the condition (2.2.43).
Similarly, from the equality (2.2.50) for j = 1, with regard for (2.2.18),
(2.2.46) and (2.2.47), for any k > ko we get

I (0% () (1) / 2601) Gt
o(p1)(t) ot

|f(s)|ds <7 for a<t<b,

a



where
b b
TR = 253—; (/alla: (p1)(s) ds) /% IM(o%(p1))(s) ds x
b
X [w{k + wyy, + Wik +W2k<1 + Z—; /0(101)(5) dS) + % 1 —o(Apik)llc|-

a

By the conditions (2.2.8;), (2.2.42), and (2.2.49),

lim 7719 =0
k—o0

which guarantees the validity of the condition (2.2.44). O

Lemma 2.2.4. Leti € {1,2}, the measurable functions f, p;, pjx :]a,b[—
R (j = 0,1; k € N) and the constants o € [0,1], v €]1,400[, B,p € R
satisfy conditions (2.2.6), (2.2.7;), (2.2.8;), (2.2.37;) and

b
O 61 de < o
/0(171)(5) L (e%(p1))(s) ds < +o0. (2.2.52)

a

Then there exist a constant r1 € RT and a number kg such that for k > ko
the problem (2.2.1y), (2.2.42;) has a unique Green’s function Gy, and

b

[t

a

<r max{‘ j% IP(0%(py))(s)ds : a<t< b}x

K I (o T (p)(t) for a<t<b (2:2.53)

and

<

b
(o)1) | [ 0Ck(t,5)
=0 ‘/ or (9

t
f(s) s }
< 71 max ‘/71Z o s)ds: a<t<b 2.2.54
wmax{| [ A8 100w (2.2.54)
a
for a<t<hb.
Proof. In the proof of the previous lemma it has been shown that under

the conditions of that lemma the problem (2.2.1;), (2.2.42;) has a unique
Green’s function G which is represented by the equality (2.2.45).
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Consider separately the case i = 1. First we note that in view of (2.2.12)
and (2.2.17) the inequality

b
><</Mds> <4oo for a<t; <ty <b (2.2.55)
o 1 (0%(p1))(s)

is valid. Integrating by parts and applying (2.2.48), we get

/GJGts
otJ
_—max{}/ ds‘: agtgb}x
ds a(p1)(
[ o |/‘ vlk
Iﬁao‘

Ho0) / (P me)

ds +

ds (j=0,1) for a<t<b. (2.2.56)

Using now the estimates (2.2.46), (2.2.55), we obtain

/ ds < Edl(/ball—af(pl)(s) ds) o %
t - . )
<J 7 EmEEAC (/ o)) dn ) ds-+

vl E )0 ([ )™ [ 1amolds +

a a

b

_|_
Se—

[e% Uo‘(pl)(s)
7 dsa/ T ] =

<L TR (p)(t) for a <t < b, (2.2.57)
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where

1 :zsdf((/léaa(ﬂds)# +

a I (0%(p1))(s)

2(n—B)

(/ ds) sup /|Ap1k )| ds : k>k0}
b

/ ds/ 1+B " >

Analogously we have

’Uzk Apuc

o1 (t I/ ds <
< 7“1] “(U = ( 1))(#) for a<t<b, (2.2.58)
Aplk
2k |/ ( [3 ds <
Iy (o0*(p1))
<7 for a<t<b (2.2.59)
and
Uzk
D ) / Iﬁ o ds <
<7 for a<t<b, (2.2.60)
where

Ty = sdl{/ ;’) ds + /ba

ﬁ
I (
/ 2(p—8)
e
sup /|Ap1k|ds k>k0 / “(p1)(s )ds) +

o%(p1)(s)
—|—/UO‘( )()ds/ — ds)|.
) S L o (p))(s) )
Let us now introduce the notation
4

r1 = — max(ry;T2).
da
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Substituting the estimates (2.2.57), (2.2.58) in (2.2.56) for j = 0, we see that
the condition (2.2.53) is valid. Taking then into account (2.2.59), (2.2.60)
in (2.2.56) for j = 1, we are convinced of the validity of (2.2.54).

For 7 = 2 the lemma is proved analogously. [

Lemma 2.2.5. Let i € {1,2}, the measurable functions p;, p;k :]a, b — R
(j = 0,1; k € N) and the constants o € [0,1], v €]1,+o0[, B, n € R
satisfy the conditions (2.2.6), (2.2.7;), (2.2.8;), (2.2.37;). Then there exists
a number ko such that for k > ko the problem (2.2.13), (2.2.41j) has a
unique Green’s function Gy for which the estimate

‘dek(t’S)‘<C/ ai(p1)(s)
dti = elp) (@)

1s valid, where ¢’ is a constant.

(j=0,1) for a<t,s<b, t#s, (2.2.61)

Proof. The existence of Green’s function under the given conditions has
been shown in Lemma 2.2.3. Similarly, by virtue of the estimate (1.2.12;)
from Remark 1.2.3,

‘dﬁ'Gk(t,s)‘ < o o) (s)
dti = oi(pe) )P

whence with regard for the inequalities (2.2.18) and (2.2.48) follows the
validity of our lemma. O

(j=0,1) for a<t,s<b, t#s,

Consider now the equations

V" (t) = po(t)v(t) + p1(t)v' () + p2(t), (2.2.62)
v"(t) = por(t)v(t) + pre(t)v'(t) + par(t), (2.2.62;)

where pa, pak € Lioc(]a,d]) (k € N) and the boundary conditions

u(a) =c1, u(d) =co (2.2.631)
or
w(a) = e1, u'(b—) = ca, (2.2.63,)
and
u(a) = cig, u(b) = cox (2.2.631)
or
u(a) = c1g, u'(b—) = car, (2.2.6321,)

where ¢, ¢ € R (I =1,2; k € N). Then the following lemma is valid.
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Lemma 2.2.6. Let i € {1,2}, the measurable functions p;, p;k :]a, b — R
(j =0,1,2; k € N) and the constants « € [0,1], v €]1,+0[, B, p € R
satisfy the conditions (2.2.6), (2.2.7;), (2.2.8;), (2.2.37,),

[p2(s)|

o(p1)(s)

and uniformly on the segment [a,b]

I (0% (p1))(s)ds < +o0 (2.2.64)

a

t

lim % 12(0(p1))(s) ds = 0. (2.2.65)

Then there exists a number ko such that for k > kq:
(a) the problem (2.2.62y), (2.2.41;) has a unique solution Uy, and uni-
formly on the interval |a, b|

1—

Jim T2 o () (1) (8() = T (1) =0, (2.2.66)
i CO =GO o _
dm — o e )@ =0, (2.2.67)

where U is a solution of the problem (2.2.61), (2.2.41;);
(b) the problem (2.2.62y), (2.2.63;) has a unique solution vy, and if

lim Clp = C] (Z = 1, 2), (2.2.68)
k—o0
then uniformly on the interval |a, b[ the conditions (2.2.67) and
lim (0(t) — 0k(t)) =0 (2.2.69)
k—o0

are satisfied, where v is a solution of the problem (2.2.62), (2.2.63;);
(c) the sequence (Vy)32 ,, where Uy is a solution of the problem (2.2.62y),
(2.2.41;), ((2.2.62g), (2.2.63;1)), is uniformly bounded and equicontinuous.

Proof. First we prove the validity of proposition (a). It has been mentioned
in the proof of Lemma 2.2.3 that under the above-mentioned conditions the
problems (2.2.1), (2.2.41;), and (2.2.1j), (2.2.41;) for k > ko have a unique
Green’s function G and Gy, respectively.

Let

b b
u(t) :/G(t,s)pg(s) ds and v(t) = /Gk(t, s)pak(s) ds.

Then
b

7D (@) — 39 (t) = /aJG;it(f’s) (p2(5) — p2x(s)) ds +

a
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b
. / IAG(L, s)

50 p2(s)ds (j=0,1) for a<t<b.

a

Taking into account the equalities (2.2.43), (2.2.44) of Lemma 2.2.3 and
the equalities (2.2.53), (2.2.54) of Lemma 2.2.4, by means of the conditions
(2.2.64), (2.2.65) we make sure that the equalities (2.2.66) and (2.2.67) are
valid.

Now we proceed to proving proposition (b). Let vg and wvoi be solutions
of the problems (2.2.1), (2.2.63;) and (2.2.1;), (2.2.63;%), respectively. Then

b b
o(t) = vo(t) + /G(t, s)pa(s)ds Vk(t) = vor(t) + /G(t, s)pak(s) ds

a

and
/ G
» i (t,s)
U(J)(t) _ ,U]E:])( t) = (J) (J) / 5ti pa(s) — ka(S)) ds +
/ OIAG
t
+/#m(s)ds (7=01) for a<t<b,

where

’Uo(t) — ’UOk(t) =
V2 (t) Vok (t) U1 (t) ’Ulk(t)

— _ — fi <t<b
Cc1 Clk v%(a) + co o (b) Cok Ulk(b) or a<t<

and vj, v (j =1,2; k > ko) are the solutions mentioned in Lemma 2.2.1;.
It follows from the given representation, Lemma 2.2.1; and the condition
(2.2.68) that uniformly in the interval ]a, b]

kli)l{.lo (Uo (t) — Vok (t)) =0

and

i DO 1 ) ) =

Next, reasoning analogously as in proving proposition (a), we can see
that the conditions (2.2.67), (2.2.69) are valid.
The validity of proposition (c) follows immediately from (2.2.66)
((2.2.69)) and also from
|0k (t1) — Tk (t2)] < [0k (t1) = T(t1)| + Tk (t2) — Dlt2)| + [0(t1) — V(t2)] <
< 2|0 — vl + |B(t1) — V(t2)],

where t1, t2 € [a,b]. O
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Remark 2.2.2. Tt is not difficult to notice that if the condition (2.1.8) is
satisfied, then for any fixed r € RT the equality

lim (sup{’a/gk(x)(i) —)(ng)(s) I (o%(p1))(s) ds| :

k—o0 o(p1

a<t<b, x GIB%T,;C}> =0 (2.2.70)

is valid. The same is true for the set IB%;, -

Lemma 2.2.7. Let ¢ € {1,2}, the measurable functions p;, p;r :]a, b — R
(j =0,1,2; k € N) and the constants o € [0,1], v €]1,+o0[, B, u € R sat-
isfy the conditions (2.2.6), (2.2.7;), (2.2.8;), (2.2.37;), (2.2.64) and (2.2.65).
Moreover, let continuous linear operators g, g : C(Ja,b]) — Lioc(]a, b]), be
such that the condition (2.1.8) is satisfied. Then for every fived r € R* the
sequence (z)72 4

b
() = ani(t) + / Gt 5)gn (1)(s) ds,

a

is uniformly bounded and equicontinuous, where vy is a solution of the prob-
lem (2.2.62), (2.2.41;), Gy, is the Green’s function of that problem, and for
every ax € [0,7], z € B, (k € N).

Proof. Introduce the notation

gk(t):/Gk(tvs)gk(xk)(s) ds, wk(t):/G(taS)g(Ik)(s)d57

where G is Green’s function of the problem (2.2.62), (2.2.41,;).
Similarly to the proof of Lemma 1.2.4 we see that

sup {|lwillc : k € N} < 400
and for any € > 0 there exists a constant § > 0 such that for every k € N
|wi(t1) — wi(t2)| <& for |[t1 —ta] <. (2.2.71)
On the other hand, from the inequality

b

1Z(6) — wi(t)] < ‘/(Gk(t,s) Gt 5))g(ax)(s) ds

a
b

+ '/Gk(tas)(gk(xk)(s) — g(x1)(s)) ds

a

+
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by virtue of Lemmas 2.2.3-2.2.4 and Remark 2.2.2 with all conditions sat-
isfied, we obtain

lim ||5k - wkHC =0 (2.2.72)
k—oo
which, owing to the inequality

‘5k(t1) — zk(tg)‘ < ‘5k(t1) — wk(h)‘ + ‘gk(tg) - wk(tg)‘ +
+lwk(t2) —wi(t1)] < 2/|2k — willo + [wr(t2) — wi(t))]
with regard for (2.2.71) and (2.2.72), implies the uniform boundedness and

equicontinuity of the sequence (zj)32 ;. This together with proposition (c)
of Lemma 2.2.5 proves our lemma. [

Remark 2.2.3. Lemma 2.2.7 remains valid if vy is a solution of the prob-
lem (2.2.62), (2.2.63;x), xy € B$,7k (k € N) and

lim Clp = C] (Z = 1,2).
k—o0

Lemma 2.2.8. Let functions Vi, € Loo(Ja,b]) and Hy € L([a,b]) (k € N)
be such that uniformly on [a,b]

¢
lim [ Hy(s)ds =0, (2.2.73)
k—o0

esssup {|Vi(t) = V(#)]: a<t<b} —0 as k— +oo, (2.2.74)

and let there exist a function n € L([a,b]) such that everywhere on the
interval |a, b|

Hi(t) < n(t) (k€ N). (2.2.75)

Then uniformly on the segment [a,b]

t

klim Hy(s)Vi(s)ds = 0.

This lemma is a particular case of Lemma 2.1 from [19].

§ 2.3. PROOF OF MAIN RESULTS
2.3.1. Proof of Theorems 2.1.1;, 2.1.2; (i = 1, 2).

Proof of Theorem 2.1.1;. From the inclusion (2.1.9), by Lemma 1.2.1 we ob-
tain (po, p1) € Vi o0(]a,b]), which, owing to Lemma 2.2.2 for k > ko, implies
(poksP1k) € Vio(Ja,b]). From Remark 1.2.2 follows the unique solvability
of the problems (2.2.61), (2.1.2;9) and (2.2.61%), (2.1.2,9). Denote by v, vy,
and G, Gy, respectively, solutions and Green’s functions of these problems.
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Then the problems (2.1.1), (2.1.2;9) and (2.1.1%), (2.1.2;9) are equivalent,
respectively, to the equations

u(t) = Ug(u)(t) + 0(t) (2.3.1)
and
u(t) = Ug(u)(t) + vk (t), (2.3.1%)

where the continuous linear operators Uy, Uy : C(Ja,b]) — C(Ja,b]) are
defined by the equalities

b b
Up(x)(t) :/G(t,s)g(ac)(s)ds and Ug(x)(t) z/Gk(t,s)gk(I)(s)ds.

If p: [a,b] — R* is the function mentioned in the proof of Theorem 1.1.1;,
then as is seen from that proof, there exists a constant Ag € [0, 1] such that
[Uollc,—c, < Ao- (2.3.2)

Suppose that the equation
u(t) = Ug(u)(t) (2.3.101)

has a non-zero solution ugg. Not restricting the generality, we assume that

”uOkHCw =1 for k> ko, (233)
in which case ||ugx|lc < |Ipllc, i-e., if we introduce the notation r = ||p||¢c,
then

uor € Brp for k> kg. (2.3.4)

Also, from (2.3.1¢x), (2.3.3), by Lemma 2.2.7 it follows that the sequence
(uwok)32; is uniformly bounded and equicontinuous. Hence by the Arzella—
Ascoli lemma, not restricting the generality we can assume that there exists
a function ug € C(]a, b[) such that uniformly on the segment [a, b]

klim ’U,Ok(t) = Uo(t). (235)
It is clear from the equations (2.3.3), (2.3.5) that
uollc,p = 1. (2.3.6)
Let us now introduce the notation

Apjk(t) = pj(t) - pjk(t) (.7 =0,1, 2)a AGk(ta 3) = G(t7 5) - Gk(t7 5)7
Agi(x)(t) = g()(t) — gr(x)(t) (k € N).
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For uog, when k > kg, the representation

b
ok (t) = Up(uor) (£) + / AGi(t, 8)g(uok)(s) ds +

b
+/Gk(t,s)Agk(u0k)(s) ds (keN) for a<t<b (2.3.7)

a

is valid. Taking into account (2.3.4), (2.3.5), Remark 2.2.2, equality the
(2.2.43) of Lemma 2.2.3 and also the equality (2.2.53) of Lemma 2.2.4 with
all conditions satisfied, and then passing in (2.3.7) to limit as k — +o0, we
get

uo(t) = Uo(uo)(t)
which, with regard for (2.3.2), (2.3.6), results in the estimate

[uolle,p < 1.

But this contradicts (2.3.6). Hence our assumption is invalid and the equa-
tion (2.3.1px) has only the zero solution, and because of its Fredholm prop-
erty the equation (2.3.1) is uniquely solvable. The unique solvability of the
equation (2.3.1) follows from Theorem 1.1.1;.

Let w and uy be respectively solutions of the equations (2.3.1) and
(2.3.1%),

wi(t) = u(t) —uk(t) for k> ko,

lukllc,p for [luklle,, > 1,

k (2.3.8)

1 for |ugllc, <1,

Uk(t) = Ay tun(t)
and

b b
+/AGk(t, s)g(ug)(s) der/Gk(t, $)Agg(ug)(s) ds.

a

o(t) — k(1)
Ak

Then for wy the representation
wi(t) = Uo(wg)(t) + Appr(t) for a<t<b (2.3.9)
is valid, and if r = ||p||¢, then

u € Er,k~ (2310)



100

In such a case, taking into account proposition (a) of Lemma 1.2.6, Remark
2.2.2, the equation (2.2.43) of Lemma 2.2.3 and also the equation (2.2.53)
of Lemma 2.2.4, we obtain

i {|pille.p = 0. (2.3.11)

On the other hand, from (2.3.9), with regard for (2.3.2), we get the
estimate

lwillc,p < ardi for k> ko, (2.3.12)
where
_ llekllc.,
1— )Xo
and by virtue of (2.3.11),
lim a =0. (2.3.13)

Suppose now that we can extract from the sequence ()\k)zozl a sequence
(Mg, )2°_; such that g, > 1 for m € N and

m=1

Hm A, = 00, (2.3.14)

m—0o0

m

and note that by our definition of the function wj, the inequality

A = llulle,p < llwk, [lc, (2.3.15)

is valid. Substituting now the inequality (2.3.12) in (2.3.15) and taking
into account (2.3.13), we can see that this contradicts (2.3.14), i.e., our
assumption is invalid, and there exists a constant A € Rt such that

M <A for k> kg (2.3.16)
which, with regard for (2.3.12), yields

lim JJugle,, = 0. (2.3.17)

Now we notice that (2.3.9) and (2.3.16) imply

. di .
lwi? (1) < == Ug(wi) () + Apl (t)] (j=0,1) for a<t<b (23.18;)

Applying the estimates (2.2.46)—(2.2.48) and the inequalities (2.2.13),
(2.2.10), we arrive at

|Uo(wi) ()] < ' llwklle, I} (0T (p)(t) for a<t<b, (23.19)

I'(0%(p))(t) | d ,
T o)) ‘@ Uo(wi)(t)| < '||wllc, for a<t<b,  (2.3.20)
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where

b
J_ B[O e
r = an/O'(pl)(S) Ii( (pl))( )d .

By definition of the function uy, in view of the inequality (2.1.10) and the
equalities (2.2.43), (2.2.44) of Lemma 2.2.3, we make sure that uniformly
on the interval ]a, b[

klln;olu 1(0117# (p1)) ‘/AGk (t,8)g(ug)(s)ds| =0 (2.3.21)
and
b
. IF(e™(p1))(1) dAG(t, s) = \(s) ds| =
Jim P ‘/ pn g(ug)(s)ds| =0.  (2.3.22)

Just in the same way, taking into account the inclusion (2.3.10) and the
equalities (2.2.53), (2.2.54) of Lemma 2.2.4, we can see that

b
‘/Gk $)Agk(ug)(s) ds| <

<7°1sup{‘/Aglc (o (pl))(s)ds‘ s a<t<b, IEB.,-JC} X
xI' (o (pl))(t) for a<t<b, (2.3.23)
e / & Gult,5) Mg (i) (5)ds| <
<r sup{‘ / Agk( S (c%(p1))(s) ds‘ :
a<t<b, x€ Bnk} for a<t<b. (2.3.24)

It is clear from the equalities (2.3.21)—(2.3.24), proposition (a) of Lemma
2.2.5 and also from the condition (2.1.8) and Remark 2.2.2 that uniformly
on the interval ]a, b[

Jim 7 Yo (p1)) () pr(t) = 0 (2.3.25)

k—o0

and

pk(t) e .
kLn;o o(p1)(t) I (0%(p1))(t) = 0. (2.3.26)
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Multiplying (2.3.18¢) by I '(6®(p1))(t) and taking into consideration
(2.3.17), (2.3.19) and (2.3.25) we see that the condition (2.1.11) is valid.
Analogously, multiplying (2.3.18;) by o~ (p1)(t) I/ o (p1)(t) and taking into
account (2.3.17), (2.3.20) and (2.3.26), we make sure that the condition
(2.1.12) is valid. [0

Proof of Theorem 2.1.2;. Reasoning in the same way as in the previous proof
for the function wy(t) = u(t) — uk(t), where wuy, is a solution of the problem
(2.1.1), (2.1.2;;), using Remark 2.2.3 and proposition (b) of Lemma 2.2.6,
we get the equality (2.3.17) which is the same as the condition (2.1.15).
The proof of the condition (2.1.12) coincides completely with its proof in
Theorem 2.1.1;. O

2.3.2. Proof of Corollaries.

Proof of Corollary 2.1.1;. Tt is sufficient to show that (2.1.8) follows from
(2.1.16)—(2.1.18). Suppose to the contrary that the condition (2.1.18) is
violated. Then there exist € > 0, a sequence of positive numbers (k,)>_,
and a sequence of functions

Ym € By, (2.3.27)

such that

max{‘/ Agk, (Ym)(5) » () 180 (p))(s) ds| - a§t§b}>s. (2.3.28)

From (2.3.27) it follows

Y () = Qe () + / Gro (6, $)ge. (@m)(s)ds (mEN),  (2.3.20)

where z,, € C(]a,b[) (m € N) and

0<aim <1 (méeN), (2.3.30)
[Tmllc <1 (m €N). (2.3.31)

Introduce the notation
b

em(t) = / G, (b, 8)gk,. (m)(s) ds (m € N)

a
and rewrite z,, as follows:

b b
/ka $)Agg,, (z ds+/ka (t,8)g(xm)(s)ds.
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Then according to (2.1.10), (2.1.16), and (2.1.31) the inequality

120) (¢) |</j__AGk )| (1(5) + h(1)(s)) ds +

/‘atﬂ (n(s) +h(1)(s)) ds (j=0,1)  (23.32)

is valid. By the conditions (2.1.6) and (2.1.18),

b

/ n<>+7h<1)><> (0% (p1))(s) ds < +00

o(p1)(s

a

owing to which from (2.3.32), in view of the equality (2.2.43) of Lemma
2.2.3 and by Lemma 2.2.5 we obtain the existence of a constant A; such
that

llzmllc < A1 (m € N). (2.3.33)

Consider now the case i = 1 separately. From (2.3.32;) (j = 0,1), by
Lemmas 2.2.3 and 2.2.5 and the fact that

G(a,s8) =G(b,s) =0 for a<s<b
we can choose for any €y > 0 constants mg, a1, b1, d, where
a<a <by <b, §<min(a; —a,b—by),
such that

|zm(t)|§%0, m>mg for a<t<a;, by <t<b,

ie.,
‘zm(tl)fzm(tg)‘g%o, m>mg, for a<ti, to<ai, by <t,ta<b, (2.3.34)
and A < 3, where

A=sup{|z,(t)]: a1 —6 <t<bi+6, m>mg} < +oo,
ie.,

|2m(t1) = 2m(ta)] < Alts —to] < 22, m > my
2 (2.3.35)

for a1—5<t1,t2 < b +(5, |t1—t2| < 0.

The uniform boundedness and equicontinuity of the sequence (2, )50_; fol-
lows from (2.3.33)—(2.3.35). Then by the Arzella-Ascoli lemma, not re-
stricting the generality, we assume that uniformly on the segment [a, b]

n}iinm Zm (t) = 2(t). (2.3.36)
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Notice now that however close may be a; from a and b; from b, the inequality
(2.3.35) remains valid if we choose § sufficiently small. Therefore, passing in
(2.3.35) to limit, we can see that z is absolutely continuous on any segment
contained in ]a, b[, i.e.,

z € Croc(a, b)) N C([a, b]). (2.3.37)

On the other hand, in view of (2.3.30), not restricting the generality, we
can assume that

lim a1m = A,
m— 00

which together with proposition (a) of Lemma 2.2.6 implies
lim o1m0k,, (t) = apv(t) uniformly on [a, ], (2.3.38)

where © is a solution of the problem (2.2.62), (2.1.2;).
Further, taking into account (2.3.36)—(2.3.38) in (2.3.29), we conclude
that uniformly on the segment [a, b]

Jim g (t) = y(t), (2.3.39)
where
y € Cloc(]a, b)) N C([a,b)). (2.3.40)

The same takes place in the case ¢ = 2 owing to the fact that the relations

=1 for a<s<b
t=b

G(a,s) =0 and %G(t,s)

follow from the inequalities
€
}zm(tl) — zm(t2)| < 50, m>mg for a<ti,ts<ay

and
|2m(t1) = 2m(ts)| < Aslty — ta] < %0 m > mg
for a3 —0 <ty1,ta <b, |t1 —ta] <9
with
Ay =sup {|z,(t)]: a1 —6<t<b, m>mg} < +oo,

and from the condition (2.3.38).
Finally, the conditions (2.1.16)—(2.1.18) and (2.3.39) imply

max{‘/twff(ga(pl))(s)ds‘ L a<t< b} <

o(p1)(s

< max{‘ /lt Agk;((ZT)@)y)(s) 7 (0 (p1))(s) ds‘ ca<t< b} +
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+max{\/ 200 12 g (o) ds| s ae<) <

5

ﬂ o g Ss)as -
Sa/a@l)(s)]i( (p1))(3) s lgm — vl +

+max{‘a/%1f(a“(pl))(s)ds : agtgb}ﬂo

as m — +00.
But this contradicts (2.3.28) and proves the validity of our corollary. [

Proof of Corollary 2.1.2;. Coincides completely with that of the previous
corollary with the only difference that the functions v, and v in (2.3.38) are
solutions of the problems (2.2.62;), (2.2.2;;) and (2.2.62), (2.1.2;), respec-
tively, where the validity of the equality (2.3.38) follows from proposition
(b) of Lemma 2.2.6. O

Proof of Corollary 2.1.3;. Tt can be easily verified that under the notation

Z Gom (8)x(Tom (1)),
(2.3.41)

Z G (8) 2 (T ()

all the requirements of Theorem 2.1.1;, except for (2.1.8), are satisfied.
First we show the existence of a constant A\; such that

/
sup{‘
o

To this end we choose arbitrarily k1 > ko and y; € Bg,. Then there exist
ag <1, 21 € C(]a,b]), ||z1]|c < 1 such that

b

1 (t) = aa i (1) + / G (1, 8)gn (1) (s) ds,

a

z-(ff“(pl))HC: y € Buy, k>ko}§/\1. (2.3.42)

where vy, is a solution of the problem (2.2.62), (2.1.2;9). Next,

— 6G1t5
4 (0)] < I, |+/\ att (s ds +

/‘8Gt5 1)(s)ds for a<t<hb.
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By virtue of the equality (2.2.67) of Lemma 2.2.6, there exists a constant
Ao such that for any k > kg
“% F%“()w <\ (2.3.43)
——I¥(o : 3.
olp) 7 Pl =7
Taking into account (2.3.43), the representation (2.2.45) of Green’s func-
tion the estimates (2.2.46)—(2.2.48), the inequality (2.2.13) and the condi-
tions (2.1.18), (2.2.20) and (2.2.21), we make sure that the estimate (2.3.42)
is valid, where

b

n=rr B ([ o) / AL o ) (s s ).

a

We now notice that if

jim (s { | / els) =960 (8) 120" ) 5Dy (5) ] :
aStSb,yGEm})O (2.3.44)
and
Jim (sup{i\ / S e ) T7(S)y'<n> nds|
cisen )0 e

then the condition (2.1.8) is satisfied.
Reasoning analogously to the proof of Corollary 2.1.1;, we obtain that
(2.3.44) is satisfied if for any y € Cioc(]a, b)) N C([a, b))

hm(Z | / ) =9 130 1)) (M (3)) 5| ) =0 (2340

k—o0

On the other hand, from (2.1.23) it follows that
esssup{ Z |7'0m — Tkm t)| : agtgb} — 0 as k — +o0,
and hence for every y € Cioc(]a, b[) N C([a, b))

esssup{ Z [y(Tem (1)) — y(rom(t))]| ra <t < b} —0

m=1

as k — +o0. (2.3.47)
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Then (2.1.21), (2.1.22), and (2.3.47) and lemma 2.2.8 imply the validity of
the equality (2.3.46).

The validity of the equality (2.3.45) follows from the estimate (2.3.42),
the condition (2.1.23) and the inequalities

TOm (é)

‘/ - 2 17 (0™ (p1))(s) / y'(n) dnds| <
Tkm (S)
|90m(s)| 13 ) ds
<a0@MﬁI(( p1))(s) ds x
Tom (t)
xesssup{fiﬁ_“(aa(pﬂ)(t)‘ / % : GStSb} o

Thom ()

XH Y Ii“(aa(pl))H (m=1,...,n; keN) for a<t<b O

Proof of Corollary 2.1.4;. Coincides with the previous proof with the only
difference that in the inequality (2.3.42) we will assume that y € B, i.e.,
the validity of (2.3.43) with v, as a solution of the problem (2.1.4y), (2.1. 21;9)
will be shown by means of proposition (b) of Lemma 2.2.6. O

Proof of Corollary 2.1.5;. It is not difficult to notice that the conditions
(2.1.18), (2.1.25) yield

b
|gOm(S)

| = n
olp)(s) IP(6%(p1))(s)ds < 400 (m=1,...,n), (2.3.48)

whence, owing to the fact that 8 < pu, together with (2.1.24), we obtain the
validity of the conditions (2.1.20), (2.1.21). That is, as it has been shown in
the proof of Lemma 2.1.3;, all the requirements of Theorem 2.1.1;, except
for (2.1.8), are satisfied.

On the other hand, the condition (2.1.8) under the notation (2.3.41)
follows from the conditions (2.3.44), (2.3.45). Repeating now word by word
the proof of Corollary 2.1.3;, by the condition (2.1.26) we can see that
(2.3.42) and (2.3.44) are valid.

Choosing p1 > 1 so as to satisfy

1704#1
L—m

pr <1, <6

)
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analogously to the inequalities (2.2.15),(2.2.16) we obtain

’ 2—1
/ %d : (”f‘@a(plﬂ(“;b)) ()

a

< / o T (1) (s) d) ( / p)(s)ds) <o

From this and also from the condition (2.1.26), owing to the absolute
continuity of the Lebesgue integral it follows that

n Tom (t)

_om6) 4l geyep)
1‘ " Iﬁ(aa(pl))(s)d- Stéb} 0 (2.3.49)

ess sup {

m=
for k — +oo.

Then the validity of the equality (2.3.45) follows from the conditions (2.3.48),
(2.3.49) and also from the estimate (2.3.42) and the inequality

Tom (8)

‘jMIf(o“(pl))(S) / y'(n) dnds| <

a(p1)(s)

Trm (8)

SN iy Qe C RN R

Thm (1)

XH Y )I;‘(aa(pl))HC (m=1,...,n; keN). 0O

Proof of Corollary 2.1.6;. Coincides with the previous proof with the only
difference that in the inequality (2.3.42) it will be assumed that y € B, i.e.,
the validity of the inequality (2.3.43) with ), as a solution of the problem
(2.1.4y), (2.1.2;;) will be shown by means of proposition (b) of Lemma
2.26. O

Proof of Corollary 2.1.7; (2.1.8;). It is easily seen that for any « € [0, 1] and
v > 1, by conditions (2.1.28)~(2.1.32) ((2.1.28)(2.1.32), (2.1.14)), all the
requirements of Corollary (2.1.5;) ((2.1.6;)) are satisfied for p; =0, p;r =0
(j =0,1; k € N), n = 1, whence it follows that our corollary is valid. O
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Abstract

For strongly singular higher-order differential equations with deviating argu-
ments, under two-point conjugated and right-focal boundary conditions, Agarwal-
Kiguradze type theorems are established, which guarantee the presence of Fred-
holm’s property for the above mentioned problems. Also we provide easily verifi-
able best possible conditions that guarantee the existence of a unique solution of
the studied problems.
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1 Statement of the main results

1.1. Statement of the problems and the basic notations. Consider the differential
equations with deviating arguments

m

ul(t) = " pi(t)ul V(1) + q(t) for a<t<b, (1.1)

j=1
with the two-point boundary conditions

@) =0 (=1 m), W) =0G=1n-m) (L

bO

)
W@ =0@G=1,-,m), u Db =0G=m+1,-,n). (L.

Here n > 2, m is the integer part of n/2, —oo <a <b <400, pj,q € Lic(la, b]) (J
1,---,m), and 7; :]a, b[—]a, b] are measurable functions. By uV=Y(a) (uU~Y(b)) we
denote the right (the left) limit of the function uU~" at the point a (b). Problems (1.1),
(1.2), and (1.1), (1.3) are said to be singular if some or all the coefficients of (1.1) are
non-integrable on |[a, b], having singularities at the end-points of this segment.

w
~—

*Corresponding author.
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The linear ordinary differential equations and differential equations with deviating
arguments with boundary conditions (1.2) and (1.3), and with the conditions

/@—aw*w—sﬂwwew”%m@nm5<+m,

a

b
/(s —a)" (b - s)zm’j\pj(sﬂds <400 (j=2,---,m), (1.4)

b
/ (5 — a)"=™V2(h — §y"12)g(s)|ds < oo,

and

/(s —a)"|p;(s)|ds < 400 (j=2,---,m), (1.5)

b
/@—aﬂ”%mmwmw<+w,

a

respectively, were studied by I. Kiguradze, R. P. Agarwal and some other authors (see [1],
2], [4] - [22]).

The first step in studying the linear ordinary differential equations under conditions
(1.2) or (1.3), in the case when the functions p; and ¢ have strong singularities at the
points a and b, i.e. when conditions (1.4) and (1.5) are not fulfilled, was made by R. P.
Agarwal and 1. Kiguradze in the article [3].

In this paper the Agarwal-Kiguradze type theorems are proved which guarantee Fred-
holm’s property for problems (1.1), (1.2), and (1.1), (1.3) (see Definition 1.1). Moreover,
we establish optimal, in some sense, sufficient conditions for the solvability of problems
(1.1), (1.2), and (1.1), (1.3).

Throughout the paper we use the following notation.

Rt =10, +00];

[z], is the positive part of number z, that is [x], = HQ‘:B‘;

Lioe(Ja, b]) (Lioc(]a,b])) is the space of functions y :]a, b[— R, which are integrable on
la+¢e,b—c¢];(Ja+ ¢, b]) for arbitrary small € > 0;

Lap(Ja, b)) (L2 5(Ja,b])) is the space of integrable (square integrable) with the weight
(t —a)*(b — t)? functions y :Ja, b}— R, with the norm

b b

olle,s = [G=are=sPlulds (i, = ([6-are-s? ) ")

a

L([a,b]) = Loo(Ja, ), L*([a,b]) = L§o(Ja, b]);
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M(Ja, b) is the set of measurable functions 7 :Ja, b[—]a, b[;
L2 5(Ja,b]) (L7(Ja,b]) is the Banach space of functions y € Lis(la,b]) (Lioc(]a, b])),
satisfying

t t

o = max{[/(s —a)a(/y(é)dfyds} v ra<t< b} < +00.

a S

The norm in this space is defined by the equality || - ||2 , = (] - 172 = p2)-

Cn=tm(la, b)) (C*t™(Ja, b])) is the space of functions y € C*'(Ja, b])
(y € C*~(Ja, b)), satisfying

loc

/|y s)[Pds < +oo. (1.6)

When problem (1.1), (1.2) is discussed, we assume that for n = 2m, the conditions

bj S LlOC(]a7 b[) (j = 17 o 7m) (17)
are fulfilled, and for n = 2m + 1, along with (1.7), the conditions

t

lim sup ’(b — )2t /pl(s)ds

t—b

a+b
2

< 400 (t; =

) (1.8)

t1

are fulfilled. Problem (1.1), (1.3) is discussed under the assumptions
pj € LlOC(]a’a b]) (J = 17 e 7m)' (19)

A solution of problem (1.1), (1.2) ((1.1), (1.3)) is sought in the space C"~-™(]a, b])
(Gt (Ja, B])).

By hj :]a, b[x]a, bj— R; and f; : R x M(]a,b]) — Cis(Ja, b[x]a,b]) (j =1,...,m) we
denote the functions and the operators, respectively, defined by the equalities

(1) = / @)= [(— 1)y (€)] - de],
(1.10)

(L 9) )/ )" mp(©)de| (=2, ,m),
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and,

¢ 75 (£)
, 1/2 .
fem)ts)=| [Ea @] [@-oria| el G=vem. @y
s 3
Let, moreover,
1 for m <0
mll =

1-3-5---m for m>1"’

iftm=2k+1.

2. Fredholm type theorems.
Along with (1.1), we consider the homogeneous equation

m

V() =) pi eI (r(t) for a<t<b. (1.1p)

j=1

In the case where conditions (1.4) and (1.5) are violated, the question on the presence
of the Fredholm’s property for problem (1.1), (1.2) ((1.1), (1.3)) in some subspace of the
space C~ "™ (la, b]) (C-"™(Ja, b])) remains so far open. This question is answered in
Theorem 1.1 (Theorem 1.2 ) formulated below which contains optimal in a certain sense
conditions guaranteeing the Fredholm’s property for problem (1.1), (1.2) ((1.1), (1.3)) in

the space C" 1™ (]a, b]) (C" 1™ (]a, b))).

Definition 1.1. We will say that problem (1.1), (1.2) ((1.1), (1.3)) has the Fredholm’s

property in the space C" 1™ (]a, b[) (C"~+™(]a, b])), if the unique solvability of the cor-
responding homogeneous problem (1.1p), (1.2) ((1.1p), (1.3)) in that space implies the
unique solvability of problem (1.1), (1.2) ((1.1), (1.3)) for every g € L2, 2. 2m_2(]a, b[)

(q € Zgn—Qm—Q(]aa b]))-

Theorem 1.1. Let there exist ag €la, b, by €|ag, b[, numbers l;; > 0, v; > 0, and
functions 7; € M(Ja, b[) (k=0,1,j=1,...,m) such that

(t —a)®Th(t,s) <ly; for a<t<s<ay,

lim sup(t — a)" 37" fj(a, 7;)(t, 5) < +o00, (1.12)
t—a
(b — t)2m—ﬂ’hj(t, s) <ly for by<s<t<b,
lim sup(b — t)m—%—ﬁjfj(b’ 7)(t, s) < 400, (1.13)
t—b
and i 1
m 2 _ 92m-— i+
3 m— j) ly <1 (k=0,1). (1.14)

£ (2m — Dl2m —2j + 1!
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Let, moreover, (1.1y), (1.2) have only the trivial solution in the space C"~2™(a, b[). Then
problem (1.1), (1.2) has the unique solution u for every q € L3, 5, 5 5, o(la, b[), and
there exists a constant r, independent of q, such that

s < il L (1.15)
Corollary 1.1. Let numbers ky;,vp; € R be such that
v > 2n+2—2k(2m—n), vy >2 (k=0,1; j=2,....m), (1.16)
. |7;(t) — 1] : |7;(t) — 1]
lll?j;lp G—aym < 400, lll?j;lp =t < 400, (1.17)
and
i 92m—j+1 ( )
, Ky < 1 (k=0,1). (1.18)
= (2m — DN (2m — 25 + D!
Moreover, let k € RT, po; € Ln—j 2m—j(]a,b[; RT), and
. () < (1) "m(t) <
G —ap—ppr = e 19
Ro1 K11 ( : )

< + poi(t),

(t—a)y | (t—ay—2m(b—t)2m

Koj R1j .
Ip;(t)] < (F—a)yr it + (0= )2 (b = )i +poi(t) (J=2,...,m).  (1.20)

Let, moreover, (1.1y), (1.2) have only the trivial solution in the space C"~+™(Ja, b]). Then

problem (1.1), (1.2) has the unique solution u for every q € L3, s, 5 om_o(la, b[), and
there exists a constant r, independent of q, such that (1.15) holds.

Theorem 1.2. Let there exist ag €|a, b, numbers lo; > 0, vo; > 0, and functions 7; €
M(]a, b]) such that condition (1.12) is fulfilled and

m 2m ])22m J+1
lo; < 1. 1.21
;Qm—l"Qm—QjJrl)” 07 (121)

Let, moreover, problem (1.1), (1.3) have only the trivial solution in the space C"~+™(]a, b]).

Then problem (1.1), (1.3) has the unique solution u for every q € L2, ,(la, b)), and
there exists a constant r, independent of q, such that

1™ |2 < rllallz : (1.22)

2n—2m—2

Corollary 1.2. Let numbers koj, vo; € RT be such that

Vo1 > 2n + 2, v; >2 (j=2,...,m), (1.23)

: |7 (t) — |
lll?j;lp Gy < 400, (1.24)

EJQTDE, 2012 No. 38, p. 5



and
m 92m—j+1

< 1.
; (Qm—l)!!(Zm—2j+1)!!KJOJ (1.25)

Let, moreover, k € RY, poj € Ly—j o(Ja,b]; RY), and

TR —poi(t) < (=1)"""pi(t) < i—ay + por(t), (1.26)
0] < e ei(t) G=2m) (1.27)

Let, moreover, problem (1.15), (1.3) have only the trivial solution in the space C™~>™(]a, b)).

Then problem (1.1), (1.3) has the unique solution u for every q € E%n_ZM_Z(]a, b)), and
there exists a constant r, independent of q, such that (1.22) holds.

Theorem 1.3. Let ¢ = a,co = D,

75(t)
m—j—1 .
P Tt — i / € = " I7dg| < Hoo (= 1,...m) (1.28)
t
ifi=1,2 (if i=1),
Pj € Lu—j 2m—j(]a, b)) (pj € Ly—j o(]a, b])) (Gj=1,...,m), (1.29)

and let problem (1.1), (1.2) ((1.1), (1.3)) be uniquely solvable in the space énj’m(]a, b[)
(in the space C"~ 1™ (Ja, b]). Then this problem is uniquely solvable in the space C"(]a, b|)
(in the space C"(]a, b)) as well.

Remark 1.1. In [3], an example is constructed which demonstrates that if condition
(1.29) is violated, then problem (1.1), (1.2) (problem (1.1), (1.3)) with 7;(¢t) =t(j =
1,...,m) may be uniquely solvable in the space C" ™ (Ja, b]) (in the space C" 1™ (]a, b]))
and this problem may have infinite set of solutions in the space éloc(]a, b[) (in the space
Gt (la, b)),

Also, in [3] it is demonstrated that strict inequalities (1.14), (1.21), (1.18), (1.25) are
sharp because they cannot be replaced by nonstrict ones.

1.2. Existence and uniqueness theorems.

Theorem 1.4. Let there exist numbers t* €la, b, lg; > 0, ly; > 0, and y; > 0 (k =
0,1; j=1,...,m) such that along with

S (e Ty L
- 2m—1 1 2m—2]+1) (@m—2j —@em -3/ 2 (130)
Zm:( Py 22T b — ) ) < 1.31
- 2m—1 12m -2+ DI @m—2 - )iem -y 2 (13
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the conditions
(t—a)®™ I hy(t,s) <loj, (t—a)™ 72 (a,7,)(t,s) <lo; for a<t<s<t*, (1.32)

(b—1)>" T h(t,s) < Ly, (b=t)" V280, 7,)(t,s) <1y; for t*<s<t<b (1.33)

hold. Then for every q € E§n72m7272m72(]a, b[) problem (1.1), (1.2) is uniquely solvable in
the space C"~-m(]a, b]).

To illustrate this theorem, we consider the second order differential equation with a
deviating argument

u’(t) = p(t)u(r(t)) + q(t), (1.34)

under the boundary conditions
u(a) =0, u(b) = 0. (1.35)

From Theorem 1.4, with n =2, m = 1, t* = (a +)/2, yo1 = y11 = 1/2, loy = l11 =
Ko, lo1 =l = V/2k1/Vb — a, we get
Corollary 1.3. Let function 7 € M(Ja,b]) be such that
26 b
6(15—(1)7 for a<t< ¢ ,
(b—a) 2 (1.36)

26 . a+b
— <t-— < — < .
(b—a)ﬁ(b ) <t—r7(t) <0 for 5 <t<b

0<7(t)—t<

Moreover, let function p :la,b|— R and constants ko, k1 be such that

- (b — a)?k (b — a)Sr .
[(b—t)(t —a)]? <pi(t) < == f <t<b (1.37)

and 1
4"’60 + R < 5 (138)

Then for every q € Eg,o(]a,b[) problem (1.34), (1.35) is uniquely solvable in the space
Ct1(Ja, b))

Theorem 1.5. Let there exist numbers t* €la, b], lo; > 0, lo; > 0, and vo; > 0 (j =
1,...,m) such that conditions

(t—a)®™ 7 h;(t,s) <loj, (t—a)™ Y2 f(a,7)(t,8) < lo; for a<t<s<b, (1.39)

and

i ( 2m 9)22m AR l(] 22m_j_1(t* — a)%j ZOj

+ ) <1 1.4
2m — DN2m — 25+ 1)1 (2m — 25 — D)!I1(2m — 3)!1\/270; (1.40)

J=1

hold. Then for every q € L%, . _,(la,b]) problem (1.1), (1.3) is uniquely solvable in the
space C"~ 1™ (]a, b]).
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Theorem 1.6. Let there exist numbers t* €la, b, lg; > 0, 1; > 0, and y; > 0 (k =
0,1; j=1,...,m) such that along with (1.40) and

m Im, — )22m—i+1] . 22m—j—1(p _ 4* VOJ'Z ]
Z( ( ”J) by | (” ) '1‘J )<17 (1.41)
= 2m —DNE2m =27+ 1)1~ (2m — 25 — DI(2m — 3)11\ /274,
conditions (1.32), (1.33) hold. Moreover, let 7; € M(]a,b]) (j =1,...,n) and
sign[(7;(t) —t*)(t —t")] >0 for a<t<b. (1.42)

Then for every q € z§n72m7272m72(]a,b[) problem (1.1), (1.2) is uniquely solvable in the
space C™1™(Ja, b]).

Also, from Theorem 1.6, with n =2, m = 1,t" = (a +0)/2, o1 = 711 = 1/2, lpy =

i = ko, log = l11 = V2k1/Vb — a, we get

Corollary 1.4. Let functions p :|a,b[— R, 7 € M(Ja,b]) and constants ko > 0, k1 > 0 be
such that along with (1.36) and (1.37) the inequalities

b b
sign[(7(t) — a; )(t — a; N>0 for a<t<b (1.43)
and
4/*{,0 + R < 1 (144)

hold. Then for every q € Z%vo(]a,b[) problem (1.34), (1.35) is uniquely solvable in the
space C1(Ja, b]).

2 Auxiliary propositions

2.1. Lemmas on integral inequalities. Now we formulate two lemmas which are
proved in [3].

Lemma 2.1. Let € CI"'(Jto, t1]) and

loc

11
W () =0 (j=1,...,m), /|u(m)<3)‘2d5 < +00. (2.1)

to

Then

/ w1 (s))? m—j+1 2 /
/ (S(— t0)27(”—)3j+2d8 < (( & )!!> /|u(m)<5)‘2d5 for to <t <t. (2.2)

2m — 25+ 1

to
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Lemma 2.2. Let u € C™"

loc

(]to, tl[), cmd
w9 (t)=0 (j=1,...,m), /|u(m)(s)\2ds < +00. (2.3)

Then

/ (Wf D(s))? ds < (7 ) [lumspds for e 2

(t; — s)?m—2i+2 2m — 25 + 1)!!

t

Let to, t1 €]a,b], u C{gc "(Jto, t1]) and 7; € M(Ja,b]) (j=1,...,m). Then we define
the functions pu; : [a, (a+b)/2] x [(a +b)/2, b] X [a,b] — [a,b], pg: [to, t1] — Ry (k =

: [
0,1), \;:[a,b]x]a, (a+0b)/2] x [(a+b)/2, b[x]a,b]— R, by the equalities

[
7;(t) for T;(t) € [to, t1]
,uj(to,tl,t) =A<ty for T; (t) < iy )
t1 for T]<t> >ty (2 5)
Mj(tovtlvt) / .
q1)2
u™ 2ds|, Ai(e tg,ti,t) = s —c)2m=ags| .
j

t
Let also functions «; : RY x [0,1[— Ry and §; € Ry x [0,1[— Ry (j = 1,---,m) be
defined by the equalities
2m_jsz 22m—j—1
5 : » Bily,y) =

m—2j — 1! (2m — 25 — DH(2m — 3)”\/_
Lemma 2.3. Let ag €]a, b, ty €la, ao[, t1 €Jag, b], and the function u € Cfgc Y(to, t1])
be such that conditions (2.1) hold. Moreover, let constants ly; > 0, Zoj >0, v, >0, and
functions D; € Lise(]to, t1]), 75 € M(Ja,b[) be such that the inequalities

aj(z,y,2,7) =z + ( (2.6)

ag

(t— 1) / [Pr()]ads < lox, 2.7)
(t —to)*™ /ﬁj(s)ds <ly; (j=2,...,m), (2.8)

t
ag

/]_?j(S)Aj(tQ, to, tl, S)dS

t

(t — to)™ 2705

<ly; (j=1,...,m) (2.9)

hold for to <t < ag. Then

1/2 12 (2.10)

< a;(log, log, a0 — a,70)p8 - (75)p! (&) + Lo (a0 — a, o5)p6 > (7)o (o) +

(2m—j)22m j+1
@m — lizm —2j ¢ ol Jor fo<i<a,

+l0j
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where 7 = sup{p;(to, t1,t) 1 to <t <ap,j=1,....,m} <ty.

Proof. In view of the formula of integration by parts, for ¢ € [tg, ag] we have

7ﬁj(s)u(s)u(j_1)(uj(to, t1,$))ds = 7ﬁj(s)u(s)u(j_1)(s)ds +
ao wj(tost1,s) ao
s [neue( [ a©d)ds = utut ) [7(s)ds
1 aot ao ) ao Mj(io,tlvs) (2'11)
+3 / ( / Py ()€ )u (5)u = (5)ds + / P (s)uls) / ) (€)de ) s
(j=2,...,m), and
[ Pusuts)ututta,tr)ds < [ py(s)) (s
ag pa(to,t1,s) ag
[ mene] [ ©dds <) i) (2.12)
ao ’ t ul(to,tl,s)
w2 / By (€))e) [u()ed (s)]ds + / mousl| [ ©deas

On the other hand, by conditions (2.1), the Schwartz inequality and Lemma 2.1, we
deduce that

=D (t)| = ’/ (t —s)™Iytm ds’ < (t — to)™ 2 pi 2 (1) (2.13)
(m —j)!
forto <t <ag (j =1,...,m). If along with this, in the case j > 1, we take into account
inequality (2.8), and lemma 2.1, for ¢ € [t, ap], we obtain the estimates
aop ag
’u(t)u(jfl)(t) /ﬁj(s)ds < (t—to)?™ /ﬁj(s)ds po(t) <lo;po(t), (2.14)
t t
and
1 ag ag
3 ul u(]
> [ ([ pie)ut st (s <3 /' LT
k=07 s 0
1 a0 a0
u®(s)[*ds \1/2 M (s)*ds \ 1>
ey ([ sy Ve em
) ; J (S _ tO)Qm—Zk J (S _ t0)2m+2k—2j
1 .
227)’I,7_]
< ly; .
< lojpolao) ; (2m — 2k — D)1(2m + 2k — 2j — DI
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Analogously, if j = 1, by (2.7) we obtain

ao

W2(1) / ()] ds < loupol).
! (2.16)

2 / ( / 1 ()] () ()| ds < zmpo<ao>%

for tg <t < ag.
By the Schwartz inequality, Lemma 2.1, and the fact that py is nondecreasing function,
we get
Hj (tovtlvs)
[ we <

for ty < s < ap. Also, due to (2.2), (2.9) and (2.13), we have

om—
(2m —2j — DIl

)\j(to,to,tl, )p(l]/2< *) (217)

u t)|/|]_)j(s)|)\j(t0,t0,t1,s)ds: (t — to)™ 2 pt 2 (1 /|p] )| (to, to, tr, s)ds <

< ZOj (t —to)™ p(l]/Q(t)v

([ @t o odeas <, [ e

Z 2m—1<a0 _ a)’YOJ p1/2( )
T (2m = 3)11/27;

IN

for tg <t < ag. From the last three inequalities it is clear that

j(to,t1,s)

s ool [ o

s

/|p] |)\ t07t07t17 )dSS

< (o) [ 13, os ot s)ds+ [ 1) [ BN (o to, 1, ) s <
t t (2.18)

2m—1(a0 _ a)’YOj 1/2<
(2m — 3)!'\/270;

for ty < t < ap. Now, note that from (2.11) and (2.12) by (2.14)-(2.16) and (2.18), it
immediately follows inequality (2.10). O

< ZO (t — to)fmj p1/2 (t) + Zoj CL())

The following lemma can be proved similarly to Lemma 2.3.
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Lemma 2.4. Let by €la, [, t, €]bo, b, to €a, bo[, and the function u € CV(Jto, t1]) be
such that conditions (2.3) hold. Moreover, let constants l;; > 0, l;; > 0, v; > 0, and
functions D; € Lige(Jto, t1[), 75 € M(Ja,b[) be such that the inequalities

t

(=7 [y ()ds < 1, (2.19)
(b1 — £)2m /ﬁj(s)dslgzlj (G=2,....m), (2.20)

t

/]_Dj(S)Aj(tl, to, tl, S)dS

bo

(t, — )™ 2~ <lL; (j=1,...,m) (2.21)

hold for by <t <ty. Then

t

/pj(s)u(s)“(j_l)(ﬂj(to,tl, §))ds <

bo
1/2 (2.22)

< aj(hy, Iy b —bo, 11))p > (R pr 2 () + 1185 (b — boy yz) oy () oy (bo)+
(2m — j)22m—i+1
(2m — D (2m — 25 + 1)

+1; ”P1(bo) for by <t <ty

where T, = inf{y;(to,t1,t) 1 bo <t <ty,j=1,...,m} > t.

2.2. Lemma on the property of functions from the space 5"‘1””(]&, bl).

Lemma 2.5. Let

i
e
i
E

w(t) = cik(t)u("_k)(t)u(i_l)(t),

i

where C""Y(1a, b), and each ¢y, = [a,b] — R is an (n — k — i + 1) ~times continuously
differentiable function. Moreover, if

|cii(t)]

m<+00 (izl,...,n—m),

uV(a)=0(i=1,...,m), limsup

t—a

then
lign inf |w(t)| =0,

and if u=V(b) =0 (i=1,...,n—m), then

liminf |w(t)| = 0.

t—b
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The proof of this lemma is given in [9].

2.3. Lemmas on the sequences of solutions of auxiliary problems.
Now for every natural k we consider the auxiliary boundary problems

ul () = pi(0)uO ™ (uy(tor, tir 1) + qu(t)  for tor <t <ty (2.23)
j=1
u V() =0 @G =1,...,m), uvYI V(ty)=00G=1,....,n—m), (2.24)
where
a<to <ty <b (k c N), lim tg, = a, lim ty, = b, (225)
k—+o00 k—+o00
and .
ul™ () = " pi(0)u Y (s (tor, b, 1)) + qr(t)  for tor <t <D, (2.26)
j=1
W) =03G=1,....m), W9 VB =00G=1,....n—m 2.27
0k ; ) ) J ) ) )
where
a<ty <b(keN), klim tor = a. (2.28)
— 400

Throughout this section, when problems (1.1), (1.2) and (2.23), (2.24) are discussed we
assume that

pj S LlOC(]a’7 b[) (] = ]-7 LS m)7 q, dk € Zgn—Qm—Z,Qm—Z(]aﬂ b[)’ (229)

and for an arbitrary (m — 1)-times continuously differentiable function z :]a, b[— R, we
set

Aw(2)(t) = ij(t)ﬂf(jfl)(uj(tom tig, 1)), A@)(t) = ij(t)ﬂf(jfl)(n (®)- (2:30)
Problems (1.1), (1.3) and (2.26), (2.27) are considered in the case
Dj € Lloc(]a7 b]) (.7 = 17 "'7m>7 q;qr € z31172m72,0<]a7 bD7 (231)

and for an arbitrary (m — 1)-times continuously differentiable function z :Ja,b] — R, we
set

m m

Ae(@)() = Y2079 (yton, b, 1)), Al2)(6) = D ps(0)aV V(7(1).  (2.32)

=1 j=1

Remark 2.1. From the definition of the functions p; (j = 1,...,m), the estimate
0 for Tj(t) G]t()k, tlk[
max{b — tlk, tOk — CL} for Tj(t) g]tok, tlk[

follows. Thus, if conditions (2.25) hold, then

| (tow, tie, t) — 75(8)| < {

klim wi(tog, tik, t) = 7;(¢t) (j=1,...,m) uniformly in Ja,b[. (2.33)
— 400
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Lemma 2.6. Let conditions (2.25) hold and the sequence of the (m—1)-times continuously
differentiable functions zy :Jtox, tix|— R, and functions U~ € C([a,b]) (j = 1,...,m)
be such that

kl_l)l’_{l x,gj_l)(t) =20 V@) (j=1,....,m) wuniformly in la,b] (Ja,b]). (2.34)

Then for any nonnegative function w € C([a,b]) and t* €]a,b],

t t

khIJP w(s)Ag(zr)(s)ds = /w(s)A(x)(s)ds (2.35)
t* t*

uniformly in |a, b, where Ay, and A are defined by equalities (2.30).

Proof. We have to prove that for any ¢ €]0, min{b— t*, t* — a}[, and € > 0, there exists

a constant ng € N such that

’/ V(Ag(xr)(s) — A(z)(s))ds| <e for t€fa+0,b—10], k> no. (2.36)
Let, now w(t,) = n<1?<xbw(t), and g1 = ( Z f+5 Ipi(s) |ds) Then from the

inclusions x,(ﬁjfl) € C(la+9,b—46]), 207V ¢ C([a, b]) (j = 1,...,m), conditions (2.33)
and (2.34), it follows the existence of such constant ny € N that

|x](€j*1) (Mj(t()kv tllm S)>_x(j71) (Mj(t(]/m tlka ))‘ < €1, |.T (:uj (tOka tllm ))_x(jil) (Tj(8>>| <é

fort €la+0,b—10], k>ng, j=1,...,m. Thus from the inequality
[Ak(ze)(s) = AMa)(s)] < |Aw(an)(s) = Ae(2)(s)] + [Aw(2)(s) — Alz)(s)] < 2e4 Z |p;(t)

we have (2.36). O
The proof of the following lemma is analogous to that of Lemma 2.6.

Lemma 2.7. Let conditions (2.28) hold and the sequence of the (m—1)-times continuously
differentiable functions xy, :Jtox,b] — R, and functions V=Y € C([a,b]) (j = 1,...,m)

be such that lim 297V = 2UD(@) (= 1,...,m) uniformly in |a,b. Then for
— 400

any nonnegative function w € C([a,b]), and t* €]a, b], condition (2.35) holds uniformly in
Ja,b], where Ay, and A are defined by equalities (2.32).

Lemma 2.8. Let condition (2.25) hold, and for every natural k, problem (2.23), (2.24)

have a solution uy € C’l’fml(]a b[), and there exist a constant ro > 0 such that

tik
/ ™ (s)|ds < 12 (k € N) (2.37)
tok

EJQTDE, 2012 No. 38, p. 14



holds, and if n = 2m + 1, let there exist constants p; > 0, p; > 0, 15 > 0 such that

t

[ s =amys)as

t1

pj = sup {(b — t)2m= (<t < b} < o0,

t (2.38)
7, = sup {(b _ gy /(5 — a) | (8)| Ay (0, top, ta, 8)ds o < t < b} < oo,
t1
fort; = aT*b, (7 =1,...,m). Moreover, let
kEr—ir—loo ||Qk N Q||z%n72m72,2m72 =0, (239)

and the homogeneous problem (1.1y), (1.2) have only the trivial solution in the space

C"=tm(la,b[). Then nonhomogencous problem (1.1), (1.2) has a unique solution u such
that
[[u™ |2 < o, (2.40)
and ' '
klim ug_l)(t) =uU V@) (j=1,...,n) uniformly in la,b| (2.41)
— 400
(that is, uniformly on [a 4+ 6,b — 6] for an arbitrarily small 6 > 0).

Proof. Suppose t1,...,t, are the numbers such that

a+b
2

=t <---<t,<b, (2.42)

and g¢;(t) are the polynomials of (n — 1)-th degree, satisfying the conditions

gj(tj)zla gj(ti) =0 ('L#jv Zajzlaan) (243)

Then for every natural k, for the solution uy, of problem (2.23), (2.24) the representation

ug(t) = ; (Uk(tj) - ﬁ /(tj — )" (Ag(ur) (5) + Qk(s))ds)gj(t)+
+ﬁ / (= )™ (Ap(ur)(3) + gul(s))ds (2.44)
is valid. For an arbitrary ¢ €]0, “TH’[, we have

t1

— (n-J)| / (s =0 [(au(©) - ate)ag)ds

S

<

’ /1(5 — )" (q(s) — q(s))ds

t1 t1 ty

< n( /(8 — a)2m21ds)1/2(/(5 _ a)2n2m2</(qk(£> B Q(f))d§>2ds> 1/2 -

t t s
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1/2
<n llar — allzz -

, for a+6 <t <ty

2m—2j+1 2m—2j+1
(tl B al) - 5 ) 2m—2,2m—

t
, , . 111/2
)/(t o s)"*](qk(s) B q(s))ds‘ < n‘(() B t1)2n72WL72]+1 _ §2n—2m—2j+1 X (245)
t1

*llae = allz;, - for t;<t<b—4 (j=1,...,n—1).

Hence, by condition (2.39), we find
31
klim (s — )" (qr(s) — q(s))ds =0 uniformly in Ja,b[ (j =1,...,n—1). (2.46)
—4-00
¢
Analogously one can show that if ¢y €]a, b[, then

t

khI—P (s —to)(qr(s) —q(s))ds =0 uniformly on I(ty), (2.47)
to

where I(ty) = [to, (a+b)/2] for ty < (a+b)/2 and I(ty) = [(a+b)/2,to] for to > (a+b)/2.
In view of inequalities (2.37), the identities

G-1)py _ 1 / m—j, (m)
u t)=— [ (t—s u;. (s)ds 2.48
fori=0,1;j=1,...,m; k€ N, yield

V(O] < 75t = a)(b - ) (2.49)
for to, <t <ty (j=1,...,m; k€ N), where

"0 o —9j 41 L —1,....m). 2.50

T (m_j)!(m j+1) P (U m) (2.50)

By virtue of the Arzela-Ascoli lemma and conditions (2.37) and (2.49), the sequence

{ur}{29 contains a subsequence {ug,};"% such that {u,(f;l) 20 (j =1,...,m) are uni-
formly convergent in |a, b[. Suppose

i u (t) = u(t). (2.51)

Then in view of (2.49), uU~Y € C([a,b]) (j = 1,...,m), and
lim u,(gl;l)(t) = u(jfl)(t) (j=1,...,m) uniformly in ]a,bl. (2.52)

l—+o00

If along with this we take into account conditions (2.25) and (2.46), from (2.44) by lemma,
2.6 we find

)= 32 ()~ gy [ = 7M@) + alas)as (014
” t b (2.53)
1 1
+(n — /(t — )" (A(u)(s) + q(s))ds for a<t<b,

t1
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ROl S il = @)= D" for a<t<b(i=1..m),  (254)
uwe O Y(Ja, b]), and

loc

lim u,(ﬂ U(t) =uY V() (j=1,...,n—1) uniformlyin ]a,b[. (2.55)

l—+o0
On the other hand, for any ¢ €|a, b[ and natural [, we have

t

(t = to)ug V() = w2 (1) — ul " (k) + / (5 — to) (Ag(ur ) (s) + i (5))ds.  (2.56)

to
Hence, due to (2.25), (2.47), (2.55), and Lemma 2.6 we get

lliin ul(:*l)(t) = u" V() uniformly in Ja, b[. (2.57)
Now it is clear that (2.55), (2.57), and (2.37) results in (2.40) and (2.41). Therefore,
w e C™(Ja,b[). On the other hand, from (2.53) it is obvious that u is a solution of
(1.1). In the case where n = 2m, from (2.54) equalities (1.2) follow, that is, u is a solution

of problem (1.1), (1.2).

Let us show that w is the solution of that problem in the case n = 2m + 1 as well.
In view of (2.54), it suffice to prove that u(™ (b) = 0. First we find an estimate for the
sequence {u}; 2. For this, without loss of generality we assume that

th <ty (keN). (2.58)

From (2.44), by (2.39) and (2.49), it follows the existence of a positive constant po,
independent of k, such that

"V (1)) <

k >
. . (2.59)
§p0+ ’/ A (ug)( ds’+’/ (t—s)™ qk(s)dzs’)
for t; <t < ty, and
Nawllzz, o, 0oy S PO (2.60)
for kK € N. On the other hand, it is evident that
t m 1
’/(t _ S)m—lAk(uk)(S)dS S Z ’ /(t — s)m_lpj(S)ug_l)(S)ds"F
1 ]:1 1
: t (2.61)

5 (tok stk ,S)

+i ‘ /(t— s)m—lpj(s)( / u,ﬁ”(&)dﬁ)ds)

s

fOI'tlgtStlk (kGN)
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Let, now m > 1. From Lemma 2.2 and condition (2.37) we get the estimates

! ‘ (J)( )|2 1 | (j)< )|2
Uy Ug (S 2m,, 2
—r — = ds <2 2.62
/(b_S)Zm 2; 45 /(tlk_s)Qm 2; 4% (2.62)
t1 to

fort; <t <ty (j =1,...,m). Then by conditions (2.38) we find

}/(t‘ S)m_lpj(S)U,ﬁj’”(s)ds‘ _

s

’/ b—st j as(t—s)s_a(a 1)(5)>((b—s)2mj/(f—a)pj(f)dg)ds <

t1

t
dmp; ju ()] / ui(s)]
< K 71 <
_b—a</(b—s)mj+2d8+ (b= s ]Hds)_

t1 t1

Mo / W (s 1/2 / w9 (5))2 1/2
. ébl_,o; ( / (b(_ks)Qé_)2i+2d5> ” ( / %dbﬂ) /}x (2.63)

t1 t1
t

12 2™mrgp;
-2 < 0P5 ;1 N—1/2
x(/(b ) ds) < =B (-1
t1

for t7 <t <ty (j = 1,...,m). On the other hand, by the Schwartz inequality, the
definition of the functions y; and (2.4) it is clear that

pj(tok tik,s)

A 2m=i
| / “/(c])(f)df’é(Zm—Zj—l)!!Abtokatlkv /'u’“ ng E (2.64)

s

< 2™ (b, tok, tik, s)

forty < s <ty (j = 1,...,m). Then by the integration by parts and (2.38), (2.64) we
get

pj(tok t1k,s)

[amor=ne( [ i) <

¢
m d(t—s)m!
=2 "Omai( s_)a
t1
¢

t1

(/S<§ —a)|p;(§)|A; (D, tomhmf)dﬁ)ds’ < 2™ X (2.65)

t1

B (t— )

0s s—a

(b—s)mi—mHL20s < 2"rop, X
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_ _ 127+ 5. (b — a)
x/(m 1+ e >(b—s)“j—3/2d3§ (m+1) rop;(b —a) J><
s—a (s—a)? b—a

t
1)274 270 (b — a) 197,
X/(b—8)3/2d8§ (m+ ) bjoc(L a) Jp]<b_t>71/2
t1

fort) <s <ty (j=1,...,m).
Thus from (2.61), by (2.63) and (2.65) we have

‘ /(t — )™ Ag(ug) (s)ds| < ko(b—t)~1/? (2.66)

for t; <t <ty,, m > 1, where ky = m;rl 2 Z(Pj +7;(b—a)).
=1

Let, now m = 1, then due to (2.37), (2.38), and (2.64) we obtain

"
= ’/pl(s)uk(s)der
t1
t w1 (to1,tik,s)

+/p1(8)( / ul (€ dg)d ‘ < ‘“’“ ‘/ a)pi(s ds‘—i—

s

| / (t = )™ Ax(ug) (s)ds

S

+‘/ ((s Jik)((?L 9 G —|Z§2(<Sg|_ 5)><<b_5)/<5_“>p1<5>d5>d5‘+

t1

t

2 ur(t
a/(s—a)\pl(s)\)\l(b,tm,tlk,s)ds§ - p [' A0l

—Qa

27"0
ty —

+

t1
t t

1 1/2 2 uz(s) 1/2 (2.67)
7d) t—t 1/2(/ k d) }
+“)(/(5—5)2 ) Lt b—s2") 1T
t1 t1
4o py
+b—a
On the other hand, from (2.24), (2.37), and Lemma 2.2 it follow the estimates

(b—t)m=Y2 for t; <t <ty.

tik

o) = | [ 6105 < (1 -0 [ a1s) ™ < oo o1,

t

tik 9 tik 9
/ uk(s)st < /ui(s)ds < 2rg,
J o= ) T—sp
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for t; <t < tyx. Then from (2.67) by these inequalities we get

2p1 2T0 4T0
<
‘/ ) ds‘ b—a((b—t)1/2+(b—a)1/2)+

4rop,
o-a

(2.68)
(b=t < (b= )7+ (b= ) +

where K, = If_%(pl +0y), ke = (bfa%pl.
If m > 1, due to conditions (2.60) and the fact that n = 2m + 1, we have

| /t<t—s>’“%<> = (m-1)| [ / R (R ki / 4x(€)1d€ ) ds| <

<m(b—t)""?|ql|z2 <mpo(b—1)"Y* for t, <t<b, (2.69)

2n 2m—2,2m—2

and if m =1,

/t | / ar(€)de

Also it is clear that

ds < (b— t)1/2||qk||zg’0 <po(b—1)Y?* for t, <t <b. (2.70)

ul™(t) = / u™ ) (5)ds, (2.71)

since ulgm) (tix) = 0.
Now, from (2.59), by (2.66) and (2.69) if m > 1, and by (2.68) if m = 1, we have,
respectively,

WD) < o+ (o + o) (b~ 1),

t
2.72
|u(m+1)(t)| Spo_i_/w_i_/ﬁ[(b_t)1/2+(b—t>“{111/2]+/|qk(5)|d8, ( )

for t; <t <ty From (2.71), by (2.72), and (2.70), it follows the existence of a constant
p* > 0 such that

O I = 0 (b= ] for b <t <ty m2 1,

from which, in view of (2.25), (2.55), and (2.57), it is evident that u(™ (b) = 0. Thus we
have proved that w is the solution of problem (1.1), (1.2) also in the case n = 2m + 1.
To complete the proof of the lemma, it remains to show that equality (2.41) is satisfied.
First note that in the space C" 1™ (]a,b[) problem (1.1), (1.2) does not have another
solution since in that space the homogeneous problem (1.1p), (1.2) has only the trivial
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solution. Now assume the contrary. Then there exist § €]0, bg—“ [, € > 0, and an increasing
sequence of natural numbers {k;},°% such that

maX{Zm(ﬂ D) —ul V() a+8<t<b-0}>e (l€N). (2.73)

By virtue of the Arzela-Ascoli lemma and condition (2.37) the sequence {ul(gl _1)};:’10 (j=
1,...,m), without loss of generality, can be assumed to be uniformly converging in |a, b|.
Then, in view of what we have shown above, conditions (2.55) and (2.57) hold. But
this contradicts condition (2.73). The obtained contradiction proves the validity of the
lemma. 0

Analogously we can prove the following lemma if we apply Lemma 2.7 instead of
Lemma 2.6.

Lemma 2.9. Let condition (2.28) hold, for every natural k problem (2.26), (2.27) have

a solution uy € C’l’f)cl(]a b]), and let there exist a constant ro > 0 such that

b

/|u,gm>(s)|ds <r2 (keN), (2.74)
tok
kl—l>r-il-loo ||qk B Q||Zgn—2m—2 - 0’ (275)

and the homogeneous problem (1.1y), (1.3) has only the trivial solution in the space

Cn=tm(la,b]). Then the nonhomogeneous problem (1.1), (1.3) has a unique solution u
such that inequality (2.40) holds, and

klirf u,(gjfl)(t) =uU V@) (j=1,...,n) uniformly in ]a,b] (2.76)

(that is, uniformly on [a + 6,b] for an arbitrarily small 6 > 0).

To prove Lemma 2.11 we need the following proposition, which is a particular case of
Lemma 4.1 in [8].

Lemma 2.10. If u € C'~*(|a, b]), then for any s,t €a,b| the equality

loc

t

(—1ymm / (€ — @) (E)u(€)dE = wa(t) — wals) + v / WPl (277)

S

is valid, where Vo =1, Vi1 = ZEEL wy,(8) = 0 (= 1) a0 (Hu(t),
j=1

t—a
2

Wansa (£) = S (=1 [t — a)u19) (8) — =) () Jul (1) -
7j=1

™ (2)]?.
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Lemma 2.11. Let ag €la,b[, by €]ag, b, the functions h; and the operators f; be given
by equalities (1.10) and (1.11). Let, moreover, 7; € M(]a,b]), and the constants I ; >
0, v; > 0(k=0,1; j =1,...,m) be such that conditions (1.12)-(1.14) are fulfilled.
Then there exist positive constants 6 and ry such that if ag €]a, a+ 9, by €]b—0,b[, to €
la, aol, t1 €lbo, b], and q € L2, , 2. 2m_2(Ja, b]), an arbitrary solution u € C}*(Ja,b]) of
the problem

ul™(t) = ij(t)u(j "V (pyto 1, 1)) + q(2), (2.78)
u V() =0 (i=1,...,m), w9 Vt)=0 (j=1,....,n—m) (2.79)

satisfies the inequality

/|u s)|2ds <

S [t = a2 ny (sl ot sds| + llallyy | L)

Sﬁ(
J

(2.80)

=1

Proof. From conditions (1.12) and (1.13) it follows the existence of constants f;; > 0 such
that ) ~
(t—a)" 277% fi(a,1)(t,s) < ly; for a<t<s<ay,

(b— )™ 275 f;(b,7;)(t,s) < &y for by <s<t<b

Consequently, all the requirements of Lemma 2.3 with p;(t) = (t — a)"~>™(—1)"""p;(t),
a < ty < ag, and Lemma 2.4 with p;(t) = (b — ¢)" " (=1)"""p,(t), bp < t; < b, are
fulfilled. Also from condition (1.14) and the definition of a constant v, it follows the
existence of v €]0, 1] such that

<2m _j)22m—j+1
(2m — D!N(2m — 25 + 1!

Uy <vp—2v (k=0,1). (2.81)

On the other hand, without loss of generality we can assume that ay €]a,a + ] and
by €]b — 6,b[, where § is a constant such that

Z 1oj (8, 705) + 113 8;(0, 1)) < v, (2.82)
j=1

where the functions §; are defined by (2.6). Let now ¢ € Z%n—Qm—Q,Qm—Q(]a’7bD7 u be a
solution of problem (2.78), (2.79), and

r= 22" 1 4+ b—a)’v 2 (2.83)
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Multiplying both sides of (2.78) by (—1)"""(t — a)" *™u(t) and then integrating from ¢,
to t1, by Lemma 2.10 we obtain

to
(n—Zm) |u(m)(t0 | + v, /|u(m) | ds =

= (=)™ Z /(3 — a)"’2mpj(s)u(s)u(jfl)(uj(to, t1,8))ds+ (2.84)

(=1~ /(s —a)"*"q(s)u(s)ds.

to

From Lemma 2.3 with p,(t) = (t — a)"?m(=1)"""p;(t), Lemma 2.4 with pi(t) = (b—
)" 2™ (—1)""™p,(t), and the equalities po(to) = p1(t1) = 0, by (2.81) we get

) mZ/ s —a)" " *™p;(s)u(s)u "V (1;(to, t1,8))ds <
J= 1t

(2m — j)22m—*t 5 )
< @ — 2m =2 + 1)”503'/)0(@0) + E lojBj(a — ao, Y0;)po(77) < (2.85)
I I —

t1
< (v~ 2)poa) + YTy 0.709) [ 1 (),
j=1 to

) mZ/ s —a)" " *™p;(s)u(s)uV (1;(to, t1,8))ds <
=g,
(2m — jy2m-in
— (2m—1D!N2m — 25+ 1!

m

lljpl bO Z 1]/8] - 7’Ylj)p1(7_*) < (286)

< (v — 20 (bo) wam/m )[2ds.

If along with this we take into account inequalities (2.82) and ay < by, we find

"MZ/*w“m@mwM%wmm@s
]1t
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+‘ Z/(S — )" 2" p; (s)u(s)ub ™Y (u;(to, 1, s))ds‘.

On the other hand, if we put ¢ = (a + b)/2, then again on the basis of Lemmas 2.1, 2.2,
and Young’s inequality we get

‘/ yr—2m s)u(s)ds‘ < }/c(s—a)n—% ds‘+‘/ )" Eg(s)u(s)ds| =

C

— ’ /c[(n —2m)u(s) + (s — a)" >/ (s)] ( / Q(f)d§> d5’+

s

s

+) / [(n —2m)u(s) + (s — a)"—Zmu’(s)]< / q(f)d&)ds‘ <

C

S[<n_2m)</%d8>1/2+(/%ds)lﬂ}x

< f=apm(f a€)de) ds) "+
+(1+b—a) [(n - 2m)</ (buj%als)l/2 + (/ (bq_ii%ds)lﬂ] X

< fo- sy / a€de) ds) " <2t b-allallyy | x
/\u 2ds /|u(m )|*ds 2] <

/ ™ (5)|%ds + 223 (1 + b — )20 [gl |2,

L2n72'm727 2m—2

(2.88)

In view of inequalities (2.87), (2.88) and notation (2.83), equality (2.84) results in estimate
(2.80). O
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The proof of the following lemma is analogous to that of Lemma 2.11.

Lemma 2.12. Let ay €|a, b, the functions h; and the operators f; be given by equalities
(1.10) and (1.11). Let, moreover, 7; € M(]a,b]), constants lp; > 0, vo; > 0, (j =
1,...,m) be such that conditions (1.12) and (1.21) are fulfilled. Then there ezists a
positive constant vy such that for any to €la, aol, and q € L%, _, _,(la,b]), an arbitrary
solution u € C7*~*(Ja, b]) of the problem

loc

ZP] ub = (5 (to, b, 1)) + q(1), (2.89)

uW V() =0 (i=1,...,m), w9 V0O =0 (j=m+1,...,n) (2.90)

satisfies the inequality

/|u s)|2ds < 7

Lemma 2.13. Let 7; € M(]a,b]), ag €la,b], by €|ao,b], conditions (1.7), (1.12)- (1.14),
hold, and let in the case when n is odd, in addition (1.8) be fulfilled, where the functions
h;, B; and the operators f; are given by equalities (1.10)-(1.11), and ly;, lk;, Yk (kK =
0,1; 7 = 1,...,m) are nonnegative numbers. Moreover, let the homogeneous problem
(1.10), (1.2) in the space C"~2™(|a, b[) have only the trivial solution. Then there exist § €
10, 54 and r > 0 such that for any to €]a, a+], t1 €]b+6,b], and q € L2 2 2m—2(]a, b[)
problem (2.78), (2.79) is uniquely solvable in the space C™*(]a, b)), and its solution admits
the estimate

Z / s = a)" 2 (s)u(s)ulT Vg (b, b, 9))ds| + [Jall2, ).

(2.91)

2n—2m— 22m2

/\u s)Pds) " < ol

Proof. First note that all the requirements of Lemma 2.11 are fulfilled, and in view of
(1.8) and (1.13), conditions (2.38) of Lemma 2.8 hold.

Let, now d €]0, min{b—by, ap—a}] be such as in Lemma 2.11 and assume that estimate
(2.91) is invalid. Then for an arbitrary natural k there exist

tok G]a, a+ 5/]{3[, L1k E]b — 5//{3, b[, (292)

and a function ¢ € z%n72m7272m72(]a, b[) such that problem (2.23), (2.24) has a solution
w, € C"Y(Ja, b]), satisfying the inequality

b (m) 1/2
(o ora™ s vt ., o
tok
In the case when the homogeneous equation
ZP ub~ M; (toks tik,t)) (2.330)
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under the boundary conditions (2.24) has a nontrivial solution, in (2.23) we put that
qx(t) = 0 and assume that u; is that nontrivial solution of problem (2.33y), (2.24).

Let now
tik
(m) -1/2 (m) -1/2
vk(t):< ! (s)|ds> un(®), qou(t) = |u \ds an(t). (2.94)
tok

Then vy is a solution of the problem

pi(t Y(pi(tor ties 1)) + qon(t)  for tor <t < tyy,
Z ) + qont) .
v D (tg) = 0 (i=1,...,m), V() =0(G=1,....,n—m).
Moreover, in view of (2.93), it is clear that
1
\v (s)]Pds =1, aowllzs . < P (k € N). (2.96)

On the other hand, in view of the fact that problem (1.1y), (1.2) has only the trivial
solution in the space C"~1™(]a,b[), by Lemmas 2.8, 2.11, and (2.96) we have

tligrn v,gj_l)(t) =0 uniformly in Ja,b] (j =1,...n),

bo

1< m() / (s — a)"‘QmAk(vk)(s)ds‘ + k‘Q) (k € N),

ao

(2.97)

where 7 is a positive constant independent of k. Now, if we pass to the limit in (2.97) as
k — +o00, by Lemma 2.6 we obtain the contradiction 1 < 0. Consequently, for any solution
of problem (2.78), (2.79), with arbitrary ¢ € L3, 5, 5 5,,_o(]a, b[), estimate (2.91) holds.
Thus the homogeneous equation

m

v () = pi (Y (uy(te, 1, 1)) for to <t <ty (2.82))

J=1

under conditions (2.79), has only the trivial solution. But for arbitrarily fixed ¢, €
la,a + 5[, t1 €]b—9,b[, and ¢ € L([to, t1]) problem (2.78), (2.79) is regular and has the
Fredholm property in the space C"(]to,[). Thus problem (2.78), (2.79) is uniquely
solvable. O

Analogously we can prove the following lemma if we apply Lemmas 2.7 and 2.12
instead of Lemmas 2.6 and 2.11.

Lemma 2.14. Let 7; € M(Ja,b]), ao €la,b], conditions (1.9), (1.12) and (1.21) hold,
where the functions h;, 3; and the operators f; are given by equalities (1.10)-(1.11), and
loj, lojv0; (J = 1,...,m) are nonnegative numbers. Let, moreover, the homogeneous prob-

lem (1.15), (1.3) in the space C"*(Ja,b]) have only the trivial solution. Then there eist
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positive constants § and r such that if ag €]a, a + 0], and q € L%, _,(la,b]), problem
(2.89), (2.90) is uniquely solvable in the space C"(]a, b)), and its solution admits the
b

estimate [ |u™(s)?ds < r||q||z2

to 2n—2m—2
Lemma 2.15. Let 7; € M(Ja,b[), o> 0, 3> 0, and let there exist § €]0,b— a] such that
I7;(t) —t| < ki(t —a)’ for a<t<a+d. (2.98)

Then
7(t)

Fomaraf {sispeomcar o o2
- /{;1515+/€1] (t—a)®8  for 0<pB<1’

fora<t<a+4o.
Proof. First note that
7(t)
‘ /(s - a)o‘ds‘ < (max{r(t),t} — a)®|7(t) —t| for a<t<a+§,

and max{7(t),t} < t+|r(t) —t| for a <t <a+J. Then in view of condition (2.98)
we get

7(t)
‘ /(5 — a)o‘ds‘ < kit —a) + kit —a)’]*(t —a)’ for a<t<a+9.

From this inequality it immediately follows the validity of the lemma. O
Analogously, one can prove
Lemma 2.16. Let 7; € M(]a,b]), a >0, 8 >0 and let there exist 6 €]0,b— a[ such that
I7;(t) —t| <k (b—1)° for b—8<t<b. (2.99)
Then

‘/b—tad‘ 1+ k16912 (b— )™+ for §>1
- klélﬁ—i-kl] (b—t)*8 for 0<B<1’

forb—0 <t <b.

3 Proofs

Proof of Theorem 1.1 (Theorem 1.2). Suppose problem (1.1p), (1.2) (problem (1.1y),
(1.3)) has only the trivial solution, and r and ¢ are the numbers appearing in Lemma
2.13 (Lemma 2.14). Set

t0k:a+5/k’ tlk:b—é//{? (k?GN) (31)
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By Lemma 2.13 (Lemma 2.14), for every natural k, problem (2.78), (2.79) in the space
C~'(Ja, b) (problem (2.89), (2.90) in the space C™*~'(]a, b])) has a unique solution u,

loc loc
and

2
/ u()Pds) < rllalzy L / u()Pds) " < rllallzy L) 32

where the constant r does not depend on ¢. From (3.2), by Lemma 2.8 with
ro = 7||ql|32 (by Lemma 2.9 with ry = T||q||z2 2 72), it follows that problem

2n—2m—2,2m—2

(1.1), (1.2) (problem (1.1), (1.3)) in the space C" !(Ja, b)) (C1(Ja, b])) is uniquely

solvable for an arbitrary ¢ € E%n—Zm—Q,Qm—Z(]a o) (qe L% ., .(a, b])). Thus that
problem has Fredholm’s property, and its solution admits estimate (1.15) (estimate

(1.22)). 0

Proof of Corollary 1.1. In view of conditions (1.18), there exists a number £ > 0 such
that

On the other hand, in view of conditions (1.19) and (1.20) we have

. ao B 9m—j ago A
(t — )2 Ihy(t, s) < %mlj / H#H] dé + / (& — a)"po; (€)dé

for a<t<s<a,

[ g (3.4)
+ oj/< —d&+

(b _ t)Qm_Jh](t, S) S f — a)2m7]+1

m — ]
bo
b
+(b—a) ™ /(b — g)Qm*jpoj(g)dg for by < s <t <b.

bo

Let ¢ be the constant defined in Lemmas 2.15, 2.16. From (1.19) it follows the existence
of ap €]a,a + [ and by €]b — 6, b] such that

(1)) < = Q)Z) —pr +por(t) for € [a,ao]Ulbo,b]. (3.5)

On the other hand, from lemmas 2.15, and 2.16 by the condition (1.17) it follows the
existence of a constant kg such that

75 (1)
1

) / (s — a)2m=gs| "

! (3.6)

7 ()
. 1/2 .
‘ / (b— 5)2<W1>ds‘ < K2(b— syl for by <t <.

t

< kl/Z( —a)™ 2 for a <t < a,
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Consequently, if po; € L,,—j 2m—;(]a,b]), then by (1.16) and (3.6), from (1.19) and (1.20)
it follows the existence of a nonnegative constant ks such that
(t—a)" ' fi(a,m)(t,5) < kolag — a)™® for a<t<s<a,
(b—8)" (b, 1)(t, 8) < ko(b—by)™ for by <s<t<b,
where 0 < g9 = min{yy; —2n—242k(2m—n), ;-2 : k=0,1; j =2,...,m}. Now, from
(3.4), and (3.7) it is clear that we can choose 0; < § so that if max{b — by, ap — a} < dy,
then

(3.7)

I{IA
Y 4e for a<t<s<ay,
2m — j

(t — a)™h(t,s) <

g - +¢e for by <s<t<hb,

m-—=1]

je{l,...,m}. From (3.7), the last inequalities and (3.3), it is clear that all the assump-
tions of Theorem 1.1, with ¢;; = - - = 1/2, and max{b — by, ag — a} < 4, are
fulfilled, and thus the corollary is valid. O

Proof of Theorem 1.3. 1t suffice to show that if u € CI'-'(Ja, b)) (u € CI'(Ja, b])) is

loc loc

solution of problem (1.1p), (1.2) ((1.1p), (1.3)), then

(b—t)*" T h(t,s) <

/\u s)|2ds < +o0. (3.8)

For an arbitrary ¢, €|a, b[ we have

t m

m 1 n—m-— j—
u™ () = w(ty) + h—m=1) /(t —5) l(jzlpj(s)u(] 1>(s))ds, +
to -
1 . (®) (3.9)
- n m—1
+(n—m—1)!/ (Zp] / >d§>
to s
where w(to) = Z+1 %u“ D(ty). Now note that by the equalities
j=m
(1)) = m) / (t— s)k_’_lu(k)(s)ds) for a<t<b, (3.10)
k=1,...,m, 1=0,...,k—1, with ¢ = a, from (3.9) we get the estimate
m—1 tg
™ ()] < w(to)| + (1= i) [[u™ Pl Y </(S —a)" " p;(s)lds+
Jj=1 t
to 7 (s)
s [s=ar )| [ € - amtaeas)+ (311)
t s
to

+[|u™ V|| ¢ /(5 —a)" " pn(s)ds for a<t<t,

t
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where §;; is Kronecker’s delta. Then conditions (1.28) yield

to

IMMUNShM%N+ﬂ—ﬁmNWW*Wc/@—aY%@Mﬁ

t

to to

+’yHu(m_1)Hc/p(s)ds + ||u(m_1)HC/(s —a)" " Hpm(s)|ds for a<t<t,
t t

where p(t) = i(t —a)"p;(t)],

Jj=1

75 (1)

! / (6 —a)™ 77|, v =max{V,...,Ym}.

’YJ = €sssup m

a<t<b

Consequently, in view of condition (1.29), u™ € L([a,ty]). Analogously, by (3.10) with
c = b, we can show that u(™ € L([ty,b]). Finally u(™ € L([a,b]) and if we put v(t) =

f |u(™)(s)|ds, then

v e C([a,b]), (3.12)
and from (3.10) it is clear that

WD) < (t—a)™ " lo(t) (i=1,...,m—1) for a<t<to. (3.13)
In view of condition (1.29) we can choose § > 0 such that
a+d

/p@MS<%- (3.14)

a

From (3.9), by conditions (1.28), (3.12) and inequality (3.13), we get

to m to 7;(s)
@) < o)+ [ P2 a0 5[50y ) /f )" u(€)dgds <
=17

t

to

< |w(to)| +/%ds+7||v||(;/p(s)ds, for a<t<a+d.

t a

Consequently, if wy = |w(to)| + v||v||c fp )ds, then

to
|u(m)(t)| < wp +/Md$ for a<t<a+id. (3.15)

t
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From the last inequality, by the integration by parts and (3.14), we get

p(s)v(s)

S—a

to

v(t) < wo(t—a)+(t—a)/

t

1
ds+§v(t) for a<t<a-+d.

The last inequality, by the Gronwall-Bellman lemma, results in
()
t—a
Due to this inequality, from (3.15) by (3.14) we get [u™(t)] < wo(1+e) for a <t <

a+ 8. Analogously we can show that (™ is bounded in the neighborhood of the point b.
Therefore, condition (3.8) is satisfied. O

<2w62ft (5)ds < 9 for a <t <a+9d.

Proof of Theorem 1.4. From Theorem 1.1 by conditions (1.30)-(1.33) it is obvious that
problem (1.1),(1.2) has Fredholm’s property. Thus to prove Theorem 1.4, it suffice to
show that the homogeneous problem (1.1), (1.2) has only the trivial solution in the space

5”’1””(]&, b[). Suppose u € 5”’1””(]&, b[) is a solution of problem (1.1p), (1.2). Then
from Theorem 1.1 it is clear that

P / ™ (5)[2ds < +o0. (3.16)

Multiplying both sides of (1.1) by (—=1)""™(t — a)"?™u(t) and integrating from ¢, to ¢y,
by Lemma 2.10 we obtain

wn®) = wn(s) + v [ [ O = "mz / )" " €)u r€)ul€)ds.

Moreover, from Lemma 2.5 it is evident that

lim inf |w,(s)| = 0, liIl;n ibnf |w,(t)] = 0.

Then by (3.16) we get

m 0
np = (17 Y [ (€= a2 ©ulr V() ule) s (317)

According to (1.32), (1.33) and (3.16), all the conditions of Lemmas 2.3 and 2.4 with
p;(t) = (=1)""(t—a)""*"p;(t), ap = by = t*, to = a, ty = b and pu;(to, t1,t) = 7;(t) hold.
Consequently, due to equalities py(a) = p1(b) = 0, we have

" m/ )" (€)uY ) (1(6))u(€)dE <

(2m — j)22m—i+l
@m — D)(2m —2j + 1

m e
Gm—iem =2+ o)

<lo;B(t" —a 70])00/2( )p(l]/z( ) + lo, (3.18)

I ,po(t*)"‘

85 (b — 7)) p > (r)pr P (1) + Ly,
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for a < t* < b. On the other hand, due to conditions (1.30) and (1.31), the number
v €0, 1[ can be chosen such that inequalities

Zm (2m — j)2%m—i+1 _ v
l l ed] t* - W, j ) < )
(O] 2m ”(2m_2.]+1)” + 0]/8]( a ’YO]) 2

Jj=1

(3.19)

m

(2m — j)22m—it1 - . Up —V
2 (l” —1)11(2m — 25 + D! =t ’7”)) ST

J=1

are satisfied. Thus according to (3.18), (3.19), and inequalities ,0(1]/ (T )pé/Z( t*) < p,
pi/Q( )pi/Q(t*) < p, (3.17) implies the inequality v,p < (v, — v)p, and consequently,

p = 0. Hence, by

() 5 )/t—sml ™ (s)ds| < (t — )" 2p for a<t<b.

we have u(t) = 0. O

Proof of Theorem 1.5. The proof is analogous to that of Theorem 1.4. The only difference
is that instead of Theorem 1.1, Theorem 1.2 is applied. O

Proof of Theorem 1.6. Let u be a nonzero solution of the problem (1.1j), (1.2). Then
analogously to Theorem 1.4, from conditions (1.40),(1.41), (1.32) and (1.33) it follow the
validity of relations (3.16), (3.17), (3.18) and the existence of v €]0, 1] such that

m 2m j 22m 7+1 _ i}
Z (loj o — ) -+ lojﬁj(t — a, ’)/Oj)) < Vp—V,

- D!(2m — 25 + 1)!!
J; Qm_j)22m j+1 (320)
;( D2m —2j + D + 11585 ( Y15) v, — U

For the constants 7" and 7., appearing in inequality (3.18), which are defined in Lemmas
2.3 and 2.4 (with tg = a, t; = b, ag = by = t*, and p;(to, t1,t) = 7;(¢)), from the condition
(1.42) we have the estimates

<t for a<t<th, t" <71, for t"<t<hb.

By the last estimates, from (3.18) it immediately follows the inequality v,p < (v, — v)p.
Thus v = 0.
U
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The Dirichlet Boundary Value Problems For Strongly
Singular Higher-Order Nonlinear
Functional-Differential Equations

S. Mukhigulashvili, Brno
15.12.2011

Abstract

The a priori boundedness principle is proved for the Dirichlet boundary value
problems for strongly singular higher-order nonlinear functional-differential equa-
tions. Several sufficient conditions of solvability of the Dirichlet problem under
consideration are derived from the a priori boundedness principle. The proof of
the a priori boundedness principle is based on the Agarwal-Kiguradze type theo-
rems, which guarantee the existence of the Fredholm property for strongly singular
higher-order linear differential equations with argument deviations under the two-
point conjugate and right-focal boundary conditions.

Key words and phrases: Higher order functional-differential equations, Dirichlet
boundary value problem, strong singularity, Fredholm property, a priori boundedness
principle.

2000 Mathematics Subject Classification: 34K06, 34K10

1 Statement of the main results

1.1. Statement of the problem and a survey of the literature. Consider the
functional differential equation

(1.1) u™(t) = F(u)(t)
with the two-point boundary conditions
(1.2) uVa)=0(@(=1,---,m), v VO)=0@G=1,---,n—m).

Here n > 2, m is the integer part of n/2, —oo < a < b < 400, and the operator F' acting
from the set of (m — 1)-th time continuously differentiable on ]a, b| functions, to the set
Liose(Ja, b). By u¥=Y(a) (uU=Y(b)) we denote the right (the left) limit of the function
uY~Y) at the point a (b).

The problem is singular in the sense that for an arbitrary x the right-hand side of
equation (1.41) may have nonintegrable singularities at the points a and b.
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Throughout the paper we use the following notations:

R* =0, 4o00[;

(2] the positive part of number z, that is [z], = mg‘x‘;

Lioe(Ja, b)) (Lioc(]a, b])) is the space of functions y :Ja, b[— R, which are integrable on
la+ €, b— ¢] for arbitrary small £ > 0;

Lo p(Ja, b)) (LZ g(Ja, b])) is the space of integrable (square integrable) with the weight
(t — a)*(b — t)? functions y :]a, b|— R, with the norm

b b

lolle,s = [ =ar®=sPlulas (e, = ([6-are-96as) ")

a

L([a, b]) = Loo(la, bl), L*([a,b]) = L§(]a, b]);
M (]a, b]) is the set of the measurable functions 7 :|a, b[—]a, b[;

zi,ﬁ(]a,b[) (L%(]a,b]) is the Banach space of y € Lige(]a,b]) (Lioe(Ja,b])) functions,
with the norm

Iyllz2 EmaX{[/(S—a)“(/y(f)dﬁfds]l/z ta<t< a—21-b}+
+D%w<{[/(b—s)ﬁ(/sy(f)dé“)zds}l/2 : a;b <t< b} < +00.

L,(Ja,b]) is the Banach space of y € Lj,.(]a, b]) functions, with the norm

t

lollzz, = sup {[(s = )6 =02 [ (€= a2 ly()d <5<t <b} < oo,

S

CYa, b)), (C1='(Ja, b])) is the space of the functions y :Ja, b[— R, which are contin-

loc loc

uous (absolutely continuous) together with y/, v”, --- , 4" on [a+¢, b—¢] for arbitrarily
small € > 0. B
C"=tm(Ja, b)) is the space of the functions y € C}".'(Ja, b[), such that
b
(1.3) /|l’(m)(8)|2d8 < +o00.

C"Y(]a, b]) is the Banach space of the functions y € C/"=*(]a, b[), such that

loc

: 20D (1)) :
( 4) 11m§g€m<+m(lzl,-..’m),
1. .
: 20D (1)) . 3
lim sup <4oo(i=1,--+,n—m),

1oy (b — t)ym—it1/2



with the norm: )
me1 = — <t< b},
||l gm— ;:1 sup { o) a

— ( o a)m—i+1/2(b o t)m—i+l/2'
b]) is the Banach space of the functions y € C!"~!(Ja, b[), such that conditions

where «a;(t)
a, loc

el
(1.7) and (1.4) hold, with the norm:

S up (10 / -
Sm—1 = —_— <t< b d
||xHC’1 1 — Sup{ Oél(t) a |,’,U S

D, (Ja, b[xRT) is the set of such functions 0 :]a, b[x Rt — L,(Ja, b]) that d(¢, -) :
R* — R* is nondecreasing for every t €la, b[, and (-, p) € Ly(]a, b]) for any p € R*.

Doy —om—2 2m—2(]a, b[x R") is the set of such functions ¢ :]a, b[x RT — Ezn_2m_2 om_o]a, b])
that d(t, -) : Rt — R is nondecreasing for every ¢ €la, b[, and d(-, p) € L2 _, _ 2.2m—2(la, b[)
for any p € R™. N

A solution of problem (1.1), (1.2) is sought in the space C"~"™(]a, b[).

The singular ordinary differential and functional-differential equations, have been
studied with sufficient completeness under different boundary conditions, see for exam-
ple [1], [2], [4] — [12], [15], [21]- [25] and the references cited therein. But the equation
(1.1), even under the boundary condition (1.2), is not studied in the case when the oper-
ator F' has the form

(1.5) Zp] i(1) + f(2)(D),

where the singularity of the functions p; : Lj,.([a, b]) be such that the inequalities

b
/(s —a)" (b —5)*™H(=1)"""py(s)]+ds < +o0,

(1.6) o

/(s —a)" 7 (b— S)Qm_j\pj(sﬂds <400 (j=2,---,m),

a

are not fulfilled (in this case we sad that the linear part of the operator F' is a strongly
singular), the operator f continuously acting from C}"~*(]a, b[) to L 72(]a, b[),
and the inclusion '

(1.7) sup{ f(x)(t) : ||5E||cm 1 <pte LG om—2,2m—2(]@; D[).

holds. The first step in studying of the differential equations with strong singularities
was made by R. P. Agarwal and I. Kiguradze in the article [3], where the linear ordinary
differential equations under conditions (1.2), in the case when the functions p; have strong
singularities at the points a and b, are studied. Also the ordinary differential equations
with strong singularities under two-point boundary conditions are studied in the articles
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of I. Kiguradze [13], [14], and N. Partsvania [20]. In the papers [18], [19] these results
are generalized for linear differential equation with deviating arguments i.e., are proved
the Agarwal-Kiguradze type theorems, which guarantee Fredholm’s property for linear
differential equation with deviating arguments.

In this paper, on the bases of articles [3], and [17] we prove a priori boundedness
principle for the problem (1.1), (1.2) in the case where the operator has form (1.5).

Now we introduce some results from the articles [18], [19], which we need for this work.
Consider the equation

m

(1.8) ul(t) = piu V(1) +q(t)  for  a<t<b.

j=1
For problem (1.8), (1.2) we assume, that when n = 2m, then the conditions

(1.9) pi € Lie(Ja, 0) (j=1,---,m)
are fulfilled and when n = 2m + 1, along with (1.9), the condition

t

(1.10) lim sup ‘(b— )2t / pl(s)ds‘ < too (=

t—b

a+b
5 )

t1

holds.
By hj :a, b[x]a, b}— R and f; : [a, b] x M(]a,b]) = Ciec(Ja, b[x]a,b]) (j =1,...,m)
we denote the functions and operator, respectively defined by the equalities

m(ts) = | [(€ = a1 mpi(©)de],

(1.11) t
o) = | [(€ = a2 ni(€de] (=20 m),
and
t 75 (§) "
1) penes) = | [€- o mn©] [ -0
s 3

Let also k = 2k; + 1 (k1 € N), then

. 1 for k<0
h 1-3-5---k for k>1

Now we can to introduce the main theorem of paper [18].



Theorem 1.1. Let there exist the numbers t* €]a, b, lx; > 0, ly; > 0, and vx; > 0 (k =
0,1; j=1,...,m) such that along with

(1.13) By = i ( - P )y )< .
s 2m — DN2m — 25 + D! (2m — 25 — D)I1(2m — 3)!1\/270; 2
i 22m=it1] 22m=i=1(ph — *)0i [ 1
(1.14) B = Z ( ~J) = B Ul ) <5
2 2m—1 N2m =2+ DI 2m—2j — DI2m - 3)11/2y,/ 2

the conditions

(1.15) (t = a)*h;(t,s) <loj, (t—a)" 72 fi(a,7))(t, 5) <o
fora<t<s<t* and

(1.16) (b= Thy(t,s) < by, (b—=t)" V2 f5(0,75)(t,5) < 1y

for t* < s <t < b hold. Then problem (1.8), (1.2) is uniquely solvable in the space
Cn=tm(Ja, b).

Also, in [19] is proved the following theorem:

Theorem 1.2. Let all the conditions of Theorem 1.1 are satisfied. Then the unique
solution u of problem (1.8), (1.2) for every q € L3, o, 5 om_o(]a,b]) admit the estimate

(117) ||u<m)||L2 S T||Q||Z§n72m72,27n72’
with
2m(1+b_a)(2n—2m—1) 2m+1
= ) Vom =1, Vomy1 = )
(v — 2max{ By, Bi})(2m — I 2
and thus constant v > 0 dependent only on the numbers ly;, ijﬁkj (k= 12j =
1,---,m), and a, b, t*, n

Remark 1.1. Under the conditions of Theorem 1.2, for every ¢ € z%n_zm_zvzm_z(]a, bl)
the unique solution u of problem (1.8), (1.2) admits the estimate

(1.18) s < rallallzs
with
( +z’”: om—it+1/2 ) 2™(1+b—a)(2n—2m —1)
(m — )N 2m — 25 + 1)V2(b — a)™=+Y2) (v, — 2max{ By, B1})(2m — 1)!I’

J=1

1.2. Theorems on a solvability of problem (1.1), (1.2).
Define the operator P : C7" !(]a, b[) x C7""*(]a, b]) — Lisc(]a, b]), by the equality

(1.19) ij Dir(t) for  a<t<b



where p; : C7""'(Ja, b]) — Lise(Ja, b)), and 7; € M(]a, b]). Also for any v > 0 define the
set A, by the relation

(1.20) A, = {x € TP (a, ) ¢ llallgp o < -
For formulate this a priori boundedness principle we have to introduce

Definition 1.1. Let 79 and ~ be the positive numbers. We said that the continuous
operator P : C7"*(Ja, b[) x C7""*(Ja, b]) — L, (Ja, b]) to be 7o,y consistent with boundary
condition (1.2) if:

i. for any z € A, and almost all ¢ €]a, b[ the inequality

61n71)| |£L’| 61n71

(1.21) Z [pi (@) ()2 (73())] < O(t, |||

holds, where ¢ € D, (]a, b[x RT).

i. for any x € A, and ¢ € L3, 5,5 opm_s(]a, b[) the equation
(1.22) y™ () =D pi@)(0)yY V(1) + a(t)
j=1

under boundary conditions (1.2), has the unique solution y in the space C"-™(]a, b[)
and

(1.23) yllgm—r < Allallz
1 2

n—2m—2,2m—2

Definition 1.2. We said that the operator P to be 7 consistent with boundary condition
(1.2), if the operator P be ~q,~ consistent with boundary condition (1.2) for any ~o > 0.

In the sequel it will always be assumed that the operator F), defined by equality
Fy()(t) = [F(z)(t) = > pi(a)(6)29 ) (r(0)) (1)),
j=1

continuously acting from C}"*(Ja, b[) to Lz (Ja, b)), and

2n—2m—2,2m—2

~

(1.24) Ey(t, p) = sup{E,(2) (1) : [Jallep-1 < p} € Ly _gin—z 2], b)

for each p € [0, +o0.
Then the following theorem is valid

Theorem 1.3. Let the operator P be 7y, v consistent with boundary condition (1.2), and
there exist a positive number py < o, such that

(1.25) [1F( -, min{2p0, 70} |7 <

2m—2,2m—2 f}/



Let moreover, for any X €]0, 1], an arbitrary solution x € A, of the equation
(1.26) 2™ (t) = (1 = N)P(x, z)(t) + \F(z)(t)
under the conditions (1.2), admits the estimate

(1.27) lallep < po.

Then problem (1.1), (1.2) is solvable in the space C"~2™(]a, b]).
From theorem 1.3 with py = vy immediately follows

Corollary 1.1. Let the operator P be 7y, v consistent with boundary condition (1.2), and

(1.28) Z V() @) < n(t, llzllgn-)

forx € A, and almost all t €]a, b[, and

Yo
(1.29) 7 70)|| 72 <=

2n—2m—2,2m—2 f}/

where 1 € Day—om—2 2m—2(]a, b[xRT). Then problem (1.1), (1.2) is solvable in the space
Cm=tm(Ja, b).

Corollary 1.2. Let the operator P be ~y consistent with boundary condition (1.2), in-
equality (1.28) holds for x € C7" '(Ja, b]) and almost all t €la, b], where n(-, p) €
L%n—2m—2,2m—2(]a7 bD fOT any p € R+7 and

, 1
(1.30) lim sup ;||77(-, I

p—)-‘rOO 2n—2m—2,2m—2

Then the problem (1.1), (1.2) is solvable in the space C™2™(]a, b]).

When we discuss problem (1.41), (1.2), and n = 2m+1, we assume that the continuous
operator py : C7"'(Ja, b)) = Lige(Ja, b)), by such that

t

(1.31) lim sup ‘(b — )2t /pl(:z)(s)ds’ < +oo (t; =

t—b

a+b
2

)

t1

for any z € C7"*(Ja, b]).
Now define the operators h; : C7"'(Ja, b[)x]a, b[x]a, [—) Lio(Ja, b[x]a, b]), f; :
C" Ya, b)) x [a, b] x M(Ja,b]) = Cioe(]a, b[x]a, b)) (j =1,...,m) by the equalities

M. t,s) = | / (€= a)" 2 [(=1)" " p () (€)] e
(1.32)

xts_)/ E—a)pi(@)(©)de| (=2, ,m),



and

¢ 75 (8)
139 fen)ts) = | [€- o n@El| [ - o) )
s §

Theorem 1.4. Let the continuous operator P : C7'(]a, b[) x C7""*(]a, b]) — Ly(]a, b])
admits to the condition (1.21) where 6 € D,(la, b|xR™), 7; € M(]a, b)) and the num-
bers o, t* €la, b, ly; > 0, lk; > 0, v; > 0(k = 1,2; 5 = 1,---,m), be such that the
mequalities

(1.34) (t—a)*™Ihy(x,t,s) <loj,  limsup(t — a)™ 27 fi(w,a,7;)(t, 5) < Iy

t—a

fora<t<s<t, H:c||5{n71 < Y0,

(1.35) (b=t h(x,t,s) < by, lim S;lp(b — )" TET f (b, 1)t 8) <
_>
fort* < s <t <b, ||l’||5;nfl < 7o, and conditions (1.13), (1.14) hold. Let moreover the

operator F' and function n € Dap_om—9 2m—2(]a, b[x RT) be such that condition (1.28) and
inequality

Yo
(136) ||n(’ 70)||Z§n72m72,2m72 < E’
be fulfilled, where
- om—i+1/2 2"(14+b—a)(2n—2m — 1
Tn:<1+z : : . ) (tb-a)@n_2m_1)
“— (m — j)(2m — 25 + 1)Y2(b — a)m—7+1/2) (v,, — 2max{ By, B1})(2m — 1)!!

7j=1
Then problem (1.1), (1.2) is solvable in the space C"~2™(]a, b]).

Theorem 1.5. Let the operator F' and function n are such that condition (1.28), (1.30)
hold and the continuous operator P : C" *(la, b]) x C7" *(Ja, b)) — L,(la, b]) admits
condition (1.21) where 6 € D,(]a, b[xR*). Let moreover the measurable functions 7; €
M(]a, b]) and the numbers t* €]a, b, ly; >0, ly; >0, y; > 0,(k=0,1; i =1,--- ,m) be
such that the inequalities

(137) (t - a)2m_jhj(x> L, S) < l0j> lim Sup(t - a’)m_%_’mj fj(za a, Tj)(t> S) < Zoj

t—a
fora<t<s<t zel"(a, b,

(1.38) (b= )" hy(w, t,8) < iy, limsup(b— )27 fi(a,b,7;)(t, 5) < Iy

t—b

fort* <s<t<b xel"a, b)), and conditions (1.13), (1.14) hold. Then problem
(1.1), (1.2) is solvable in the space C"~™(]a, b]).



Remark 1.2. Let 7 > 0, operators «;(t)p;(z)(t) (j = 1,---,m) continuously acting
from the space C7"~(Ja, b[) to the space Ly (]a, b), exist the function 6; € Dy(]a, b[) such
that for any z € A,
(139) (@) (Blay(t) < b5t llallag) for a<t<b
and exists constants k > 0, € > 0 such that
(1.40) |7;(t) —t| < k(t—a) (j=1,---,m) for a<t<a+e,

' |T(t) —t| <wk(b—t) (j=1,---,m) for b—e<t<b,

Then the operator P defined by equality (1.19), continuously acting from A, to the space
L,(Ja, b[), and there exists the function § € D,(]a, b[) such that item ¢ of definition 1.1
holds.

Now consider the equation with deviating arguments

(1.41) u™(t) = f(t,u(n(t), v (ma(t)), -, u™ V(r, (1)) for a<t<b,
where —o00 < a < b < +o0, f :la, b[xR™ — R is a function, satisfying the local
Caratheodory conditions and 7; € M (]a,b]) (j =0,...,n — 1) are measurable functions.

Corollary 1.3. Let the functions 7; € M(la, b[) and the numbers t* €la, b, k > 0, & >
0, lg; > 0,1l >0, v, >0,(k=0,1;j =1,---,m) be such that the conditions (1.13)-
(1.16), (1.40) and the inclusions

(1.42) a;p; € Lu(la, b) (G =1,---,m)

are fulfilled. Let moreover

ft (), (1a(1)), - 2D (1a(1)) = D ps (8D (1)) (8)] <

j=1
<t [lellgp-)

for x € C" Y(a, b)) and almost all t €la, b], where 1(-, p) € Z%n_2m_272m_2(]a, b[) for
any p € R, and condition (1.30) holds. Then problem (1.41), (1.2) is solvable in the
space C" 1" (a, b]).

Remark 1.3. From conditions (1.42) do not follow the conditions (1.6).

(1.43)

Now for illustration of our results consider on Ja, b] the second order functional-
differential equations

o )
(1.45) (e = — IOl o)),

[t —a)(b—1)]?

where \, k € R* the function 7 € M(]a, b[), the operator ¢ : C7"*(]a, b) — Zao(]a, b)
is continuous and

n(t, p) = sup{lq(z)@)] : [|z]|gm— < p} € L2 4(Ja, b]).
Than from Theorems 1.4 and 1.5 follows



Corollary 1.4. Let the function T € M(la, b), the continuous operatorq : C Ya, b)) —
L5 o(Ja, b]), and the numbers vo >0, A >0, k > 0, by such that

(t—a)®? for a<t<(a+b)/2
(1.46) 7(t) — 1] < {(b — 132 for (a+Db)/2<t<b’
2 \“1(b—a)* = 16ME(1 + [2(b — a)]/*)
(1.47) [t 2)llz , < (1+ b_a> 2(1+b—a)(b—a) ’
and
(1.48) oo

< .
3296 (1 + [2(b — a)]'/*)
Then the problem (1.44), (1.2) is solvable.

Corollary 1.5. Let the function T € M(]a, b]), continuous operator q : C™ Ya, b)) —
Li o(Ja, b]), and the number X > 0 by such, that inequalities (1.30) with n =2, (1.46) and

(b—a)?

(1.49) A BT RO =)

hold. Then the problem (1.45), (1.2) is solvable.

2 Auxiliary Propositions

2.1. Lemmas on some properties of the equation (™ (t) = \(t).

First, we introduce two lemmas without proofs. First Lemma is proved in [3].

Lemma 2.1. Leti € 1,2, x € C" (Jto, t1]) and

loc

(2.1) 29 Vt)=0 (j=1,...,m), /|x s)|?ds < +oc.
Then
t
(x(j_l)(s))Q 1/2 om—j+1 / 2
2.9 ‘ N ‘ d
(22) / (s — t;)zm—2+2"" (2m —2j + I ()|

t;
fO’f’ to S t S tl.

This second lemma is a particular case of Lemma 4.1 in [7]
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Lemma 2.2. If z € C}* ' (Ja, a1]), then for any s,t €]a, a;] the equality

loc

t

(-1 [(€ = a2 €a(€)dg = wn@)(1) = wn(o)(s) + v [ (O

s

is valid, where Vo =1, vopyr = 25 wop(x)(t) = 3 (1) 2B (42 (t),
i=1

t—a
2

——c Z D™ H[(t — a)z@m D (1) — ja@m=) ()] 20V (1) —

Jj=1

ERIGI
Lemma 2.3. Let the numbers a; €la, b[, tor €la,a1[, and ey, €;, By, B € RT, k €
N,i=1,---,n—m are such that

(2:3) k—1>5-noo 0k = d; k—E‘?ooﬁk p k—l>r-iI-1c>o€’k c

Let, moreover
(2.4) A€E L2n om—20(a, ail),

is a nonnegative function, x, € C"b "(Ja, b]) be a solution of the problem

(2.5) 2™ (t) = BA(t),

(2.6) 2 V(tg) =0 (i=1,---,m), 20~ 1)(a1)_€i7k (t=1,---,n—m),
and x € C"1 "(Ja, b]) be a solution of the problem

(2.7) 2 (t) = BA(L),

(28) x(i_l)(a> =0 (Z = 17 e 7m)7 x(i_l)(al) =& (Z = 17 SR m)
Then

(2.9) lim :clg Dy =201 (j=1,...,n) uniformly in la, ay].

k——~4o00

Proof. First, prove our lemma under the assumption that there exists the number r; > 0
such that the estimates
al

(2.10) /|x§j”>(s)|2ds <1 keN

tok

N), and g;(t) are the polynomials of (n — 1)-th degree, satisfying the conditions g;(

hold. Now, suppose that t1,...,t, are such numbers that to, < t; < --- <t, <a; (k€
J) =
1,9;,(t;) =0 (i#7J; i,j=1,...,n). Then if z; is a solution of the problem (2.5), (2.6),

11



and z is a solution of the problem (2.7), (2.8). For the solution z — z} of the equation
Pl — (8 — B,)M\(t), the representation

o) =) = 3 ((at) =) = =1 [ "A@s) g0+
(2.11) ! t b
—I-(i:%' /(t —5)" *\(s)ds k€N for to, <t<a

t1
is valid. On the other hand in view of inequality (2.10), the identities

t
. 1 .
H0 = o [ =9 s (=12 ke )
tok

by Schwartz inequality yield

(2.12) 2@ < ra(t —a)™ 2 for tgp <t<ay (i=1,2, keN),
where 1y = ——5—A——r=. By virtue of the Arzela-Ascoli lemma and (2.3), (2.12) the

sequence {zy }; > contains a subsequence {zy, };- which is uniformly convergent in |a, a;].
Suppose llim xk, (t) = xo(t). Thus from (2.11) by (2.3) it follows the existence of such
—+00

r3 >0 that
2 O <+ 29V@] (=1 m) for to St < an,
and then without loss of generality we can assume that

(2.13) llim zg_l)(t) = z(()j_l)(t) (j=1,...,n) uniformly in Ja,a].
—+00

Then in virtue of (2.3), (2.11), and (2.13) we have

w(t) = wo(t) = Y ((@(t) = w0(t) ) g5(6) for a<t<an.

J=1

From the last two relation by (2.10) it is clear that (™) = :c((]") and zo € C"L™(Ja, b]).
Le., the function 29 € C™%™(Ja, b]) is a solution of problem (2.7),(2.8). In view of
(2.4) all the conditions of Theorem 1.1 are fulfilled, thus problem (2.7),(2.8) is uniquely
solvable in the space C"™(Ja, b) and & = xy. Therefore from (2.13) follows

(2.14) llim x,(g;_l)(t) =2V V() (j=1,...,n) uniformly in Ja,as].
—+00

Now suppose that relations (2.9) are not fulfilled. Then there exist § €]0, %[, ¢ > 0,
and the increasing sequence of natural numbers {k;};* such that

(2.15) max { ST a V() 2 V(@) ra+d<t<a} >e (L€ N).
j=1

12



By virtue of Arcela-Ascoli lemma and condition (2.10) the sequence {:)3(] Do (5 =
1,...,m), without loss of generality, can be assumed to be uniformly converging in Ja +

d, a1]. Then, in view of what we have shown above, equality (2.14) holds. But this
contradicts condition (2.15). Thus (2.9) holds if the conditions (2.10) are fulfilled.

Let now the conditions (2.10) are not fulfilled. Then exists the subsequence {to, }; -5 of
the sequence {to,};°7, such that

ai
(2.16) / 2 (s)Pds > 1 (I € N).
tok
-1
Suppose that 8, = (f |x 2d8> and v;(t) = ug,(t)58;. Thus in view of (2.16) and
Lok

our notations

l—+00

(2.17) /| s)Pds=1 (€ N), lim B =0,

Lok,

(2.18) (1) = BIA(),

(2.19) 0" V(ter) =0 (i=1,---,m), v @) =enb (i=1,---,n—m, L€N).

From the first part of our lemma by (2.17) it follows that there exists limit lim v;(¢t) =

=400
vo(t), and vy is a solution of corresponding of (2.18), (2 19) homogeneous problem. thus

vp = 0. On the other hand from (2.17) it is clear that f [v{™(s)|2ds = 1, which contradict
Lok,

with vy = 0. Thus our assumption is invalid and (2.10) holds. O
Analogously one can prove

Lemma 2.4. Let the numbers by €]a, b, tox €|b1,b[, and e, €;, B, B € RY, k€ N,i =
1,---,n—m are such that

lim top=0b, lim B, =0, lim g =-¢;.
k——4o00 k——~4o00 k—+oco

Let moreover, A € Eg om_o(b1, b)) is a nonnegative function, x, € C*+™(la, b]) be a
solution of the problem (2.5) under the conditions

x(i_l)(bl) = Eik (Z = 17 T 7m)7 x(i_l)(t(]k) =0 (7’ = 17 o, m)v
and z € C™4™(Ja, b]) be a solution of the equation (2.7) under the conditions
(2.20) Vb)) =¢ (i=1,---,m), 20VB)=0 (i=1,---,n—m).

Then the equalities (2.9) hold.
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Lemma 2.5. Leta <a; <by <b, & € R" and
A€ L2n om—2,0(]a, a1]) (A € Lo om—2(]01,0]))

is nonnegative function. Then for the solution x € C"‘l’m(]a, b[) of the problem (2.7),
(2.8) ((2.7), (2.20)) with B = 1, the estimate

b

(2.21) /aal 2™ (5)|2ds < O, (x, a, \) (

18 valid, where

120 (5)|%ds < O(x, by, )\)) (k € N)
b1

01, a1, X) = 2Jwa(e) () + N,

(2.22)
(€261, 3) = 2wn (@) B0l + %l )

and

B (2’”_1(2m+1)>2 B (2”‘1(2m+1)(b—a+1)>2
= mon /o T 2m — 1) '

Proof. Suppose that zj is a solution of problem (2.5), (2.6) with 8, = 1,e; = &;. Then

in view of Lemma 2.3, relations (2.9) hold. On the other hand by Lemma 2.2 we get

(2.23) Vn / 2 (5)2ds < —w, (23)(ar) + / (s — a)" " A(s)|zi(s)|ds.

Now, on the basis of Lemma 2.1, Schwartz’s and Young’s inequalities we get

al ai al

) / (S—a)"_2m)\(s)xk(s)ds’ - ) / [(n — 2m)z(s) + (s — a)"2"a! (s )]( / A(&)dg)ds‘ <
< [(n—2m)</1(sx_i%ds>l/2+ </$ds>l/1“)\||z%2m2’0(}a7a1])

om- 1(2m+1 o
= w /| | dS) ||)\||L2n 2m— 20(]aa1])

2m=1(2m + 1)
2
< 2/\:6 ds + (W) 1A ||L2n am—2,0(la,a1])’

Thus from (2.23) by the definition of the numbers v, immediately follows that estimate

2m=1(2m 4 1)

/‘SL’ ‘dS < Q‘wn($k>(a1)| + (W) H ||L2n 2m—2,0(]a,a1]) (

By (2.9) from the last inequality (2.21) and (2.22) follows. Thus Lemma is proved for the
problem (2.7),(2.8).
Analogously, by using Lemma 2.4 one can prove the case of problem (2.7),(2.20).

ke N).

O
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2.2. Lemmas on Banach space C]"'(]a, b]).

Definition 2.1. Let p € R and the function n € Lj.(]a,b[) be nonnegative. Then
S(p,m) is a set of such y € C;"_*(Ja, b]) that

loc

(i—1) a + b < L
(2.24) ‘y ( ; >‘_p (i=1,...,n),
¢
(2.25) Iy V() -y D(s)| < /n(ﬁ)dﬁ for a<s<t<b,
and
(2.26) ya)=0@G=1,---,m), y"VO)=0@G=1,---,n—m).

Lemma 2.6. Let for the functiony € 6’"‘1””(]@, b[), conditions (2.26) be satisfied. Then
y € C7" *(la, b]) and the estimates

) t— Cr |m i+1/2 1/2
D) < | / d <t<b

1=1,...,m, hold for k =1,2, where ¢, = a,cy = b.

Proof. First not that in view of inclusion y € C"~>™(]a, b[), the equality

l .
(2.28) ¢y V(t) = Z ﬁy(j_l)(c) + ! _ /(t —5)yD(s)ds for a<t<b

fore=1,---,1, [ =1,---,n, holds, where
l.eela,b) if 1<m; 2.c€la,b] if [=m+1 and n=2m+1;

3.c€la,b] if 1 >m,

and exists r > 0 such that

(2.29) /\y s)|2ds < 7.

Equality (2.28), with [ = m, ¢ = a and with [ = m, ¢ = b by conditions (2.26),&2.29) and
Schwartz inequality yields (2.27). From (2.27) and (2.29) it is clear that y € C7"(Ja, b]).
U

Lemma 2.7. Let p € RY, andn € Z%n—2m—2,2m—2(]a’7 b[) is a nonnegative function. Then

S(p.n) is a compact subset of the space CT"(]a, b]).
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Proof. Condition (2.25) yields the inequality |y™ (¢)] < n(t). Thus there exists such func-
tion T S L%n—2m—2,2m—2(]a7 b[) that

(2.30) y ™) =m(t), for a<t<b

(2.31) Im(t)| <n(t) for a<t<b

From the Theorem 1.1, follows that problem (2.30), (2.26) has unique solution y €
C" bm(]a, b)), i.e. there exists r > 0 such that the inequality (2.29) holds.

For any y € S(p,n), from equality (2.28) with [ = n, by (2.24), (2.30) and (2.31)we
get

(2.32) V@) < u(t) for a<t<b, (i=1,---,n),

where

Yi(t) = pi + m /C (t—s)""n(s)ds| (i=1,---,n).

Let, now y, € S(p,n) (k € N). By virtue of the Arzela-Ascoli lemma and conditions (2.25),
(2.32) the sequence {yx}; S contains a subsequence {yy,}, > such that {y,(jl_l) (=

1,--+,n) are uniformly convergent on |a, b[. Thus without loss of generality we can
assume that {y,ﬁl_l) 2 (i =1,---,n — 1) are uniformly convergent on |a, b[. Let

loc

lim yx(t) = yo(t), then yo € Cjy' (Ja, b[) and
k—+o00

(2.33) lim ylii_l)(t) = y(()i_l)(t) (¢=1,---,n) uniformly on ]a, 0.

k——~4o00

From (2.33) in view of the inclusions y; € S(p,n) immediately follows that

(i—1) a—+ b -
235y @=0@G=1,m), 0 =0(G=1-,n—m)
and
t
(2.36) () =y ()] < / n(€)d¢  for a<s<t<b.

s

From (2.34)-(2.36) it is clear that yo € S(p,n). To finish the proof we must shove that

(2.37) Lm [y () = yo()||gm-—1 = 0,
and
(2.38) S(p.n) € Cy"~*(Ja, b]).
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Let, xr = yo — Yk, and a; €|a, b, by €]ay,b[. Then it is cleat that zx € S(p',n’) where
P =2p, 1 =2n. Thus for any x, exists n, € L3, 5, _5 om_o(Ja, b]) such that

(2:39) 7 () = (),
. x a) = 1=1,---.,n), 2\ = 1=1,---,n—m).
2.40 @=1) 0 1 (O 1
where
(2.41) Imk(t)] <2n(t) for a<t<b (ke€N).
On the other hand, from (2.27) with y = x4, in view of (2.40) we get
(1)) < / | (5)]? ds (i&—a)m_”l/2 for a<t<ay,
(2.42) b
()] < / |x 2d8 (b—t)""HY2 for by <t <b,
fori=1,...,m.

Let now w, be the operator defined in Lemma 2.2 and 0, Oy are functions defined
by (2.22) with A = ng. Then conditions (2.33) yields

(2.43) lim wn(:ck)(al) =0, lim w,(zx)(by) =0 (k€ N),
k— k—+o0
and from definition of norm || - ||7 iz, (2.41) and (2.43), follows that for any ¢ > 0 we can

choose a; €]a, min{a + 1, b}, b E] max{b— 1, b}, a1[ and kg € N, such that
@1($k7 ap, 277) < E(b - bl)m_1/2 (k > ko)a

6
(2.44) c
@Q(I’k, bl, 277) < 6(&1 - a)m_1/2 (k’ > k‘o)

By using lemma 2.5 for xy, in view of (2.42) and (2.44)we get

a1 b
en) [ PPy [EePsss Fzh)
a b1
(i-1)
x t € ,
(2.46) L%R%ﬂgﬁa for t€la, a]U by, b, (1<i<m, k> k).

Also, in view of (2.33) without loss of generality we can assume that

7p (W] _ e

(247) Ogl(t) ~ % for aq S t S bl, (1 S 7 S m, k Z ]{30),
and

b1 e
(2.48) /’WW@W@SE (k > ko).

From (2.45)-(2.48), equality (2.37) immediately follows.
Let, now y € S(p, n) and y, = Oy, where lim J; = 0. Then by (2.33) it is clear,

—H—oo
that yo = 0 and than from (2.37) it follows y € C7"'(Ja, b]), i.e. the inclusion (2.38)
holds. O
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Lemma 2.8. Let 7; € M(Ja,b]), o >0, >0 and exists 6 €]0,b — a[ such that
(2.49) I75(t) —t| < kit —a)® for a<t<a+sd.

Then

7(t)
‘/ ) ki[l 4+ k10771t — a)*™P for B>1
s—a) ds‘_ . ,
Ei[0YF + k)% (t — a)*®PTF for 0< B <1

fora<t<a-+).
Proof. First note that
(1)
‘ /(s - a)ads‘ < (max{r(t),t} — a)®|7(t) —t| for a<t<a+§,

t

and max{7(t),t} <t+|r(t) —t| for a <t <a+ 4. Then in view of condition (2.49)
we get

7(t)
‘ /(s — a)o‘ds’ <kt —a) +ki(t—a)’]*(t —a)’ for a<t<a+sé.

Last inequality yields the validity of our lemma. O
Analogously one can prove

Lemma 2.9. Let 7; € M(]a,b]), a >0, 8 >0 and exists 6 €]0,b — a[ such that
(2.50) I7;(t) —t| < ki (b—1t)? for b—8<t<b.

Then

}/ —t“d} (14 k6P (b —t)tF for B>1
- k1515+k](b—)aﬁ+ﬁ for 0<B<1’

forb—0 <t <b.

2.3. Lemmas on the solutions of auxiliary problems.

Throughout of this section we assume that the operator P : C7*~!(]a, b[)xC7"*(Ja, b]) —
Ly(]a, b]) be vy, consistent with boundary condition (1.2), and operator q : C;**(Ja, b]) —
Egn_zm_wm_Z(]a, b[), be continuous.

Consider for any z € C7"'(Ja, b]) € C7"(]a, b[) the nonhomogeneous equation

m

(2.51) v () =Y pi@) @)y (5(8) + alz)(8),

i=1
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and corresponding homogeneous equation
(2.52) y () =Y pil) )y I (n (),

and let, E™ be a set of the solutions of problem (2.51), (2.26).
From inequality (1.23) of item (i7) of definition 1.1, it follows that boundary problem

(2.51), (2.26) has the unique solution y in the space C=tm(Ja, b). But in view of Lemma
2.6 it is clear that y € C’{”:l(]a, b[). Thus E™ N C7"*(Ja, b]) # 0, and exists the operator
U: O Ya, b)) — E" N O Y(]a, b]) defined by the equality

Lemma 2.10. U : C7""(Ja, b)) — E" N C"(Ja, b]) is a continuous operator.

Proof. Let 2, € C7 Y(Ja, b)) and y,(t) = U(z)(t) (k = 1,2),y = y» — y1, and the
operator P is defined by (1.19). Then

Yy (t) = Pz, y)(t) + qol1, 22)(2)

where go(z1, 22)(t) = P(x2, y1)(t) — P(z1, y1)(t) + q(22)(t) — q(x1)(t). Hence, by item i
of definition 1.1 we have

U 2) = Ulan)llgmr < lao(as, )]z

n—2m—2,2m—2

Since the operators P and ¢ are continuous, this estimate implies the continuity of the
operator U. m

3 Proofs

Proof of remark 1.1. Let = be a solution of problem (1.8),(1.2), then from inequalities
(2.27) it follows the estimate

(3.1) 2D (1)] <

b—1)(t —a)]mit1/2 2 \meitl/2

(m—i)l(2m —2i+1)12\b—a

for a < t < b. From this estimate, by definition of norm in the space C™ (]a, b[), and
estimate (1.17) immediately follows (1.18). O

Proof of theorem 1.3. Let § and A are the functions and numbers appearing in Definition
1.1. We set

(32) n(t) = 8(t, )70 + Fp(t, min{2p0,70}),
1 for 0<s < pg

(3.3) X(s)=<2—s/py for py<s<2pg,
0 for s> 2p
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(3-4) q(2)(t) = x([[|gp—) Ep () (2)-
From (1.24) it is clear that the nonnegative functions fp, 7, admits the inclusion
(3.5) Fy (-, min{2p0,%0}), 1 € zgn—2m—2,2m—2(]a? b)),
and for every z € A, € C7""'(Ja, b]) and almost all ¢ €]a, b[ the inequality
(3.6) lq(@)()] < Fy(t, min{2pg,%})  for a<t<b

holds.

Let U : A,y = E™N C"(Ja, b) is a operator appeared in Lemma 2.10, from which
it follows that U is a continuous operator. On the other hand from items i and i of
Definition 1.1, (1.25) and (3.6) it is clear, that for each z € A, the conditions

t

art <0, [y =y (s)] < /n(f)dﬁ for a<t<b

s

[ly]

hold. Thus in view of definition 2.1 the operator U maps the ball A, into its own
subset S(p1, ). From lemma 2.2 follows that S(py, n) is the compact subset of the ball
A, C C"(Ja, b). i.e. the operator u maps the ball A, into its own compact subset.
Therefore, owing to Schauders’s principle, there exists z € S(p1, ) C A,,, such that

z(t) =U(z)(t) for a<t<b.

Thus by (2.51) and notation (3.4), the function z (z € A, ) is a solution of problem
(1.26), (1.2), where

(3.7) A= x([l=[lgm-1)-

If 79 = po then in view of condition x € A, , by (3.3) we have that A = 1, and then in
view of (2.51) and (3.4) the function z is a solution of problem (1.1),(1.2) which admits
to the estimate (1.27).

Let us show now, that x admits estimate (1.27) in the case when py < 7p. Assume the
contrary. Then either

(3.8) Po < HxHé;n*l < 2po,
or
(3.9) ||zl gm-1 = 2p0.

If condition (3.8) holds, then by virtue of (3.3) and (3.7) we have that A €]0, 1], which
by the conditions of our theorem guarantees the validity of estimate (1.27). But this
contradict (3.8).

Assume now that (3.9) is fulfilled. Then by virtue of (3.3) and (3.7) we have that
A = 0. Therefore x € A, is a solution of problem (2.52),(1.2). Thus from item 4i of
Definition 1.1 it is obvious that = = 0, because problem (2.52),(1.2) has only a trivial
solution. But this contradict condition (3.9), i.e. estimate (1.27) is valid. From estimate
(1.27) and (3.3) we have that A = 1, and then in view of (2.51) and (3.4) the function =
is a solution of problem (1.1), (1.2) which admits to the estimate (1.27). O
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Proof of Corollary 1.2. First note that in view of condition (1.30) exists such vy > 2pg,
that condition (1.25) holds, and in view of definition 1.2 the operator P is g, 7y consistent.
On the other hand from (1.30) follows the existence of the number pg, such that

(3.10) (-, p)llz <p for  p>po.

n—2m—2,2m—2

Let « be a solution of problem (1.26), (1.2) for some A €]0, 1[. Then y = z is also
a solution of problem (1.22),(1.2) where ¢(t) = A(F(m)(t) — P(x, x)(t)) Let now p =

||z]| g1 and assume that

(3.11) p > po.

holds. Then in view of the y—consistency of operator p with boundary conditions (1.2),
inequality (1.23) holds and thus by condition (1.28) we have

<, p)llz2

2n—2m—2,2m—2

p - ||:I:| |5?171 S 7| |q(1:>||Z§n72m72,2m72
But the last inequality contradict (3.10). Thus assumption (3.11) is not valid and p < py.
Therefore for any A €]0, 1] an arbitrary solution of the problem (1.26), (1.2) admits the
estimate (1.27). Therefore all the conditions of Theorem 1.3 ar fulfilled, from which the
solvability of problem (1.1),(1.2) follows. O

Proof of theorem 1.4. Let r, be the constant defined in Remark 1.1. First prove that
operator P is 7,7, consistent with boundary conditions (1.2). From the conditions
of our theorem it is obvious that the item (i) of definition 1.1 is satisfied. Let now
x be an arbitrary fixed function from the set A,, and let p;(t) = p;(z)(¢). Thus in
view of (1.34),(1.35) all the assumptions of Theorem 1.1 are satisfied, and then for any
q € Z%n_zm_2’2m_2(]a, b[) the problem (1.22),(1.2) has unique solution y. Also in view
of Remark 1.1 there exists the constant r, > 0, (which depends only on the numbers
lijs Ljsyej (k= 0,15 = 1,--- ,m), and a, b, t*, n) such that estimate (1.23) holds with
v = ry. Le., the operator P is g, 1, consistent with boundary conditions (1.2). Therefore
all the assumptions of Corollary 1.1 are fulfilled, from which the solvability of problem
(1.1),(1.2) follows. O

Proof of theorem 1.5. Let r, be the constant defined in Remark 1.1. First prove that
operator P is r, consistent with boundary conditions (1.2). From the conditions of our
theorem it is obvious that the item (7) of definition 1.1 is satisfied. Let now -y be an
arbitrary nonnegative number, = be arbitrary fixed function from the space A,, and
let p;(t) = pj(x)(t). Then in view of (1.37),(1.38) all the assumptions of Theorem 1.1
are satisfied and then for any ¢ € Z%n—2m—2,2m—2(]a’7 b[) the problem (1.22),(1.2) has
unique solution y. Also in view of Remark 1.1 there exists the constant r,, > 0, (which
depends only on the numbers Iy, Iy, v (k = 0,1; j = 1,--- ,m), and a, b, t*, n,) such
that estimate (1.23) holds with v = r,. Le., the operator P is g, r, consistent with
boundary conditions (1.2) for arbitrary 7o > 0. Thus by Definition 1.1, the operator P is
r, consistent with boundary conditions (1.2). Therefore all the assumptions of Corollary
1.2 are fulfilled, from which follows the solvability of problem (1.1), (1.2) follows. O
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Proof of Remarc 1.2. By the Schwartz’s inequality, definition of the norm ||y| gm-1 and

inequalities (1.39), (2.2) for ani z,y € A, and z =y — x we have

7 (t)

i) O=0 (50| = Ips W) O+ b ) 1) / e
(3.12)

75 (1)

5yzfllpj(y)(t)laj(t)(1+ 1 ( / (¢ — )2 ¢)1/2)

a;(t)

< |||

t

for a <t < b. On the other hand, from the conditions (1.40) by Lemmas 2.8 and 2.9 it is
cleat that

7;(s)

a;1(8>< / (€ — a)2m—2jd§>1/2 < % for s€la, a+e]Ub—e, b,

s

7;(s)

b
o (s)( / (= a)Qm—zjdg)l/2 < e / (€ - a)zm‘zjdﬁ)l/2 =

(b - a)m—j+l/2

T /2m — 2 + Le2m2t]

for se€la+e,b—el.

Then if we put

H(l T Ii) (b . a)m—j+1/2
(313) Ro = 12527(71{ cm—j+1/2 oM — 2] F 1e2m—2j+1 }

from (3.12) by the last estimates we get the inequality

() ()27 (1 (O)] < Mlzllgp-1 (1 + Ko)lp; (y) () i (t) <

(3.14)
< [J2llgm-1 (1 + Ko)d; (¢, |yl

61n71)

for a < t < b. Analogously we get that

[(pi () (1) = (@) (£) 2D (5 ()] < ([l g1 (1 + ri0) s () (2) — pi()(B) s (1)

for a < t < b. from (3.14) and the last inequality it is obvious that the operator P defined
by equality (1.19) continuously acting from A., to the space L,(]a, b]), and the item (i7)

of definition 1.1 holds, with (¢, p) = (1 + ko) >_ d;(t, p). 0O
=1

Proof of Corollary 1.3. From conditions (1.42) and (1.40) by the Remark 1.2 we obtain
that the operator P defined by equality (1.19) with p;(z)(t) = p;(t), continuously acting

from A, to the space L,(]a, b]), for any 7o > 0, i.e., continuously acting from Ca, b))
to the space L,(]a, b[).
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Therefore it is clear that all the conditions of Theorem 1.5 would be satisfied with
F(z)(t) = f(t,x(ni(t), 2/ (ma(t)), -+, 2" D (7 (1)), 6(tp) = (1+ ko) Y _ p(t)],
j=1
where the constant kg is defined by equality (3.13). Thus problem (1.41), (1.2) is solvable.

O

Proof of Corollary 1.4. Let the operators F,p; : C™ (Ja, b]) — Li,c(Ja, b[), and the
function 7 :Ja, b[x Rt — R* be defined by equalities

Fla)t) =~ o Dol (0) + 4(a)0), pio)(0) = e

Then it is easy to verify that in view of (1.46)-(1.48), conditions (1.13), (1.14), (1.28), (1.34)-
(1.43) are satisfied with

k k k
B D) I 572 5 16y
B T e R (el
[ 2 2(1+b—a)(b—a)?
3.15 = (1
( ) T2 ( + h— CL) (b _ a)2 _ 16)\75(1 + [Q(b — a)]1/4)7
167k 1

By =B =

@_ayﬂ+pw—aw“% £ =(@+b)/2 0 =7= .

Thus all the condition of theorem 1.4 are satisfied, from which follows solvability of
problem (1.44), (1.2). O

Proof of Corollary 1.5. Let the operators F,p; : C™ Y(a, b)) — Li.c(Ja, b[), and the
function 7 :Ja, b[x RT™ — R* be defined by equalities
A sin 2% (t)| Al sin 2% ()|
[(t —a)(b—1)]? [(t—a)(b—t)]*
Then it is easy to verify that in view of (1.30), (1.46), and (1.49), all the conditions of

Theorem 1.5 follow, where 9, 111, lo1, (11, lo1, 72, Bo, B1, t*, Yo1, 711, are defined by (3.15)
with p =1, 79 = 1, from which follows solvability of problem (1.44), (1.2). O

F(a)(t) = -

2(r(t) + q(z)(t), pi(2)(t) = —
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