Masarykova univerzita Přírodovědecká fakulta Ústav antropologie Vztah člověk - zvíře: Analýza zvířecího osteologického materiálu v antropologickém kontextu Habilitační práce vypracovala: Mgr. Sandra Sázelová, Ph.D. 2015 Brno ii Formální prohlášení: Prohlašuji, že jsem svou habilitační práci vypracovala samostatně (v případě spoluautorství vyjadřuji svůj autorský podíl) a s použitím publikací uvedených v seznamu literatury a elektronických zdrojů. V Brně, dne 16. listopadu 2015 © Sandra Sázelová, Masarykova univerzita, 2015 iii Obsah Abstrakt / Abstract ............................................................................................................................. v Klíčová slova / Keywords................................................................................................................. vi 1 Úvod................................................................................................................................................ 1 2 Příklady z etnologického kontextu.................................................................................................. 4 2.1. Metoda .................................................................................................................................... 4 2.2 Materiál.................................................................................................................................... 6 2.2.1. Severozápadní Sibiř: Něněcká analogie........................................................................... 6 2.2.2 Severovýchodní Sibiř: Čukčská a korjacká analogie ...................................................... 11 2.3 Použitá literatura k etnologickému kontextu.......................................................................... 13 2.4 Vybrané publikace k tématu................................................................................................... 17 2.4.1 Patterns of change in a Nenets landscape: An ethnoarchaeological study of Yangana Pe, Polar Ural Mts. Russia ............................................................................................................. 18 2.4.2 Detecting the children zone at the abandoned Nenets campsites: An ethnoarchaeological example from the Polar Ural Mts., Russia ............................................................................... 31 2.4.3 Resources and spatial analysis at actual Nenets campsites: Ethnoarchaeological implications.............................................................................................................................. 36 2.4.4 Ethnoarchaeology of Nenets Campsites, Cases of Yangana Pe and Oktyaberskaya (Polar Mts., Northwestern Siberia) ..................................................................................................... 50 2.4.5 Ethnological approach to Siberian zoomorphs: A search for meaning and implications for the Upper Paleolithic evidence........................................................................................... 74 3 Příklady z archeologického kontextu............................................................................................ 86 3.1 Metoda ................................................................................................................................... 86 3.2 Materiál.................................................................................................................................. 88 3.3 Vliv tafonomických činitelů................................................................................................... 90 3.1.1 Abiotiční činitelé............................................................................................................. 91 3.1.2 Biotičtí činitelé................................................................................................................ 94 3.1.3 Lidské zásahy na osteologickém materiálu..................................................................... 98 3.4 Použitá literatura k archeologickému kontextu.................................................................... 102 3.5 Vybrané publikace k tématu................................................................................................. 110 3.5.1. Lower and Middle Pleistocene sediments sequence with archaeological finds in Horky nad Jizerou, Czech Republic.................................................................................................. 112 3.5.2 Dolní Věstonice IIa: Gravettien microstratigraphy, environment, and the origin of baked clay production in Moravia .................................................................................................... 133 iv 3.5.3 The role of large canids: Preliminary variabilities forming the population structure in Moravia.................................................................................................................................. 150 3.5.4 Pavlov I in time and space. Excavations 2013-2014..................................................... 162 3.5.5 Paleolithic hunting in a southern Moravia landscape: The case of Milovice IV, Czech Republic ................................................................................................................................. 174 3.5.6 Předmostí III: un site pavlovien de la Porte de Moravie (République tchèque, Europe centrale).................................................................................................................................. 205 3.5.7 Palaeolithic/Mesolithic stratigraphic sequences at Údolí Samoty and Janova Zátoka Rockshelters........................................................................................................................... 243 4 Závěr ........................................................................................................................................... 264 v Abstrakt / Abstract Předkládaná habilitační práce analyzuje vztah člověka a zvířete na základě zpracování osteologického materiálu z antropologických kontextů, tj. z vybraných etnologických analogií recentních společností arktické Sibiře a archeologických situací pleistocénu a starého holocénu. Výběr těchto mobilních společností dokumentuje predomestikační stav; v případě současných společností jsou pak pes a sob jedinými domestikovanými zvířaty. Práce je postavena na souboru komentovaných prací, jejichž základem bylo osteologické určení živočišných taxonů, anatomický popis i záznam četnosti jejich výskytu. V detailu je pak sledován vliv tafonomických činitelů (včetně lidských manipulací se zvířecími těly), jsou popsány vybrané patologické projevy i distribuce částí těl uvnitř sídlišť či jejich bezprostředním okolí. Dále práce demostruje limity symbolické interpretace vztahu člověka a zvířat, pokud by probíhal bez znalosti potřebného kulturního rámce. Propojením těchto přístupů tak práce umožňuje komplexně pojmout interpretaci tohoto vztahu na evropských lokalitách z hlediska chronostratigrafického zařazení daného kontextu, prostředí, výživy, výroby a dalších aspektů lidské adaptace a chování. The human-animal relationship arising from the study of osteological material from anthropological contexts (i.e. from selected ethnological comparison with actual evidence from arctic Siberia and from archaeological situations dated to the Pleistocene and Lower Holocene periods) makes the object of this thesis. The pre-domesticated level characterizes a criterion in selection of archaic mobile societies; in the case of recent societies dog and reindeer represent the only domesticated species. Thesis is based on the several commented papers including osteological determination of animal species, their anatomic description and frequencies. In detail, taphonomic agents as well as human manipulations with animal bodies are described and supplemented by documentation of selected pathologies or distribution of animal remains in the settlements or their vicinity. Additionally, limits in symbolic interpretation of human-animal relationship if realised without the knowledge of proper cultural background were demonstrated. All presented perspectives may contribute to complex interpretation of human-animal relationship at European sites from the viewpoints of chronostratigraphy, environment, subsitence, production and other aspects of human adaptation and behavior. vi Klíčová slova / Keywords archeozoologie – ekonomicko-subsistenční strategie – humánní ekologie – etnoarcheologie – gravettien – lidské adaptace – mezolit – mikroregiony – paleolit – tafonomie archaeozoology – economic-subsistance strategies – human ecology – ethnoarchaeology – Gravettian – human adaptation – Mesolithic – microregion – Palaeolithic – taphonomy 1 1 Úvod Hodnocení vztahu člověk - zvíře vyžaduje velmi komplexní přístup a v ideálním případě i kombinaci nejrůznějších analytických pohledů. Prvou a základní částí předkládané práce je proto etnologická analogie u vybraných mobilních společností současné arktické a subarktické Sibiře, u níž vycházíme z předpokladu, že určité přírodní prostředí vede do jisté míry k podobným kulturním adaptacím. Jednotícím kritériem pro výběr recentních mobilních společností byly jejich ekonomicko-subsistenční strategie, založené na lovu, rybolovu a pastevectví sobích stád; přičemž pes (Canis lupus f. familiaris) je jediným domestikovaným zvířetem. V případě domestikace soba (Rangifer tarandus) se názorově kloníme k pracem B. Laufera (1917), A. M. Zolotareva, M G. Lenina (1940), N. T. Mirova (1945), T. Ingolda (1980) a P. Vitebského (2005), které jej vzhledem k nárokům na chov řadí spíše k semi-domestikovaným druhům. Což ostatně potvrzují i sami sibiřské národy, které tvrdí, že v podstatě není jasné, kdo koho zdomestikoval, zdali člověk soba, nebo naopak sob člověka. Naše etnologická analogie (byť jsme si vědomi jejich limitů, které budou dále diskutovány) je založena na několika metodických přístupech a dokumentuje vztah člověk - zvíře ve dvou oblastech. V prostoru severozápadní Sibiře jsme tak na základě vlastního terénního výzkumu řešili otázky sídlištní strategie při výběru polohy pro tábořiště, zdali existuje sezónní preference pro jejich umístění či jakým způsobem mohou být využívány přírodní bariéry v moderování pohybu sobích stád. Osteologická analýza (tj. stanovení NISP, MNE, MNI) se zde ukázala jako klíčová při deskripci jednotlivých táborů i dílčích lidských aktivit (ať již v prostoru sídliště, nebo jejich bezprostředním okolí). Data získaná z demografické struktury osteologických pozůstatků jsme následně mohli aplikovat při sezónní determinaci opuštěných sídlišť, neboť distribuce zbývajících předmětů se zde ukázala jako sezónně indiferentní (na první pohled tak nebylo možno rozeznat rozdíl mezi letním a zimním tábořištěm). Analýzou etnologických kolekcí a doprovodné dokumentace z prostoru severovýchodní Sibiře jsme mohli konfrontovat předpoklad, zdali má četnost zastoupení určitého zoomorfního tématu ve figurální podobě svou výpovědní hodnotu při intepretaci ekonomického a symbolického významu daného živočišného druhu. 2 V druhé části předkládané práce je rozpracována osteologická analýza živočišného materiálu z vybraných pleistocenních a starých holocenních lokalit Moravy a severních Čech, které tvoří různě specializovaná/komplexní lovecko-sběračská a rybářská sídliště. Námi sledovaný osteologický materiál je z velké části uložen v depozitáři Střediska pro paleolit a paleoetnologii Archeologického ústavu AVČR Brno v Dolních Věstonicích, vyjma části lokality Předmostí III, které se nachází v Moravském zemském muzeu. V materiálu jsme nejprve stanovili zastoupení dílčích živočišných taxonů, dále jsme zdokumentovali poměr anatomických částí i míru jejich fragmentarizace. V detailu se práce zabývá deskripcí a rozlišením abiotických a biotických tafonomických činitelů, které se podílely na zachování či naopak destrukci osteologického materiálu námi sledovaných lokalit. Zvláštní pozornost je pak věnována dokumentaci lidské manipulace se zvířecími těly v procesech bourání, stahování a porcování (stranou však byla ponechána technologická analýza výrobních postupů artefaktů z tvrdých živočišných tkání). Skladba fauny pak vypovídá o chronostatigrafii lokality a vzájemné odlišení stop po tafonomických činitelích na osteologickém materiálu má svůj nesporný význam při hlubší intepretaci její celkové tafonomické historie (Skutil, Stehlík 1949; Behrensmeyer, Hill eds. 1980; Binford 1981; Lyman 1994; Denys 2002; Alhaique et al. 2004; Conor 2007). Dále jsme se aktivně zapojili do současné diskuse k domestikaci vlka v paleolitu, k níž přispíváme pilotní komparativní studií vlčí populace z lokality Dolní Věstonice II, na níž demonstrujeme její vysokou variabilitu (převyšující i 8% sexuální dimorfismus pozorovatelný na recentním vlčím skeletu; Hillis, Mallory 1996; Morris, Brandt 2014). V návaznosti na tradiční diskusi v české literatuře (Maška 1893, 1894, 2008; Pokorný 1951; Musil 1955, 1958a, 1994, 2005) tuto variabilitu dáváme do souvislosti spíše s odlišnými ekomorfotypy (tj. vlčími populacemi adaptovanými na různé prostředí i odlišné potravní strategie), nežli s domestikací jako takovou. Z pohledu takto zúžené systematické analýzy zvířecího osteologického materiálu jsme rovněž konfrontováni s novými problémy. Jako nejpalčivější aktuálně považujeme velikostní i částečné morfologické překryvy mezi některými živočišnými taxony, jež na straně jedné navyšuje podíl chybného určení, na straně druhé zkresluje výsledky navazujících analýz, např. izotopických. Z obecného hlediska předpokládáme, že obě části předkládané práce nám napomohou zdokumentovat vysokou míru proměnlivosti ve vztahu člověka a zvířete, odrážející i změny přírodních podmínek a doprovodných ekonomicko-subsistenčních adaptací 3 lidských společností, které postupně vyústily v proměnu postavení některých živočišných druhů, (v našem případě psa a soba) během jejich domestikace. Z historiografického pohledu pak tato práce navazuje na tradiční studie realizované například J. Kniesem, J. Skutilem, A. Stehlíkem, P. Pokorným, R. Musilem, I. Horáčkem nebo W. Wojtalem. Na závěr bych chtěla těmto lidem vyjádřit své poděkování za možnost přístupu k osteologickým sbírkám a podílení se na terénních výzkumech, která postupně přerostly v dlouholetou spolupráci: prof. J. Svobodovi a dr. B. Komoróczymu z Archeologického ústavu AVČR Brno, dr. V. Pešovi z Vlastivědného muzea a galerie v České Lípě, dr. P. Šídovi z Filozofické fakulty Západočeské univerzity v Plzni, Mgr. Z. Schenkovi a Bc. J. Mikulíkovi z Muzea Komenského v Přerově a pí. D. Coufalové ze Správy jeskyní České republiky pro Mladečské jeskyně. Dále bych chtěla poděkovat dr. P. A. Kozincevovi z Institutu ekologie rostlin a živočichů Uralského oddělení Ruské akademie věd v Jekatěrinburgu; dr. H. Saidovi z Institutu Etiopských studií v Addis Abbabě; dr. M. Roblíčkové z Moravského zemského muzea v Brně, dr. E. Pucherovi z Přírodovědeckého muzea ve Vídni; dr. M. Pacher z Institutu orientální a evropské archeologie Rakouské akademie věd ve Vídni a doc. P. Wojtalovi z Institutu systematiky a evoluce živočichů Polské akademie věd v Krakově. V neposlední řadě bych chtěla poděkovat svým mladým kolegům dr. A. Perri z Ústavu lidské evoluce Institutu Maxe Plancka v Lipsku, dr. B. Hromadové z Archeologického ústavu Slovenské Akademie věd v Nitře, dr. A. Pryorovi z Univerzity v Southamptonu, dr. A. Hulme-Beamanovi z Univerzity v Aberdeenu a Mgr. M. Polanské ze Sorbonské univerzity v Paříži za podnětné diskuse; a svým přátelům a rodině za podporu. 4 2 Příklady z etnologického kontextu První část předkládané práce tvoří analýza zvířecího osteologického materiálu a sbírek figurálních předmětů se zoomorfní tématikou z vybraných etnologických kontextů recentních mobilních společností arktické a subarktické Sibiře. Tyto etnologické analogie představují metodologický nástroj, na jehož základě můžeme mapovat dynamiku aktuálních projevů vztahu člověk – zvíře, a to jak na úrovni ekonomicko-subsistenční, tak i symbolické. Námi vybrané mobilní společnosti jsou pak charakterizovány pohybem mezi sídlišti s krátkodobým, opakovaným (tj. sezónním) nebo dlouhodobým osídlením; mající sociální uspořádání s prostorovou integritou sídliště i jeho okolí; u nichž se stopy po lidské činnosti akumulují uvnitř i vně sídliště takovým způsobem, že odráží udržitelné využití dostupných divokých i domestikovaných živočišných i rostlinných zdrojů, přičemž pes (Canis lupus f. familiaris) a sob (Rangifer tarandus) jsou jedinými domestikovanými živočišnými druhy (srov. Laufer 1917; Mirov 1945; Lee, DeVore eds. 1968; Ingold 1980; Gamble 1991; Burch, Ellanna 1994; Chasanov 1994; Svoboda 1996, 1999, 2014; Gowdy 1998; Suominen, Olofsson 2000; Syroečovski 2000; David, Kramer 2001; Johnson 2002; Cunningham 2003; Renfrew, Bahn eds. 2005; Muckle 2006; Røed et al. 2008; Grøn 2011). 2.1. Metoda S používáním etnologické analogie se v archeologické literatuře můžeme setkat již od druhé poloviny 19. století, a to jak v pojmu paleoetnologie (definován v roce 1865 Luigim Pigorrinim a Paolem Mantegazzou), tak i etnoarcheologie (definován v roce 1900 Jessem W. Fewkesem), které však již koncem 19. století byly podrobeny kritice pro nesystematičnost při výběru etnologického kontextu i pro tendence k zevšeobecňování (Mortillet 1883; Hough 1931; Wobst 1978; Gibbon 1984; Pautrat 1993; Stark 1993; Panter-Brick et al. eds. 2001; Santagata 2009 online). Jisté rehabilitace se oba pojmy dočkaly na přelomu 60. a 70. let 20. století díky procesuálním archeologům Lewisi R. Binfordovi (1962, 1964, 1978), Richardu A. Gouldouvi (1980), Johnu E. Yellenovi (1977) a Ianu Hodderovi (1982), kteří se na základě etnologických pozorování snažili pochopit procesy podílející se na tvorbě archeologického záznamu, jeho konzervaci či naopak destrukci (čímž zachytili sociálně i ekonomicky významné aktivity, u nichž nemusí dojít 5 k archeologizaci hmotných stop). Binford (1978, 1981) dále podrobněji sledoval lidskou manipulaci s těly zvířat v procesech jejich bourání, stahování a porcování, takže mohl klasifikovat stopy na zvířecích kostech, které po sobě zanechají artefakty během těchto činností. Následně se zabýval distribucí anatomických částí v prostoru sídliště, které odráží preference ve výběru skeletálních částí zvířete při různých lidských aktivitách, např. s ohledem na výtěžnost masa, tuku a morku ve výživě; nebo výběr kvalitní kožešiny v produkci oděvu a obuvi. Jeho klasifikace i metodické postupy jsou používány dodnes. Pro naše studium prostorového uspořádání recentních i archeologických sídlišť a jejich sezónní determinace bylo dále významné jeho pozorování z nunamiutských sídlišť (1981). Na nichž Binford koreloval sociální uspořádání prostoru s délkou pobytu na sídlišti a sezónou, čímž předpokládal, že na základě množství a druhu naakumulovaných předmětů lze predikovat charakter osídlení, tj. zdali bylo krátkodobé/dlouhodobé a jarní – letní nebo podzimní – zimní. Z aktuálního pohledu předpokládáme, že podobné přírodní podmínky vedou k velmi obdobným kulturním adaptacím, a tudíž zmapováním variability recentních společností získáme dostatečně široký srovnávací rámec, na jehož podkladě jsme schopni konfrontovat podobnosti či naopak unikátnosti současných kultur s těmi archeologickými. Ve smyslu definice etnoarcheologie tak můžeme sbírat informace o technologiích, operačních procesech při výrobě artefaktů či bourání, stahování a porcování těla zvířete, o strukturách sídlišť (dále dělených na domácí, aktivní i odpadní zóny) či o architektuře celkové struktury prostoru (např. orientace k nejbližším zdrojům surovin, pitné vody, přírodním koridorům kudy prochází lovná zvěř, atd.). Ve smyslu definice paleoetnologie pak dokumentujeme rozličnosti v lidském adaptačním chování včetně motivací, které k němu vedou (ať již na úrovni ekonomicko-subsistenční, sociální nebo symbolické). Z metodického hlediska etnologická analogie využívá několika nástrojů, jakými jsou terénní výzkum, práce s etnologickými sbírkami a komparativní studium literatury, a které jsou v této práci postupně představeny (Stiles 1977; Binford 1981; Cribb 1991; Chasanov 1994; Van Reybrouck 2000; Phillips 2001; Rowley-Conwey 2001; Fagan, DeCourse 2004; Barnard 2004; Damm 2005; Sellet et al. eds. 2006; Roux 2007; Johnson 2012; Walker, Skibo 2015). 6 2.2 Materiál Vybrané příklady z prostoru severozápadní a severovýchodní Sibiře tak na základě různého metodického pozadí dokumentují rozsah vztahu člověk – zvíře těchto mobilních společností. Na straně jedné pak díky autentickému terénnímu výzkumu a následné osteologické analýze sledujeme v prostoru severozápadní Sibiře proces formování něněckých sídlišť ve vztahu k jejich subsistenci, sezonalitě a využití krajiny při kontrole stád domestikovaných sobů, rybolovu a lovu vodního ptactva (podkapitola 2.2.1). Na straně druhé dokumentujeme možnosti odrazu zoomorfních témat z ekonomickosubsistenčního prostoru do sféry figurálního zobrazení a mytologických konceptů u Čukčů a Korjaků (podkapitola 2.2.2). 2.2.1. Severozápadní Sibiř: Něněcká analogie V oblasti polárního Uralu – mikroregionu Jangane Pe (Jamalo-Něněcký autonomní okruh (Ruská federace) jsme v letech 2012 a 2009 podnikli dvě terénní expedice ve spolupráci s dr. Pavlem A. Kosincevem z Institutu ekologie rostlin a živočichů Uralského oddělení Ruské akademie věd v Jekatěrinburgu. Oblast se nachází přibližne 170 km od nejbližšího správního města Labytnangi (67◦ s. š.) a je obývána Něnci, etnikem samojedské jazykové skupiny uralské větve neosibiřských jazyků. Tato typická mobilní společnost tundry a lesotundry má své ekonomicko-subsistenční strategie postaveny na pastvě sobů, rybolovu a lovu vodního ptactva, losů, divokých sobů a kožešinových zvířat (srov. Chomič 1995; Golovněv 1995, 2004; Golovnev, Osherenko 1999; Stammler 2007). Dominantou vybraného mikroregionu je vápencový hřbet, Jangana Pe, o výšce 289 m. n. m., který vzhledem ke svému zásaditému podloží oplývá bohatou skladbou vegetace, utvářející velmi příznivé prostředí právě pro domorodý lov, rybolov a pastvu sobů. Během dvou výzkumných sezón se nám zde podařilo zmapovat přibližně 100 km2 , na nichž jsme se zaměřili na aktivní a opuštěné něněcké tábory, jejich vnitřní organizaci, strukturu, i umístění v krajině ve vztahu k sezonalitě a další infrastruktuře. Díky mapování sídlištních povrchových struktur (kresebná dokumentace, fotodokumentace, GPS lokalizace a soupisy předmětů) a rozhovory s něněckými rodinami se nám postupně podařilo sesbírat data k přibližně třem aktivním a 20 opuštěným něněckým táborům v časovém horizontu posledních padesáti let (1966-2012). Na základě importovaných předmětů, zejména konzervovaného jídla a hygienických potřeb, se nám následně podařilo sestavit chronologii 7 jejich expiračních dat. Přičemž při zohlednění tradičního něněckého migračního cyklu, kdy se na stejná místa vrací po dvou letech, aby ponechali pastvinám dostatečný prostor pro regeneraci (srov. Dwyer, Istomin 2008), jsme zjistili, že jednotlivé tábory jsou opakovaně obývány ve 2 – 5 cyklech. V otázce sezonality se charakter předmětů v prostoru opuštěného tábora jevil na první pohled jako indiferentní. Pro kalibraci expiračních dat jsme proto nejprve použili etnoarcheologickou studii Haakasona (2000) z oblasti řeky Juribej na středním Jamalu, která byla postavena na přítomnosti či naopak abscenci několika předmětů či dílčích faktorů: a) přítomnost ohniště uvnitř obydlí naznačuje období jara – podzimu, neboť Něnci používají v zimě k vytápění svého obydlí kamna. Nicméně tento faktor se v oblasti Jangana Pe neukázal jako dostatečně spolehlivý s ohledem na zvyk něněckých žen vymetat prostor ohniště, takže uhlíky byly velmi často redeponovány v sekundární poloze v odpadní zóně. Viditelnost povrchových stop po aktivním ohništi z roku 2009 byla díky vegetačnímu pokryvu velmi nízká, takže v odstupu tří let jsme se na jednom a tom samém tábořišti nebyli schopni dohodnout na jeho přesné poloze. b) přítomnost papírových schránek z brokovnicových nábojnic by mohla podle Haakasona naznačovat jarní lov vodního ptactva nebo naopak zimní lov drobných kožešinových zvířat jako polárních zajíců (Lepus arcticus) a lišek (Vulpes lagopus) nebo losů (Alces alces). Současně jsme ale na našich táborech zaznamenali přítomnost těchto nábojnicových schránek po tréninkové střelbě (vč. „terčů“ v podobě prostřílených plechovek), které podle našeho názoru nelze korelovat se sezonalitou. Z dalších předmětů Haakason použil ngali, což je provrtaný kus větve nebo sobího parohu ve tvaru „V“, který Něnci přivazují na krk povahově příliš divokým sobům, aby jim na jaře zabránili v nechtěném útěku. Avšak v regionu Jangana Pe jsme tento typ předmětů objevovali náhodně i v krajině (s největší pravděpodobností po samovolném opadu z krku zvířete); nebo v situaci, kdy bylo ngali využito jako podklad pod skluznicemi saní jakožto provence před jejími přimrznutími k zemi. Při řešení otázek sezonality opuštěných táborů v oblasti Jangana Pe se proto ukázala jako klíčová osteologická analýza zvířecích ostatků (resp. sobů) i jejich demografická 8 struktura (viz. podkapitola 2.4.1; pro metodický postup podkapitola 3.1). Pozůstatky po nově narozených sobech totiž indikuje přítomnost Něnců v prostoru tábora v pozdně zimním až jarním období (konec dubna – květen), kdy sléhají sobí samice a jejich chovatelé čekají, až budou společně s mláďaty dostatečně silné, aby s nimi mohly odmigrovat na letní pastviště (v oblasti Jamalu dosahují migrační trasy až 1200 km). Tyto pozdně zimní tábory byly navíc charakteristické celkově vyšší populační strukturou poražených zvířat i rozdílnostmi v lidských zásazích na kostech. Po převedení tohoto markeru na aktivní a opuštěné tábory v daném regionu jsme obdrželi sídelní vzorec, kdy se letní tábory koncentrují kolem jezera Taunto, jež je nejvhodnější pro rybolov. Naproti tomu v zimě se sídliště přesouvají na svahy Jangana Pe, kde jsou chráněna před náporem větrů (byť výjimky nejsou vyloučeny). Ve sledovaném mikroregionu bylo v roce 1986 započato s výstavbou silnice a železnice, které propojují těžební pole na zemní plyn dále na severu s přepravní infrastrukturou na jihu. Stavba byla sice dokončena až v roce 2003, nicméně již v letech 1995-1997 se v oblasti mění infrastruktura, jíž ruští dělníci nově zajišťují trvale, a navíc jsou pravidelně podporováni importovaným zbožím. Tento kontakt způsobil na straně jedné posun něněckých táborů směrem od železnice a silnice (aby nemohli být snadno pozorováni). Na straně druhé se projevil rapidním navýšením importovaných produktů v prostoru něněckých sídlišť, jež mimo jiné s sebou přineslo proměnu ve skladbě něněckého jídelníčku (došlo k trvalé inkorporaci vepřového, hovězího a kuřecího masa, konzervovaných ryb, majonézy, instatních produktů a různých sladkostí či slazených nápojů). Podobně jako další oblasti Jamalu je i tento mikroregion v současnosti postižen dramatickým nárůstem sobích stád, jakožto něněcké kulturní reakce na nejistou budoucnost. Současně došlo k tržnímu navýšení prodeje sobího masa a olíčených parohů (tzv. panty), stejně tak jako rapidnímu snížení tradičních pastvin, což má za následek nadměrné spásání a zdupávání vegetace, sníženou úživnost krajiny i některé další chaotické pastevecké strategie (srov. Ingold 1980; Vitebsky 1990; Forbes 1999; Golovnev, Osherenko 1999; Baskin 2000; Krupnik 2000; Suominen, Olofsson 2000; Stammler 2004; Anderson 2006; Beach, Stammler 2006; Degteva, Nellemann 2013). Co se týče tradičního něněckého obydlí (mya nebo čum), má obvykle severojižní orientaci, kterou může pozměnit směr větru, topografie či orientace svahu, s vchodem směřujícím k jihovýchodu. Obydlí je zhotovováno přibližně z 25 dřevěných kůlů vzájemně 9 svázaných k sobě a na vnější pokryv bývá v létě používána stanová plachtovina (dříve kůra stromů) a v zimě to jsou dvě vrstvy sobích kožešin. Místo pro čum vybírá muž, zatímco jeho stavba je na ženách. Jeden čum pak obývá jedna rodina čítající kolem 5-6 obyvatel (nejčastěji 2-3 dospělí a 3-4 děti). Svá tábořiště přesouvají pastevci v létě každé 2-3 dny a v zimě každé 2-3 týdny, aby tak zajistili svým stádům dostatek čerstvé pastvy. Rybařící a lovecké rodiny mohou naopak setrvávat na jednom místě až několik měsíců, a to do doby než je v bezprostředním okolí tábořiště vyčerpána lovná zvěř, ryby nebo dřevo na topení. Vzdálenost mezi jednotlivými čumy je běžně kolem 5 až 15 metrů s tím, že v zimním období se může sídelní struktura více nahušťovat, nebo se naopak více rozptylovat v případě rozepře mezi obyvateli (a to až na vzdálenost 45 m). Vnitřní organizace prostoru obydlí je definována symbolickou osou siyangi, která spoluutváří vnitřní životní prostor, a definuje tak pohyb mužů a žen uvnitř obydlí. V případě žen pak dokonce i mimo obydlí až do vzdálenosti, kde je viditelná špička čumu (srov. Chomič 1995; Golovněv 1995, 2004; Golovnev, Osherenko 1999; Haakason 2000; Stammler 2007). Na základě distribuce předmětů na opuštěných táborech (viz. podkapitoly 2.4.2-2.4.3) jsme byli schopni rozlišit čtyři základní zóny v organizaci něněckého sídlištního i vnějšího prostoru: a) domácí zóna je limitována přibližně 5 m kruhem vymezeným vlastním obydlím, nicméně stopy po zapuštění kůlů (ngo) do země či centrifugální distribuci jednotlivých předmětů jsme nezaznamenali. Ohniště je považováno za centrum lidských aktivit a v prostoru něněckého obydlí bývá vymezeno dvěma kameny. Pokud je ohniště přítomno v centrální zóně, pak se kolem něj obvykle nachází předměty související s chodem domácnosti i kuchyně, a to fragmenty sobích žeber a obratlů (kostěných podkladů pro masitější části zvířat), kousky textilií a zbytky provazů či filcovaných ok pro uchycení čumu, dřevěné třísky nebo drobné akumulace sušené trávy (tj. výstelky po lůžko) nebo dětské hračky a papírové vystřihovánky. Viditelnost této domácí zóny závisí na celkovém stáří tábora, a proto u některých starších sídlišť nebyla vůbec zaznamenána. b) aktivní zónu vymezuje vzdálenost přibližně 10-30 m od domácí zóny a zahrnuje pozůstatky po bouracích a stahovacích procesech sobů (tj. rozptýlené méně masité kosterní podklady těl a parohů, nebo jejich fragmentů), stopy po práci se dřevem, 10 ať už na topení či v souvislosti s dalšími aktivitami včetně dětských her, nebo oprav saní. c) odpadní zóna se nachází v blízké vzdálenosti tábořiště a je tvořena několika výraznými akumulacemi odpadu (např. konzervami a obaly po importovaném zboží, uhlíky z ohniště, apikálními částmi sobích skeletů, aj.), které jsou velmi často jasně vymezeny vůči svému okolí, což usnadňuje orientaci i v prostoru opuštěného tábořiště zejména při průchodu se sobím stádem, a zabraňuje tak nechtěnému zranění zvířat. Přesto se v odpadní zóně nachází i předměty opětovně použitelné, např. prkna na podlahu nebo dřevěné tyče na konstrukci čumu pro založení nového sídelního cyklu. Dále se zde nachází zóny s vysekanými místy, kde Něnci těžili dřevo, nebo zóny použitých toaletních papírů v doprovodu psích nebo sobích výkalů (lidské exkrementy podléhají v tamějších klimatických podmínkách rychlejšími rozkladu). d) periferní zóna pak představuje oblast, v níž se nachází naložené saně se zimním vybavením. Přítomny jsou i další jasně vymezené zóny (3 x 3 m) pro těžbu dřeva Něnci obvykle vyseknou centrum křovinatého podrostu (Alnus, sp.) tak, aby vnější okraje mohly dále regenerovat. Motorové pily používají na poražení vzrostlých modřínů (Larix, sp.), a takovou zvláštností jsou atypické délky některých pařezů (někdy i přes jeden metr dlouhé), které můžeme připsat výšce sněhové pokrývky. V okolí tábořišť jsme zaznamenali několik přírodních dominant (např. nejvyšší část Svahového tábora, izolovaná skála na nejsevernější straně Jangana Pe nebo jeskyňka na jižních svazích Jangana Pe), kde Něnci akumulují sobí parohy (čítající až 70 kusů). Tato místa představují orientační milníky v krajině, vymezující teritorium dané skupiny, i posvátná místa (srov. Haakason, Jordan 2011). Z rozhovorů s Něnci vyplývá, že podobnou funkci mělo i krasové jezírko na hřebenech Jangana Pe, které však bylo znečištěno v 90. letech ruskými geology, hledajícími ložiska bauxitu. V menším měřítku se akumulace sobích parohů (z jedinců různé velikosti, stáří a pohlaví) nachází také v bezprostřední blízkosti některých opuštěných táborů. Tyto shluky pak můžeme interpretovat jako časové převrstvení určitých lidských aktivit, např. dětských her nebo rodinných rituálů. Jednoznačně můžeme v tomto případě vyloučit stavební kostrukci plošinu, již používají další arktické národy (srov. Binford 1993). Tuto interpretaci můžeme 11 vyloučit vzhledem k velmi vysoké variabilitě a nepravidelnosti těchto parohů, kdy některé z nich jsou navíc stále připojeny k lebce nebo jejímu fragmentu. V porovnání s Binfordovým předpokladem (1981), že distribuce předmětů v prostoru opuštěného tábořiště souvisí s délkou jeho osídlení a sezonalitou, nejsou něněcká sídliště tímto způsobem korelovatelná. Na starších sídlištích spíše zaznamenáváme úbytek předmětů i stop po lidských aktivitách; a na množství zachovaných předmětů má také vliv sezóna (v zimě dochází k zašlapávání předmětů do sněhu, což ztěžuje úklid při opouštění tábořiště) či specifické návyky jednotlivých rodin (zejm. ve vztahu k pořádkumilovnosti). 2.2.2 Severovýchodní Sibiř: Čukčská a korjacká analogie Jak bylo zmíněno výše, studium sbírkových předmětů a literatury představuje další metodický nástroj, pro dokumentaci vztahu člověk - zvíře u recentních arktických a subarktických společností (viz. podkapitola 2.4.5). Analýza z prostoru severovýchodní Sibiře, Sachalinu a řeky Amur je postavena na modifikovaných výsledcích disertační práce autorky, založených na studiu elektronicky dostupné sbírky a archivních dokumentů z Jesupovy severopacifické expedice v letech 1898-1902 (Boas 1903), které jsou dostupné prostřednictvím elektronického přístupu Amerického muzea přírodní historie v New Yorku (http://www.amnh.org/). Při studiu jsme se snažili konfrontovat naše kulturní euro-americké postavení zvířat ve vztahu k člověku, který je díky svému biologickému tělu a kulturní mysli představuje jedinečnou bytost převyšující v přírodě vše ostatní (Ingold 1994; 2000; Krupnik 1993; Guthrie 2005; Willerslev 2004, 2007; Jiménez, Willerslev 2007). Avšak toto pojetí zákonitě produkuje limity a ideové bariéry, jež přenášíme do interpretací vztahu člověk – zvíře u recentních, ale i minulých lidských společností. Proto byl náš etnologický model vybrán tak, abychom zdokumentovali koncept tohoto vztahu v takovém kulturním kontextu, kde není tento vztah pouhou náhodou. Nýbrž je důsledkem velkého množství komplexních rituálních aktivit a přístupů člověka do světa zvířat, která se v tomto pojetí shlukují podobně jako lidé za vzniku tzv. Zvířecích lidí, se srovnatelným respektem jako mají ostatní lidské národy. Velmi zajímavým faktem je existence možnosti migrace duší mezi lidmi i zvířaty. Přičemž schopnost vnímat sama sebe jako odlišný živočišný druh bez ztráty vlastní identity, je jedním z klíčových aspektů k tomu, být plnohodnotnou bytostí (Nordenskiöld 1881; Nelson 1900; Czaplicka 1914; Hallowel 1926; Potapova, Levina 1956; Dioszégi 1968; Bird-David 1990; Ojamaa 1997 online; Boukal 2003; Harvey ed. 12 2003). Například imituje-li lovec svou kořist, musí ve svých pohybech vzorně reflektovat její projev a pohyb. Protože v okamžiku, kdy člověk a zvíře sdílí stejné tělo, rysy i mysl, může dojít k tomu, že se navzájem „uvidí“. Přesto je to nakonec zvíře, které rozhodne, zdali se lovci odevzdá, nebo naopak uteče (Michajlovskij 1892, 1895a,b; Jochelson 1926; Zelenin 1935; Bird-David 1990; Tokarev 1966; Dioszégi 1968; Hoppál 1997 online; Pedersen 2001; Nadasdy 2007; Vitebsky 2000; Willerslev 2007). Celkem jsme zanalizovali 950 zoomorfních a teriantropických figurek, které v prostoru Sachalinu a řeky Amur sesbíral Berthold Laufer. V oblasti severovýchodní Sibiře byla kolekce shromážděna Vladimírem Germanovičem Bogorasem a Vladimírem Iljičem Jochelsonem. Obrovskou výhodou této sbírky je její rozsáhlá doprovodná dokumentace, díky níž jsme získali velice komplexní informace o problematice symbolismu lidí i zvířat v těchto oblastech. Vedle sbírkových předmětů jsme měli k dispozici průvodní korespondenci i záznamy o ekonomicko-subsistenčním významu jednotlivých živočišných druhů, o jejich výskytu v regionu, i o tom, jakou roli sehrávají v mytologických příbězích vybraných etnik (Jochelson 1900, 1904, 1905-1908, 1926; Laufer 1900; Bogoras 1901, 1904-1909, 1910, 1913, 1917, 1918, 1929). Z analýzy figurek, tj. studia zobrazovaného tématu, realističnosti propracování, a dokumentaci použitého materiálu ve vztahu k funkci předmětu vyplývá několik pozorování: a) zastoupení živočišných druhů ve figurkách může odrážet jejich ekologický výskyt, např. severojižní gradient v poměru zastoupení medvěda ledního (Ursus maritimus) a medvěda hnědého (Ursus arctos), nebo absence zobrazení lososovitých ryb (Salmonidae) u Čukčů, kteří na svém území nemají vhodné řeky pro jejich vplouvání. Ve figurálním zobrazení Korjaků, Kereků i Čukčů je dále přítomen vysoký podíl ploutvonožců (Pinnipedia) a kytovců (Cetacae), přestože na přelomu 19. a 20. století již mizí z jejich subsistenčního rámce v důsledku nadměrného odlovu velrybářskými společnostmi. Tito komplexní lovci-sběrači (úzce specializovaní na lov mořských savců) byli nuceni se přeorientovat na jiné a spíše okrajové lovné druhy – divoké soby v případě Čukčů, rybolov v případě Korjaků, přičemž u obou etnik se navyšuje rovněž poměr domestikovaných sobů. Kereci, jakožto specializovaní lovci mrožů a velryb, svůj adaptační boj prohráli 13 (v dnešní době se ke Kerekům oficiálně hlasí pouze čtyři jedinci a část populace byla asimilována Čukči). b) u užitných a ozdobných předmětů převažuje realističnost zobrazení, přestože apikální části končetin mohou být nejvíce schematizované. U hraček a rituálních předmětů naopak převládá stylizace se záměrným opomíjením detailů, a to proto, že detailnost podle těchto etnik přitahuje nežádoucí pozornost ze strany duchů, kteří mohou majitelům těchto předmětů přinést nemoc a smrt. c) z použitých materiálů jsme se nejčastěji setkali se stabilními materiály, jakou je mrožovina, kost a paroh (z importovaných pak kov); a z nestabilních byly nejčastěji používány materiály živočišného původu (šlachy, rohy, zobáky, drápy, peří, kůže, ad.), rostlinného původu (např. dřevo, suchá tráva a další rostlinná vlákna); a importované materiály (nitě, provázky a textilie) (dělení modifikováno podle Soffer 2000). Největší podíl nestabilních materiálů se potom nacházel u rituálních předmětů a hraček (přes 30 %). Rituální předměty jsou k sobě navíc velmi často svazovány šlachou nebo rostlinným vláknem, čímž získávají mnohem komplexnější význam nežli jako samostatné předměty. Sledovaná etnologická analogie nám tak ukazuje na shody a odlišnosti současných kultur (naší euro-americké i té východosibiřské), stejně tak jako nabízí inspiraci a limity při interpretaci společností minulých. Napomáhá nám uvědomit si živelnost i komplexnost vztahu člověk – zvíře s tím, že ekonomické a symbolické pojetí zvířete přispívá do tohoto vztahu vždy různě velkým dílem. To znamená, že pokud důležitost určitého živočišného druhu posuzujeme na základě četnosti výskytu určitého zoomorfního tématu ve figurálním zobrazení, nemusí to vůbec vypovídat o jeho reálné významnosti (a to jak v ekonomické, tak i symbolické rovině). Zajímavým vlivem je tzv. kulturní paměť, která má repetitivní tendenci uchovávat připomínky a i na takové živočišné druhy, které postupně mizí ze subsistenčního rámce i blízkého okolí sledovaného etnika (srov. Kramer, ed. 1979; Assmann 1988; Connerton 1989; Friedmann 1992; Ingold 2000; Costlow, Nelson 2010). 2.3 Použitá literatura k etnologickému kontextu Anderson, D. G. 2006: Is Siberian reindeer herding in crisis? Living with reindeer fifteen years after the end of state socialism. Nomadic Peoples 10 (2), 87-104. Assmann, J. 1988: Kollektives Gedächtnis und kulturelle Identität. In: Assmann, J., Hölscher, T. (eds.): Kultur und Gedächtnis, Frankfurt: Suhrkamp, 9-19. Barnard, A. J. 2004: Hunter-gatherers in history, archaeology and antropology. London: A & C Black publishers. 14 Baskin, L. M. 2000: Reindeer husbandry/hunting in Russia in the past, present and future. Polar Research 19 (1), 23-30. Beach, H., Stammler, F. 2006. Human–animal relations in pastoralism. Nomadic peoples, 6-30. Binford, L. R. 1962: Archaeology as anthropology. American Antiquity 28, 217-225. Binford, L. R. 1964: A consideration of archaeological research design. American Antiquity 29, 425-441. Binford, L. R. 1978: Nunamiut ethnoarcheology. New York: Academic Press. Binford, L. R. 1981: Bones: Ancient men and modern myths. New York: Academic Press. Boas, F. 1903: Jesup North Pacific Expedition. The American Museum Journal 5, 69-117. Bird-David, N. 1990: The giving enviroment: Another perspective on the economic system of gathererhunters. Current Anthropology 31, 189-196. Bogoras, W. 1901: The Chukchi of Northeastern Asia. American Anthropologist 3 (1), 80-108. Bogoras, W. 1904-1909: The Chukchee. American Museum of Natural History (7), Leiden – New York: E. J. Brill – G. E. Stechert & Co. Bogoras, W. 1910: Chukchee mythology. American Museum of Natural History 8 (1), Leiden – New York: E. J. Brill – G. E. Stechert & Co. Bogoras, W. 1913: The Eskimo of Siberia. American Museum of Natural History 8 (3), Leiden – New York: E. J. Brill – G. E. Stechert & Co. Bogoras, W. 1917: Koryak Texts. American ethnological society (5), Leiden - New York: E. J. Brill – G. E. Stechert & Co. Bogoras, W. 1918: Tales of Yukhagir, Lamut, and Russianized natives of Eastern Siberia. Anthropological Papers of American Museum of Natural History 20 (1), New York. Bogoras, W. 1929: Elements of the Culture of the Circumpolar Zone. American Anthropologist 31 (4), 579- 601. Boukal, T. 2003: Torava: Lovci severozápadní Sibiře, příroda a lidé. Praha: Dauphin. Burch E. S., Ellanna, L. J. 1994: Key issues in hunter-gatherer research. Bridgend: WBC Book Manufactures. Connerton, P. 1989: How societies remember. Cambridge: Cambridge University Press. Costlow, J., Nelson, A. 2010: Other Animals: Beyond the human in Russian culture and history. Pittsburgh: University of Pittsburgh Press. Cribb, R. 1991: Nomad in archaeology. Cambridge: Cambridge University Press. Cunningham, J. J. 2003: Transcending the “Obnoxious Spectator”: A case for processual pluralism in ethnoarchaeology. Journal of Anthropological Archaeology 22 (4), 389-410. Czaplicka, M. A. 1914: Aboriginal Siberia: A study in social anthropology. Oxford: Clarendon Press. Damm, Ch. 2005: Archaelogy, ethno-history and oral traditions: Approaches to the indigenous past. Norwegian Archaeological Review 38 (2), 73-87. David, N., Kramer, C. 2001: Ethnoarchaeology in action. Cambridge: Cambridge University Press. Degteva, A., Nellemann, C. 2013: Nenets migration in the landscape: Impacts of industrial development in Yamal peninsula, Russia. Pastoralism 3 (1), 1-21. Dioszégi, V. ed. 1968: Popular Beliefs and Folklore Tradition in Siberia. Budapest: Akadémiai Kaidó. Dwyer, M. J., Istomin, K. V. 2008: Theories of nomadic movement: A new theoretical approach for understanding the movement decisions of Nenets and Komi reindeer herders. Human Ecology 36 (4), 521- 533. Fagan, B., DeCourse, Ch. R. 2004: In the beginning: An introduction to archaeology. New Jersey: Prentice Hall. Friedmann, J. 1992: The past in the future: History and the politics of identity. American Anthropologist 94 (4), 837-859. Forbes, B. C. 1999: Land use and climate change on the Yamal Peninsula of north-west Siberia: some ecological and socio-economic implications. Polar Research 18 (2), 367-374. Gamble, C. S. 1991: An introduction to the living spaces of mobile peoples. In: Gamble, C. S., Boismier, W. A. (eds.): Ethnoarchaeological approaches to mobile campsites: Hunter-gatherer and pastoralist case studies. Michigan: International Monographs in Prehistory, 1-25. Gibbon, G. E. 1984: Anthropological archaeology. New York: Columbia University Press. Golovněv, A. V. 1995: Govorjaščie kultury: Tradicii samodijcev i ugrov. Ekaterinburg: RAN UrO. Golovněv, A. V. 2004: Kočevniki tundry: Nency i ich folklor. Ekaterinburg: RAN UrO. Golovnev, A. V., Osherenko, G. 1999: Siberian survival: The Nenets and their story. Ithaca – London: Cornell University Press. Gould, R. A. 1980: Living archaeology. Cambridge: Cambridge University Press. 15 Gowdy, J. 1998: Limited wants, unlimited means. A reader on hunter-gatherers economics and the enviroment. Washington: Island Press. Greene, K. 1996: Archaeology an introduction. London: Routledge. Grøn, O. 2011: Reindeer antler trimming in modern large-scale reindeer pastoralism and parallels in an early type of hunter-gatherer reindeer herding system: Evenk ethnoarchaeology in Siberia. Quaternary International 238 (1), 76-82. Guthrie, R. D. 2005: The nature of Paleolithic art. Chicago – London: The University of Chicago Press. Haakason, S. D. Jr. 2000: Ethnoarcheology of the Yamal Nenets. Utilizing emic and etic evidence in the interpretation of archaeological residues. Cambridge: Harvard University dissertation thesis. Haakason, S. D. Jr., Jordan, P. 2011: Marking the land: Sacrifices, cemeteries and sacred places among the Yamal Nenets. In: Jordan, P. (ed.): Landscape and culture in Northern Eurasia. London: University Collage, London Institute of Archaeology Publications, 161-177. Hallowel, A. I. 1926: Bear ceremonialism in the Northern hemisphere. American Anthropologist 28 (1), 1-75. Harvey, G. (ed.) 2003: Shamanism – a reader. London –New York: Routledge. Hodder, I. 1982: Symbols in action: Ethnoarchaeological studies of material culture. Cambridge: Cambridge University Press. Hoppál, M. 1997: Natur worship in Siberian shamanism. Electronic Journal of Folklore, 4, Podle: http://www.folklore.ee/folklore/vol4/hoppal.htm; staženo: 18. 1. 2006. Hough, W. 1931: Jesse Walter Fewkes. American Anthropologist 33 (10), 92-97. Chasanov, A. M. 1994: Nomads and the outside world. Madison: University of Wisconsin Press. Chomič, P. V. 1995: Nency: Očerki tradicionnoj kultury. Sankt-Paterburg: Russkij dvor. Ingold, T. 1980: Hunters, pastoralists, and ranchers: reindeer economies and their transformations. Cambridge: Cambridge University Press. Ingold, T. 1994: From trust to domination: An alternative history of human-animal relations. In: Manning, S. (ed.): Animals and human society. London: Routledge, 1-22. Ingold, T. 2000: The perception of the enviroment: Essays on livehood, dwelling and skill. London – New York: Routledge. Jiménez, A. C., Willerslev, R. 2007: ´An anthropological concept of the concept´: Reversibility among Siberian Yukagirs. Journal of the Royal Anthropological Institute 13, 527-544. Jochelson, W. 1900: Brodjačie rody tundry meždu riekami Indigirkoj i Kolymoj, ich etničeskij sostav, narčie, byt, bračnye i inye obyčaj i vzaimodjstvie različnych plemennych elementov. Živaja stranica, St. Petersburg, 151-193. Jochelson, W. 1904: The mythology of the Koryak. American Anthropologist 6 (4), 413-425. Jochelson, W. 1905-1908: The Koryaks. American Museum of Natural History (6), Leiden - New York: E. J. Brill – G. E. Stechert & Co. Jochelson, W. 1926: The Yukaghir and Yukaghirized Tungus. American Museum of Natural History (9), Leiden - New York: E. J. Brill – G. E. Stechert & Co. Kramer, C. (ed.) 1979: Ethnoarchaeology: Implications of ethnography for archaeology. New York: Columbia University Press. Krupnik, I. 1993: Arctic adaptations: Native whalers and reindeer herders of Northern Eurasia. Hanover – London: University Press of New England. Krupnik, I. 2000: Reindeer pastoralism in modern Siberia: Research and survival during the time cash. Polar research 19 (1), 49-56. Laufer, B. 1900: Preliminary notes on explorations among Amoor tribes. American Anthropologist 2 (2), 297-338. Laufer, B. 1917: The reindeer and its domestication. American Anthropological Association Memories 4, 91- 147. Lee, R. B., DeVore, I. (eds.) 1968: Man the hunter. Chicago: Aldine Publishing Company. Michajlovskij, V. M. 1892: Šamanstvo. Sravnitel´no-etnografičeskie očerki. Moskva Michajlovskij, V. M. 1895a: Shamanism in Siberia and European Russia, being the second part of „Shamanstvo“. The Journal of the Anthropological Institute of Great Britain and Ireland 24, 62-100. Michajlovskij, V. M. 1895b: Shamanism in Siberia and European Russia (continued). The Journal of the Anthropological Institute of Great Britain and Ireland 24, 126-158. Mirov, N. T. 1945: Notes on the domestication of reindeer. American Anthropologist 47 (3), 393-408. Mortillet, G. de 1883: Le Préhistorique: antiquité de l'homme. Paris: Reinwald. Muckle, J. 2006: Introducing archaeology. Peterborough (Ontario): Broadview Press. Nadasdy, P. 2007: The gift in the animal: The onthology of hunting and human-animal society. American Ethnologist 34, 25-43. 16 Nelson, E. W. 1900: The Eskimo about Bering Strait. Annual Report of the Burea of American Ethnology 18, Washington: Government Printing Office. Nordenskiöld, A. E. 1881: The Voyage of the Vega round Asia and Europe, Volume I and Volume II. London: Macmillon and Co. Ojamaa, T. 1997: The shaman as the zoomorphic human. Electronic Journal of Folklore 4. Podle: http://www.folklore.ee/Folklore/vol4/triinu.htm; staženo: 18. 1. 2006. Panter-Brick, C., Rowley-Conwey, P., Layton, R. (eds.) 2001: Hunter-gatherers: An interdisciplinary perspective. Cambridge: Cambridge University Press. Pedersen, M. A. 2001: Totemism, animism and North Asian indigenous ontologies. The Journal of the Royal Anthropological Institute 7 (3), 411-427. Phillips, D. J. 2001: Peoples on the move: Introducing the nomads of the world. Carlisle: Piquant. Potapova, M. G., Levina, A. P. 1956: Narody Sibiri. Moskva – Leningrad: Izdatelstvo Akademii Nauk SSSR. Renfrew, C., Bahn, B. G. (eds.) 2005: Archaeology: The key concepts. New York: Routledge. Roux, V. 2007: Ethnoarchaeology: A non historical science of reference necessery for interpreting past. Journal of Archaeological Method and Theory 14 (2), 153-178. Santagata, C. 2009: La préhistoire à Capri: les origines de la recherche sur le Paléolithique en Italie Archéologues et Géologues dans l´épaisseur du temps 1859. In: Colloque international – Paris, 25-29 juin, 2009. Paris: Muséum national d´histoire naturelle. Podle: http://archeologues- 1859.blogspot.com/2009/03/la-prehistoire-capri-les-origines-dela.-html; staženo: 12. 8. 2009. Røed, K. H., Flagstad, Ø., Nieminen, M., Holand, Ø., Dwyer, M. J., Røv, N., Vila, C. 2008: Genetic analyses reveal independent domestication origins of Eurasian reindeer. Proceedings of the Royal Society of London B: Biological Sciences 275 (1645), 1849-1855. Sellet, F., Greaves, R. D., Yu, P.-L. (eds.) 2006: Archaeology and ethnoarchaeology of mobility. Gainesville: University Press of Florida. Soffer, O. 2000: Gravettien technologies in social context. In: Roebroeks, W., Mussi, M., Svoboda, J., Fennema, K. (eds.): Hunters of the golden age. Leiden: Faculty of Archaeology, 59-75. Syroečkovski, E. E. 2000: Wild and semi-domesticated reindeer in Russia: status, population dynamics and trends under the present social and economic conditions. Rangifer 20 (2-3), 113-126. Stammler, F. 2004: The commoditisation of reindeer herding in post Soviet Russia: Herders, antlers and traders in Yamal. Segmentation und Komplementaritaet. Organisatorische, oekonomische und kulturelle Aspekte der Interaktion von Nomaden und Sesshaften. Mitteilungen des SFB “Differenz und Integration.” Orientwissenschaftliche Hefte 14, 105-122. Stammler, F. 2007: Reindeer nomads meet the market: Culture, property and globalization at the end of the land. Berlin: Lit Verlag. Stark, M. T. 1993: Re-fitting the „cracked and broken facade“. The case for empirism in post-procesual ethnoarchaeology. In: Yoffer, N., Sherrat, A. (eds.): Archaeological theory: Who sets the agenda? Cambridge: Cambridge University Press, 93-104. Stiles, D. 1977: Ethnoarchaeology: A discussion of methods and applications. Man: New series 12, 87-103. Suominen, O., Olofsson, J. 2000: Impacts of semi-domesticated reindeer on structure of tundra and forest communities in Fennoscandia: a review. Annales Zoologici Fennici 233-249. Svoboda, J. 1996: Metody, analogie a interpretace v paleolitickém výzkumu. Přehled výzkumů 39 (1995- 1996), Brno: Archeologický ústav Brno AVČR, 17-33. Svoboda, J. 1999: Čas lovců. Brno: Archeologický ústav AVČR. Tokarev, S. A. 1966: The problem of totemism as seen by Soviet scholars. Current anthropology 7 (2), 185- 188. Van Reybrouck, D. G. 2000: From primitives to primates: A history of ethnographic and primatological analogies in the study of prehistory. Leiden: Universiteit te Leiden. Vitebsky, P. 1990: Gas, environmentalism and native anxieties in the Soviet Arctic: The case of Yamal Peninsula. Polar record 26 (156), 19-26. Vitebsky, P. 2000: Shamanism. Oklahoma: University of Oklahoma Press. Vitebsky, P. 2005: The reindeer people: Living with animals and spirits in Siberia. Houghton Mifflin Harcourt. Willerslev, R. 2004: Not animal, not not-animal: Hunting, imitation and empathetic knowledge among the Siberian Yukaghirs. Journal of the Royal Anthropological Institute 10, 629-652. Willerslev, R. 2007: Soul hunters: Hunting, animism, and personhood among the Siberian Yukhagirs. Berkley, Los Angeles, London: University of California Press. Wobst, M. 1978: The archaeo-ethnology of hunter-gatherers or the tyranny of the ethnographic record in archaeology. American Antiquity 43 (2), 303-309. 17 Yellen, J. 1977: Archaeological approaches to the present: Models for reconstructing the past. New York: Academic Press. Zelenin, D. K. 1935: Ideologija sibirskogo šamanstva. Izvestija Akademii nauk SSSR, Moskva: Nauka, 709- 743. Zolotarev, A. M., Levin, M. G. 1940: Concerning the antiquity and origin of reindeer breeding. Problemy projschoždenija, evoljucii i porodoobrazovanija domašnich životnych 1, 171-189. Elektronické zdroje: American museum of natural history, http://www.amnh.org/ 2.4 Vybrané publikace k tématu Z prací k problematice severozápadní Sibiře jsou přiloženy impaktované články Patterns of change in a Nenets landscape: An ethnoarchaeological study of Yangana Pe, Polar Ural Mts. Russia (Sázelová et al. 2015 s autorským podílem 40 %) a Resources and spatial analysis at actual Nenets campsites: Ethnoarchaeological implications (Svoboda et al. 2011 s autorským podílem 30 %); dále recenzovaný článek Ethnoarchaeology of Nenets Campsites, Case of Yangana Pe and Oktyaberskaya (Polar Ural Mts., Northwest Siberia (Svoboda et al. 2010 s autorským podílem 25 %) a článek ve sborníku Detecting the children zone at the abandoned Nenets campsites: An ethnoarchaeological example from the Polar Ural Mts., Russia (Sázelová et al. 2014 s autorským podílem 60 %). Autorský podíl se týká dokumentace předmětů v terénu a tvorby databází i tabulek, analýzy osteologického materiálu a doprovodných lidských či zvířecích zásahů, popisu jednotlivých tábořišť a distribucí předmětů v jejich bezprostředním okolí, přípravy podkladů pro mapy a obrázky a tvorby popisného rámce něněcké kultury. Z prací k severovýchodosibiřské tématice je přiložen recenzovaný článek Ethnological approach to siberian zoomorphs: A search for meaning and implications for the Upper Paleolithic evidence (Sázelová 2014). Autorský podíl (100 %) zahrnuje studium archivních záznamů z Jesupovy severopacifické expedice a korespondence W. Bogorase, W. Jochelsona, B. Laufera a F. Boase, přístupné elektronicky přes Americké muzeum přírodní historie v New Yorku, a dále studium popisného rámce sledovaných kultur, zejména pak Čukčů, Korjaků a Kereků. 18 2.4.1 Patterns of change in a Nenets landscape: An ethnoarchaeological study of Yangana Pe, Polar Ural Mts. Russia Citace: Sázelová, S., Svoboda, J., Kosintsev, P. A., Novák, M. 2015: Patterns of change in a Nenets landscape: An ethnoarcheological study of Yangana Pe, Polar Ural Mts., Russia. Human Ecology 43 (2), 283-294. Patterns of Change in a Nenets Landscape: An Ethnoarcheological Study of Yangana Pe, Polar Ural Mts. Russia Sandra Sázelová1,2 & Jiří Svoboda1,2 & Pavel A. Kosintsev3 & Martin Novák2 Published online: 29 March 2015 # Springer Science+Business Media New York 2015 Abstract Using an ethnoarcheological perspective we examine Nenets site formation, seasonality and landscape usage in controlling reindeer herds in a complex system of more than 20 abandoned campsites and other sites of interest over 100 km2 and a time-span of several decades. We establish a chronology based on more than 150 expiration dates from imported food items, supported by additional seasonal evidence such as presence/absence of newborn reindeer, hearths and other artifacts. We separated the sites into five stages and compared the patterns of change, especially from 1986 to 2003 as the road and railroad connecting the Yamal gas mining fields were constructed nearby. We find that the impact of road and rail construction is reflected in the increase of imported goods upon its completion. Keywords Campsite seasonality . Ethnoarcheology . Expired date chronology . Nenets . Northwestern Siberia Introduction The ways in which nomadic and semi-nomadic people create, use and abandon their campsites follow established patterns based on cultural traditions. However, there is generally a tendency to repeatedly reoccupy some optimal positions, sometimes independently of season, so that visible patterns become ambiguous in the ethnoarcheological record (Binford 1987, 1991; Gamble and Boismier 1991; Kroll and Price 1991; Hirsch and O’Hanlon 1995; Johnson 2002). In this paper we address questions concerning Nenets site formation, duration and stability of occupation, aspects of seasonality, and use of landscape to control reindeerherd movement. In a previous study (Svoboda et al. 2011) we compared inner structure and site formation at three campsites, two in the Yangana Pe region in the northern tundra and one in proximity to the town of Labytnangi in the southern forest-tundra. Here we expand our study at Yangana Pe to a complex of more than 20 abandoned campsites and other sites of various human activities within an area of 100 km2 (Table 1 and Fig. 1). We established the chronology using expiration dates on the packaging of perishable food items, correlated to seasonality, to trace patterns of change over the last five decades. We predicted that the near-completion of a road and rail link connecting the gas mining fields in the Yamal Peninsula and passing the eastern margin of the study area in 1995/1997 had a significant impact on the structure of occupation in the surrounding landscape in general, and especially on the increased importation of products recorded at the individual Nenets sites. This hypothesis is supported by a number of other studies documenting the impact of gas mining on the Yamal Peninsula on the Nenets’ lifestyle (Ingold 1980; Podkorytov 1995; Golovnev and Osherenko 1999; Baskin 2000; Krupnik 2000a; Beach and Stammler 2006; Stammler 2007; Forbes et al. 2009; Kryazhimskii et al. 2011; Dagteva and Nellemann 2013), in particular the dramatic growth of their reindeer herds, which they describe as a traditional response aimed at insuring against an uncertain future. The combination of a more monetized economy, which led to increased * Sandra Sázelová sazelova@sci.muni.cz 1 Department of Anthropology, Faculty of Science, Masaryk University, Kotlářská 2, CZ - 611 37 Brno, Czech Republic 2 Institute of Archeology, Academy of Sciences of the Czech Republic, Dolní Věstonice 25, CZ - 691 29 Dolní Věstonice, Czech Republic 3 Institute of Plant and Animal Ecology, Russian Academy of Sciences, 8-go marta 202/3, RU - 620 144 Ekaterinburg, Russia Hum Ecol (2015) 43:283–294 DOI 10.1007/s10745-015-9744-2 Table 1 Review of campsites and standing posts, their altitude, density of objects (<100 objects=low; 100-200 objects=middle; >200=large); occupational period with estimated cycles of occupations and seasonality Campsite/standing post name Abbreviation Altitude Density of objects Occupational period Seasonality BAvka^ campsite 1-2 AC 1-2 150 m Middle III-V (3 occupational cycles) One winter season BKettle^ campsite KC 163 m Middle I; IV (5 occupational cycles) ? probably summer season Northwestern campsite NWC 110 m Small II-III (2 occupational cycles) Unknown Plateau campsite PC 225 m Middle II-IV (2–3 occupational cycles) Unknown Slope campsite 1 SC1 160 m High IV-V (3 occupational cycles) Two winter seasons Slope campsite 2 SC2 180 m High V (2 occupational cycles) Unknown Slope campsite 3 SC3 206 m Low IV (1 occupational cycle) Unknown Valley campsite 1 VC1 128 m High V (3 occupational cycles) Two winter seasons Valley campsite 2 VC2 138 m Low III-IV (2 occupational cycles) Unknown Valley campsite 3 VC3 145 m Middle V (1 occupational cycle) Unknown standing post 1 st1 180 m High I-V (yearly usage cycle) Both seasons BFur^ campsite FC 89 m Small V (2 occupational cycles) Unknown Southeastern campsite SEC 70 m Middle IV-V (3–4 occupational cycles) ? probably winter season Taunto campsite 1 TC1 85 m Middle V (2 occupational cycles) One summer season Taunto campsite 2 TC2 75 m Middle V (2 occupational cycles) One summer season Taunto campsite 3 TC3 80 m Middle IV-V (3 occupational cycles) Unknown Taunto campsite 4 TC4 87 m High I; IV-V (4 occupational cycles) One winter season Taunto campsite 5 TC5 99 m Low V (3 occupational cycles) Unknown Standing post 2 st2 88 m Low IV-V (2 usage cycle) One summer season Fig. 1 Map of the micro-region around Yangana Pe, with a distribution of remains after settlement strategies, various human activities and main migration directions (to northwest - Kara Sea and to north - Yamal Peninsula). Legend: triangle active summer campsite; large circle abandoned campsite or standing posts; middle circle remains after human activities (such as wood-cutting); small circle isolated objects (e.g., fish-net, loaded sledges, etc.); square natural distinctive points. Campsite abbreviations: AC1-2 BAvka^ campsites, FC BFur^ campsite, KC BKettle^ campsite, NWC Northwestern campsite, PC Plateau campsite, SEC Southeastern campsite, SC1-3 Slope campsites, TC1-5 Taunto campsites, VC1-3 Valley campsites, st1-2 standing posts 284 Hum Ecol (2015) 43:283–294 production of reindeer meat, and decreased access to traditional territories suitable for pastures, which has recently led to overgrazing, seem to have resulted in a chaotic disruption of reindeer husbandry. Nenets Landscape-Use Strategy The east–west oriented limestone ridge of Yangana Pe (359 masl) creates a favorable micro-region in which the Nenets build two different types of site, winter and summer, on a yearly basis (Fig. 1). Yangana Pe is the northernmost boundary where Nenets households move their reindeer herds from the winter and spring pastures, located mainly around the Labytnangi-Kharp railway, to the summer pastures located on the Yamal Peninsula or the Kara Sea. In addition, the region is the southernmost boundary when they return from the summer pastures in fall and winter (see Kosintsev 2005; Svoboda et al. 2011; Kadebskaya and Kosintsev 2012). Nenets camps are generally composed of one or three mya (choom – tent-like dwellings) with 5–6 inhabitants in each. A mya is usually set up on a north–south axis with its entrance facing east to southeast, although the wind direction, topography and slope declination will dictate the final orientation. The symbolic inner axis (siyangi) serves to separate the living space within the mya and the immediate space around the structure according to gender. Outside the choom, men and women can move freely once the top of the mya is no longer visible. The normal distance between individual chooms varies between 5 and 15 m, but misunderstandings or disputes cause an increase in the distance to 25–45 m. The children usually play in and around the campsite, creating their own specific residues after digging holes and burying objects, hammering antlers or wood, piling reindeer heads, making piles or patterns of pebbles, or abandoning toys and tools. All these residues can confuse ethnoarcheological interpretations of a site (see also Khomich 1995; Golovnev 1995, 2004, 2005a, b; Haakason 2000; Yoshida 2001). Campsites are usually moved every 2 to 3 days in summer and every 14–21 days in winter. Families engaged in hunting and fishing camp in summer around the lakes at Yangana Pe and usually occupy these sites for several months until resources, such as game, fish or firewood, are depleted (see also Svoboda et al. 2011). When mya are moved, we would expect several holes to be left after removal of the poles (ngo), generally 2–3 cm wide and 5–10 cm deep, and natural changes to the color and growth intensity of surface vegetation under the floorboards (lata) (see also Haakason 2000). However, at our study campsites we did not observe such traces, although some of them, such as SEC, TC 1 and 4, AC2, had been abandoned only a few months before our visit. When a campsite is moved, all objects left on the ground are collected up. However, in winter, depending on the depth of the snow cover, many may be lost or trampled into the snow (see also Binford 1993). The tidiness of individual families can also influence the amount that gets left behind. The lost or forgotten objects might be rediscovered and reclaimed when the site is reoccupied. Some objects might also get trampled into the ground by dogs and reindeer as they search for bones, antlers, or other edible items. Their pattern of short-term settlement leads to abandoned campsites being easily disturbed, if not completely destroyed, by Nenets families returning to the same area or often to the same place. In addition, when a site is to be reused, the women are expected to clear out the area of any waste left from previous occupations in order to prevent injury to reindeers’ hooves from broken bottles, rusted tins or other sharp objects. Therefore, the garbage toss usually accumulates at several predictable and well-known places within the campsite (the tins might also be pressed) or is hidden under rocks or stones. Isolated objects might also be hung on tree branches. In addition, several natural, distinctive points around the Yangana Pe still serve (or used to serve) as sacred places. These points are usually important landmarks also used in spatial orientation by the Nenets (see also Dwyer and Istomin 2008; Istomin and Dwyer 2009; Istomin 2012; Haakanson and Jordan 2011; Jordan 2012). Examples include a small and unusually deep karst lake at 254 masl (polluted in the early 1990s by Russian geologists); an isolated rock on the northernmost point of Yangana Pe situated close to the reindeer migration path (216 masl); the uppermost part of SC3 (206 masl); and a small cave located high on the slopes of Yangana Pe (204 masl). At most of these places, Nenets accumulated reindeer antlers, in one case more than 70 items with specific symbolic functions and meanings. In addition, we documented three accumulations of reindeer antlers and skulls just beside or within the campsites at NWC, PC and TC3. The antlers (and the skulls, if still attached) originate from individuals of different ages and vary in shape and size. There is to our knowledge no ethnological record describing antler platform constructions among Nenets (cf. Binford 1993; see also Khomich 1995; Golovnev 1995, 2004; Haakanson and Jordan 2011). Methods All abandoned campsites and other evidence of human activities were located by GPS. We recorded the campsite zonality visible on the surface, the spatial distribution of all remains, and the zoological and taphonomical descriptions of all animal remains (Tables 2a, b, 3, and 4). When necessary, we Hum Ecol (2015) 43:283–294 285 photographed the sites and/or selected objects. We then created a chronology from expiration dates on the packaging of imported goods (Fig. 2). The main problem arose from the fact that most of these expiration dates fall within an interval of 1 to 3 years and Nenets traditionally occupy their campsites once every other year. Thus, according to the literature and discussions with Nenets we used the double-year migration cycle. This cycle affects observable changes in migrational paths, but also allows time for pasture regeneration (see also Dwyer and Istomin 2008). In the third step, we estimated the season of occupation by calibration with several reasonably reliable features associated with seasonally bounded activities Table 2 Distribution of reindeer (Rangifer tarandus) skeletal parts from the slope and lake campsites of Yangana Pe – additional 2012 data supplementing research in 2009 (Svoboda et al. 2011) a. Skeletal part AC1 AC2 KC NWC PC SC1 SC2 VC1 VC2 VC3 st1 Total NISP A N J A A J SA A SA A N J SA A A N J A SA A J A A Antler 0 0 2 10 0 3 7 9 0 6 0 0 0 0 0 0 0 1 0 4 0 0 18 60 Skull+maxilla 1 0 0 5 0 0 0 1 1 8 0 0 0 0 1 0 3 1 0 5 0 0 3 29 Mandibula 0 1 0 0 0 0 0 0 0 7 1 0 0 5 1 0 1 0 0 0 2 7 0 25 Vertebra 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 4 Rib 0 0 0 0 1 0 0 0 0 1 0 0 0 0 2 0 0 2 0 0 0 0 0 6 Scapula 1 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 2 0 0 0 0 0 0 6 Humerus 0 0 0 2 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 5 Radius 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 4 Ulna 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 Metacarpals 0 0 0 0 1 0 0 2 0 3 0 0 0 0 1 0 0 0 0 1 0 10 0 18 Pelvis 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 3 Femur 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 4 Tibia 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 2 2 0 0 0 0 8 Tarsals 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 4 0 1 0 8 Metatarsals 2 0 0 0 1 0 0 0 0 5 0 0 0 0 0 0 0 2 0 0 0 3 0 13 Phalanges 0 0 0 0 0 0 0 0 0 1 0 0 0 5 1 0 0 6 0 0 0 0 0 13 Metapodials 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 4 Bone fragment 1 0 0 0 3 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 8 Total NISP 7 1 2 21 7 3 7 14 1 37 1 1 1 18 8 2 7 16 2 15 2 23 23 219 b. Skeletal part FC SEC TC1 TC2 TC3 TC4 TC5 st2 Total NISP A SA A SA A J A SA A N J SA A A A Antler 1 0 6 0 0 0 1 0 3 0 0 0 0 1 0 12 Skull+maxilla 1 0 0 0 0 0 2 1 6 5 0 0 1 0 0 16 Mandibula 2 0 2 0 0 1 1 0 1 1 1 0 1 0 0 10 Vertebra 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 3 Rib 0 0 0 0 0 0 0 0 1 2 0 0 0 0 2 5 Scapula 2 1 0 0 0 0 0 0 1 0 1 0 0 0 0 5 Radius 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Ulna 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 Metacarpals 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 2 Pelvis 1 0 2 1 0 0 0 0 0 0 0 0 0 0 0 4 Tibia 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 Metatarsals 0 0 7 0 1 0 1 0 0 0 0 0 0 0 0 9 Phalanges 0 0 2 0 0 0 0 0 0 0 0 0 1 0 0 3 Metapodials 0 0 3 0 0 0 0 0 0 0 0 0 0 0 3 6 Bone fragment 1 0 3 0 0 0 0 0 0 0 0 0 1 0 0 5 Total NISP 9 1 27 1 1 1 5 1 14 8 2 1 6 1 5 83 For the campsite abbreviations, see Table 1; other abbreviations: NISP number of identified specimens, N newborn remains, J juvenile remains, SA subadult remains, A adult remains 286 Hum Ecol (2015) 43:283–294 (Table 1), for example, the presence of newborn reindeer bones (Table 2a, b) reliably indicate the end of winter or early spring (late April-early May) when calving starts. The herders will wait at the campsite until the newborn reindeer are strong enough for migration northwards. Additionally, young reindeer bones (several months old) at campsites indicate the slaughter after the return from summer pastures. Apart from these demographic indicators, the total amount of reindeer remains might be seasonally estimated. The slope campsites, usually occupied in winter, have higher concentrations of reindeer bones than the lake campsites occupied mainly in summer (Tables 1 and 2a, b). The deviations from this rule were recorded at slope campsite KC, where we thus suggest a summer occupation, contrary to the lake campsite SEC falling probably between winter camps. According to Haakason (2000) with reference to the Yuribei river further north, the presence of hearths at campsites might indicate summer camping while their absence might indicate the winter period, when the Nenets use stoves. He also describes the use of smaller fires in the winter months to curve sledge runners (khasi). He argues that all remains of these activities disappear after the snow has melted. According to our findings this does not hold for the Yangana Pe region, because here Nenets women carefully sweep the hearths and we find charcoal only in secondary positions at toss zones. Moreover, surface vegetation can easily obscure remains of hearths. For example at TC1 the active hearth inside the mya was observed in 2009, but was obliterated by 2012 so that we were not able to accurately detect the position of the dwelling. In addition, some other objects might be potentially useful for seasonal calibration, for example tools and paper shotgun shells. The ngali, usually a V-shaped branch (or piece of antler), pierced and with a pointed end, is used especially in spring to restrain wilder reindeer. In the Yangana Pe region these objects were dispersed randomly in the landscape. However, at SEC several ngali were found attached to sledges loaded with winter equipment and broken ones were placed under the runners to protect them from freezing to the surface (Fig. 3). The paper shotgun shell casings found at SEC, TC2 and st1 also proved unreliable markers, and may indicate either the hunting of waterfowl in the spring-summer period or of elks and hares in the autumn-winter period, or might otherwise relate to seasonally-independent training in shooting, as documented, for example, at TC5. Changes in Nenets’ Time and Space The Nenets population on the Yamal Peninsula increased from 13,977 to 17,404 between the early 1960s and mid- 1980s, and between 1986 and 2005 it increased from 20,917 to 26,435. More recently (2006–2012), some 29,772 Nenets inhabit the Yamal Peninsula (see also Vasil´ev 1990; Krupnik 2000b; Orudzhieva 2005; Kornilov 2012; Volzhanina 2013). On the micro-regional scale, we documented the continuous occupation or resettlement at Yangana Pe by Nenets from the mid-1960s (Fig. 4a–e). According to a series of interviews with Nenets families, during the earliest two phases (1966– 1975 and 1976–1985) one family was living in the winter around the lakes while one or two families were at Yangana Pe waiting for their reindeer to calve. At the same time, other families migrated with their herds through the region without staying, although all families met here in autumn. However, no physical remains of winter occupation around lakes from these periods were detected, probably because they were obscured by extensive occupation in summer. During this period Russian geologists intensively, and unsuccessfully, searched Table 3 Distribution of specific damage to reindeer bones (Rangifer tarandus) from the slope campsites of Yangana Pe – additional 2012 data supplementing research in 2009 (Svoboda et al. 2011) Campsite/standing post Gnawing Breaking Chopping Cutting Total BAvka^ campsite 1 2 0 0 0 2 BAvka^ campsite 2 11 2 0 0 13 BKettle^ campsite 0 1 1 0 2 Northwestern campsite 14 1 0 0 15 Plateau campsite 3 4 6 4 17 Slope campsite 1 3 4 2 0 9 Slope campsite 2 2 0 2 0 4 Valley campsite 1 4 0 1 1 6 Valley campsite 2 0 1 1 1 3 Valley campsite 3 2 5 7 0 14 standing post 1 1 0 1 2 4 Total 42 18 21 8 89 Occurrences of bone burning are described verbally in text Table 4 Distribution of specific damage to reindeer bones (Rangifer tarandus) from the lake campsites of Yangana Pe – additional 2012 data supplementing research in 2009 (Svoboda et al. 2011) Campsite/standing post Gnawing Breaking Chopping Cutting Total BFur^ campsite 4 4 0 0 8 Southeastern campsite 1 3 5 1 10 Taunto campsite 1 3 0 0 0 3 Taunto campsite 2 0 0 0 0 0 Taunto campsite 3 1 0 0 0 1 Taunto campsite 4 3 0 2 0 5 Taunto campsite 5 1 0 0 0 1 standing post 2 0 0 1 0 1 Total 13 7 8 1 29 Occurrences of bone burning are described verbally in text Hum Ecol (2015) 43:283–294 287 the Yangana Pe for commercially useful sources of marble and bauxite and remains of these abortive mining efforts and associated campsites and other infrastructure are still marked by piles of coal (which is not used by Nenets), as well as by radical changes in vegetation. Around the Russian camps Chamaenerion latifolium occurs as an important synanthropic taxon, along with Ch. angustifolium, which also indicates human intervention in the forest tundra biotopes. Another anthropic impact is the introduction of Tanacetum bipinnatum and Rubus chamaemorus, both pioneer plants here. Peat-bog biotopes disturbed by wheels of large vehicles are occupied by Eriophorum scheuchzeri and less frequently by Parnassia palustris (Kniazev et al. 2006; Rebristaia 2006; Svoboda et al. 2011). Overall, the Russian presence around Yangana Pe seems to have been sporadic. The amount of datable imported goods found at such sites is very low, between 3 and 13 % of all datable imported products, although the lower figure might be due to taphonomical causes such as weathering and vegetal or faunal activities. The next two phases (1986–1995 and 1996–2005) were impacted by road and railroad construction connecting the Yamal gas mining fields, which began in 1986 and was finished in 2003. Russian laborers were present at construction sites almost daily through 1997 with their own infrastructure and imported supplies. The Nenets’ response was to move their settlements and activities to areas where they could not easily be observed or disturbed by the workers. Even today, no abandoned campsites or other traces of Nenets activities are visible from either the road or railroad. At the same time, they must have had increased contact with the Russians, as evidenced by the increased presence of imported goods at their abandoned sites (Fig. 2). The total amount of these products was estimated as between 10 and 20 % allowing for different taphonomical action relative to the oldest campsites. Their diet also changed as beef and pork, tinned fish, mayonnaise, instant products, and various candies, started to be regularly consumed. More recently (2006–2014), around five or six Nenets families lived in the summer around lakes; and between 130 and 150 Nenets families travel with their reindeer herds (40–50, 000 head) annually through the region in the spring and autumn. The amount of datable imported goods exceeds 50 % within this later period, but it should be noted that most of the objects were not yet affected by taphonomical agents. Slope Campsites AC (BAvka^) campsites 1–2: the shorter distance between both campsites, distribution of objects within their areas, and expiration dates on discarded packaging indicate that they were in communication for part of the time. Well-trodden Fig. 2 Distribution and frequency of imported goods related to expiration date chronology at campsites or standing posts. For campsite abbreviations, see Table 1 Fig. 3 Sledges loaded with winter equipment at promontory of SC with 9 ngali for taming wild reindeer attached and 5 broken ngali under sledge runners to prevent freezing to the ground „Fig. 4 a–e Five stages in distribution of human activity remains in the study area: a 1966–1975 (upper left); b 1976–1985 (upper right); c 1986– 1995 (middle left); d 1996–2005 (middle right); e 2006–2014 (low). For campsite abbreviations, see Table 1 288 Hum Ecol (2015) 43:283–294 Hum Ecol (2015) 43:283–294 289 pathways were detected between them, an unusual feature compared with other sites. The settlement years follow the interval in the 1999s and between 2011 and 2012 (dated vodka bottles and condensed milk or fish tins), although one toss zone at Avka 1 was formed earlier in 1995 (dated by an indeterminate bottle). Thus, we expected at least three occupation seasons with one winter-spring season according to newborn reindeer bone calibration. No clear hearths were present at either site, so we were not able to locate the domestic areas with certainty. The two toss zones at Avka 1 and one toss zone at Avka 2 were slightly overlapping within activity areas. At Avka 1 the bone fragments of an axial skeleton and limbs from an adult reindeer (NISP=7) were recorded, accompanied by bone residues (metapodials) after fur processing of kamus used especially in winter-boot production. Traces of dog gnawing were documented in only two instances. At Avka 2 we recorded a newborn reindeer mandible and two juvenile antlers, accompanied by antlers, crania and bones from fore and hind limbs of at least six adult individuals (NISP=28). Only 14 % of these remains were characterized by bone residues from fur processing, such as metapodials and phalanges. Traces of human butchering activities, such as cutting or breaking, and dog gnawing were documented in 15 % of bones and in 85 % of antlers. Within the inner campsite area an extensive accumulation of reindeer feces was recorded; thus we infer a longer presence here due to at least one animal recovering from illness (supported by an antibiotic ampule) or a reindeer with special status (avka) as a pet living with a household in their mya. According to artifacts found within both campsites we deduce a family of non-smokers and low alcohol consumption with at least one child. KC (BKettle^) campsite: we recorded within the domestic zone a clear circle made up of several stones used as a stabilizing element of mya construction. At distances of 11 m, 45 m and approximately 65 m from the center of the domestic zone, three accumulations of toss were located. This campsite was repeatedly occupied in the years 1966, 1969–1975 and in 2003 (being dated by vodka bottles and a fish tin); thus we inferred here at least five periods of re-occupation. Within the area we recorded seven bones of an adult reindeer and all from the meaty parts of the animal or residues of fur processing. However, only the butchering process is clearly supported by traces of breaking and chopping. Dog gnawing was documented on several bones. We inferred occupation by nonsmokers with high alcohol consumption and most probably no small children. NWC (Northwestern) campsite: based on our expiration date chronology the campsite was occupied twice around the years 1978 and 1995 (dated by indeterminate tins). Because the site was deserted for a long time, the domestic area was no longer observable. Nevertheless, we recorded a rich activity zone with an accumulation of 15 reindeer antlers (some with skulls) and their tines belonging to nine individuals. Additionally, bones of a sub-adult and adult reindeer were recorded. No traces of human or dog activities were observed. According to the artifacts found we infer occupation by nonsmokers with moderate alcohol consumption and probably children. PC (Plateau) campsite: the remains of this campsite were hardly visible within the landscape, although it was repeatedly occupied in 1985–1986, 1989, 1991, 1993–1996 (dated by condensed milk tins and indeterminate jars), so we infer at least 3–4 occupation seasons. There was an accumulation of toss with the remains of an adult reindeer (NISP=34) dispersed around it, represented by parts of an axial skeleton and hind limbs and residues after fur processing and one mandibular fragment of a subadult individual. The majority of the bones bore traces of human breaking, cutting and chopping; and only a few had traces of being gnawed by dogs. Moreover, an accumulation of reindeer skulls and antlers were found within the periphery of the campsite, belonging to a minimum of at least six adult and one subadult reindeer. Accumulations of reindeer feces were observed within the outer periphery; thus we can assume that this area was recently used extensively for pasture. We infer occupation by non-smokers with high alcohol consumption and most probably without small children. SC (Slope) campsites 1–3: the inner structure of the lower and upper part of this campsite was described in Svoboda et al. (2011). Here we concentrate on the changes in the last 3 years. The main variation was recorded at SC2, where increasing surface water most probably caused a shift of living space and domestic area solely to SC1. As several concentrations of reindeer feces were observed between these two places, we assume that the herd was driven to the immediate vicinity of SC2. Under the slope of SC1 two new accumulations of toss were established and there are indications of several attempts burn them. According to our expiration date chronology the highest density of occupations at SC1 was in 2002–2003, 2007–2008, and 2010–2011 (dated by jar caps of sweet preserves, condensed milk tins, a liver pâté jar, a plastic instant soup bowl, a toothpaste tube and a vodka bottle). Therefore we infer a minimum of three occupation seasons with at least two winter/early spring seasons according to newborn reindeer bones recorded in 2009 and in 2012 (when a mandible was documented). There were also several leg bones of a subadult reindeer and 26 bones of at least three adult individuals - cranium and mandible (with pathological traces of periodontitis), and vertebrae, ribs and bones of proximal parts of fore and hind limbs, several residues after fur processing and six hooves. The majority of the bones showed traces of gnawing by dogs but only a few fragments bore traces of human activities such as chopping or breaking. Additionally, a front paw of a polar hare was recorded. We infer occupation by a family of smokers with low alcohol consumption and with several children. Evidence of activities connected to sledge repair are a typical feature of this site. 290 Hum Ecol (2015) 43:283–294 VC (Valley) campsites 1–3: the main differences observed at VC1 since 2009 were the absence of all usable objects left at the toss zone, such as floor desks (lata), burning of the waste, and relocation and intensification of woodcutting. By contrast, VC2 was also almost unchanged, except for the presence of several new reindeer bones. The structure of the newly established VC3 campsite was a domestic zone surrounded with activity zones and two accumulations of toss. Reindeer feces were dispersed in the immediate vicinity of this site. All three campsites were repeatedly occupied in 1994, 2002–2003 and 2007–2011 (dated by a marine seaweed tin, a paper ‘Brookbond’ tea box, a ‘Baltika’ beer can, a sunflower oil bottle, part of a TetraPack juice cover and a newspaper fragment). The first two occupation seasons were at VC2, then VC1 was occupied for at least three seasons (with a minimum of two winter periods, according to newborn reindeer bones), and in the last season at a new settlement VC3. Animal remains at VC1 consist of bone fragments of newborn reindeer and remains of at least one adult reindeer (NISP=19), represented by fragments of axial skeleton and remains after fur processing. In addition, two fragments of elk (Alces alces) metatarsus and one long bone fragment of a middle-sized bird (Aves indet.) were recorded. At VC2 remains of at least one subadult (NISP=3) and two adult reindeer (NISP=13) were collected. At VC3 the reindeer remains consisted of two mandibular fragments of a juvenile reindeer, 23 bone fragments of at least two adult individuals, and also a proximal metatarsal part of an elk. Most of the bones bore traces of human activities, such as breaking, chopping and cutting, and, exceptionally, also burning; only three bones were gnawed by dogs. We infer occupation by non-smokers and non-drinkers, at least one adult able to repair sledges, and a minimum of two children. st (Standing) post 1: based on the available evidence of human activities, this site cannot be classified as a typical campsite, although hearths are present. It is within the natural corridor of Yangana Pe where the Nenets annually migrate with their reindeer herds to summer pastures and back. We infer that this site was used by Nenets to consolidate the small herds of individual families for whom it is uneconomic to migrate northwards in the spring, and to redistribute them when they return in the autumn (Svoboda et al. 2011). The importance of this strategic position is also supported continuity of use: 1972, 1976, 1980–1982, 1995, 2001, and 2007 to 2009–2010 (dated by condensed milk tins, vodka bottles and a mayonnaise jar). Lake Campsites FC (BFur^) campsite: dated objects (condensed milk tins, a preserved mushroom jar) place the settlement within the period 2006–2009. The presence of two hearths with different stages of vegetation coverage, with a distance of 10 m between each lead us to infer at least two occupation seasons. The presence of dispersed objects at site indicates an overlap of domestic and activity zones during both occupations. Antler and eight bones of one adult reindeer were collected here, in addition to 10 indeterminate bone fragments (sized 2– 5 cm), which had been trampled into the upper ground layers. Several bones were broken for marrow extraction by humans and several showed traces of dog gnawing. At the periphery approximately 25 m from both hearths were two accumulations of toss material. We infer that occupation was by nonsmokers and non-drinkers with no children younger than 12 years. SEC (Southeastern) campsite: the campsite comprises three natural promontories between two small lakes. However, only the eastern one was occupied; a loaded sledge with winter equipment was left on the middle promontory. According to our expiration date chronology this site was occupied in 1999, 2002–2003, 2008–2009 and 2011 (dated by a ‘Bol´shaia kruzhka’ beer bottle and several indeterminate tins), so we infer at least 3–4 occupation seasons. The domestic zone was hardly visible and there was no evidence of a hearth, so we were able to identify only the activity zone and two accumulations of toss, one of which also included an ash pile with several reindeer bones at various stages of burning. The unburned reindeer remains included a scapular fragment of a juvenile reindeer and 28 bones of at least two adult reindeer. Several bones, especially metapodials, bore traces of human activities, such as breaking, cutting or chopping; only one pelvic fragment showed evidence of gnawing by dogs. Additionally, a tibia of a polar hare (Lepus timidus) was recorded. We infer occupation by a non-drinking and nonsmoking family probably without children younger than 12 years. TC (Taunto) campsite 1: this campsite was visited in summer 2009, when a family of two adults (non-smoking and non-drinking) and three children in residence. The second occupation season inferred to have been between years 2010 and 2011, based on our expiration date chronology (a ‘Baltika’ beer can and an ‘Aquafrut’ liquid soap bottle). In the following summer (2012) the campsite was abandoned, and from information from other Nenets families we learned that this family were with their herd in the northern pastures. When mapping this abandoned campsite we were surprised that after 3 years we were not able to detect the domestic zone (traces of the hearth had completely disappeared under the vegetation). It was almost as difficult to detect the toss accumulation, because all the Bwaste^ seemed to have future uses and was almost evenly dispersed within the activity zones. In addition, one aluminum boat and three sledges had been left within the campsite area or its close vicinity. Reindeer remains included a fragment of adult metatarsus and a pelvic fragment of a subadult animal. Both bones bore traces of dog gnawing. Activities connected to sledge repair were typical of this site. Hum Ecol (2015) 43:283–294 291 TC (Taunto) campsite 2: this campsite was also occupied in 2009, although we did not meet its inhabitants. According to our expiration date chronology, this site was probably occupied twice in the period 2007–2012 (dated by condensed milk tins and ‘Baltika’ beer cans). The inner structure of the campsite is characterized by its extensive toss zone with four huge waste accumulations, of which several were partly covered by reindeer fur or wooden splinters and shavings left from sledge repairs. The domestic zone was not detected, as in the previous case. Reindeer remains included one juvenile mandible and an antler and several bones belonging to one adult reindeer. No traces of human or dog activities were observed on the bones. According to the artifacts found, we infer occupation by a family with moderate tobacco and alcohol consumption and at least one child. TC (Taunto) campsite 3: the inner structure of the campsite was composed of two hearths covered by residues from activity zones, and one toss accumulation. Another toss accumulation was unusual in that it covered a concentration of six reindeer heads and remains. Another unusual object was an iron sledge, not traditionally used by Nenets, at the campsite periphery. This might be explained by significant contact between Nenets and Russians during overlapping occupation. Additionally, remains of at least six adult reindeer (NISP= 16) were recorded. According to our expiration date chronology this campsite was occupied in 1998, and in 2007–2008 (dated by condensed milk tins and a baby food container cover); thus we infer at least two occupation seasons. We also infer occupation by a non-drinking and non-smoking family probably with at least one child. One of the adults is able to repair sledges. TC (Taunto) campsite 4: the inner structure of this campsite consists of three units with their own hearths and domestic zones surrounded by their own activity and toss zones. However, from the distribution of datable artifacts, it is obvious that at least two of these units were occupied simultaneously. The occupations were documented for 1972, 1998– 1999, 2007, and 2010–2012 (dated by stewed beef meat tins, a ‘Tatarskiy ostriy’ ketchup bottle, a hydrogen peroxide bottle and condensed milk tins); thus we infer at least four occupation seasons with one winter/early spring stay, evidenced by a newborn reindeer bone fragment. In addition, remains of one very young reindeer (NISP=6), a metacarpal of a subadult individual and remains of an adult reindeer (NISP=11) were recorded. The majority of the bones showed traces of gnawing by dogs, but only a few fragments bore traces of human activities such as chopping and cutting. We infer occupation by a family of moderate smokers and drinkers with at least one child. TC (Taunto) campsite 5: according to our expiration date chronology this campsite was occupied in 2006 and 2009– 2012 (dated by a roasted whitefish in oil tin, and condensed milk, beef, and chicken pâté tins), so we infer at least three occupation seasons. The inner structure of the campsite consisted of three domestic zones surrounded by one common activity zone, and waste was almost evenly dispersed in the surroundings. One gnawed antler of an adult reindeer and one femoral fragment of a bird the size of a ptarmigan (Lagopus, sp.) were documented. According to the artifacts at both campsites, we infer occupation by a family of non-smokers and light drinkers with at least one child. st (Standing) post 2: we recorded 12 sledges loaded with winter equipment in 2009, and according to our expiration date chronology, this site was previously used in 2002 (dated by condensed sweet milk tins), probably for the same purpose. Discussion Our study primarily addressed the seasonality, chronology and function of a network of abandoned Nenets campsites covering Yangana Pe. We encountered a problem in differentiating between winter and summer occupation. According to Binford (1991), the anticipated length of Nunamiut campsite use and its seasonality affect the social organization of space. Since the Nenets do not change their technique of dwelling construction but only the cover (rough canvas in summer and a double layer of reindeer fur in winter) their campsites are always structured in the same manner regardless of season. Naturally, there are differences in campsite activities during the winter and summer; however, these are not necessarily reflected in the composition of objects at a site. In contrast to Haakason (2000), in our region even Nenets’ winter sites are highly visible. We use the presence of newborn reindeer bones as a strong indicator of the winter/early spring period, namely at AC 1–2, SC1-3, TC4 and VC1 campsites. Most of these sites are located on the slopes of Yangana Pe, with the exception of TC4, which lies near the lake in a position suitable for fishing. The amount of reindeer bones found is obviously higher at winter campsites than at summer sites (see KC and SEC), and consequently the position of winter campsites might be predicted with a fair degree of accuracy. Finally, interpretations of symbolic accumulations of reindeer skulls and antlers at natural distinctive points are less clear if such accumulations occur inside or near the abandoned campsites. Another question is the bias created by the lack of datable artifacts in old campsites around Taunto Lake, although we know that in the 1970s and 1980s at least one family stayed here. This might be explained by repeated cleaning of the sites by the Nenets families’ during the resettling processes. In addition, the cleanliness of individual families impacts the availability of useful ethnoarcheological evidence. Tidiness was observed, for example, at TC1, where we were able to detect neither the domestic zone nor toss accumulation. The main differences observed between 2009 and 2012 at SC and VC campsites were the Nenets’ attempts to burn or to 292 Hum Ecol (2015) 43:283–294 cover better the waste in their toss zones. In this case, it is possible that their efforts might have been a direct response to our research activity at the sites. Generally, we did not confirm our assumption that the length and the number of occupation seasons might proportionally increase the presence of objects left in the campsite. In some cases, the stable demographic structure at one campsite (with 6–18 people) and specific habits of the inhabitants (such as smoking or drinking alcohol) suggest that we are dealing with the same or a closely related family. Conclusion During our two research seasons at Yangana Pe, an area of 100 km2 was mapped and a complex system of more than 20 abandoned campsites, standing posts and other residues of Nenets activities were documented. Nenets settlement strategy is seasonal. In winter, they prefer sites on the slopes of Yangana Pe, whereas in summer sites near lakes suitable for fishing and hunting waterfowl are selected. We argue that this system of sites of different complexity, season and function, is flexible and subject to external influences, such as road and railway construction. We separated the sites into five stages and compared the patterns of change, especially as the road and railroad connecting the Yamal gas mining fields further north were built nearby. This construction affected the frequency of Russian-Nenets contact, increased the presence of imported goods at our study sites, and impacted the Nenets’ seasonal movements and settlement site selections as a reaction to a decrease of available pastures. However, despite the impacts of construction, we conclude that length and number of occupations are not proportionally reflected in an increase of artifacts left in campsites. Acknowledgments The research was supported by EU grant CZ.1.07/ 2.3.00/20.0181, Czech grant agency no. GAP504/13/08169S and Program of UD RAS, project no. 12-4-7-035. We thank the Nenets Okotetto families, Vlasta Jankovská, Martin Holub, and our colleagues from the Institute of Ecology of Plants and Animals, Russian Academy of Sciences in Yekaterinburg, and Settlement Administration in Panaevsk at YamaloNenets Autonomous Region for consultations, advice and collaboration. We are grateful to anonymous reviewers for final comments and suggestions on the manuscript. References Baskin, L. M. (2000). Reindeer Husbandry/Hunting in Russia in the Past, Present and Future. Polar Research 19(1): 23–29. Beach, H., and Stammler, F. (2006). Human-Animal Relations in Pastoralism. Nomadic Peoples 10: 6–30. Binford, L. R. (1987). Researching ambiguity: frames of reference and site structure. In Kent, S. (ed.), Method and Theory for Activity Area Research. Columbia University Press, New York, pp. 449–512. Binford, L. R. (1991). When the going gets tough, the tough get going: Nunamiut local groups, camping patterns and economic organisation. In Gamble, C., and Boismier, W. A. (eds.), Ethnoarchaeological Approaches to Mobile Campsites. International Monographs in Prehistory, Ann Arbor, pp. 25–137. Binford, L. R. (1993). Bones for stones: consideration of analogies for features found on the Central Russian Plains. In Soffer, O., and Praslov, N. D. (eds.), From Kostenki to Clovis Upper PaleolithicPaleo-Indians Adaptations. Plenum Press, New York. Dagteva, A., and Nellemann, Ch. (2013). Nenets Migration in the Landscape: Impacts of Industrial Development in Yamal Peninsula, Russia. Pastoralism: Research, Policy and Practice 3 (15). doi: 10.1186/2041-7136-3-15; downloaded: 28. 2. 2014. Dwyer, M. J., and Istomin, K. V. (2008). Theories of Nomadic Movement: a New Theoretical Approach for Understanding the Movement Decisions of Nenets and Komi Reindeer Herders. Human Ecology 36: 521–533. Forbes, B. C., Stammler, F., Kumpula, T., Meshtyb, N., and Pajunen, A. (2009). High Resilience in the Yamal-Nenets Social-Ecological System, West Siberian Arctic, Russia. PNAS 106(52): 22041– 22048. Gamble, C., and Boismier, W. A. (eds.) (1991). Ethnoarchaeological Approaches to Mobile Campsites. International Monographs in Prehistory, Ann Arbor. Golovnev, A. V. (1995). Govoryashchie kultury: Traditsii Samodijtsev i Ugrov. Rossiyskaia Akademiia Nauk, Ekaterinburg. Golovnev, A. V. (2004). Kochevniki tundry: Nentsy i ikh folklor. Rossiyskaya Akademia Nauk, Ekaterinburg. Golovnev, A. V. (2005a). Khozyaystvo. Kalendar´. In Gemuev, I. N., Molodin, V. I., and Sokolova, Z. P. (eds.), Narody Zapadnoy Sibiri. Khanty, Mansi, Sel´kupy, Nentsy, Entsy, Iganasany. Nauka, Moskva, pp. 410–424. Golovnev, A. V. (2005b). Sotsialnaia organizaciia i obshchestvennyy byt. In Gemuev, I. N., Molodin, V. I., and Sokolova, Z. P. (eds.), Narody Zapadnoy Sibiri. Khanty, Mansi, Sel´kupy, Nentsy, Entsy, Iganasany. Nauka, Moskva, pp. 451–459. Golovnev, A. V., and Osherenko, G. (1999). Siberian Survival: The Nenets and Their Story. Cornell University Press, New York. Haakason Jr., S. D. D2000]. Ethnoarchaeology of the Yamal Nenets. Utilizing Emic and Etic Evidence in the Interpretation of Archaeological Residues. Harvard University, Cambridge. Dissertation Thesis. Haakanson Jr., S., and Jordan, P. (2011). ‘Marking the land’: sacrifices, cemeteries and sacred places among the Yamal Nenets. In Jordan, P. (ed.), Landscape and Culture in Northern Eurasia. University College London Institute of Archaeology Publications, London, pp. 161–177. Hirsch, E., and O’Hanlon, M. (1995). The Anthropology of Landscape: Perspectives on Place and Space. Clarendon, Oxford. Ingold, T. (1980). Hunters, Pastoralists, and Ranchers: Reindeer Economies and Their Transformations. Cambridge University Press, Cambridge. Istomin, K., and Dwyer, M. J. (2009). Finding the Way. A Critical Discussion of Anthropological Theories of Human Spatial Orientation With Reference to Reindeer Herders of Northeastern Europe and Western Siberia. Current Anthropology 50: 29–49. Istomin, K. (2012). The land to herd and the space to travel: comparing the categorizations of landscape among Komi and Nenets reindeer herding nomads. In Prager, L. (ed.), Nomadismus in der ´Alten Welt. Formen der Repräsentation in Vergangheit und Gegenwart. LIT Verlag, Münster, pp. 232–255. Hum Ecol (2015) 43:283–294 293 Johnson, A. L. (2002). Cross-Cultural Analysis of Pastoral Adaptations and Organizational States: A Preliminary Study. Cross-cultural Research 36: 151–180. Jordan, P. (2012). Seasonal mobility and sacred landscape geography among Northern hunter - gatherers. In Anderson, D. G. (ed.), The 1926/7 Polar Soviet Census Expeditions. Bergham Books, New York, pp. 33–66. Kadebskaya, O. I., and Kosintsev, P. A. (2012). Karstovye iavleniia khrebtov Iangana Pe i Nyava Pe (Polyarniy Ural). Problemy regional´noy ekologii 6: 42–47. Khomich, L. V. (1995). Nentsy. Ocherki traditsiyonnoy kul´tury. Sankt Peterburg. Kniazev, M. S., Morozova, L. M., and Shurova, E. A. (2006). Floristicheskiy Spisok Sosudistykh Rasteniy – Rastitel´ny Pokrov i Rastitel´nye Resursy Poliarnogo Urala. Izdanie Uralskogo Universiteta, Ekaterinburg. Kornilov, G. G. (2012). Naselenie Iamala v period promyshlennogo osvoeniia (1959–1989 g. g.). Gumanitarnye nauky v Sibiri 1: 21–25. Kosintsev, P. A. (2005). Ekologiia Srednevekovogo Naseleniya Severa Zapadnoy Sibiri: Istochniki. Izdatelstvo Uralskogo Universiteta, Ekaterinburg – Salekhard. Kroll, E. M., and Price, T. D. (eds.) (1991). The Interpretation of Archaeological Spatial Patterning. Plenum Press, New York. Krupnik, I. (2000a). Reindeer Pastoralism in Modern Siberia: Research and Survival During the Time of Crash. Polar Research 19: 49–56. Krupnik, I. I. (2000b). Lyudi v chumakh, cifry na bumage. Russkie istochniki k demograficheskoy istorii Yamala, 1965–1992. In Golovnev, A. V. (ed.), Drevnosti Yamala. UrO RAN, Ekaterinburg, Salekhard, pp. 122–151. Kryazhimskii, F. V., Maklakov, K. V., Morozova, L. M., and Ektova, S. N. (2011). System Analysis of Biogeocenoses of the Yamal Peninsula: Simulation of the Impact of Large-Herd Reindeer Breeding on Vegetation. Russian Journal of Ecology 42(5): 351– 361. Orudzhieva, A. G. (2005). Naselenie Iamala ot perepisi do perepisi (Istoriko-demograficheskiy ocherk: k 75 – letiyu IamaloNenetskoho avtonomnogo okruga. Bank Kulturnoy Informacii, Ekaterinburg. Podkorytov, F. N.(1995). Olenevodstvo Iamala. Iamal´skaia sel´ skokhozyaistvennaia stanciia, Salekhard. Rebristaia, O.V. (2006). Sosudistye Rasteniya – Poluostrov Iamal: rastitel´ny pokrov. Siti-press, Tyumen´. Stammler, F. (2007). Reindeer Nomads Meet the Market: Culture, Property and Globalization at the End of the Land. Lit Verlag, Berlin. Svoboda, J., Sázelová, S., Kosintsev, P. A., Jankovská, V., and Holub, M. (2011). Resources and Spatial Analysis at Actual Nenets Campsites: Ethnoarchaelogical Implications. Journal of Anthropological Archaeology 30: 30–43. Vasil´ev, V. I. (1990). Problemy nacial´nogo razvitiia malochiselnykh narodov Iamalo-nenetskogo avtonomnogo okruga tyumenskoy oblasti (na materialakh shur´skarskogo rayona). Issledovaniia do prikladnoy i neotlozhnoy etnologii Vol. 7. Institut ethnografii AN SSSR, pp. 1–8. Volzhanina, E. A. (2013). Demograficheskie protsesy sredi nentsev Iamala 20-30-e. gg XX.v. Vestnik Tomskogo Gossudarstvennego Universiteta 371: 80–83. Yoshida, A. (2001). Some characteristics of the Tundra Nenets reindeer herders of Western Siberia and their social adaptation. In Anderson, D. G., and Ikeya, K. (eds.), Parks , Property, and Power: Managing Hunting Practice and Identity Within State Policy Regimes. National Museum of Ethnology, Senri, pp. 67–80. 294 Hum Ecol (2015) 43:283–294 31 2.4.2 Detecting the children zone at the abandoned Nenets campsites: An ethnoarchaeological example from the Polar Ural Mts., Russia Citace: Sázelová, S., Svoboda, J., Novák, M. 2014: Detecting the children zone at the abandoned Nenets camspites: An ethnoarchaeological example from the Polar Ural Mts., Russia. In: S. Sázelová, A. Hupková and T. Mořkovský (eds.): Mikulov Anthropology Meeting, August 28-30, 2014, Mikulov, Czech Republic, Dolní Věstonice Studies 20. Brno, Masaryk University, Institute of Archaeology, Academy of Sciences of Czech Republic in Brno, 57-60. The Dolní Věstonice Studies, vol. 20 - Mikulov Anthropology Meeting 2014 57 DETECTING THE CHILDREN ZONE AT THE ABANDONED NENETS CAMPSITES: AN ETHNOARCHAEOLOGICAL EXAMPLE FROM THE POLAR URAL MTS., RUSSIA Sandra Sázelová1, 2 , Jiří Svoboda1, 2 , Martin Novák2 1 - Department of Anthropology, Faculty of Science at Masaryk University, Kotlářská 2, Brno CZ- 611 37, Czech Republic sazelova@sci.muni.cz; jsvoboda@sci.muni.cz 2 - Institute of Archaeology, Academy of Sciences of the Czech Republic in Brno, Královopolská 147, Brno CZ- 612 00, Czech Republic novak@iabrno.cz Introduction Structure of Nenet campsites The role of Nenets toys In this paper we apply an ethnoarcheological approach to questions arising from archaeological studies of Upper Paleolithic settlements in Europe concerning the role of children and their activities in site formation processes (Hammond and Hammond 1981; Binford 1991; Crawford 2009; Lillehammer 2010). Our two micro-region field studies, of Yangana Pe (Polar Ural Mts., Russia) in 2009 and 2012 (Svoboda et al. 2011; Sázelová et al. n.d.), were primarily based on mapping a complex system of more than 20 abandoned campsites and other human activity areas within an area of 100 km2 (Fig. 1). We established an expired date chronology based on more than 150 dates from imported objects and supported by additional seasonal evidence. The majority of the summer Nenets campsites are concentrated around lakes, in areas suitable for fishing or the hunting of waterfowl, while the winter and early spring campsites are situated higher on the slopes. Furthermore, we separated the sites and compared the patterns of change, especially as the road and railroad connecting the Yamal gas mining fields were built nearby in 1986-2003. In our record, the termination of these constructions is reflected by an increase of imported goods at the sites. In some cases, the stable demographic structure at one abandoned campsite (with presence/absence of children) and the specific habits of the adults (such as smoking or drinking alcohol) suggest that we are dealing with the same or a closely related family. Nenets camps are usually composed of 1-3 tents (choom) with 5-6 inhabitants in each, so that 6-18 people may concentrate at a site during movement of the reindeer herd. The choom is usually set up on a north-south axis with its entrance facing east to southeast. A symbolic inner axis separates space within the choom, and the immediate space around it, into two worlds, of men and women. The symbolic siyangi line running from the hearth backwards through the choom restricts adult men and women in their movement until the top of the choom is visible (children and dogs are excepted from this rule) (cf. Chomich 1995; Golovnev 2004; Gemuev et al. 2005). Campsites are usually moved every 2-3 days whilst herding in summer and after two or three weeks in winter, while searching for new pasture or reoccupying a place that has not been visited for some time. The hunting and fishing families camping around the lakes at Yangana Pe in summer usually occupy these sites for several months and move only when the resources are depleted. For each abandoned Nenets campsite we documented a fixed inner site structure pattern composed of a domestic zone for the choom; an activity zone for woodworking, sledge-repairing and other activities; and a surrounding toss zone with several accumulations of toss. Several cycles of occupation were recorded at each campsite and it is clear that the selected areas were usually re-occupied systematically, although certain spatial modifications may have been made (for example due to higher moisture content of the ground). The model of a campsite´s inner structure might therefore be easily disturbed with new resettlement activities. Nenets children are usually expected to produce toys by themselves, and it is through games that they improve in activities necessary for their future life (see Ivanov 1970; Chomich 1995; Golovnev 2004; Arefieva 2008). Boy´s toys are miniatures of items used in the world of adult males, and include weapons such as bows and arrows, guns, slingshots and lassos, but also snowshoes, sledges and all necessary equipment for reindeer yokes. Boys also play with a variety of human and animal figures such as reindeers, dogs, foxes, fishes, etc. Such boy´s toys are usually carved of wood and bark, or cut out as silhouettes from paper, but in a game an individual human/animal character might be represented by piece of bone, a hoof, a feather, The Dolní Věstonice Studies, vol. 20 - Mikulov Anthropology Meeting 201458 Figure 1. Distribution of human activities in the Yangana Pe micro-region; the location of children´s objects and activities are marked with red. Legend: triangle = active summer campsite; large circle = abandoned summer or winter campsites; medium circle = accumulation of human activities, such as woodcutting; small circle = individual objects, such as fishnets or loaded sledges with winter equipment; square = natural distinctive points, which might be connected to sacred places; and two migration routes for reindeer herds which are marked by arrows. S. Sázelová – J. Svoboda – M. Novák piece of fur or a twig. A nguchuko, a hand-made doll with a head made of a water-fowls´ beak is a typical girl´s toy. Dolls displaying male characteristics are usually made of swan or wild goose beaks, as opposed to female dolls which are made of duck beaks. The doll´s body is flat in shape and made of woolen textiles or fur, and always wears removable dress. The front is decorated with colorful textile strips (usually with a pattern of odd numbers, such as 3, 5, 7, 9, etc.), and other decorative motifs shaped from various textiles, beads or fur. The color of the dress also indicates the gender and age of the character represented – young women wear bright, colorful dresses, compared to old women who are represented by muffled colors (all female dolls might be decorated with necklaces or earrings made of beads). The dresses of male dolls are dark in color, usually black, dark blue or green, and most often without additional decorations. In producing their dolls, girls are improving their skills in sewing, embroidery and fur working, which are duties of all adult Nenets females. The care of dolls involves miniatures of dishes, blankets and lamps, which represent the necessary equipment of a future woman´s household. Each figure, whether of a boy or girl, is a best friend, mentor, helper, and teacher of the child. It is gifted with its own voice, character and behavior, which is further developed in games. All human/animal toys might thus act in various situations of play according to their characters. During play a child and their comrades may agree or disagree with this behavior, so the children may acquire important moral knowledge for use in the future. A toy may also turn into a feared enemy of the child, especially if it is inhabited by a demon which brings illness or death. The “life” of each toy may thus represent the The Dolní Věstonice Studies, vol. 20 - Mikulov Anthropology Meeting 2014 59 Campsite name Abbreviation Paper cut-outs Miniatures of utilitarian objects Imported toys Traces of play Total “Avka” Campsite 1 AC1 2 - 1 1 4 Northwestern Campsite NWC - 2 - 1 3 Valley Campsite 1 VC1 2 - 1 - 3 Valley Campsite 3 VC3 2 - - - 2 Slope Campsite 1 SC1 10 15 1 - 26 Slope Campsite 2 SC2 - - 1 - 1 Standing Position 1 st1 - - 1 - 1 Southeastern Campsite SEC - 1 - - 1 Taunto Campsite 1 TC1 - 3 2 6 11 Taunto Campsite 2 TC2 n - 2 3 5+n Taunto Campsite 4 TC4 27 4 11 2+2n 44+2n Taunto Campsite 5 TC5 - 1 - - 1 Total 43+n 26 20 13+2n 102+3n Table 1. Distribution of different children´s objects and activities at abandoned Nenets campsites in the Yangana Pe region. Abbreviations: n = non-numbered accumulations. Figure 2a, b. Left: A Nenets doll, nguchuko, from the museum in Labytnangi. Photo: Sandra Sázelová. Right: miniature Nenets toy sledge made from larch wood, and a paper cut-out representing a reindeer (both objects from Taunto 4 Campsite). Photo: Martin Frouz. CHILDREN’S ACTIVITIES AS SEEN AT ABANDONED CAMPSITES Detecting the Children Zone at the Abandoned Nenets Campsites from Polar Ural Mts., Russia fate of its owner. As a result, the production of toys follows the same strict rules as charms, especially in their shaping. They are usually stylized with schematic faces and their limbs are often completely or partially suppressed. Within our micro-region at Yangana Pe we recorded several abandoned campsites with traces of childreln´s play concentrated mostly within the domestic and activity zones. The remains of these activities can be separated into several categories (Tab. 1): a) Self-made toys or the remains of their production include paper cut-outs mainly of reindeer silhouettes (found at AC1, TC4, SC2 and VC1), lines of triangles or indeterminate shapes and the remains of paper/or TetraPack cutting. Representative toys include miniatures of men´s utility objects, specifically three sledges (from TC1 and TC4; Fig. 2b); two paddles (from NWC); a ngali, used in taming stubborn reindeer (during play this might be attached to a dog) (from SEC); a toy winter-scooter (from TC1), and two wooden slingshots (found at TC4 and TC5). At SC1 a bag was found, handmade from the plastic cover from toilet paper with a felt handle, which held a “Baltika” matchbox with broken branches imitating matches, five plastic forks, three covers from sweet preserves, four stones and several paper cut-outs. The Dolní Věstonice Studies, vol. 20 - Mikulov Anthropology Meeting 201460 CONCLUSION ACKNOWLEDGEMENTS Arefieva, A. A. 2008: Nguchuko i akan´. In: Istorija yamala: Vzglyad iz muzeyych chranilishch. Ekaterinburg: Ural´skiy rabochiy, pp. 51-57. (In Russian) Binford, L. R. 1991: When the going gets tough, the tough get going: Nunamiut local groups, camping patterns and economic organisation. In: Gamble, C., Boismier, W.A. (Eds.), Ethnoarchaeological Approaches to Mobile Campsites. International Monographs in Prehistory, Ann Arbor, pp. 25–137. Crawford, S. 2009: The archeology of play things: Theorizing a toy stage in the ‘biography’ of objects. Childhood in the Past 2: 56-71. Chomich, L. V., 1995: Nenci. Ocherki tradiciyonnoy kul´tury. Sankt Peterburg. (In Russian) Gemuev, I. N., Molodin, V. I. and Sokolova, Z. P. (eds.) 2005: Narody Zapadnoy Sibiri. Khanty, Mansi, Sel´kupy, Nency, Ency, Iganasany. Nauka, Moskva. (In Russian) Golovnev, A. V., 2004: Kochevniki tundry: Nency i ikh folklor. Rossiyskaya Akademia Nauk, Ekaterinburg. (In Russian) Haakason, S. D. Jr 2000: Ethnoarchaeology of the Yamal Nenets. Utilizing emic and etic evidence in the interpretation of archaeological residues. Dissertation Thesis. Harvard University, Cambridge, Massachussetts. Hammond, G. and Hammond, N. 1981: Child´s play: A distorting factor in archaeological distribution. American Antiquity 46 (3): 634-636. Ivanov, S. V. 1970: Skulptura narodov severa Sibiri (IXX-pervoy poloviny XX v.). Izdatelstvo nauka, Leningrad, pp. 71-73. (In Russian) Lillehammer, G. 2010: Archaeology of children. Complutum 21 (2): 15-45. Sázelová, S., Svoboda, J., Kosintsev, P. A. and Novák, M. (n. d.): Patterns of change in Nenet landscape: Ethnoarchaeological example at Yangana Pe, Polar Ural Mts., Russia. Svoboda, J., Sázelová, S., Kosintsev, P. A., Jankovská, V. and Holub, M. 2011: Resources and spatial analysis at actual Nenets campsites: Ethnoarchaelogical implications. Journal of Anthropological Archaeology 30: 30-43. REFERENCES S. Sázelová – J. Svoboda – M. Novák These objects were most probably in imitation of woman´s household equipment. b) Imported toys include several pieces of dolls (found at AC1, VC1, TC2 and TC4), an eye from a stuffed animal (from TC4), several pieces of Lego or other toy building sets (found at SC1, TC1 and TC4), a string of beads (from SC2), a glassy marble (from st1), paper stickers (with African animal motifs) and a page with a nursery rhyme (from TC4). c) Traces of play are represented by holes (found at TC1, TC2 and TC4), wood hammered into the ground (from AC1 and NWC), collections, piles and different patterns of pebbles (from TC2 and TC4), and drawings of water-fowl motifs on plastic insulation boards (from TC1). Another aspect of play might be connected to the loss of toys (a stuffed animal was found several hundred meters from the higher Slope campsite). Haakason (2000) described children from the Yuribei River on the Yamal Peninsula, making piles of reindeer skulls during play. We observed piled reindeer skulls and antlers near the campsites NWC, PC and TC3, but in this case, we could not exclude other explanations such as their being a personal symbolic area maintained by a specific family, or after the remains of other activities resulting from overlapping periods of occupations. Finally, the presence of children at a campsite might be reflected in objects connected with child care, such as: a) baby-food (found at VC1 and TC3); b) pieces of clothing and boots (documented at SC1, st1, TC4 and TC5); or c) objects connected with child hygiene or medicine, such as napkins (found at VC1, SC3, st1, TC4 and TC5), a tube of polish (from TC3), a box from washing powder (from TC5) and Panadol Baby suppositories (from TC3). In two instances such objects were recorded at campsites (SC3 and TC3) with no other traces of children´s activities. We tested a hypothesis that the presence of children at a campsite could be seen in differences in foodstuffs, for example in the higher consumption of candies, sweet condensed milk, sweet preserves (honey and jams) or sweet non-alcoholic beverages. The season and number of occupational cycles proved to be more important factors in the accumulation of sweets, however, than the simple presence/absence of children at site. Traditionally, Nenets children produce their own toys from unstable materials; they are strictly bound to gender and usually reflect the every-day activities of adult life. More recently imported plastic and stuffed toys have been added to this traditional assemblage. During their play, Nenets children create specific patterns, usually detectable within the domestic and activity zones of abandoned campsites. In order to interpret them in context, supplementary ethnoarcheological evidence should be incorporated and evaluated. ThisresearchwassupportedbyEUGrant CZ.1.07/2.3.00/20.0181 and Czech Grant Agency no. GAP504/13/08169S. We are particularly grateful to Pavel A. Kosintsev and other colleagues from the Institute of Ecology of Plants and Animals, Russian Academy of Sciences in Yekaterinburg, to the Nenets Okotetto families, Martin Holub, and the Settlement Administration in Panaevsk in the Yamalo-Nenets Autonomous Region for consultations, advice and collaboration. 36 2.4.3 Resources and spatial analysis at actual Nenets campsites: Ethnoarchaeological implications Citace: Svoboda, J., Sázelová, S., Kosintsev, P., Jankovská, V., Holub, M. 2011: Resources and spatial analysis at actual Nenents camp sites: Ethnoarchaeological implications. Journal of Anthropological Archaeology 30, 30-43. Resources and spatial analysis at actual Nenets campsites: Ethnoarchaeological implications Jirˇí Svoboda a,b,⇑ , Sandra Sázelová a , Pavel A. Kosintsev c , Vlasta Jankovská d , Martin Holub a a Department of Anthropology, Faculty of Sciences, Masaryk University, Kotlárˇská 2, 611 37 Brno, Czech Republic b Institute of Archaeology, Academy of Sciences of the Czech Republic, Královopolská 147, 612 00 Brno, Czech Republic c Institute of Ecology of Plants and Animals, Russian Academy of Sciences, 8-go marta 202/3, 620 144 Ekaterinburg, Russia d Institute of Botany, Academy of Sciences of the Czech Republic, Porˇícˇí 3b, 639 00 Brno, Czech Republic a r t i c l e i n f o Article history: Received 25 May 2010 Revision received 13 October 2010 Available online 23 November 2010 Keywords: Ethnoarchaeology Mobile populations Nenets Polar Ural Siberia Resources Settlement structure a b s t r a c t The aim of this paper is to present and discuss empirical evidence on the dynamics of occupation and site formation processes from contemporary mobile campsites in Northwest Siberia. The questions posed are derived generally from archaeological studies of Upper Paleolithic record in Europe. We document the active Nenets summer camps at lakes and the abandoned winter and spring camps in the open tundra and the forest tundra. Analysis of the floral and zoological resources shows that plant resources and fish are available predominantly in the summer while reindeer are abundant in these regions in fall and winter when they return from summer pastures further north. When natural resources are not available, groups supplement with food purchased at shops. Within these living camps, ‘‘structures évidentes’’ and ‘‘structures latentes’’ of classical French paleoethnology cannot be distinguished as clearly as at Upper Paleolithic sites: and architectural remains, ash from hearths, and other objects may be removed from the central areas towards the site peripheries. However the investigated camps preserve a discrete structure with interior living areas (including children’s playgrounds), exterior areas with evidence of reindeer carcass processing, woodworking, and other activities, peripheral toss zones, and dispersed activity remains in the surrounding landscape. Ó 2010 Elsevier Inc. All rights reserved. The ethnoarchaeological questions A methodology based on planigraphy of contemporary nomadic campsites was introduced with the development of more scientific approaches in archaeology during 1960s and 1970s. Numerous documents and publications concerning the spatial distribution of objects and features at nomadic campsites within a variety of contemporary environments inform our research (Yellen, 1977; Binford, 1978, 1987; Cribb, 1991; Gamble and Boismier, 1991; Phillips, 2001), but inadequacies remain in the interpretation of nomadic behaviors, resource exploitation, site formation processes, and their visibility in the landscape (Gamble, 1991; Rossignol and Wandsmider, 1992; Khasanov, 1994). Upper Paleolithic settlement archaeology provides a rich record of hunters´ settlement strategies and resource exploitation in the Last Glacial landscape (Kroll and Price, 1991; Peterkin and Price, 2000; Vasil´ev et al., 2003) and the reindeer-and-horse-based Magdalenian sites of the Paris Basin serve as the classic case study (Leroi-Gourhan and Brézillon, 1972; Stapert, 1989; Cziesla, 1990). Our approach was inspired by current fieldwork at Upper Paleolithic archaelogical sites in the Moravian corridor as one of the most important European passages for animals and their prehistoric hunters. One of the aims of Moravian archaeology (or, paleoethnology) is to explain how this landscape was used and exploited by a variety of cultural entities. In terms of resources, the Gravettian hunters adapted their site-location strategies to maximize mammoth exploitation along the river valleys. Mammoths markedly predominate over reindeer in the faunal remains from most of these sites, and are supplemented by a variety of small animals. In contrast, the Magdalenian economy in the same area is predominantly reindeer-oriented and partly horse-oriented, again supplemented by small animals. However, the Magdalenian settlement strategy does not echo the geomorphology of the Moravian corridor and its riverine network as closely as the Gravettian one, and the majority of sites are limited to distinct cave clusters in the Moravian Karst. In terms of spatial analysis of the Upper Paleolithic landscape, human occupation reflects the seasonally predetermined changes of vegetation cover and the regular migrations of animal herds. Seasonal observations inferred from archaeological and environmental data suggest that the large settlements might have had 0278-4165/$ - see front matter Ó 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.jaa.2010.10.002 ⇑ Corresponding author at: Department of Anthropology, Faculty of Sciences, Masaryk University, Kotlárˇská 2, 611 37 Brno, Czech Republic. Fax: +420 519517637. E-mail address: svoboda@iabrno.cz (J. Svoboda). Journal of Anthropological Archaeology 30 (2011) 30–43 Contents lists available at ScienceDirect Journal of Anthropological Archaeology journal homepage: www.elsevier.com/locate/jaa year-round or long-term winter occupations, while some of the smaller sites were more temporary spring and summer campsites. Theoretically, there are several levels of spatial analysis: In the Moravian corridor, the complex landscape contains individual sites and site-clusters localized on the valley slopes and elevations, in relatively lower altitudes, and with almost regular distances between one another. On a smaller scale, the individual sites demonstrate a distinguished hierarchy with regards to their size and complexity. Another factor is the seasonality and function of sites, and the extent to which they were specialized hunting or tool production sites or more general occupation sites. Therefore, these Upper Paleolithic sites are composed by elements and factors which may not be directly comparable. A variety of analytical approaches are necessary. Contrary to recent nomads who rely on food security and keep reindeer herds as constant source of meat, wild reindeer might be perceived as an unstable subsistence resource during the Upper Paleolithic. In the archaeological record, it is not even clear how to distinguish the effect of hunting from herding (Ingold, 1980; Krupnik, 1993). Recent nomads are accompaniers of reindeer rather than their active leaders, thus reindeer herding appears as an intermediate adaptation between hunting and domestication (Bogoras, 1901; Ingold, 1980; Krupnik, 2000; Stammler, 2007). Given the variability observed in the Upper Paleolithic record, the aim of this paper is to present and discuss empirical evidence on dynamics of occupation and site formation processes from contemporary mobile campsites. To a large extent, our approach was a priori oriented by the aforementioned questions, derived from an archaeological context with a different environment and social structure. During our summer stay in the Polar Ural Mts. in 2009, we documented active Nenets summer camps on the Lake Taunto, as well as remains of temporarily abandoned winter and spring camps in the open tundra at Yangana Pe mountain ridge (the Valley camps and the Slope camps), and in the forest tundra west of the Ob River near Labytnangi (Oktyaberskaya campsite). Using a methodology basically similar to the one developed at Upper Paleolithic sites, we recorded the spatial distribution of objects, listed their inventories according to zones, and created photographic documentation. Dating of the abandoned sites (Table 1) was based on bone preservation (presence of muscles, fat, and ligaments) and on the expiry dates marked on industrial subsistence products. Polar Ural and southern Yamal: ecological frameworks In the Yamal–Nenets Autonomous Region, the north–south oriented principal mountain chain of the Polar Ural Mts. is paralleled in the east by one of the traditional migration corridors. This corridor is periodically frequented by reindeer herds moving along the mountains from the plains around the Kara Sea, where they spend the summer, towards their winter locations around the Labytnangi–Kharp railway. Along this roughly 250–300 km long corridor, the landscape grades from the open tundra through the dwarf shrub tundra to the forest tundra. At the northern latitude of 67°, Polar Ural Mts. are joined by an east–west oriented limestone ridge named Yangana Pe (289 m a.s.l.) and the adjacent metamorphic ridge of Nyava Pe (236 m a.s.l.). Yangana Pe represents a unique phenomenon of the southern Yamal Peninsula because of its rich vegetation cover, influenced by the calcaneus subsoil, which makes it an attractive environment for aboriginal hunting, fishing and pastoralism (Figs. 1 and 2). The landscape exhibits a structured geomorphology featuring mountain chains, isolated hillrock, broad valleys and gorges. Willow bushes are prevalent, with dominant species of willows, Salix lanata, Salix glauca, Salix lapponum and Salix phylicifolia, accompanied by alder, Alnus fruticosa. Towards the higher elevations of western Yangana Pe, the subzone of open southern tundra grades into mountain tundra, comparable to the vegetation of the Polar Ural Mts. The hilltops allow a good overview to the surrounding flat tundra of southern Yamal Peninsula while sheltering the basins and lakes along the southern foothills from winds from the sea. A more favorable climatic at the southern foothills is supported by solar reflection of the whitish limestone cliffs, creating here the northernmost sheltered area where some dwarf trees and shrubs grow. Yangana Pe intersects with the traditional reindeer migration route approximately in the middle of the pathway. In the past, strategic passes crossing the rocky ridge would have been good places for reindeer catches and kills. Although reindeer bones, skulls, and antler are widely dispersed over the landscape, they markedly concentrate in such passes. The Oktyaberskaya camp lies 150 km south of Yangana Pe, where the forest-tundra vegetation zone expands from the eastern slopes of Polar Ural Mts. to the left banks of Ob River mouth. Larix sibirica is the dominant tree and Betula nana is the most frequent bush in this area. Geological subsoil is formed by fluvial graveland-sand cover of the Ob River in the east, whereas the western part is predominantly formed by fluvioglacial sediments with a higher representation of larger-sized gravel. Depending on geomorphology, hydrology, exposition and other abiotic factors, the vegetation composition varies both on micro- and mesoscales. Such versatile mosaic patterns are typical for a natural landscape not yet influenced by significant anthropogenic impacts (Knyazev et al., 2006; Rebristaya, 2006). The aboriginal human impact on this vegetation is small, based on the data we collected. This small human impact contrasts with the radical vegetation changes that occur around the camps of Russian geological, mining, and biological expeditions (Forbes et al., 1999; Haller et al., 2007). Northern aboriginal populations collect and use a variety of plant resources (Sinclair, 1953; Owen, 2005). The highly valued quality of any plant available in the tundra and forest tundra is its sugar content. Sugar also acts as an important means of food conservation. Along the Polar Ural Mts., the plants most frequently collected for subsistence are Vaccinium uliginosum (bog billberry) and Vaccinium vitis-idaea (cranberry). Both are used to produce very sweet ‘‘vareniye’’ jam, which is used as a substitute for sugar in tea, as an addition to vodka and other alcohols, or produce a drink called ‘‘napitok’’. Vaccinium myrtillus (blueberry) is scarcer, and is used for jam in cakes and, again, for a ‘‘napitok’’. Another plant, Oxycoccus quadripletalus (moosberry), is collected from peat bogs. It has larger and tastier fruits, especially when frozen. It is also used to make jam and ‘‘napitok’’. Rubus chamaemorus (cloudberry) is a highly valued plant with orange fruit which is used in ‘‘vareniye’’ preserves, compotes and alcoholic drinks. Lonicera altaica (Altaic honeysuckle) is a medium-sized bush primarily found alongside streams. The fruits are small and difficult to collect but good for ‘‘vareniye’’ and when used in cakes or to sweeten tea. Allium schoenoprasum (chive) is collected and used fresh or conserved (probably in salt). Wherever the sporadic bushes of Ribes rubrum (red currant) are found, the fruit is directly consumed. Mushrooms are usually not consumed in this region, but Amanita muscaria may have been used for ritual (shamanist) purposes and ‘‘chaga’’ (Innonotus obliquus, a mushroom that acts as a parasite on birches) is used to produce a heavy, dark liquid to drink. Animal composition in this region changes radically throughout the year (Dobrinskiy, 1995; Kosintsev, 2005). Dominant animals present throughout the year are reindeer (Rangifer tarandus), wolf (Canislupus),glutton(Gulogulo),ermine(Mustelaerminea),mountain hare (Lepus timidus), lemmings (Dicrostonyx torquatus, Lemmus J. Svoboda et al. / Journal of Anthropological Archaeology 30 (2011) 30–43 31 sibiricus),voles(Microtusgregalis,Microtusmiddendorfii,Moeconomus oeconomus, Arvicola terrestris), willow ptamirgan (Lagopus lagopus), and raven (Corvus corax). Twenty species of lake and river fish are present in the region, but the most important for human subsistence arewhitefish(Coregonusnasus,Coregonuslavaretus,Csardinellasardinella,Coregonuspeled), pike(Esoxlucius), and burbot(Lota lota).Inthe winter, Arctic fox (Alopex lagopus) are found in the area, and in the summer,elk(Alcesalces) appear.Inthespring,morethan80 birdspecies arrive, and many of them stay until fall. For humans, the most importantbirdsareArcticloon(Gaviaarctica),whooperswan(Cygnus cygnus), two species of goose (Anser albifrons, Anser fabalis) and six species of duck (Anas penelope, Anas clypeata, Anas crecca, Anas acuta, Authya fuligula, Clangula hyemalis). Mosquitos, namely northern house mosquito (Culex pipiens), black fly, and black gnats, represent the most important insect species, especially between June and September. Throughout the year, fishing and hunting of reindeer, mountain hare, and willow ptarmigan is possible in the Polar Ural region, whereas water fowl is primarily hunted in the summer. However, the economically important animals become most numerous in spring and fall, when large flocks of water fowl pass the region. In early winter and early spring mountain hare and willow ptarmigan migrate to the region, where they may be hunted by loops. Hunting and fishing alone can sustain humans in this region from spring to fall. However, in the winter, only those owning reindeer can survive in this region. During the past few winters, reindeer were not pastured at Yangana Pe, and, consequently, wolfs (C. lupus) left the area. As a result, bones left in the campsites by humans were not destroyed and the collected bones represent complete assemblages that were only partly gnawn or eaten by dogs. While analysing the bone assemblages, we investigated the formation time of the complex at each camp (according to organic decomposition of the bone surfaces and remains of muscles, fat, and ligaments); the season (according to the age of each animal); composition of bone types; composition of skeletal elements of each type; individual age structure; patterns of bone fragmentation; and postmortum changes. Nenets social frameworks The nomadic Nenets base their traditional economy on reindeer exploitation (Golovnev, 1995; Chomich, 1995). Their predecessors first hunted and harnessed reindeer during immigrations between 500 and 1100 AD, herding more progressively after 1600 AD (Golovnev and Osherenko, 1999). Their actual economic cycle correlates with annual reindeer migrations. During the summer, the open tundra offers more resources and some protection against mosquitos, whereas in the winter, subsistence resources are more accessible in the forest and forest-tundra zones. Therefore, spring reindeer migrations are oriented northwards to the open tundra zone and their fall migrations take them back to the forest zone. A complete Nenets family, or 2–3 related families, migrate repeatedly along the same route, males together with females, children, ‘‘chums’’, and equipment. To practice this lifestyle, a family needs minimally 80–100 reindeer. Most families do not possess enough animals to practice this lifestyle. Instead, they send their reindeer northwards with larger herds while the family stays at rivers and lakes along the border of forest tundra and open tundra. Here, they Table 1 Review of dating, based on production and expiry dates on industrial products and state of bone preservation. VC – Valley camp, SC – Slope camp, OC – Oktyaberskaya camp; two other letters refer to specific site zone: Do – domestic zone, Ac – activity zone, To – toss zone, Uc – upper camp. Location Object Dating VC01_Do Paper covers from tetracycline liniment 2001–2004 VC02_Ac Unspecific tin Consumption up to March 2009 VC03_Ac Tin from beer Consumption between April and October 2009 VC04_Ac Piece of newspapers from the Saturday 16th February (it could be 2002 or 2008) VC05_To Reindeer bones Spring 2009; some older than 1 year SC01_Uc Tin from milk 2002 SC02_Ac Tin from milk 2003 SC03_Ac Tin from milk Consumption up to 15th July 2003 SC04_Do Tin from milk Consumption up to October 2007 SC05_Do Tin from milk Consumption up to 7th May 2008 SC06_Do Reindeer bones Spring 2009 SC07_Ac Reindeer bones 1–2 years; more than 3 years SC08_Uc Reindeer bones More than 5 years OC01_Do Piece of newspapers (sever OK) 7th September 2006 OC02_Do Piece of newspapers (sever OK) 28th March 2007 OC03_Ac Cover from Czech chocolate stick 13th November 2007–12th November 2008 OC04_Ac Paper cover from flour 16th March 2008 OC05_Do Cover from biscuits July 2008–July 2009 OC06_Do Jar of caviar 11th November 2008–11th May 2009 OC07_Do Jar from pickles 6th September 2008–6th September 2011 Fig. 1. Map of Yangana Pe and Nyava Pe showing location of the recorded campsites, facing north: (1) the active summer camp; (2) the abandoned Valley camp, (3) the abandoned Slope camp (lower); (4) the abandoned Slope camp (upper). Fig. 2. The open toundra landscape. View from Yangana Pe mountain ridge over the lakes towards the mountain ridge of Polar Ural. 32 J. Svoboda et al. / Journal of Anthropological Archaeology 30 (2011) 30–43 survive by fishing and occasionally hunting (Kryazhimskii and Danilov, 2000; Johnson, 2002; Stammler, 2007). While Upper Paleolithic populations in Europe existed independently from modern cultural and economical systems, the subpolar populations of Siberia were subjected to the effects of political and economical centralization. Collectivisation and construction of villages since the 1920s and 1930s introduced intensification, which led to efforts to maximize reindeer herd sizes. Reindeer groups also began to increase in the number of females per group to ensure reproductive success, while retaining males who were needed for transportation. Human movements also became centralized and groups maintained a smaller circumference around villages rather than adapting to take advantage of the natural potentials of each region. The discovery of a Yamal gas field in the 1960s resulted in the destruction of large areas of natural landscape for mining and its infrastructure. This activity pushed increasing numbers of reindeer into smaller areas of pasture. These industrial processes led to overgrazing in certain areas (Potapova and Levina, 1956; Forsyth, 1992; Pika and Bogoyavlensky, 1995; Forbes, 1999; Rees et al., 2003; Krasovskaya and Tikunov, 2008), although we did not observe this overgrazing in our region of study. At Yangana Pe, reindeer pastoralism is not the dominant activity throughout the year. In summer, Nenets families who do not own enough reindeer to accompany them to northern pastures, stay at place and send their reindeer together with the larger herds. While Nenet families wait for their reindeer to return from northern pastures, they settle periodically on lake shores south of the Yangana Pe ridge, where they practice systematic fishing and occasional hunting. During the winter, as the lakes freeze and fishing is no longer possible, Nenets families move to higher altitudes, in the protected valleys and slopes of Yangana Pe, while other groups follow reindeer herds further south towards the railway and the forest. In these instances, natural resources are supplemented by goods purchased in nearby shops. An episodically frequented north–south oriented communication axis, consisting of a field road, a parallel railway, and a shop, runs east of the mountain ridge. Laborovaya, the nearest village, serves as another center of shopping, basic medical care, and administration. During our stay in August 2009, we encountered the Nenets in four family ‘‘chums’’, in groups of two, located along the shores of the lakes south of Yangana Pe (Fig. 3). A typical family unit is composed of parents with 2–3 children. The dwelling and the landscape immediately surrounding it represent the base of spatial thinking of all northern aboriginal populations. A ‘‘chum’’ with a central hearth and an axis determined by the entrance creates an ideal circle, reflecting the structure of the world. The ‘‘chum’’ as a whole is considered a female zone, while the surrounding tundra is male zone. This does not prevent the other family members or guests from entering such zones, but activities in a given spatial context are always the initiative of the responsible sex. In addition, the ‘‘chum´ s’’ interior is also divided into a male and female zone, but the women nevertheless move preferentially around the hearth in center, whereas the most interior zone opposite the entrance is strictly male (Golovnev, 1995, 2004). The summer ‘‘chum’’ is constructed by women using wooden poles and canvas. The work takes about 0.5–1 h; the winter ‘‘chum’’ is made of reindeer skin and construction takes 1.5–2 h. Around the ‘‘chum,’’ sledges are arranged with furs and other materials prepared for the winter ‘‘chum’’ (Fig. 4). The Nenets move freely throughout the landscape, treating it in the same way as we treat our own private apartments and houses. Sledges will be parked wherever it is convenient, given the plans for the next season, the fishing nets will be left at the lake shore for the next use, and vessels or prepared cut wood for the next camp will be left at favorable camping spots in the landscape. The ‘‘Valley camp’’ (VC) The Valley camps (latitude 67°410 34.3200 N, longitude 67°510 25.5300 E, 126 m a.s.l.) are located on two platforms about 80 m from each other, in a hidden valley of Yangana Pe oriented towards the SW, and in a strategic position high above the valley bottom. Vegetation covers about 60% of the occupied surface and it is predominantly composed of low herbs such as Dryas punctata, at places accompanied by V. uliginosum ssp. microphyllum, Ledum decumbens and Empetrum hermafroditum. Astragalus subpolaris (Astragalus alpinus ssp. arcticus), Luzula sp. div., Equisetum arvense/boreale, Oxytropis sordida, Polygonum viviparum, Campanula rotundifolia, Dianthus repens, and Arctous alpina are also found regularly scattered in the area. Isolated occurrences of Rosa acicularis were recorded. Low bushes of S. lapponum appear in the vicinity. The valley bottom on both sides of the brook is covered by dense bush willows (S. lanata, S. glauca, S. lapponum, S. phylicifolia) with moist herbal vegetation covering the floor level (Polygonum bistorta, P. viviparum, Cirsium heterophyllum, Calamagrostis heterophyllum, R. chamaemorus, R. arcticus, Caltha palustris, Saxifraga hirculus, etc.). Dense formations of A. fruticosa grow, predominantly on the SE expose of the slope in the protected biotopes. ‘‘Tall herbs’’ are found in between (Polemonium acutiflorum, Aconitum cf. baicalense, Trollius cf. asiaticus, Dianthus superbus, Veratrum lobelianum, Angelica decurens, Lamium album, Veronica longifolia, Geranium silvaticum (=Geranium krylovii), Petasites frigidus, Parnassia palustris, Valeriana capitata, R. chamaemorus, R. arcticus, Viola biflora, Pedicularis cf. oederii, etc.). The lower camp platform, approximately 35  25 m in size, may be separated into three domestic areas, possible ‘‘chums’’, four activity areas, and discard or toss zones along the periphery (Fig. 5). On the main platform, there are two in situ hearths surrounded by domestic areas, a pile of wood, and two adjacent circular activity areas of 5 m and 3 m in diameter with wood splinters and additional objects. At the southern promotory, there is another domestic area, possibly a ‘‘chum’’, containing a hearth with two flat stones for cooking, with wood splinters and sticks around. An adjacent activity area included a pile of stones and scattered stones around. Below the promotory lies a depository of wooden planks stored here for the next occupation, a toss zone of discarded objects and reindeer bones, and two discrete toss piles. Occupation traces are less clear on the higher platform, which is adjacent to the east, and measures 50  25 m. Dates marked on the industrial products go back to 2001, but most relate to the last (2009) occupation. With the exception of a few hare bones, the majority of the bones is of reindeer (Table 2), and belongs to a minimum of nine adults. A fragment of one cranium, one mandibula, one humerus, Fig. 3. Actual Nenets summer camp at lake Taunto, showing a chum and sledges. J. Svoboda et al. / Journal of Anthropological Archaeology 30 (2011) 30–43 33 one ulna, one radius and two metatarsus III belong to new-born animal, and one humerus and one tibia are from an unborn fetus. Calves are birthed starting during the second half of April in the Yamal region (Podkorytov, 1995), and the presence of fetuses and new-born individuals in this assemblage thus indicates the site was occupied during the spring (later April–early May) of 2009. A special characteristic of this assemblage is the absence of bones from the skull and trunk (no ribs and only two vertebral fragments were found). The majority of the fragments show breakage, and many vertebrae are smashed. Epiphyses of all bones (except fetal and new-born individuals) are fused. Another characteristic is that all metapodia, phalanges and part of the long bones are not split, despite the fact that marrow is highly valued by the Nenets and is treated as a delicacy in their traditional diet (Evladov, 1992). Complete bones (excluding antler and bone of the new-born individuals) comprise only 15% of the overall assemblage. Larger proportions of metapodia and phalanges (75%) are intact and remain connected by ligaments. The skin, called ‘‘kamus,’’ is valued as a material for dressing and was scraped off from these elements. Only four metapodia (14%), 22 phalanges (27%), and 20 other bones (61%) display gnawing marks from dogs. The majority of the bones belong to one assemblage, formed in springtime of 2009. All most all bones retain some muscle, fat, and a larger amount of ligaments. Only three fragments of humerus (one distal end and two fragments of diaphysis) and one fragment of femur (from diaphysis) seem to be older than 1 year. The structure of this assemblage is specific, always dominated by metapodia and phalanges, whereas skulls and trunks are almost completely missing. The first group of bones includes shoulderbones, vertebrae, ribs, and long bones, as remains of subsistence activities. The second group includes metapodia and phalanges, which are the remains of working processes. Fragments of antler may be added to this group. The third group is formed by fetal and new-born individuals. The ‘‘Slope camp’’ (SC) One of the shallow valleys crossing the southern slopes of Yangana Pe, formed by a brook surrounded by bushes shows intensive and diverse traces of human activities, with two camps. Dwarf shrubs (L. decumbens, D. punctata and E. hermafroditum) and low forms of B. nana, A. fruticosa, S. lapponum, S. glauca and S. phylicifolia are among the dominating taxons. At some climatically exposed areas we observed the typical frost boil soils, deprived of vascular plants on the surface and thus vulnerable to erosion by water, wind and frost. The initial development of these rough soils, prepared for possible future coverage by vascular plants, is marked by algae (Chlorophyta, Cyanophyceae) and by sporadic occurrences of young lichens and bryophytes. Compared to the Valley camp, the landscape physiognomy is closer to mountain tundra. The lower Slope camp (latitude 67°410 14.3800 N, longitude 67°540 26.3700 E, 154 m a.s.l.) occupies a platform of 100 m  70 m in size and it may be structured into several zones (Fig. 6). The upper (northern) margin is marked by a limestone rock formation, the southern margin by an oval-shaped elevation dominating above the brook valley. Pentagonal sorted circles are visible along the upper rock and on the slope below the site. On the platform between the rock and the elevation, two circular domestic areas, possibly ‘‘chums’’, were recorded. The first one has no visible hearth,Fig. 4. Sledges loaded with furs for winter and with antler. Yangana Pe in distance. Fig. 5. Yangana Pe, plan of the Valley camp – lower, facing north. Dark circles: interior domestic areas (‘‘chums’’), light zones: exterior activity areas, peripheric toss areas. Table 2 NISP of reindeer bones (Rangifer tarandus) based on selected samples from Valley camp. Letters refers to animal´s age category: E – embryon, N – newborn, A – adult; letters refers to specific damages: G – gnawed, B – broken, Ch – chopped. Valley camp Part of skeleton E N A Damage Antler 0 0 0 None Skull + maxilla 0 1 0 None Mandibula 0 0 0 None Vertebra 0 0 2 0/0/2Ch Rib 0 0 2 0/0/2G Scapula 0 0 3 0/0/3G Humerus 1 1 6 1G/0/3G, 5B Radius 0 1 6 0/1G/4G, 3B Ulna 0 1 3 0/1G/3G, 1B Carpals 0 0 0 None Metacarpals 0 0 12 None Pelvis 0 0 0 None Femur 0 0 1 0/0/1B Tibia 0 1 4 0/1G/3G, 4B Tarsals 0 0 5 0/0/5G Metatarsals 1 1 11 1G/1G/0 Phalanges 0 0 86 0/0/17G Total 2 6 141 2G/4G/40G, 14B, 2Ch 34 J. Svoboda et al. / Journal of Anthropological Archaeology 30 (2011) 30–43 but a relatively high concentration of objects (wood, bones, cans, textiles, cordage, straw). The second one has traces of an in situ hearth in the center, and a children’s area inside (paper cutouts of animal images, a child´ s ring). The plateau between these features yielded individual dispersed objects, but discrete activity areas could not be discerned. An accumulation of bottles lies on the top of the southern promontory. A complete sledge with a pot on it stands on the plateau below, and animal bones were dispersed all around. Three restricted toss accumulations were deposited along the eastern margin of this elevation. Isolated objects are located on the peripheries, including part of another sledge, a reindeer skin, and other objects discarded on the slope. The limestone rock above the camp has a fissure within which a large bottle was found. In the low alder bushes surrounding the camp and along the brook between the lower and upper camps, we recorded several small areas that were cleared by woodcutting. Expiry dates on products go back to 2002, but most of them are more recent. The faunal assemblage belongs to minimum of five adults, one semi-adult, one juvenile, and a mandibula belongs to a newborn reindeer (Table 3). The presence of the newborn associates this settlement with a spring occupation (Podkorytov, 1995). Another maxilla belongs to an individual of about 2 years old, probably killed here in spring (Klevezal´, 2007). Bones from all parts of the skeleton are present. Of importance is the lack of trunk bones (no ribs and only two vertebrae). Almost all bone fragments are due to breakage; only one skull and one rib are cut. The complete bones comprise 62% of the assemblage, with a dominance of metapodia and phalanges. Dog gnawing is visible on almost all bones from the domestic area (90%) and less than a half in the activity area (40%). Part of the bone assemblage show traces of fat and ligaments, suggesting that they were accumulated during the last spring (2009). Other parts of the assemblage show no traces of fat and muscles, while ligaments, preserved on almost all of the bones, are dry; this suggests that the bones were accumulated 1–2 years ago. The third part includes fragments of one cornu, one coxa and one humerus; of the lack of ligaments on these fragments, along with the converge of their surfaces with moss, suggest that these bones were deposited more that 3 years ago. In terms of usage, the skull, vertebrae, ribs and long bones are food remains; metapodia, phalanges, and antler fragments are remains of technological process, namely the production of ‘‘kamus‘‘. The third group includes remains of the newborn individual. The upper ‘‘Slope camp’’ In a dominant position higher on the same brook, we recorded a smaller site, only 20 m  12 m large (Fig. 7). On the highest part of the oval-shaped elevation lies a discrete accumulation of reindeer antler. The lower platform is marshy. Individual objects scattered over the plateau include additional pieces of antler, reindeer skulls, fragments of sledges, pieces of textiles, and bottles. Several accumulations of discarded objects are deposited on the slope along the eastern margin of the elevation. The bone assemblage scattered within the area includes fragments of two cornu and two crania, indicating a minimum of two adult individuals. The antler accumulation at the highest position included 11 pieces, seven right a four left, originating from eight adult individuals. There are three pairs from three individuals and additional single pieces from five individuals. Eight pieces are naturally discarded, while five pieces were broken off from skulls of three individuals before the natural discard. All distal parts of the branches shows gnawing by reindeer, one left antler shows breakage of the branch, and some branches are sawn-off by humans. This variability suggests that the antlers were selected and collected, and the presence of some pieces covered by moss and lichen suggest that the accumulation proceeded for more than 5 years. It is possible that one or both antlers of one individual were added into the cache each year. Reindeer males discard antler in winter, females do so 4–7 days after giving birth (Podkorytov, 1995) in the spring, but it is difficult to determine male and female antler in this case. Regardless, given the fact that Nenets families stay in this region in spring, summer, and fall, these pieces were Fig. 6. Yangana Pe, plan of the Slope camp – lower, facing north. Dark circles: interior domestic areas (‘‘chums’’), light zones: exterior activity areas, peripheric toss areas. The arrows point to the upper rock (with large bottle inserted in a fissure) and an interior children’s playground (black square). Table 3 NISP of reindeer bones (Rangifer tarandus) based on selected samples from Lower Slope camp. Letters refers to animal´s age category: N – newborn, J/S – juvenile or semi-adult, A – adult; letters refers to specific damages: G – gnawed, B – broken, Ch – chopped. Slope camp Part of skeleton N J/S A Damage Antler 0 0 3 0/0/1G, 1B Skull + maxilla 0 1 6 0/1B/4Ch, 2B Mandibula 2 0 0 2G/0/0 Vertebra 0 2 0 0/2G/0 Rib 0 0 3 0/0/3G, 1B Scapula 0 0 0 None Humerus 0 0 3 0/0/1G, 3B Radius 0 0 1 0/0/G + B Ulna 0 0 2 0/0/2G, 2B Carpals 0 0 2 None Metacarpals 0 0 7 0/0/5G, 5B Pelvis 0 0 3 0/0/2G, 1Ch Femur 0 0 2 0/0/2G, 2B Tibia 0 0 3 0/0/1B Tarsals 0 0 6 0/0/1G Metatarsals 0 0 12 0/0/8G, 7B Phalanges 0 0 14 0/0/2G Long bones 0 0 4 0/0/4G, 4B Total 2 3 71 2G/2G, 1B/33G, 29B, 5Ch J. Svoboda et al. / Journal of Anthropological Archaeology 30 (2011) 30–43 35 probably collected and deposited in the cache in spring. Nenets usually deposit antler at holy places (Chomich, 1995), and the Upper SC may represent such a location used by one of the families migrating around. The Oktyaberskaya camp (OC) About 150 km further south, near the city of Labytnangi and near the railway, we explored another type of a winter camp closer to the city. The Nenets brought their reindeer almost to the city periphery and sold some of the animals, while others were evidently killed here.The campsite (latitude 66°420 51.7100 N, longitude 66°340 27.8000 E, 97 m a.s.l.) is located on the margin of a light L. sibirica forest tundra in the north and a shallow tundra valley with a brook in the south (Fig. 8). The shrub layer is dominated by B. nana, sporadically by S. phylicifolia, and very rarely by Juniperus sibirica. Among the dwarf shrubs, species of Ericaceae and Vacciniaceae (E. hermafroditum, Ledum cf. palustre, V. uliginosum, V. vitis-idaea and A. alpina) dominate. R. chamaemorus and Luzula sp. are rarer in this area. Among lichens, we regularly recorded Cladonia cf. rangiferina, Cladonia cf. silvatica, Cladonia cf. pyxidata, Cetraria islandica, Cetraria alpestris, Peltigera cf. aphtosa and others, among mosses dominate Hylocomium splendens, Dicranum sp., Enthodon schreberi, Ptilidium ciliare, Polytrichum cf. strictum, Sphagnum sp. div., Pogonatum sp. among many other taxons. The site is formed by an irregular circle with an overall diameter of 65 m and a core diameter of 35 m. Individual objects are scattered in the tundra behind the site boundaries (Fig. 9). The core area is composed of two domestic areas, possibly ‘‘chums’’, with directly adjacent woodcutting areas, conus and a pile of cut wood, and a constrained region of reindeer bones. One of the ‘‘chums’’ included an interior children’s playground (suggested by a paper cutout, a pencil, and gum). The frontal (southern) periphery, opened towards the tundra, consists of woodcutting activity areas with reserve piles of cut wood, cumulations of various objects and bones, two scatters of reindeer remains (bones and skins). More dispersed areas of reindeer excrement and reindeer hair are located along the SW periphery, where the animals were obviously kept. The back (northern) periphery along the forest margin consists of about eight toss accumulations with discarded bottles, cans, paper boxes, 2–3 ash accumulations, reindeer skins and a reindeer cadaver. Compared to the northern sites, the structure of Oktyaberskoye shows standard character, but the prepared wood piles left at this site were larger and cut by a motor saw (and a benzine or kerasine canister was found here as well). Cut tree trunks are visible in the nearby forest. There is an evident change in toss structure: the discarded bottles of honey or preserves, predominating in the north, are replaced here by bottles of vodka and boxes of champagne. The preference for alcohol suggests that the site was dominated by adults, although the identified children’s playground demonstrates their presence. Dates marked on the products point to the period from 2006 to the present time. The peripheral areas of reindeer excrements and hair indicate where the animals where kept, while the reindeer bone accumulations correspond to a killing and processing area, where almost all particles of the skeletons were identified (Table 4). In contrast to the Valley and Slope camps, the bone assemblage from Oktyaberskaya includes a considerably higher percentage of vertebrae and ribs, a high number of cut-off or broken-off antler, and lack of carpals, tarsals, and phalanges. The remains belong to several adult and subadult individuals, while newborn reindeer were not recorded. One adult reindeer tibia is pathological (tumor). Gnawing by dogs is evident here, and similar to that observed in the other camps. In the surrounding forest tundra, we recorded areas of intensive woodcutting by motor saw. Antler, cans, belts, and a variety of other objects were attached to individual trees, possibly suggesting a symbolic practice. Interpreting the campsites: resources and activities The objects were catalogued at each camp, and sorted according to their origin as natural products from the surrounding landscape or as imported items. At the Valley camp, 70% were natural, 30% were imported; at the Slope camp, 56% natural, 44% imported; and at Oktyaberskaya camp, 55% natural, 45% imported. Subsequently, the objects were sorted according to their presumed functions, for subsistence, architecture, clothing, a variety of indoor and outdoor activities, symbolic activities, and related them to spatial zonality of the particular camp (Fig. 10; Tables 5–7). Fig. 7. Yangana Pe, plan of the Slope camp – upper, facing north. Fig. 8. Forest toundra landscape around Oktyaberskaya. Individual objects are attached to the trees. 36 J. Svoboda et al. / Journal of Anthropological Archaeology 30 (2011) 30–43 Subsistence The primary components of animal-based subsistence are the bones of edible animals, namely reindeer (only supplemented in the VC by a few hare bones). Fishing represents an important activity in summer, but since we focused on winter camps located further from the lakes, evidence of fishing was absent in these contexts. In addition, fish remains are given to dogs and disappear from the record. There is also little surviving evidence of the plant resources, which were available in summer, while imported goods were relied upon in winter and spring (Table 6). Reindeer bone remains represent a major information source about actual Siberian subsistence (Abe, 2005). Materials from the Valley camps and Slope camps show several common patterns (Fig. 11a and b; Tables 2 and 3). Only a small portion of items are of cranium, vertebrae and costae (3% and 8%, respectively), and a large portion belongs to bones of distal parts of the extremities (carpalia, tarsalia, metapodia, phalanx I, II, III; 89% and 64%, respectively). In contrast, inverse relationships are encountered at Oktyaberskaya (Fig. 11c; Table 4), where the animals were kept and no transport is expected. Although marrow is highly valued in the traditional Nenets nutriture (Evladov, 1992), all phalanges are complete, a large amount of complete metapodia were found (41%), and similar values were recorded for the other long bones. When fragments occur, these results from breakage instead of cutting. Both assemblages include new-born individuals. Differences lie in the amount of dog gnawing (52% in VC, and 29% in SC). Preserved fruits represent an important group in all recorded inventories, including jars from pickled cucumbers (all camps), several jars from jams, especially strawberry, peach, apricot and apple (VC, SC) and ketchup bottles (VC, OC). We recorded at all camps wrappings from various kinds of caramels, fruit caramels, confectionaries, burley sugars, etc. or plastic sticks from lollipops, which is consistent with observations that subarctic populations are fond of sweets. There was a greater variety of candies, chocolates or biscuits at the Oktyaberskaya camp, while at Yangana Pe, candies were less common than milk (including tins from condensed sweet milk, two sacks of dried milk and two crucibles from yoghurt). This evidence, together with other indications, suggests the presence of children at Yangana Pe. The category of beverages includes paper boxes and sacks of black tea, non-alcoholic drinks such as lemonades and juices and alcoholic drinks, such as tins of local beer (Arsenalnoe, Baltika), bottles or fee stamp from vodka, wine and champagne. The concentration of alcoholic drink remnants was greatest at the Oktyaberskaya camp. Frequently, the packings from Tetra Pak boxes, plastic bottles or tins from beverages were cut in center and worn out to be reutilized as vessels. The last group of objects is related to personal smoking habits, and it includes cigarettes (SC, and especially OC), separate matches, boxes of matches, and a lighter (OC). Several unusual or distinct artefacts were found at each individual camp. At Valley camp we have found a tin from marine algae and a sack from buckwheat. At Slope camp there was a jar from honey, a sack from pasta and from instant noodle soup and in the toss zone, there were two mouldy onions plus a wrapper from Fig. 9. Plan of the Oktyaberskaya camp, facing north. Dark circles: domestic areas (‘‘chums’’), light zones: activity areas, dispersed bones of a reindeer, toss areas. Black dots: dispersal of reindeer excrements, light dots: dispersal of reindeer hair, black square: interior children’s playground. Table 4 NISP of reindeer bones (Rangifer tarandus) based on selected samples from Oktyaberskaya camp. Letters refers to animal´s age category: J/S – juvenile or semi-adult, A – adult; letters refers to specific damages: G – gnawed, B – broken, Ch – chopped. Oktyaberskaya camp Part of skeleton J/S A Damage Antler 0 29 0/5Ch, 1B Skull + maxilla 1 3 None Mandibula 1 2 None Vertebra 0 34 0/6Ch Rib 0 26 0/12G, 4Ch Scapula 0 4 0/1G Humerus 1 1 1G/1G Radius 0 4 None Ulna 0 3 0/2G Carpals 0 0 None Metacarpals 0 3 None Pelvis 0 4 0/1Ch Femur 1 0 1G/none Tibia 0 4 0/2G Tarsals 0 0 None Metatarsals 0 4 0/3Ch Phalanges 0 2 None Long bones 0 10 0/3G, 4B Total 4 133 2G/22G, 5B, 12Ch J. Svoboda et al. / Journal of Anthropological Archaeology 30 (2011) 30–43 37 margarine. Special objects from Oktyaberskaya included a small jar from caviar, a paper sack from flour, two plastic dishes from an instant food ‘‘Byznysmen’’, two sacks from a potato purée and an instant noodle soup, one bottle from Tchibo coffee, one boxboard of sect, one mayonnaise, several chewing gum wrappers, and a sack from lemons. Fig. 10. Graph showing structure of objects in relationship to zonality of the individual campsites. Table 5 Material composition of objects in the abandoned Nenets camps. Letters refer to site zonality: Do – domestic zone, Ac – activity zone, To – toss zone. Material Valley camp Slope camp Oktyaberskaya camp Total % Do Ac To Do Ac To Do Ac To Wood 3 24 8 49 40 17 62 100 1 304 22.16 Ash 2 1 1 3 0 0 2 1 0 10 0.73 Bone 23 50 88 21 55 7 24 32 59 359 26.17 Antler 0 1 0 0 0 6 1 28 0 36 2.62 Hoof 0 0 13 0 0 0 1 2 0 16 1.17 Fur 3 11 14 5 12 3 5 4 3 60 4.37 Straw 1 5 2 4 1 0 3 1 1 18 1.31 Stone 2 11 0 0 0 0 0 0 0 13 0.95 Paper 2 13 5 7 8 8 51 16 11 121 8.82 Glass 1 0 1 4 23 2 3 0 9 43 3.13 Porcelain 0 0 1 0 1 2 0 0 0 4 0.29 Plastic 5 42 8 18 9 5 55 18 13 173 12.61 Metal 1 5 10 6 18 1 11 2 3 57 4.15 Textile 4 11 2 21 21 11 27 11 0 108 7.87 TetraPak 0 1 1 3 0 0 0 0 0 5 0.36 Others 0 0 0 4 0 4 25 12 0 45 3.28 Total 47 175 154 145 188 66 270 227 100 1372 100 % 3.43 12.75 11.22 10.57 13.71 4.8 19.68 16.55 7.29 100 Table 6 Composition of nutritions in the abandoned Nenets camps. Letters refer to site zonality: Do – domestic zone, Ac – activity zone, To – toss zone. Nutrition Valley camp Slope camp Oktyaberskaya camp Total % Do Ac To Do Ac To Do Ac To Bone – edible species 22 50 88 21 55 7 24 31 59 357 62.41 Cereals/pasta 0 1 0 0 1 0 0 1 0 3 0.52 Instant 0 0 3 1 0 2 7 3 1 17 2.97 Milk 3 3 8 3 6 0 0 0 0 23 4.02 Candy 2 2 0 2 0 2 22 9 12 51 8.91 Preserves 0 0 2 4 15 1 2 1 3 28 4.9 Alcohol 1 2 1 2 12 1 12 1 4 36 6.29 Juice/limo 0 4 2 3 0 0 4 0 0 13 2.27 Cigarettes 0 0 0 2 0 3 20 13 0 38 6.64 Vegetables 0 0 0 2 0 0 1 1 0 4 0.7 Others 0 0 0 0 0 0 1 0 1 2 0.35 Total 28 62 104 40 89 16 93 60 80 572 100 % 4.89 10.84 18.18 7 15.56 2.8 16.26 10.48 14 100 38 J. Svoboda et al. / Journal of Anthropological Archaeology 30 (2011) 30–43 Dwellings The structure of the ‘‘chum’’ is composed of approximately 25– 30 wooden poles (one of them was lent against a larch at OC). On the left and right side of the hearth, the Nenets first place several wooden planks on the ground (found prepared in peripheric zones of the VC), than cover them with straw, and finally with reindeer furs. During winter, an open fire in the center is replaced by a stove (we found an iron desk with nails from it at SC, and a pipe from a stove´s chimney at OC). In the area opposite the ‘‘chum´ s’’ entrance (in front of the zone forbidden to women) is a small table and boxes with dishes. In an abandoned camp, the location of the central hearth is sometimes difficult to find, due to cleaning of the ash and moving into the camp´ s periphery. Some of the associated objects, however, were recorded at all camps: parts of a table cover with a sunflower pattern, a broken vessel and broken cup were found at VC. A pot with drilled holes on each side, through which a wire was passed, fastened on sledges was found at SC, along with a 10 l capacity boiler, an 20 l capacity aluminum kettle, with a sherd from a cup with a flowery pattern, and a broken saucer. Reindeer furs serve as a typical cover for winter ‘‘chums’’ and the Nenets always prefer two layers, one of them with trimmed hair. For the summer ‘‘chums’’, rough canvas is used to cover the structure, similar to what is used to cover the sledges. Parts of canvas sometimes have felt loops along the edges. The group of cords, ropes, and wires, including hand-knitted cords and ropes from polyethylene fibers of various colors, may be related either to ‘‘chum’’ construction or to fastening of the load carried on sledges. However, we cannot exclude that some of these cords or ropes Table 7 Composition of utilities in the abandoned Nenets camps. Letters refer to site zonality: Do – domestic zone, Ac – activity zone, To – toss zone. Utilities Valley camp Slope camp Oktyaberskaya camp Total % Do Ac To Do Ac To Do Ac To Wood for fire 3 22 2 41 35 12 38 95 1 249 31.2 Stone 2 11 0 0 0 0 0 0 0 13 1.63 Ash 2 1 1 3 0 0 2 1 0 10 1.25 Insulation 1 29 0 0 0 0 0 0 0 30 3.76 Cord/rope/wire 0 3 0 18 6 1 5 2 0 35 4.39 Wooden object 0 1 6 5 5 4 23 5 0 49 6.14 Textile covers 3 7 0 5 11 7 11 3 0 47 5.89 Domestic equipment 0 3 4 2 7 2 7 0 0 25 3.13 Game/toy 0 0 0 5 0 3 11 0 0 19 2.38 Shaving 0 3 0 3 0 1 1 0 0 8 1 Clothes 1 3 4 8 7 4 13 5 0 45 5.64 Hygiene/medicine 2 0 1 2 10 0 11 1 5 32 4.01 Non-edible bones/hoof/antler 1 1 13 0 0 6 2 30 0 53 6.64 Fur 3 11 12 3 12 3 5 4 3 56 7.01 Straw 1 5 2 4 1 0 3 1 1 18 2.26 Packing 1 10 3 3 2 2 25 10 5 61 7.64 Newspaper 0 2 0 0 0 0 13 3 5 23 2.88 Others 1 1 0 3 3 5 7 5 0 25 3.13 Total 21 113 48 105 99 50 177 165 20 798 100 % 2.63 14.16 6.02 13.16 12.41 6.27 22.17 20.67 2.51 100 Fig. 11a. Valley camp, quantity reindeer bones in the analyzed assemblage, represented by intensity of coloration. Fig. 11b. Slope camp (lower), quantity of reindeer bones. Fig. 11c. Oktyaberskaya camp, quantity of reindeer bones. J. Svoboda et al. / Journal of Anthropological Archaeology 30 (2011) 30–43 39 were used to help manage the reindeer, although the lasso for catching reindeers, ‘‘tinzjan’’, is traditionally knitted from the reindeer skins. Cords and ropes occur at all camps, whereas parts of wires were sporadically observed only at SC and OC. Several wooden posts (VC) or pegs (SC, OC) might be related to the architecture or to nearby activities like breeding reindeer or dogs. Specific features were recorded in the VC, with two piles of stones (one of seven pieces and the other of 11 pieces), all of which are sandstones with huge slickenside corns. Two similar stones laying the domestic zone, showing traces of burning and the rest of ash in between – an in situ cooking facility from a hearth. We recorded individual examples of insulation and a part of linoleum at VC, chipboard at SC, and a part of wooden box pallet, a hacked bunch, and one mailing box at OC. Clothing The Nenets clothes for cold seasons are traditionally produced of furs, whereas in the warmer seasons, commercially-made clothing is purchased. Womens’ summer clothes include skirts or blouses with flowery patterns, which are documented by fragments found at all camps (some of these items were re-used and their strings were twisted in a thin cord). Other clothing encountered at all camps includes pieces of utility gloves with nonskid attachments on the surface, some with traces of technical oil. Children’s clothing discovered at the camps include two boots sewn from reindeer fur, discovered at the toss zone of VC, part of a track suit and sweat shirt, a terry glove, children’s socks (at SC and OC), knickers for a girl of 4–7 years old, and green, white and pink colored hair ribbon. At SC there were fragments of various textiles of blue and white color and pieces of rough woolly textiles. At OC, we recorded a tie from jeans, a paper package from socks, a label from clothes, one handkerchief, and large women´ s knickers. Hygiene and medicine In the toss zones at all camps were discarded residues of toilet paper, napkins (VC, SC), and a sanitary towel (SC). Traditionally, straw plus dried mosses were used for hygienic purposes, as documented at all camps. At VC, we recorded a bottle of cologne; at SC there was a terry towel, and a tooth paste tube. At OC we recorded a plastic soap box, a piece of polyporus (which could be used as tinder or for healing) and an elastic hairband. First aid and medical equipment found included balled linen, used as a finger-bandage, a grouting point and its cover, capping strip and two ampoules – one with a pellucid solution and the other with white powder at SC, and three tablets of Paracetamol for children, a tablet Baralcin M, a tube from Fastum Gel, and box from Diroton at OC. Paper boxes like this were also re-used for mailing, as indicated by addresses visible on some of them. The children’s zones Inside the domestic zones of two camps, SC and OC, were could identify children’s zones with remains of games. At Slope camp, this zone included a part of a blue plastic toy, a sprig with a tied rope, several cutouts in the shape of reindeers with the rest of cuttings (Fig. 12), several white beads on the elastic band (ring?) and two fragments of reindeer fur, one of them with a green dot from felt tip and other with cut hairs and several bunches of hair. At Oktyaberskaya camp, the children’s zone included a rubber, a paper with unspecified drawings, part of softened yellow plastic with a pierced hole and traces from human nails on surface, several cutouts in the shape of triangles (‘‘chums’’?) from the cover of candy, a plastic letter, and two pencils. Woodworking Typically, women collect wood from alder bushes in the direct vicinity of the camp for fuel for the hearths. However, at Oktyaberskaya camp, where the larger larch trunks were cut by a motor saw, we expect male work during the cutting, whereas later preparation of fuel from these trunks was left to women and girls. In these areas were fuel was prepared, pieces of birch-bark and dried moss are usually found. A typical feature at all camps is circular concentrations of shavings from repairing various kinds of wooden objects, especially sledges. Broken parts of sledges were present at all camps. These shawings could be also used for heating or placed on the ‘‘chum´ s’’ ground floors. Modification of non-edible bones This group of artefacts includes complete reindeer hoofs and antlers, as well as otherwise edible bones such as metapodia and phalanges could be used to produce specific skin named ‘‘kamus’’. Hoofs were usually still-joined to the limb bones and placed in toss zones as butchering waste. The traditional habit of using reindeer hoofs and phalanges as symbols of complete animals in children’s games (as suggested by museum collections in Salekhard and Sos´va) was not evident at the sites we studied. At all camps, we recorded a mixture of naturally dropped reindeer antlers and antlers cut away from skulls. Skulls with cut-off antler were also dispersed on the slopes and valleys of Yangana Pe, offering supporting evidence for this practice. Some of these remains show traces of gnawing by reindeer or carnivores, in search for minerals. Other activities Two woolly tassels (VC, OC) and a few fragments of wool in a variety of colors (all camps) might be linked to clothing decorations or reindeer harnesses. Various kinds of wrappings (of paper, aluminum, polythene, cellophane, etc.) were found but cannot be related to specific activities. Pieces of newspapers were dispersed at all camps. In addition, four 1.5 V batteries and two kerosene or benzine tins were found at SC and OC. At VC, there also was a fired shell from a cheap shotgun. At SC we found a part of tarry and two handmade patches. A piece of cello tape, part of a plastic stake (as from a party tent), several pins, and an anti-slip treadle from a scooter were also found at OC. Symbolic activities Symbolic meaning may be presumed in relation to the antler cache deposited on a remarkable elevation at the Upper Slope camp (Fig. 13). The various objects attached to trees in the forest tundra, north of Labytnangi (Fig. 8), may also be the result of symbolic activities. Interpreting the campsites: zonality Schematic plans for each of the analyzed camp (Figs. 5–7 and 9) allow a functional separation into discrete zones: Domestic areas No ring-shaped alignment of larger objects was visible along the margins of any ‘‘chum’’, either as a stabilizing part of construction or as the result of long-term ‘‘centrifugal’’ accumulation of objects along the peripheries. The diameter of these circular dwellings seems similar at archaeological and ethnological sites and 40 J. Svoboda et al. / Journal of Anthropological Archaeology 30 (2011) 30–43 oscillates around the optimal size of 5 m, but the precise outlines of the domestic areas are unclear (Fig. 11). The hearths, the central location of which is considered straightforward at archaeological Upper Paleolithic sites (Leroi-Gourhan and Brézillon, 1972; Stapert, 1989; Cziesla, 1990; Svoboda, 1991, 2005), are rarely conserved in their original position at the ethnologically documented sites. Rather, we encounter areas of ash redeposition on the site´s peripheries. If conserved in its original location, a hearth is usually equipped with two flat stones for cooking. The area around such hearths ideally corresponds to a ‘‘chum’’, and the scarce inventory includes fragments of textiles or cords, bone fragments, wood splinters and twigs, straw and straw wisps. At Slope camp and Oktyaberskaya camp, we identified and located children’s zones inside the presumed ‘‘chums’’, with several paper cutouts, a pencil or gum, and associated objects. This evidence, together with the evidence of children’s subsistence activities, napkins, and clothing, suggests at least one child approximately 0–3 years old and another one around 5 years old at Slope camp, and one child 4–7 years old at Oktryaberskaya. Although we were unable to identify a children’s zone in the interior living area at Valley camp, children could have been present at this site as well, and the evidence may have been discarded into the toss zone. Napkins and a fur shoe at this site belong to children of 0–3 years and around 5 years in age. The presence of children was also recorded by Binford (1991, p. 43) at the fall site at Kongumuvuk. Locating interior children’s play zones in fall, winter and spring camps is expected, because children do not run around as in summer camps, but tend to play in groups inside during the colder months. Activity areas Activity zones exist in front of the ‘‘chums’’ and between them. Wooden splinters and shavings, in particular, are dispersed in circular shapes surrounding the chims, as a relic of woodcutting or the construction of sledges. In addition, there are fragmented reindeer bones, while complete body parts in anatomic position are rare (and are usually removed to the site peripheries). Certain differences were observed in activity zones of the individual sites. At Oktyaberskaya, we reconstructed reindeer butchering within the activities areas, whereas in the other camps such remains were usually discarded. At this same site, woodworking using motor saws markedly predominates over the discernable activities. At lower Slope camp, a higher concentration of medical equipment may be related to treating reindeer during breeding. Faunal assemblage compositions, especially the relationship between the axial and appendicular skeleton, vary at the individual Nenets sites, which may be explained as a result of transportation. Similar variability in faunal composition as a result of transport has been purported at the Upper Paleolithic reindeer sites (Enloe, 1993; West, 1997) and actual Siberian sites (Abe, 2005). Breakage patterns and other traces of human impact on bones are more intensive at the Upper Paleolithic sites than at the Nenets sites (as at Pavlov I; Musil, 2005; Wojtal et al., 2005). Dog gnawing Fig. 12. Slope camp (lower), children’s zone. Paper cutouts representing reindeer. Fig. 13. Slope camp (upper), antler deposit, probably symbolic. Fig. 14. Dolní Veˇstonice II – western slope. Plan of the 1987 excavation area, showing spatial distribution of hearths, density of objects, and reconstruction of three domestic areas (dark circles), based on Upper Paleolithic archaeological evidence. J. Svoboda et al. / Journal of Anthropological Archaeology 30 (2011) 30–43 41 occurs in various percentages in the Nenets camps; in contrast, of the rarity of gnawing marks at Upper Paleolithic sites (such as Pavlov I) probably reflect the absence of dogs at these sites. Peripheries The toss zones lie on the back periphery or on adjacent slopes just below the camps. There are accumulations of bottles, cans, pieces of paper or fur, and straw. Trends observed on peripheries are the following: at Oktyaberskaya, there is a huge accumulation of packaging from purchased foods; along the peripheries of the Valley camp and the Slope camp, toss zones may overlap spatially with objects conserved for further usage; and, even if traces of woodworking do not habitually accumulate in the toss zones, one example of this practice was noted in the Slope camp. The landscape around In the tundra surrounding the Slope and Valley camps, we observed restricted areas with evidence of manual woodcutting, always limited to zones of about 3  3 m, to enable easy regeneration of the alder bushes. In the forest tundra around Oktyaberskaya, a motor saw was used to cut down larger larch trunks. Individual objects dispersed in the surrounding tundra or forest tundra may either have been prepared in place for a next use (sledges, boats, fishing nets), or represent items of ritual and/or symbolic significance (objects attached to individual trees, antler depositions on the ground), or be just randomly discarded objects. At upper Slope camp, which was a rarely settled place in a dominant position, we identified an accumulation of 11 antler pieces at the highest spot. In the Polar Ural region, antler is offered to the Mattress of the Mountains, Pe-erv-ne. Large accumulations of antler are deposited at various places in Yamal, and especially on Beliy Island. It should be recalled that caches of discarded antler were also recorded at several Upper Paleolithic sites of North Eurasia, as in the Medvezhya Cave in Northern Ural, and the open-air sites of Mal´ta, Buretˇ and Mezin. Conclusions There is a range of significant differences between semi-nomadic Upper Paleolithic hunters of Central Europe, where cultural systems functioned without external political or economic influence, and the contemporary nomadic pastoralists, fishers and hunters of Polar Ural, which are tangibly effected both politically and economically by external civilization (Forsyth, 1992; Pika and Bogoyavlensky, 1995; Golovnev and Osherenko, 1999; Stammler, 2007). An Upper Paleolithic site is composed of one or more settlement units, represented by a central hearth surrounded by related features and dispersed objects. Whatever type of dwelling structures one may reconstruct – chum, teepee, or yurta – are just purported architectural reconstructions of the archaeologically recorded settlement units. In addition, various activity areas and specialized areas are located between these purported dwellings. At complex and palimpsest sites, the spatial/temporal relationships among these structures are the object of a complex site analysis, as at Pavlov I, for example (Svoboda, 2005). The contemporary camps documented in the pure tundra and forest tundra were inhabited in winter or early spring, when the society concentrates on reindeer and when the other natural resources (available in summer) were to a large extent substituted by imported items bought in shops. There are general similarities in the spatial arrangement and structure of the objects recorded in the three camps, but apparent variation could be caused by the distance between camps and to the nearest shop, by the demographic structure of the site and by the habits of its occupants. Compared to the camps at Yangana Pe, the Oktyaberskaya campsite displays a remarkable difference in the structure of the recorded objects, because of its location close to the railway and to the city of Labytnangi where reindeer are sold and occupants could obtain a large and diverse quantity of imported goods. Other differences might be caused by a demographic structure of the inhabitants of the camps, their economic status (after selling reindeers) or by their particular habits (for example, smoking cigarettes at Slope camp or Oktyaberskaya). Of what nature and significance are the ethnoarchaeological analogies? Theoretically, both the past hunters´ camps and actual pastoralists´ camps are structured along discrete zones: the interior living areas, exterior activity areas, inner periphery zones and outer periphery zones, and dispersed objects and activity traces in the adjacent landscape. However in the living camps, ‘‘structures évidentes’’ and ‘‘structures latentes’’ of classical French paleoethnology cannot be separated as clearly as in Upper Paleolithic sites: all is in movement here, and architectural remains, ash from hearths, and other objects may be removed from the central areas towards the peripheries. We collected little evidence that would allow us to separate archaeologically (or archaeozoologically) the pastoralists´ sites from past hunting sites. The zones of reindeer excrements and hair recorded along periphery of the Oktyaberskaya site (Fig. 9) would hardly be detected using the classical archaeological methods. Duration and stability of occupation is one of the key factors of difference, both at ethnological and archaeological sites. One of the characteristics of the Moravian Upper Paleolithic sites is a relatively stable location of hearths and pits; these features may form palimpsests at intensively reoccupied sites, as in Pavlov I (Svoboda, 2005), or a more readable network across larger areas, as at Dolní Veˇstonice II (Fig. 14, Svoboda, 1991). Nevertheless, the spatial distributions of artifacts and nature facts at archaeological sites do not allow us to separate the domestic areas, a variety of activity areas, and toss zones as clearly as in the contemporary Nenets campsites. For example, wood splinters and shavings, as widely distributed evidence of woodworking at all Nenets sites, are archaeologically not detectable. The same concerns the children’s zones, marked especially by the paper cutouts. Activity traces and individual objects left in the surrounding landscape, be it of practical and symbolic meaning, remain unrecorded by present-day archaeological methods. Compared to ethnological sites, selective preservation and dynamics of long-term human behavior at archaeological sites creates more obstacles for discerning the clear-cut separation of the individual zones. Acknowledgments This research was supported by the Czech Grant Agency Projects P404/08/0045, P209/10/0519 and research plan AVOZ 60050516. We thank L.M. Morozova and other colleagues from the Institute of Ecology of Plants and Animals, Russian Academy of Sciences, Ekaterinburg, for collaboration and advice, and Rebecca Farbstein and two anonymous reviewers for final comments on the manuscript. References Abe, Y., 2005. Hunting and Butchering of the Evenki in Northern Transbaikalia, Russia. PhD Dissertation in Anthropology, Stony Brook. Binford, L.R., 1978. Nunamiut Ethnoarchaeology. Academic Press, New York. Binford, L.R., 1987. Researching ambiguity: frames of reference and site structure. In: Kent, S. (Ed.), Method and Theory for Activity Area Research. Columbia University Press, New York, pp. 449–512. 42 J. Svoboda et al. / Journal of Anthropological Archaeology 30 (2011) 30–43 Binford, L.R., 1991. When the going gets tough, the tough get going: Nunamiut local groups, camping patterns and economic organisation. In: Gamble, C., Boismier, W.A. (Eds.), Ethnoarchaeological Approaches to Mobile Campsites. International Monographs in Prehistory, Ann Arbor, pp. 25–137. Bogoras, W., 1901. The Chukchi of Northeastern Asia. American Anthropologist 3, 80–108. Chomich, L.V., 1995. Nenci. Ocherki tradiciyonnoy kul´tury. Sankt Peterburg. Cribb, R., 1991. Nomad in Archaeology. Cambridge University Press, Cambridge. Cziesla, E., 1990. Siedlungsdynamik auf Steinzeitlichen Fundplätzen. Holos, Bonn. Dobrinskiy, L.N. (Ed.), 1995. Priroda Yamala. Nauka, Ekaterinburg. Enloe, J.G., 1993. Subsistence organisation in the Early Upper Paleolithic: reindeer hunters of the Abri du Flageolet, Couche V. In: Knecht, H. et al. (Eds.), Before Lascaux. The Complex Record of the Upper Paleolithic. CRC Press, Boca Raton, pp. 101–116. Evladov, V.P., 1992. Po tundram Yamala k Belomu ostrovu. Institut problem osvoeniya severa, Tyumen. Forbes, B.C., 1999. Land use and climate change on the Yamal Peninsula of north– west Siberia: some ecological and socio-economic implications. Polar Research 18, 367–373. Forbes, B.C., Ebersole, J.J., Strandberg, B., 1999. Anthropogenic disturbance and patch dynamics in circumpolar arctic ecosystems. Conservation Biology 54, 954–969. Forsyth, J., 1992. A History of the Peoples of Siberia: Russia´s North Asian Colony 1581–1990. Cambridge University Press, Cambridge. Gamble, C., 1991. An introduction to the living spaces of mobile peoples. In: Gamble, C., Boismier, W.A. (Eds.), Ethnoarchaeological Approaches to Mobile Campsites. International Monographs in Prehistory, Ann Arbor, pp. 1–23. Gamble, C., Boismier, W.A. (Eds.), 1991. Ethnoarchaeological Approaches to Mobile Campsites. International Monographs in Prehistory, Ann Arbor. Golovnev, A.V., 1995. Govoryashchie kultury: Tradicii Samodijcev i Ugrov. Rossijskaja Akademija Nauk, Ekaterinburg. Golovnev, A.V., 2004. Kochevniki tundry: Nency i ikh folklor. Rossiyskaya Akademia Nauk, Ekaterinburg. Golovnev, A.V., Osherenko, G., 1999. Siberian Survival: The Nenets and their Story. Cornell University Press, New York. Haller, T., Blöchlinger, A., Markus, J., 2007. Fossil Fuels, Oil Companies, and Indigenous Peoples. Lit Verlag, Berlin. Ingold, T., 1980. Hunters, Pastoralists, and Ranchers: Reindeer Economies and Their Transformations. Cambridge University Press, Cambridge. Johnson, A.L., 2002. Cross-cultural analysis of pastoral adaptations and organizational states: a preliminary study. Cross-cultural Research 36, 151–180. Khasanov, A.M., 1994. Nomads and the Outside World. University of Wisconsin Press, Madison. Klevezal´, G.A., 2007. Printsipy i metody opredeleniya vozrasta mlekopitayushchih. Tovarishchestvo nauchnyh izdaniy KMK, Moskva. Knyazev, M.S., Morozova, L.M., Shurova, E.A., 2006. Floristicheskiy spisok sosudistykh rasteniy – Rastitel´ny pokrov i rastitel´nye resursy Polyarnogo Urala. Izdanie Uralskogo Universiteta, Ekaterinburg. Kosintsev, P.A., 2005. Ekologiya srednevekovogo naseleniya severa Zapadnoy Sibiri: istochniki. Izdatelstvo Uralskogo universiteta, Ekaterinburg – Salekhard. Krasovskaya, T.M., Tikunov, V.S., 2008. Mapping of nature management of the territory of the Nenets Autonomous Okrug. Geography and Natural Resources 29, 84–87. Kroll, E.M., Price, T.D. (Eds.), 1991. The Interpretation of Archaeological Spatial Patterning. Plenum Press, New York – London. Krupnik, I., 1993. Arctic Adaptations: Native Whalers and Reindeer Herders of Northern Eurasia. University Press of New England, Dartmouth, NH. Krupnik, I., 2000. Reindeer pastoralism in modern Siberia: research and survival during the time of crash. Polar Research 19, 49–56. Kryazhimskii, F.V., Danilov, A.N., 2000. Reindeer in tundra ecosystems: the challenges of understanding system complexity. Polar Research 19, 107–110. Leroi-Gourhan, A., Brézillon, M., 1972. Fouilles de Pincévent. CNRS, Paris. Musil, R., 2005. Animal prey. In: Svoboda, J. (Ed.), Pavlov I – Southeast. A Window into the Gravettian Lifestyles. The Dolní Veˇstonice Studies, vol. 14. Institute of Archaeology, Brno, pp. 190–228. Owen, L.R., 2005. Distorting the Past. Gender and the Division of Labour in the European Upper Paleolithic. Kerns Verlag, Tübingen. Peterkin, G.I., Price, H.A. (Eds.), 2000. Regional Approaches to Adaptation in Late Pleistocene Western Europe, vol. 896. BAR, Oxford. Phillips, D.J., 2001. Peoples on the Move: Introducing the Nomads of the World. Piquant, Carlisle. Pika, A., Bogoyavlensky, D., 1995. Yamal Peninsula: oil and gas development and problems of demography and health among indigenous populations. Arctic Anthropology 32, 61–74. Podkorytov, F.N., 1995. Olenevodstvo Yamala. Yamal´skaya sel´skokhozyaistvennaya stanciya, Salekhard. Potapova, L.P., Levina, M.G., 1956. Narody Sibiri. Izdaelstvo Akademii Nauk SSSR, Moskva and Leningrad. Rebristaya, O.V., 2006. Sosudistye Rasteniya – Poluostrov Yamal: rastitel´ny pokrov. Siti-press, Tyumen´ . Rees, W.G., Williams, M., Vitebsky, P., 2003. Mapping land cover change in a reindeer herding area of the Russian Arctic using Landsat TM and ETM+ imagery and indigenous knowledge. Remote Sensing and Environment 85, 441–452. Rossignol, J., Wandsmider, L. (Eds.), 1992. Space, Time, and Archaeological Landscapes. Plenum, New York. Sinclair, H.M., 1953. The diet of Canadian Indians and Eskimos. Proceedings of the Nutrition Society 12, 69–82. Stammler, F., 2007. Reindeer Nomads Meet the Market: Culture, Property and Globalization at the End of the Land. Lit Verlag, Berlin. Stapert, D., 1989. Rings and sectors: intrasite spatial analysis of stone age sites. Palaeohistoria 31, 25–99. Svoboda, J. (Ed.), 1991. Dolní Veˇstonice II – Western Slope, vol. 54. ERAUL, Université de Liège, Liège. Svoboda, J. (Ed.), 2005. Pavlov I – Southeast. A window into the Gravettian Lifestyles. The Dolní Veˇstonice Studies, vol. 14. Institute of Archaeology, Brno. Vasil´ev, S.A., Soffer, O., Kozlowski, J.K. (Eds.), 2003. Perceived Landscapes and Built Environments, vol. 1122. BAR, Oxford. West, D., 1997. Hunting Strategies in Central Europe during the Last Glacial Maximum, vol. 672. BAR, Oxford. Wojtal, P., Sedlácˇková, L., Wilczyn´ ski, J., 2005. Human activities on the faunal material. In: Svoboda, J. (Ed.), Pavlov I–Southeast. A window into the Gravettian Lifestyles. The Dolní Veˇstonice Studies, vol. 14. Institute of Archaeology, Brno, pp. 229–251. Yellen, J., 1977. Archaeological Approaches to the Present. Academic Press, New York. J. Svoboda et al. / Journal of Anthropological Archaeology 30 (2011) 30–43 43 50 2.4.4 Ethnoarchaeology of Nenets Campsites, Cases of Yangana Pe and Oktyaberskaya (Polar Mts., Northwestern Siberia) Citace: Svoboda, J., Kosincev, P. A., Sázelová, S., Jankovská, V., Holub, M. 2010: Ethnoarchaeology of Nenets Campsites, Case of Yangana Pe and Oktyaberskaya (Polar Ural Mts., Northwest Siberia. Přehled výzkumů 51 (1-2), 33-55. ETHNOARCHAEOLOGY OF NENETS CAMPSITES. CASES OF YANGANA PE AND OKTYABERSKAYA(POLAR URAL MTS., NORTHWEST SIBERIA). ETNOARCHEOLOGIE N ˇEN ˇECKÝCH TÁBO ˇRIŠ ˇT. JANGANA PE A OKT’ABERSKAJA (POLÁRNÍ URAL, SEVEROZÁPADNÍ SIBI ˇR). Jiˇrí Svoboda, Pavel A. Kosintsev, Sandra Sázelová, Vlasta Jankovská, Martin Holub Abstract As a part of an investigation of Nenets settlement patterns (Yamalo-Nenets Autonomous Region, Northwest Siberia) in summer 2009, we documented active summer campsites at lakes and abandoned winter and spring campsites in open tundra (mountain ridge of Yangana Pe) and forest tundra (Oktyaberskaya, north of Labytnangi). Discussion of the floristic and zoological potentials of tundra, forest tundra, and forest for nutriture shows that plant resources and fish are available predominantly in summer while reindeer occur in these regions during fall, winter and spring, as they return from summer pastures further to the north. Movements of the individual Nenets families depend on ownership of sufficient reindeer. Missing components of the nutriture are substituted by purchasing consumer products. The documented camps are structured along discrete zones such as interior living areas (including children´s playgrounds), exterior areas with evidence of woodworking, processing reindeer, and other activities, peripheral toss zones, and dispersed activity remains in the surrounding landscape (some of which may have ritual meaning). Certain variation recorded in the individual camps is caused by distances between camps, to the nearest shop and to communication networks, by demographic structure of the site, by activities of the inhabitants and their financial potential (after selling some of the reindeer in winter, for example). The scope of these comparisons is enriched by Upper Paleolithic evidence from central European hunters’ settlements which display a basically similar camp structure and zonality but include (of course) different types of objects and activities. Keywords Ethnoarchaeology, Siberia, Polar Ural, Nenets, natural resources, activities, settlement structure, settlement zonality 1. Introduction: The ethnoarchaeological ap- proach Incorporating current ethnological analogies into the reconstructions of past human behavior in the Pleistocene is a technique as old as the beginning of Paleolithic research itself, and it goes back to the 19th century (Mortillet 1883). However a methodology based on systematic creation and usage of maps and plans of actual huntergatherers´ campsites was introduced considerably later, with the development of more scientific approaches in archaeology during 1960s and 1970s. At present, we have a series of documents, publications, and methodological issues concerning the spatial distribution of actual sites and objects within a variety of geographic zones and environments (Yellen 1977; Binford 1978; 1987; Gamble, Boismier, eds. 1991, with refs.). Upper Paleolithic settlement archaeology provided a wealth of databases and related information on mobile settlement strategies and resource exploitation in the Last Glacial landscape (Peterkin, Price, eds. 2000; Vasil´ev et al., eds. 2003). The reindeer-and-horse-based Magdalenian sites in the Paris Basin served as a classic case in all these efforts (Leroi-Gourhan, Brézillon 1972; Stapert 1989; Cziesla 1990). In Central Europe, the literature rightfully emphasizes the geographic role of the Moravian Gate as one of the most important European passages, both for animals and their hunters. Between 49.5° Fig. 1: Polar Ural showing location of reindeer summer pastures at the Kara sea, Yangana Pe campsites (upper arrow), and Oktyaberskaya campsite (lower arrow). Obr. 1: Polární Ural s vyznaˇcením letních sobích pastvišt’ u Karského moˇre, tábor˚u na Jangana Pe (horní šipka) a tábora Okt´aberskaja (spodní šipka). 1 Jiˇrí Svoboda, Pavel A. Kosintsev, Sandra Sázelová, Vlasta Jankovská, Martin Holub: Ethnoarchaeology of Nenets campsites.... and 50° of northern latitude, the 70 km long bottleneck of the Moravian Gate and the adjacent corridors composed of narrow plains between the Bohemian Massif and the western Carpathians, opens a passage in excess of 300 km long between the plains of northeastern Europe and the Danube valley to the southwest. One of the aims of Moravian Upper Paleolithic archaeology is to explain how this landscape and its potentials were used and exploited by a variety of cultural entities (cf. papers published in Pˇrehled výzkum˚u 47, 2006, with refs.). Having our previous field experience from the European Last Glacial sites in mind, we present here examples from polar and subpolar latitudes, with expectations that these will be a more preferable comparative sample than others. During our summer stay in the Polar Ural Mts. in 2009, we observed active Nenets summer camps on the Lake Taunto, as well as remains of temporarilly abandoned winter and spring camps in the open tundra at Yangana Pe mountain ridge (the Valley camps and the Slope camps), and in the forest tundra west of the Ob River near Labytnangi (Oktyaberskaya campsite). We recorded spatial distribution of objects, listed their inventories according to zones, created photographic documentation and recorded its GPS locations. 2. The Nenets annual cycle The Nenets, as typical nomadic people of the tundra, base their traditional economy on reindeer exploitation (Golovnev 1993; Chomich 1995) and their economic cycle coincides with annual reindeer migrations. During summer, the open tundra offers more resources and some protection against mosquitoes, whereas in winter nutriture is better accessible in the forest and forest-tundra zones. Therefore, reindeer spring migrations are oriented northwards to the open tundra zone and their fall migrations take them back to the forest zone. A complete Nenets family, or 2–3 related families, migrate repeatedly along the same route, males together with females, children, “chums”, and equipment. To practice this lifestyle, a family needs minimally 80–100 reindeer. Families that do not own enough animals send their reindeer northwards with larger herds, stay at rivers and lakes along the border of forest tundra and open tundra, and live there from fishing and occasional hunting. In winter, majority of the Nenets stay in the forest and live there from hunting and some fishing, but few families who own large enough reindeer herds may stay in the tundra over the year. Basing on the number of reindeer, one may separate the Nenets families into four groups: those who migrate annualy between forest and tundra (majority of families); those who migrate within tundra throughout the year (small number of families), those who move from forest just to the borderland of forest tundra and tundra and stay there (small number), and those who do not migrate at all (small number). 3. East of the Polar Ural Mts.: Region, plants, animals and people 3.1. Geography and botany Fig. 2: View from Yangana Pe ridge towards surrounding open tundra, with lakes and Nenets settlements. Obr. 2: Pohled z hˇrebene Jangana Pe do okolní otevˇrené tundry, s jezery a nˇenˇeckými tábory. Foto S. Sázelová. In the Yamal-Nenets Autonomous Region, the northsouth oriented principal mountain chain of the Polar Ural Mts. is paralleled in the east by one of the traditional migration corridors, periodically frequented by reindeer herds moving along the mountains from plains around the Kara Sea, where they spend the summer, towards their winter locations around the Labytnangi–Kharp railway. On this journey, about 250–300 km long, the landscape grades from open tundra through to dwarf shrub tundra, to forest tundra (Fig. 1). The flat or partly elevated tundra of the southern Yamal is formed by mosaics of lakes, brooks, small rivers, and various marshes. The banks are lined with willow shrubs dominated by Salix lanata, S. glauca, S. lapponum and S. phylicifolia. In the aquatic biotopes of the numerous peat bogs and wet meadows, we regularly encounter various species of Carex and Eriophorum (most frequently E. scheuchzeri, E. russeolum, E. vaginatum, E. polystachion) together with Rubus chamaemorus, Polygonum bistorta, Menyanthes trifoliata, Comarum palustre, Myosotis cf. asiatica, Pedicularis sp., Thalictrum sp. and others. Shallow waters are inhabited by Arctophila fulva and Sparganium cf. hyperboreum. At favourable, not completely marshy biotopes, the vegetation is enriched by Valeriana capitata, Trientalis europaea, Saxifraga hirculus, Cerastium sp., Melampyrum sp., Euphrasia frigida, Salix nummularia, Salix reticulata, Salix polaris and other herbs, mosses and lichens. In the northern latitude of 67°, Polar Ural Mts. are joined by an east-west oriented limestone ridge named Yangana Pe (289 a.s.l.) and adjacent metamorphic ridge of Nyava Pe (236 a.s.l.). Yangana Pe represents a unique phenomenon of the southern Yamal Peninsula due to its floristically rich vegetation cover, influenced by the calcareous subsoil, and attractive for aboriginal hunting, fishing and pastoralism (Fig. 2). It recalls the role of the limestone Pavlov Hills during the Upper Pleistocene in the Danubian basin (in the Czech Republic). Yangana Pe shows structured geomorphology with mountain chains, isolated hillrock, broad valleys, and gorges, 2 Pˇrehled výzkum˚u 51, Brno 2010 and allowing a general overview of the surrounding flat tundra of southern Yamal Peninsula. Yangana Pe and Nyava Pe also protect the basins and lakes along their southern foothills against winds from the sea, and create the northernmost shelter area for limited extension of dwarf trees and shrubs. A more favourable climatic regime in the southern foothills is supported by reflection of the whitish limestone cliffs. Towards the higher elevations of western Yangana Pe, the subzone of southern tundra grades into mountain tundra, comparable to vegetation of the Polar Ural Mts. In the low vegetation cover on top of the hills we encounter a variety of plants such as Rhodiola quadrifida, Delphinium middendorffii, Saxifraga aizoides, Papaver lapponicum, Saussurea alpina, Saxifraga spinulosa and others. Boschniakia rossica from the family Orobanchaceae is a plant without chlorophyll which parasitizes on Alnus fruticosa and was recorded on several occasions. Yangana Pe intersects the traditional reindeer migration route approximately in the middle of the pathway. In the past, strategic passes crossing the rocky ridge were certainly good places for reindeer ambushes and kills. Although reindeer bones, skulls, and antler are found dispersed throughout the whole landscape, they concentrate in such passes more frequently than elsewhere (Fig. 3). The Oktyaberskaya camp is located 150 km south, in the forest-tundra vegetation zone of southernmost Yamal peninsula, with Larix sibirica as the most important tree and Betula nana as the most frequent shrub. This zone expands longitudinally from the eastern slopes of Polar Ural Mts. to the left banks of Ob River mouth. Geological subsoil is formed by a fluvial gravel-and-sand deposit of the Ob River in the east, whereas the western part is predominantly formed by fluvioglacial sediments with higher proportions of larger-sized gravel. Depending on geomorphology, hydrology, exposure and other abiotic factors, the vegetation composition varies both on microand mesoscales. Such versatile mosaic patterns are typical for a natural landscape not yet influenced by large-scale anthropogenic impacts. Relatively dense forests of the northern taiga type with Larix sibirica and a higher representation of Picea obovata and Betula pubescens are directly associated with typical forest tundra wherever protected and favourable mesoclimatic biotopes appear. Species of Salix such as S. phylicifolia, Alnus fruticosa and the less commonly occurring Rosa acicularis represent the dominant shrubs. Dwarf shrubs form a closed cover of Ledum palustre and Vaccinium uliginosum, sporadically Vaccinium myrtillus, in open places with V. vitis-idaea, Linnaea borealis, Trientalis europaea, Rubus arcticus, R. chamaemorus, Melampyrum cf. sylvaticum and others. Mosses and lichens are very common, with dominance of various species of Sphagnum, Hylocomium splendens, Dicranum sp. and Polytrichum spec.div. Species of the genus Cladonia and Cetraria also occur. Along brooks, the moist biotopes are rich in plant communities. The shrub cover is dominated by willows (Salix lanata, S. glauca, S. lapponum, S. phylicifolia), together with Salix myrtilloides. Amongst herbs we encounter species Carex and Eriophorum (E. polystachion, E. vagiFig. 3: Strategic passes crossing Yangana Pe were places for reindeer catches and kills. Reindeer skeletal remains are concentrated here more frequently than elsewhere in the landscape even in contemporary times. Obr. 3: Strategické pr˚usmyky pˇretínající hˇreben Jangana Pe byly vhodnými místy pro odchyt a zabíjení sob˚u. Ještˇe v souˇcasnosti se zde kosterní poz˚ustatky sob˚u koncentrují více než ve volné krajinˇe. Foto J. Svoboda. natum, E. scheuchzeri), and Cirsium heterophyllum, Trollius cf. asiaticus, Sanguisorba officinalis, Polemonium acutiflorum, Polygonum bistorta, Parnassia palustris, Comarum palustre, Menyanthes trifoliata, Rubus chamaemorus, Rubus arcticus, Veratrum lobelianum, Petasites frigidus, Angelica decurrens, etc. Mosses are dominated by Sphagnum sp. accompanied by Meesia triquetra, Paludella squarrosa, Aulacomnium turgidum and others. Vegetation on the steep left banks of the Ob River, protected by a favourable mesoclimate of this large river, is enriched by presence of Sorbus aucuparia, Betula pubescens is more common, and at footslopes by Lonicera altaica, Ribes glabellum and various communities of tall herbs. Eroded surfaces of the sandy subsoil are occupied by Arctostaphyllos uva-ursi, Rosa acicularis and other pioneer vegetation. Surprisingly, this vegetation is accompanied also by Ledum palustre and Rubus chamaemorus, growing directly on the sand, and otherwise recorded in marshy biotopes. 3.2. People and plants Although data from preliminary field research are still restricted, it may be concluded that aboriginal human impact on this vegetation is minor and reflects simple human occupation within a settled area rather than larger structural changes. In contrast, radical vegetation changes oc- 3 Jiˇrí Svoboda, Pavel A. Kosintsev, Sandra Sázelová, Vlasta Jankovská, Martin Holub: Ethnoarchaeology of Nenets campsites.... Tab. 1: Review of dating, based on expire dates printed on industrial products and the state of bone preservation. VC – Valley camp, SC – Slope camp, OC – Oktyaberskaya camp; letters refer to site zones. Tab. 1: Pˇrehled datací na základˇe dat vytištˇených na pr˚umyslových produktech a podle zachovalosti kostí. VC – Údolní tábor, SC – Svahový tábor, OC – Okt´aberskaja; písmena odpovídají zónám. Location Object Dating VC01_C Tetracycline liniment paper wrapper 2001–2004 VC02_D unspecified tin consumption up to March 2009 VC03_D beer tin consumption between April–October 2009 VC04_G pieces of newspaper from a Saturday 16th February (it could be 2002 or 2008) VC05_H, I reindeer bones spring 2009; some older than 1 year VC06_J, K reindeer bones more than 1 year SC01_I milk tin 2002 SC02_C milk tin 2003 SC03_C milk tin consumption up to 15th July 2003 SC04_A milk tin consumption up to October 2007 SC05_A milk tin consumption up to 7th May 2008 SC06_A reindeer bones spring 2009 SC07_D reindeer bones 1–2 years; more than 3 years SC08_I reindeer bones more than 5 years OC01_B pieces of newspapers (Sever OK) 7.9. 2006 OC02_A pieces of newspapers (Sever OK) 28.3. 2007 OC03_D wrapper from a Czech chocolate stick 13.11. 07–12.11. 08 OC04_E paper wrapper from flour 16.3. 2008 OC05_A biscuit wrapper July 2008–July 2009 OC06_A caviar jar 11.11. 2008–11.5. 2009 OC07_A pickles jar 6.9. 2008–6.9. 2011 cur around the camps of Russian geological, mining, and biological expeditions. Here, Chamaenerion latifolium is being introduced as an important synanthropic taxon, accompanied by Chamaenerion angustifolium, which nevertheless also indicates human intervention into the forest tundra biotopes. Both are associated with areas of former “gulags” along the railway from the Komi Republic to Labytnangi, for example. In Yangana Pe, introduction of Tanacetum bipinnatum likely indicates another anthropic impact, and, surprisingly for a botanist from Central Europe, even Rubus chamaemorus occurs here as a “pioneer” plant in areas impacted by humans. This plant, generally considered a peat-bog element, occupies clearly edaphically dry biotopes on sands, gravels, and other extreme biotopes. Peat-bog biotopes, when disturbed by wheels of large vehicles (“vezdekhods”) are precisely copied by Eriophorum scheuchzeri and, less frequently, by Parnassia palus- tris. Northern ethnics collect and use a variety of plant resources (Sinclair 1953; Owen 2005). Along the Polar Ural Mts., the plants most frequently collected for nutriture are Vaccinium uliginosum (bog billberry) and Vaccinium vitisidaea (cranberry). Both are used to produce very sweet “vareniye” jam to substitute sugar in tea, or as an addition to vodka and other alcohols, or to produce a drink “napitok”. Vaccinium myrtillus (blueberry) is a scarcer type, used for jam in cakes and, again, for “napitok”. On peat-bogs, another collected plant is Oxycoccus quadripletalus (mooseberry) with larger and tastier fruits, especially when freezed. It is also used for jam and “napitok”. A highly valued plant is Rubus chamaemorus (cloudberry) offering orange fruit and used for “vareniye” preserves, compotes and alcoholic drinks. Lonicera altaica (Altaic honeysuckle) is a medium-sized shrub following mainly water streams. The fruits are small, difficult to collect but good for “vareniye” and used for cakes or as a tea sweetener. Allium schoenoprasum (chive) is being collected and used fresh or preserved (probably in salt). Wherever the sporadic shrubs of Ribes rubrum (red currant) are found, the fruit is consumed directly. A highly valued component of any plant available in the tundra and forest tundra is its sugar content. Sugar also acts as a preservative, without further cooking, because the region is cold and without microbes. Mushrooms are usually not consumed in this region, but Amanita muscaria may have been used for ritual (shamanistic) purposes and “chaga” (a mushroom parasitizing on birches) is used to produce a heavy, dark liquid for drinking. 3.3. Animals of Polar Ural Mts Animal composition in the Polar Urals changes radically throughout the year (Dobrinskiy, ed. 1995; Kosintsev 2005). Animals present over the year include reindeer (Rangifer tarandus), wolf (Canis lupus), glutton (Gulo gulo), ermine (Mustela erminea), mountain hare (Lepus timidus), lemmings (Dicrostonyx torquatus, Lemmus sibiricus), voles (Microtus gregalis, M. middendorfii, M. oeconomus, Arvicola terrestris), willow ptamirgan (Lagopus lagopus), and raven (Corvus corax). In lakes and rivers we encounter 20 fish species, but most im- 4 Pˇrehled výzkum˚u 51, Brno 2010 Fig. 4: Actual summer “chum”, occupied by one family, lake Taunto. Obr. 4: Souˇcasný letní ˇcum, obývaný jednou rodinou, jezero Taunto. Foto J. Svoboda. portant for human nutriture are whitefish (Coregonus nasus, C. lavaretus, C. sardinella, C. peled), pike (Esox lucius), and burbot (Lota lota). Arctic fox (Alopex lagopus) appears in winter and elk (Alces alces) appears in summer. In spring, more than 80 bird species arrive, and most of them stay until fall. For humans, the most important birds are Arctic loon (Gavia arctica), whooper swan (Cygnus cygnus), two species of geese (Anser albifrons, A. fabalis) and six species of ducks (Anas penelope, A. clypeata, A. crecca, A. acuta, Authya fuligula, Clangula hyemalis). Mosquitoes, namely the northern house mosquito (Culex pipiens), black fly, and black gnats, represent the most important insect species, especially between June and September. 3.4 People and animals Throughout the year, fishing and hunting of reindeer, mountain hare, and willow ptarmigan is possible in the Polar Ural region, whereas water fowl is hunted in summer. However the economically important animals become most numerous in spring and fall, when large flocks of water fowl pass through the region. In early winter and early spring, mountain hares and willow ptarmigans migrate and may be hunted with snares. Hunting and fishing can provide nutrition for people only from spring to fall, whereas in winter, only people owning reindeer can survive in this region. From July to September both people and animals suffer from mosquitoes. During the past few winters, reindeer were no longer pastured at Yangana Pe so wolves (Canis lupus) left the area as a result. Bones left by humans in the campsites are not destroyed and the collected bones represent complete assemblages, only partly gnawed or eaten by dogs. While determining the bone assemblages, in each camp we investigated the accumulation period of the complex (according to organic decomposition on the bone surfaces and remains of muscles, fat, and ligaments); the season (according to individual age); composition of bone types; composition of skeletal elements of each type; individual age structure; patterns of bone fragmentation; and postmortem changes. 3.5. Active summer camp at the Taunto Lake in 2009 Whereas the Upper Paleolithic occupations in Europe represent independent cultural and economical systems, the subpolar populations of Siberia were exposed to effects of political and economical centralisation. Collectivisation and construction of villages since the 1920s and 1930s introduced intensification with stress upon maximum possible herd sizes, and upon increase in number of females used for reproduction compared to males used for transport. Human movements also became centralized, gravitating around villages instead of adapting optimally to the natural potential of each region. Overgrazing of some areas was one of the results. The discovery of Yamal gas field in the 1960s resulted in the loss of large tracts of land to mining, infrastructure, and associated regimes that pushed increasing number of reindeer into smaller areas of pasture (Potapova, Levina 1956; Chomich 1966; Forbes 1999; Rees et al. 2003; Krasovskaya, Tikunov 2006). Actually, these general tendencies were no more observed in our region of study. An episodically frequented north-south oriented communication axis, consisting of a field road, a parallel railway, and a shop, runs east of Yangana Pe and Nyava Pe. Laborovaya, the nearest village, serves as another center for shopping, basic medical care, and administration. Both the road and the village do not affect substantially the life and economies in the adjacent tundra. Reindeer pastoralism is not the dominant activity over the year, and it is seasonally replaced by fishing and occasional hunting. In summer, Nenets families who do not own enough reindeer to accompany them to northern pastures, stay in place and send their reindeer together with the larger herds. While awaiting the return of their reindeer, they settle on the lake shores south of the Yangana Pe ridge, practice systematic fishing and occasional hunting. The natural resources, of course, are being supplemented by nutriture from the nearest shops. During winter, as the lakes freeze and fishing is not viable, Nenets families move higher to the protected valleys and slopes of Yangana-Pe, while others follow reindeer herds further south towards the railway and the forest. During our stay in August 2009, we met the Nenets in four family “chums”, in groups of two, located on shores of the lakes south of Yangana Pe (Fig. 4). The dwelling and the surrounding landscape represent the base for spatial thinking of all northern ethnics. “Chum” with a central hearth and an axis determined by the entrance creates an ideal circle, reflecting the structure of the world. The “chum” as a whole is considered a female zone, while the surrounding tundra is a male zone. This arrangement certainly does not prevent the other family members or guests to enter such zones, but activities in a given spatial context are always the initiative of the respective sex. In addition, the “chum´s” interior is also divided into a male and female zone, but the women nevertheless move preferentially around 5 Jiˇrí Svoboda, Pavel A. Kosintsev, Sandra Sázelová, Vlasta Jankovská, Martin Holub: Ethnoarchaeology of Nenets campsites.... Fig. 5: Sledges with furs and other materials prepared for the winter “chum” are kept near the “chum” or in the open tundra, lake Taunto. Obr. 5: Kolem ˇcumu nebo ve volné tundˇre jsou umístˇeny sanˇe s kožešinami a dalším materiálem pro zimní ˇcum, jezero Taunto. Foto S. Sázelová. the central hearth, wheras the more distant zone opposite the entrance, is strictly a male zone (Golovnev 1995; 2004; Sokolova 2007). The summer “chum” is constructed by females with canvas and these constructions take about 0,5–1 hour to build (the winter “chum” is of reindeer skin and takes 1,5–2 hours). No alignment of larger objects was visible along the margins, be it a stabilizing part of construction (the “teepee-rings” of North America) or result of long-term accumulation of objects on the peripheries (the Yamana model, Svoboda 1999). Around the “chum” are located sledges with furs and other materials prepared for the winter “chum” (Fig. 5; Boukal 2003). The Nenets behave in the landscape as freely as urban dwellers in their apartments. The sledges will be parked wherever it is comfortable, given the plans for the next season, the fishing nets will be left at the lake shore for subsequent use, and vessels or prepared cut up wood for the next camp will be left at favourable camping spots in the landscape. 4. The abandoned “Valley camps” (VC) The two valley camps are located about 80 m from each other, in a secluded valley of Yangana Pe oriented towards the SW, and in a strategic position on two platforms elevated high above the valley. 4.1. The inside-camp vegetation Vegetation covers only about 60% of the site´s surface and predominantly includes low herbs. Dryas punctata is most common, at places accompanied by Vaccinium uliginosum ssp. microphyllum, Ledum decumbens and Empetrum hermafroditum. Scattered, but in regular spacings, appears Astragalus subpolaris (A. alpinus ssp. arcticus), Luzula sp. div., Equisetum arvense / boreale, Oxytropis sordida, Polygonum viviparum, Campanula rotundifolia, Dianthus repens, Arctous alpina, with isolated occurences of Rosa acicularis. Low bushes of Salix lapponum also appear rarely. 4.2. Vegetation in direct vicinity The valley bottom on both sides of the brook is densely covered by bush willows (Salix lanata, S. glauca, S. lapponum, S. phylicifolia) with moist herbal vegetation covering the floor level (Polygonum bistorta, P. viviparum, Cirsium heterophyllum, Calamagrostis langsdorffii, Rubus chamaemorus, R. arcticus, Caltha palustris, Saxifraga hirculus, etc.). In protected biotopes on the slope with a predominantly SE exposure dense patches of Alnus fruticosa occur, with “tall herb” communities in between (Polemonium acutiflorum, Aconitum cf. baicalense, Trollius cf. asiaticus, Dianthus superbus, Veratrum lobelianum, Angelica decurens, Lamium album, Veronica longifolia, Geranium silvaticum (= Geranium krylovii), Petasites frigidus, Parnassia palustris, Valeriana capitata, Rubus chamaemorus, R. arcticus, Viola biflora, Pedicularis cf. oederii, etc). 4.3. Reindeer remains See Tabs. 2–3. The bone assemblages accumulated during several different deposition periods. The Upper VC assemblage includes one antler (cornu) fragment and 3 complete metacarpalia III from minimally 2 adult reindeer. The epiphyses of metapodia are fused. Because the bones do not show remains of muscles and fat and only very few ligaments, the assemblage is more than 1 year old. Two or three (dog) gnaw marks are visible on lower extremities of two metacarpals. The bone assemblage of Lower VC, area H, includes fragments of: 1 scapula, 2 vertebrae, 5 humeri, 2 radii, 1 femur, and 1 tibia; 2 complete ulnae + radii, complete humerus, calcaneus, 2 metacarpalia III, 7 phalanges I, 5 phalanges II and 1 phalanx III; fragments of humerus, radius, femur and tibia from minimally 2 adult reindeer. One tibia belongs to a pre-born individual and 1 metatarsus III belongs to a new-born individual. Almost all bones display remains of muscles, fat and a larger amount of ligaments. A fragment of tibia and calcaneus, as well as 2 metacarpalia III and phalanges I, II, III are connected by ligaments. Firsts calves are being born in the second half of April in the Yamal region (Podkorytov 1995), and the presence of pre-born and newborn individuals in this assemblage thus indicates accumulation during spring (late April– early May) of 2009. Only three fragments of humerus (1 distal end and 2 fragments of diaphysis) and one fragment of femur (from diaphysis) seem to be older than 1 year. A special character of this assemblage is given by the absence of skull bones and trunk (no ribs and only two vertebral fragments present). A larger proportion of the fragments are broken bones, smashed vertebrae, and majority of bones (about 60%) show gnawing marks from dogs. The bone assemblage from Lower VC, area I, includes fragments of 2 costae, 2 scapulae, 2 radii, 3 tibiae; complete 2 calcanei, 2 tali, 10 metacarpalia III, 11 metatarsalia III, 30 phalanges I, 29 phalanges II, and 16 phalanges III as a minimum of 7 adult reindeer. Part 6 Pˇrehled výzkum˚u 51, Brno 2010 Tab. 2: Valley camps (VC), reindeer bone assemblages from selected areas. Tab. 2: Údolní tábory, složení sobích kostí z vybraných ploch. Site Bones Side Damages Upper “VC” area J–K cornu, fr. broken 2 metacarpalia III, complete dex 1 gnawed metacarpus III, complete sin gnawed Lower “VC”, area H vertebra cervicalis, 2 fr. chopped scapula, fr., central part sin gnawed humerus, complete dex gnawed humerus, distal end dex broken, gnawed humerus, distal end sin broken, gnawed humerus, distal end sin broken humerus, fr. of diaphysis dex broken humerus, fr. of diaphysis dex broken ulna + radius, complete dex gnawed ulna + radius, complete sin gnawed ulna + radius, upper half sin broken, gnawed radius, fr. of diaphysis dex broken femur, fr. of diaphysis sin broken tibia, lower end + calcaneus sin broken, gnawed tibia, newborn dex gnawed metacarpus III + 2 phalanges I + 2 phalanges II + 1 phalanx III, complete sin gnawed ph. II & ph. III & metacarpus III + 2 phalanges I, complete sin gnawed 2 ph. I metatarsus III, complete, embryon dex gnawed phalanx I + phalanx II, posterior, complete sin Lower “VC”, area I cranium, os frontalis, complete, newborn sin mandibula, complete, newborn dex costa, upper half dex gnawed costa, caput sin gnawed scapula, fr., anterior half dex gnawed scapula, fr., central part dex gnawed humerus, complete, newborn dex humerus, complete, embryon sin gnawed ulna, complete, newborn dex gnawed radius, complete, newborn sin gnawed radius, fr. of diaphysis sin broken, gnawed radius, fr. of diaphysis sin broken tibia, lower half + talus + calcaneus dex broken, gnawed tibia, lower end + talus + calcaneus sin broken, gnawed tibia, upper end sin broken metacarpus III + 2 phalanges I + 2 phalanges II + 2 phalanges III, complete dex metacarpus III + 2 phalanges I + 2 phalanges II + 2 phalanges III, complete dex metacarpus III + phalanx I + phalanx II, complete dex gnawed 1 ph. II metacarpus III, complete dex metacarpus III + 2 phalanges I + 2 phalanges II + 2 phalanges III, complete sin metacarpus III + 2 phalanges I + 2 phalanges II + 2 phalanges III, complete sin metacarpus III + 2 phalanges I + 2 phalanges II, complete sin gnawed 1 ph. I & 2 ph. II metacarpus III + 2 phalanges I + 2 phalanges II, complete sin gnawed 2 ph. II metacarpus III + phalanx I + phalanx II + phalanx III, complete sin gnawed 1 ph. II metacarpus III + phalanx I + phalanx II, complete sin gnawed 1 ph. II metatarsus III + phalanx I + phalanx II + phalanx III, complete dex metatarsus III + phalanx I + phalanx II + phalanx III, complete dex metatarsus III + phalanx I, complete dex metatarsus III, complete dex metatarsus III + 2 phalanges I + 2 phalanges II + 2 phalanges III, complete sin metatarsus III + 2 phalanges I + 2 phalanges II + 2 phalanges III, complete sin gnawed 1 ph. II & 1 ph. III metatarsus III + 2 phalanges I + 2 phalanges II + phalanx III, complete sin gnawed 2 ph. II metatarsus III + 2 phalanges I + 2 phalanges II, complete sin gnawed 2 ph. II metatarsus III + 2 phalanges I + 2 phalanges II, complete sin gnawed 2 ph. II 7 Jiˇrí Svoboda, Pavel A. Kosintsev, Sandra Sázelová, Vlasta Jankovská, Martin Holub: Ethnoarchaeology of Nenets campsites.... Tab. 3: Valley camps, individual skeletal segments of reindeer (Rangifer tarandus) from selected areas. Tab. 3: Údolní tábory, jednotlivé ˇcásti sobích skelet˚u (Rangifer tarandus) z vybraných oblastí. Bones Upper “VC”, area J–K Lower “VC”, area H Lower “VC”, area I NISP %% NISP %% NISP %% cornu 1 25 0 0 0 0 cranium 0 0 0 0 0 0 vertebrae, costae 0 0 2 7 2 2 scapula, coxae 0 0 1 4 2 2 humerus, ulna + radius, femur, tibia 0 0 12 44 5 5 carpalia, tarsalia 0 0 1 4 4 4 metapodia 3 75 2 7 21 19 Phalanges I, II, III 0 0 9 33 77 69 Total 4 100 27 100 111 100 Tab. 4: Material composition of objects in the abandoned Valley camps. A–I: Lower camp, J–K: Upper camp. Tab. 4: Složení materiálu v Údolních táborech. A–I: spodní, J–K: svrchní. Material A B C D E F G H I J K Total % wood (-) (-) 3 2 2 3 17 1 7 4 3 42 10,17 ash 1 1 (-) 1 (-) (-) (-) 1 (-) (-) (-) 4 0,97 bone 8 11 4 9 (-) 10 31 9 77 2 1 162 39,23 antler (-) (-) (-) (-) (-) (-) 1 (-) (-) 1 (-) 2 0,48 hoof (-) (-) (-) (-) (-) (-) (-) 2 11 (-) (-) 13 3,15 fur 1 (-) 2 1 (-) (-) 10 13 1 (-) (-) 28 6,78 straw (-) (-) 1 1 (-) 2 2 1 1 (-) (-) 8 1,94 stone (-) (-) 2 11 (-) (-) (-) (-) (-) 7 (-) 20 4,84 paper (-) (-) 2 4 1 1 7 4 1 (-) (-) 20 4,84 glass (-) 1 (-) (-) (-) (-) (-) 1 (-) 7 6 15 3,63 porcelain (-) (-) (-) (-) (-) (-) (-) 1 (-) (-) (-) 1 0,24 plastic (-) 2 3 8 3 4 27 6 2 (-) 1 56 13,56 metal 1 (-) (-) 5 (-) (-) (-) 10 (-) 3 1 20 4,84 textile 2 (-) 2 10 (-) (-) 1 1 1 (-) 3 20 4,84 TetraPak (-) (-) (-) (-) (-) (-) 1 1 (-) (-) (-) 2 0,48 Total 13 15 19 52 6 20 97 51 101 23 15 413 100 % 3,14 3,73 4,60 12,59 1,50 4,84 23,48 12,34 24,46 5,56 3,73 100 of cranium, 1 mandibula, 1 humerus, 1 ulna, 1 radius and 1 metatarsus III belong to new-born individual, and 1 humerus belongs to a pre-born individual. All bones show remains of muscles, fat and a large amount of ligaments. Fragments of tibia, calcaneus and talus, as well as 9 metacarpalia III, 9 metatarsalia III and phalanges I, II, III are connected by ligaments. As in area H, bones of skull and trunk are almost absent (no vertebrae and only 2 ribs); aspects of bone fragmentation and gnaw marks are the same. In conclusion, bones collected in the Lower VC (areas H and I) belong to a unique assemblage, formed in spring of 2009. The structure is specific, always dominated by metapodia and phalanges, whereas skulls and trunks are almost completely missing. Epiphyses of all bones (except embryos and new-born individuals) are fused. Another characteristic is that all metapodia, phalanges and part of the long bones are not split. This is uncommon since marrow is highly sought after by the Nenets and appears as a delicacy in traditional nutriture (Evladov 1992). The ratio of complete bones (excluding antler and bone of the new-born individuals) makes up only 15%. Larger part of metapodia and phalanges (75%) are connected by ligaments. The skin is scraped off; it is called “kamus” and is valued as a material for dressing. Only 4 metapodia (14%), 22 phalanges (27%), and 20 other bones (61%) display gnawing marks from dogs. The bone assemblage from the Upper VC is similar in composition to the Lower VC. Both are formed by 3 groups of bones. The first group includes shoulderbones, vertebrae, ribs, and long bones, as remains of nutriture. The second group includes metapodia and phalanges, as remains of working processes, namely production of “kamus”. Fragments of antler may be added to this group. The third group is formed by embryos and newborn individuals. 4.4. Structure of the Lower Valley camp See Fig. 6, Tabs. 4–6. Structure of the lower platform may be separated into domestic areas A–C, possibly “chums”, activity areas D– 8 Pˇrehled výzkum˚u 51, Brno 2010 Tab. 5: Types of food in the abandoned Valley camps. A–I: Lower camp, J–K: Upper camp. Tab. 5: Složení potravy v Údolních táborech.. A–I: spodní, J–K: svrchní. Nutrition A B C D E F G H I J K Total % bone– edible species 8 11 3 9 (-) 10 31 9 77 2 1 162 76,06 cereals (-) (-) (-) 1 (-) (-) (-) (-) (-) (-) (-) 1 0,46 instant (-) (-) (-) (-) (-) (-) (-) 3 (-) (-) (-) 3 1,41 milk (-) 2 1 2 (-) (-) 1 8 (-) 1 1 16 7,51 candy (-) (-) 2 (-) (-) (-) 2 (-) (-) (-) (-) 4 1,88 preserves (-) (-) (-) (-) (-) (-) (-) 2 (-) 8 (-) 10 4,69 alcohol (-) (-) 1 2 (-) (-) (-) 1 (-) 1 6 11 5,16 juice/limo (-) (-) (-) 2 (-) (-) 2 2 (-) (-) (-) 6 2,81 Total 8 13 7 16 (-) 10 36 25 77 12 8 213 100 % 3,80 6,10 3,27 7,51 0 4,69 16,90 11,74 36,2 5,63 3,80 100 Fig. 6: Yangana Pe, plan of the Valley camp – lower, facing north. Dark circles A–C: interior domestic areas (“chums”), light-colored zones D–G: exterior activity areas, H–I: peripheral toss areas. Obr. 6: Jangana Pe, plán Údolního tábora – spodní ˇcást, orientace k severu. Tmavé kruhy A–C: interiérové sídlení zóny (ˇcumy), svˇetlé kruhy D–G: exteriérové zóny aktivit, H–I: periferní odpadové zóny. G, and depository and toss zones H–I. The total dimension of the occupied area is approximately 35 × 25 m in size. Two hearths with circular domestic areas around, and a pile of wood nearby, are located on the platform (A, B). Adjacent are two circular activity areas of 5 m and 3 m in diameter with wood splinters (E, F) and additional objects were scattered over the surrounding area (G). On the elevation at the southern promontory, there is another domestic area (a “chum”?) containing a hearth with two flat stones used for cooking, with wood splinters Fig. 7: Valley camp – lower. View from a hearth with two cooking stones towards the site periphery. Obr. 7: Údolní tábor – spodní ˇcást, pohled od ohništˇe se dvˇema kameny pro vaˇrení smˇerem k periferii sídlištˇe. Foto J. Svoboda. and sticks around (C). An adjacent activity area (D) included a pile of stones and individual stones around. Below the promontory lies a depository of wooden planks and a toss zone of discarded objects (reindeer bones), and two piles of toss (H–I). 4.5. Structure of the Upper Valley camp Occupation remains on the higher platform (J–K), adjacent to the east, and measuring 50×25 m, are less clear. A pile of stones dominates on the plateau promontory, an accumulation of ashes and objects is dispersed on the surface. Nevertheless we expect that domestic and activity areas existed here as well. 5. The abandoned “Slope camps” (SC) One of the shallow valleys crossing the southern slopes of Yangana Pe, formed by a brook surrounded by bushes, shows intensive and variable traces of human activites. There is a larger lower camp and a smaller upper camp. 5.1. The inside-camp vegetation 9 Jiˇrí Svoboda, Pavel A. Kosintsev, Sandra Sázelová, Vlasta Jankovská, Martin Holub: Ethnoarchaeology of Nenets campsites.... Tab. 6: Types of objects in the abandoned Valley camps. A–I: Lower camp, J–K: Upper camp. Tab. 6: Složení potravy v Údolních táborech.. A–I: spodní, J–K: svrchní. Nutrition A B C D E F G H I J K Total % wood as fuel (-) (-) 3 1 1 3 17 1 1 4 2 33 16,41 stone (-) (-) 2 11 (-) (-) (-) (-) (-) 7 (-) 20 9,95 ash 1 1 (-) 1 (-) (-) (-) 1 (-) (-) (-) 4 1,99 insulation (-) (-) 1 3 3 3 20 (-) (-) (-) 1 31 15,42 cord/rope (-) (-) (-) 2 (-) (-) 1 (-) (-) (-) 1 4 1,99 wooden object (-) (-) (-) (-) 1 (-) (-) (-) 6 (-) (-) 7 3,48 textile covers 2 (-) 1 6 (-) (-) 1 (-) (-) (-) (-) 10 4,98 domestic equipm. (-) (-) (-) (-) (-) (-) 3 4 (-) (-) (-) 7 3,48 shaving (-) (-) (-) 1 (-) (-) 2 (-) (-) (-) 1 4 1,99 clothes (-) (-) 1 3 (-) (-) (-) 3 1 (-) 2 10 4,98 hygiene/medicine (-) 1 1 (-) (-) (-) (-) 1 (-) (-) (-) 3 1,49 bone non-edible species/hoof/antler (-) (-) 1 (-) (-) (-) 1 2 11 1 (-) 16 7,96 fur 1 (-) 2 1 (-) (-) 10 11 1 (-) (-) 26 12,94 straw (-) (-) 1 1 (-) 2 2 1 1 (-) (-) 8 3,98 packing (-) (-) 1 3 1 2 4 1 2 (-) (-) 14 6,97 newspaper (-) (-) (-) 1 (-) (-) 1 (-) (-) (-) (-) 2 0,99 others 1 (-) (-) 1 (-) (-) (-) (-) (-) (-) (-) 2 0,99 Total 5 2 14 35 6 10 62 25 23 11 7 201 100 % 2,48 1 6,97 17,41 2,99 4,98 30,85 12,44 11,44 5,47 3,48 100 The species structure on the both slope camps concurs with that of the valley camps. Dwarf shrubs (Ledum decumbens, Dryas punctata and Empetrum hermafroditum) and low forms of Betula nana, Salix lapponum, S. glauca and S. phylicifolia are among the dominating taxa. At some climatically exposed areas we observed the typical frost boil soils, deprived of vascular plants on the surface and thus open to erosion by water, wind and frost. Initial stages of these rough soils, prepared for possible future coverage by vascular plants, are characterized by algae (Chlorophyta, Cyanophyceae) and by sporadic juvenile stages of lichens and bryophytes. 5.2. Vegetation in the direct vicinity Again, the vegetation structure recalls the valley camps, but the overall landscape physiognomy is closer to mountain tundra. Larger areas of shrub vegetation with dominating Alnus fruticosa are restricted to protected sections of the slope and to shallow depressions. Salix (especially S. lanata) covers larger areas around peat-bogs and along brooks. The herbs are dominated by the family Cyperaceae (Carex sp. div., Eriophorum sp. div.) and by various tall herbs. 5.3. Reindeer remains See Tabs. 7–8. The bone assemblage from Lower SC, area D, includes two parts given the time of origin. The first part includes fragments of 1 cornu, 1 cranium, 1 mandibula, 2 coxae, 2 humeri, 1 radius, 2 femori, 2 tibii, 2 metatarsalia III and 4 fragments of diaphysis of indeterminate long bones; whole – 2 vertebrae, 1 tibia, 2 calcaneii, 2 tali, 1 os tarsale centrale, 1 os malleolare, 2 ossa carpi, 1 metacarpus III, 4 metatarsalia III, 7 phalanges I, 5 phalanges II, 2 phalanges III and 2 ossa sesamoidea. The bones belong to a minimum of 5 adults and 1 juvenile reindeer, and the mandibula belongs to a newborn. Presence of the newborn places the accumulation period in spring (Podkorytov 1990). The bones show no traces of fat and muscles, whereas ligaments, preserved on almost all of the bones, are dry. This suggests that the bones were accumulated 1–2 years ago. The second part includes fragments of 1 cornu, 1 coxa and 1 humerus. Since no traces of ligaments are present and the surfaces are covered by moos, these bones were deposited more that 3 years ago. Of importance is the lack of trunk bones (no ribs and only two vertebrae). Almost all bone fragments are due to breakage, only one skull and one rib are cut. The complete bones make up 62% of the assemblage, with dominance of metapodia and phalanges. About 40% of the bones were gnawed by dogs. The bone assemblage from Lower SC, area A, includes fragments of 1 cornu, 1 cranium, 3 costae, 1 radius and ulna, 5 fragments of diaphys of metacarpus III and 6 fragments of diaphys of metatarsus III, belonging to at least 1 sub-adult reindeer. Another maxilla belongs to an individual of about 2 years old, probably killed here in spring (Klevezal 2007). All bones show traces of fat and ligaments, suggesting that the bones were accumulated during the last spring (2009). Bones from all parts of the skeleton are present. All bones are fragmented and the majority (about 90%) show gnaw marks from dogs. The bone assemblage scattered within the Upper SC includes fragments of 2 cornu and 2 crania, from a minimum of 2 adult individuals. One fragment of antler is 10 Pˇrehled výzkum˚u 51, Brno 2010 Tab. 7: Slope camps (SC), reindeer bone assemblages from selected areas. Tab. 7: Svahové tábory, složení sobích kostí z vybraných ploch. Site Bones Side Damages Antler accumulation 2 corna, dex. and 2 corna, sin. from 2 individuals; 1 cornu, dex.; complete; detached from the skulls 3 of the dex have cut the anterior antler 1 cornu and 1 cornu from 1 individual; complete; casts dex & sin 1 of the dex have cut the anterior and posterior antlers 3 cornu from 3 individuals; complete; casts dex 1 cornu; complete; casts sin cut the anterior antler Upper Slope camp cornu, fr. sawed off, gnawed cornu, fr.; dropped gnawed cranium, fr. os frontalis & ossa parietalia chopped cranium, fr. os frontalis, ossa parietalia & os occipitalis chopped Lower Slope camp, area A cornu, fr. broken maxilla, complete, semiadultus dex broken 2 costae, fr., upper half dex & sin gnawed costa, fr., middle part sin gnawed, broken ulna + radius, upper half sin gnawed, broken 5 metacarpalia III, fr. of diaphysis gnawed, broken 6 metatarsalia III, fr. of diaphysis gnawed, broken Lower Slope camp, area C–F cornu, fr. gnawed cornu, fr.; dropped cranium, 3 fr. os frontalis & ossa parietalia from 1 individual chopped maxilla, 2 fr. from 1 individual, adultus dex & sin broken mandibula, 2 fr. from 1 individual, newborn dex gnawed vertebrae cervicales, 2 specimens from 1 individual, complete, juvenile gnawed coxae, 2 fr. from 1 specimen sin gnawed coxa, fr. dex gnawed, chopped humerus, distal end dex broken humerus, fr. of diaphysis dex broken humerus, fr. of diaphysis sin gnawed, broken ulna, fr. of diaphysis dex gnawed, broken femur, lower half dex gnawed, broken femur, fr. of diaphysis dex gnawed, broken tibia, complete dex tibia, 2 lower half dex & sin broken 2 tali + 2 calcanei, complete dex & sin os tarsale centrale dex gnawed os malleolare, complete dex 2 ossa carpi, complete sin 2 metacarpalia III, complete dex & sin 4 metatarsalia III, complete dex 1 gnawed metatarsus III, fr. of diaphysis dex gnawed, broken metatarsus III, complete sin 5 phalanges I, anterior, complete 1 gnawed 2 phalanges I, posterior, complete 3 phalanges II, anterior, complete 1 gnawed 2 phalanges, posterior, complete 2 phalanges III + sesamoid, posterior, com- plete Long bones – 4 fr. of diaphysis gnawed, broken 11 Jiˇrí Svoboda, Pavel A. Kosintsev, Sandra Sázelová, Vlasta Jankovská, Martin Holub: Ethnoarchaeology of Nenets campsites.... Tab. 8: Slope camps, individual reindeer bones (Rangifer tarandus) from selected areas. Tab. 8: Svahové tábory, jednotlivé ˇcásti sobích skelet˚u (Rangifer tarandus) z vybraných ploch. Bones Lower “SC, area C–F” Lower “SC, area A” NISP %% NISP %% cornu 1 2 1 6 cranium 5 10 1 6 vertebrae, costae 2 4 3 17 scapula, coxae 2 4 0 0 humerus, ulna+radius, femur, tibia 8 16 1 6 carpalia, tarsalia, sesamoidea 10 20 0 0 metapodia 8 16 11 65 phalanges I, II, III 14 28 0 0 Total 50 100 17 100 Fig. 8: Yangana Pe, plan of the Slope camp – lower, facing north. Dark circles A, B: interior domestic areas (“chums”), light zones C–D: exterior activity areas, E–G: peripheral toss areas, H: periphery. The arrows point to the upper rock (with a large bottle inserted in a fissure) and an interior children´s playground (black square inside B). Obr. 8: Jangana Pe, plán Svahového tábora – spodní ˇcást, orientace k severu. Tmavé kruhy A, B: interiérové sídlení zóny (ˇcumy), svˇetlé ovály C–D: exteriérové zóny aktivit, E–H: periferní odpadové zóny. Šipky ukazují horní skalisko (s velkou lahví vsunutou do skalní pukliny) a interiérovou dˇetskou zónu (ˇcerný ˇctverec uvnitˇr B). sawn off, another skull fragment has cut off antlers. Both skull fragments are cut in order to get to the brain. They are covered by moos, show no ligament remains, and were accumulated more than 3 years ago. A separate antler accumulation on the highest top of the Upper SC included 11 pieces, 7 right and 4 left, Fig. 9: Slope camp – lower section, with sledges in front. Obr. 9: Svahový tábor – spodní ˇcást, v popˇredí sánˇe. Foto M. Ho- lub. originating from 8 adult individuals. These include three couples from three individuals and single pieces from 5 individuals. 8 pieces are naturally discarded, while 5 pieces were broken off from skulls of three individuals before the natural discard. This suggests that these antlers were intended to be assembled. Some pieces are covered by moss and lichen, suggesting that the accumulation period may have exceeded 5 years. Possibly, one or both antlers of one individual were added into the cache each year. All distal parts of the branches show gnawing by reindeer, and one left antler shows branch breakage. Some antlers have various branches sawn-off by humans. Reindeer males discard antler in winter, females do so 4–7 days after birthgiving (Podkorytov 1995), that means in spring, but it is difficult to determine male and female antler in this case. Anyhow, given the fact that Nenets families stay in this region in spring, summer, and fall, these pieces were probably collected and deposited in the cache in spring. Nenets usually deposit antler at sacred places (Chomich 1995), and the Upper SC may be one such location of a migrating family. In conclusion, bones from the Lower and Upper SC compose three assemblages of various ages: spring 2009 (Lower SC, area A), 1–2 years ago (larger part of Lower SC, area D), and more than 3 years ago (3 bones of Lower SC, area D, and Upper SC). The two assemblages from 12 Pˇrehled výzkum˚u 51, Brno 2010 Tab. 9: Material composition of objects in the abandoned Slope camps. A–H: Lower camp, I: Upper camp. Tab. 9: Složení materiálu ve Svahových táborech. A–H: spodní, I: svrchní. Material A B C D E F G H I Total % wood 42 7 1 6 18 14 7 11 3 109 23,95 ash 1 (-) (-) (-) (-) (-) 2 (-) (-) 3 0,67 bone 17 8 18 3 12 17 5 4 14 98 21,54 antler 1 (-) (-) 1 (-) (-) (-) 4 11 17 3,74 fur 3 11 1 (-) (-) (-) 2 3 (-) 20 4,39 straw 4 1 (-) (-) (-) (-) (-) (-) 1 6 1,32 paper 3 7 (-) (-) 1 (-) 4 8 4 27 5,93 glass 4 9 (-) (-) 2 12 (-) 2 2 31 6,81 porcelain (-) 1 (-) (-) (-) (-) (-) 2 (-) 3 0,67 plastic 17 4 (-) (-) 3 2 1 5 10 42 9,23 metal 6 8 (-) (-) 3 7 (-) 1 8 33 7,25 textile 18 10 2 1 8 1 3 10 1 54 11,86 TetraPak 3 (-) (-) (-) (-) (-) (-) (-) (-) 3 0,67 others 4 (-) (-) (-) (-) (-) (-) 4 1 9 1,97 Total 121 66 22 12 47 53 24 54 55 455 100 % 26,59 14,50 4,83 2,64 10,33 11,64 5,27 11,86 12,08 100 Fig. 10: Yangana Pe, plan of the Slope camp – upper section, facing north. Obr. 10: Jangana Pe, plán Údolního tábora – horní ˇcást, orientace k severu. Lower SC are large enough for a characterisation, showing that bones of the trunk are very rare (vertebrae, ribs), whereas distal parts of the legs are much more numerous (such as metapodia, phalanges, ossa carpi and ossa tarsi). Lower SC, area A, includes one juvenile reindeer, whereas area D includes minimum of 5 adults and 1 juvenile reindeer. No complete bones were recovered from area A, whereas in area D they make up more than half the assemblage. Dog gnawing is visible on almost all bones from area A, whereas in area D they make up less than a half. In terms of taphonomy, bones from the Lower SC, area A, constitute one complex– all are food remains. Bones from area D may be separated into three groups. The first group includes a skull, vertebrae, ribs and long bones, as food remains. The second group includes metapodia, phalanges, and antler fragments as remains of a technological process, namely the production of „kamus“. The third group includes remains of a newborn baby. Bones from the Upper SC result from several taphonomic complexes, with skull fragments as food remains, an antler fragment as remains of a technological process, and the antler accumulation as a specific case of deposition, possibly symbolic. 5.4. Structure of the Lower Slope camp See Fig. 8, Tabs. 9–11. The lower camp is larger (100 m × 70 m) and may be divided into several zones. The upper (northern) margin is marked by a rock formation, the southern margin by an oval-shaped elevation dominating above the brook valley. Pentagonal sorted circles are developed below the upper rock as well as on the slope below the site. On the plain connecting the rock and the elevation, two circular domestic areas, possibly “chums”, were recorded. The first one (A) has no visible hearth, but a relatively high concentration of objects (wood, bones, cans, textiles, cordage, straw). The second one (B) has traces of a hearth in the center, and a children´s area inside (paper images of animals, a child´s ring). The plateau between these features (C) yielded individual dispersed objects, but discrete activity areas could not be distinguished. 13 Jiˇrí Svoboda, Pavel A. Kosintsev, Sandra Sázelová, Vlasta Jankovská, Martin Holub: Ethnoarchaeology of Nenets campsites.... Tab. 10: Types of food in the abandoned Slope camps. A–H: Lower camp, I: Upper camp. Tab. 10: Složení potravy na Svahových táborech. A–H: spodní, I: svrchní. Nutrition A B C D E F G H I Total % bone– edible species 17 8 18 3 12 17 5 4 14 98 55,68 cereals/pasta (-) 1 (-) (-) (-) (-) (-) (-) (-) 1 0,57 instant (-) (-) (-) (-) (-) (-) 1 2 (-) 3 1,69 milk 3 2 (-) (-) 2 2 (-) (-) 5 14 7,95 candy 2 (-) (-) (-) (-) (-) (-) 2 7 11 6,25 preserves 4 2 (-) (-) (-) 13 (-) 1 2 22 12,50 alcohol 2 9 (-) (-) (-) 3 (-) 1 (-) 15 8,53 juice/limo 3 (-) (-) (-) (-) (-) (-) (-) 1 4 2,27 cigarettes 2 (-) (-) (-) (-) (-) (-) 3 (-) 5 2,84 vegetables 2 (-) (-) (-) (-) (-) (-) (-) (-) 2 1,13 others (-) (-) (-) (-) (-) (-) (-) (-) 1 1 0,57 Total 36 22 18 3 14 35 6 13 30 176 100 % 20,45 12,50 10,23 1,69 7,95 19,89 3,40 7,37 17,04 100 Fig. 11: Slope camp – upper section, the antler deposit at the highest elevation, possibly has a symbolic meaning. Obr. 11: Údolní tábor, horní ˇcást, akumulace paroh˚u na nejvyšším místˇe, zˇrejmˇe symbolického významu. Foto J. Svoboda. On the top of the southern promontory (D) is an accumulation of bottles, complete sledges with a pot on them were observed on the plateau below, and animal bones were dispersed all around. Three restricted toss accumulations (E–G) were deposited along the eastern margin of this elevation. Isolated objects are located on the peripheries (H), including parts of sledges, a reindeer skin, and other objects discarded on the slope. The remarkable rock above the camp has a fissure with a large bottle inserted inside. In the bushes surrounding the camp and along the brook between the lower and upper camps, we recorded several small cleared areas from woodcutting. 5.5. Structure of the Upper Slope camp See Figs. 10–11. The upper camp (I) occupies the top of an oval-shaped elevation, about 20 m × 12 m in size. On the highest part of the plateau is an accumulation of reindeer antler, possibly of ritual significance, the lower part is moist. Individual objects dispersed over the plateu include additional pieces of antler, reindeer skulls, fragments of sledges, pieces of textiles, and bottles. Several accumulations of discarded objects are deposited on the slope along the eastern margin of the elevation. 6. The abandoned Oktyaberskaya campsite See Figs. 12–13. About 150 km further south, near the city of Labytnangi and the railway, we explored another type of winter camp, closer to civilisation. The Nenets brought their reindeer almost to the city periphery and sold some of the animals, while others were evidently killed on the spot. 6.1. The inside-camp vegetation This camp is located on the edge of a sparse Larix sibirica forest tundra. The shrub layer is dominated by Betula nana, sporadically by Salix phylicifolia, and very rarely by Juniperus sibirica. Among the dwarf shrubs, species of families Ericaceae and Vacciniaceae (Empetrum hermafroditum, Ledum cf. palustre, Vaccinium uliginosum, V. vitis-idaea and Arctous alpina) dominate. As rare occurrences we noted Rubus chamaemorus and Luzula sp. Among lichens we regularly recorded Cladonia cf. rangiferina, C. cf. silvatica, C. cf. pyxidata, Cetraria islandica, Cetraria alpestris, Peltigera cf. aphtosa and others, among mosses Hylocomium splendens, Dicranum sp., Enthodon schreberi, Ptilidium ciliare, Polytrichum cf. strictum, Sphagnum sp. div., Pogonatum sp. dominate but many other taxa are present. 6.2. Vegetation in close vicinity The tree level is formed by light cover of Larix sibirica with individual and mostly juvenile exemplars of Picea obovata and Betula pubescens. Sporadically and mostly in groups is represented Alnus fruticosa, exemplars of Salix phylicifolia, groups of Salix lapponum, S. glauca, and Betula tortuosa. The dominant shrub is clearly Betula nana, forming the so-called “yerniks”, together with Ledum cf. palustre and Empetrum her- 14 Pˇrehled výzkum˚u 51, Brno 2010 Tab. 11: Types of objects in the abandoned Slope camps. A–H: Lower camp, I: Upper camp. Tab. 11: Složení pˇredmˇet˚u ve Svahových táborech. A–H: spodní, I: svrchní. Utilities A B C D E F G H I Total % wood as fuel 35 4 1 6 17 13 6 6 1 89 31,9 ash 1 (-) (-) (-) (-) (-) 2 (-) 3 1,08 cord/rope/wire 15 1 (-) (-) 4 1 3 1 (-) 25 8,96 wooden object 5 3 (-) (-) 1 1 (-) 4 2 16 5,73 textile covers 5 5 1 1 4 1 (-) 6 (-) 23 8,24 domestic equipm. 2 7 (-) (-) (-) (-) (-) 2 (-) 11 3,94 game/toy 1 (-) (-) (-) (-) (-) 4 3 (-) 8 2,87 shaving 2 (-) (-) (-) (-) (-) 1 1 (-) 4 1,43 clothes 8 3 1 (-) 3 (-) (-) 4 1 20 7,17 hygiene/medicine 2 6 (-) (-) 2 2 (-) (-) 4 16 5,73 bone non-edible species/hoof/antler 1 (-) (-) 1 (-) (-) (-) 4 11 17 6,09 fur 2 11 1 (-) (-) (-) 1 3 (-) 18 6,45 straw 4 1 (-) (-) (-) (-) (-) 1 6 2,15 packing 2 1 (-) (-) 1 (-) 1 2 1 8 2,87 others 3 2 (-) (-) 1 (-) (-) 5 4 15 5,38 Total 88 44 4 8 33 18 18 41 25 279 100 % 31,54 15,77 1,43 2,86 11,82 6,45 6,45 14,7 8,96 100 mafroditum, of the Ericaceae, and with Vaccinium uliginosum of the Vacciniaceae. The lowermost level is formed by mosses, bog moss and lichens, and a small club moss Sellaginella selaginoides. Of a different character are areas with biotopes exposed to frost, wind, and solifluction, without a compact vegetation cover, scattered here and there inside the larch forest tundra. These form polygons of frost boil soils, in center of which are species such as Andromeda polifolia, Salix polaris, Tofieldia pusilla, Diapensia lapponica, Pinguicula alpina and Polygonum viviparum. The polygon margins are populated by Loiseleuria procumbens, Dryas cf. octopetala and Arctous alpina, mosses are represented by Ptilidium ciliare, Rhacomitrium lanuginosum, Hylocomium splendens, Enthodon cf. schreberi, and depressions are populated by Aulacomnium turgidum, Dicranum sp., Polytrichum sp. etc. Lichens are represented by the tundra species Dactylina arctica, Thamnolia vermicularis and frequently Cetraria islandica, C. nivalis, C. deliseii, Cetraria mitis, C. spec. div., Cladonia rangiferina, C. pyxidata, C. sylvatica, C. alpestris and others, precisely undetermined mosses and lichens. 6.3. Structure of the camp See Fig. 12, Tabs. 12–14. The site is located between a shallow valley with open tundra in the south and a sparse larch forest in the north. It forms an irregular circle, the core of which measures 35 m in diameter, the periphery 65 m in diameter, and individual objects are scattered even further into the tundra, beyond the camp boundaries. The core area is composed by two domestic areas, possibly “chums” (A, B), with directly adjacent woodcuting areas, a conus and a pile of cut up wood (F), and an area of reindeer bone scatter, possibly of one individual (G). One of the “chums” (A) included interior childrens´ playground (paper cutout, a pencil, a gum). The frontal (southern) periphery opened towards tundra and consists of woodcutting activity areas with reserve piles of cut up wood (C–E), accumulations of various objects and bones and two scatters of reindeer remains (bones and skins). Extended areas of reindeer excrements and hair are located along the SW periphery, where the animals were obviously kept. The back (northern) periphery along the forest margin consists of about 8 toss accumulations with discarded bottles, cans, paper boxes, 2–3 ash accumulations, reindeer skins and a reindeer carcass. Compared to the northern sites, the structure of Oktyaberskoye shows standard character, but the prepared wood piles left at place were larger and cut by a chainsaw (petrol or kerosene canister was left at the site). Cut tree trunks are visible in the nearby forest. There is an evident change in toss structure: the discarded bottles of honey or preserves, predominating in the north, are now being replaced by bottles of vodka and boxes of champagne. The preference for alcohol suggests that the site was dominated by adults, although the identified children´s playground demonstrates their presence. 6.4. Dispersed human traces in the surrounding land- scape In the surrounding forest tundra, we recorded areas of intensive woodcutting by chainsaw. Antler, cans or other vessels, belts and a variety of other objects, possibly symbolic, were attached to individual trees. 7. Interpreting the inventories of abandoned campsites 15 Jiˇrí Svoboda, Pavel A. Kosintsev, Sandra Sázelová, Vlasta Jankovská, Martin Holub: Ethnoarchaeology of Nenets campsites.... Fig. 12: Plan of the Oktyaberskaya camp, facing north. Dark circles A, B: domestic areas (“chums”), light zones C–F: activity areas, G: dispersed reindeer bones, H: toss areas. Black dots: dispersal of reindeer excrements, light dots: dispersal of reindeer hair, black square inside A: interior children´s playground. Obr. 12: Okt´aberskaja, plán tábora, orientovaný k severu. Tmavé kruhy A, B: interiérové sídlení zóny (ˇcumy), svˇetlé zóny C–F: exteriérové zóny aktivit, G: rozptýlené kosti soba, H: periferní odpadové zóny. ˇCerné body: rozptyl sobích exkrement˚u, svˇetlé body: rozptyl sobí srsti, ˇcerný ˇctverec uvnitˇr A: dˇetská zóna. The catalogue of objects from each camp has been examined based on several criteria. First, we determined the proportions of natural and imported materials (Fig. 17). Second, we categorized several groups according to presumable functions, be it nutriture, architecture, clothing, a variety of indoor and outdoor activities, and related them to the spatial structure at each camp (Fig. 18). 7.1. Nutrition Basic component of the animal nutriture are the bones of edible animals, dominated generally by reindeer, and only in the VC supplemented by bones of hares. Fishing represents an important activity in summer, but since these are winter camps more distant from the lakes, evidence of fishing was absent. In addition, fish remains are given to dogs and disappear from the record. The lack of evidence also concerns the plant resources which were substituted by imported goods. Bone remains from the Valley camps and Slope camps show several common patterns. Only a small portion of items are vertebrae and costae (3% and 8%, respectively), a large proportion belongs to bones of distal parts of the extremities (carpalia, tarsalia, metapodia, phalanx I, II, III; 89% and 64%, respectively), all phalanges are Fig. 13: Oktyaberskaya campsite, general view. Obr. 13: Okt´aberskaja, celkový pohled na táboˇrištˇe. Foto J. Svoboda. complete, a large amount of complete metapodia occur (100% and 41%, and similar proportions occur in case of other long bones), a large part of fragments is due to breakage instead of cutting (88% and 83%, respectively), and both assemblages include newborn individu- 16 Pˇrehled výzkum˚u 51, Brno 2010 Tab. 12: Material composition of objects in the abandoned Oktyaberskaya Camp. Tab. 12: Složení materiálu v táboˇre Okt’aberskaja. Material A B C D E F G H Total % wood 10 14 1 48 12 77 (-) 1 163 27,3 ash 1 (-) (-) 2 (-) (-) (-) (-) 3 0,5 bone 17 2 1 22 5 9 54 5 115 19,26 hoof 2 1 (-) (-) (-) (-) (-) (-) 3 0,5 antler 5 (-) (-) 1 23 (-) (-) (-) 29 4,86 fur 1 3 1 2 (-) 2 2 1 12 2,01 straw 1 1 (-) 2 (-) (-) (-) 1 5 0,84 paper 9 18 (-) 33 6 1 9 2 78 13,07 glass (-) 2 (-) 1 (-) (-) (-) 9 12 2,01 plastic 10 31 (-) 24 1 7 (-) 13 86 14,41 metal 1 4 (-) 7 (-) 1 2 1 16 2,68 textile 5 9 (-) 18 4 2 (-) (-) 38 6,36 others 7 12 1 13 3 1 (-) (-) 37 6,2 Total 69 97 4 173 54 100 67 33 597 100 % 11,56 16,25 0,67 28,98 9,05 16,74 11,22 5,53 100 Tab. 13: Types of food in the abandoned Oktyaberskaya camp. Tab. 13: Složení potravy v táboˇre Okt´aberskaja. Nutrition A B C D E F G H Total % bone– edible species 17 2 1 22 5 9 54 5 115 48,94 cereals/pasta (-) (-) (-) (-) 1 (-) (-) (-) 1 0,43 instant 2 6 (-) 1 1 (-) (-) 1 11 4,68 candy 7 13 (-) 9 (-) 2 1 11 43 18,3 preserves 1 2 (-) (-) (-) (-) (-) 3 6 2,55 alcohol (-) 5 (-) 7 1 (-) (-) 4 17 7,23 juice/limo (-) 2 (-) 2 (-) (-) (-) (-) 4 1,7 cigarettes 9 7 1 13 3 1 (-) (-) 34 14,47 vegetables (-) (-) (-) 1 1 (-) (-) (-) 2 0,85 others (-) (-) (-) 1 (-) (-) (-) 1 2 0,85 Total 36 37 2 56 12 12 55 25 235 100 % 15,32 15,74 0,85 23,83 5,11 5,11 23,4 10,64 100 Fig. 14: Straw bunch, multifunctional, Slope camp. Obr. 14: Slamˇený vˇechet, multifunkˇcní, Svahový tábor. Foto S. Sázelová. als. There are differences in the frequency of dog gnawing (52% in VC, and 29% in SC). Taphonomy of these assemblages is similar, as both include three complexes: food remains (cranium, vertebrae, costae, and long bones), remains of technological processes that relate to subchapter 7.7 (antler, metapodia, phalanges, the last ones suggesting „kamus“ production), and remains of newborn babies. Although marrow is highly appreciated in the traditional Nenets nutriture (Evladov 1992), majority of metapodia and phalanges from both locations show no traces of breakage. Preserves represent an important group in all recorded inventories, including jars from pickled cucumbers (all camps), several jars from jams, especially strawberry, peach, apricot and an apple (VC, SC) and ketchup bottles (VC, OC). Since all Nenets are fond of sweets, we recorded at all camps wrappings from various kinds of caramels, fruit caramels, confectioneries, burley sugars, etc. and plastic sticks from lollipops. Variability of candies, chocolates or biscuits increased considerably at the Oktyaberskaya camp, whereas at Yangana Pe, candies are replaced by milk (including tins from condensed sweet milk, two sacks of dried milk and two crucibles from yoghurt). This evidence, together with other indications, suggests that an older child (4–7 years) lived at Oktyaberskaya camp and at least one small child (0– 17 Jiˇrí Svoboda, Pavel A. Kosintsev, Sandra Sázelová, Vlasta Jankovská, Martin Holub: Ethnoarchaeology of Nenets campsites.... Tab. 14: Types of objects in the abandoned Oktyaberskaya camp. Tab. 14: Složení pˇredmˇet˚u v táboˇre Okt´aberskaja. Utilities A B C D E F G H Total % wood as fuel 9 14 1 24 9 76 (-) 1 134 37,02 ash 1 (-) (-) 2 (-) (-) (-) (-) 3 0,83 cord/rope/wire 1 (-) (-) 5 (-) 1 (-) (-) 7 1,93 wooden object 1 (-) (-) 23 3 1 (-) (-) 28 7,73 textile covers 1 5 (-) 6 1 1 (-) (-) 14 3,87 domestic equipm. (-) 1 (-) 6 (-) (-) (-) (-) 7 1,93 game/toy (-) 11 (-) (-) (-) (-) (-) (-) 11 3,04 shaving (-) (-) (-) 1 (-) (-) (-) (-) 1 0,28 clothes 2 2 (-) 11 3 (-) (-) (-) 18 4,97 hygiene/medicine (-) 6 (-) 5 (-) 1 4 1 17 4,7 bone non-edible species/hoof/antler 7 1 (-) 1 23 (-) (-) (-) 32 8,84 fur 1 3 1 2 (-) 2 2 1 12 3,31 straw 1 1 (-) 2 (-) (-) (-) 1 5 1,38 packing 6 9 (-) 16 1 3 1 4 40 11,05 newspaper, etc. 1 3 (-) 10 2 (-) 5 (-) 21 5,8 other 2 4 (-) 3 (-) 3 (-) (-) 12 3,31 Total 33 60 2 117 42 88 12 8 362 100 % 9,12 16,57 0,55 32,32 11,6 24,31 3,31 2,21 100 Fig. 15: Wooden snow knife, found on the shores of lake Taunt. Obr. 15: Dˇrevˇený n˚už na sníh, nález na bˇrehu jezera Taunto. Foto S. Sázelová. 3 years) lived at the camps of Yangana Pe. In addition, the category of beverages includes paper boxes and sacks of black tea, non-alcoholic drinks such as lemonades and juices and alcoholic drinks, such as tins of local beer (Arsenalnoe, Baltika), bottles or fee stamp from vodka, wine and champagne. Again, the concentration of alcohol increased radically at the Oktyaberskaya camp. Frequently, the packings from Tetra Pak boxes, plastic bottles or tins from beverages were cut in center and worn out to be reutilized as vessels. The last group includes personal habits artifacts, and it includes cigarettes (SC, and especially OC), individual matches, boxes of matches, and a lighter (OC). The following differences between the individual camps were recorded. At Valley camp we have found a tin from marine algae and a sack from buckwheat, at Slope camp there was a jar from honey, a sack from pasta and from instant noodle soup and in the toss zone were two mouldy onions and a margarine tub. More special objects were counted at Oktyaberskaya, such as a small caviar jar, a flour paper bag, two plastic dishes of “Byznysmen” instant food, two potato purée bags and an instant noodle soup, one bottle from Tchibo coffee, one boxboard of sect, one mayonnaise tub, chewing gum packaging, and a sack from lemons. 7.2. Architecture Reindeer and hare furs were used with the winter coats preferred. The remains recorded vary from complete reindeer skins at SC and OC to individual bunches of hair. Traces of sewing are visible on certain pieces, and some were transformed to products such as a child boot (plus one fragment) from the VC. However reindeer furs also serve as cover for winter “chums” and the Nenets always prefer two layers, one of them with trimmed hair. Several tufts of trimmed hairs and a piece of fur with cut hair was also recorded at SC, where the context suggests that it was a part of children´s play. In case of the summer “chums”, coverage of rough canvas is used (same as sledge covers). Parts of canvas sometimes have felt loops along edges. The collection of cords, ropes, and wires, including hand-knitted cords and ropes from polyethylene fibers of various colors, may be related either to “chum” construction or to load fastening on sledges. However, we cannot exclude that some of these cords or ropes were used during manipulation with reindeer (even if the lasso for catching reindeers, “tinzjan”, is traditionally knitted from reindeer skins). Cords and ropes occur at all camps, whereas parts of wires were sporadically observed at SC and OC only. Several wooden posts (VC) or pegs (SC, OC) might be connected with the architecture or with activities associated with breeding reindeer or dogs. 18 Pˇrehled výzkum˚u 51, Brno 2010 Fig. 16: Child´s fur shoe, Valley camp. Obr. 16: Dˇetská kožešinová botka, Údolní tábor. Foto S. Sázelová. The skeleton of “chum” is composed by approximately 25–30 wooden poles (one of them was leaning against a larch at OC). On both sides of the hearth, the Nenets first place several wooden planks on the ground (found on periphery of the VC), than straw over it and finally a layer of reindeer furs. Here, women perform their everyday activities and the whole family sleeps on it at night. During winter, the open fire in the center is replaced with a stove (we have found an iron desk with nails from it at SC, and a pipe from a stove´s chimney at OC). In the area opposite to “chum´s” entrance (in front of the zone forbidden to women) is a small table and boxes with dishes. Location of the central hearth in an abandoned camp is sometimes difficult to identify due to ash being discarded at the camp peripheries. Some of the associated objects, however, were recorded at all camps: parts of a table cover with a sunflower pattern, a broken vessel and a broken cup at VC, a pot with drilled holes on each side, through which a wire was inserted, fastened on sledges at SC, a boiler of 10 litre capacity, an aluminium kettle of 20 litre capacity, a crock from a cup with a flowery pattern, and a broken saucer, all at SC. At OC we photographed a kettle for preparing tea, and a metal bowl with a flowery pattern (not included in the record). Specific features were recorded in the VC, with two piles of stones (one of 7 pieces and the other of 11 pieces), all of sandstone. Two similar stones were present in the domestic zone, showing traces of burning and remaining ash in between – an in situ cooking facility from a hearth. As individual occurences we recorded pieces of insulation and a part of linoleum at VC, chipboard at SC, and a part of wooden box pallet, one hacked bunch with an engraving ИМ, and one box from post at OC. 7.3. Clothing The Nenets clothes for cold seasons are traditionally produced from furs, whereas the warmer season dresses are usually purchased. This includes female clothing articles, for example, skirts or blouses with flowery patterns, documented by fragments found at all camps (some of these items were re-used and their strings were twisted Fig. 17: “Ngali” – reindeer neck pendant, prevents the animal from escaping. Found on the upper plateau of Yangana Pe. Obr. 17: “Ngali” – závˇesek na sobí krk, zabraˇnuje zvíˇreti v útˇeku. Nalezen na náhorní plošinˇe Jangana Pe. Foto S. Sáze- lová. into a thin cord). Other garment parts encountered in all camps include pieces of utility gloves with nonskid adjustment on the surface, some with traces of technical oil. The last group of clothes belong to children, such as two boots sewn from reindeer fur, discovered in the VC toss zone, part of a green track suit plus sweat shirt, a terry glove with pink stripes, a white child’s sock (SC), knickers belonging to a girl of 4–7 years old, a pink hair ribbon, and a used child’s sock (OC). At SC there were fragments of various textiles of blue and white colour or white with blue stripes, and pieces of jumper or mat. At OC, we recorded a tie from jeans, a paper cover from socks (men 23–31), an appending label from clothes, one handkerchief, and female underwear (“bloomers”). 7.4. Hygiene, medicine In the toss zones at all camps, residues of toilet paper, napkins (VC, SC), and a sanitary towel (SC) were discarded. However, straw plus dried mosses were traditionally used for hygienic purposes, as documented at all camps. At VC, we recorded a bottle of cologne; at SC there was a white terry towel with a red stripe, a paper box from tooth paste. At OC we recorded a yellow plastic soap box, a piece of polyporus (which could be used as tinder or for healing) an elastic band on hairs. Medicaments are represented by baled linen as finger-bandage, a grouting point and its cover, capping strip and two ampoules– one with a pellucid solution and the other with white powder (both without any legend) at SC, and three tablets of Paracetamol (two 200 mg for children), a tablet Baralcin M, a tube from Fastum Gel, and box from Diroton (Lisinopril, 10 mg) at OC. However, paper boxes could be also reused for mailing, as indicated by addresses visible on some of them. 7.5. The children´s zones At two camps, SC and OC, we identified children´s zones with remains of games. At Slope camp, this zone 19 Jiˇrí Svoboda, Pavel A. Kosintsev, Sandra Sázelová, Vlasta Jankovská, Martin Holub: Ethnoarchaeology of Nenets campsites.... Fig. 18: Graph showing proportion of natural and imported materials in the individual campsites. Obr. 18: Graf znázorˇnuje vztah pˇrírodních a importovaných materiál˚u na jednotlivých tá- boˇrištích. included a part of blue plastic toy, a sprig with a tied rope, several cutouts in the shape of reindeers with cuttings, several white beads on an elastic band (ring?) and two fragments of reindeer fur – one of them with a green dot from felt tip and other with cut hairs and several hair tufts. At Oktyaberskaya camp, the children´s zone included a rubber in the paper with unspecified drawings, part of softened yellow plastic with a pierced hole and traces from human nails on surface, several cutouts in the shape of triangles (“chums”?) from candy packaging, a plastic letter Я and two pencils. 7.6. Woodworking As fuel for the hearths, collecting wood (especially from larch and alder) in nearby bushes is a typically female activity (Fig. 19). Only at Oktyaberskaya camp, we expect that males cut the larger larch trunks as they were cut using a chainsaw, whereas further preparation of fuel from it was again left to women and girls. At these areas, pieces of birch-bark and dried moss, which could be used as tinder, are usually present in association. A typical feature at all camps are circular concentrations of shavings from reparation of various kinds of wooden objects, especially sledges (at all camps, broken sledge parts were present). These shawings could be also used for heating or placed on the “chum” floors. 7.7. Bone of non-edible species/hoofs/antlers This group includes complete reindeer hooves and antlers. Hooves were usually joined to the limb bones and placed in toss zones as butchering waste. The otherwise common habit of using reindeer hooves and phalanges as symbols of complete animals in children´s games (museum collections in Salekhard and Sos´va) found no support in our study. At all camps we recorded a mixture of naturally dropped reindeer antlers and antlers cut away from the skulls (and skulls with cut-off antlers were dispersed on slopes and valleys of Yangana Pe), part of them showing traces of gnawing by reindeer or carnivores, in search for minerals. 7.8. Various activities Fig. 19: Graph showing structure of objects in relationship to zonality of the individual campsites. Obr. 19: Graf znázorˇnuje strukturu pˇredmˇet˚u ve vztahu k zonalitˇe táboˇrišt’. Two woolly tassels (VC, OC) and scarce fragments of wool of a variety of colours (all camps) might be linked to decoration of human dress or reindeer harness. Various kinds of wrappings (of paper, alluminium, polythene, cellophane etc.) cannot be related to specific activities. Pieces of newspapers were dispersed at all camps. In addition four 1,5 V batterries– Panasonic, Toshiba, Kosmos and Enerljuks and two tins from kerosene or petrol were situated at SC and OC. At VC, there was also a fired shot gun 12/70 (a very cheap model) cartridge, at SC we have found a part of tarry and two handmade patches. A piece of sello tape, part of plastic stake (as from a party tent), several pins, and anti-slip tradle from a scooter were located at OC. 7.9. Symbolic activities Symbolic meaning may be attributed to an antler cache deposited on a remarkable elevation at the Upper Slope camp (Fig. 11), and in cases of various objects attached to trees in the forest tundra, north of Labytnangi (Fig. 20). 8. Comparisons and conclusions There is a range of differences between Upper Paleolithic Central Europe, where cultural systems functioned independently, and the contemporary Polar Ural, influenced politically and economically by modern-day civilization centers. In addition, we compare seminomadic early hunters with nomadic pastoralists, fishers and hunters. In living camps, “structures évidentes” and “structures latentes” of classical French paleoethnology cannot be separated as clearly as in archaeological sites: the context is systemic, and both structures and objects may be removed from central areas towards peripheral toss zones. The camps documented in the actual tundra and forest tundra were inhabited in winter or early spring, when the society concentrates on reindeer and when the other natural resources (available in summer) were to a large extent substituted by imported items purchased from shops. There are general similarities in structure of the objects recorded in the three camps, whereas certain variation could be caused by distance from camp to camp and from 20 Pˇrehled výzkum˚u 51, Brno 2010 Fig. 20: Woodcutting area near the campsites (typically a female task), usually does not exceed 3 × 3 m, to allow easy regeneration of the shrubs. Obr. 20: Tˇežba dˇreva nedaleko tábor˚u (typicky ženská práce) vˇetšinou nepˇresáhne prostor 3 × 3 m, což umožˇnuje snadnou regeneraci kˇrovin. Foto J. Svoboda. the nearest shop, by demographic structure of the site and by habits of its occupants (Figs. 18, 19). Compared to the camps at Yangana Pe, the Oktyaberskaya campsite displays a remarkable difference in structure of the recorded objects, because of its location close to a railway and the city of Labytnangi where reindeer are being sold and a massive influx of imported goods was recorded. Other differences might be caused by the demographic structure of the camp inhabitants, their economic status (after selling reindeers) or by their personal habits (for example, smoking cigaretes at Slope camp or Oktyaberskaya). Of what nature are the ethnoarchaeological analogies, if any? Theoretically, both the past hunters´ camps and actual pastoralists´ camps are structured into discrete zones: the interior living areas, exterior activity areas, inner peripheral zones and outer peripheral zones, and dispersed objects and activity traces in the adjacent landscape. 8.1. The interior living areas The dynamics of human behavior creates obstacles to a clear-cut separation of the individual zones. The hearths, the location of which is considered basic at archaeological sites (Leroi-Gourhan, Brézillon 1972; Stapert 1989; Cziesla 1991), are rarely preserved in their original position at the ethnologically documented sites. Rather, we encounter here areas of ash redeposition on the peripheries. When preserved in its original position, a hearth is usually equipped with two flat stones for cooking. Area around such a hearth ideally corresponds to a “chum”, and the scarce inventory includes fragments of textiles or cords, bone fragments, wood splinters and twigs, straw and straw wisps. The area boundaries are difficult to define, however. At Slope camp and Oktyaberskaya camp, we localized children´s zones inside the presumed “chums”, with several paper cutouts, a pencil or a gum, and associated objects. This evidence suggests at least one child approximately 0–3 years old and another one around 5 years old Fig. 21: Oktyaberskaya, objects attached to a tree near the campsite, possibly of symbolic significance. Obr. 21: Okt´aberskaja, pˇredmˇety zavˇešené na stromˇe u táboˇrištˇe, zˇrejmˇe symbolického významu. Foto J. Svoboda. at Slope camp, and one child 4–7 years old at Oktryaberskaya. Although we were unable to identify a children´s zone in the interior living area at Valley camp, children could have been present at this site as well, and the evidence just discarded into toss. Napkins and a fur shoe (Fig. 16) belonged to a child approximately 0–3 years old, and another one around 5 years old. Presence of children is also recorded by Binford (1991, 43) at the fall site at Kongumuvuk. Locating interior childern´s play zone in fall, winter and spring camps is natural, because children do not run around as in summer camps, and they tend to play in groups inside. 8.2. The exterior activities areas Activity zones expand in front of the „chums“ and between them. Especially wooden wood splinters and shavings are being dispersed in circular shapes, as a relict of woodcutting or construction of sledges. In addition, there are fragmented reindeer bones, while complete body parts in anatomical position are rare (and tend to be moved to site peripheries). Some trends were observed in activity zones of the individual sites. At Oktyaberskaya, woodworking using chainsaws markedly predominates over other activities; at this same site, we may reconstruct reindeer butchering within the activities areas, whereas in the other camps such remains were usually discarded. At the lower Slope camp, a higher concetration of medications may be related to treating reindeer during breeding. At upper Slope camp, we identified an accumulation of 11 antler pieces at the highest spot of the camp (Fig. 11). In the Polar Ural region, antler is being offered to the Matress of the Mountains, Pe-ervne (Lar, Kharyuchi, Okotetto 2007). Large accumulations of antler are deposited at various places in Yamal, and especially on Beliy Island. Caches of discarded antler were also recorded at several Upper Paleolithic sites of North Eurasia, as in the Medvezhya Cave in Northern Ural, and the open-air sites of Mal’ta, Buret’ and Mezin. 21 Jiˇrí Svoboda, Pavel A. Kosintsev, Sandra Sázelová, Vlasta Jankovská, Martin Holub: Ethnoarchaeology of Nenets campsites.... 8.3. The inner and outer peripheries The toss zones lie in the rear peripheral zone or on adjacent slopes just below the camp. There are accumulations of bottles, cans, pieces of paper or fur, and straw. Expiry dates on cans may indicate the date of the occupation or of repeated stays during the past few years (Table 1). The following trends were observed on the peripheries: at Oktyaberskaya, there is a huge accumulation of purchased food packaging; in peripheries of the Valley camp and the Slope camp, toss zones may overlap spatially with objects conserved for further usage; and, even if traces of woodworking do not enter the toss zones normally, one such case was recorded in the Slope camp. 8.4. Open landscape around In the tundra surrounding the Slope and Valley camps, we observed restricted areas of manual woodcutting, always limited to zones of about 3 × 3 m, to enable easy regeneration of the shrubs (Fig. 20). In the forest tundra around Oktyaberskaya, a chainsaw was used to cut down larch trees. Individual objects dispersed in the surrounding tundra or forest-tundra may either be prepared at location for subsequent use (sledges, boats, fishing nets), or represent items of ritual and/or symbolic significance (objects attached to individual trees, antler depositions on the ground), or be just randomly discarded objects (Fig. 21). Acknowledgement Ethnoarchaeological and botanical research in Siberia was supported by the Czech Grant Agency Projects 404/0045/07 and P209/10/0519 and by the Icebreaker Co. We thank colleagues from the Institute of Ecology of Plants and Animals, Russian Academy of Sciences, Ekaterinburg, for consultation and collaboration. References Binford, L. R. 1978: Nunamiut ethnoarchaeology. Academic Press, New York. Binford, L. R. 1987: Researching ambiguity: Frames of reference and site structure. In: S. Kent ed., Method and Theory for Activity Area Research. New York: Columbia University Press, 449–512. Binford, L. R. 1991: When the going gets tough, the tough get going: Nunamiut local groups, camping patterns and economic organisation. In: C. Gamble , W. A. Boismier (eds.): Ethnoarchaeological Approaches to Mobile Campsites. International Monographs in Prehistory, Ann Arbor, 25-137. Boukal, T. 2003: Torava – Lovci severozápadní Sibiˇrˇe, pˇríroda a lidé. Praha: Dauphin. Chomich, L. V. 1995: Nenci. Ocherki tradiciyonnoy kul´tury. Sankt Peterburg. Cziesla, E. 1990: Siedlungsdynamik auf Steinzeitlichen Fundplätzen. Bonn: Holos. Dobrinskiy, L. N. (ed.) 1995: Priroda Yamala. Ekaterinburg: Nauka. Evladov V. P. 1992: Po tundram Yamala k Belomu ostrovu. Tyumen: Institut problem osvoeniya severa. Forbes, B. C. 1999: Land use and climate change on the Yamal Peninsula of north-west Siberia: some ecological and socio-economic implications. Polar Research 18, 367–373. Gamble, C., Boismier, W. A. (eds.) 1991: Ethnoarchaeological Approaches to Mobile Campsites. International Monographs in Prehistory, Ann Arbor. Golovnev, A. V. 1995: Govoryashchie Kultury: Tradicii Samodijcev i Ugrov. Ekaterinburg: Rossijskaja Akademija Nauk. Golovnev, A. V. 2004: Kochevniki Tundry: Nency i ikh Folklor. Ekaterinburg: Rossijskaja Akademija Nauk. Gould, R. 1980: Living archaeology. Cambridge: Cambridge University Press. Jordan, P. D. 2003: Material culture and sacred landscape: The anthropology of Siberian Khanty. Walnut Creek: AltaMira Press. Klevezal´, G. A. 2007: Printsipy i metody opredeleniya vozrasta mlekopitayushchih. Moskva: Tovarishchestvo nauchnyh izdaniy KMK. Kosintsev, P. A. 2005: Ekologiya srednevekovogo naseleniya severa Zapadnoy Sibiri: istochniki. Ekaterinburg–Salekhard: Izdatelstvo Uralskogo uni- versiteta. Krasovskaya, T. M., Tikunov, V. S. 2008: Mapping of nature management of the territory of the Nenets Autonomous Okrug. Geography and Natural Resources 29, 84–87. Kroll, E. M., Price, T. D. (eds.) 1991: The Interpretation of Archaeological Spatial Patterning. New York– London: Plenum Press. Lar, Kharyuchi, Okotetto 2007: Opisanie svyashchennykh mest. In: O. Murashko (ed.): Znachenie okhrany svyashchennykh mest Arctici: issledovaniya korennykh narodov severa Rossii, 59–67. Assotsyatsyya korennykh i malochislennykh narodov Severa, Sibiri i Dalnego Vostoka Rossiyskoy Federatsyi, Moskva. Leroi-Gourhan, A., Brézillon, M. 1972: Fouilles de Pincévent. Paris: CNRS. Mortillet, G. de 1883: Le Préhistorique: antiquité de l’homme. Paris: Reinwald. Owen, L. R. 2005: Distorting the past. Gender and the division of labour in the European Upper Paleolithic. Tübingen: Kerns Verlag. Peterkin, G. I., Price, H. A. (eds.) 2000: Regional Approaches to Adaptation in Late Pleistocene Western Europe. BAR 896, Oxford. Podkorytov, F. N. 1995: Olenevodstvo Yamala. Yamal´skaya sel´skokhozyaistvennaya stanciya, Salekhard. Potapova L. P., Levina M. G. 1956: Narody Sibiri. Izdaelstvo Akademii Nauk SSSR, Moskva–Leningrad: Izdaelstvo Akademii Nauk SSSR. Rees, W. G., Williams, M., Vitebsky, P. 2003: Mapping land cover change in a reindeer herding area of the Russian Arctic using Landsat TM and ETM+ imagery and indigenous knowledge. Remote Sensing and Environment 85, 441–452. Sinclair, H. M. 1953: The diet of Canadian Indians and Eskimos. Proceedings of the Nutrition Society 12, 69–82. 22 Pˇrehled výzkum˚u 51, Brno 2010 Sokolova, Z. P. 2007: Narody Zapadnoy Sibiri. Etnograficheskiy al´bom. Moskva: Nauka. Stapert, D. 1989: Rings and sectors: Intrasite spatial analysis of Stone Age sites. Palaeohistoria 31, 25– 99. Svoboda, J. 1999: Etnoarcheologický výzkum v Lanashuhaia (Ohˇnová zemˇe, Argentina). Pˇrehled výzkum˚u 39, 479–481. Vasil´ev, S. A., Soffer, O., Kozlowski, J. K. (eds.) 2003: Perceived Landscapes and Built Environments. BAR 1122, Oxford. Yellen, J. 1977: Archaeological approaches to the present. Academic Press, New York. Resumé Využití etnologických analogií je od poˇcátku souˇcástí paleolitického výzkumu, rekonstrukce a interpretace, ale teprve od 60. a 70. let 20. století se s takovými analogiemi pracuje systematicky, s použitím planigrafie táboˇrišt’ a prostorové distribuce pˇredmˇet˚u a aktivit (Yellen 1977; Binford 1978; 1987; Gamble a Boismier, eds. 1991). V létˇe 2009, v rámci výzkumu nˇenˇeckých sídelních stratgií (Jamalo-nˇenˇecká autonomní oblast, SV Sibiˇr) jsme dokumentovali aktivní letní tábory u jezer a opuštˇené zimní a jarní tábory v otevˇrené tundˇre (horský hˇreben Jangana Pe) a v lesotundˇre (Okt’aberskaja, severnˇe od Labytnangi). Z pˇrehledu rostlinných i živoˇcišných zdroj˚u tˇechto krajinných typ˚u vyplývá, že poživatelné rostliny a ryby jsou dostupné spíše v létˇe, zatímco sobi pˇricházejí jako hlavní potravinový zdroj na podzim, po návratu z letních pastvišt’ výše na severu, a ˇcást jich z˚ustává až do jara. Chybˇející souˇcásti stravy doplˇnují Nˇenci nákupy. Míra mobility jednotlivých rodin závisí na tom, zda vlastní dostateˇcný poˇcet sob˚u. Dokumentované tábory jsou strukturovány do urˇcitých zón, což jsou interiérové sídelní prostory (vˇcetnˇe dˇetských zón), exteriérové zóny s doklady zpracování dˇreva, sobích tˇel a dalších bˇežných aktivit, na periferii sídlištˇe zóny odpadu a v krajinˇe kolem rozptýlené stopy aktivit (tˇežba dˇreva) a jednotlivé pˇredmˇety (z nichž nˇekteré mohou mít symbolický význam). Ale „evidentní“ a „latentní“ struktury ve smyslu francouzské paleoetnologie tu lze tˇežko rozlišit: pevné struktury nevznikají, vše je v pohybu, s tendencí smˇeˇrovat od centrálních zón k periferním odpadištím. Rozdíly mezi táboˇrišti lze vysvˇetlit prostˇredím (tundra–lesotundra), vzdáleností mezi tábory navzájem, vzdáleností od nejbližšího obchodu a komunikaˇcní sítˇe, demografickou strukturou lokality, aktivitami obyvatel a jejich finanˇcními možnostmi (napˇríklad po prodeji ˇcásti sob˚u v zimˇe). Pokud zábˇer našich komparací rozšíˇríme o údaje z mladopaleolitických loveckých sídlišt’ stˇrední Evropy, lze konstatovat, že mají v zásadˇe podobnou strukturu a zonalitu, pˇrestože výživa, aktivity i pˇredmˇety jsou samozˇrejmˇe podstatnˇe odlišné. 23 74 2.4.5 Ethnological approach to Siberian zoomorphs: A search for meaning and implications for the Upper Paleolithic evidence Citace: Sázelová, S. 2014: Ethnological approach to Siberian zoomorphs: A search for meaning and implications for the Upper Paleolithic evidence. Archaeology, Ethnology and Anthropology in Eurasia, 42 (4), 125-135. ARCHAEOLOGY, ETHNOLOGY & ANTHROPOLOGY OF EURASIA Archaeology Ethnology & Anthropology of Eurasia 42/4 (2014) 125–135 E-mail: Eurasia@archaeology.nsc.ru Copyright © 2014, Siberian Branch of Russian Academy of Sciences, Institute of Archaeology and Ethnography of the Siberian Branch of the Russian Academy of Sciences. Published by Elsevier B.V. All rights reserved. doi:10.1016/j.aeae.2015.06.013 125 Introduction Ethnological analogies derived from studies of recent cultural adaptations in Arctic and Subarctic regions of Siberia are generally being applied, with varying degrees of success, to the reconstruction of prehistoric lifestyles. Since the second half of the 19th century, these societies have been used as ethnological parallels for the Upper Paleolithic hunters (Mortillet, 1883; Jochelson, 1908; Abramova, 1995; Marshack, 1991; Owen, 2005; Svoboda et al., 2011). The search for ethnological analogies is usually connected to the reconstruction of everyday life, and is frequently used for interpretations of Upper Paleolithic thinking and symbolism. A comprehensive discussionoftheirpotentialsinUpperPaleolithicmobileart is supported by a relatively broad spectrum of represented animal species (such as mammoths, rhinoceroses, reindeer, horses, bison, lions, bears, owls, wolverines, and S. Sázelová Masaryk University, Kotlá ská 2, CZ 611 37 Brno, Czech Republic E-mail: sazelova@sci.muni.cz ETHNOLOGICAL APPROACH TO SIBERIAN ZOOMORPHS: A SEARCH FOR MEANING AND IMPLICATIONS FOR THE UPPER PALEOLITHIC EVIDENCE Ethnological analogies derived from studies of recent environments and societies in Arctic and Subarctic regions of Siberia are generally being applied in archaeological interpretative models. The analogies prove to be inspiring, because each of them has the potential to enlarge the scope of static archaeological evidence by including dynamic aspects of social and symbolic systems within recent societies. Here, we analyze electronic databases and literature on zoomorphic and theriantropic gurines collected during the Jesup North Paci c expedition. Subsequently, the social value and mythological context that accompany speci c zoomorphic themes were recorded. Some aspects of these paleoethnological implications are partially applicable to the Upper Paleolithic zoomorphs. Keywords: Jesup North Paci c expedition, mythology, paleoethnology, Siberia, Upper Paleolithic art, zoomorphic gurine. indeterminate others), and by different materials used in the production of these gurines (namely ivory, bones, soft stones, and ceramics). Therefore, a comparison of the proportion of each zoomorphic theme in gurines and the archaeozoological material at a speci c locality is usually realized (Klíma, 1979; Vandiver et al., 1989; Der Löwenmensch…, 1994; Svoboda, 1997; Verpoorte, 2001; Djindjian, 2004; Sauvet, Wlodarczyk, 2008). After that, a speci c relation or disproportion of these “natural symbols” is estimated, and each zoomorphic theme is matched with its probable social function. Consequently, we can nd four main perspectives in literature: 1) Solving of hunting problems. The zoomorphic theme has to lure a desired animal. Simultaneously, the gurine represents a kind of promise to the prey’s spirit that the hunter will not kill more individuals than he actually needs. Another possible interpretation is a symbolic decrease of hunting fever, which might have ETHNOLOGY 126 S. Sázelová / Archaeology, Ethnology and Anthropology of Eurasia 42/4 (2014) 125–135 seriously endangered the real hunting. The blows on heart or head on several zoomorphic gurines probably support this interpretation. 2) Obtaining or debilitating of animal power. The humans endeavor to obtain such animal characteristics or qualities as are extra-ordinary to human bodies (such as a mammoth’s strength, a reindeer’s endurance, a lion’s nimbleness). Thus, the zoomorphic gurines represent amulets or other protective charms, which are connected with a source of desired animal power. According to the Upper Paleolithic evidence, we can find several zoomorphs with the traces of attacks or other damage (such as blows and thermal shocks), which are usually interpreted as a sign of human effort to deprive or capture the favorable abilities of the animal (to exclude the largest competitors or to weaken the power of game). 3) Allegoric depiction solves problems and con icts in the Upper Paleolithic society by transferring their relationships into the world of animals. The allegorical and funny representations are supposed to bring ease and relief in a speci c stressful situation. 4) Mythological meaning ascribes to each zoomorphic theme a deeper interpretation, which might be connected with the cosmological concepts of Upper Paleolithic society. Thus, the zoomorphic gurines are supposed to represent totemic ancestors, mythological protectors, or protective and helping spirits (Gerasimov, 1931;Absolon, 1938, 1945; Klíma, 1979, 1989; Gamble, 1982; Hahn, 1986; Delporte, 1990; Gvozdover 1995; Davidson, 1997; Hunters…, 2000; Lewis-Williams, 2002; Bori , 2007; Porr, 2010). All of these interpretations were inspired by ethnological analogies and have the potential to enlarge the scope of the static archaeological evidence by including dynamic aspects of social and symbolic systems within recent societies (Binford, 1962; Stiles, 1977; Lewis-Williams, Dowson, 1988; David, Kramer, 2001). However, in this paper we do not try to identify similarities between the perception of animals among Upper Paleolithic humans and that of recent societies of Siberia. We concentrate on overcoming our Western cultural attitude to the human-animal relationships, of which recent Siberian societies certainly had a different conception. Jesup North Paci c expedition: Material description The Jesup North Paci c expedition was coordinated by Franz Boas and sponsored by Morris K. Jesup during the years 1897–1902. The expedition aimed at mapping contacts and relationships between local ethnics on both sides of the Bering Strait. This article will focus on the Siberian part of this expedition, which started in 1898 and was spread out into three basic teams (Fig 1). The rst team was led by Berthold Laufer, and its research in years 1898–1899 was concentrated on the study of Nanai and Nivkh people living in the region around the Amur River and on Sakhalin Island. From 1900, the other two teams were operating in northeastern Siberia; the second was led by Waldemar (Vladimir Germanovich “Tan”) Bogoras and his wife Sophia, who were working and collecting objects in the territories of the Chukchee, Koryak, Kerek, Siberian Eskimo, Itelmen and Even people. The third team, led by Waldemar (Vladimir Ilyich) Jochelson and his wife, Dina Brodsky Jochelson, focused on the territories of the Koryak and Yukaghir people (Laufer, 1900; Boas, 1903; correspondence from AMNH archive*). General aspects of the collection. In our analysis, 1023 objects showing zoomorphic or theriantropic motifs of various ethnic groups were studied via the electronic database of the American Museum of Natural History (AMNH) in New York (Table 1; Sázelová, 2012). All the items can be divided into two groups, according to their shape. The major part of this collection (94.5 %) was shaped by humans, and their production was inspired by a general effort to emphasize speci c zoomorphic or theriantropic characters. The rest of the collection (5.5 %) was represented by naturfacts (naturally shaped artifacts) with shapes evoking zoomorphic or theriantropic motifs, their substances and qualities. The cultural attitude, the degree of stylization, the symbolic meaning, and the nal use of a whole subject or its particular components were the major in uences on whether a whole body or a concrete body part was depicted. With a consideration of these in uences, we can observe that almost all objects (96.6 %) represent a zoomorph or therianthrope body with relatively natural proportions. The biggest disproportions, *Boas, F. to Laufer, B., 02.05.1898 (from Victoria, British Columbia), 27.10.1898 (from New York, USA), 09.12.1898 (from New York, USA), and 23.01.1899 (from New York, USA). Bogoras, W. to Boas, F., 30.10.1899 (from St. Petersburg, Russia), 16.04.1901 (from Mariinsky Post, Russia), and 22.12.1900 (from Kamenskoye, Russia). Bogoras, S. (?) to Boas, F., 14.04.1901 (from Mariinsky Post, Russia). Jesup, M. to Jochelson, W., 24.03.1900 (from New York, USA). Jochelson, W. to Boas, F., 21.06.1899 (from Bern, Switzerland), 20.05.1900 (fromVladivostok, Russia), 11.08.1900 (from Kushka, Russia), 03.12.1900 (from Kamenskoye, Russia), 21.07.1901 (from Kushka, Russia), 27.04.1902 (from Yakutsk, Russia), and 04.07.1902 (from steamer Gromoff). Laufer, B. to Boas, F., 10.07.1898 (from Alexandrovsk, Russia), 18.09.1898 (from Alexandrovsk, Russia), and 04.03.1899 (locality unspeci ed). All electronic documents are accessible with courtesy of the Division of Anthropology of American Museum of Natural History in New York. S. Sázelová / Archaeology, Ethnology and Anthropology of Eurasia 42/4 (2014) 125–135 127 Fig 1. Travel map created by W. Jochelson (1900–1902), W. Bogoras (1900–1901) and B. Laufer (1898–1899). Modi ed after travel itinerary and travel map from 1902 (Courtesy of the Division of Anthropology, American Museum of Natural History), map published by F. Boas (1903: 72). Table 1. The analyzed sample of zoomorphic gurines such as completely exaggerating the body relative to the head and extremities, were recorded for several toy gurines, which might improve a child’s manipulation. The head was the most often separately displayed body part. The extremities were usually accentuated in detail or at least indicated, and less attention was paid to elaboration of hooves, paws or ngers with respect to the stability of a whole statuette (totally suppressed extremities are mostly within the pinnipeds and birds). Most gurines are static with several exceptions, such as bird depictions carved by Kereks and Koryaks, with moveable wings or on wheels. Sexual dimorphism is observable on both anatomic (depiction of penis among male animals) and behavioral levels (such as offspring welfare, competition between male animals or hunting); however its determination is unclear when the gurine is stylized. The theriantropes are always portrayed as a human-headed creature with an animal body borrowed mainly from marine mammals (such as seals or walruses), birds or other indeterminate pedestrian quadrupeds. Thus we can expect that they are reflecting concrete mythological conceptions, and our suggestion might be supported by a higher occurrence of these gurines between charms. Category Total Chukchees Kereks Koryaks Others Q-ty % Q-ty % Q-ty % Q-ty % Q-ty % Adornments 867 85.8 205 82.7 106 82.8 509 99.4 33 26.8 Charms 88 8.7 30 12.1 0 0 2 0.4 56 45.6 Toys 50 4.9 12 4.8 21 16.4 1 0.2 18 14.6 Utilities 6 0.6 1 0.4 1 0. 8 0 0 16 13.0 Total 1011 100 248 100 128 100 512 100 123 100 128 S. Sázelová / Archaeology, Ethnology and Anthropology of Eurasia 42/4 (2014) 125–135 Material analysis and usage of gurines. Furthermore, the raw materials selected for naturfacts or in the production of artifacts were investigated and can be divided into the following categories: 1) Stable raw materials (durables) include organic materials, such as walrus ivory, antler and bone (especially whale vertebrae or shoulder blades), or metal as an inorganic imported raw material; 2) Unstable materials (perishables) are constituted by three subgroups according to their origin: a) animal raw materials, such as sinews, horn (horns of snow sheep, bird beaks and claws of various carnivores), feathers, leather and furs, b) plant raw materials, namely, wood (mostly birch wood or Arolla pine roots), dried grass or other vegetable bers; and c) imported materials, such as manufactured bers, ropes, and textile fabrics (Bogoras, 1907; Jochelson, 1908, 1926; Mitlyanskaya, 1996; Davidson, 1997; Soffer, 2000). The stable raw materials are usually used in production of adornments and utilities. Thus, these objects are almost exclusively shaped by human hand. Additionally, they can be decorated by drilled animal teeth, feathers, claws, pieces of fur or plant fibers. The depiction of adornments and utilities is therefore very realistic, and thematically re ects everyday life, although mythological inspiration is not excluded. Usually, the adornments and utilities display the whole zoomorph and theriantrope body or realistic shortcuts and stylized initials (especially images of the head). The patterning of gurines on the one hand highlights the details of anatomical components, and on the other hand re ects a wide range of different symbolic meanings (Fig 2). Furthermore, the individual figurines might be intentionally grouped into complex compositions depicting namely: a) daily behavior (such as hair- or feather-care, resting, running, dog or bear ghts) and individual moods (such as curiosity, alertness, fear, or defense); b) nourishment (such as hunting and grazing); and c) sexual behavior and parental care (Fig 3). The adornments are thus designed to bring joy to the owner, and especially women are described as removing gurines from their bags from time to time and enjoying just looking at them (Jochelson, 1908; Narody…, 1956; Mithen, 1991; Guthrie, 2005). The gurines and naturfacts utilized as charms are visible depictions of a concrete spirit, including its temperament and needs (Fig 4). Thus, each object has to respect all ritual demands in order to ful ll the role as a mediator in human-spirit communication (Gurvich, 1962; Popular Beliefs..., 1968; Taksami, 1976; Vdovin, 1976; Pedersen, 2001). Among sacred naturfacts were recorded wolf skulls, ravens’ heads, red fox-fur and puf n’s beaks from the Chukchees; a wolf nose from the Koryaks, and several reindeer shoulder-blades from the Russianized natives. All these small fragments represent symbolic abbreviations of a complete animal, with its nature and power for ritual acts. Artificially-made charm objects are very rough in character, and usually remain un nished for future modi cations. Additionally, it is believed that the more detailed a charm’s depiction is, the more easily a man may lose his control over it. Such objects may revive the spirits who inhabit it, or catch unwanted attention from the world of evil spirits who bring diseases and death. Thus, if the charm’s owner respects this basic rule and cares for the idol (with bloody and occasionally unbloody offerings), he will certainly pro t from the spirit’s power. Despite all these human efforts, the power of charms and their incantations gradually disappears, and they might be replaced from time to time (Czaplicka, 1914; Narody…, 1956; Gurvich, 1962; Vdovin, 1976; Shamanism..., 1978). Finally, the depictions of zoomorphs and therianthropes may be used as toys. Each toy is a best friend, mentor, helper, and teacher of a child. It is endowed with its own voice, character and related behavior that is further developed in games. Nevertheless, the toy may also turn into the feared enemy of the child, especially when it is inhabited by a demon that brings illness or death to the child. Thus it is believed that the life of each toy displays the future and fate of its owner. For this reason, the production of toys follows several strict rules as charms, especially in shaping (Jochelson, 1908; Popular Beliefs..., 1968; Arefyeva, 2008). Toy figurines are usually stylized with schematic face details. The limbs are often completely or partially suppressed. Toys are mostly produced from unstable plant materials, especially wood, with several exceptions of bone carvings among Kereks. In the game, an individual animal might be replaced by its bone, feather, and piece of fur, or by a twig. Additionally, some toys are equipped with sinews, which serve the children for tying, pulling or hitching their gurines. According to W. Bogoras (1907), children are not restricted in the selection of their toys (except charms and similarly “playing” out ritual acts is restricted); and if they like some ivory adornments, these are given to them for play. Furthermore, the children usually ought to produce toys by themselves and throughout the games they improve in activities for the future (Nelson, 1900; Bogoras, 1907; Jochelson, 1926; Narody…, 1956). Zoomorphic themes in artifacts, naturfacts, and mythology The accurate determination of biological species was in some cases extremely dif cult, owing to the degree of a gurine’s stylization (Fig. 5) (Blix, 2005; Banerjee et al., 2006). Moreover, the assessment and perception of S. Sázelová / Archaeology, Ethnology and Anthropology of Eurasia 42/4 (2014) 125–135 129 Fig 2. Walrus-ivory carving representing walrus. Collected by W. Bogoras among Kereks. Dimensions: length 5.4 cm, width 2.5 cm, height 2.5 cm. Courtesy of the Division ofAnthropology, American Museum of Natural History, No. 70/6265. Fig 3. Antler-carving representing reindeer calf. Collected by W. Bogoras among Chukchee. Dimensions: length 3.3 cm, width 1.8 cm, height 1 cm. Courtesy of the Division of Anthropology, American Museum of Natural History, No. 70/6862. a concrete zoomorphic theme may be in uenced by economic, symbolic, or mythological conceptions of each ethnic group (Nelson, 1900; Bogoras, 1907; Jochelson, 1908; 1926; Taksami, 1976; Vdovin, 1976; Ingold, 1994; Krupnik, 1993; Pedersen, 2001; Willerslev, 2004) which may not necessarily overlap with actual taxonomic classi cations (Mithen, 1991; Guthrie, 2005). In some cases, we have speci ed zoomorphic themes in contrast to the AMNH catalogues, especially when a bigger group of different animal carvings was labeled with a single name. Various zoomorphic themes were organized together for a better evaluation of their significance (Table 2). Only the indeterminate group was excluded, because we could only note that these animals are quadrupeds of various shapes and may be inspired by mythology. Within the collection, we observed several trends: one of them is connected with the geographic and ecological distribution of several animal species. The examples are the group of ursids, where the depictions of polar and brown bears are replicating the NorthSouth gradient of their occurrence in tundra and taiga; or the group of fishes, where the absence of salmonids among Chukchees might be explained by the geography of their territory, with no suitable spawning rivers. Another trend is connected with overhunting of pinnipeds and cetaceans by Russian, American, and Japanese whaling companies, which pressurize Koryaks, Kereks, and Chukchees to use these animals more as an additional nourishment source, and to replace their hunting by shing and reindeerherding. Thus, the depictions of these animals Fig 4. Shaman’s charm with bag, made from raven head and wolf skull. Collected by W. Bogoras among Chukchee. Dimensions: length 25 cm, width 37.5 cm. Courtesy of the Division of Anthropology, American Museum of Natural History, No. 70/6559AB. Fig 5. Wooden toy (?) gurine representing a duck. Collected by B. Laufer among Nivkhs. Dimensions: length 45.1 cm, width 6.4 cm, height 10.5 cm. Courtesy of the Division of Anthropology, American Museum of Natural History, No. 70/1175. 130 S. Sázelová / Archaeology, Ethnology and Anthropology of Eurasia 42/4 (2014) 125–135 probably re ect the persistence of their symbolic and ritual signi cance. The next step is to confront the distribution of zoomorphic themes in gurines and recent mythological contextscollectedbyW. Bogoras(1910)amongChukchees and by W. Jochelson (1908) among Koryaks (Fig 6). The quanti cation of zoomorphic themes is complicated by the symbolic concept according to which animals gain zoomorphic form only in the presence of humans. In the meantime, they acquire anthropomorphic form, and they group themselves into units of Animal-People, such as Reindeer-People, Hare-People, Bear-People or GullPeople, who live in their settlements with their own families and pass the time in hunting, fishing, gameplaying, and other activities. Moreover, this situation is complicated by the naming by others of particular societies in accordance with the latter’s origin, which may re ect their totemic ancestor or other tribe speci cs (for example Reindeer-People in Chukchee mythology refers sometimes to Koryak reindeer herders). Thus, only the animals with unambiguous zoomorphic shape were counted in our mythological analysis. According to our observations, we have estimated three characteristic roles, which help in a better understanding of each zoomorphic theme and its mythological importance. Economic level is re ected in both mythologies about cetaceans (humpback whales, belugas and orcas), bovids (snow sheep), and leporids (arctic hares). A similar relationship was also observed in the case of fishes, rodents (beaver), mustelids (wolverines and ermines), equids (domestic horses) among Chukchees, and pinnipeds (Steller sea-lions, spotted-seals, ring-seals, bearded seals, and walruses) or marine mollusks among Koryaks. The animals are connected by the nutrition-value of their meat, marrow or blubber. Their bones, sinews, hide and viscera (especially stomachs) are used in dwelling-construction, in clothing, boots and storage-bag production or in trapconstruction. Among Chukchees, we encounter rodents and mustelids whose fur is metaphorically associated with worth. In both mythologies, whales, seals, and walruses are harnessed to sledges of Marine spirits. Economic-symbolic level is accentuated by both mythologieswithinthegroupsofcervids(wildanddomestic reindeer), canids (wolves, polar and red foxes, dogs), and ursids (polar and brown bears), individually in pinnipeds (Steller sea-lions, spotted seals, ring-seals, bearded seals, and walruses) among Chukchees, and sh (such as salmon, plaice, trout, minnows, and ray- nned shes) and rodents (mice) among Koryaks. The reindeer, dogs, and bears represent an important source of meat, marrow, fat and organ-meat; their fur, sinews, bones, and antlers are used Note: Indeterminate species were excluded. Table 2. Distribution of animal groups in zoomorphs and therianthropes Animal groups Total Chukchees Kereks Koryaks Others Q-ty % Q-ty % Q-ty % Q-ty % Q-ty % Canidae 240 25.4 74 31.4 33 26.4 118 23.7 15 17.4 Aves 204 21.6 54 22.9 31 24.8 93 18.7 26 30.2 Pinnipedia 182 19.3 27 11.4 27 21.6 123 24.7 5 5.8 Ursidae 91 9.6 24 10.2 18 14.4 41 8.2 8 9.3 Cervidae 76 8.0 31 13.1 1 0.8 24 4.8 20 23.3 Bovidae 59 6.2 6 2.5 5 4 48 9.6 0 0 Pisces 33 3.5 2 0.8 1 0.8 26 5.2 4 4.6 Mustelidae 17 1.8 7 3.0 4 3.2 6 1.2 0 0 Cetacea 11 1.2 2 0.8 1 0.8 8 1.6 0 0 Leporidae 10 1.1 6 2.5 2 1.6 2 0.4 0 0 Rodentia 6 0.6 3 1.3 1 0.8 2 0.4 0 0 Amphibia, Reptilia 5 0.5 0 0 0 0 0 0 5 5.8 Equidae 4 0.4 0 0 0 0 3 0.6 1 1.2 Insecta 4 0.4 0 0 0 0 3 0.6 1 1.2 Felidae 3 0.3 0 0 1 0.8 1 0.2 1 1.2 Total 945 100 236 100 125 100 498 100 86 100 S. Sázelová / Archaeology, Ethnology and Anthropology of Eurasia 42/4 (2014) 125–135 131 in dwelling-construction, production of clothing, boots, personal items or various tools and weapons. The animal’s behavior or physical characteristics serve as a metaphor, for instance rummaging ground like a reindeer, being summoned like a dog or having a toothy snout like a wolf. Moreover, reindeer and dogs are used as draught animals (occasionally mice were described in this role), or specially trained for hunting or racing. Reindeer and dogs are reported as being sacri ced in various rituals, and a walrus, reindeer or dog voice has its ritual importance in the ght against evil spirits. The reindeer, dog and bear body-parts are used for recovery of the animals; their excrement might be also used for modeling of gurines used for divination, or recovered with special incantation. The supernatural animals are represented by metal/ silver or aming reindeer/ sh/mouse, by a reindeer with two heads, by mythological Wolf Hathope, or by an evil and greedy creature, Reindeer-Born, bringing disaster to herders by eating their herds. Finally, a transformation of a human into the wolf or polar bear, and a transition of animal identities when a reindeer or bear appears as a dog were documented. Symbolic level is re ected in both mythologies within the groups of birds (ravens, eagles, puf ns, snowy owls, ptarmigans, gulls, cormorants, grebes, Northern pintail), who appear in the roles of mythological creatures (metal snowy owl, giant bird, and thunder bird among Chukchees) or heroes (Big Raven among Koryaks), and within a transition of human or various human body parts to bird. In both mythologies a symbolic role is ascribed to arthropods (spiders), who help clueless characters with their wise advice; to insects (ants, bumblebee), and to annelids (worms). Additionally, symbolic relationships Fig 6. Representation of zoomorphic themes among Chukchees (1) and Koryaks (2). a – gural art; b – mythology. 1 2 b 132 S. Sázelová / Archaeology, Ethnology and Anthropology of Eurasia 42/4 (2014) 125–135 were also possessed by mammoths among Chukchees, appearing in a story as the powerful spirits made of ancient giant bones; and by mustelids (wolverines, ermines) among Koryaks. Discussion: Paleoethnological framework In our traditional western concepts, animals are seen as a part of nature, and thus the particular differences between animal species re ect detailed aspects of nature. Humans, with their biological bodies and cultural minds, are perceived as something extraordinary and consequently more than a match physically for any other being in nature. However, such a relationship is not reflected in mobile societies in Siberia, where human-animal relationships are far from random. These relationships are the result of a large number of complex ritual activities and symbolic approaches to the world where AnimalPeople are respected like other human nations (Narody…, 1956; Bird-David, 1990; Ingold, 1994; Willerslev, 2004; Nadasdy, 2007). Therefore, the discrepancies in human-animal relationships in both Western and Siberian conceptions provide us with alternative realities, which should be taken into account while formulating archaeological explanations. Nevertheless, we have to admit that our paleoethnological framework is not able to exhaust completely the changing dynamics in human-animal relationship over the last 30 000 years. The environmental changes were accompanied by the disappearance of some typical glacial species and by the creation of newly domesticated species. A similar situation has affected the use and symbolic meaning of raw materials, such as mammoth ivory, ceramics, and soft stones. Although mammoth ivory has been recently used in gural production, the perception of mammoths of course has a different importance for recent inhabitants of Siberia than for Upper Paleolithic hunters and artists (Gerasimov, 1931; Ivanov, 1949; Gamble, 1982; Delporte, 1990; Mithen 1991; Der Löwenmensch…, 1994; Abramova, 1995; Gvozdover, 1995; Svoboda, 1997; Hunters…, 2000; Djindjian, 2004; Guthrie, 2005; Owen, 2005; Bori , 2007). The burned clay, soft stones, and other typical raw materials in Upper Paleolithic production enabled the use of figurines in various practical and symbolic activities (Vandiver et al., 1989; Davidson, 1997; Soffer, 2000; Verpoorte, 2001; Svoboda, 2011). However, the ceramic zoomorphic gurines are not common in studied areas of recent Siberia. We have documented a few descriptions of unburned clay gurines, but the ethnologists did not monitor their function, nor their further use, and they supposed that such items had melted in the soaked terrain of tundra. The soft stones (such as talc) are recently used in gural production; however, this is especially due to a lack of other traditional Siberian raw materials, such as walrus-ivory (Nelson, 1900; Jochelson, 1908; Narody…, 1956; Krupnik, 1993; Mitlyanskaya, 1996). In addition, there are visible differences in the artistic style and nal polishing of the Upper Paleolithic zoomorphic gurines. When using ethnological analogies, this situation could be partially explained by the expected applications. Generally speaking, zoomorphic figurines that represent everyday life are crafted with much more realism and detail. They are representing adornments or utilities, and stable materials, such as walrus-ivory, bone and antler are used in their production. The artistic interpretation of charms and toys, which are made especially from wood and horn, is often crude and schematic, in order to avoid the inauspicious attentions of evil spirits. Finally, the predominance of fragments over whole gurines might be noted for Upper Paleolithic zoomorphic and theriantropic figurines. This fragmentation could be caused by postdepositional processes; however some authors (Klíma, 1979; Králík, 2011) believe that these fragments could also be parts of a larger object, probably made from unstable organic material. Another possible interpretation is that the fragments themselves are complete and thus represent symbolic shortcuts. Additionally, we cannot exclude the possibility that the fragments or whole sculptures were deliberately destroyed (by thermal shocks, targeted damage, and breaking) after ful lling their function. Such activities were documented for example in Dolní V stonice I, Pavlov I, Zaraysk and Kostenki I (Absolon, 1938, 1945; E menko, 1958; Klíma, 1979, 1989; Delporte, 1990; Abramova, 1995; Soffer, 2000; Hunters…, 2000; Verpoorte, 2001; Dupuy, 2007; Amirkhanov et al., 2009; Svoboda, 2011). When using ethnological analogies from Siberia, the reason for this behavior lies in the fact that the gurines have passed their ‘use by date’ and will not be needed in the future. Furthermore, their presence would attract the attention of negative energy from the world of spirits or humans, which could interfere with the ritual act (Bogoras, 1907; Jochelson, 1908; Czaplicka, 1914; Gurvich, 1962; Popular Beliefs..., 1968; Taksami, 1976; Vdovin, 1976; Shamanism..., 1978; Pedersen, 2001). Thus, the objects associated with ritual activities are subsequently destroyed, for example by throwing them into a re. In this sense we could see some parallels to the destruction of Gravettian zoomorphic gurines that was not accidental but rather intentional in nature. Conclusion This paper shows the representation of zoomorphic themes within figurines, naturfacts, and mythologies S. Sázelová / Archaeology, Ethnology and Anthropology of Eurasia 42/4 (2014) 125–135 133 collected during the Jesup North Pacific expedition. The causality between raw materials, artistic style, nal polishing, and utilization of the objects was recorded within this collection. Several questions remained still unresolved because of the limitations of the nature of ethnological collection and available descriptions. Our knowledge is thus limited either by an absence of speci c archeological elements within recent cultures; or by inadequate explanations due to insuf cient interest on the part of particular ethnologists; or by the fact that the researcher has been excluded from such social activities as might be disrupted by unfamiliar presence. Despite these and other problems involved in comparing and identifying ethnological and archaeological records, the paleoethnological framework expands our understanding of the uniqueness and particulars of past and recent societies. Finally, it helps us to realize how dynamic and complex the background accompanying each zoomorphic theme within a speci c culture is. Assessment of the social value of each zoomorphic theme is an almost unpredictable process. Moreover, as we have seen, the human-animal relationships re ect not just the actual situation, but are the essential and sometimes inseparable components of a cultural memory, with a tendency to memorize zoomorphic themes gradually disappearing from the actual environments of recent societies (Connerton, 1989; Assmann, 2008; Porr, 2010). Acknowledgements I should like to express my appreciation to Laurel Kendall, Nina A. Gregorev and Barry Landua of the Division ofAnthropology, American Museum of Natural History in New York for access to the Jesup North Pacific databases and archives, and for permission to reproduce images of selected objects from this collection; to Ji í Svoboda from Department of Anthropology, Faculty of Science at Masaryk University in Brno and the Institute of Archaeology, Czech Academy of Sciences in Brno (Czech Republic) for his supervision and comments; to Dr. Ji í Mlíkovský from the Department of Zoology at the National Museum in Prague (Czech Republic) for a consultation on avian gurines; and to Sarah Lacy from the Department of Anthropology at Washington University in Saint Louis for language corrections. References Abramova Z.A. 1995 L´art paléolithique d´Europe orientale et de Sibérie. Grenoble: Jérome Millon. Absolon K. 1938 Výzkum diluviální stanice lovc mamut v Dolních V stonicích na Pavlovských kopcích na Morav (Pracovní zpráva za první rok 1924). Brno: Barvi a Novotný. Absolon K. 1945 Výzkum diluviální stanice lovc mamut v Dolních V stonicích na Pavlovských kopcích na Morav (Pracovní zpráva za t etí rok 1926). Brno: Moravské knihtiskárny polygra e. Amirkhanov K.A., Akhmetgaleyeva N.B., Buzhilova A.P., Burova N.D., Lev S.Y., Mashchenko E.N. 2009 Issledovaniya paleolita v Zarayske, 1999–2005. Moscow: Paleograf. Arefyeva A.A. 2008 Ngukhuko iAkan. In Istoriya Yamala: Vzglyad iz muzeynykh khranilishch, iss. 1. katerinburg: Uralskiy rabochiy, pp. 51–57. Assmann A. 2008 Transformations between history and memory. Social Research, vol. 75, No. 1: 49–72. Banerjee S., Kazlowski S., Rose H., Hoshino M., Morris A. 2006 Arctic Wings. Birds of the Arctic National Wildlife Refuge. China: Mountaineers Books. Binford R.A. 1962 Archaeology as anthropology. American Antiquity, vol. 28: 217–225. Bird-David N. 1990 The giving environment: Another perspective on the economic system of gatherer-hunters. Current Anthropology, vol. 31: 189–196. Blix A.S. 2005 Arctic Animals and Their Adaptations to Life on the Edge. Trondheim: Tapir Academic Press. Boas F. 1903 Jesup North Paci c Expedition. American Museum Journal, vol. 5: 69–117. Bogoras W. 1907 The Chukchee. In Publications of the Jesup North Paci c Expedition, vol. 7, pt. 2. Leiden: E.J. Brill Ltd.; New York: G.E. Stechert & Co. (Memoirs of the AMNH; vol. 11) Bogoras W. 1910 Chukchee mythology. In Publications of the Jesup North Paci c Expedition, vol. 8, pt. 1). Leiden: E.J. Brill Ltd.; New York: G.E. Stechert & Co. (Memoirs of the AMNH; vol. 12). Bori D. 2007 Images of animality: Hybrid bodies and mimesis in early Prehistoric art. In Image and Imagination, C. Renfrew, I. Morley (eds.). Oxford: Oxbow Books, pp. 83–99. Connerton P. 1989 How Societies Remember. Cambridge: Cambridge Univ. Press. Czaplicka M.A. 1914 Aboriginal Siberia:AStudy in SocialAnthropology. Oxford: Clarendon Press. David N., Kramer C. 2001 Ethnoarchaeology in Action. Cambridge: Cambridge Univ. Press. Davidson I. 1997 Power of pictures. In Beyond Art: Pleistocene Image and Symbol, M.W. Conkey, O. Soffer, D. Stratmann, N. Jablonski (eds.). Berkley: Univ. of California Press, pp. 125–159. Delporte H. 1990 L´image des animaux dans l´art préhistorique. Paris: Picard. 134 S. Sázelová / Archaeology, Ethnology and Anthropology of Eurasia 42/4 (2014) 125–135 Der Löwenmensch: Tier und Mensch in der Kunst der Eiszeit. 1994 K. Wehrberger, B. Reinhardt (eds.). Sigmaringen: Jan Thorbecke Verlag. Djindjian F. 2004 L´art Paléolithique dans son systeme culturel. In La Spiritualité. Actes du Colloque international de Liège (10–12 décembre 2003), M. Otte (ed.). Liége: Univ. de Liège, pp. 127– 152. (ERAUL; No. 106). Dupuy D. 2007 Fragments d’images, images de fragments. La statuaire gravettienne, du geste au symbole: Thèse de doctorat Nouveau Régime, vol. 1. Marseille: Univ. de Provence. E menko P.P. 1958 Kostenki I. Moscow, Leningrad: Izd. AN SSSR. Gamble C.S. 1982 Interaction and alliance in Palaeolithic society. Man, New Series, vol. 17: 92–107. Gerasimov M.M. 1931 Malta: Paleoliticheskaya stoyanka. Rezultat rabot 1928– 1929 gg. Irkutsk: Vlast truda. Gurvich I.S. 1962 Koryakskiye promyslovye prazdniki. In Sibirskiy etnogracheskiy sbornik, iss. 4. Moscow: Izd. AN SSSR, pp. 238–257. Guthrie R.D. 2005 The Nature of Paleolithic Art. Chicago, London: The Univ. of Chicago Press. Gvozdover M. 1995 Art of the Mammoth Hunters: The Finds from Avdeevo. Oxford: Oxbow Books. (Oxbow Monographs; No. 49). Hahn J. 1986 Kraft und Aggression: die Botschaft der Eiszeitkunst im Aurignacien Süddeutschlands? Tübingen: Institut für Urgeschichte der Universität Tübingen; Rahden: Verlag Marie Leidorf. (Archaeologica Venatoria; Bd. 7). Hunters of the Golden Age. 2000 W. Roebroeks, M. Mussi, J. Svoboda, K. Fennema (eds.). Leiden: Univ. of Leiden. Ingold T. 1994 From trust to domination: An alternative history of humananimal relations. In Animals and Human Society, A. Manning, J. Serpell (eds.). London: Routledge, pp. 1–22. Ivanov S.B. 1949 Mamont v iskutsstve narodov Sibiri. Sbornik MAE; iss. 11: 132–154. Jochelson W. 1908 The Koryaks. In Publications of the Jesup North Paci c Expedition, vol. 6. Leiden: E.J. Brill Ltd.; New York: G.E. Stechert & Co. (Memoirs of the AMNH; vol. 10, pt. 1-2). Jochelson W. 1926 The Yukaghir and Yukaghirized Tungus. Leiden: E.J. Brill Ltd.; New York: G.E. Stechert & Co. (Memoirs of the AMNH; vol. 9). Klíma B. 1979 Les représentations animales du Paléolithique supérieur de Dolní V stonice. In 3e Colloque de la Société Suisse des Sciences Humaine. Fribourg: pp. 323–332. Klíma B. 1989 Figürliche Plastiken aus der paläolitischen Siedlung von Pavlov ( SSR). Religion und Kult, vol. 6: 81–90. Králík M. 2011 Ancient ceramics and imprints on their surfaces. In Pavlov: Excavations 2007–2011, J. Svoboda (ed.). Brno: Academy of Sciences of the Czech Republic, Institute of Archaeology at Brno, pp. 207–244. (Dolní V stonice studies; vol. 18). Krupnik I. 1993 Arctic adaptations: Native whalers and reindeer herders of Northern Eurasia. Hanover, London: Univ. Press of New England. Laufer B. 1900 Preliminary notes on explorations among the Amoor tribes. American Anthropologist, vol. 2, No. 2: 297–338. Lewis-Williams D.J. 2002 The Mind in the Cave: Consciousness and the Origins ofArt. New York: Thames & Hudson. Lewis-Williams D.J., Dowson T.R. 1988 The signs of all times: Entoptic phenomena in Upper Paleolithic art. Current Anthropology, vol. 29, No. 2: 201– 245. Marshack A. 1991 The Roots of Civilization: The Cognitive Beginnings of Man’s FirstArt, Symbol and Notation. Mount Kisco, New York: Moyer Bell Ltd. Mithen S. 1991 Ecological interpretations of Paleolithic art. Proceedings of the Prehistoric Society, vol. 57, No. 1: 103–114. Mitlyanskaya T. 1996 Native carvers and outsider artists: Patterns of interaction in Siberian Eskimo/Chukchi ivory carving. Arctic Anthropology, vol. 33, No. 1: 67–88. Mortillet G. de. 1883 Le Préhistorique: Antiquité de l‘homme. Paris: C. Reinwald. Nadasdy P. 2007 The gift in the animal: The ontology of hunting and humananimal sociality. American Ethnologist, vol. 34: 25–43. Narody Sibiri. 1956 Potapov M.G., Levin L.P. (eds.). Moscow, Leningrad: Izd. AN SSSR. Nelson E.W. 1900 The Eskimo About Bering Strait. Washington: Government Printing Of ce. (18thAnnual Report of the Bureau ofAmerican Ethnology). Owen L. 2005 Distorting the Past: Gender and the Division of Labour in European Upper Palaeolithic. Tübingen: Kerns Verlag. Pedersen M.A. 2001 Totemism, animism and NorthAsian indigenous ontologies. Journal of the Royal Anthropological Institute, vol. 7, No. 3: 411–427. Popular Beliefs and Folklore Tradition in Siberia. 1968 V. Dioszégi (ed.). Budapest: Akadémiai Kaidó. Porr M. 2010 Paleolithic art as cultural memory: A case study of the Aurignacian art of Southwest Germany. Cambridge Archaeological Journal, vol. 20, No. 1: 87–108. Sauvet G., Wlodarczyk A. 2008 Towards a formal grammar of the European Paleolithic cave art. Rock Art Research, vol. 25: 165–172. S. Sázelová / Archaeology, Ethnology and Anthropology of Eurasia 42/4 (2014) 125–135 135 Sázelová S. 2012 Symbolismus u mobilních spole nosti Sibi e: Lidé a zví ata v etnologické analogii a archeologickém kontextu: diserta ni. Brno: Masarykova univerzita. Shamanism in Siberia. 1978 V. Dioszégi, M. Hoppál (eds.). Budapest: Akadémiai Kiadó. Soffer O. 2000 Gravettian technologies in social context. In Hunters of the Golden Age, W. Roebroeks, M. Mussi, J. Svoboda, K. Fennema (eds.). Leiden: Univ. of Leiden, pp. 59–75. Stiles D. 1977 Ethnoarchaeology:Adiscussion of methods and applications. Man, New Series, vol. 12: 87–103. Svoboda J. 1997 Symbolisme Gravettien en Moravie: Espace, temps et formes. Bulletin de la Société Préhistoire de L´Ariége, vol. 52: 87–103. Svoboda J. 2011 Po átky um ní. Praha: Academia. Svoboda J., Sázelová S., Kosintsev P., Jankovská V., Holub M. 2011 Resources and spatial analysis at actual Nenents camp sites: Ethnoarchaeological implications. Journal of Anthropological Archaeology, vol. 30: 30–43. Taksami C.M. 1976 Predstavleniya o prirode i cheloveke u Nivkhov. In Priroda i chelovek v religioznykh predstavleniyakh narodov Sibiri i Severa (vtoraya polovina XIX–nachalo XX v.). Leningrad: Nauka, pp. 203–216. Vandiver P., Soffer O., Klíma B., Svoboda J. 1989 The origins of ceramic technology at Dolní V stonice, Czechoslavakia. Science, vol. 246: 1002–1008. Vdovin I.S. 1976 Priroda i chelovek v religioznykh predstavleniyakh Chukchey. In Priroda i chelovek v religioznykh predstavleniyakh narodov Sibiri i Severa (vtoraya polovina XIX–nachalo XX v.). Leningrad: Nauka, pp. 217–253. Verpoorte A. 2001 Places of art, traces of fire. A contextual approach to anthropomorphic gurines in the Pavlovian (Central Europe, 29–24 kyr BP). Leiden: Univ. of Leiden; Brno: Academy of Sciences of the Czech Republic, Institute of Archaeology at Brno. Willerslev R. 2004 Not animal, not not-animal: Hunting, imitation and empathetic knowledge among the Siberian Yukaghirs. Journal of the Royal Anthropological Institute, vol. 10: 629–652. Received February 01, 2013. Received in revised form August 17, 2014. 86 3 Příklady z archeologického kontextu V části věnované archeozoologické analýze se tato práce zaměřuje na studium velké savčí fauny z vybraných pleistocenních a časně holocenních kontextů, tedy na období lovecko-sběračských populací paleolitu a mezolitu. Příklady byly vybrány tak, aby demonstrovaly rozsah možností práce s osteologickým materiálem i případný interpretační potenciál lokalit, které se vzájemně liší metodikou archeologického výzkumu (systematický/záchranný), polohou lidského osídlení (otevřené či vymezené převisem) nebo jeho charakterem (izolované lidské aktivity doprovázené faunou nebo komplexní sídliště). Základem dílčích osteologických analýz bylo nejprve standardní určení materiálu z těchto lokalit, kterou v případě možností doprovází demografická studie věkové struktury populace, distribuce částí zvířecích skeletů v prostoru sídliště i následná dokumentace tafonomických činitelů, včetně lidské manipulace. Stranou této práce zůstává technologická analýza předmětů z tvrdých živočišných tkání, vyžadující svůj specifický metodický protokol. 3.1 Metoda Z metodického pohledu je archeozoologický materiál nejprve roztříděn podle konkrétních zvířecích taxonů a u jednotlivých kostí i zubů, případně jejich fragmentů, je pořízen anatomický popis. Využívány jsou buďto standardně používané komparativní osteologické atlasy a manuály, jako např. Hue (1907), Kolda (1951); Lavocat (1966), Pales a Lambert (1971), Schmid (1972), Ziegler (2001); Hillson (2005, 2009); France (2009), srovnávací elektronické kolekce kupříkladu Archeozoo.org, Niven et al. (2009), nebo fyzické komparativní kolekce, jako např. z Muzea přírodní historie ve Vídni. Četnost výskytu jednotlivých druhů či skeletálních částí v rámci osteologického materiálu velké savčí fauny je obvykle stanovena na základě celkového počtu kostí přiřazených ke konkrétnímu taxonu (Number of Identified Speciemens – NISP), minimálním počtem jedinců zastoupených v daném taxonu (Minimum Number of Individuals – MNI), minimálním počtem elementů (Minimum Number of Elements – MNE), které lze přiřadit k jedné kosti, a hodnotou MAU (Minimal Animal Unit – MAU), 87 zohledňující kolik částí skeletu je reálně přítomno v osteologickém materiálu s ohledem na jeho stranovou korekci. Poměrem NISP/MNE pak lze vyjádřit míru fragmentarizace materiálu ve sledovaném souboru a je významným indikátorem v interpretacích lidských zásahů, postdepozičních procesů či samotných biomechanických vlastností skeletů jednotlivých zvířecích druhů (srov. Casteel 1977; Binford 1981; Grayson 1984; Klein, Cruz-Uribe 1984; Clark 1987; Davis 1987; Cruz-Uribe 1988; Lyman 1994, 2008; O´Connor 1996, 2000; Landon 2005; Herrel et al. 2006). V následujícím kroku oddělujeme v materiálu mladé jedince, u nichž provádíme odhad kosterního věku, založeného na rozdílné rychlosti ve srůstání proximálních a distálních epifýz s diafýzami dlouhých kostí, tj. uzavírání růstových štěrbin (srov. Johnston et al. 1987; Richardson et al. 1995; Ruscillo ed. 2006). Vedle kosterního věku odhadujeme i věk zubní, jenž mapuje rozdílné rychlosti v prořezávání mléčné a trvalé dentice. U trvalého chrupu můžeme dále sledovat stopy po mechanické abrazi okluzálních ploch zubů, kterou lze korelovat s věkem. Přestože samotná abraze může být navyšována, nebo naopak snižována přítomností abraziv v potravě, genetickými predispozicemi či patologiemi, jako například malokluzalitou chrupu, což následně může zkreslit odhadovaný věk jeho nadhodnocením či naopak podhodnocením (srov. Spies 1979; Grant 1982; Hillson 2005; Pike-Tay ed. 2000; Steele 2002; Reitz, Wing 2008). Tam, kde to stupeň zachování kosti dovoluje, provádíme osteometrická měření podle metodik a doporučení, které vypracovala A. von Driesch (1976). V poslední fázi deskripce se zaměřujeme na epigenetické variability či patologické znaky (viz. podkapitola 3.5.3). Četnost zastoupení zvířecích taxonů, jejich distribuci a kvantitu (zejména s ohledem na velmi drobné kosti i zuby nebo dílčích fragmenty pod 2 cm) je signifikantně ovlivněno metodou exkavace během archeologického výzkumu. Systematický výzkumu je obvykle postaven na planigrafické dokumentaci sídlištních struktur v plošné síti 1 x 1 m, s jednotlivými čtverci dále dělenými na čtyři podčtverce po 50 cm. Uvnitř této sítě je osteologický materiál společně s dalšími archeologickými nálezy a útvary zaznamenáván do 3D sítě v systému osy X, Y a relativní výšce bodu Z (srov. Cziesla 1990; Connor 2007; Hester et al. 2009; Šída 2012; Schiffer ed. 2014; Carver et al. eds. 2014), čímž je získána poloha předmětu samotného, tak i prostorová distribuce ostatních nálezů vůči sobě. Zbývající sediment je odebírán na suché sítování nebo plavení, ve kterém standardně používáme síta s rozestupy 5, 1 a 0,5 mm (u vybraných vzorků může být volena síť 88 s rozestupem kolem 0,1 mm a méně). V ideálním případě plavíme veškerý objem materiálu za účelem maximalizace získaných nálezů (zejm. mikrofauny, malakofauny, rostlinných makrozbytků či mikrolitů), nicméně rozumně dohlížíme i na průběžnou kontrolu sterilnosti vzorků (Horáček, Sanchéz-Marco 1984; Greene 1996; Renfrew, Bahn eds. 2005; Maschner, Chippindale eds. 2005; Muckle 2006; Kelly, Thomas eds. 2006). U záchranného výzkumu bývá metodický protokol vzhledem k časovým důvodům urychlen, takže mohou být proplaveny pouze dílčí vybrané struktury (např. ohniště, sídlištní objekt), nebo není k plavení přistoupeno vůbec, což se ale promítne například v distribuci živočišných taxonů, která je v takovém případě obvykle nižší. Současně není platné obecně tradované tvrzení, že k systematickému plavení přistupujeme až v dnešní době (s ohledem na aplikaci moderních metodik v archeologickém výzkumu). Z Moravy máme totiž několik případů z přelomu 19. a 20. století, zejména z výzkumů J. Kniese (1901, 1902), kdy byl sediment systematicky proplaven, takže spíše záleží na podmínkách a rozhodnutí vedoucího výzkumu. 3.2 Materiál Předkládaná osteologická analýza vybraného archeologického materiálu pokrývá období pleistocénu až starého holocénu, tedy lokality lovecko-sběračských společností paleolitu a mezolitu. Zpracováním osteologického materiálu z těchto lokalit autorka vstupuje do interdisciplinárních týmů zabývajích se komplexní analýzou těchto nalezišť a svými výsledky přispívá k deskripci fauny (včetně populační charakteristiky), tafonomické historie nálezové situace i její chronostratigrafie. Od r. 2009 se autorka podílí na vyzvednutí osteologického materiálu během exkavačních prací i na dalších průvodních činnostech (tj. čistění, plavení, třídění, inventarizace a konzervace) vedoucích k jeho uložení ve sbírkách Střediska pro paleolit a paleoetnologii v Dolních Věstonicích Archeologického ústavu AVČR Brno. Na tomto pracovišti je uložena podstatná část materiálu z výzkumů v 80. letech 20. století na lokalitě Dolní Věstonice II a izolované předměty z Předmostí III. Zbývající osteologický materiál se nachází ve sbírkách Moravského zemského muzea v Brně, což se týká výzkumu lokality Pavlova I, vybraných nálezů z lokality Předmostí III a nepoměrné části Dolních Věstonic II. Z námi sledovaných nalezišť je v práci prezentován osteologický materiál z lokality Horky nad Jizerou (viz podkapitola 3.5.1), která představuje dobře stratifikovanou 89 archeologickou lokalitu se středně pleistocenními sedimenty zkoumánou již v 50. a 60. letech 20. století F. Proškem, J. Kuklou a J. Fridrichem (Prošek 1952a,b, 1954; Fridrich 1982). Z tohoto období pochází i zpráva o několika velmi zvětralých fragmentech kostí velkých savců, které se nám však nepodařilo již dohledat. Kolem roku 2007 začala být lokalita s ojedinělým výskytem lidských aktivit nově monitorována P. Šídou ze Západočeské univerzity v Plzni a z osteologického hlediska měla autorka možnost dokumentovat nálezy savčí fauny z let 2009-2012 z lokality Horky III. Okruh dalších lokalit sledovaných v této práci pochází z období mladého paleolitu a je řazen do kulturní fáze staršího gravettienu, tzv. pavlovienu (27,5 – 25,0 ky BP nekalibrováno; 33,0 – 30,0 ky calBP). V dané době se lidské osídlení koncentruje podél hlavních říčních toků Dyje (Dolní Věstonice, Pavlov, Milovice), Moravy (Uherskohradišťsko) a Bečvy (Předmostí), u nichž si lidé budují otevřená, různě velká a komplexní sídliště s odlišnou sezónní hierarchií (Absolon 1918, 1938, 1945; Absolon, Klíma 1977; Klíma 1954, 1963, 1981, 1987, 1995; Musil 1955, 1958a,b, 1994, 2001, 2010, 2011a,b, 2014; Soffer 1993; Svoboda ed. 1991, 1994, 2005; Škrdla, Svoboda 1998; Velemínská, Brůžek eds. 2008; Svoboda et al. 2007, 2011b, 2014, 2015; Beresford-Jones et al. 2010, 2011; Antoine et al. 2013; Fuchs et al. 2013; Nývltová Fišáková 2013; Revedin et al. 2010, 2015; Wojtal et al. 2015). Postupně sledujeme následující lokality: a) Dolní Věstonice II– komplex lokalit, na nichž byly prováděny systematické i záchranné výzkumy (včetně pravidelných povrchových sběrů) v letech 1958 – 2015 Bohuslavem Klímou (do r. 1987) a Jiřím Svobodou (od r. 1987). Z tohoto komplexu autorka zpracovává výzkumy na lokalitě Dolní Věstonice IIa a nejjižnější části z let 1999 – 2015, u studia vlků je pak zaměření rozšířeno i na starší výzkumy z let 1985-1987 (podkapitola 3.5.2 a 3.5.3). Svou prací tak navazuje na dřívejší studie L. Seitla (1995), D. West (2001), M. Nývltové Fišákové (2001), P. Wojtala a J. Wiłczyńského (např. 2015). b) Pavlov I (podkapitola 3.5.4) – představuje sídlištní palimpsest, na němž byly prováděny systematické i záchranné výzkumy B. Klímou (1952-1972) a J. Svobodou (2013-2015). Autorka se zaměřuje na zpracování osteologického materiálu z nových výzkumů, nicméně vzhledem k objemu odtěženého sedimentu (proplaveno 25 tun a ve 3D bylo zaměřeno přes 13 000 čísel) na něm ještě stále probíhá jeho třídění a inventarizace, takže přiložená studie je velmi 90 informativního rázu. Svou prací navazuje na dřívější studie R. Musila (např. 1955, 1958a, 1994, 2005) a P. Wojtala a J. Wiłczyńského (např. Wojtal et al. 2005, 2012; Bocheński et al. 2009; Wojtal, Wiłczyński 2015). c) Milovice IV – lokalita byla objevena v roce 2009, kdy došlo k propadu stropu sklepení vyhloubeného v 18. století ve spraši, a byla zkoumána až do roku 2010 J. Svobodou. Autorka se zde pod vedením P. Wojtala zabývala svou první analýzou pleistocenního materiálu (podkapitola 3.5.5). d) Předmostí III – náleží do komplexu sídlišť lokality Předmostí a tato poloha byla několikrát zkoumána v průběhu posledních 30 let B. Klímou, J. Svobodou a Z. Schenkem. Autorka se podílí na zpracování osteologického materiálu ze záchranných výzkumů B. Klímy z let 1982-1983, který však vzhledem ke svému nerovnoměrnému zastoupení živočišných taxonů představuje spíše určitý výběr (podkapitola 3.5.6). Materiál z novějších výzkumů této lokality byl zpracován M. Nývltovou Fišákovou (Nývltová Fišáková Schenk 2006). Posledním sledovaným areálem jsou staroholocenní lokality z prostoru severočeských pískovců Děčínska a Českolipska, kde probíhá od r. 1997 pod vedením J. Svobody systematický i záchranný výzkum posledních lovecko-sběračsko-rybářských populací mezolitu (před příchodem zemědělství 10,0 -6,0 ky BP) (Svoboda ed. 2003; Svoboda et al. 2007; podkapitola 3.5.7). Autorka se podílí na zpracování osteologického materiálu z lokalit Janova zátoka a Údolí samoty, kde byla mimojiné zaznamenána stratigrafická sekvence, pokrývající pozdní paleolit a mezolit. Svou prací navazuje a rozšiřuje analýzy I. Horáčka (2003; 2007) a od r. 2013 vypracovává metodický protokol pro zpracování spáleného osteologického materiálu v tomto mikroregionu, který je díky agresivnosti místních sedimentů mnohdy to jediné, co se zde z fauny dochovává. 3.3 Vliv tafonomických činitelů Stopy po tafonomických činitelích nám vydají cenné informace o predepozičních, depozičních a postdepozičních procesech, ovlivňujících způsob uložení i míru zachování osteologického materiálu (srov. Skutil, Stehlík 1949; Behrensmeyer, Hill eds. 1980; Lyman 1994; Denys 2002; Alhaique et al. 2004; Conor 2007; Prokeš 2007; Wojtal 2007). Základní tafonomické podmínky můžeme rozdělit do dvou hlavních skupin abiotických 91 a biotických činitelů a znalost charakteru jejich projevu nám pak umožňuje odlišit např. stopy po lidské činnosti od ohryzu šelem, zdupání nebo abraze při pohybu v sedimentu. Míra projevu dílčích tafonomických činitelů je pochopitelně ovlivněna vlastnostmi a morfologií osteologického materiálu, dále věkem, pohlavím a zdravotní kondicí zvířete. Biomechanický charakter je v případě kostí, zubů, mamutoviny či paroží rozdílný, což způsobuje odlišný poměr organické a anorganické složky, tedy kolagenu a hydroxyapatitu, zajišťujících na straně jedné elasticitu a odolnost v tahu a na straně druhé pevnost, tvrdost a odolnost v tlaku (přesto záleží na směru působící síly, tj. osteologický materiál je obecně nejméně odolný k torzním pohybům provázeným velkým zrychlením). Během archeologizace je organická složka procesem fosilizace nahrazována složkou anorganickou, což zachovává původní tvar osteologického materiálu, nicméně rovněž se projevuje ztrátou původní ohebnosti i celkové soudržnosti vedoucí k fragmentarizaci během depozičních a postdepozičních procesů, včetně exkavace samotné (Sikes 1971; Albrecht 1977; Guthrie 1983; Davies 1987; Lyman 1994; Christensen 1999; 2004; Chlopačev, Girija 2010). 3.1.1 Abiotiční činitelé Zvětrávání modifukuje povrch osteologického materiálu během dočasné či dlouhodobé expozice vnějším podnebným podmínkám (např. dešťové/sněhové srážky, vítr, sluneční záření, aj.), které způsobují prograsivní praskání a štěpení kompaktní kosti, zubní skloviny či svrchních lamel klu; jejich postupné štěpení a loupání, vedoucí k celkové destrukci předmětu (srov. Behrensmeyer 1978; Tappen 1994, 1995; Andrews 1995; Andrews, Armour-Chelu 1998; Fernandéz-Jalvo et al. 2002; Janjua, Rogers 2008). Tlak nadložních sedimentů zvyšuje příčnou i podélnou fragmentarizaci osteologického materiálu a deformuje anatomické uložení, pokud se například skelet nachází v mírně zahloubeném objektu, což způsobilo extrémní skrčení ženy z hrobu DV3 v Dolních Věstonicích I (kde je tato poloha vyloučena přítomností měkkých tkání, stejně jako nemohlo dojít k sekundární manipulaci s tělem, neboť by chyběly některé kosti (zejm. apikálních částí končetin), které by byly disartikulovány po dekompozici měkkých tkání (Svoboda 2014). 92 Gravitace působí na pohyb sedimentu na svahu (soliflukce), čímž dochází k posunům a deformacím uloženého osteologického materiálu či rozvolnění (rozvlečení) anatomického uspořádání skeletu (např. hromadný hrob z lokality Předmostí Ia; Svoboda 2008). Ph sedimentu má vliv na chemickou korozi osteologického materiálu, během níž dochází k abrazi reliéfu předmětu vedoucí k jeho úplnému vymizení (v některých případech za vzniku tzv. kostěných stínů). Obecně jsou zásadité sedimenty pro uchování osteologického materiálu příznivější nežli kyselé. Přesto samotnou frekvenci ztráty osteologického materiálu ani míru jeho koroze nelze predikovat čistě na základě pH sedimentu, neboť tu ovlivňují i další faktory, jako např. morfologie skeletu, geografie naleziště či oscilace podzemní vody. Ve spraši se na osteologickém materiálu navíc vytváří vápenaté konkrece (CaCO3), tzv. cicváry, které obalují celou kost, paroh, kel či zub, nebo vyplňují jejich veškeré vnitřní dutiny. Vzhledem k tomu, že tyto konkrece ovlivňují přesnost taxonomického určení, bývají ve vybraných případech opartně odleptány zředěnou 3 % kyselinou chlornou (srov. Fernandéz-Jalvo, Andrews 1992; Fernandéz-Jalvo et al. 2002; Andrews 1995; Child 1995; Van Klinken, Hedges 1995; Nicholson 1996). Abraze remodeluje povrch osteologického materiálu vlivem abraziva s různou klastickou velikostí (např. jílem, pískem, štěrkem, oblázky, apod.) s očekávatelným závěrem, že velikost stop a zlomů je úměrná typu abraziva. Povrchová voda osteologický materiál ohlazuje a leští, nicméně tyto stopy mohou být zaměňovány se stopami po lidské činnosti, pokud není osteologický materiál analyzován jako celek. Při transportu má voda tendenci osteologický materiál třídit na základě jeho velikosti a hustoty, kdy artikulované kosti mají menší potencionalitu transportu nežli disartikulované (tj. pohybují se pomaleji). Důsledkem pak je narušení anatomického uspořádání skeletu i jeho možná dislokace na velké vzdálenosti. Podzemní voda prochází osteologickým materiálem podobnými fyzikálními procesy jako u sedimentu (gravitací, osmózou, kapilaritou a difúzním gradientem) v místech s odlišným hydraulickým potenciálem, který se může měnit prostrově i časově. Procesy probíhají do okamžiku dosažení rovnovážného stavu s okolním sedimentem za vzniku tzv. dobíjení/vybíjení, kdy při vysychání sedimentu je voda z osteologického materiálu „vysáta“, či naopak „nasáta“ z mokrého prostředí při jejím vyschnutí. Vlivem spodní vody dochází k přijímání uranu, rozpouštění organických molekul a zvyšování mineralizace 93 nebo ke zvětšování mikroskopických struktur (Skutil, Stehlík 1949; Voorhies 1969; Dodson 1973; Behrensmeyer 1975; Boaz, Behrensmeyer 1976; Korth 1979; Hanson 1980; Boyde 1984; Bromage 1984; d´Errico et al. 1984; Nelson et al. 1986; Andrews 1990, 1995; Fernandéz-Jalvo 1992; Coard, Dennel 1995; Nielsen-Marsh, Hedges 2000). Kryogenní vlivy: v mrazových podmínkách dochází k aerobní dekompozici a primární mikrobiální atak je zahájen z okolního prostředí (oproti běžným podmínkám, kdy dekompozici zahajuje střevní mikroflóra a fauna). Disartikulace skeletu probíhá ve sledu cerviko-lumbální spojení – costo-vertebrální a sterno-costální spojení – lumbosakrální a sakroiliakální spojení a zakončeno je rozvolněním kyčelních kloubů. Samotná fragmentarizace osteologického materiálu není ovlivněna obsahem vody, nýbrž funkčním a morfologickým typem, a charakter lomu je velmi nepravidelný. Mrazová činnost uvnitř vrstvy může navíc způsobit províření osteologického materiálu a jeho vyzdvihnutí do vrstev nadložních (při rozpínání půdního ledu), či naopak propadnutí do podloží (při jeho tání) (srov. Wood, Johnson 1978; Micozzi 1986; Guadelli, Ozouf 1994). Na námi sledovaných lokalitách jsme pozorovali několik typů stop zanechaných abiotickými činiteli. Nejvyšší míra fosilizace byla pochopitelně pozorována na materiálu z lokality Horky nad Jizerou, kde na povrchu kompakty byly okem zaznamenatelné křemičité krystaly; na na koňském metacarpu jsme pozorovali machanickou fragmentarizaci způsobenou tlakem nadložních sedimentů. Projevy zvětrávání byly nejzajímavější na gravettském materiálu, kdy nejvyšší stupeň zvětrání v kombinaci s otisky kořínků rostlin jsme dokumentovali na materiálu z lokality Dolní Věstonice II a z Pavlova VI, kde navíc přibývá velmi vysoká míra vápenatých konkrecí. O poznání lépe je na tom materiál z Předmostí III (i Ib) a Pavlov I z nejnovějších výzkumů. Vůbec nejlepší stupeň zachování vykazuje v tomto ohledu osteologický materiál z lokality Milovice IV, což znamená, že byl velmi rychle překryt sprašovou nadložní vrstvou bez expozičních mezifází. Na povrchu osteologického materiálu z Pavlovských vrchů můžeme dále zaznamenat přítomnost manganistých a železitých solí, které se projevují jako tmavé a červené krystaly, často vyplňující nerovnosti povrchu (u některých fragmentů mohou vytvářet dokonce nepravidelně velké skrvny). Zaznamenáváme je zejména tam, kde předpokládáme, že byl osteologický materiál v kontaktu s povrchovou stojatou vodou (srov. Svoboda ed. 1991), nicméně stále se jedná o téma, pro něž budou nezbytné podrobnější chemické analýzy. Míru fragmentarizace (dle poměru NISP/MNE) jsme 94 spočítali pro osteologický materiál z nových výzkumů na lokalitě Dolní Věstonice II z let 1999-2015, přičemž největší míru nacházíme u mamuta srstnatého (Mammuthus primigenius) a to nejen v porovnání s ostatními živočišnými druhy, ale i v souboru samotném (Sázelová in prep.). Poměrná část těchto lomů je nových a byla způsobena během exkavace, přesto se domníváme, že starší lomy ovlivňují biomechanické vlastnosti mamutích kostí (které vzhledem k pneumatizovanosti a vláknitosti jsou velmi mineralizované) a lamelární charakter přírůstku klů i stoliček. Nicméně nemůžeme vyloučit ani vliv dalších tafonomických činitelů, a proto budou v tomto ohledu nezbytné další studie (srov. Shipman 1981; Morlan 1980; Johnson 1985; Haynes 1991; Villa, Mahieu 1991; Chlopačev, Girija 2010). Vliv pH sedimentu na zachování osteologického materiálu je nejmarkatnější pod pískovcovými převisy v severních Čechách, které jsou pro zachování organického materiálu většinou velmi nepříznivé (viz. podkapitola 3.5.7). Zachová-li se osteologický materiál v podobném prostředí, pak jedině ve spálené a tedy i více mineralizované podobě. 3.1.2 Biotičtí činitelé Dekompozice čili rozklad měkkých tkání, začíná v běžných podmínkách jako anaerobní proces, který zahajují bakterie trávicího traktu organismu (nejčastěji se jedná o Staphylococcus, sp.; Clostridium, sp. a E. coli). Tento proces je následován disartikulací, během níž dochází k rozvolňování kloubních spojení právě v důsledku dekompozice měkkých tkání. Jako první je zahájena disartikulace atlanto-occipitálního spojení (hlava, mandibula), kterou následuje rozvolnění cervikálních a lumbálních spojení, dále sternokostálního spojení a pubické symfýzy; a jako poslední se uvolňuje spojení končetin, které postupuje ve směru od těla k apikálním částem končetin. Pokud dojde k sekundární manipulaci s rozkládajícím se tělem, může míra rozvolnění jednotlivých kloubních spojení naznačit, v jakém stádiu rozkladu bylo s tělem manipulováno (Kučera 1927; Weigelt 1927; Matiegka 1934; Toots 1965; Hill 1980; Bickart 1984; Blumenschine 1986; Micozzi 1986, Potts 1988; Ellison 1990; Janaway 1990; Bell et al. 1996; Davis, Briggs 1998). Činnost mikroorganismů vedle střevních mikroorganismů mohou rozklad provázet i půdní mikroorganismy používající kolagen jako základní zdroj dusíku. Pokud je zvířecí nebo lidské tělo uloženo v celku, pak se na jeho kostech projeví bakteriální aktivity, které jsou charakteristické pro počáteční stádia dekompozice. Při disartikulovaných fragmentech 95 (např. u kuchyňského odpadu) naopak dochází pouze k činnosti saprofytických hub, které jsou aktivní i po exkavaci osteologického materiálu (srov. Child 1995; Balzer et al. 1997; Jans et al. 2004). Pod vedením autorky se tímto tématem zabývá magisterská práce Bc. Radky Šmídové, která je postavena na časosběrném experimentu dvou ovcí, pohřbených v roce 2013 Bc. J. Makovičkovou, a komparaci s antropologickým a archeozoologickým materiálem. Výsledky studie můžeme očekávat v červnu 2016. Ke zdupání (trampling) lidmi nebo zvířaty dochází u osteologického materiálu ležícího na povrchu nebo relativně mělko pod povrchem v prostoru sídliště nebo frekventovaných tras. Během tohoto procesu dochází ke změně orientace osteologického materiálu (chaotizaci), jeho fragmentarizaci a vtláčení pod povrch u vlhkých sedimentů. U kostí se trampling projevuje mělkými subparalelními liniemi o průřezu „U“, nebo může dojít k rozsáhlejšímu odštěpení kompakty, které nelze mnohdy s jistotou odlišit od lidské manipulace (Courtin, Villa 1982; Cook 1986; Behrensmeyer et al. 1986; Fiorillo 1989; Olsen, Shipman 1988; Haynes 1991; Blasco et al. 2008; Domínguez-Rodrigo et al. 2009). Kontakt s kořenovým systémem rostlin rozrušuje povrch osteologického materiálu za vzniku různě velkých vlnovkovitých otisků (na histologické úrovni kořeny např. zvětšují osteony). Podobné stopy nám naznačují, že se osteologický materiál nacházel po určitou dobu své tafonomické historie poměrně mělko pod povrchem, přestože tomu nemusí odpovídat aktuální nálezová situace (Behrensmeyer, Hill eds. 1980; Andrews 1990; Lyman 1994; Denys 2002; Alhaique et al. 2004; Prokeš 2007). Činnost hlodavců se projevuje ohryzem za účelem zbroušení řezáků, který má charakter mělkého vzoru tvořeného paralelními či subparalelními liniemi: a) vějířovitého typu souvisejícího s fixací horních řezáku na povrchu ohlodávaného předmětu a proměnlivého směru dolních řezáků (např. veverky, Scirius, sp.); nebo b) chaotického typu, kdy se horní i dolní řezáky pohybují při ohryzu volně oproti sobě (např. u dikobrazů, Hystrix, sp.; či myšovitých, Muridae). Na základě typu ohryzu a jeho velikosti lze odhadnout velikost zvířete i přibližné taxonomické zařazení. Činnost hlodavců může dále ovlivňovat transport (např. akumulace kostí v doupatech dikobrazů) a dislokaci osteologického materiálu, tzv. bioturbace (Shipman, Rose 1983; Klippel, Synstelien 2007). Predace šelem a dravých ptáků pozměňuje zachování osteologického materiálu, mění jeho počet i zastoupení roztaháním kořisti, akumulací osteologického materiálu v doupatech, hnízdech a na trhaništích. Ohryz šelem se nejčastěji projevuje na apikálních 96 částech dlouhých kostí, v oblasti žeber, páteře či dolní čelisti (extrakce morku), a dále na bázi lební (po extrakci mozku). V některých případech lze na základě velikosti a typu ohryzu odhadnout taxon dravce; a tyto stopy mohou být zaměněny s lidskými aktivitami, například rozlámání lebek hyenami, či po vlčích trhácích při strhávání masa mohou zanechat podobné stopy, jako po kamenných artefaktech. Charakter ohryzu šelem můžeme rozdělit následovně: a) proraženiny vznikají při statickém tlaku čelisti, kdy zub projde kompaktou kosti a může proniknout až do spongiosy; b) jamky se utváří při přímém ohryzu kostí s velmi tvrdou vrstvou kompakty; c) jizvy vznikají na diafýze při jejím otáčení mezi čelistmi šelmy a jsou orientovány příčně k dlouhé ose kosti; d) vruby se pak nachází na epifýzách kosti, kde vlivem mechanického působení špičáků a trháků dochází k odstranění kompakty a obnažení spongiotické hmoty. Dalším projevem, který můžeme zaznamenat na osteologickém materiálu, je koroze gastrickými kyselinami, které zvětšují osteoblasty, ohlazují kosti i zuby, fragmentarizují je až do úplné ztráty. Experimenty dále prokázaly, že v této korozi mají významnější roli trávicí enzymy, nežli pH žaludečních šťáv či délka trávení obsahu. V souvislosti s ohryzem je zajímavý okus kostí a parohů herbivory, kteří si tímto chováním navyšují příjem minerálních látek, nebo okus člověka, jímž se pod vedením autorky zabývala Bc. Michaela Stančíková (Sutcliffe 1973; Boyde et al. 1978; Dodson, Wexlar 1979; Brain 1980; Binford 1981; Haynes 1980; 1983; Maguire et al. 1980; Johnson 1985; Andrews 1990; FernandézJalvo, Andrews 1992; Lyman 1994; Laudet, Fosse 2001; Denys 2002; Laudet, Selva 2005; Blasco, Rossel 2009). Během osteologického výzkumu na námi sledovaných pleistocenních a holocenních lokalitách nemůžeme trampling vyloučit například u fragmentu femur mamuta srstnatého (Mammuthus primigenius) z lokality Předmostí – Vinary intravilán, který byl objeven v roce 2010 Zdeňkem Schenkem a Janem Mikulíkem. Dále jsme příznaky tramplingu pozorovali i v jeskyni Pod Hradem, která sloužila jako zimní hyberniště jeskynním medvědům (Ursus spelaeaus) s izolovanými stopami po lidských aktivitých. Četnost výskytu otisků kořenového systému je nejzajímavější na gravettských lokalitách, které byť nejsou od sebe příliš vzdálené, je aktivitami rostlin velmi rozdílná (viz výše) a může být 97 kombinována s dalšími tafonomickými činiteli. Například vlčí mandibula z lokality Dolní Věstonice II z roku 1987 nese na linguální straně otisky kořínků rostlin, a na straně bukální naopak stopy po zvětrávání. Oba činitélé tak indikují pohyb i změnu orientace čelisti v průběhu její tafonomické historie na povrchu i uvnitř sedimentu (s největší pravděpodobností v souvislosti se soliflukcí; srov. Svoboda 1991). Stopy po činnosti hlodavců, resp. dikobraze, jsme zaznamenali na blíže neurčitelném fragmentu kosti velkého savce z lokality Mladeč - Ic „Puklinová“, na níž ohryz vytváří sérii velmi výrazných a relativně pravidelných faset (Svoboda et al. 2011). Další zajímavé stopy po ohryzu byly zdokumentovány i na horním řezáku bobra evropského (Castor fiber) z lokality Dolní Věstonice II – vrch (nalezeného r. 1986), u nichž jsme se v první chvíli domnívali, že se jedná o lidský zásah. Stopy vytváří velmi krátké subparalelní linie a odhalují prvních několik milimetrů okluzální hrany řezáku s expozicí skloviny na linguální straně. Nicméně linie nepřesahují hranu útvaru, a proto se i na základě konzultace s prof. I. Horáčkem domníváme, že u zvířete došlo těsně před smrtí k nadměrné zátěži spodní čelisti a vychýlení při intenzivním ohryzu těžkého předmětu (např. při lapení zvířete v závalu či pasti, z nichž by se snažilo ze všech sil zachránit; Sázelová et al. in prep.). Přítomnost ohryzů šelem na našich gravettských lokalitách je relativně nízká (srov. Wojtal, Wiłczyński 2015), což dokládá i materiál z nových výzkumů na lokalitě Dolní Věstonice IIa z roku 2012 a Milovice IV 2009, odkud pochází vždy jediný doklad; podobně jsme ohryz zatím nepozorovali ani na mezolitickém materiálu ze severních Čech. Nicméně občasné přiživení se šelem na hnijících zbytcích po lidských aktivitách i přes nepřítomnost ohryzu nemůžeme definitivně vyloučit. Analýza patologických projevů orofaciálního skeletu vlků (Canis lupus) potvrdila přítomnost periodontických projevů (viz. podkapitola 3.5.3) u velmi starých jedinců mezi 9 a více lety. Vezmeme-li v úvahu i degenerativní změny, projevující se na postkraniálním skeletu, přivádí nás toto zjištění k předpokladu, že se mohlo jednat již o lovecky znevýhodněné jedince. Konzumace hnijícího masa je jednou z příčin vzniku periodontitis u vlků, u nichž žvýkání hnijícího kadaveru nezajišťuje dostatečné čistění chrupu a dásní, provázené vznikem vysoce agresivního mikrobiálního prostředí v tlamě zvířete. Přestože nemůžeme vyloučit ani jiné důvody, jako například genetické predispozice, zranění dásně a zubu (které jsme na makroskopické úrovni neprokázali) či zvýšení abraziv v přijímané vodě. Dalším 98 patologickým projevem je doklad prokousnutého patrového výběžku (processus alveolaris maxillaris) vlka rovněž z lokality Dolní Věstonice II – západní svah. Z recentních analogií u současných vlčích populací víme, že tento typ zranění není po vzájemných soubojích ničím výjimečným (Sázelová et al. in prep.). Ohryzy herbivorů, resp. sobů (Rangifer tarandus), jsme pozorovali zejména na osteologickém materiálu z etnologického kontextu mikroregionu Jangana Pe (podkapitoly 2.3.1-2.3.3). 3.1.3 Lidské zásahy na osteologickém materiálu Člověk, podobně jako další biotičtí činitelé, modifikuje osteologický materiál mnoha způsoby, přesto se na rozdíl od ostatních živočichů sledujících výhradně potravní či funkční zájmy, projevují velmi specificky (srov. Absolon 1934; Skutil, Stehlík 1949; Shipman, Rose 1983; Johnson 1985; Lyman 1994; Choyke, Bartosiewicz eds. 2001; Feugère et al. 2008; Jin, Shipman 2009; Chlopačev, Girija 2010; Baron, Kufel-Diakowska eds. 2011). Bourání zvířecího kadaveru začíná usmrcením zvířete, je následováno rozporcováním do několika kusů (vč. odhození nepotřebných částí); a podle Binforda (1978) může souviset s jejich transportem do prostoru sídliště a končit konzumací zvířete, nebo využitím surovinových částí (např. kožešina, šlachy, kosti, parohy, mamutovina, zubovina ad.) i odhozením odpadních částí (s čímž nesouhlasí Lyman 1994, 295). V rámci naší studie dokumentujeme zářezy a stopy po tříštění kostí: Zářezy kamenným artefaktem vykazují nepravidelný průřez „V“, kdy jedna strana se prudce zvedá a je hladká, zatímco druhá je pozvolnější s jemnou paralelní striací (srov. Morlan 1980; Shipman 1981; Shipman, Rose 1983; Cook 1986; Olsen, Shipman 1988; Fisher 1995; Greenfield 1999, 2002; Bello, Soligo 2008; Costamagno, David 2009; Galán et al. 2009; Domínguez-Rodrigo, Yravedra 2009; Domínguez-Rodrigo et al. 2009). Nejčastěji provází zářezy následující lidské aktivity: a) stahování kůže, kdy se sledy nachází na lebce, dolní čelisti, při zadních/dolních končetinách a u prstních článků zvířete; b) disartikulaci těla, u které se zářezy objevují při okrajích kloubních ploch, koncích dlouhých kostí, na povrchu pánve nebo obratlů; c) filetování, u něhož jsou zářezy paralelní s podélnou osou dlouhé kosti; 99 d) extrakce šlach, stopy se nachází na distální ploše metapodií a mohou být provázeny redukcí kostěné hmoty v proximální části; e) stopy po vykosťování jsou charakteristické několika řezy takového rázu, že počáteční je podélně orientovaný a prochází celou vrstvou masa až na kost. Bývá provázen kratšími šikmými zářezy přerušujícími hlavní svalové úpony, což následně umožňuje stáhnutí masa z kostěného podkladu. K tříštění kostí při extrakci morku dochází úderem s velkou rychlostí, kdy je kost vystavena dynamickému zatížení, jež provází tlakové, smykové a tahové poškození. Výsledkem je v případě čerstvé kosti spirálovitá zlomenina s charakteristickým bodem impaktu, u suché kosti dochází k drobným prasklinám se stupňovitými hrankami. Na diafýze dlouhých kostí vznikají radiální fragmenty respektující uspořádání kolagenových vláken s převažujícím délkovým rozměrem (Morlan 1980; Shipman 1981; Johnson 1985). Spálené kosti jsou v poslední době jednou z nejstudovanějších oblastí v archeozoologii vůbec (srov. Delpech, Rigaud 1977; Shipman et al. 1984; Buikstra, Swegle 1989; Nicholson 1993; Roberts et al. 2002; Villa et al. 2002; Church, Lyman 2003; Cain 2005; Conard et al. 2008; Bosch et al. 2012; Fladerer et al. 2014), přičemž je oproti sobě porovnávána míra přepálení i poměr kompaktní a spongiózní složky kosti, jež mohou indikovat přirozené či naopak záměrné lidské činnosti: a) přirozený požár či náhodné spálení kostí: spálené i nespálené kosti mají většinou srovnatelný poměr uvnitř dílčích typů kompakty a spongiosy. V prostoru většinou nenalezneme stopy po lidské regulaci ohně, které by dokládaly jeho opakované zakládání, ani doklady jiných aktivit, např. osteologický materiál je bez zářezů, není doprovázen dalším archeologickým materiálem v podobě kamenných artefaktů, ozdob či barviva. K náhodnému přepálení kostí může také dojít při založení ohniště v nadloží, kdy v době jeho aktivity dochází k nepřímému tepelnému propálení vrstev podložních, včetně přítomného osteologického materiálu. U převisu tak může dojít například k nepřímému propálení místa, kde draví ptáci vyvrhovali nestrávené zbytky své potravy. O tom, že došlo k nepřímému spálení ptačích vývržků, nasvědčuje většinou samotná poloha spálených kostí (pod skalní římsou nebo výběžkem) i skladba živočišných taxonů, kdy při zvýšeném poměru žab, drobných savců (jako 100 netopýrů, myší či krtků), se asi těžko jedná o potravu z lidského jídelníčku, přestože specifické kulinářské preference nemůžeme plně vyloučit. b) extrakce morku a tuku je předpokládána u fragmentů kolem 3 cm, v nichž je vysoké zastoupení kostí bohatých na tuk a morek (vysoké zastoupení spongiotické kosti) s relativně nízkými stupni spálení I-II (hnědá až částěčně černá barva, naznačující karbonizaci až 50 % organické složky kosti). c) pečení masa provází selektivní výběr osteologického podkladu velmi kvalitní masové porce. Kosti bývají v takovém případě bodově opáleny, nebo může docházet k nepřímému opálení v místě, kde kost nebyla chráněna masitou částí (například u metapodium, či distálních část radius nebo tibie). d) topení kostmi převažuje preference hořlavých kostí s vysokým poměrem spongiózy, osteologický materiál je provázen vysokou mírou fragmentarizace a spalování je obvykle ve stupni III-VI (barevná škála černá – šedá – až bílá odpovídá úplné karbonizaci organické složky přecházející během dalšího spalování v její úplnou oxidaci). e) spalování kostěného odpadu provází velmi signifikatní převaha kompakty s vysokou mírou fragmentarizace (často menší jak 1cm) a velmi vysokými stupni spálení IV-VI, způsobujícím vypálení organické složky a zvýšení křehkosti spalovaného materiálu, a tím i jeho celkovou fragmentarizaci). Nicméně pokud máme k dispozici pouze výsledný stav s velmi vysokým poměrem kompakty a ve vysokém stupni přepálení, nemůžeme kromě likvidace kostěného odpadu vyloučit ani žádnou z jiných předcházejících aktivit (srov. podkapitola 3.5.7). Distribuce zvířecích skeletů v prostoru sídliště či na tzv. místě zabití (srov. Binford 1981; Price 1985; Musil 1955, 1958, 1997, ad.) je dalším velmi důležitým ukazatelem lidské manipulace s těly zvířat v prostoru archeologického naleziště. Tato distribuce se pak může týkat celkového osteologického materiálu a jeho polohy vůči ostatním archeologickým nálezům a strukturám, nebo můžeme mapovat dílčí živočišné druhy, nebo částí zvířecích skeletů oproti sobě, které souvisí s lokalizací procesů zabití, bourání, stahování a porcování, s výrobními procesy či naopak odhazováním zbytků. Zářezy na kostech související zejména s disartikulací zvířecího těla jsme zaznamenali na lokalitě Milovice IV na sobích (Rangifer tarandus) kostech - tibia, astragalus, 101 calcaneus a os centroquartale; a dále na vlčím (Canis lupus) krčním obratli. Z lokality Dolní Věstonice IIa pochází jeden zářez opět na os centroquartale soba a jeden fragment dlouhé kosti mamuta (Mammuthus primigenius) vykazuje stopy po mechanickém odstranění svrchních vrstev kompakty. Z dalších zásahů, které jsme zaznamenali při zpracování vlčího materiálu ze starých výzkumů lokality Dolní Věstonice II jsou tzv. brzdné stopy po pohybu kamenného artefaktu po povrchu diafýzy a proximální epifýzy krkavčí (Corvus corax) os femuris, související pravděpodobně s odstraněním svaloviny; a dále stopy po dekarnizaci distálního kondylu téže kosti (Sázelová et al. in prep.). Z vlčího špičáku, který se nacházel ve vzdálenosti 1m od hlavy muže DV16 (objekt S1 z Dolních Věstonic II – západní svah), byla několika údery odstraněna sklovina (viz. podkapitola 3.5.3). Trendy v interpretaci spalovaných kostí jsme se pokusili reflektovat na našich lokalitách. Pilotní studií bylo studium mezolitických lokalit Údolí Samoty a Janova zátoka, kde předpokládáme na základě poměru kompakty a spongiózy i míry přepálení osteologického materiálu, likvidaci kostěného odpadu. Na našich vybraných moravských gravettských lokalitách vypovídá přítomnost spálených kostí o délce jejich osídlení, kdy na sídlištích dlouhodobějšího charakteru převládají spálené kosti nad uhlíky, a naopak na sezónních lokalitách převládají uhlíky nad spálenými kostmi (srov. Beresford-Jones et al. 2010 pro lokality Předmostí Ib a Dolní Věstonice II – nejjižnější část). V návaznosti na jeho metodiku bychom dlouhodobější charakter osídlení (kdy na sídlišti předpokládáme celoroční přítomnost alespoň části obyvatelstva) předpokládali také na lokalitě Milovice IV nebo Pavlov I. Naopak sezónní pobyt potvrzujeme pro lokalitu Dolní Věstonice II, kdy zaznamenáváme i odlišnosti v poměrech spálených kostí a stupních jejich přepálení mezi dílčími částmi tohoto sídliště (nejjižnější část vs. DVIIa) (Sázelová in press). Poslední zajímavostí jsou hnědé až tmavěhnědé skrvny potencionálně provázející bodové opálení, které jsou poměrně časté na našich gravettských lokalitách. Přestože nemůžeme v tomto případě vyloučit ani přímý kontakt s barvivem, které by po sobě zanechalo podobnou barevnou změnu povrchu kosti. K analýze distribuce osteologického materiálu v prostoru sídliště na základě živočišných druhů přispíváme v naší aktuální studii (podkapitola 3.5.3), kde se zaměřujeme na distribuci vlčích skeletů v prostoru sídliště Dolní Věstonice II – západní svah. Plošné uspořádání jejich anatomických částí naznačuje, že v areálu kopaném B. 102 Klímou se vlčí skelety akumulují u sídlištních struktur K1, K5 a K6 a dále ve vzdálenosti přibližně 3 m od K4, kde se v ploše sídliště nachází koncentrace jednotlivých kostí a zubů o přibližné rozloze 3 x 5 m. Z výzkumu J. Svobody jsme zaznamenali několik koncentrací částí vlčích skeletů – první o průměru 3 x 4 m se nacházela přibližně 13 m od objektu S1; druhá ležela v západní části ohniště a třetí se nacházela v severovýchodním směru nad objektem S1 s mužským pohřbem DV16 (zvýšený význam vlčích pozůstatků v souvislosti s tímto pohřebním kontextem však byl vyloučen). 3.4 Použitá literatura k archeologickému kontextu Absolon, K. 1918: Předmost: Eine Mammutjäger-Station in Mähren. Der Werdegang der Menschheit und die Entstehung der Kultur. Berlin: Deutches Verlagshaus Band & Co, 353-375. Absolon Ch. 1934: A propos du curieux fragment de Mandibule d'Ursus. Bulletin de la Société préhistorique de France 31 (2), 113-114. Absolon, K. 1938: Výzkum diluviální stanice lovců mamutů v Dolních Věstonicích na Pavlovských kopcích na Moravě (Pracovní zpráva za první rok 1924). Brno: Barvič a Novotný. Absolon, K. 1945: Výzkum diluviální stanice lovců mamutů v Dolních Věstonicích na Pavlovských kopcích na Moravě (Pracovní zpráva za třetí rok 1926). Brno: Moravské knihtiskárny polygrafie. Absolon, K., Klíma, B. 1977: Předmostí ein Mammutjägerplatz in Mähren. Praha: Academia. Albrecht, G. 1977: Testing of materials as used for bone points of the Upper Paleolithic. In: H. Camps-Fabrer (ed.): Méthodologie appliquée a l´industrie de l´os Préhistorique. Abbay de Sénanque (Vaucluse) 9-12 juin 1976. Paris, 119-124. Alhaique, F., Bisconti, M., Castiglioni, E., Cilli, C., Fasani, L., Giacobini, G., Grifoni, R., Guerreschi, A., Iacopini, A., Malerba, G., Peretto, C., Recchi, A., Rocci Ris, A., Ronchitelli, A., Rottoli, M., ThunHohenstein, U., Tozz, C., Visentini, P., Wilkens, B. 2004: Animal resources and subsistence strategies. Collegium antropologicum 28 (1), 23-40. Andrews, P. 1990: Owls, caves and fossils. Chicago: University of Chicago Press. Andrews, P. 1995: Experiments in taphonomy. Journal of Archaeological Science 22 (2), 147-153. Andrews, P., Armour-Chelu, M. 1998: Taphonomic observations on a surface bone assemblage in a temperate environment. Bulletin de la Société géologique de France 169 (3), 433-442. Antoine, P., Rousseau, D. D., Degeai, J. P., Moine, O., Lagroix, F., Fuchs, M., Hatté, Ch., Gauthier, C., Svoboda, J., Lisá, L. 2013: High-resolution record of the environmental response to climatic variations during the Last Interglacial–Glacial cycle in Central Europe: The loess-palaeosol sequence of Dolní Věstonice (Czech Republic). Quaternary Science Reviews 67, 17-38. Balzer, A., Gleixner, G., Grupe, G., Schmidt, H. L., Schramm, S., Turban‐Just, S. 1997: In vitro decomposition of bone collagen by soil bacteria: The implications for the stable isotope analysis in archaeometry. Archaeometry 39 (2), 415-429. Baron, J., Kufel-Diakowska, B. (eds.) 2011: Written in bones. Studies on technological and social contexts of past faunal skeletal remains. Wroclaw: University of Wroclaw. Behrensmeyer, A. K. 1975: The taphonomy and paleoecology of Plio-Pleistocene vertebrate assemblages east of Lake Rudolf, Kenya, Bulletin of the Museum of Comparative Zoology 146, 473-578. Behrensmeyer, A. K. 1978: Taphonomic and ecologic information from bone weathering. Paleobiology 4, 150-163. Behrensmeyer, A. K., Hill, A. P. (eds.) 1980: Fossils in the making: Vertebrate taphonomy and paleoecology. Chicago: University of Chicago Press. Behrensmeyer, A. K., Gordon, K. D., Yanagi, G. T. 1986: Trampling as a cause of bone surface damage and pseudo cutmarks. Nature 319, 768-71. Bell, L. S., Skinner, M. F., Jones, S. J. 1996: The speed of post mortem change to the human skeleton and its taphonomic significance. Forensic Science International 82, 129-40. Bello, S. M., Soligo, C. 2008: A new method for the quantitative analysis of cutmark micromorphology. Journal of Archaeological Science 35 (6), 1542-1552. 103 Beresford-Jones, D. G., Johnson, K., Pullen, A. G., Pryor, A. J., Svoboda, J., Jones, M. K. 2010: Burning wood or burning bone? A reconsideration of flotation evidence from Upper Palaeolithic (Gravettien) sites in the Moravian Corridor. Journal of Archaeological Science 37 (11), 2799-2811. Beresford-Jones, D., Taylor, S., Paine, C., Pryor, A., Svoboda, J., Jones, M. K. 2011: Rapid climate change in the Upper Palaeolithic: The record of charcoal conifer rings from the Gravettien site of Dolní Vĕstonice, Czech Republic. Quaternary Science Reviews 30 (15), 1948-1964. Bickart, K. J. 1984: A field experiment in avian taphonomy. Journal of Vertebrate Paleontology 4, 525-535. Binford, L. R. 1978: Nunamiut ethnoarcheology. New York: Academic Press. Binford, L. R. 1981: Bones: Ancient men and modern myths. New York: Academic Press. Binford, L. R. 1993: Bones for stones. In: Soffer, O., Praslov, N. D. (eds.): From Kostenki to Clovis. New York, Plenum, 101-124. Blasco, R., Rosell, J., Peris, J. F., Cáceres, I., Vergès, J. M. 2008: A new element of trampling: An experimental application on the Level XII faunal record of Bolomor Cave (Valencia, Spain). Journal of Archaeological Science 35 (6), 1605-1618. Blasco, R., Rosell, J. 2009: Who was the first? An experimental application of carnivore and hominid overlapping marks at the Pleistocene archaeological sites. Comptes Rendus Palevol 8 (6), 579-592. Blumenschine, R. J. 1986: Carcass consumption sequences and the archaeological distinction of scavenging and hunting. Journal of Human Evolution 15, 639–59. Boaz, N. T., Behrensmeyer, A. K. 1976: Hominid taphonomy: transport of human skeletal parts in an artificial fluviatile environment. American Journal of Physical Anthropology 45, 53–60. Bocheński, Z. M., Tomek, T., Wilczyński, J., Svoboda, J., Wertz, K., Wojtal, P. 2009: Fowling during the Gravettien: The avifauna of Pavlov I, the Czech Republic. Journal of Archaeological Science 36 (12), 2655- 2665. Bosch, M. D. 2012: Human–mammoth dynamics in the mid-Upper Palaeolithic of the middle Danube region. Quaternary International 276, 170-182. Bosch, M. D., Nigst, P. R., Fladerer, F. A., Antl-Weiser, W. 2012: Humans, bones and fire: Zooarchaeological, taphonomic, and spatial analyses of a Gravettien mammoth bone accumulation at GrubKranawetberg (Austria). Quaternary International 252, 109-121. Boyde, A. 1984: Airpolishing effects on enamel, dentine and cement: Assessment of clinical and laboratory applications. British Dentistry Journal 156, 287-291. Boyde, A., Jones, S. J., Reynolds, P. S. 1978: Quantitative and qualitative studies of enamel etching with acid and EDTA. Scanning Electron Microscopy II, 991-1002. Brain, C. K. 1980: Some criteria for the recognition of bone collecting agencies in African caves. In: Behrensmeyer, A. K., Hill, A. P. (eds.): Fossils in the making. Chicago: University of Chicago Press, 107– 130. Bromage, T. G. 1984: Interpretation of scanning electron microscopic images of abraded forming bone surfaces. American Journal of Physical Anthropology 64, 161–78 Buikstra, J. E., Swegle, M. 1989: Bone modification due to burning: Experimental evidence. In: Bonnichsen, R., Sorg, M. H. (eds.): Bone modification. Orono: University of Maine Center for the Study of the First Americans, 247-258. Cain, C. R. 2005: Using burned animal bone to look at Middle Stone Age occupation and behavior. Journal of Archaeological Science 32 (6), 873-884. Carver, M., Gaydarska, B., Montón-Subías, S. (eds.) 2014: Field archaeology from around the world: Ideas and approaches. Cham, Heidelberg, New York, Dordrecht, London: Springer. Casteel, R. W. 1977: Characterization of faunal assemblages and the minimum number of individuals determined from paired elements: Continuing problems in archaeology. Journal of Archaeological Science 4, 125-134. Clark, G. 1987: Faunal remains and economic complexity. Archaeozoologia 1, 183-194. Coard, R., Dennell, R. W. 1995: Taphonomy of some articulated skeletal remains: Transport potential in an artificial environment. Journal of Archaeological Science 22, 441-448. Conard, N. J., Walker, S. J., Kandel, A. W. 2008: How heating and cooling and wetting and drying can destroy dense faunal elements and lead to differential preservation. Palaeogeography, Palaeoclimatology, Palaeoecology 266 (3), 236-245. Connor, M. A. 2007: Forensic methods: Excavation for the archaeologist and investigator. Plymouth: Rowman Altamira. Cook, J. 1986: The application of scanning electron microscopy to taphonomic and archaeological problems. In: Roe, D. A. (ed.): Studies in the Upper Paleolithic of Britain and northwest Europe. British Archaeological Reports International Series 296, 143-163. 104 Costamagno, S., David, F. 2009: Comparaison des pratiques bouchères et culinaires de différents groupes sibériens vivant de la renniculture. Archaeofauna 18, 9-25. Courtin, J., Villa, P. 1982: Une expérience de piétinement. Bulletin, Société Préhistorique Française 79 (4), 117–23. Crockford, S. J., Kuzmin, Y. V. 2012: Comments on Germonpré et al., Journal of Archaeological Science 36, 2009 “Fossil dogs and wolves from Palaeolithic sites in Belgium, the Ukraine and Russia: osteometry, ancient DNA and stable isotopes”, and Germonpré, Lázničková-Galetová, and Sablin, Journal of Archaeological Science 39, 2012 “Palaeolithic dog skulls at the Gravettien Předmostí site, the Czech Republic”. Journal of Archaeological Science 39 (8), 2797-2801. Cruz-Uribe, K. 1988: The use and meaning of species diversity and richness in archaeological faunas. Journal of Archaeological Science 15, 179-196. Davis, S. J. M. 1987: The archaeology of animals. Yale: Yale University Press. Davis, P. G., Briggs, D. E. G. 1998: The impact of decay and disarticulation on the preservation of fossil birds. Palaios 5, 3–13. d´Errico, F., Giacobini, B., Puech, P. F. 1984: An experimental study of the technology of bone-implement manufacture. MASCA Journal 3, 71-4. Delpech, F., Rigaud, J. P. 1977: Etude de la fragmentation et de la repartition des restes osseux dans un niveau d'habitat paléolithique. Bulletin de la société d'études et de recherches préhistoriques 26, 1–10. Denys, C. 2002: Taphonomy and experimentation. Archaeometry 44 (3), 469-484. Dodson, P. 1973: The significance of small bones in paleoecological interpretation, University of Wyoming Contributions to Geology 12, 15-19. Dodson, P., Wexlar, D. 1979: Taphonomic investigations of owl pellets. Paleobiology 5, 275-284. Domínguez-Rodrigo, M., De Juana, S., Galán, A. B., Rodríguez, M. 2009: A new protocol to differentiate trampling marks from butchery cut marks. Journal of Archaeological Science 36 (12), 2643-2654. Domínguez-Rodrigo, M., Yravedra, J. 2009: Why are cut mark frequencies in archaeofaunal assemblages so variable? A multivariate analysis. Journal of Archaeological Science 36 (3), 884-894. Driesch, A. von den 1976: A guide to the measurement of animal bones from archaeological sites. Cambridge, MA: Harvard University, Peabody Museum of Archaeology and Ethnology Bulletin 1. Ellison, G. T. H. 1990: The effect of scavenger mutilation on insect succession at impala carcasses in southern Africa. Journal of Zoology 220, 679-688. Fernandez-Jalvo, Y., Andrews, P. 1992: Small mammal taphonomy of Gran Dolina, Atapuerca (Burgos), Spain. Journal of Archaeological Science 19 (4), 407-428. Fernandez-Jalvo, Y., Sánchez-Chillón, B., Andrews, P., Fernández-López, S., Alcalá Martínez, L. 2002: Morphological taphonomic transformations of fossil bones in continental environments, and repercussions on their chemical composition. Archaeometry 44 (3), 353-361. Fiorillo, A. R. 1989: An experimental study of trampling: implications for the fossil record. In: Bonnichsen, R., Sorg, H. (eds.): Bone modification. Orono: University of Maine Center for the Study of the First Americans, 61-71. Fisher, J. 1995: Bone surface modifications in zooarchaeology. Journal of Archaeological Method and Theory 2 (1), 7-68. Fladerer, F. A., Salcher-Jedrasiak, T. A., Händel, M. 2014: Hearth-side bone assemblages within the 27 ka BP Krems-Wachtberg settlement: Fired ribs and the mammoth bone-grease hypothesis. Quaternary International 351, 115-133. France, D. L. 2009: Human and nonhuman bone identification. A color atlas. Boca Raton: CRC Press. Fridrich, J. 1982: Středněpaleolitické osídlení Čech. Praha. Fuchs, M., Kreutzer, S., Rousseau, D. D., Antoine, P., Hatté, C., Lagroix, F., Moine, O., Gauthier, C., Svoboda, J., Lisá, L. 2013: The loess sequence of Dolní Věstonice, Czech Republic: A new OSL‐based chronology of the Last Climatic Cycle. Boreas 42 (3), 664-677. Galán, A. B., Rodríguez, M., De Juana, S., Domínguez-Rodrigo, M. 2009: A new experimental study on percussion marks and notches and their bearing on the interpretation of hammerstone-broken faunal assemblages. Journal of Archaeological Science 36 (3), 776-784. Germonpré, M., Sablin, M. V., Stevens, R. E., Hedges, R. E., Hofreiter, M., Stiller, M., Després, V. R. 2009: Fossil dogs and wolves from Palaeolithic sites in Belgium, the Ukraine and Russia: Osteometry, ancient DNA and stable isotopes. Journal of Archaeological Science 36 (2), 473-490. Guadelli, J. L., Ozouf, J. C. 1994: Etudes expérimentales de l’action du gel sur les restes fauniques. Premiers résultats. Artefacts 9, 47-56. 105 Germonpré, M., Sablin, M. V., Després, V., Hofreiter, M., Lázničková-Galetová, M., Stevens, R. E., Stiller, M. 2013: Palaeolithic dogs and the early domestication of the wolf: a reply to the comments of. Journal of Archaeological Science 40 (1), 786-792. Germonpré, M., Lázničková-Galetová, M., Losey, R. J., Räikkönen, J., Sablin, M. V. 2015: Large canids at the Gravettien Předmostí site, the Czech Republic: The mandible. Quaternary International 359-360, 261- 279. Grant, A. 1982: The use of tooth wear as a guide to the age of domestic ungulates. In: Wilson, B., Grigson, C., and Payne, S. (eds.): Ageing and Sexing Animal Bones from Archaeological Sites,British Series 109, Oxford: British Archaeological Reports, 91-108. Grayson, D. K. 1984: Quantitative zooarchaeology. Orlando: Academic Press. Greenfield, H. J. 1999: The origins of metallurgy: Distinguishing stone from metal cut-marks on bones from archaeological sites. Journal of Archaeological Science 26 (7), 797-808. Greenfield, H. J. 2002: Distinguishing metal (steel and low-tin bronze) from stone (flint and obsidian) tool cut marks on bone: An experimental approach. In: Mathieu, J. R. (ed.): Experimental Archaeology: Replicating Past Objects, Behaviors, and Processes. Oxford: British Archaeological Reports, International Series 1035, 35-54. Guthrie, R. D. 1983: Osseus projectile points: Biological considerations affecting raw material selection and design among Paleolithic and Paleoindian peoples. In: CluttonBrock, J. and Grigson, C. (eds.): Animals and Archaeology: 1. Hunters and their prey. BAR International Series 163. Oxford: British Archaeological Reports, 273-294. Hanson, C. B. 1980: Fluvial taphonomic processes: Models and experiments. In: Behrensmeyer, A. K., Hill, A. P. (eds.): Fossils in the making. Chicago: University of Chicago Press, 156-181. Haynes, G. 1980: Evidence of carnivore gnawing on Pleistocene and Recent mammalian bones. Paleobiology 6 (3), 341-351. Haynes, G. 1983: Frequencies of spiral and green-bone fractures on ungulate limb bones in modern surface assemblages. American Antiquity 49 (1), 102-114. Haynes, G. 1991: Mammoths, mastodonts, and elephants: Biology, behavior, and the fossil record. Cambridge: Cambridge University Press. Herrel, A., Speck, T., Rowe, N. P. 2006: Ecology and biomechanic: A mechanical approach to the ecology of animals and plants. Boca Raton, London, New York: CRC Taylor & Francis. Hester, T. R., Shafer, H. J., Feder, K. L. (eds.) 2009: Field methods in archaeology. Walnut Creek: Left Side Coast, Inc. Hill, A. P. 1980: Early post-mortem damage to the remains of some contemporary east African mammals. In: Behrensmeyer, A. K., Hill, A. P. (eds.): Fossils in the making. Chicago: University of Chicago Press, 131- 152. Hillis, T. L., Mallory, F. F. 1996. Sexual dimorphism in wolves (Canis lupus) of the Keewatin District, Northwest territories, Canada. Canadian Journal of Zoology, 74(4), 721-725. Hillson, S. 2005: Teeth. Cambridge: Cambridge University Press. Hillson, S. 2009: Mammal bones and teeth: An introductory guide to methods of identification. Walnut Creek (CA): Left Coast Press, Inc. Horáček, I. 2003: Obratlovčí fauna z pískovcových převisů severních Čech. In: Svoboda, J. (ed.): Mezolit severních Čech. Dolnověstonické studie 9, Brno: Archeologický ústav v Brně AVČR. Horáček I. 2007: Holocene history of the mammalian fauna in the Northern Bohemian sandstone region (Czech Republic). In: Härtel, H., Cílek, V., Jackson, A., Williams, R. (eds.): Sandstone Landscapes. Praha: Academia, 265-272 Horáček, I., Sánchez-Marco, A. 1984: Comments on the Weichselian small mammal assemblages in Czechoslovakia and their stratigraphical interpretation. Neues Jahrbüch für Geologie und Paläontologie 9, 560-576. Hue, E. 1907: Ostéométrie des Mammiféres. Paris: Schleicher Frères. Child, A. M. 1995: Towards and understanding of the microbial decomposition of archaeological bone in the burial environment. Journal of Archaeological Science 22 (2), 165-174. Choyke, A. M., Bartosiewicz, L. (eds.) 2001: Crafting bone: Skeletal technologies through times and spaces. Proceedings of the 2nd meeting of the (ICAZ) worked bone group, Budapest, 31 August-5 September 1999. Bar Series 937, Oxford: Archeopress. Chlopačev, G. A., Girija, E. Ju. 2010: Sekrety drevnich kostorezov Vostočnoj Evropy i Sibiri: Priemy obrabotky bivnja mamonta i roga severnogo olenja v kamennom veke (po archeologičeskim i ekperimental´nym dannym. Sankt Petersburg: Nauka. 106 Christensen, M. 1999: Technologie de l'ivoire au Paléolithique supérieur. Caractérisation physico-chimique du matériau et analyse fonctionnelle des outils de transformation. B.A.R. International Series S751, Oxford: Oxford University Press. Christensen, M 2004: Fiche caractères morfologiques, histologique et mécaniques des matières dure d´origine animale. In: Ramseyer, D. (ed.): Fiches typologiques de l´industrie osseuse préhistorique, Cahier XI: Matières et techniques. Paris: Éditions de la Société préhistorique française, 16-27. Church, R. R., Lyman, R. L. 2003: Small fragments make small differences in efficiency when rendering grease from fractured artiodactyl bones by boiling. Journal of Archaeological Science 30 (8), 1077-1084. Janaway, R. C. 1990: Experimental investigations of the burial environment of inhumation graves. In: Robinson, D. E. (ed.): Experimentation and reconstruction in environmental archaeology. Oxford: Oxbow Books, 147-149. Janjua, M. A., Rogers, T. L. 2008: Bone weathering patterns of metatarsal v. femur and the postmortem interval in Southern Ontario. Forensic Science International 178 (1), 16-23. Jans, M. M. E., Nielsen-Marsh, C. M., Smith, C. I., Collins, M. J., Kars, H. 2004: Characterisation of microbial attack on archaeological bone. Journal of Archaeological Science 31 (1), 87-95. Jin, J. J., Shipman, P. 2010: Documenting natural wear on antlers: A first step in identifying use-wear on purported antler tools. Quaternary International 211 (1), 91-102. Johnson, E. 1985: Current developments in bone technology. In: Schiffer, M. B. (ed.): Advances in archaeological method and theory. Vol. 8, New York: Academic Press, 157-235. Johnson, S. 2012: Indigeneous knowledge. Cambridge: The White Horse Press. Johnston, D. H., Joachim, D. G., Bachmann, P., Kardong, K. V., Stewart, R. E., Dix, L. M., Strickland, M. A., Watt, I. D. 1987: Aging furbearers using tooth structure and biomarkers. In: Novak, M. (ed.): Wild furbearer management and conservation in North America. Toronto: Ontario Trappers Association. Kelly, R. L., Thomas, D. H. 2006: Archaeology. Wadsworth: Belmont. Knies, J. 1901: Pravěké nálezy jeskynní Balcarovy skály u Ostrova na vysočině Drahanské. Věstník Klubu přírodovědeckého v Prostějově 3, 31-81. Knies, J. 1902: Zvířena stepní a její rozšíření za doby diluviální na Moravě. Věstník Klubu přírodovědeckého v Prostějově 4, 95-110. Klein, R. G., Cruz-Uribe, K. 1984: The analysis of animal bones from archaeological sites. Chicago – London: University of Chicago Press. Klíma, B. 1954: Pavlov, nové paleolitické sídliště na jižní Moravě. Archeologické rozhledy VI (6), 721-728. Klíma, B. 1963: Dolní Věstonice: Výzkum tábořiště lovců mamutů v letech 1947-1952. Praha: ČSAV. Klíma, B. 1981: Střední část paleolitické stanice u Dolních Věstonic. Památky archeologické LXXII, 5-92. Klíma, B. 1995: Dolní Věstonice II: Ein Mammutjägerrastplatz und seine Bestattungen. Eraul 73, The Dolní Věstonice Studies 3. Liège: University de Liège. Klíma, B. 1987: Paleolitická parohová industrie z Pavlova. Památky archeologické 78, 289–370. Klippel, W. E., Synstelien, J. A. 2007: Rodents as taphonomic agents: Bone gnawing by brown rats and gray Squirrels. Journal of Forensic Sciences 52 (4), 765-773. Kolda, J. 1951: Osteologický atlas. Praha. Korth, W. K. 1979: Taphonomy of microvertebrate fossil assemblages. Annals of the Carnegie Museum of Natural History 48, 235-285. Kučera, C. 1927: Pokusy o tlení kostí. Biologické spisy Vysoké školy zvěrolékařské Brno VI (5), 1-16. Laudet, F., Fosse, F. 2001: Un assemblage d’os grignoté par les rongeurs au Paléogène (Oligocéne supérieur, phosphorites du Quercy). Comptes Rendus de l’Académie des Sciences de Paris, Sciences de la Terre et des Planétes 333, 185-200. Laudet, F., Selva, N. 2005: Ravens as small mammal bone accumulators: First taphonomic study on mammal remains in raven pellets. Palaeogeography, Palaeoclimatology, Palaeoecology 226 (3), 272-286. Lavocat, R. 1966: Faunes et flores préhistoriques de l’Europe occidentale. Atlas de préhistoire 3. Paris: Boubée et Cie. Lyman, R. L. 1994: Vertebrate taphonomy. Cambridge: Cambridge University Press. Lyman, R. L. 2008: Quantitative paleozoology. Cambridge: Cambridge University Press. Maguire, J. M., Pemberton, D., Collett, M. H. 1980: The Makapansgat Limeworks grey breccia: Hominids, hyaenas, hystricids or hillwash? Paleontologia africana 23, 75-98. Maschner, H. D. G., Chippindale, Ch. 2005: Handbook of archaeological methods. Volume I. Lanham: Altamira Press. Matiegka, J. 1934: O hnilobě kostí. Anthropologie 12, 220-225. Maška, K. J. 1893:Výzkumy na tábořišti lovců mamutů v Předmostí r. 1893. Časopis vlastivědného muzejního spolku v Olomouci, XI, 109-115. 107 Maška, K. J. 1894: Nové výzkumy v Předmostí. Časopis vlastivědného muzejního spolku v Olomouci, XII, 89-91. Maška, K. J. 2008: Maška´s diary (1894). In: J. Velemínská, J. Brůžek (eds.): Early modern humans from Předmostí near Přerov, Czech Republic. A new reading of old documentation. Academia, Praha. Micozzi, M. S. 1986: Experimental study of postmortem change under field conditions: Effects of freezing, thawing and mechanical injury. Journal of Forensic Research 31, 953-61. Morlan, R. 1980: Taphonomy and archaeology in the Upper Pleistocene of the Yukon Territory: A glimplse of the peopling in the New World. National Museum of Man Mercury Series, Archaeological Survey of Canada Paper 94, 1-380. Morris, J. S., Brandt, E. K. 2014. Specialization for aggression in sexually dimorphic skeletal morphology in grey wolves (Canis lupus). Journal of Anatomy, 225(1), 1-11. Muckle, J. 2006: Introducing archaeology. Peterborough (Ontario): Broadview Press. Musil, R. 1955: Osteologický material z paleolitického sídliště v Pavlově. Práce brněnské základny Československé akademie věd, XXVII, 6 (319), 279-308. Musil, R. 1958a: Osteologický material z paleolitického sídliště v Pavlově, část II. Anthropozoikum 8, 83- 106. Musil, R. 1958b: Poznámky k paleontologickému materiálu z Dolních Věstonic. Anthropozoikum 8, 73-82. Musil, R 1994: The hunting game of the cultural layer of Pavlov. In: J. Svoboda (ed.): Pavlov I Excavations 1952-1953. The Dolní Věstonice Studies 2, Études et recherches archéologiques de L´Université de Liège, Liège, 183-209. Musil, R. 1997: Hunting game analysis. In: J. Svoboda (ed.): Pavlov I – Northwest. The Dolní Věstonice Studies 4, Brno: Academy of Sciences of the Czech Republic, Institute of Archaeology Brno, 443-468. Musil, R. 2001: Natural environment. Anthropologie 38, 327-331. Musil, R. 2005: Animal Prey. In: J. Svoboda (ed.): Pavlov I Southeast: A window into the Gravettian lifestyles. The Dolní Věstonice Studies 14, Brno: Academy of Sciences of the Czech Republic, Institute of Archaeology Brno; Polish Academy of Sciences, Institute of Systematics and Evolution of Animals, 190- 228. Musil, R. 2010: Paleoenviroment at Gravettian sites in Central Europe with emphasis on Moravia (Czech Republic). Quartär 57, 95-123. Musil, R. 2011a: The environment of Pavlov and its surrounding area during the Pavlovien. In: Svoboda, J. (ed.): Pavlov - Excavations 2007 – 2011. Dolní Věstonice studies 18, Brno: Institute of Archaeology at Brno, Academy of Sciences of the Czech Republic, 76-114. Musil, R. 2011b: Gravettian Environmental Changes in N - S Transect of Central Europe. Central European Journal of Geosciences 3 (2), 147-154. Musil, R. 2014: Morava v době ledové. Brno: MUNI Press. Nelson, B. K., DeNiro, M. J., Schoeninger, M. J., De Paolo, D. J., Hare, P. E. 1986: Effects of diagenesis on strontium, carbon, nitrogen and oxygen concentration and isotopic composition of bone. Geochimica et Cosmochimica Acta 50 (9), 1941-1949. Nielsen-Marsh, C. M., Hedges, R. E. 2000: Patterns of diagenesis in bone I: The effects of site environments. Journal of Archaeological Science 27 (12), 1139-1150. Nicholson, R. A. 1993: A morphological investigation of burnt animal bone and an evaluation of its utility in archaeology. Journal of Archaeological Science 20, 411-28. Nicholson, R. A. 1996: Bone degradation, burial medium and species representation: Debunking the myths, an experiment based approach, Journal of Archaeological Science 23, 513-33. Niven, L., Steele, T. E., Finke, H., Gernat, T., Hublin, J. J. 2009: Virtual skeletons: Using a structured light scanner to create a 3D faunal comparative collection. Journal of Archaeological Science 36 (9), 2018-2023. Nývltová Fišáková, M. 2001: Vyhodnocení nálezů fauny na lokalitách Dolní Věstonice II, IIa, IIb, III. Památky archeologické XCII, 124-152. Nývltová Fišáková, M., Schenk, Z. 2006: Přerov (k.ú. Předmostí u Přerova, okr. Přerov). Přehledy výzkumů 47, 94-96. Nývltová Fišáková, M. 2013: Seasonality of Gravettien sites in the Middle Danube region and adjoining areas of Central Europe. Quaternary International 294, 120-134. O’Conner, T. P. 1996: A critical overview of archaeological animal bone studies. World Archaeology 28 (1), 5–19. O’Connor, T. P. 2000: The Archaeology of Animal Bones, Texas A&M Press, College Station. Olsen, S. L., Shipman P. 1988: Surface modification on bone: Trampling versus butchery. Journal od Archaeological Science 15, 535-553. 108 Pales, L., Lambert, Ch. 1971: Atlas ostéologique pour servir à l´identification des Mammifères du Quaternaire. Paris: Editions du centre national de la recherche scientifique. Pautrat, J.-Y. 1993: Le Prehistorique de Gabriel de Mortillet: Une histoire géologique de l´homme. Bulletin de la Société préhistorique française 90 (1), 50-59. Pike-Tay, A. (ed.) 2000: Assessing season of capture, age and sex of archaeofaunas. ArchaeoZoologia monograph series, volXI. Paris: La Pensee Sauvage, 145-174. Pokorný, M. 1951: Příspěvek k paleontologii diluvia v Předmostí u Přerova. Časopis Moravského zemského musea v Brně, XXXVI, 33-48. Potts, R. 1988: Early hominid activities at Olduvai Gorge. New York: Aldine de Gruyter. Price, C. R. 1985: Patterns of cultural behavior and intra-site distributions of faunal remains at the Widow Harris site. Historical Archaeology 19 (2), 40–56. Prokeš, L. 2007: Posmrtné změny a jejich význam při interpretaci pohřebního ritu (ke vztahu mezi archeologií a forenzními vědami). Brno: Ústav archeologie a muzeologie FF MU. Prošek, F. 1952a: Horky nad Jizerou, okr. Mladá Boleslav (unpubl. report no. 5014/52). Archeologický ústav AVČR Praha. Prošek, F. 1952b: Horky nad Jizerou, okr. Mladá Boleslav (unpubl. report no. 5015/52). Archeologický ústav AVČR Praha. Prošek, F., Ložek, V. 1954: Stratigrafické otázky československého paleolitu. Památky archeologické 45, 35- 74. Renfrew, C., Bahn, B. G. (eds.) 2005: Archaeology: The key concepts. New York: Routledge. Revedin, A., Aranguren, B., Becattini, R., Longo, L., Marconi, E., Lippi, M. M., Skakun, N., Sinitsyn, A., Spiridonova, E., Svoboda, J. 2010: Thirty thousand-year-old evidence of plant food processing. Proceedings of the National Academy of Sciences 107 (44), 18815-18819. Revedin, A., Longo, L., Lippi, M. M., Marconi, E., Ronchitelli, A., Svoboda, J., Anichini, E., Gennai, M., Aranguren, B. 2015: New technologies for plant food processing in the Gravettien. Quaternary International 359, 77-88. Richardson, J. D., Cripps, P. J., Lane, J. G. 1995: An evaluation of the accuracy of ageing horses by their dentition: Changes of dental morphology with age. The Veterinary Record 137 (5), 117-121. Roberts, S. J., Smith, C. I., Millard, A., Collins, M. J. 2002: The taphonomy of cooked bone: Characterizing boiling and its physico–chemical effects. Archaeometry 44 (3), 485-494. Ruscillo, D. (ed.) 2006: Recent advances in ageing and sexing animal bones. Vol. 9, Oxford: Oxbow Books Limited. Sázelová, S. (in press): Faunal remains from excavations and surface collections in years 1991-2015. In: J. Svoboda (ed.): Dolní Věstonice II. Dolní Věstonice studies 21, Brno: Institute of Archaeology at Brno, Academy of Sciences of the Czech Republic. Seitl, L. 1995: Tierknochen. In: B. Klíma (ed.): Dolní Věstonice II: Ein Mammutjägerrastplatz und seine Bestattungen. Liège: Études et recherches archéologiques de L´Université de Liège, The Dolní Věstonice Studies 3, 32-33. Shipman, P. 1981: Application of scanning electron microscopy to taphonomic problems. In: Catwaell, A. M., Griffin, J. B., Rotschild, N. A. (eds.): The research potential of anthropological museum collections. Annals of the New York Academy of Science 376, 357-385. Shipman, P., Rose, J. 1983: Early hominid hunting, butchering and carcasses processing behaviors: Approaches to the fossil record. Journal of Anthropological Archives 2, 57–98. Shipman, P., Foster, G., Schoeniger, M. 1984: Burnt bones and teeth: An experimental study in color, morphology, crystal structure and shrinkage. Journal of Archaeological Science 11, 307-325. Schiffer, M. B. (ed.) 2014: Advances in archaeological method and theory. Vol. 3, New York: Academic Press. Schmid E. 1972: Atlas of animal bones for prehistorians, archaeologists, and Quaternary geologists. Amsterdam, London, New York: Elsevier Science Publishers. Sikes, S. K. 1971: The natural history of African elephant. New York: American Elsevier. Skutil, J., Stehlík, A. 1949: Technologické příspěvky k poznání diluviálně paleontologického materiálu osteologického. Práce Moravskoslezské akademie věd přírodních XXI (9), 23 s. Soffer, O. 1993: Upper Paleolithic adaptations in Central and Eastern Europe and man-mammoth interactions. In: Soffer, O., Praslov, N. D. (eds.): From Kostenki to Clovis: Upper Paleolithic Paleo-Indian adaptations. New York – London: Plenum Press, 31-49. Steele, T. E. 2002: Red deer: their ecology and how they were hunted by late pleistocene hominids in Western Europe. PhD. thesis. Stanford: Department of Anthropological Sciences, Standford University. 109 Sutcliffe, A. J. 1973: Similarity of bones and antlers gnawed by deer to human artefacts. Nature 246, 428- 430. Svoboda, J. 1999: Čas lovců. Brno: Archeologický ústav AVČR. Svoboda, J. A. 2008: The Upper Paleolithic burial area at Předmostí: Ritual and taphonomy. Journal of Human Evolution 54 (1), 15-33. Svoboda, J. A. 2014: Předkové. Evoluce člověka. Praha: Academia. Svoboda, J., Péan, S., Wojtal, P. 2005: Mammoth bone deposits and subsistence practices during Mid-Upper Palaeolithic in Central Europe: Three cases from Moravia and Poland. Quaternary International 126, 209- 221. Svoboda, J., Hajnalová, M., Horáček, I., Novák, M., Přichystal, A., Šajnerová, A. Yaroshevich, A. 2007: Mesolithic settlement and activities in rocksheleters of the Kamenice river canyon, Czech Republic. Eurasian Prehistory 2007 (5), 5-37. Svoboda, J., Havlíček, P., Ložek, V., Macoun, J., Musil, R., Přichystal, A., Svobodová, H., Vlček, E. (2009): Paleolit Moravy a Slezska. Dolnověstonické studie 16, Brno: Archeologický ústav Akademie věd ČR. Svoboda, J., Hladilová, Š., Ivanov, M., Sázelová, S. 2011: Mladeč is not a dead site. Supplementary evidence from 2009-2011 survey. Antropologie XLIX (1), 111-117. Šída, P. 2012: Metody terénního výzkumu a vyhodnocení paleolitických a mezolitických situací. Ústí nad Orlicí: Oftis. Svoboda, J. (ed.) 1991: Dolní Věstonice II Western Slope. Liège: Études et recherches archéologiques de L´Université de Liège 54. Svoboda, J. (ed.) 1994: Pavlov I - Excavations 1952-1953. ERAUL 64 – The Dolní Věstonice Studies 2. Liège: Université de Liège. Svoboda, J. (ed.) 2003: Mezolit severních Čech. Dolnověstonické studie 9, Brno, 2003. Svoboda, J. A. (ed.) 2005: Pavlov I – Southeast. A window into the Gravettian lifestyles. The Dolní Věstonice Studies 14, Brno: Archeologický ústav AVČR Brno. Škrdla, P., Svoboda, J. 1998: Sídelní strategie v paleolitu: Mikroregionální studie. Ve službách archeologie, 293-300. Tappen, M. 1994: Bone weathering in the tropical rain forest. Journal of Archaeological Science 21 (5), 667- 673. Tappen, M. 1995: Savanna ecology and natural bone deposition: Implications for early hominid site formation, hunting and scavenging. Current Anthropology 36 (2), 223-260. Toots, H. 1965: Sequence of disarticulation in mammalian skeletons. University of Wyoming Contributions to Geology 4, 37–9. Van Klinken, G. J., Hedges, R. E. M., 1995: Experiments on collagen–humic interactions: speed of humic uptake, and effects of diverse chemical treatments. Journal of Archaeological Science 22, 263-270. Velemínská, J., Brůžek, J. (eds.) 2008: Early modern humus from Předmostí: A new reading of old documentations. Praha: Academia. Villa, P., Mahieu, E. 1991: Breakage patterns of human long bones. Journal of Human Evolution 21, 27-48. Villa, P., Bon, F., Castel, J. C. 2002: Fuel, fire and fireplaces in the Palaeolithic of Western Europe. The Review of Archaeology 23 (1), 33-42. Voorhies, M. R., 1969: Taphonomy and population dynamics of an early Pleistocene vertebrate fauna, Know County, Nebraska, University of Wyoming Contributions to Geology Special Paper 1, 1-69. Walker, W. H., Skibo, J. M. 2015: Explorations in behavioral archaeology (Foundations of archaeological inquiry). Salt Lake City: University of Utah Press. Weigelt, J. 1927: Rezente Wirbeltierleichen und ihre paläobiologische Bedeutung. Leipzig: Verlag von Max Weg. West, D. 2001: Analysis of the fauna recovered from the 1986/1987 excavations at Dolní Věstonice II, Western Slope. Památky archeologické XCII, 98-123. Wojtal, P. 2007: Zooarchaeological studies of the Late Pleistocene sites in Poland. Krakow: Polish Academy of Sciences. Wojtal P., Sedláčková L., Wilczyński J. 2005: Human activities on the faunal material. In: Svoboda, J. ed.: Pavlov I. A Window Into the Gravettian Lifestyles. The Dolní Vĕstonice Studies 14: 229-246. Wojtal, P., Wiłczyński, J., Bocheński, Z. M., Svoboda, J. A. 2012: The scene of spectacular feasts: Animal remains from Pavlov I south-east, the Czech Republic. Quaternary International 252, 122-141. Wojtal, P., Wiłczyński, J. 2015: Hunter of the giants: Woolly mammoth hunting during the Gravettian in Central Europe. Quaternary International 379, 71-81. Wojtal, P., Wilczyński, J., Nadachowski, A., Münzel, S. C. 2015: Gravettien hunting and exploitation of bears in Central Europe. Quaternary International 359, 58-71. 110 Wood, W. R., Johnson, D. L. 1978: A survey of disturbance processes inarchaeological site formation. In: Schiffer, M. B. (ed.): Advances in archaeological method and theory. Vol. 1, New York: Academic Press, 315-381. Ziegler, R. 2001: An extraordinary small mammoth (Mammuthus primigenius) from SW Germany. Stuttgarter Beiträge zur Naturkunde Ser. B. 300, 1-41. Elektronické zdroje: ArchéoZoo, http://www.archéozoo.org 3.5 Vybrané publikace k tématu Základem přiložených publikací bylo standardní určení osteologického materiálu, jeho přiřazení k živočišným taxonům, čímž autorka základním způsobem přispěla ke kolektivním publikacím, dokumentujícím dané pleistocenní a staré holocenní lokality. Celkem jsme vybrali čtyři články z časopisu s impaktovaným faktorem, dva články recenzované a jednu kapitolu v monografii. V detailu se první z prací Lower and Middle Pleistocene sediments sequence with archaeological finds in Horky nad Jizerou, Czech Republic (Šída et al. 2015 s autorským podílem 25 %) zabývá novými výzkumy na jedné z nejvýznamnějších českých staro - a středněpleistocenních lokalit. Z osteologického hlediska jsme dokumentovali nálezy savčí fauny z let 2009-2012 z Horky III, které byly taxonomicky přiřazeny koni (Equus, sp.), přestože se nám je vzhledem k nevelkému počtu kostí, vysoké míře jejich fragmentarizace a zvětrání, nepodařilo blíže druhově specifikovat. Následující čtyři práce se vztahují k areálu gravettských lovců Dolní Věstonice – Pavlov – Milovice: Dolní Věstonice IIa: Gravettien microstratigraphy, environment, and the origin of baked clay production in Moravia (Svoboda et al. 2015 s autorským podílem 9 %) prezentuje formování mikrostratigrafie této lokality na základě vybrané části materiálu z výzkumů J. Svobody v letech 1999 a 2012. Z osteologického hlediska bylo zpracováno přes 8000 fragmentů zvířecích kostí a zubů, se zvláštním zaměřením na deskripci spálených kostí. V návaznosti na aktuální diskusi o domestikaci vlka na moravském gravettském sídlišti na Předmostí Ia (srov. např. Germonpré et al. 2009, 2013, 2015; Crockford, Kuzmin 2012) jsme se zapojili do projektu Deciphering dog domestication through a combined aDNA and geometric morphometric approach, který je veden Gregerem Larsonem z Oxforské univerzity a Keithem Dobneym z Univerzity v Aberdeenu. V přiložené kapitole The role of large canids: Preliminary variabilities forming the population structure in Moravia (Perri, Sázelová in press. s autorským 111 podílem 50 %) prezentujeme historický pohled na otázku domestikace vlka na Moravě i předběžné výsledky naší analýzy vlčí populace z lokality Dolní Věstonice II. Následující práce Pavlov I in time and space. Excavations 2013-2014 (Svoboda et al. in press s autorským podílem 25 %) představuje předběžné výsledky nejnovějšího záchranného výzkumu na lokalitě Pavlov I v souvislosti s výstavbou Archeoparku. Pro publikaci byly předběžně popsány vybrané osteologicky zajímavé nálezové situace. Čtvrtý článek je pilotním článkem, neboť se v něm autorka pod vedením doc. P. Wojtala prvně podílela na zpracování pleistocenního osteologického materiálu - Paleolithic hunting in a southern Moravia landscape: The case of Milovice IV, Czech Republic (Svoboda et al. 2011 s autorským podílem 6 %). Předposlední práce se váže ke středomoravské gravettské lokalitě Předmostí Předmostí III: un site pavlovien de la Porte de Moravie (République tchèque, Europe centrale) (Polanská et al. 2014 s autorským podílem 15 %) představující osteologické zpracování dochovaného materiálu ze záchranného výzkumu B. Klímy, který je uložen ve sbírkách Moravského zemského muzea v Brně a v ojedinělých předmětech je prezentován rovněž na Archeologickém ústavu AVČR Brno – Detašované pracoviště v Dolních Věstonicích. Vzhledem k taxonomickému zastoupení živočichů se domníváme, že se jedná spíše o výběr z nalezeného materiálu. Poslední přiložená práce Palaeolithic/Mesolithic stratigraphic sequences at Údolí Samoty and Janova zátoka Rockshelters (Svoboda et al. 2013 s autorským podílem 17 %) představuje osteologické zpracování fauny ze severočeských mezolitických lokalit s pilotní analýzou zpracovávající spálené kosti dle aktuálních metodik. 112 3.5.1. Lower and Middle Pleistocene sediments sequence with archaeological finds in Horky nad Jizerou, Czech Republic Citace: Šída, P., Sázelová, S., Havlíček, P., Smolíková, L., Hlaváč, J. 2015: Lower and Middle Pleistocene sediments sequence with archaeological finds in Horky nad Jizerou, Czech Republic. Archaeologisches Korrespondentzblatt 3, 45 (3), 283-302. 283Archäologisches Korrespondenzblatt 45 · 2015 Petr Šída · Sandra Sázelová · Pavel Havlíček · libuŠe Smolíková JaroSlav Hlaváč LOWER AND MIDDLE PLEISTOCENE SEDIMENT SEQUENCE WITH ARCHAEOLOGICAL FINDS IN HORKY NAD JIZEROU (OKR. MLADÁ BOLESLAV / CZ) At the beginning of the 21st century there are few stratified archaeological sites in the Czech republic that have been dated to the middle Pleistocene by their sediments. one of the most comprehensive of these sites is located in the brickyard Horky nad Jizerou (okr. mladá boleslav) overlooked for a long time as it was outside the interest of Palaeolithic archaeologists. the brickyard is situated in Central bohemia, at the coordinates n 50.3302 and e 14.8469 with an altitude of 212-228m a.s.l. (figs 1-2). the loess sediments and soils were originally filling up the side valley leading from the northwest to the main valley of the Jizera river, and were exposed during the quarry activities. Several assemblages of Palaeolithic chipped stone industry (one larger and four smaller in numbers of pieces) were collected over the last 60 years in five different locations at the site. the first and largest lithic assemblage (known as Horky i) was discovered by F. Prošek on the 31st october 1952, on the western wall of the old brickyard at a depth of approx. 6m. the artefacts were deposited in a concentration with a diameter measuring approx. 5m, and one half of the deposit had been destroyed by quarrying. the objects were accompanied by several heavily damaged and thus unidentifiable animal remains (Prošek 1952a; 1952b). a year later in 1953, F. Prošek excavated and documented the assemblage in its entirety (fig. 3; Fridrich 1982, 71). in 1967 J. kukla and J. Fridrich (kukla 1967; Fridrich 1982, 71) discovered several new lithic artefacts at the same level as the assemblage found by F. Prošek in 1952. in recent years, this area of the brickyard has been partially buried and covered by vegetation and was not obviously affected by the quarrying; therefore future revisionary excavations can be expected to take place. Whilst he was excavating at site i, F. Prošek also collected several artefacts from nearby the northern wall of the old brickyard, described as the Horky ii site, however, there is still very little known about these finds. Since the brickyard was last visited by J. Fridrich and J. kukla in the 1960s, the site had ceased to be of any archaeological or geological interest, therefore the following extensive quarrying works in the northern part of the brickyard (towards i.e. new brickyard) from the 1970s and 1980s were not documented. However, between 2000 and the present, this area started to be closely monitored by P. Šída who has detected three smaller accumulations of stone artefacts. the Horky iii site, located on the surface of the second storey of the northern part of the brickyard, yielded the first lithic object in 2007, followed by the discovery of animal remains in 2009. additionally, some sporadic findings were detected at Horky iv, particularly from the surface of the first storey, and several other lithic artefacts and bone fragments were documented on the surface of the inclined track of the brickyard´s northern edge, labelled as the Horky v site. With this most recent knowledge we conclude that the Horky ii site is now buried and inaccessible for further Fig. 1 Horky nad Jizerou (okr. mladá boleslav/Cz). location of the site. – (illustration P. Šída). 284 P. Šída et al. · Lower and Middle Pleistocene Sediments in Horky nad Jizerou Fig. 2 Horky nad Jizerou (okr. mladá boleslav/Cz). Situation of the brickyard. – legend: 1-2 geological profiles; old and new geological sections through the old and new brickyard; Horky I-V archaeological sites. – (illustration P. Šída). Fig. 3 Horky i (okr. mladá boleslav/Cz). Situation of Prošek’s excavation. Section bC and location of artefact concentration. – 1 loess. – 2 yellow sand with sandstone fragments. – 3 reddish brown sand with sandstone fragments. – 4 gravel sand. – (after Fridrich 1982; illustration P. Šída). 285Archäologisches Korrespondenzblatt 45 · 2015 researches, however, sites iii, iv and v are still observed and documented, and site i is still accessible to revisionary excavation. although the brickyard was studied by many Quaternary geologists (e.g. J. kukla, v. ložek) since the 1950s, only selected details were published without comprehensive description (see kukla 1961; 1966; ložek 1964, 88; 1971, fig.1). therefore, this paper will briefly describe the situation at the old brickyard, which is not possible to observe anymore, and compare it with the new parts of the brickyard which have roughly the same stratigraphic deposits which were releveled when soil micromorphological analysis was done for the first time. STRATIGRAPHY AND SITE FORMATION the stratigraphy of the loess formation at the old brickyard has been documented and described by several researchers concerned with the Quaternary geology, palaeopedology, malacozoology and archaeology. the first mention of the fossil soils in loess strata was by r. Schwarz and l. urbánek (1948), who described them as the b horizon soil. although the earliest attempts of Quaternary geological description were dated to the time of World War ii, they were published much later in the 1950s. in 1951, e. Schönhals describes an interglacial chernozem soil most likely transported by solifluction on riss loess. the podzolised soils (a1, a2, a2G, and b) fit much closer to the interstadial W i/ii. another strongly podzolised soil is developed on the solifluction formation from the W ii and is likely dated to the interstadial W ii/iii. the most recent soil type layer is a brown earth. these observations were reviewed by l. Smolíková in 1960, who described the more recent classification of fossil soil complex system as a pair of strongly developed lessivé with humus soils in the overburden. Contrary to previous researchers, she disagreed with Würmian (upper Pleistocene) soils and last interglacial soils on the major profiles. nevertheless, it does not mean that Schönhals’ (1951) description of strata is incorrect, but is probably more comparable with soil complex iv in terms of J. kukla, v. ložek, and Q. záruba (kukla 1961). We do not have the exact position of Schönhals’ profile, but it is likely the southwestern corner of the old brickyard, so the accurate position has been subjected to revision (Prošek/ložek 1954). according to both authors, the site formation is quite complicated as the middle Pleistocene loess (rissian) was divided by degraded chernozem soil (r1/r2) and loamed zone (r2/r3), and the interglacial soil (r/W) was then formed by degraded chernozem soil. additionally, the malacozoology Fig. 4 Horky nad Jizerou (okr. mladá boleslav/Cz). Geological section of the old brickyard. – (after ložek 1964, with additions). 286 P. Šída et al. · Lower and Middle Pleistocene Sediments in Horky nad Jizerou research (ložek 1955; 1973) does not exclude that formerly described fossil soil from r1/r2 could be redated to the interglacial m/r (Holsteinian). Contrary to these statements, l. Smolíková (1960) came out with her own suggestions that the youngest soils were well developed in the northern wall of the old brickyard while the development of the southwestern corner is more complicated with several soils dated to older periods. She described a superposition of at least three large soil complexes, the youngest likely corresponding with soil complexes ii and iii, and two older soils classified by J. kukla, v. ložek and Q. záruba as soil complexes iv and v (kukla 1961). until recently, only one schematic profile of the old brickyard’s northern wall was published by v. ložek (1964, 88). However, he did provide an important interpretation of fossil soils based on the stratigraphic observations and comparisons in large brickyards from bohemia and moravia, namely Sedlec near Prague, letky near Prague, červený kopec in brno, and dolní věstonice (kukla 1961; ložek 1964; 1971), but unfortunately the ageing of soils was simplified by analogous observations without support of independent micro-morphological analyses. the profile presentation is therefore disunited and contradictory. as shown on our profile (fig. 4), it is possible to observe a total amount of ten soils, eight positions of loess, and five significant erosion interfaces at the site. Soil 1 corresponds to Holocene soil. Soil 2 (ložek’s soil complex i) is poorly developed and the subsoil follows discordantly (erosion interface a). underneath is the next loess layer followed by loess and two black and brown soils (3 and 4), tapering in the upper part of its formation and passing into a significant erosion affected by cryoturbation (horizon b). in the western part of the stratigraphy the soils are well developed and separated by loess (ložek’s soil complexes ii and iii). a poorly developed soil (5) is preserved in loess under soil complexes 3 and 4, filling the erosion gully in the western part of the profile. Similar to the upper soils this soil displays tapering and joins an erosion interface (horizon c). this stratigraphic part is followed by a massive loess layer which is intersected by two erosive interfaces (d and e). this extensive erosion created a large erosion valley in the western part of the Fig. 5 Horky nad Jizerou (okr. mladá boleslav/Cz). Geological profiles 1 and 2 in the new brickyard. – (illustration P. Šída). 287Archäologisches Korrespondenzblatt 45 · 2015 profile, breaking through the massive complex of soils 6-8 (ložek’s soil complex iv). the next stratigraphic position is characterised by loess layers with one weakly developed soil (9), followed by the last soil complex, 10, previously described as soil complex v, and the weathered Cretaceous pelite subsoil. this Cretaceous subsoil was captured on the base of the western part of the profile as well. in the case of the new brickyard we have documented in detail two profiles (fig. 5) where the micro-morphological samples were taken. a schematic section of the brickyard in the west-east direction was reconstructed parallel to the profile in the old brickyard and shifted about 250m northwards, thus making it possible to compare the old and new profiles (for correlations between layers see tab. 1). the surface of the profile (fig. 6) is characterised by Holocene soil (a) separated by a narrow layer of loess from a complex of two soils (b and C, intersected by erosion surface a’). this position is followed by loess and soil d strongly affected by solifluction, which passes into erosion interface b’. then another position of loess appears with another significant soil complex, soil e is resedimented, F and G are braunlehm luvisoils. the substantial erosion interface (c’) affected the loess in the overburden and related soils as well. additionally, another substantial erosion interface (d’) is visible in this complex, which is followed by a loess layer also intersected by an erosion interface (e’) reducing the subsequent soil (braunlehm soil H). a thin layer of fine loess is present below, followed by the last soil presented at the base (soil i). it is possible that not all of the erosion interfaces were detected in the profiles, especially if they were located in loess as this does not affect the soils; a geochemistry and granulometry will be needed for this study. Finally, a significant correlated horizon between the old and new brickyard is documented in soils 6-8 and e-G (plus the overlaying sequence) as they are similarly occurring in both profiles (cf. ložek 1964; kukla 1967; Fridrich 1982), which can be dated to soil complex v. the problem with the comparisons arises on the level of the subsoil, due to the fact that the sediment base was found only on a small space in both brickworks. additionally, soil complex vi is missing at the new brickyard, while two braunlehm soils (H and i; at least soil complexes vii and viii) are present. the less developed soil in the old brickyard could perhaps correlate with soil complex vi. a distinctive soil complex under this soil could then correspond to soil complex vii, but soil complex vi cannot be definitively excluded. Old brickyard New brickyard datation archaeol- ogy soil 1 soil a Holocene-miS 1 loess soil 2 SC i-miS 3 erosion boundary a loess loess soil 3 soil b SC iii-miS 5 erosion boundary b erosion boundary a loess soil 4 soil C SC iv a-miS 7a loess loess soil 5 soil d SC iv b-miS 7c Horky v erosion boundary c loess erosion boundary d erosion boundary b loess loess Horky iv erosion boundary e erosion boundary c loess loess soil 6 soil e SC v? removed by solifluction erosion boundary d soil 7 soil F SC v-miS 9a loess soil 8 soil G SC v-miS 9c loess loess Horky i erosion boundary e soil 9 SC vi?-miS 11? loess loess soil 10 soil H SC vii+-miS 13+ Horky ii loess loess Horky iii soil i SC viii+-miS 15+ Turonian siltstone Tab. 1 Correlation of layers in the old and new brickyard together with datation and position of archaeological layers. – SC: soil complex; miS: marine isotopic stage. 288 P. Šída et al. · Lower and Middle Pleistocene Sediments in Horky nad Jizerou MICRO-MORPHOLOGICAL ANALYSES in total seven samples from two profiles of horizons bearing signs of pedogenesis were taken for micromorphological analysis. one of these horizons represents soil sediment, the rest of samples are true soils. in 2014 a new soil horizon was discovered under soil 6, but this sample is not included in the recent micromorphological description. Profile 1 (soil b, sample i/1): depth 100cm (number of thin section 54 137; 7.5 Yr 4/4, measured dry), represents: dark brown-grey, strongly flocculated humic matrix mostly concentrated in the polyhedron tight tracks, some parts retain coprolithic elements of fossil earthworm (Allolobophora sp.) showing remnants of the originally aggregate composition. a relatively high amount of sub braunlehm plasma occurs in the matrix which is richly orange with high optical activity, often flanking the walls of supply lines, with a frequently well conserved incremental retaining zone without any occurrence fossil edaphon excretes, causing the significant difference between the colour of biogenically untreated soil mass. the partial braunlehm plasma displays, in some places, fine granulation, the microskeleton corresponds with silt. the large, irregularly radically limited mn concretions are quite often present here, contrary to the low development of recalcification traces and cracks or fissure networks. – Strongly developed luvisoil (illimerizzed soil) – basal soil of Stillfried a, soil complex iii (r/W) Profile 1 (soil C, sample i/2): depth 125cm (number of thin section 54 138; 7.5 Yr 8/6, measured dry), can be described as: light ochre braunlehm flocculated matrix with an occurrence of small braunlehm nodules, tiny mn concretions, and a low proportion of braunlehm plasma. as in the previous case, it borders the walls of supply lines where the observation of incremental zones and fine granulation is possible. the microskeleton reflects perfectly selected granularity of silt dominated by quartz grains. traces after fossil biogenic activity and decalcification are low. – Weakly developed luvisoil – upper soil of soil complex iv (middle Pleistocene) Profile 1 (soil d, sample i/3): depth 390cm (number of thin section 54 139; 7.5 Yr 5/8, measured dry), is characterised as: light brown-ochre flocculated matrix containing a higher proportion of sub braunlehm plasma than the overlying soil, its characteristics are analogous. the microFig. 6 Horky nad Jizerou (okr. mladá boleslav/Cz). upper part of the geological profile 1 with soils a, b, C and d and erosion boundaries a and b. – (illustration P. Šída). 289Archäologisches Korrespondenzblatt 45 · 2015 skeleton sorting is not as distinct as in the previous case (no. 54 138) as it contains silt and an increased proportion of coarser particles. besides the partial braunlehm plasma in incoming lines, the various forms of CaCo3 (amorphous, also in the pores of the matrix calcite needles or romboedres), braunlehm concretions (some of which are cracked), and cracks or fissures are abundant. – Strongly developed luvisoil – lower soil of soil complex iv (middle Pleistocene, both of these soils correspond to Warm Period »inter riss« – according to the older division) Profile 2 (soil e, sample ii/1): depth 250cm (number of thin section 54 140; 7.5 Yr 5/8, measured dry), corresponds to: brown and slightly humic matrix characterised by aggregate composition with intensive activity of fossil earthworm (Allolobophora sp.) and pot worm (cf. Enchytraeidae). the microskeleton corresponds to silt with other coarser components (e.g. large plagioclases). in the redeposited part numerous braunlehm nodules occur, displaying variability in its construction, such as lumps of partial braunlehm plasma and »mangan-limonite« concretions. the layered material is strongly carbonated with amorphous forms of CaCo3 and calcite crystals. – Sediment of a horizon of muck soil, soil complex v (middle Pleistocene) Profile 2 (soil F, sample ii/2): depth 320cm (number of thin section 54 141; 7.5 Yr 6/6, measured dry), contains: brown flocculated matrix unequally and slightly humic, containing high proportion of sub braunlehm plasma which is strongly brown grounded and despite lacking the original colour, it is still birefringent and retains the original incremental zones (the best preservation is in the incoming paths). Similar to the overlying position the soil microskeleton is partially sieved including many traces after frequent fossil biogenic activity (prevalence of earthworms – Allolobophora sp., less pot worms – Enchytraeidae) and number of cracks, fissures, and braunlehm nodules. the recalcification is weak and visible only in supply lines. – Strongly brown grounded braunlehm luvisoil – upper soil of soil complex v (upper Holstein – according to the older division) Profile 2 (soil G, sample ii/3): depth 400cm (number of thin section 54 142; 7.5 Yr 5/4, measured dry), corresponds to: brown slightly humic flocculated matrix with large amount of partial braunlehm plasma occurring in supply lines and the matrix as well. despite a high degree of brown grounding, incremental zones and optical activity are preserved. in the supply lines the manganese rims are preserved. the grain size is more organised than in the overlying soil and it is richer in mineral composition containing darker minerals such as glauconite and others. braunlehm nodules are less extended as well as the traces after edaphon activities and amorphous forms of CaCo3. the soil material here is disturbed by mechanical influences as well. – Strongly brown grounded braunlehm luvisoil – lower soil of soil complex v (upper Holstein – according to the older division) Profile 2 (soil H, sample ii/4): depth 1040cm (number of thin section 54 143; 7.5 Yr 4/4, measured dry), can be described as: brown, slightly humic peptized matrix with tight, segregate composition and portion of inner vacancy space. the microskeleton is unsorted and coarse and within the matrix the numerous braunlehm nodules of larger dimensions (if compared to all overlying soils) and manganese concretions are present. rarely occurring fragments of charred wood with preserved internal structures, signs of decalcification (from amorphous forms of CaCo3 to calcite crystals) and traces of biogenic activity. – braunlehm – minimal age is soil complex vi (Warm Period of elster glacial/mindel – according to the older division) ARCHAEOLOGICAL FINDS Horky I the concentration of artefacts excavated by F. Prošek was oval in shape and measured about 5m×3m and was half destroyed by quarrying in the brickyard. this concentration was located in a layer of yellow sandy soil with gravel of turonian sandstones and interbeds of resedimented loess, sand and sunken blocks of sandstone. the plugs of dark brown soil sediment were evident along the cracks and on the surface of the artefacts. the overlaying layers of loess were covered by a lessivé horizon of soil 8 (kukla 1967; Fridrich 1982, 72), aligned by J. kukla with soil complex iv. 290 P. Šída et al. · Lower and Middle Pleistocene Sediments in Horky nad Jizerou the lithic industry from the Horky i site was first published by J. Fridrich (1982, 72-75) and according to his description, the assemblage consists of 222 objects in total with 16 cores, 145 flakes, 34 fragments, and 27 retouched tools. the raw material of the artefacts was dominated by quartz pebbles, lesser extension should be ascribed to Cretaceous quartzite (4 pieces) and green jasper (1 piece). a portion of this assemblage has been since lost, with only 100 objects are presently accessible. We have added 21 more pieces already displayed by J. Fridrich and evaluated at least in general only by drawings (tab. 2; list). the dominant raw material of the assemblage of 121 artefacts is quartz pebbles (97 objects, 80.2% of the assemblage), followed by fragmentary Cretaceous quartzite used in production of two artefacts (1.7%), and the last piece was made from pebble of Palaeozoic quartzite (0.8%). in the case of the additional 21 objects, the raw material cannot be determined (17.4% from the whole assemblage, artefacts described by J. Fridrich). debitage represents the biggest portion of the assemblage (91.7%) with 111 artefacts. most of these are cover flakes (fig. 7) of which there are 69 in total (57% of the collection, 62.2% of the debitage). ten of these pieces can be classified as levalloid flakes (14.5% of the flakes) and a total of 14 flakes bear a retouched base (20.3% of the flakes), which indicates the adjustment of the impact platform of the core. moreover, 45 flakes display an untreated base (boulder surface or flat fracture surface, 65.2% of the flakes) and they originate from the core preparation and reduction. the fragments represent 28 pieces in total (23.1% of the collection, 25.2% of the debitage) and one of them was a stroke off from the core edge. Cores represent 14 exemplars in the whole assemblage (11.6% of the collection, 12.6% of the debitage). Finally, we have identified only eight retouched tools (6.6% of the collection; fig. 8), including six side scrapers on flakes from prepared cores (4.9% of the collection, 75% of the types). the remaining two pieces are a retouched bifacial knife type (0.8% of the collection, 12.5% of the types; Fridrich 1982) and a fragment of a bifacial tool. additionally, we have to mention two remaining artefacts representing a different lithic industry type, a manuport and a hammer stone. Within the assemblage, prepared cores are the dominant technology with indications of levallois technique knowledge, in some cases performed on a low quality pebble raw material. the tools are produced on flakes chipped from prepared cores and bifacial techno type quartz cretaceous quartzite quartzite non determined total % fragment 25 2 27 22.3 fragment of core edge 1 1 0.8 flake 62 1 6 69 57 core 4 5 9 7.4 core on flake 1 1 0.8 levalloid core 1 1 0.8 sferoidal core 3 3 2.5 debitage 93 2 1 15 111 91.7 bifacial artefact 1 1 0.8 bifacial knife 1 1 0.8 side scraper 1 4 5 4.1 double ventral side scraper 1 1 0.8 types 2 6 8 6.6 manuport 1 1 0.8 hammer stone 1 1 0.8 others 2 2 1.7 total 97 2 1 21 121 100 % 80.2 1.7 0.8 17.4 100 Tab. 2 Horky i (okr. mladá boleslav/Cz). Composition of collection. 291Archäologisches Korrespondenzblatt 45 · 2015 technology is present. J. Fridrich (1982) classified this assemblage as »typical middle Palaeolithic« from the riss glaciation period, comparable to bečov i (okr. karlovy vary/Cz; upper acheulean and lower mousterian). according to our reviews of the overall data in the brickyard, the revision of its chronological position (see below) seems to be necessary. Horky II F. Prošek discovered a small lithic assemblage in soil later described by J. kukla and v. ložek (1964) as soil complex v (soil 10 according to our classification). unfortunately, the artefacts have not survived to the present day, so we are only left with one published description of them (Fridrich 1982, 75). according to this publication, eight objects (2 retouched tools, 1 flake and 5 amorphous fragments) came from this location. the first tool was an atypical bifacially retouched point made of yellow grey patinated silicite with dimensions of 2.5cm×2.0cm×0.8cm. the dorsal side of the point was retouched flat, on the edges displayed irregular retouching and notching, and the base was retouched to a straight edge. on the ventral side of the lateral edge a bulbus of a primary flake (from which the flake was made) was evident. the edges on the ventral side were worked out by irregular notched retouching. Fig. 7 Horky i (okr. mladá boleslav/Cz). Flakes (1-12). – (drawings P. Šída). 292 P. Šída et al. · Lower and Middle Pleistocene Sediments in Horky nad Jizerou the second tool was an atypical quartz pebble chopper with dimensions of 3.7cm×5.0cm×2.7cm. the chopper was produced on pebble cut in half with a single strike, shaping the lateral edge. the remaining flake was also made of quartz pebble with dimensions of 2.0cm×2.0cm×0.8cm and its base was formed by the pebble surface. alongside the lithic artefacts, charcoals have been found leading some authors to speculate about the presence of a fireplace (Sklenář 1977, 14-17; Fridrich 1982, 75). However, the charcoals may be directly related to the soil horizon as the objects do not bear any evidence of burning and other traces of the fireplace have not been detected. F. Prošek (Prošek/ložek 1954, 45) classified these artefacts after various comparisons with similar assemblages from taubach and ehringsdorf (both Stadt Weimar/d). most recently the objects have been identified as belonging to the lower Palaeolithic industry group, however, the precise ageing of our assemblage remains open. Horky III alongside the animal remains, a subsferoide and a side scraper on flake with two indeterminate fragments of quartz pebbles were found on the surface of the second stage of the new brickyard (loess between soils H and i; fig. 9). the subsferoide is made of quartz pebble with dimensions of 3.05cm×4.3cm×2.0cm and the side scraper was produced from a massive quartzite flake with dimensions of 4.5cm×4.5cm×2.3cm. the surface of both artefacts is slightly eolised with corroded edges. retouching processes were evident on Fig. 8 Horky i (okr. mladá boleslav/Cz). types: 1-4. 6-7 side scrapers. – 5 bifacial knife. – 8 fragment of bifacial artefact. – (1-6 after Fridrich 1982; 7-8 drawings P. Šída). 293Archäologisches Korrespondenzblatt 45 · 2015 both the left lateral and terminal edge of the side scraper (constricting an angle of 90°). the massive base of the flake carried several negative coarse flakes shaping the striking plat- form.itscorewassimplewithouttracesofpreviouspreparation. the dorsal surface of the flake almost covers an entirely eolised surface of the primary raw material. the presence of the subsferoide and the character of the side scraper production could be dated to the lower Palaeolithic, although the total number of findings is not extraordinary. Horky IV on the surface of the first stage of the new brickyard (the loess above the erosion interface c), two isolated flakes and one indeterminable fragment from a quartz pebble were discovered (fig. 10). the first of the flakes has dimensions of 4.3cm×4.8cm×1.8cm and the second of 3.1cm×3.2cm×1.2cm. the dorsal surface of both flakes is covered by a primary pebble surface, therefore it did not originate from a prepared core. the base of the first flake is simply flat with a straight fracture surface. the base of the second exemplar is the natural pebble surface. both pieces are slightly eolised with a simple character, therefore a closer cultural classification is preliminary. Faunal remains were not detected here. Horky V on the surface of the oblique slant path leading from the first stage directly to the bottom of brickyard´s northern wall (soil d removed by solifluction), three residual cores (fig. 11) and a flake with four atypical raw material fragments and one small fragment of heavily weathered bone were discovered. the lithic flake made from quartz pebble has dimensions of 1.3cm×1.35cm×0.7cm and its base is the natural surface of Fig. 9 Horky iii (okr. mladá boleslav/Cz): 1 subsferoide. – 2 side scraper. – (drawings P. Šída). Fig. 10 Horky iv (okr. mladá boleslav/Cz). Flakes (1-2). – (drawings P. Šída). 294 P. Šída et al. · Lower and Middle Pleistocene Sediments in Horky nad Jizerou the pebble which covers 10% of the dorsal side as well. the artefact also displays signs of burning and an eolised surface. there were also two cores with eolised surfaces and made of quartz pebble with dimensions of 4.5cm×3.8cm×2.2cm and 3.7cm×2.6cm×1.65cm (fig. 11, 1-2). the third core is made of a jasper fragment strongly eolised and white patinated (fig. 11, 3) with dimensions of 2.7cm×2.15cm×1cm. this assemblage is not large enough to allow for cultural classification, but the small size of the artefacts might refer to small dimensional industries. FAUNAL REMAINS Mammals during the earlier stages of the excavation (1952-1953) at the Horky i site, several bone fragments likely belonging to larger sized mammals were discovered. However, extensive weathering excluded their closer taxonomical determination (Prošek 1952a; 1953b; Fridrich 1982). the new osteological assemblage discovered at the Horky iii site in 2009-2012 consists of 37 fragments of animal bones and teeth (mne [minimal number of elements] = 24), of which only seven fragments (18.9% niSP [number of identified species]) were taxonomically determinable as Equus sp. (namely third metacarpus and first and third phalanx; tab. 3). all of the bones displayed a high degree of fossilization, as the individual crystals may be visible to the naked eye. moreover, various taphonomic agents were recorded such as weathering as described by a. k. behrensmeyer (1978) between the 2nd and the 5th degree. He describes the destruction of the bone surface with small and deep inner cracks up to missing parts of compact bone and the whole bone disintegration or root etching as observed at the proximal part of first phalanx. the small black dots regularly dispersed on the bone surfaces are likely due to the chemical composition of the sediment (especially manganese compounds), rather than the irregular dot pattern caused by microbial attack (cf. lyman 1994). Finally, the smooth edge pattern of breakage excluding precise bone restoration was observed on several bones, namely the horse metacarpus. this evidence supports bone breakage with separate post-depositional and taphonomic history, with fragments found approx. 15m from each other. this phenomenon influenced slightly the measurements taken from the metacarpal bone, which are a little bit underesti- mated. Fig. 11 Horky v (okr. mladá boleslav/Cz). Cores (1-3). – (drawings P. Šída). type of bone Gl Bp Dp Bd Dd SD other measurements metacarpus iii 235.00* 48.84 31.77 59.98 49.49 – phalanx i 82.82 54.37 33.20 47.29 18.30* 37.38 phalanx iii – – – – – – min. breadth of c. 57.17 Tab. 3 Summary of measurements on Equus sp. bones (according to von den driesch 1976). – Gl: greatest length; bp: breadth of proximal part; dp: depth of proximal part; bd: breadth of distal part; dd: depth of distal part; Sd: smallest diameter of diaphysis; * estimated measurement (the minimal value in mm). 295Archäologisches Korrespondenzblatt 45 · 2015 the three horse bones from the base of soil complex vii cannot contribute much to the taxonomic status of the middle Pleistocene caballoid horse discussion. this discussion (nobis 1971; eisenmann 1991a; 1991b; Forstén 1998; Cramer 2002) remains controversial, especially in the efforts to define morphological changes causing distinct biostratigraphical units typical of the individual horse species. according to various studies (e.g. Forstén 1993; van asperen 2012), the horse size and shape seemed to fluctuate around a mean width, so that the relationship between specific horse adaptations and various environments is expected. However, this comprehensive discussion might be inspirational when we are trying to understand the caballoid material from the Horky iii site. as shown in the comparison of measurements collected on selected lower and middle Palaeolithic horse sites from the Czech republic, Germany, and France (tab. 4; fig. 12), the size and shape of the third metacarpal bone most likely resembles the lineage leading to the Equus germanicus rather than the lineage of Equus mosbachensis or other species. Malacology a new sample was taken from the immediate vicinity near the bone findings (Horky iii) from the loess to the base of the braunlehm soil H designated (minimally dated to soil complex vii). the sample volume was 0.25l locality MIS excavated/collected by measured by achenheim (dép. bas-rhin/F) 6 Wernert 1956 Cramer 2002 ariendorf 2 (lkr. neuwied/d) 6 bosinski/brunnacker/turner 1983 Cramer 2002 bilzingsleben (lkr. Sömmerda/d) 7 mania 1991 musil 1991; Cramer 2002 Horky nad Jizerou (okr. mladá boleslav/Cz) 5/6-14 Šída in 2009-2014 Sázelová in 2014 mosbach (lkr. neckar-odenwald/d) 13/15 kahlke 1961 Cramer 2002 lunel viel (dép. Hérault/F) 15/17 bonifay 1976 bonifay 1980 Salzgitter-lebenstedt/d 6 Staesche 1983 Cramer 2002 Stránská Skála (okr. brno/Cz) 19 musil 1971 musil 1971; 1995 Švédův Stůl (okr. brno-venkov/Cz) 5a/5e klíma 1962 musil 1962 taubach (Stadt Weimar/d) 5a/5e kahlke 1961 Cramer 2002 villa Seckendorf (Stadt Stuttgart/d) 5a ziegler 1996 Cramer 2002 Wannen bei ochtendung (lkr. mayen-koblenz/d) 6 turner 1990 Cramer 2002 Tab. 4 list of localities used in comparative metric data to Equus sp. metacarpus iii. – From lunel viel and Stránská skála only the mean of measurements was used. Fig. 12 Horky iii (okr. mladá boleslav/Cz). measurements (in mm) of Equus sp. metacarpal bones coming from selected lower and middle Palaeolithic localities. – Gl: greatest length; bp: breadth of proximal part. – (illustration S. Sázelová). 296 P. Šída et al. · Lower and Middle Pleistocene Sediments in Horky nad Jizerou in which the following species were determined: Helicopsis striata, Pupilla muscorum, P. loessica, P. sterri, and P. triplicata. all of the identified molluscs belonged to the terrestrial malacofauna representing the loess fellowship with a prevalence of steppe species such as Helicopsis striata and several kinds of Pupilla, as well as typical loess species such as P. loessica. other typical loess species, such as Vallonia tenuilabris or Succinella oblonga elongate are missing, but this might be due to the small amount of analysed sample rather than species absence. the identified malacocenosis indicates the presence of loess steppes, i.e. short blade grass formations without shrubs or trees. this sample (although limited in species) fully corresponds with observations by v. ložek (1964, 90) in loess positions from the old brickyard (subsoil 10). the species, detected here, namely, Helicopsis striata, Pupilla sterri, P. triplicata, P. loessica, P. muscorum, P. muscorum aff. densegyrata, Columella columella, Vallonia costata, V. tenuilabris, Vertigo pseudosubstriata, Euconulus fulvus, Trichia hispida, Clausilia parvula, and C. dubia (ložek 1964, 90f.), he described as typical loess cool steppe formation dating to mindel glaciations. the sandy loam clay above soil 10 contains the interglacial malacofauna (ložek 1964, 88). DISCUSSION based on new research from the new brickyard at the site of Horky nad Jizerou, including the soil micromorphology analysis, we are able to open the revision of the situation documented at the old brickyard in the 1950s and 1960s, particularly addressing the question of individual soil complexes and archaeological finds from the loess sequence dating. the sediments at Horky nad Jizerou evolved in loess and fossil soil sedimentation, perhaps from miS 15 to the pleniglacial of the last glaciation (miS 2). its development was interrupted by numerous hiatuses evident in the erosive interfaces, causing various problems in orientation and interpretation of the whole sequence. the loess layers with fossil soils are located mainly on the western slope of the north to south oriented valley extending to the main Jizera river valley in Horky nad Jizerou. Firstly, the base of the loess sedimentary sequence in the new brickyard is composed of two soils (soils H and i), the uppermost corresponds to braunlehm type (soil H, minimally dated to soil complex vii-miS 13). Perhaps soil 10 from the old brickyard displays features parallel to this soil complex from the new brickyard as the base of both profiles (below soils 8 and G) can be correlated with certain degree of probability. Within the overlying layers of the basal sequence we found a very significant soil complex with two soils (brown and black braunlehm, luvisoils) and soil sediment (soils 6-8. e-G). these soils are affected by two generations of ice wedges, the first of which penetrates from the base of soil F into the subsoil and is filled by the material of this soil. the second generation penetrates the whole soil complex and is filled by loess. according to the soil micro-morphology, this soil complex can be correlated with soil complex v (miS 9) and both brickyards definitely contain this complex. the soil equivalent to soil complex vi (miS 11) is missing in the new brickyard, while in the old brickyard it may correspond to soil 9. during the miS 12-11 stage, the local erosion, affecting the underlying soils, begins to perform and develop substantially in nearby overburden soils corresponding to the miS 9 stage. in the new brickyard these soils are partially or, in some cases, completely eroded and carried away by erosive processes. the subsequent sedimentation development is documented throughout the whole sequence, although it is obvious that the thickness of layers decreases in the direction of above-lying parts of the valley. Finally, in the new brickyard both soils of soil complex iv (miS 7) are present, however, the lower one is remodified by significant solifluction and the upper one is at many places located in a para-autochtonnous position as well. From soil complex iii (miS 5) only the upper part, the luvisoil, basal soil of Stillfried a, has survived, contrary to the brown soil of the eemian interglacial 297Archäologisches Korrespondenzblatt 45 · 2015 which was eroded. Similarly, in the old brickyard this horizon was affected by significant erosion and solifluction. the younger sediments were thicker and preserved only at the old brickyard (loess with soil complex i and overlying loess of the last pleniglacial). the oldest archaeological levels (subsferoide and side scraper) were detected at Horky iii, in the loess, dating to at least miS 14, which corresponds with the character of the artefacts. due to the small size of the faunal assemblage and the high degree of weathering, the accurate age of the bones cannot be confirmed and the morphological evidence in closer horse species cannot be determined. the small dimensional lithic industry assemblage of lower Palaeolithic character from Horky ii is slightly younger and corresponds to either miS 13 or miS 11. the largest lithic assemblage was found in an erosional channel under the loess from miS 10 and the significant soil complex (miS 9) at Horky i. the sediment filling in this erosion channel seems to correspond with the beginning of the miS 10 glacial. Within the corpus of lithic artefacts, the dominant technology is of preformed cores with hints of knowledge of levallois technique as well as bifacial retouching technology. both technological characteristics provide evidence that the assemblage from Horky i can be dated to the upper acheulean. these characteristics appear in other middle Palaeolithic assemblages at sites such as bečov i (Fridrich 1982) and kůlna 14 (okr. blansko/Cz; neruda 2011), and are important factors in understanding the transition between the lower and middle Palaeolithic. this transition may have also been documented at the site of račiněves (okr. litoměřice/Cz; Fridrich 2002), where the significantly small dimensional corpus of a lower Palaeolithic character contained prepared cores and flakes. this assemblage could be dated to the Holsteinian complex of glaciation, particularly to the interglacial miS 11 or miS 9. the last Czech assemblage dated to the same period comes from karlštejn-altán (okr. beroun; Smolíková/Fridrich 1984, miS 11), where there is a lack of evidence for prepared core technology, however, the number of lithics in the collection is quite small and the artefacts are produced using a very low quality raw material. all these sites are contemporary with locations such as bilzingsleben (lkr. Sömmerda/d; Fischer et al. 1991; mania 1995) and Schöningen (lkr. Helmstedt/d; thieme/maier 1995). additionally, two flakes from Horky iv lay in the loess corresponding to miS 8, but are not bearing any significant markers to enable their closer classification. the youngest site is Horky v, with the soil strongly affected by solifluction corresponding to the miS 7c stage. the lithic assemblage is very small in number and chronologically featureless with only one striking marker of small size, which could connect them with other small dimensional industries from the middle Palaeolithic linked to interglacial oscillations (e.g. ehringsdorf or taubach). the remaining question concerns the authenticity of the living structure detected by F. Prošek. the artefact position in layers of sand, gravel, or resedimented loess goes against this interpretation (possible assemblage accumulation due to resedimentation?). However, the objects bear no traces of water transport and they are not eolised. moreover, we do not know the exact position of the archaeological deposits within the formation, so we can only assume that at least the upper part of the stratigraphy has been created by very short material transport. but these processes did not have a power to erode the lower parts of the stratigraphy containing archaeological deposits as during sand deposition the slowly flowing stream of water could not significantly move with artefacts. So the existence of the living structure cannot be definitively denied and future excavation in the undamaged part of the site will be needed. CONCLUSIONS the revision of the geological situation at the site of Horky nad Jizerou confirmed the presence of sediments from miS 15 up to miS 2 with few partial hiatuses, which represent one of the most comprehensive loess 298 P. Šída et al. · Lower and Middle Pleistocene Sediments in Horky nad Jizerou records in the Czech republic. the analysis of soil micro-morphology allowed for the correlation of all present soil complexes with Central european soil stratigraphy. the review of the geology gives a precision in the dating of formerly known archaeological sites such as Horky i and ii and newly discovered sites such as Horky iii-v. the oldest site is Horky iii belonging to at least miS 14 with several artefacts of lower Palaeolithic characteristics and findings of animal remains (Equus sp. molluscs). the collection of small dimensional lower Palaeolithic industry from Horky ii corresponds to miS 13 or miS 11. the largest corpus of lithics from Horky i displays middle Palaeolithic characteristics and corresponds to miS 10. the prepared cores and their flakes show signs of the levallois technique and flake tools production from prepared cores. isolated flakes from Horky iv were situated in loess dated to miS 8. the youngest collection from Horky v dated to miS 7c and contains several cores, flakes, and fragments of a small dimensional character. LIST: HORKY I. LIST OF EVALUATED ARTEFACTS no. identification; techno type; raw material and type; length×width×height in cm; comment (e.g. butt type) 1. id: Q; fragment; quartz pebble; 4.3×4.2×2.7 2. id: 225, a; fragment; quartz pebble; 5.5×5.4×2.45 3. id: 225, H; fragment; quartz pebble;7×5×2.7 4. id: 225; fragment; quartz pebble; 3.9×2.7×0.9 5. id: 225; fragment; quartz pebble; 2.8×1.9×0.7 6. id: 225; fragment; quartz pebble; 3.6×3.1×2.2 7. id: 201; fragment; quartz fragment; 3.4×1.5×0.7 8. id: H; fragment; quartz pebble; 6.4×5.7×2.3 9. id: 217; fragment; quartz fragment; 6.4×3.5×2.2 10. id: 228; fragment; quartz pebble; 5.7×3.4×1.7 11. id: 221, a; fragment; quartz fragment; 4.3×4.2×1.4 12. id: H; fragment; quartz pebble; 4.8×2.9×1.3 13. id: 203, d; fragment; quartz pebble; 8×3.8×1.9 14. id: H; fragment; quartz pebble; 5.4×5×2.15 15. id: – ; fragment; quartz pebble; 3.5×2.2×1.4 16. id: P; fragment; Cretaceous quartzite, concretion; 8×5.5×1.95 17. id: H; fragment; quartz pebble; 7.4×5.4×3.15 18. id: H; fragment; quartz fragment; 6.4×3.9×1.5 19. id: e; fragment; quartz pebble; 7.4×4.5×3.6 20. id: 218, 2; fragment; quartz fragment; 5.8×2.9×2.3 21. id: S; fragment; quartz pebble; 5.7×4.1×2.1 22. id: H; fragment; quartz fragment; 4.5×3×2.15 23. id: 207, a; fragment; quartz pebble; 7.5×5.7×2.1 24. id: 221; fragment; quartz fragment; 3.5×1.3×0.4 25. id: bč; fragment; quartz fragment; 3×1.2×0.4 26. id: 73; fragment; quartz pebble; 5.4×3.95×1.45 27. id: 74; fragment; Cretaceous quartzite, concretion; 4.9×3.5×3.4 28. id: H; fragment of core edge; quartz fragment; 5.7×3.15×2.3 29. id: 20; flake; quartz pebble; 9×7.2×3.1; unprocessed 30. id: 21; flake; quartz pebble; 6.7×6.2×2.5; retouched 31. id: 22; flake; quartz pebble; 4.7×5.3×2.25; unprocessed; fig. 7, 11 32. id: 23; flake; quartz pebble; 7.9×4.3×1.9; unidentified; levalloid; fig. 7, 8 33. id: 24; flake; quartz pebble; 7.5×5.2×2.5; unidentified 34. id: 25; flake; quartz pebble; 5.3×4.2×1.5; unprocessed; fig. 7, 12 35. id: 26; flake; quartz fragment; 7.4×4.45×1.8; unidentified; from core edge 36. id: 27; flake; quartz pebble; 6.4×4.3×1.5; unprocessed; fig. 7, 7 37. id: 29; flake; quartz pebble; 4.2×5.8×1.7; retouched 38. id: 24; flake; quartz pebble; 7.6×5.2×2.7; unprocessed 39. id: 15; flake; quartz pebble; 6.9×8.7×2.2; unprocessed 40. id: 16; flake; quartz pebble; 7.4×7.95×2.45; retouched 41. id: 17; flake; quartz pebble; 6.9×5.15×3; unprocessed 42. id: 19; flake; quartz fragment; 8.4×8.2×3.8; retouched 43. id: 206, a; flake; quartz pebble; 5.1×6.1×1.7; unprocessed 44. id: 205, H; flake; quartz pebble; 3.2×9.7×3.3; unprocessed 45. id: – ; flake; quartz pebble; 6.2×9.2×4; unprocess- ed 46. id: 226, a; flake; quartz pebble; 4.55×4.55×2.55; unprocessed 47. id: a; flake; quartz pebble; 7.95×5.4×3; unprocessed 299Archäologisches Korrespondenzblatt 45 · 2015 48. id: C; flake; quartz pebble; 6.4×5.1×2; unprocessed 49. id: – ; flake; quartz pebble; 6.7×5×2.1; unprocessed 50. id: – ; flake; quartz pebble; 3.8×3.3×1.3; unprocessed 51. id: H; flake; quartz pebble; 5.6×2.85×2.9; unprocessed 52. id: a; flake; quartz pebble; 3.6×4.15×1.6; unprocessed 53. id: 140; flake; quartz fragment; 3.1×4.2×0.95; unprocessed 54. id: 142; flake; quartz fragment; 3.2×2.1×1.2; retouched 55. id: 134; flake; quartz fragment; 2.5×3.85×1.2; unprocessed 56. id: 134; flake; quartz pebble; 2.5×1.85×0.5; unprocessed 57. id: – ; flake; quartz fragment; 2.5×2.5×0.7; unprocessed 58. id: 444; flake; quartz fragment; 2×2.2×0.7; retouched 59. id: – ; flake; quartz fragment; 3×2.8×0.95; unprocessed 60. id: bč1, a; flake; quartz pebble; 6.6×8.25×3.05; unprocessed 61. id: bč2, H; flake; quartz pebble; 7.6×9×3.65; unprocessed 62. id: bč3, H; flake; quartz pebble; 5.3×4.9×2.35; unprocessed 63. id: 46; flake; quartz fragment; 3.8×4.45×1; retouched; levalloid 64. id: 47; flake; quartz pebble; 3.15×4.75×1.4; unprocessed 65. id: 48; flake; quartz pebble; 5.1×3.2×1.4; retouched 66. id: 49; flake; quartz pebble; 5.2×4.7×1.5; retouched; levalloid 67. id: 50; flake; quartz pebble; 5.8×4.9×2.1; unprocessed 68. id: 51; flake; quartz pebble; 3.25×4.8×1.6; unprocessed 69. id: 52; flake; quartz pebble; 4.75×4.55×1.65; retouched 70. id: 53; flake; quartz pebble; 6.5×4.8×2; unidentified 71. id: 54; flake; quartz pebble; 4×5.4×2.3; unprocessed 72. id: 55; flake; quartz pebble; 4.9×3.7×1.6; unprocessed 73. id: 56; flake; quartz pebble; 6.3×4.05×1.7; unprocessed; fig. 7, 3 74. id: 57; flake; quartz pebble; 5.6×5.2×3; unprocessed 75. id: 58; flake; quartz fragment; 4.6×4.4×1.85; unprocessed; levalloid; fig. 7, 9 76. id: 59; flake; quartz fragment; 4.1×5.4×1.6; retouched; levalloid; fig. 7, 4 77. id: 60; flake; quartz pebble; 3.7×4.25×2.3; unprocessed 78. id: 61; flake; quartz fragment; 4.25×6.1×1.5; retouched; levalloid; fig. 7, 6 79. id: 62; flake; quartz pebble; 6.1×3.5×1.7; unprocessed 80. id: 63; flake; quartz fragment; 5.2×4.4×1.4; retouched; levalloid; fig. 7, 10 81. id: 64; flake; quartz pebble; 3.6×4.3×1.65; unprocessed 82. id: 65; flake; quartz pebble; 4.95×4.85×2.1; unprocessed 83. id: 66; flake; quartz pebble; 5.8×5.9×2.25; unprocessed; levalloid; fig. 7, 1 84. id: 67; flake; quartz pebble; 7.3×5.1×2.1; unprocessed 85. id: 68; flake; quartz pebble; 4.9×3.5×2.25; unprocessed; fig. 7, 5 86. id: 69; flake; quartz pebble; 4.7×5.3×1.65; retouched; levalloid; fig. 7, 2 87. id: 70; flake; quartz pebble; 4.9×4.6×1.7; unprocessed 88. id: 71; flake; quartz pebble; 5.3×5×2; unprocessed; levalloid 89. id: 72; flake; quartzite pebble; 5.1×4.5×1.45; retouched 90. id: 75; flake; quartz pebble; 4.4×4.6×1.75; unprocessed 91. id: 76; flake; quartz pebble; 4.95×3.9×2; unprocessed 92. id: – ; flake; Fridrich 1982, fig. 87 93. id: – ; flake; Fridrich 1982, fig. 88 94. id: – ; flake; Fridrich 1982, fig. 90 95. id: – ; flake; Fridrich 1982, fig. 91 96. id: – ; flake; Fridrich 1982, fig. 91 97. id: – ; flake; Fridrich 1982, fig. 91 98. id: bč4, P; core; quartz pebble; 7.6×6.7×4.4 99. id: bč5, Ye; core; quartz pebble; 6.5×7.4×3.95 100. id: bč6, a; core; quartz pebble; 4.4×6.9×3.2 101. id: bč7, P; core; quartz pebble; 5×4.8×3.7 102. id: – ; core; Fridrich 1982, fig. 84 103. id: – ; core; Fridrich 1982, fig. 85 104. id: – ; core; Fridrich 1982, fig. 93 105. id: 12; core on flake; quartz pebble; 6×5.5×4.2; unprocessed 106. id: – ; sferoidal core; Fridrich 1982, fig. 83 107. id: – ; sferoidal core; Fridrich 1982, fig. 83 108. id: – ; sferoidal core; Fridrich 1982, fig. 86 109. id: – ; levalloid core; Fridrich 1982, fig. 82 110. id: – ; core; Fridrich 1982, fig. 82 111. id: – ; core; Fridrich 1982, fig. 87 112. id: a; bifacial artefact; quartz fragment; 6.5×6.6×2; fig. 8, 8 113. id: – ; bifacial knife; Fridrich 1982, fig. 90; fig. 8, 5 114. id: 140; side scraper; quartz pebble; 2.8×2.6×0.9; unprocessed; fig. 8, 7 300 P. Šída et al. · Lower and Middle Pleistocene Sediments in Horky nad Jizerou 115. id: – ; side scraper; Fridrich 1982, fig. 89; fig. 8, 1 116. id: – ; side scraper; Fridrich 1982, fig. 89; fig. 8, 2 117. id: – ; side scraper; Fridrich 1982, fig. 89; fig. 8, 4 118. id: – ; side scraper; Fridrich 1982, fig. 92; fig. 8, 6 119. id: – ; double ventral side scraper; Fridrich 1982, fig. 89; fig. 8, 3 120. id: 200; manuport; quartz pebble; 3×2.5×1.05 121. id: 202; hammer stone; quartz pebble; 5.3×4.8×2.7 References van asperen 2012: e. n. van asperen, late middle Pleistocene horse fossils from northwestern europe as biostratigraphic indicators. Journal of archaeological Science 39, 2012, 1974-1983. bonifay 1976: e. bonifay, les grottes du mas de Caves (lunel-viel, Hérault). in: H. de lumley (ed.), Xe Congrès uiSPP: nice, Parc valrose de l’université de nice; 13-18 septembre 1976. livretguide de l’excursion C 2: Provence et languedoc méditerranéen sites paléolithiques et néolithiques: lundi 20 au jeudi septembre 1976 (nice 1976) 197-204. bonifay 1980: m. F. bonifay, le cheval du Pléistocene moyen des grottes de lunel-viel (Hérault). equus mosbachensis palustris n. ssp. Gallia Préhistoire 23, 1980, 233-281. behrensmeyer 1978: a. k. behrensmeyer, taphonomic and ecologic information from bone weathering. Paleobiology 4/2, 1978, 150-162. bosinski/brunnacker/turner 1983: G. bosinski / k. brunnacker / e. turner, ein Siedlungsbefund des frühen mittelpaläolithikums von ariendorf, kr. neuwied. archäologisches korrespondenzblatt 13, 1983, 157-169. Cramer 2002: b. Cramer, morphometrische untersuchungen an quartären Pferden in mitteleuropa [unpubl. Phd thesis univ. tübingen 2002]. von den driesch 1976: a. von den driesch, a guide to the measurement of animal bones from archaeological sites. as developed by the institut für Palaeoanatomie, domestikationsforschung und Geschichte der tiermedizin of the university of munich. Peabody museum bulletin 1 (Cambridge/ma 1976). eisenmann 1991a: v. eisenmann, Proportions squelettiques de chevaux quaternaires et actuels. Géobios 13, 1991, 25-32. 1991b: v. eisenmann, les chevaux quaternaires européens (mammalia, Perissodactyla). taille, typologie, biostratigraphie et taxonomie. Géobios 24, 1991, 747-759. Fischer et al. 1991: k. Fischer / e. W. Guenther / W. d. Heinrich / d. mania / r. musil / t. nötzold (eds), bilzingsleben iv. Homo erectus – seine kultur und seine umwelt. veröffentlichungen des landesmuseums für vorgeschichte in Halle/Saale 44 (berlin 1991). Forstén 1993: a. Forstén, Size decrease in late Pleistocene-Holocene caballoid horses (genus equus), intra- or interspecific evolution? a discussion of alternatives. Quaternary international 19, 1993, 71-75. 1998: a. Forstén, equus species as stratigraphic markers, reality or wishful thinking? Quaternary Science reviews 17, 1998, 1097-1100. Fridrich 1982: J. Fridrich, Středopaleolitické osídlení čech (Praha 1982). 2002: J. Fridrich, nové doklady staropaleolitického osídlení v inundaci středopleistocénní vltavy v račiněvsi, okr. litoměřice. archeologie ve Středních čechách 6, 2002, 9-79. kahlke 1961: H. d. kahlke, revision der Säugetierfaunen der klassischen deutschen Pleistozän-Fundstellen von Süßenborn, mosbach und taubach. Geologie 10/4-5, 1961, 493-532. klíma 1962: b. klíma (ed.), die erforschung der Höhle Švédův stůl 1953-1955. anthropos 13 = n.S. 5 (brno 1962). kukla 1961: J. kukla, Stratigrafická pozice českého starého paleolitu. Památky archeologické 52, 1961, 18-30. 1966: J. kukla, Horky nad Jizerou, okr. mladá boleslav [unpubl. report, no. 11152/66, archaeologický ústav av čr Praha, v.v.i., Praha 1966]. 1967: J. kukla, Horky nad Jizerou, okr. mladá boleslav [unpubl. report, no.1313/67, archeologický ústav av čr Praha, v.v.i., Praha 1967]. ložek 1955: v. ložek, vertigo pseudosubstriata ložek v pleistocénu v  Horkách nad Jizerou (Gastropoda, Stylommatophora). anthropozoikum 5, 1955 (1956), 363-364. 1964: v. ložek, Quartärmollusken der tschechoslowakei. rozpravy Ústředního Ústavu Geologického 31 (Praha 1964). 1971: v. ložek, zum Problem der zahl der quartären klimaschwankungen. Quartär 22, 1971, 1-16. 1973: v. ložek, Příroda ve čtvrtohorách (Praha 1973). lyman 1994: r. l. lyman, vertebrate taphonomy (Cambridge 1994). mania 1991: d. mania, zur Paläontologie der mittelpleistozänen travertine von bilzingsleben. in: Fischer et al. 1991, 9-28. 1995: d. mania, the earliest occupation of europe: the elbe-Saale region (Germany). in: W. roebroeks / t. van kolfschoten (eds), the earliest occupation of europe. Proceedings of the european Science Foundation workshop at tautavel (France), 1993. analecta Praehistorica leidensia 27 (leiden 1995) 85-101. musil 1962: r. musil, die Höhle »Švédův stůl«, ein typischer Höhlenhyänenhorst. in: klíma 1962, 97-260. 1971: r. musil, die Pferdefunde der lokalität Stránská skála. in: r. musil (ed.), Stránská skála i (1910-1945). anthropos 20 = n.S. 12 (brno 1971) 185-192. 1991: r. musil, Pferde aus bilzingsleben. in: Fischer et al. 1991, 103-130. Acknowledgement this text was supported by eu Grant Cz.1.07/2.3.00/20.0181. 301Archäologisches Korrespondenzblatt 45 · 2015 1995: r. musil, large fauna of talus cones at the Stránská Skála hill. in: r. musil (ed.), Stránská Skála Hill. excavation of open-air sediments 1964-1972. anthropos 26 = n.S. 18 (brno 1995) 65-83. neruda 2011: P. neruda, Střední paleolit v moravských jeskyních. dissertationes archaeologicae brunenses/Pragensesque 8 (Praha 2011). nobis 1971: G. nobis, vom Wildpferd zum Hauspferd. Studien zur Phylogenie pleistozäner equiden eurasiens und das domestikationsproblem unserer Hauspferde. Fundamenta: monographien zur urgeschichte b 6 (köln 1971). Prošek 1952a: F. Prošek, Horky nad Jizerou, okr. mladá boleslav [unpubl. report, no. 5014/52, archaeologický ústav av čr Praha, v.v.i., Praha 1952]. 1952b: F. Prošek, Horky nad Jizerou, okr. mladá boleslav [unpubl. report, no. 5015/52, archaeologický ústav av čr Praha, v.v.i., Praha 1952]. Prošek/ložek 1954: F. Prošek / v. ložek, Stratigrafické otázky československého paleolitu. Památky archeologické 45, 1954, 35-74. Sklenář 1977: k. Sklenář, nejstarší lidská obydlí v československu. Průvodce Pravěkem 3 = inventáře a nálezové zprávy a 1 (Praha 1977). Smolíková 1960: l. Smolíková, vývoj československé paleopedologie [unpubl. diss. univ. Praha 1960]. Smolíková/Fridrich 1984: l. Smolíková / J. Fridrich, Holsteinský interglaciál na lokalitě karlštejn v českém krasu: Paleopedologický vývoj a pozice paleolitické industrie. archeologické rozhledy 36, 1984, 3-19. Schönhals 1951: e. Schönhals, Über fossile böden im nichtvereisten Gebiet. eiszeitalter und Gegenwart 1, 1951, 109-130. Staesche 1983: u. Staesche, aspects of the life of middle Palaeolithic Hunters in the n. W. German lowlands, based on the site Salzgitter-lebenstedt. in: J. Clutton-brock / C. Grigson (eds), animals and archaeology. 1: Hunters and their prey. bar international Series 163 (oxford 1983) 173-181. Schwarz/urbánek 1948: r. Schwarz / l. urbánek, list mladá boleslav 3854. vysvětlivky přehledných map základních půd čSr (Praha 1948). thieme/maier 1995: H. thieme / r. maier (eds), archäologische ausgrabungen im braunkohlentagebau Schöningen, landkreis Helmstedt (Hannover 1995). turner 1990: e. turner, middle and late Pleistocene macrofaunas of the neuwied basin region (rhineland-Palatinate) of West Germany. Jahrbuch des rGzm 37, 1990, 135-403. Wernert 1956: P. Wernert, Contribution à la Stratigraphie Paléontologique et Préhistorique des Sédiments Quaternaires d’alsace – achenheim [unpubl. thesis univ. Strasbourg 1956]. ziegler 1996: r. ziegler, die Großsäuger aus der Frühwürmzeitlichen Fauna von der villa Seckendorff in Stuttgart-bad Cannstatt. Stuttgarter beiträge zur naturkunde 237, 1996, 1-67. Zusammenfassung / Summary / Résumé Eine alt- und mittelpleistozäne Sedimentfolge mit archäologischen Funden aus Horky nad Jizerou (okr. Mladá Boleslav/CZ) dank der neuen kartierung und untersuchung der mikromorphologie an der neuen ziegelei von Horky nad Jizerou war es möglich, die dort in den 1950er und 1960er Jahren nachgewiesene Sedimentfolge an der alten ziegelei neu zu beleuchten. die Folge von Horky nad Jizerou dokumentiert die lösssedimentation mindestens von miS 15 bis zum Höhepunkt der letzten eiszeit (miS 2). die entwicklung der lössfolge war mehrfach unterbrochen, wie erodierte oberflächen zeigen. Seit den 1950er Jahren wurden mehrere archäologische komplexe an fünf verschiedenen orten aufgesammelt. dabei stammen die ältesten Fundensembles von der Fundstelle Horky iii aus einem lössbereich, der mindestens in miS 14 datiert werden kann. Funde aus diesen Schichten wie ein Subspheroid und ein Schaber zeigen merkmale, die genauso wie das vorhandensein von Pferdeknochen auf diese zeitstufe verweisen. eine begrenzte Sammlung von klein dimensionierten Steingeräten altpaläolithischen Charakters aus Horky ii ist etwas jünger und entspricht entweder miS 13 oder miS 11. das größte Fundensemble aus Horky i stammt aus einer erosionsrinne unter dem löss von miS 10, bedeckt von einem ausgeprägten bodenkomplex, der mit miS 9 korrespondiert. die Sedimentverfüllung dieser erosionsrinne scheint dem beginn der vereisung von miS 10 zu entsprechen. das ensemble ist insofern charakteristisch, als es sich bei den Hauptformen um kerne mit Präparationen handelt, die Hinweise sowohl auf die kenntnis der levalloistechnik als auch auf das zweiseitige retouchieren geben. zwei abschläge von Horky iv waren in löss eingebettet, der miS 8 entspricht. die jüngste Fundstelle Horky v befindet sich in einem boden, der stark durch Solifluktion beeinflusst ist und mit miS 7c korrespondiert. Hier ist das Fundensemble sehr klein und chronologisch nicht aussagekräftig. Lower and Middle Pleistocene Sediment Sequence with Archaeological Finds in Horky nad Jizerou (okr. Mladá Boleslav/CZ) due to the recent mapping and study of soil micro-morphology of the new brickyard at Horky nad Jizerou we were able to revise the sequence documented in the 1950s and 1960s in the old brickyard. Sediments from Horky nad Jizerou document the evolution of loess sedimentation from at least miS 15 to the pleniglacial of last glaciation (miS 2). the 302 P. Šída et al. · Lower and Middle Pleistocene Sediments in Horky nad Jizerou development of loess sedimentation was interrupted by numerous hiatuses, evidenced by erosive interfaces. Since the 1950s several archaeological assemblages from five different locations were collected. the oldest archaeological levels are at the site of Horky iii, situated in the loess which has a minimum age of miS 14. artefacts such as a subspheroide and a side scraper from these levels have characteristics which correspond to this period well as the presence of horse bones does. a limited collection of small dimension stone industry of lower Palaeolithic character discovered at Horky ii, is slightly younger, corresponding to either miS 13 or miS 11. the largest assemblage from Horky i was found within an erosion channel under the loess of miS 10 which lay under a significant soil complex, corresponding to miS 9. the sediments filling this erosion channel seem to correspond to the beginning of the glacial miS 10. the collection is significant as the dominant forms are of preformed cores with hints of knowledge of levallois technology as well as evidence of bifacial retouching. two flakes from Horky iv lay in the loess corresponding to miS 8. the youngest site is Horky v situated in soil strongly affected by solifluction and corresponding to miS 7c. the assemblage is very small and chronologically featureless. Une séquence sédimentaire du Pléistocène ancien et moyen avec des découvertes archéologiques à Horky nad Jizerou (okr. Mladá Boleslav/CZ) Suite à une cartographie récente et des études de micromorphologie des sols de la nouvelle briqueterie de Horky nad Jizerou, il a été possible de revisiter la coupe de l’ancienne briqueterie qui avait été documentée dans les années 1950 et 1960. les sédiments de Horky nad Jizerou documentent la sédimentation lœssique depuis au moins miS 15 jusqu’au Pléniglaciaire de la dernière glaciation (miS 2). le développement de la sédimentation du lœss a été interrompu lors de nombreux hiatus, attestés par des surfaces d’érosion. depuis les années 1950 des assemblages archéologiques sont collectés à cinq emplacements différents. les niveaux archéologiques les plus anciens sont le site de Horky iii situé dans des lœss avec pour âge minimum le stade isotopique miS 14. Parmi les artefacts de ces niveaux, un sub-sphéroïde et un racloir caractéristiques, ainsi que la présence d’os de cheval, sont en accord avec cette interprétation. un assemblage un peu plus jeune a été découvert à Horky ii, il s’agit d´un assemblage composé d´artefacts lithiques de petites dimensions de type paléolithique ancien qui correspond à miS 13 ou miS 11. l´assemblage le plus riche est celui de Horky i qui a été mis au jour dans un paléochenal sous le lœss miS 10, lui-même situé sous un pédo-complexe correspondant à miS 9. les sédiments comblant ce chenal semblent correspondre au début de la glaciation de miS 10. la collection est significative, dans la mesure où les formes dominantes sont des nuclei mis en forme indiquant une connaissance des technologies levallois, et que la mise en forme de l´outillage par retouche bifaciale y est également attestée. deux éclats en provenance de Horky iv étaient dans le lœss correspondant à miS 8. le site le plus jeune est Horky v, situé dans un sol très affecté par la solifluction et correspondant à miS 7c. le mobilier est pauvre et non diagnostique. traduction: l. bernard Schlüsselwörter / Keywords / Mots clés tschechische republik / böhmen / mittleres Pleistozän / alt- und mittelpaläolithikum / Quartärgeologie Czech republic / bohemia / middle Pleistocene / lower and middle Palaeolithic / quaternary geology république tchèque / bohème / Pléistocène moyen / Paléolithique ancien et moyen / géologie quaternaire Petr Šída Sandra Sázelová masarykova univerzita Přírodovědecká fakulta Ústav antropologie kotlářská 2 Cz - 61137 brno petrsida@seznam.cz sazelova@sci.muni.cz Pavel Havlíček česká geologická služba klárov 3 Cz - 11821 Praha 1 pavel.havlicek@geology.cz Libuše Smolíková univerzita karlova v Praze Přírodovědecká fakulta Ústav geologie a paleontologie albertov 6 Cz - 12843 Praha 2 Jaroslav Hlaváč Geologický ústav av čr, v.v.i. rozvojová 269 Cz - 16500 Praha 6 lysolaje hlavac@gli.cas.cz 133 3.5.2 Dolní Věstonice IIa: Gravettien microstratigraphy, environment, and the origin of baked clay production in Moravia Citace: Svoboda, J., Hladilová, Š., Horáček, I., Kaiser, J., Králík, M., Novák, J., Novák, M., Pokorný, P., Sázelová, S., Smolíková, L., Zikmund, T. 2015: Dolní Věstonice IIa: Gravettian microstratigraphy, environment, and the origin of baked clay production in Moravia. Quaternary International 359- 360, 195-210. Dolní Vestonice IIa: Gravettian microstratigraphy, environment, and the origin of baked clay production in Moravia Jirí Svoboda a, b, * , Sarka Hladilova a , Ivan Horacek c , Jozef Kaiser d , Miroslav Kralík a , Jan Novak e , Martin Novak b , Petr Pokorný f , Sandra Sazelova a , Libuse Smolíkova c , Tomas Zikmund d a Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic b Institute of Archaeology at Brno, Academy of Sciences of the Czech Republic, Kralovopolska 147, 61200 Brno, Czech Republic c Faculty of Science, Charles University, Albertov 6, 12000 Praha, Czech Republic d CEITEC d Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, 616 00 Brno, Czech Republic e Faculty of Science, University of South Bohemia, Branisovska 31, 37005 Ceske Budejovice, Czech Republic f CTS e Center of Theoretical Studies, Charles University, Jilska 1, 11000 Praha, Czech Republic a r t i c l e i n f o Article history: Available online 13 July 2014 Keywords: Dolní Vestonice Early Gravettian Microstratigraphy Environment Burnt clay Czech Republic a b s t r a c t Creating an overall scheme of Gravettian stratigraphy and chronology in the Middle Danube area is a matter of current debate. This paper addresses the formation of microstratigraphies at large open-air sites, evidence of the earliest Gravettian occupation in the Dolní Vestonice-Pavlov area, and occurrence of early ceramics from this context. The case presented here is a complex early Gravettian microstratigraphy of charcoal deposits at Dolní Vestonice IIa with a sequence of AMS dates between 28.4 and 31.7 ka uncal BP (30e33 ka cal BC) and two middle Gravettian (Pavlovian) dates from the nearby living floor. The associated environmental evidence of charcoal, pollen, molluscs, and vertebrates shows that climatic development through the six horizons was relatively stable, but with a certain variability in moisture and extension of forest. In horizon 3c, the molluscs and both small and large vertebrates indicate an episode of restricted forest formation around 28.4 ka uncal BP (30e31 ka cal BC). Baked clay (“ceramic”) fragments from horizon 3c represent the earliest dated items of this kind in the Gravettian. Microstratigraphies of this type demonstrate the complexity of cultural deposits at the large Gravettian sites and throw light on the hitherto poorly understood time-period of the early Gravettian in Moravia. © 2014 Elsevier Ltd and INQUA. All rights reserved. 1. Introduction Creating an overall scheme of Gravettian stratigraphy and chronology in the Middle Danube area is a matter of current debate (Svoboda et al., 2000; Haesaerts et al., 2010; J€oris et al., 2010; Moreau, 2012). Whereas the key stratigraphic sections such as Willendorf II in lower Austria document sequences of Gravettian layers clearly separated by loess interlayers (Nigst et al., 2008), the large south Moravian settlements were mostly interpreted as extensive occupation palimpsests formed in areas of restricted loess sedimentation. Dated microstratigraphies and especially the complex multiphased hearths, as elemental units of Upper Paleolithic settlements, are places of accumulation of anthropogenic sediment, wood or bone fuel, and artefacts (Goldberg et al., 2007; Holliday et al., 2007; Svoboda, 2008; Karkanas, 2010; Higham et al., 2011; Peresani et al., 2011; Fladerer et al., 2014; H€andel et al., 2013). Using the new evidence from Dolní Vestonice Iia (excavation 2012), this paper examines in more detail the biography, time-depth and nature of a particular findspot and its spatial context. Specifically, we address possible implications of this situation for the Gravettian chronological scheme and the beginning of the earliest baked clay (“ceramic”) production in south Moravia. 2. Dolní Vestonice II As other sites of the Dolní Vestonice-Pavlov-Milovice area, the extensive site cluster of Dolní Vestonice II (DV II) occupies one of the loess elevations at an altitude of about 220e240 m a.s.l., rising above the Dyje river and sloping further south towards the top of * Corresponding author. Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic. E-mail address: jsvoboda@sci.muni.cz (J. Svoboda). Contents lists available at ScienceDirect Quaternary International journal homepage: www.elsevier.com/locate/quaint http://dx.doi.org/10.1016/j.quaint.2014.06.048 1040-6182/© 2014 Elsevier Ltd and INQUA. All rights reserved. Quaternary International 359-360 (2015) 195e210 Pavlov Hills (550 m a.s.l.) (Figs. 1 and 2). Archaeological exploration at DV II was initiated during the 1930s, slightly later than at the nearby classical site DV I, by surface surveys in the uppermost part (sub-site IIa) and by studies of the key loess section in the old brickyard at the foot of the site (Klíma et al., 1962; Antoine et al., 2013). In the 1980s, the industrial exploitation of the extensive loess deposits located between these two sub-sites unearthed a large Gravettian settlement almost completely and yielded evidence of its inner structure. The main salvage excavations were organised between 1985 and 1989 (Svoboda, 1991, 2001; Klíma, 1995), while the smaller additional excavations took place in 1991, 1999, and 2005. Compared with the other Gravettian sites in south Moravia, Dolní Vestonice II is extended over a considerably larger area (about 500 m2 ), is more structured spatially and chronologically, and shows a clear association and contemporaneity with relicts of an extensive mammoth bone deposit in the adjacent gully. As the bottom of this gully is now eroded by an active brook and additional mammoth bones were scattered at several places along the slopes, it seems probable that the extension of the bone accumulation was originally larger. On the northern and western slopes, the site has a typical pattern composed of individual settlement units, each about 5 m in diameter with a central hearth and a system of pits around it. In 1986, the most spectacular discovery was the triple burial (DV 13e15) located at the top of the site, and another human burial (DV 16) was found one year later on the western slope of the same site (Trinkaus and Svoboda, 2006). By contrast, symbolic and decorative items and the baked clay pellets (Vandiver et al.,1989) are very rare. In addition to mammoth, reindeer, and hares, smaller carnivores represent an important part of the faunal material (West, 2001), indicating that systematic fur and hide working was involved, and the use-wear analysis (Sajnerova, 2001) seems to confirm his hypothesis. The floating results from two hearths previously excavated at DV II also provided charred parenchyma fragments, conifer needles, and seeds (Mason et al., 1994; Beresford-Jones et al., 2010). 3. Sub-site Dolní Vestonice IIa Dolní Vestonice IIa (DV IIa, also named Lahmh€ofe or Pod Lesem) is a separate sub-site attached to the DV II complex from the south. The Gravettian layer lies in a shallow position or just below the surface (whereas in the bricketerry at the foot of the elevation it lies about 5e7 m below the surface and in central parts of site II at 2e3 m depth). As such, the sub-site IIa was disturbed by ploughing and easily discovered by archaeological surveys and test trenching as early as 1932 by Emanuel Dania (Klíma et al., 1962). Fig. 1. Dolní Vestonice II: structure of the site showing the position of site IIa in the southern part. The grey oval shows the bottom of the side gorge, now mostly eroded, with remains of mammoth bone accumulation at the side; the triangles show the earliest Gravettian locations. J. Svoboda et al. / Quaternary International 359-360 (2015) 195e210196 After our trial trenching in 1997, a larger salvage excavation was organised in 1999. We located four trenches, AeD, at places damaged by ploughing. In trenches BeD, the cultural layer occurred in a shallow location below the surface where the depositional circumstances of charcoal, bones, and artefacts were largely disturbed. Two excavated zones within trench A, higher on the slope, appeared more promising because the intact cultural layer penetrated below the loess (Svoboda, 2001). The aim of the 2012 fieldwork was to complete the previously excavated areas with a focus on trench A. The surface prepared for excavation was divided by a 5  9 m grid and further subdivided into 50 cm2 subsquares. It showed a gentle inclination from southeast to northwest. The coordinates of the NW corner are N 1639 0 10.3 00 , E 4852 0 57.8 00 . In the western part (zones AeC) the cultural layer occurred in a shallow position below the actual surface, and the archaeological situations were disturbed by earlier digs and ploughing, as in the adjacent trench C (excavated in 1999). Towards the southeast, that is, against the slope, the layer continued deeper under the loess and reached its maximal depth of 1.60 m at the eastern end (zones EeI). There was an interspace separating these two parts (zone D). From this context, we separated one regular settlement unit in the eastern part of trench A, about 5 m in diameter, with a complex central hearth and a concentration of charcoal, bones, and artefacts around it, and selected it as the object of the present study (Fig. 3). Fig. 2. Dolní Vestonice II: birds-eye view of the site from the northwest. The arrow points to site IIa; site II is to the left; the bricketerry is at the extreme left. Photo: Petr Pokorný. Fig. 3. Dolní Vestonice IIa, squares EeH/1e5: plan of the hearth area and its periphery (left) and spatial distribution map of finds (right). Majority of the finds relate to horizon 3c. Key: density of lithics (small fraction collected during wet sieving; 1e55 artifacts per sector 1  1 m) combined with a map of individual piece-plotted lithic artefacts (black dots) and bones (black triangles). J. Svoboda et al. / Quaternary International 359-360 (2015) 195e210 197 4. Stratigraphy Compared with the classical Upper Pleistocene section at the foot of site DV II (Klíma et al., 1962; Antoine et al., 2013), the stratigraphic section at site IIa only represents a restricted portion of the last loess cover, a complex anthropogenic deposit below, and redeposited clayish layers of Neogene origin at the base. The overall sequence may be combined from two sections at the site periphery (zone F, excavation 1999) and in the centre (zone G, excavation 2012, Figs. 4 and 5); the relationship of the deposition is visible on the overall longitudinal section (zone 5, Fig. 6). Periphery e section F: 1. Arable soil (0e30 cm) 2. Light grey loess with rusty bands and spots; at the base a brownish gley horizon, 2a (30e100 cm) 3. Cultural complex (100e125 cm). Loessic material is interstratified by several charcoal microlayers interlain with bluish clay and brownish soil microlayers, elevated from the subsoil. Their inclination grades upwards along the slope. Two charcoal microlayers, 3a and 3b, were AMS dated 4. Clayish bands of various colourations (yellow, grey, brown) with sharp-edged limestone and sandstone fragments Centre e section G through the hearth: 1. Arable soil (0e10 to 30 cm) 2. Light-grey loess with undulated rusty bands and spots and gley horizon at the base (10/30e80/100 cm). MS ¼ 0.17 3. Cultural complex formed by brownish-grey soil sediments interlain with charcoal bands, accumulated without visible side removal and inclined upwards along the slope. In the upper part it is interstratified by yellowish or greyish clay bands with small-sized limestone debris; in the lower part, by browngreyish and light greyish clay bands, with visible effect of gleyification (80/100e110/130 cm). Inside the body of the central hearth three charcoal microlayers, 3c, d, and e, were AMS dated; MS ¼ 0.2. 4. Stratified clay bands of brown, yellow, and grey colouration, with sandstone debris and charcoal (below 110/130 cm). A charcoal band is visible at the base of the above hearth, and was AMS dated. MS ¼ 0.17 As at other recently excavated sites, our strategy was to preserve the hearth section in place for future revisions. 5. Situation The settlement unit described above provides an ideal groundplan with a central hearth and related bone deposits and artefacts around it (Figs. 2 and 3). With the standard diameter of about 5 m, it offers another exemplary picture of the basic living unit that made up the nearby settlement clusters (as at Pavlov VI, Svoboda et al., 2009). However, a more detailed microstratigraphic insight, using the AMS dates, shows that this situation has accumulated gradually, Fig. 4. Dolní Vestonice IIa: stratigraphic sections in squares F (periphery) and G (centre) and vertical distribution of artefacts (black dots) and bones (black triangles) in section G. J. Svoboda et al. / Quaternary International 359-360 (2015) 195e210198 during a longer timespan and at intervals of irregular rhythm. The two dates obtained from the uppermost superposed charcoal microlayers in the NW periphery grade in the interval of the centuries between 25.9 ka uncal BP and 26.2 ka uncal BP and correspond with the dominant occupation horizon at DV II labelled Evolved Gravettian (Figs. 4 and 5; for calibration see Fig. 13). The dominant feature in centre of the analysed area was a series of several superimposed microlayers of dark soil sediments with charcoal lenses, 110e120 cm in diameter and 25e30 cm thick, interpreted as a multilayer hearth. We did not observe red-burnt loess in this context. The individual microlayers were sampled for AMS dating, soil micromorphology, pollen, and other analyses in intervals of about 10 cm. The AMS dates grade in intervals of centuries between 28.4 and 29.1 ka uncal BP; a date from the base reached 31.7 ka uncal BP (for calibration see Fig. 13). Therefore, the hearth sequence as a whole is earlier than the surrounding occupation traces. The horizontal spatial distribution of lithic artefacts (Fig. 3) is simple given the low artefact density in all horizons. Artefacts were concentrated around the hearth in scatter patterns; animal bones show a similar pattern, while the burnt clay pellets are located even closer to the hearth. A gradual decrease in object density from the hearth towards the peripheries is visible, as at Pavlov VI, for example. It is typical for small and isolated settlement units in the open air, with no evidence of architecture. The dominance of wood charcoal (and lack of burnt bone) relates this hearth to others from site DV II (in contrast to the dominance of burnt bone at Predmostí I or Milovice IV; BeresfordJones et al., 2010; Svoboda et al., 2011). In contrast to the other hearths at the south Moravian sites, neither boiling pits nor other types of depressions (common in other places) were found around. 6. Soil micromorphology Micromorphology enables detailed study of the undisturbed sediments in thin sections. At site DV II, this method has previously been applied to the section with human skeleton DV 16 (Smolíkova, 1991). At site DV IIa, two samples were taken in zones D and E, corresponding to archaeological layers 3a and 3b, and one sample originates from zone G from the upper layer of the hearth (3c). Their thin sections are described as follows. 6.1. Horizon 3a (sample 2, 10 YR 8/2) This sample is specific in that it has a high share of coarse material and the presence of mollusc shell fragments and charcoal fragments with well-preserved growth zones and a more intensive recalcification. This layered matrix also includes some deep brown redeposited soil particles, partly with small coprogenous elements of fossil Enchytraeidae. 6.2. Horizon 3b (sample 3, 10 YR 8/4) This layered position is composed of unsorted material as well. Walls of the income fissures are richly coated with Mn concretions and then covered with amorphous CaCO3; rarely, the empty cavities are filled by calcitic rhombohedrons. Although the dark minerals are mostly represented by biotite in all analysed samples, sample 3 also contains glauconite. Larger pieces of charcoal with preserved cellular structure were present as well. 6.3. Horizon 3c (sample 1, 10 YR 8/3) Light ochreous basic mass is flocculated and its microskeleton corresponds to a silt. It generally contains grains of quartz, plagioclase, orthoclase, biotite, muscovite, and rarely augite, amphibole, and others. Larger charcoal fragments, some with relicts of cellular structure, are observed as well. The basic mass is penetrated by numerous broad fissures and richly recalcified (amorphous CaCO3 and calcite rhombohedrons). The walls of some of these cavities were coated with Mn concretion before recalcification. Fig. 5. Section photos of the compared microstratigraphies of Dolní Vestonice IIa and Petrkovice I, with the position of the uncalibrated C14 dates (ky BP) indicated. Fig. 6. Dolní Vestonice IIa: vertical distribution of artefacts (black dots) and bones (black triangles) in longitudinal section in square 5. J. Svoboda et al. / Quaternary International 359-360 (2015) 195e210 199 Wood ash was not recorded in these thin sections. In terms of soil micromorphology, all three samples (as well as the previously analysed samples; Smolíkova, 1991) correspond to fossil soil sediments originating from either loess or initial palaeosols. 7. Environmental context: stability and change Evidence of palynology, charcoal analysis, malacozoology and vertebrate micropaleontology through the individual layers enables the reconstruction of changes in the surrounding landscape during the Gravettian. In the 2012 charcoal samples generally (Table 3), the dominant tree was larch or spruce (Larix/Picea; cf. Larix), followed by pine (including Swiss stone pine e Pinus cf. cembra) and individually by birch (Betula), juniper (Juniperus), and common sea-buckthorn (Hippophae rhamnoides). These species are characteristic indicators ofa parkland forest-steppe vegetation. Analysed coniferous taxawere characterised by a much denser structure of narrow growth rings, which suggest unfavourable climatic conditions; at site DV II, comparable patterns were already recorded by Opravil (1994) and later analysed by Beresford-Jones et al. (2011). The horizon 3c contained the highest amount and weight of the charcoals. This horizon was characterised by the dominance of larch or spruce (Larix/Picea; cf. Larix), followed by pine (including Swiss stone pine e Pinus cf. cembra) and occasionally by birch (Betula). As hearth zones at Dolní Vestonice and Pavlov sites also appear to provide favourable conditions for pollen preservation, one sample from horizon 3c provided pollen-analytical evidence (other samples were negative). These results (Table 4) support a general landscape reconstruction around the Gravettian sites based on the previous pollen analytical investigations (Rybníckova and Rybnícek, 1991). A parkland of forest-steppe character is dominated by pioneer trees such as birch (as indicated by Betula albatype pollen), pine (including Swiss stone pine e Pinus cembra), and larch (Larix decidua). The open areas were generally of a steppic character (Artemisia, Chenopodiaceae), but moister locations were covered by shrub tundra (Betula nana), possibly with dispersed spruce (Picea). Relatively favourable climatic conditions also allowed a sporadic occurrence of temperate arboreal elements such as oak (Quercus), hazel (Corylus), lime (Tilia), and elm (Ulmus). However, the presence of redeposited Neogene palynomorphs should be taken into account, demonstrating the complex taphonomy of the pollen spectrum and the possibility of longdistance wind transport. Malacozoological material is dominated by gastropods (24 species and numerous undeterminable sharp-edged shale fragments), whereas bivalves are represented only by two fragments of Unio sp. shales in the uppermost 3a layer (Table 5). Among gastropods, the species Succinella oblonga (259 specimens and fragments), Galba truncatula (162), Discus ruderatus (96), and Succinea putris (91) are the most abundant. In the 3e and 3d layers gastropods were relatively numerous, their numbers increasing upwards (3e e 10 species/150 specimens, 3d e 13 species/260 specimens), and the highest numbers both of species (20) and of specimens (341) were noted in the following 3c layer. In contrast, molluscs are markedly less abundant in the lowermost layer 4 and in the uppermost 3b and 3a layers: 4e7 species/20 specimens, 3b e 9 species/42 specimens, and 3a e 13 species/42 specimens. The ascertained molluscs generally differ in their individual paleoenvironmental requirements. For example, species were found that were merely cryophilic (Vallonia tenuilabris), more tolerant to temperature changes (S. oblonga, Clausilia dubia), and even thermophilic (D. ruderatus). Absolute numbers of typical loess species (such as Succinella oblonga, V. tenuilabris, C. dubia, Pupilla cf. loessica) are gradually and markedly growing in the 3e, 3d and 3c layers, reaching their maxima in the 3c layer, and substantially decreasing in the superposed 3b and 3a layers. In the 3e and 3d layers there are relatively numerous species indicating higher Table 1 Dolní Vestonice IIa, AMS data from the surrounding area (1e2), from three microlayers of the central hearth (5e7) and from its subsoil. All from conifer charcoal. Calibration by OxCal 4.2.3, using calibration curve IntCal13, Jan. 31, 2014. Sample Horizon/depth Date (BP) Deviation Date (cal BC) Probability (%) GrN-15134 3a-periphery/ 100 cm 25,670 370 28,788e27,068 95.4 GrN-15132 3b-periphery/ l20 cm 26,190 390 29,101e27,591 95.4 OxA-27331 3c-centre/100 cm 28,380 210 31,015e29,645 95.4 OxA-27332 3d-centre/110 cm 28,750 220 31,595e30,124 95.4 OxA-27255 3e-centre/120 cm 29,060 280 31,906e30,568 95.4 OxA-27333 4-centre/130 cm 31,650 280 34,210e32,991 95.4 Table 2 Petrkovice. AMS dates from the Gravettian hearths H8, H7, and surroundings. All from conifer charcoal. Calibration by OxCal 4.2.3, using calibration curve IntCal13, Jan. 31, 2014. Sample Horizon/depth Date (BP) Deviation Date (cal BC) Probability (%) GrA-35446 Hearth H8/70 cm 21,790 110 24,306e23,861 95.4 GrA-35447 Hearth H8/90 cm 21,970 110e100 24,531e23,991 95.4 GrA-35449 Hearth H8/105 cm 22,260 110e100 24,976e24,200 95.4 GrA 891 Hearth H7/cca 100 cm 23,370 160 25,866e25,386 95.4 GrN 19540 No evidence 20,790 270 23,728e22,415 95.4 Table 3 Major developmental trend in floral record (in %). a. Charcoal 3a 3b 3c 3d 3e 4 Larix/Picea 100.00 90.36 79.13 69.23 78.95 100.00 Pinus cf. sylvestris 0.00 1.20 10.54 12.64 14.62 0.00 Pinus cembra 0.00 3.61 10.14 18.13 4.68 0.00 Betula sp. 0.00 2.41 0.20 0.00 0.58 0.00 Juniperus sp. 0.00 0.00 0.00 0.00 1.17 0.00 Hippophae sp. 0.00 2.41 0.00 0.00 0.00 0.00 Table 4 Dolní Vestonice IIa, results of pollen analysis of a sample from the hearth, horizon 3c, depth 110 cm. In brackets: absolute number of finds. Analysis by Petr Pokorný. Trees and shrubs Alnus glutinosa type (2), Betula alba type (26), Betula nana type (5), Corylus avellana (8), Fagus sylvatica (1), Hippopha€e (1), Juniperus (3), Larix decidua (6), Picea (11), Pinus cembra type (8), Pinus sylvestris type (32), Pinus sylvestris/P. cembra (38), cf. Populus (4), Quercus (7), Salix (7), Tilia (2), Ulmus (2) Herbs Anthemis type (4), Artemisia (8), Asteraceae Subfam. Cichorioideae (41), Caryophyllaceae (1), Cruciferae (13), Cyperaceae (6), Gramineae (58), Chenopodiaceae (46), Labiatae (3), Plantago cf. maritima (1), Polygonum persicaria type (2), Ranunculus acris type (1), Rubiaceae (4), Umbelliferae (3), undeterminated herbs (51) Tertiary palynomorphs (redeposed) and non-pollen objects Tricolpopollenites (5), Caryapollenites (3), Nyssapollenites (1), Algae e cysts (44), Pediastrum sp. (3), Fungi e various types (105), Dinoflagellata (10), Rhizopoda (3), microscopic charcoal fragments (great amount e not quantified) J. Svoboda et al. / Quaternary International 359-360 (2015) 195e210200 moisture (G. truncatula, S. putris), and in the 3e and 3c layers D. ruderatus, preferring forest environments, occurs in high numbers. Vertebrate microfauna (Table 6) is represented by 22 fragments of mostly isolated teeth belonging to at least 18 individuals of five species of small ground rodents (Fig. 7). In terms of MNI these are: two Spermophilus cf. citelloides, five Clethrionomys cf. glareolus, two Microtus gregalis, one Microtus cf. agrestis, one Microtus oeconomus, seven cf. Microtus sp., and one to two Dicrostonyx sp. Although the sample is too fragmentary for detailed stratigraphical or palaeoecological inferences, it clearly demonstrates two facts: first, it is essentially composed of the typical elements of the glacial communities (M. gregalis, Dicrostonyx, Spermophilus cf. citelloides), yet in contrast to other assemblages of that type it exhibits a very high representation of Clethrionomys glareolus, that is, the index element of the woodland habitats. The m1 pattern differs from the typical m1 morphotypes of extant mid-European C. glareolus (also for its quite large size), which also excludes post-sedimentary contamination. Although C. glareolus appears almost regularly in mass glacial assemblages of Central Europe, it is quite rare and its percentages in these assemblages do not exceed one to a few percent as a rule (Horacek and Sanchez, 1984), while in the site under study, particularly in layer 3c, it seems to represent even a dominant element. In any case, this fact suggests that at the time of deposition of layer 3c, besides an open ground steppe environment (comp. M. gregalis, Dicrostonyx, Spermophilus), the habitat context also included patches of woodland and marshy habitats (comp. M. oeconomus, M. cf. agrestis) at least in a wider vicinity. The regular appearance of Spermophilus cf. citelloides in the most recent layers (3a,b) suggests for them rather a predominance of dry steppe habitats, as also confirmed by the palaeobotanical studies. 8. Patterns of human activity Effects of human activity are commonly recorded in the large faunal remains and lithic artefacts. The associated archaeozoological material includes 8189 larger animal remains (Table 7, Fig. 8). The assemblage was highly fragmented (84% are indeterminable fragments smaller than 3 cm), and only 9.23% of the total amount could be classified according to taxon. The remains of woolly mammoth (Mammuthus primigenius, MNE ¼ 132) were well distributed in layers 3c (54% NISP) and 3b (31% NISP), diminished slowly in layers 3a and 3d (7% NISP), and were underrepresented in layers 3e and 4 (less than 0.5% NISP). The most frequent anatomical parts were the cranial, costal, and vertebral fragments, long bone fragments, and distal parts of fore and hind limbs (the molar lamellae and tusk fragments were excluded from the MNE estimation due to their natural inclination to fragmentation). One mammoth bone bears traces of polish. The reindeer remains (Rangifer tarandus, MNE ¼ 44), including fragments of antler, cranial and mandibular fragments, vertebras, and selected parts of hind limb, were present especially in layers 3b and 3c (between 40 and 50% NISP). The wolf (Canis lupus, MNE ¼ 23) remains were represented by teeth fragments and distal appendicular parts; these were concentrated in layer 3c (more than 60% NISP) and progressively decreased towards the peripheral layers 3a and 3b (18e15% NISP). The horse (Equus ferus, MNE ¼ 17) was anatomically characterised by teeth, jaw, and scapular fragments and by a part of the lumbar area. These remains were detected in layers 3b and 3c (54e40% NISP) and gradually diminished within layers 3a and 4 (less than 3% NISP). The hare (Lepus, sp., MNE ¼ 11) was found exclusively in layer 3b, where it was represented by jaws and teeth. The number of fox teeth (Vulpes vulpes/Vulpes lagopus, MNE ¼ 7) decreased from layer 3a to 3c (71e14% NISP). Red deer (Cervus elaphus, MNE ¼ 2) is represented by antler fragments in layer 3a (86% NISP) and by axis fragments in layer 3c (14% NISP). One maxillary fragment of cave lion (Panthera leo spelaea, MNE ¼ 1) was in layer 3b. In contrast to other Gravettian localities, such as Predmostí Ib or Milovice IV (Beresford-Jones et al., 2010; Svoboda et al., 2011), only 18% of the whole assemblage was burned and most of these fragments were smaller than 3 cm (99.5%). Various burning stages were observed, mostly between stages III and IV, and the majority of the assemblage (69%) consisted of compact bones. Thus, various but occasional human activities might be expected such as bone grease manufacture or waste removal (see also Bosch et al., 2012; Fladerer et al., 2014). Table 5 Dolní Vestonice IIa e Malacozoolocial record. 3a 3b 3c 3d 3e 4 Gastropoda Galba truncatula 2 7 þ 1 f. 34 89 þ 2 f. 19 þ 3 f. 5 Lymnaea sp. 1 þ 1 f. 2 f. 2 f. Succinea putris 2 1 þ 3 f. 12 þ 11 f. 25 þ 6 f. 24 þ 3 f. Succinella oblonga 11 þ 2 f. 5 þ 8 f. 111 þ 12 f. 58 þ 4 f. 47 þ 1 f. 8 Cochlicopa lubrica 3 Granaria frumentum 1 f. Pupilla cf. loessica 2 1 19 6 4 Pupilla cf. muscorum 1 Pupilla cf. sterri 2 Pupilla sp. 2 f. Vallonia tenuilabris 2 þ 1 f. 12 8 þ 2 f. 5 1 Vallonia sp. 2 þ 2 f. 10 f. 12 þ 1 f. 2 þ 1 f. 1 Truncatellina cf. costulata 1 f. Truncatellina cylindrica 2 Clausilia dubia 1 f. 2 f. 3 þ 18 f. 2 þ 12 f. 1 þ 4 f. 1 f. Cecilioides acicula 3 3 Discus ruderatus 52 6 þ 4 f. 28 þ 5 f. 1 Discus sp. 1 þ 3 f. 4 þ 12 f. 6 þ 2 f. 1 þ 3 f. 1 f. Euconulus fulvus 2 Perpolita hammonis 4 Oxychilus inopinatus 1 Fruticicola fruticum 6 f. 1 f. 3 f. 1 þ f. Euomphalia strigella 3 f. 5 Helicopsis striata 1 f. 2 5 3 Bivalvia Unio sp. 2 f. Mollusca Mollusca indet. e fragments x x x x x x Others ?bones 3 1 Table 6 Microfaunal record. Vertebrate microfauna 3a 3b 3c 3d 3e 4 Total NISP Clethrionomys cf. glareolus 4 1 5 Dicrostonyx sp. 1 1 Microtus cf. agrestis 1 1 Microtus gregalis 1 1 Microtus oeconomus 1 1 Microtus sp. 1 1 1 3 cf. Microtus sp. 2 2 Spermophilus cf. citelloides 2 1 3 cf. Spermophilus sp. 1 1 Total NISP in layer 2 2 11 1 1 1 18 J. Svoboda et al. / Quaternary International 359-360 (2015) 195e210 201 The associated lithics (a total of 578 artefacts) were separated into six chronostratigraphic horizons (3aee and 4), where horizons 3a (15% of all lithics) and 3c (75% of all lithics) provided the largest samples (Table 8). The raw material composition shows slight variation throughout the sequence. The artefacts were predominantly made of white-patinated flint from glaciofluvial deposits (49%), followed by radiolarite (22%), mostly of greenish to reddishbrown hues. These two basic materials are supplemented by various types of cherts and spongolite and rarely by quartz and quartzite (especially in the horizon 3c assemblage). A part of the artefacts (8%) was burnt in fire (mainly in horizon 3c). In all assemblages, the most numerous items are small chips, flakes (less than 1 cm), and irregular fragments, followed by groups of blanks, including non-retouched blades and flakes. Cores (if present) are generally small, with lengths ranging between 32 and 47 mm, and predominantly with a single platform. One singleplatform flake core of radiolarite was found in horizon 3a. Three other cores are from horizon 3c, including two microblade cores in an advanced stage of reduction (Fig. 9: 9, 10) and one spongolite core in an initial stage. The non-retouched blades (Fig. 9: 1, 2, 5e8) including numerous microblades up to 9 mm in width (about 67% of all blades) are predominantly non-cortical, originating from advanced stages of core reduction and mostly preserved as fragments. When complete (about 25% of all blades), the blades display a triangular or trapezoidal cross-section and a straight profile with length ranging between 10 and 67 mm. In horizons 3a and 3c the blades predominate over the flakes, but the blades are missing in all other assemblages; flakes are absent in horizons 3b and 4. The number of retouched pieces does not exceed 2% of the total collection, with the highest proportion in horizons 3a and 3c (they are absent in horizons 3d, 3e, and 4). Horizon 3a provided a proximal fragment of a backed microblade followed by simple burins made on broken blades and retouched blades, almost all unilateral and preserved as fragments. In 3c, the typical artefacts are a chisel laterally retouched from the ventral face (Fig. 9: 3), and a simple burin (Fig. 9: 4). Throughout the layers, the assemblages are completed by fragments of sandstone plaques and small fragments of mineral dyes. In terms of raw materials and typology, the lithic assemblages are of Gravettian character as a whole, with the dominance of simple burins, blades, and microblades, but the only diagnostic Gravettian tool types are one backed-blade fragment in horizon 3a and one chisel in horizon 3c. 9. Clay pellets The pellets of burnt clay, altogether 19 pieces and all from horizon 3c, deserve special attention in this context. These are small pieces of heat-consolidated loess of ochreous-greyish, light brown or dark brown coloration. The maximal size interval is 3.5e20 mm, while four items exceed 10 mm. All pellets rub on paper and are therefore insufficiently burnt. Sometimes the inner mass includes microscopic particles of charcoal. The largest object shows a concave imprint from a tubular object, probably a small branch of a tree (Fig. 10). Several small openings with a diameter smaller than 1 mm are visible on its surface. Microscopic examination of the other pellets, using an Olympus SZH10 stereoscopic microscope, showed the presence of such hollows or cavities in at least two other cases. The inner structure of the largest pellet was imaged using an X-ray (micro-)computed tomographic (mCT) station GE Phoenix vjtomejx L 240, using the following measurement parameters: an accelerating voltage of 80 kV, tube current of 50 mA, and no filter. The voxel resolution achieved was ~7 mm. mCT images (Fig. 11) revealed a large number of small cavities, varying within the range of 62e367 mm (the median of 120 measurements was 149 mm; the standard deviation was 70 mm). Because the oval shapes of hollow places in the mCT sections are probably due to diagonal cuts through the hollows of approximately cylindrical shape, we measured their smaller diameter, which probably reflects the true transversal diameter of the hollows. Table 7 Archaeozoological record. Archaeozoology 3a 3b 3c 3d 3e 4 Total NISP Mammuthus primigenius 39 160 280 37 1 2 519 Equus ferus 1 20 15 1 37 Cervus elaphus 12 2 14 Rangifer tarandus 41 33 7 1 82 Cervidae 22 17 39 Canis lupus 6 5 20 1 32 Vulpes vulpes/Vulpes lagopus 5 2 1 7 Canidae 1 1 1 3 Panthera leo spelea 12 12 Lepus sp. 10 1 11 Total determinate NISP 63 261 379 47 2 4 756 Extra large sized mammal 1 2 18 21 Large to extra large sized mammal 4 1 7 1 13 Large sized mammal 1 8 11 1 1 22 Middle to large sized mammal 1 40 10 1 52 Middle sized mammal 45 48 110 16 3 1 220 Small to middle sized mammal 1 5 8 1 1 16 Small sized mammal 14 7 41 11 73 Indeterminate (>3 cm) 5 29 76 2 3 6 121 Indeterminate (<3 cm) 1188 353 4351 814 59 127 6892 Total indeterminate NISP 1260 493 4632 846 66 136 7430 Total NISP in layer 1323 754 5011 893 68 140 8189 Table 8 Dolní Vestonice IIa, developmental trends in lithic industry. 3a 3b 3c 3d 3e 4 Total N % N % N % N % N % N % Cores 1 1 0 e 3 0.7 0 e 0 e 0 e 4 Fragments & chips 58 69 6 e 364 84.5 30 e 3 e 15 e 476 Flakes 5 6 0 e 13 3 3 e 1 e 0 e 22 Blades 12 14.3 3 e 46 10.7 0 e 0 e 0 e 61 Partially retouched 0 0 0 e 2 0.5 0 e 0 e 0 e 2 Retouched tools 7 8.3 1 e 2 0.5 0 e 0 e 0 e 10 Burin spalls 1 1.2 1 e 1 0.2 0 e 0 e 0 e 3 Total 84 100 11 e 431 100 33 e 4 e 15 e 578 J. Svoboda et al. / Quaternary International 359-360 (2015) 195e210202 Fig. 8. Dolní Vestonice IIa: faunal remains as found in situ: a mammoth vertebra (maximal length 40 cm), part of a mammoth skull (maximal length 30 cm), a red deer antler (maximal length 32 cm). Fig. 7. Selected remains of small ground mammals from layers 3b (1), 3e (2), and 3c (3e7): 1ab e Spermophilus cf. citelloides, 2e4 Clethrionomys cf. glareolus, 5ab e Microtus gregalis, 6ab e Microtus cf. agrestis, 7ab e Microtus oeconomus. J. Svoboda et al. / Quaternary International 359-360 (2015) 195e210 203 These pellets/lumps can be interpreted as a result of some human activities around the central hearth, with which they are clearly associated. Most of them probably originated from secondary post-depositional disintegration of unintentionally fired sediment under or in close vicinity of the fire. The pellets are comparable to a larger assemblage of badly burnt, non-figurative, and irregular pellets, with unclear interpretation, as documented at the chronologically later Gravettian sites in Central Europe e Dolní Vestonice I, Pavlov I, Dolní Vestonice II and III, Pavlov II, Krems-Wachtberg, Jarosov, Borsice, Spytihnev, Predmostí, Petrkovice, Cejkov, Kasov, Moravany-Lopata (Kralík et al., 2008). The total number of ceramic objects found in the Central European Gravettian sites so far was estimated at more than 10,000 pieces and a large portion of the assemblage are just pellets or lumps of this kind. As the outer shape of the pellets does not offer many clues and might (at least in part) be a secondary result of postdepositional processes and/or excavation and washing, we looked for other clues and variables of these objects. One of these might be the small openings located on their surface. Previously, we have observed similar openings on dozens of these pellets/lumps from other sites of the South Moravian region. In the case of artificially unmodified clays they can only be naturfacts e openings of pedogenic voids and/or cavities after the decay of plant roots or from activity of soil microorganisms. The dimensions of the openings found on the pellets from the DV IIa site do not exclude such an interpretation. Even in case of kneaded and compacted clay prepared for intentional modelling (which is not the case), where the original pedogenic voids cannot be retained, small cavities from natural impurities in raw clay (roots of plants, plant debris or other organic matter) may remain after firing. In previous studies, however, similar cavities and tubular imprints on two pellets from the site Pavlov VI were identified as imprints of reindeer (Rangifer tarandus) guard hair (Kralík et al., 2008; Svoboda et al., 2009; Kralík, 2011). Natural cavities in fired clay objects still do not exclude an additional content of anthropogenic origin (whether it was introduced into the object accidentally or intentionally) in cultural layers. Two-dimensional thin-sections do not by themselves help much in determining the origin of cavities, because natural cavities in soil (voids, holes after roots) widely overlap in size and cross-sectional shape (tubular) with anthropogenic objects such as animal hairs from fur processing. (Moreover, with regard to preservation of these objects for future studies it is not appropriate to apply invasive methods on them.) Therefore we look for other clues in the objects that may determine further characteristics of these cavities such as variability in size and shape along an individual cavity, variations between cavities, the density of cavities per unit volume, direction/course of cavities and its changes (curvatures), their Fig. 9. Dolní Vestonice IIa: selection of Early Gravettian lithic artefacts from the central area, all from horizon 3c. J. Svoboda et al. / Quaternary International 359-360 (2015) 195e210204 interlacing, branching, etc. Therefore, we applied non-invasive visualisation of the internal cavities of the largest object and created their 3D model. The 3D model of internal structure of the largest pellet shows that the most common cavities are of medium thickness, they run in different directions and are slightly wavy (Fig. 12), and some seem to be branching. The thickest cavity is relatively straightforward and runs across the whole pellet. The cavities open more frequently on the convex surface of the pellet (as if they naturally continue out of the pellet), while in the inner mass closer to the concave surface (i.e. closer to the imprint mentioned above) they are significantly less numerous. Smolíkova (1991, this paper) also observes natural cavities in soil samples from the same site, but we are not aware of any comparative study of 3D distribution of natural cavities in the soil or loess samples or in fired clay pellets. Although the thickness of the cavities does not exclude animal hair/fur, they are most likely natural cavities after roots of plants or activities of soil microorganisms. 10. Comment on site formation processes The situation at DV IIa results from complex site formation processes. We present a sequence of six dates from several charcoal microlayers forming one clearly defined settlement unit at site DV IIa (Fig. 13). Dates in the periphery sequence and the hearth sequence follow each other in intervals at a scale of centuries, and one date from the subsoil is separated by a millennium-scale interval. Following these dates, the activity areas on peripheries mainly preserve the latest occupation stage. In contrast, the charcoal microlayers in the center suggest that the hearths have been founded repeatedly at the same spot, and are preserved as a complex microstratigraphy. The soil-and-charcoal microlayers forming the main body of the DV IIa microstratigraphy provided a sequence of four early Gravettian dates between 28.4 and 31.7 ky BP. If this was a central hearth, this situation evokes the theoretical question of why it was founded at the same spot repeatedly. What is logically predetermined by the specific rock morphology in caves and rock shelters becomes more difficult to resolve at the open air sites. However, our systematic excavations on the slopes of the Pavlov Hills show that the Neogene surface below the cultural layer was less regular than today, and furrowed by numerous streams from fossil springs. In such situations the hunters would tend to resettle similar spots, given their advantages for settlement and observation of landscape around, protection from the winds, the remains of previous occupations visible on the surface, and some kind of a tradition of place. The soil-and-charcoal microlayers forming the main body of the DV IIa microstratigraphy provided a sequence of four early Gravettian dates between 28.4 and 31.7 ky BP. In terms of cultural determination, the sequence of occupations at a single findspot is of Upper Palaeolithic and early Gravettian character around the central hearth, as supported by the typical fauna (mammoth, carnivores), lithic materials (flint and radiolarite), and technology/ typology (a blade/microblade industry with some burins and a chisel), and an evolved Gravettian (Pavlovian) occupation continued on the periphery (with a backed microblade fragment). Given the low number of diagnostic tool types and the early dates, we cannot exclude interventions of other Upper Palaeolithic entities such as the Aurignacian in the lower horizons 3dee and 4, but any direct argument for such a diagnosis is missing. 11. Comment on seasonality The time-depth and complexity of these formation processes also show how difficult the question of seasonality at a particular site may be. Based on the intensity of the occupation, supported by the intensity of use-wear on the analysed lithics from the 1999 excavation at DV IIa, Sajnerova (2001) suggested rather a shortterm occupation which, however, occurred repeatedly and over longer time-spans. Conclusions about a site's seasonal use cannot be made on the basis of only one selected indication, be it the treerings (Opravil, 1994), thin sections of animal teeth (Nývltova Fisakova, 2013), evidence for fur working (West, 2001; Sajnerova, 2001), or the location of activity areas in either the interior or the exterior of the presumed dwellings (Svoboda et al., 2000). Although the summary of this evidence may generally suggest a whole-year occupation and activities at DV II/IIa, with an emphasis on colder seasons (tree-rings, fur working), the structure of individual episodes was even more complex and not all seasons are readable in the archaeological record. 12. Gravettian microstratigraphies and multi-phased hearths in Moravia and Austria Microstratigraphies at the large open-air sites in Moravia and Austria occur more rarely compared to certain cave sequences. Comparable microstratigraphies of charcoal layers were repeatedly recovered and documented within the settlement of Pavlov I (documentation by B. Klíma) and generally dated between 27 and 25 ka uncal BP but without 14 C dates for the individual microlayers. This site is promising for studies of microchronology. Therefore, during the 2013e2014 excavation, we focus on sampling microstratigraphies in more detail and we obtained earlier data, Fig. 10. Surface on the largest clay pellet with concave imprint (upper image) and openings of small cavities on the pellet's surface (lower image). Scale: 2 mm. J. Svoboda et al. / Quaternary International 359-360 (2015) 195e210 205 generally synchronous with the DV IIa sequence (materials actually analysed). Another multi-phased hearth of middle Gravettian age has recently been examined at Krems-Wachtberg (H€andel et al., 2013; Simon et al., 2014). Whereas the circumjacent layer averages only 2e3 cm in thickness, the hearth, obviously representing the same time-span, is ten times thicker. The excavators distinguished three stages separated by microlayers of burnt loess and stone plaques. This feature included a number of larger charcoal fragments suitable for showing climatic development and dendrochronology over several centuries (Cichocki et al., 2014), and thousands of animal bone fragments around, either from marrow and bone grease exploitation or from burning as fuel (Fladerer et al., 2014). It provided two dates separated by intervals of a few centuries around 27 ka uncal BP and two comparable dates from the living floor around (Simon et al., 2014, Table 1). During the 1995 excavation at Petrkovice I in Silesia, one later Gravettian hearth (H8), about 30e40 cm thick, was uncovered in the centre of the site (Fig. 5; Svoboda, 2008). It was deposited in a shallow depression and deformed by slope movements similarly to DV IIa. Given the thickness of this hearth and its complexity, we interpret it as the central hearth within the whole occupation area. The 1995 section at this spot was preserved and used as a reference section for additional sampling in 2007 and 2008. Three accelerator dates from burnt bones were taken from superimposed positions separated by microlayers 15e20 cm thick. The results correspond well with this microstratigraphy. They are ordered within the timespan delimited by the previous dates, clustered around 22 ka uncal BP. After calibration (Fig. 13), the three new dates lie in Fig. 11. Four selected mCT cross-sections through the largest clay pellet. Small cavities are visible within the inner mass of the pellet. The arrow indicates the concavity on its surface visualised in Fig. 10. Scale: 2 mm. J. Svoboda et al. / Quaternary International 359-360 (2015) 195e210206 intervals of 400e500 years between 24 and 25 ka cal BC, whereas the whole occupation range falls between 23 and 26 ka cal BC. Results from hearth H8 are framed by two additional dates from nearby locations: a newly dated sample from 1953 produced the youngest age (22.9 cal BC) and a charcoal sample from 1994, from the relict of adjacent hearth H7, was the earliest one (26.2 cal BC). In summary, whereas the DV-IIa charcoal accumulation provides a dated microstratigraphy related to the early Gravettian in Moravia, and the periphery of the same sub-site continues into the evolved Gravettian (Pavlovian), the Petrkovice H8 date sequence refers to the later Gravettian (Willendorf-Kostenkian). The importance of the DV-IIa microstratigraphy is strengthened by the fact that early Gravettian is a poorly understood time-period in Moravia. 13. Gravettian macrochronology and microchronology The Gravettian chronological scheme (Pavlov and WillendorfKonstenki stages) has been based on several sources such as the geological stratigraphy as at Willendorf II (Haesaerts et al., 2010), 14 C chronology (J€oris et al., 2010), tree ring analysis (BeresfordJones et al., 2011; Cichocki et al., 2014), and archaeological microstratigraphies in the context of spatial analysis of the large settlements (Svoboda et al., 2000). Recently, Moreau (2012) rightfully questioned the validity of the early Gravettian stage at the south Moravian sites, given the rarity of evidence. Here we add new evidence of the early Gravettian and reconsider the evidence for early Gravettian from DV IIeIIa in the light of the 2012 excavation records (and another series of early dates from the 2013 excavation at Pavlov I are being prepared for publication). A series of early 14 C dates around 28/30 ka uncal BP has been published from the 1958e1959 excavation of the classic section in the former bricketerry at the foot of the DV II site (Klíma et al.,1962; Klíma, 1995). All originate from the first dataset from Moravia produced by the Groningen laboratory and relate to the research level of that time. In addition, at this stage of research it was not yet clear that a pararendzine or pseudogley, rich in charcoal but archaeologically sterile, dated around 28/30 ka, forms a typical substrate at several sites over the DV-Pavlov area. After a revision, it appears that some early dates from this series (GrN 2598, GrN 10525, GrN 11196) have no human association, while others are more recent and relate to small assemblages of lithics with typical pebble tools in the western wall of the bricketerry (Klíma et al., 1962). However, one date (GrN 2092) from the eastern bricketerry wall, Section 4, excavation 1959, with the result of 28,300 ± 300 uncal BP, was associated with a small lithic assemblage composed of about 20 flakes, blades, and microblades, including four burins and one endscraper (Klíma et al., 1962; Klíma, 1995). In the actual collections, 16 of these artefacts are preserved; 14 are of flint and two of radiolarite. Following chronologically at DV II is the date GrN 13962 from the northern slope of the site, with a result of 27,660 ± 80 uncal BP, and a series of dates around 27 ka uncal BP from the western slope (Svoboda, 1991; Klíma, 1995). 14. Conclusion The 2012 excavation at Dolní Vestonice unearthed a microstratigraphy which provided a sequence of AMS dates from the individual microlayers between 28.4 and 31.7 ka uncal BP (30e33 ka cal BC) and a peripheric zone with slightly more recent dates. In terms of micromorphology, these layers correspond to fossil soil sediments. The analyses of associated charcoal, pollen, faunal remains, and artefacts add to the understanding of the structure of this particular hearth and complete the picture of the MIS 3 landscape, chronology, and microchronology (Fig. 14). Generally, the climatic development through the six horizons was relatively stable. The charcoal analysis documents a picture of a cold and dry landscape with coniferous trees and the pollen analysis in horizon 3c confirms rather a parkland character of the Fig. 12. Three-dimensional model of internal cavities (dark grey) in the largest clay pellet in four views. Created by the Amira software. J. Svoboda et al. / Quaternary International 359-360 (2015) 195e210 207 landscape with the scattered presence of some climatically demanding broadleaf trees. Nevertheless, the presence of certain snail and small mammal species, associated with fragments of red deer axis, documents an episode of restricted forest formation in horizon 3c around 28.4 ka uncal BP (30e31 ka cal BC). The environmental development runs parallel with cultural changes starting from nondiagnostic Upper Palaeolithic industry at the base towards the early and evolved Gravettian (Pavlovian) lithic industries above. As such, the new evidence throws light on time periods predating the evolved Gravettian (Pavlovian) occupation. Finally, an important contribution of the DV IIa excavation is the assemblage of non-figurative burnt clay pellets from one of these early horizons. As regards the inner structure of the pellet mass, the observed small cavities and their distribution may most likely be interpreted as natural features created by small roots of plants or by soil microorganisms. In any case, these items predate by about 2 ky all hitherto known finds of this kind and technology in Moravia and Fig. 13. Dolní Vestonice IIa and Petrkovice I: plots of cal C14 dates (BP) generated using the radiocarbon calibration program OxCal 4.2.3. J. Svoboda et al. / Quaternary International 359-360 (2015) 195e210208 Austria (dated to the evolved Gravettian (Pavlovian) stage, 27e25 ka uncal BP; Vandiver et al., 1989). Acknowledgements The 2012 excavation was realised as a part of the EU programme FITEAMP CZ.1.07/2.3.00/20.0181 (Formation of International Team on Evolutionary Anthropology of the Moravian Populations). J. Kaiser and T. Zikmund acknowledge support from CEITEC e Central European Institute of Technology (CZ.1.05/1.1.00/02.0068) as a part of the European Regional Development Fund. We thank Jaromír Demek and Pavel Havlícek for consultations on the geology and cryology during the fieldwork and two anonymous reviewers for constructive comments. References Antoine, P., Rousseau, D.D., Degeai, J.P., Moine, O., Lagroix, F., Kreutzer, S., Fuchs, M., Hatte, Ch, Gauthier, C., Svoboda, J., Lisa, L., 2013. High-resolution record of the environmental response to climatic variations during the Last InterglacialeGlacial cycle in Central Europe: the loessepalaeosol sequence of Dolní Vestonice (Czech Republic). Quaternary Science Reviews 67, 17e38. Beresford-Jones, D., Johnson, K., Pullen, A.G., Pryor, A.J.E., Svoboda, J., Jones, M., 2010. Burning wood or burning bone? A reconsideration of flotation evidence from Upper Palaeolithic (Gravettian) sites in the Moravian corridor. Journal of Archaeological Science 37, 2799e2811. Beresford-Jones, D., Taylor, S., Payne, C., Pryor, A., Svoboda, J., Jones, M., 2011. Rapid climate change in the Upper Palaeolithic: the record of charcoal conifer rings from the Gravettian site of Dolní Vestonice, Czech Republic. Quaternary Science Reviews 30, 1948e1964. Bosch, M.D., Nigst, P.R., Fladerer, F.A., Antl-Weiser, W., 2012. Humans, bones and fire: zooarchaeological, taphonomic, and spatial analyses of a Gravettian Fig. 14. Dolní Vestonice II, major developmental trends in the environmental and archaeological record. J. Svoboda et al. / Quaternary International 359-360 (2015) 195e210 209 mammoth bone accumulation at Grub-Kranawetberg (Austria). Quaternary International 252, 109e121. Cichocki, O., Knibbe, B., Tillich, I., 2014. Archaeological significance of the Palaeolithic charcoal assemblage from Krems-Wachtberg. Quaternary International 351, 163e171. http://dx.doi.org/10.1016/j.quaint.2013.07.004. Fladerer, F.A., Salcher-Jedrasiak, T.A., H€andel, M., 2014. Hearth-side bone assemblages within the 27 ka BP Krems-Wachtberg settlement: fired ribs and the mammoth bone-grease hypothesis. Quaternary International 351, 115e133. http://dx.doi.org/10.1016/j.quaint.2012.06.030. Goldberg, P., Laville, H., Meignen, L., Bar-Yosef, O., 2007. Stratigraphy and geoarchaeological history of Kebara cave, Mount Carmel. In: Bar-Yosef, O., Meignen, L. (Eds.), Kebara Cave, Mt. Carmel, Israel, the Middle and Upper Paleolithic Archaeology, Part I. Harvard University, Cambridge, pp. 49e89. Haesaerts, P., Bachner, M., Borziac, I., Chirica, V., Damblon, F., Drozdov, N., Koulakovska, L., Pirson, S., 2010. New insight on the environmental background and the chronology of the Early Upper Palaeolithic in central Europe. In: Neugebauer Maresch, Ch, Owen, L. (Eds.), New Aspects of the Central and Eastern European Upper Paleolithic e Methods, Chronology, Technology and Subsistence. OAW, Wien, pp. 9e25. H€andel, M., Salcher-Jedrasiak, T., Fladerer, F., 2013. Putting Gravettian hunter's behavior under the microscope e the case of hearth 1 at Krems-Wachtberg/ Austria. In: International Conference World of Gravettian Hunters, Abstracts and Guide Book. Institute of Systematics and Evolution of Animals, Krakow, pp. 27e31. Higham, T., Jacobi, R., Bassell, L., Bronk Ramsey, Ch, Chiotti, L., Nespoulet, R., 2011. Precision dating of the Palaeolithic: a new radiocarbon chronology for the Abri Pataud (France), a key Aurignacian sequence. Journal of Human Evolution 61, 549e563. Holliday, V.T., Hoffecker, J.F., Goldberg, P., Macphail, R.I., Forman, S.L., Anikovich, M., Sinitsyn, A., 2007. Geoarchaeology of the Kostenki-Borshchevo sites, Don River Valley, Russia. Geoarchaeology 22, 181e228. Horacek, I., Sanchez, M., 1984. Comments on the Weichselian small mammal assemblages in Czechoslovakia and their stratigraphic interpretation. Neues Jahrbuch für Geologie und Pal€aontologie 9, 560e576. J€oris, O., Neugebauer-Maresch, Ch, Weninger, B., Street, M., 2010. The radiocarbon chronology of the Aurignacian to Mid-Upper Palaeolithic transition along the Upper and Middle Danube. In: Neugebauer Maresch, Ch, Owen, L. (Eds.), New Aspects of the Central and Eastern European Upper Paleolithic e Methods, Chronology, Technology and Subsistence. OAW, Wien, pp. 101e137. Karkanas, P., 2010. Geology, stratigraphy, and site formation processes of the Upper Paleolithic and later sequence in Klissoura cave 1. Eurasian Prehistory 7, 15e36. Klíma, B., 1995. Dolní Vestonice II: Ein Mammutj€agerplatz und seine Bestattungen. In: ERAUL 73/The Dolní Vestonice Studies, vol. 3. Universite de Liege, Liege. Klíma, B., Kukla, J., Lozek, V., de Vries, H., 1962. Stratigraphie des Pleistoz€ans und Alter des pal€aolithischen Rastplatzes in der Ziegelei von Dolní Vestonice (UntereWisternitz). Anthropozoikum 11, 93e145. Kralík, M., 2011. Ancient ceramics and imprints on their surfaces. In: Svoboda, J. (Ed.), Pavlov Excavations 2007e2011, The Dolní Vestonice Studies, vol. 18. Institute of Archaeology, Brno, pp. 207e244. Kralík, M., Svoboda, J., Skrdla, P., Nývltova Fisakova, M., 2008. Nove nalezy keramických fragmentu a otisku v gravettienu jizní Moravy. Prehled Výzkumu 49, 3e23. Mason, S.L., Hather, J.G., Hillman, G.C., 1994. Preliminary investigation of the plant macro-remains from Dolní Vestonice II, and its implication for the role of plant foods in Palaeolithic and Mesolithic Europe. Antiquity 68, 48e57. Moreau, L., 2012. Le gravettien ancien d'Europe centrale revisite: mis au point et perspectives. L'Anthropologie 116, 609e638. Nigst, P.R., Viola, T.B., Haesaerts, P., Trnka, G., 2008. Willendorf II. Wissenschaftliche Mitteilungen des Nieder€osterreichischen Landesmuseum 19, 31e58. Nývltova Fisakova, M., 2013. Seasonality of Gravettian sites in the Middle Danube Region and adjoining areas of Central Europe. Quaternary International 294, 120e134. Opravil, E., 1994. The vegetation. In: Svoboda, J. (Ed.), Pavlov I, Excavations 1952e53, ERAUL, vol. 66. Universite de Liege, Liege, pp. 163e167. Peresani, M., Chrzavzez, J., Danti, A., de March, M., Duches, R., Gurioli, F., Muratori, S., Romandini, M., Trombino, L., Tagliacozzo, A., 2011. Fire-places, frequentation and the environmental setting of the final Mousterian at Grotta di Fumane: a report from the 2006e2008 research. Quart€ar 58, 131e151. Rybníckova, E., Rybnícek, K., 1991. The environment of the Pavlovian e palaeoecological results from Bulhary, South Moravia. In: Kovar Eder, J. (Ed.), Palaeovegetational Development in Europe and Regions Relevant to its Palaeofloristic Evolution. Natural History Museum, Vienna, pp. 73e79. Sajnerova, A., 2001. Trasologicka analýza stípane industrie z Dolních Vestonic IIa (výzkum 1999). Pamatky Archeologicke 92, 158e164. Simon, U., H€andel, M., Einw€ogerer, T., Neugebauer-Maresch, Ch, 2014. The archaeological record of the Gravettian open air site Krems-Wachtberg. Quaternary International 351, 5e13. http://dx.doi.org/10.1016/j.quaint.2013.08.009. Smolíkova, L., 1991. Soil micromorphologic investigation of the section at Dolní Vestonice II. In: Svoboda, J. (Ed.), Dolní Vestonice II, Western Slope, ERAUL, vol. 54. Universite de Liege, Liege, pp. 65e74. Svoboda, J. (Ed.), 1991. Dolní Vestonice II, Western Slope. ERAUL, vol. 54. Universite de Liege, Liege. Svoboda, J., 2001. K analýze velkých loveckých sídlist: Prostorova struktura a chronologie lokality Dolní Vestonice IIeIIa. Pamatky Archeologicke 92, 74e97. Svoboda, J. (Ed.), 2008. Petrkovice. On Shouldered Points and Female Figurines. The Dolní Vestonice Studies, vol. 15. Institute of Archaeology, Brno. Svoboda, J., Klíma, B., Jarosova, L., Skrdla, P., 2000. The Gravettian in Moravia: climate, behaviour and technological complexity. In: Roebroeks, W., et al. (Eds.), Hunters of the Golden Age. University of Leiden, Leiden, pp. 198e217. Svoboda, J., Kralík, M., Culíkova, V., Hladilova, S., Novak, M., Nývltova Fisakova, M., Nývlt, D., Zelinkova, I., 2009. Pavlov VI: an upper paleolithic living unit. Antiquity 83, 282e295. Svoboda, J., Bochenski, Z., Culíkova, V., Dohnalova, A., Hladilova, S., Hlozek, M., Horacek, I., Ivanov, M., Kralík, M., Novak, M., Pryor, A., Sazelova, S., Stevens, R., Wilczynski, J., Wojtal, P., 2011. Paleolithic hunting in a Southern Moravian landscape: the case of Milovice IV, Czech Republic. Geoarchaeology 26, 838e866. Trinkaus, E., Svoboda, J. (Eds.), 2006. Early Modern Human Evolution in Central Europe. The People of Dolní Vestonice and Pavlov. The Dolní Vestonice Studies, vol. 12. Oxford University Press, Oxford e New York. Vandiver, P., Soffer, O., Klíma, B., Svoboda, J., 1989. The origins of ceramic technology at Dolní Vestonice, Czechoslovakia. Science 246, 1002e1008. West, D., 2001. Analysis of the fauna recovered from the 1986/1987 excavations at Dolní Vestonice II, western slope. Pamatky Archeologicke 92, 98e123. J. Svoboda et al. / Quaternary International 359-360 (2015) 195e210210 150 3.5.3 The role of large canids: Preliminary variabilities forming the population structure in Moravia Citace: Perri, A. and Sázelová, S.: The role of large canids: Preliminary variabilities forming the population structure in Moravia. In: J. Svoboda (ed.): Dolní Věstonice II. Dolní Věstonice studies 21, Institute of Archaeology at Brno, Academy of Sciences of the Czech Republic, Brno (in press). IN PRESS THE DOLNÍ VĚSTONICE STUDIES, VOL.21 DOLNOVĚSTONICKÉ STUDIE, SVAZEK 21 DOLNÍ VĚSTONICE II CHRONOSTRATIGRAPHY, PALEOETHNOLOGY, PALEOANTHROPOLOGY DOLNÍ VĚSTONICE II CHRONOSTRATIGRAFIE, PALEOETNOLOGIE, PALEOANTROPOLOGIE DOLNOVĚSTONICKÉ STUDIE, SVAZEK 21 THE DOLNÍ VĚSTONICE STUDIES, VOL.21 Studies in Paleoanthropology and Paleoethnology of Eurasia =============================================================== Series Editor: Jiří A. Svoboda Editorial Board: Prof. Jean Clottes, France Prof. A.P. Derevianko, Russia Prof. Clive Gamble, UK Prof. Jean-Jacques Hublin, Germany Prof. Erik Trinkaus, USA THE ROLE OF LARGE CANIDS: PRELIMINARY VARIABILITIES FORMING THE POPULATION STRUCTURE IN MORAVIA Angela Perri and Sandra Sázelová Introduction In general, large numbers of carnivores are characteristic of Central European Upper Paleolithic sites (Soffer 2000), including many Moravian sites (Musil 1997, 2001, 2005, 2014; Wojtal and Wiłczyński 2015). The extensive utilization of carnivores, including cut marks which suggest subsistence processing, has been proposed to reflect either seasonal food stress or ritual consumption (Musil 1994; Soffer and Kozlowski 2003; Wojtal et al. 2012; Germonpré et al. 2015), though fur production was probably the main reason for targeting most of the canid species (Musil 1958a; West 2001). Particular attention has been paid to the wolves from Gravettian sites in Moravia, although they do not appear to be treated any differently than other fur-bearing species, such as foxes or wolverines (e.g. Pokorný 1951; Fladerer 2001, 2010; Wojtal and Wiłczyński 2015). Interest in Moravian wolves recently increased due to the identification of purported domestic dogs from the site of Předmostí (c. 32,500-29,000 cal BP) in the Moravian Corridor, based on morphological and dietary isotopic variation (Germonpré et al. 2012, 2015; Bocherens et al. 2015). However, these identifications lead to a wider discussion with researchers who argue there is not enough information available to make a convincing identification of domesticated dog, or that the remains simply represent different wolf morphs within a broader population (Crockford and Kuzmin 2012; Morey 2014; Boudadi-Maligne and Escarguel 2014; Perri et al. 2015). Moreover, the possibility of initial domestication, or at least human-driven genetic isolation, had previously been discussed by various authors who explained morphological variation in the Předmostí canids as the result of natural variation (e.g. Pokorný 1951; Benecke 1994; Musil 2000) or sexual dimorphism (Musil 2000; Wojtal pers. comm.). For this purpose, we would like to discuss here first the historical context of this debate, which has been ongoing in the Czech literature for more than 100 years. Historical approach to large canid variations in Moravia During the excavations held by Karel Jaroslav Maška, at the end of the 19th century, more than 100 individual wolves (NISP = 4143) were discovered at the Předmostí Ia site (estimations by Pokorný 1951, p. 34). The most important accumulation of wolf skeletons was found in the period from 17th to 19th May, 1894 in the northern zone of site. An extensive burnt area was discovered, containing separate accumulations of mammoth bones, such as tusks, limb bones, vertebrae and ribs, with little other human activity apparent. Maška describes that next to it within an area of 10 m2 “… seven wolf skeletons were laid, their individual parts were found mostly in a natural position. We have observed that the skulls were in some cases intentionally smashed in their frontal part, although the other remains were not damaged.” (1894, p. 91; translated from Czech). Another note in his diaries concerns the find from 16th August, 1894 within a distance of 13 meters northwest of the main human burial accumulation, when “… a whole skeleton of a small wolf (or dog)” was found (Maška 2008, 185; translated from Czech). The German transcription of his diary (Absolon and Klíma 1977, p.48) does not label this find as a dog, nor is there any other mention of a dog presented in his diaries from 1890-1893, published in the same book. Maška was aware of intrusive younger finds at the Předmostí I site, for example in 1893 (p. 112) when he describes two younger prehistoric pits intruding into the Pleistocene layers, containing several bones of a smaller dog (Maška 1893, p. 112), among other finds. Moreover, he must have been aware of variability in the Pleistocene wolf population at the Předmostí Ia site, as he identified three wolf groups according to their general size: Canis lupus major, Canis lupus medius, and Canis lupus minor (Pokorný 1951, p.36). Maška also documented in his field notes the stage of preservation and excavation damage to the wolf skulls. Later, from 1946-1951, the large canid material from Předmostí Ia was studied by Miloslav Pokorný (1951), who made a complex description of the wolf population based on the osteometric analysis of skulls and mandibles, including notes on aging and pathology. He concluded then that Maška’s Canis lupus medius might be classified as the smaller “type” of Canis lupus, but he also states that (1951, p. 47- 48; translated from Czech): “ …it is possible to observe some variability, although the measuring of bone fragments does not always provide accurate values. In our case, the preserved material does not display enough characteristic markers necessary to decide safely about the difference of varieties. Most of the markers, possibly measurable, are under the influence of changes in their function and could not therefore be convincing in their distinguishing… Further study will be necessary to select fossil material, if possible, of the same geological age, because the closer study of fossil material from Předmostí shows that, on some skeletal remains belonging to Canis lupus L, the markers leading to older forms (Cuon) as well as to younger forms (Canis familiaris) are preserved.” Additionally, we should mention the work of Norbert Benecke (1987, 1994) who studied morphoscopically the crowding of premolars and molars in wolf mandibles from Předmostí Ia and stressed the higher occurrence of oligodontism (natural absence of teeth) or polydontism (redundant presence of teeth) in comparison to recent wild wolves. He suggested that this crowding might indicate a first genetic isolation of captured or semi-captured canids from the Pleistocene wolf population (Benecke 1995, 82-84). Another accumulation of wolf skeletons was found in 1952 by Bohuslav Klíma at Pavlov I, southeast of the Pálava hills. The osteological material from this and excavations in 1953 was first studied by Rudolf Musil (1958a), where he reported that during the 1952 season the smallest wolf mandible (with a crowded “zig-zag” form of teeth) was found, in comparison to other known Gravettian canids from Dolní Věstonice I and Předmostí Ia. He did not observe any similar examples in the assemblage from 1953, but in his later work (1994) another example of a crowded zig-zag form mandible is described from the 1957 season of Pavlov I – northwest. Although he noted that tooth crowding is typically a domestication marker, he did not propose that the canids were dogs, only that future complex population analysis is needed (1997; 2005). Moreover, in 1955 he had suggested that, “… Dimensions of our recent wolves and certainly of the diluvial ones are, beside other things, influenced by landscape, where they live. The mountain wolves are commonly stronger and robust if compared to swamp and lowlands wolves, which are gracile and weak. At Pavlov, mainly the smaller “type” of wolves occurs. It is possible that it is related to the position of Pavlov within the lowlands and flatlands of Southern Moravia. Contrary to Předmostí, where both types occurred in approximately the same proportion. Perhaps, their presence at this site might be affected by the neighboring location of Beskydy and Jeseníky Mountains, which are occupied by wolves with bigger and robust stature running down to lowlands in the winter “ (pp. 284- 285; translated from Czech). Musil also later said of the two crowded “zig-zag” mandibles, “In two cases the teeth were closely packed against each other. I’m sure that this was due to much variability in the size of the wolves rather than to attempts at domestication” (2005, p. 197). Additionally, the most recent analysis of the wolf population of Pavlov I (southeastern part) estimated 57 individuals (NISP = 6190) with cut marks related to dismembering and filleting (Wojtal et al. 2012; Wojtal and Wiłczyński 2015). Large canids at Dolní Věstonice II sites Our preliminary analysis of Canis followed the previously mentioned importance of focusing on populations, not individuals, when examining the possibility of domesticated dogs from Gravettian sites. Here we present the canid material recovered at a complex of sites, Dolní Věstonice (DVII), repeatedly occupied by Gravettian hunter-gatherers between c. 36,000-29,000 cal. BP (Svoboda et al. 2014; see chapter in this volume). The canids originate from the 1958-2015 excavations or surface collections by Bohuslav Klíma and Jiří Svoboda at several parts of DVII sub-sites – northern slope, western slope, southern edge, site-top, and DVIIa (or closely indeterminate DVII). The faunal remains from individual parts have previously been discussed by Svoboda (1991), Seitl (1995), West (2001), Nývltová Fišáková (2001) and Wojtal and Wiłczyński (2015), see also Wojtal and Wiłczyński and Sázelová, this volume. The most highly represented carnivore species at Dolní Věstonice II sites are polar and red foxes (Vulpes lagopus/V. vulpes), occurring as 14.9-7.8% of all taxonomically identified material, followed by grey wolves (Canis lupus) with an interval between 12.1-5.3%. Other carnivore species are presented with an interval lower than 2%, such as wolverine (Gulo gulo) at 1.99-0.1%; cave lion (Panthera leo spelaea) at 0.07%; brown and cave bears (Ursus arctos/U. spelaeus) at 0.4-0.1%, lynx (Lynx lynx) at 0.03% and wild cat (Felis sylvestris) at 0.01%. Material Description The large canid skeletal remains deposited at the Centre for Research of Paleolithic and Paleoethnology in Dolní Věstonice (Institute of Archeology Brno, Academy of Sciences of the Czech Republic) were solely studied in this paper. Some additional canid material from the DVII sites is held at the Moravian Museum (Brno, Czech Republic) and was not included here. The wolf material was identified with assistance from virtual databases (ArchéoZoo or Virtual Zooarcheology of the Arctic Project), 3D models from the Max Planck Institute for Evolutionary Anthropology (Niven et al. 2009), and comparative atlases (Kolda 1951; Schmid 1972; Hillson 2005; France 2009). The frequencies of skeletal elements and number of individuals were studied in terms of number of identified specimens (NISP), minimum number of elements (MNE), and minimum number of individuals (MNI) when in some cases the side matching was possible (Klein and Cruz-Uribe 1984; Lyman 1994, 2008; Reitz and Wing 2008). However, the total number of remains estimated in this paper differs slightly from previously published papers (West 2001; Nývltová Fišáková 2001; Wojtal and Wilczyński 2015), because highly weathered or extremely fragmented material with a high probability of incorrect taxonomic determination were excluded, affecting namely the underestimation of vertebrae (for a comparison, see Wojtal and Wiłczyński, this volume). Figure 1: Detail of large canid metapodia in anatomic position from the excavations in 1987, Dolní Věstonice II – Western Slope (courtesy of J. Svoboda). Table 1: General distribution of wolf (Canis lupus) skeletal remains at Dolní Věstonice II sites. Abbreviations: NISP = number of identified specimens, MNE = minimum number of elements. Skeletal element NISP NISP% MNE MNE% cranium 2 0.26 2 0.28 maxilla 20 2.59 20 2.83 dentes superiores 41 5.31 28 3.96 mandibula 49 6.35 45 6.37 dentes inferiores 78 10.10 65 9.21 dentes indet. 77 9.97 57 8.07 vertebrae cervicales 37 4.79 31 4.39 vertebrae thoracicae 1 0.13 1 0.14 vertebrae lumbales 3 0.39 3 0.42 vertebrae caudales 6 0.78 6 0.85 vertebrae indet. 1 0.13 1 0.14 scapula 17 2.20 16 2.26 humerus 25 3.24 24 3.39 radius 25 3.24 22 3.12 ulna 24 3.11 24 3.39 carpals 9 1.16 9 1.27 metacarpals 84 10.88 82 11.61 pelvis 11 1.42 11 1.56 femur 10 1.29 10 1.42 patela 2 0.26 2 0.28 tibia 16 2.07 16 2.27 fibula 1 0.13 1 0.14 tarsals 48 6.22 48 6.79 metatarsals 48 6.22 45 6.37 metapodia indet. 36 4.66 36 5.09 phalanges 99 12.89 99 14.02 ossa sesamoidea 2 0.26 2 0.28 Total 772 100.00 706 100.00 Distribution of skeletal elements at the DV II complex of sites In total, 772 skeletal fragments belonging to a minimum of 20 canid individuals were identified (Table 1), with most of the anatomical parts preserved (except hyoid bones documented, for example, at Pavlov I; Musil 1958a,b, 1994, or sternebrae and baculum as from Předmostí Ia by Pokorný 1951). The material was mainly post-depositionally fragmented within the index 1.09 (NISP/MNE), although various parts were found still in their anatomic position (Figure 1), such as a series of vertebrae or apical parts of limbs. Furthermore, neither Dolní Věstonice site (DVI and DVII) displays large wolf skeleton accumulations as seen at Pavlov I and Předmostí Ia. A side disproportion (prevalence of left side) was observed for the scapula, radius and carpals, and tibia and tarsals. Also, there was a prevalence of complete mandibles from the right side, although the total number from both sides, including fragments, was almost equal. However, similar side-patterns were not documented at Pavlov I or Předmostí Ia, so we suggest here accidental taphonomic selection at DVII sites, rather than intentional human activities. When considering the distribution of wolf skeletal elements from within the site area, perhaps the clearest observations can be made with the material from 1987 excavation. Within Klíma’s section, the individual bones and teeth of canids were highly accumulated within features K1, K5 and K6, and within approximately 3 meters of K4 was a concentration of individual bones and teeth (3 x 5 m). Svoboda’s 1987 area displays several concentrations – the first, with a diameter of 3 x 4 m, laid within 13 m from feature S1; the second laid in the western part of the hearth, and the third was accumulated above feature S1 with male burial DV16 (in its southeastern part). The distribution of wolf remains outside the dwelling is greater than inside the dwelling, so it seems that wolves do not play any special role within this burial context (as was previously suggested by Nývltová Fišáková and Sázelová 2008). The occurrence of wolf remains and gnawing marks is rare within the mammoth bone depository (see Wojtal and Wiłczyński, this volume). Additionally, the distribution of wolf skeletal elements originating from new excavations in 1991-2015 at DVII -recess and DVIIa are extremely random, thus we were not able to observe any spatial patterns. Morphological and age structure of population Most of the research concerning the morphological or morphometric descriptions of large prehistoric canid populations describes mainly the skulls and mandibles. Similarly, the DVII material will be analyzed as part of an ongoing dog domestication project, Deciphering dog domestication through a combined aDNA and geometric morphometric approach, led by Greger Larson (University of Oxford) and Keith Dobney (University of Aberdeen). For the purpose of this project, 2D measurements, 3D geometric morphometric photogrammetry, and ancient DNA sampling of the DVII material was involved. Because most of these analyses are still ongoing and metric descriptions of variability in DVII skulls and lower jaws will be discussed in a separate paper (Perri and Sázelová in prep.), we would like to demonstrate here only the preliminary variability of selected postcranial parts, namely the metapodials. Metapodials are generally one of the most variable elements in mammal skeletons, however they have two dimensions which are recommended for analysis according to von den Driesch (1976) – greatest length (GL) and greatest breadth of the distal end (Bd). As shown in Figures 2a-c, the variability within each metapodial group is high and in many cases exceeds the differences suggested as relevant for sexual dimorphism noted as a standard for recent wolf populations (Hillis and Mallory 1996; Morris and Brandt 2014). Moreover, if we look at the age structure of the large canid population from DVII sites (Figure 3), it is clear that our 20+ individuals do not represent a data set with a uniform distribution. The population is imbalanced, with an absence of newborns and puppies up to 6 months and subadults aged between 1-1.5 years, which is important given previous suggestions that human groups at Moravian sites may have been breeding these canids (Germonpré et al. 2012). Taphonomic explanations for missing young canids can be excluded, as newborns or young animals from other species are present at DVII sites. On the other hand, this age imbalance is similar to the age structures of large canids documented at Předmostí Ia and Pavlov I sites (Pokorný, 1951; Musil 1955, 1958a, 1994), where both authors note that young individuals are present, but the prevalence of older animals is obvious. Additionally, it is possible that previous researchers mistook wolverine (Gulo gulo) bones, which can look similar, for wolf bones, especially when fragmented. For example, West (2001, p. 113) published a photographic example of an ‘immature wolf’ maxilla from the Western Slope at Dolní Věstonice, which is actually a wolverine. Figure 2a-c: Distribution of metric data on metapodials within the wolf population from Dolní Věstonice II sites. The greatest length (GL) is given on the X axis and the greatest breadth (Bd) of the distal end is given on the Y axis. (a) (upper): metacarpals; (b) (lower): metatarsals. The absence of color infilling indicates estimated measurement. The closest overlap of metapodial measurements signals the presence of the left and right side from the same individual; (c) Morphological variation in the left calcaneous and right 4th metacarpals of Dolní Věstonice II wolves (scale=2cm) Figure 3: Number of individuals of each age from the large canid population from Dolní Věstonice II sites. Figure 4a-c: Example of wolf left side mandible with traces of misalignment and periodontitis between P3 and M2 (a); detail of atypical abrasion on lingual side of canine (scale=5cm) (b); and detail on periodontitic lesions under M1 causing pathological deformation in alveolar followed by baring of tooth neck and roots (c). Pathologies and taphonomy The pathologies observed on our large canid material only include degenerative types, affecting both cranial and postcranial parts of the skeleton. The first type is represented by malocclusions in six instances, causing the misalignment of teeth and atypical abrasions on the lower canines (mainly on the buccal side) or on the P4 -M1 bite complex, which often preclude further individual age estimation. In four instances of individuals older than 9 years, periodontitis was observed affecting various types of lesions around alveolars (alveoli dentales) and expositions of the tooth neck (collum dentis) or upper part of roots (radix dentis) (Figure 4 a-c). After consultation with Dennis Lawler (DVM, Illinois State Museum), we reached the conclusion that the periodontitis might be caused by a wide variety of bacteria or fungi following the open tissue pathways after primary tooth trauma or gingival trauma with secondary infection. It can also be caused by a softer diet, producing less cleaning of gums and teeth, such as foraging on rotting carcasses, although other factors such as environment or genetics cannot be excluded. Further analyses will be needed in order to determine origin and development of this disease. The second type of postcranial degenerative processes affected mainly limbs, represented by arthritic osteophytes around the cavitas glenoidalis scapulae, incisura trochlearis ulnae, caput radii or on the calcaneus. In one instance, the surface scratches within the elbow (articulatio cubiti) suggest the cartilage was thinned enough that the ulnar and radial proximal epiphyses were in direct contact, causing traumatic abrasions. From the taphonomic point of view, weathering was most frequently observed at I-II stage in 8.80% and III stage in 13.21% (following Behrensmayer 1978, 150-162) and root etching in 11.91%. In several instances both factors were combined together on opposite sides of a bone. For example, root etching on the lingual side and heavy weathering on the buccal side of a mandible. It seems that within its taphonomic history, the phases of exposure on the surface were alternated with bone deposition below the surface, with direct contact to plant roots, but also with an intermediate phase when the bone changed orientation within its layer (for example due to solifluction; chapter in this book). Traces of human activity, such as cut marks or burning, are well described in the chapter by Wojtal and Wiłczyński (this volume), but we would like to mention here a modified wolf upper canine with several traces after enamel removals (Figure 5) which was not previously detected (Sázelová et al. in prep.). Discussion The region and time period of Dolní Věstonice II sites suggests great variation should be expected in the fauna. Locally, human populations could take advantage of a range of topography, from hills to lowlands and climatic regions, from humid to arid. The chronological range of DVII also covers both a cold event and a warm interstadial, which introduced significant climatic and biotic changes in a short span of time (Musil 2011). This variation across time and space suggests dramatic variation in the wolf subpopulations present at DVII should not be surprising. Skeletal morphological variation, including in skull size and shape, is a known biological response to varying ecological conditions (Thorpe 1991; Eger 1990). For example, within modern North American grey wolves 24 subspecies have been recognized across varying geographical regions (Hall 1981). This suggests Canis lupus morphology is highly plastic, based on environmental and ecological conditions. A significant population bottleneck of European grey wolves since the Late Pleistocene suggests grey wolf subspecies may have been even more genetically, morphologically, and ecologically varied in the Gravettian than is known from modern populations (Pilot et al. 2014). Figure 5: The modified wolf upper canine with several traces after enamel removals (scale=2cm) The variation in Gravettian canids from Moravia (namely Předmostí) has been recently attributed to the identification of Paleolithic dogs (Germonpré et al. 2012, 2015), but these determinations rest on the premise that the region was populated by only one identifiable wolf subspecies, with static morphological and dietary parameters. Moreover, within the last century Germonpré is not the first author to suggest a closer social interaction between Gravettian hunters and wolf populations of wolves within the Moravian region (Maška 2008; Pokorný 1951; Benecke 1994; Musil 1955, 1958a, 1994, 1997, 2000), although most of the Czech authors conclude that further systematic analyses are needed. Carnivore gnawing is minimal from south Moravian sites (Wojtal and Wiłczyński 2015), suggesting live carnivores were probably not present alongside humans. Bones that did exhibit carnivore gnawing were primarily those of large mammals, such as mammoth, which would have been scavenged by predators after the sites was abandoned. This idea might be supported by periodontitis observed on several older individuals and if combined with other postcranial degenerative disorders, such individuals might have been disadvantaged in regards to hunting. Additionally, Soffer (1990) suggested that the wolves from Dolní Věstonice were eaten as a starvation food or for ritual purposes. Others have suggested the eating of canids as a starvation food by Gravettian hunter-gatherers (West 1997; Prestrud and Nilssen 1992) and they have been ethnographically documented as starvation food in many locations (e.g. Lothrop 1928; Nelson 1969), although some recent populations have taboos about eating canids (Bogoras 1904-1909; Jochelson 1905-1908). When looking more closely at the role of wolves at Moravian sites, we should particularly note the large canid accumulations of several individuals at Předmostí Ia and Pavlov I – southeast, which is not mirrored at Dolní Věstonice I or II sites. Furthermore, large canid material within human burial contexts at Předmostí Ia or DVII does not play as important a role as previously suggested (Germonpré et al. 2012; Nývltová Fišáková and Sázelová 2008). According to our study of the literature (Maška 2008, Svoboda 2008, Klíma 1954, Musil 2005), we suggest that the smallest wolf remains deposited at Předmostí Ia and Pavlov I-southeast are closely associated with the larger wolf accumulations at both sites. This suggestion cannot be confirmed, as detailed mapping of the material from the original excavations is not available, but notes from Maška’s excavation diary of Předmostí Ia (Maška 2008) and Klíma’s excavation of Pavlov Isoutheast (Klíma 1954), paired with maps of the excavation sites (Klíma 1954, Svoboda 2008), show a close association between the small wolf material and the wolf accumulations. Thus, according to our preliminary observations, we conclude that human hunters at DVII probably had access to multiple wolf ecomorphs, both geographically and chronologically. The suggestion that similar variation at nearby sites represents early dog domestication events among Moravian hunter-gatherers cannot be supported by the DVII canid material. It is likely that such suggestions of earlier pre-LGM dog domestication are also, in fact, identifying multiple wolf ecomorphs from a single site, especially given our shallow knowledge of Pleistocene wolf populations (Perri, in review). Further analysis of canid material from Gravettian sites in Moravia will help to better characterize the interactions between human hunters and grey wolf subpopulations, assisted by advances in scientific techniques (e.g. stable isotopes, ancient DNA, geometric morphometrics). As our preliminary study here highlights, the analysis of canid populations, in contrast to individuals, is essential to understanding the complex interactions between wolves and humans in the prehistoric past. Acknowledgements We thank Professor J. Svoboda for access to the material and comments on this manuscript and Dr. Dennis Lawler, DVM for his comments on the wolf pathology. Funding for this research was provided by the Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology. 162 3.5.4 Pavlov I in time and space. Excavations 2013-2014 Citace: Svoboda, J., Novák, M., Sázelová, S., Demek, J. 2015: Pavlov I in time and space. Excavations 2013-2014. Quaternary International, in press; http://dx.doi.org/10.1016/j.-quaint.2015.09.015. Pavlov I: A large Gravettian site in space and time Jirí Svoboda a, b, * , Martin Novak b , Sandra Sazelova a , Jaromír Demek c a Department of Anthropology, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic b Institute of Archaeology Brno, Academy of Sciences of the Czech Republic, 69129 Dolní Vestonice, Czech Republic c Rudka 66, 679 72 Kunstat, Czech Republic a r t i c l e i n f o Article history: Available online xxx Keywords: Czech Republic Pavlov Gravettian Microstratigraphy Cryogenic processes Lithic industries a b s t r a c t The formation of the large site clusters of the Gravettian (Pavlovian) represents one of the final effects of modern human adaptation in central Europe, but chronology of the site formation processes at such sites are still little understood. Here we present new evidence from Pavlov I, a site now prepared for the construction of a museum and subjected to a large-scale preparatory excavation. Understanding the spatial organisation, microstratigraphies, and the effects of cryogenic processes on the site formation is the basic presumption for lithic analysis at a large and complex site. Obviously, these extensive sites have a longer prehistory than was previously thought. The detection of the Early Upper Palaeolithic/Gravettian boundary was related to a radical change in the lithic raw material composition. The early and evolved Gravettian industries complete previously recorded the techno/typological spectrum by additional microlithic assemblages. With this new evidence, the paper also discusses the question of Gravettian origin. © 2015 Elsevier Ltd and INQUA. All rights reserved. 1. Introduction The formation of the extensive site clusters of the Gravettian (Pavlovian) represents one of the adaptive patterns in the culminating stages of early modern human expansion to central Europe. Their central place on the map of Upper Paleolithic Europe was recognized soon after the beginning of the excavation at Dolní Vestonice I in 1924. The discovery of important symbolic objects from this context was later followed by early modern human burials (especially at Dolní Vestonice II), the first evidence of ceramic technology (Dolní Vestonice I, Pavlov I), possible fibre and textile technologies (Pavlov I), and meat and plant consumption (Vandiver et al., 1989; Adovasio et al., 1996; Trinkaus and Svoboda, 2006; Revedin et al., 2010; Pryor et al., 2013). These sites also provide broader contextual evidence about optimal settlement strategies, long-distance lithic material transport, and specialized hunting strategies. However, the details of the site formation processes at these sites are little understood due to the complex archaeological record and excavation techniques in the past. Although the majority of the dates and evidence clearly refer to the evolved Gravettian (Pavlovian) period around 30 ka cal BP (sensu Svoboda, 1994), the time of origin of these sites remained undated. Understanding these contextual informations is the basic presumption for lithic analysis at a large and complex site. Pavlov I is one of the largest campsites in the area below the Pavlov Hills (Fig. 1). Extensive parts of this site were excavated by Bohuslav Klíma between 1952 and 1972, and it was separated into two sectors e South-east and North-west (Klíma, 1954, 1959; Svoboda, 1994, 1997, 2005). Currently, Pavlov I is being prepared for the construction of a modern museum building with an in-situ exhibition, and our preparatory excavations between 2013 and 2015 aimed to reopen the surface and revise its spatial and stratigraphic context. In 2013 we excavated four trenches in the hitherto unexplored sector South-west. In 2014 we opened an area of approximately 80  20 m, part of which was excavated by Klíma and part of which was unexplored (Figs. 2 and 3). Additional excavation along the marginal parts of the planned building also continued in 2015. Sorting, analysing, and interpreting various types of evidence recovered during such large-scale excavation will be a long-term task. In contrast to Dolní Vestonice I, excavated by several generations of archaeologists, the advantage of Pavlov I is that it was excavated by two excavators and in two campaigns only, both with predetermined methodologies relevant to their times. Therefore, chances for creating a site model as a base for lithic analysis are better at Pavlov I than elsewhere. * Corresponding author. Department of Anthropology, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic. E-mail address: jsvoboda@sci.muni.cz (J. Svoboda). Contents lists available at ScienceDirect Quaternary International journal homepage: www.elsevier.com/locate/quaint http://dx.doi.org/10.1016/j.quaint.2015.09.015 1040-6182/© 2015 Elsevier Ltd and INQUA. All rights reserved. Quaternary International xxx (2015) 1e11 Please cite this article in press as: Svoboda, J., et al., Pavlov I: A large Gravettian site in space and time, Quaternary International (2015), http:// dx.doi.org/10.1016/j.quaint.2015.09.015 2. The evidence 2.1. Spatial organisation of a large campsite The large sites are also centres of a variety of human activities. Their structure shows patterns of zonality, with central parts (a dense network of hearths, settlement features, and activity zones, including evidence of symbolic objects), and peripheries (with ashy areas, bone accumulations, and scarcer evidence of artefacts). Spatial analyses of these densely occupied areas were problematic in central parts of Pavlov I, where the settlement units are hard to delimit and several levels were mixed up (Verpoorte, 2000; Novak, 2005). Such situations pose questions about the very nature of the larger sites e whether it is best to deal with the addition of individual units over a given time period, or with one large settlement agglomeration, or with a combination of both. These issues are of key importance for evaluating social and demographic trends which stood behind the site formation processes, and for addressing the question of whether the size of a site directly correlates with with sedentism, human aggregation, and the level of hunteregatherer's complexity. While identifying his first 11 features, interpreted as dwellings, Klíma combined several viewpoints: “pits, a shallow depression, large bones along the edges, the spatial extent of the cultural layer, and artifact concentrations” (Klíma,1959). Our approach while processing the excavation results was to analyse each of these components separately (Svoboda,1994,1997, 2005). Generally, the palimpsest area ranges over the South-east sector predominantly, with 11 features (K1-11), and partly in the North-west sector (K12-13). After the removal of the LGM (Last Glacial Maximum) loess cover in 2014, it appeared that the Upper Palaeolithic surface differed significantly from the current field surface which slopes regularly from the hilltop in the south towards the current lake in the north. Our excavation unearthed a longitudinal, eastewest oriented elevation and an adjacent gully separating it from the hilltop, now filled with loess. The elevation was formed by redeposited Cenozoic flysch (Hustopece marls and sands), and angular Jurassic limestone debris from the above rising klippes of the Pavlov Hills. The location of the central occupation palimpsest on top of this elevation shows that prehistoric inhabitants preferred this kind of subsoil, which was drier than elsewhere. Silty deposits on the slopes were occupied less intensively, or used as peripheral bone deposits. Our approach differed methodologically in areas excavated previously and in the hitherto unexplored zones. Even in the already explored areas, we recovered remains of the basal cultural layers and additional artefacts and bones. By fixing the margins of the old trenches we could more precisely locate them in the general site plan. Although rather marginal in location, the newly excavated areas provide archaeological deposits more easily understandable in terms of spatial organisation and microstratigraphies. Here we completed one of Klíma's settlement units (K1), excavated one more settlement unit with an adjacent pit and surrounding activity areas (S1 and S2), a mammoth bone deposit (as a typical feature at sites in the area), and several other features and concentrations of faunal remains and artefacts (Figs. 2e3): South-east (SE014) e additional settlement area with feature S1, an adjacent pit S2, and an activity zone (Figs. 4e5). Feature S1 is reconstructed as a shallow circular depression about 5e6 m in diameter, filled with anthropogenic sediments maximally 15e20 cm thick in the centre, and showing two stages of filling. Fig. 1. Location of the sites Dolní Vestonice I, Pavlov I and II on the north-eastern slopes of the Pavlov Hills (550 m a.s.l.). J. Svoboda et al. / Quaternary International xxx (2015) 1e112 Please cite this article in press as: Svoboda, J., et al., Pavlov I: A large Gravettian site in space and time, Quaternary International (2015), http:// dx.doi.org/10.1016/j.quaint.2015.09.015 Inside was an asymetrically-located hearth and a higher density of objects. The adjacent artificial pit, S2, rates among rare exceptions within the Dolní Vestonice-Pavlov-Milovice area, probably because hollowing out depressions was difficult due to permafrost in the subsoil (only one pit, K14, has so far been discovered at Pavlov I e centre; Klíma, 1977). They are mostly interpreted as storage pits (Soffer,1989), although their actual refill may be secondary. Pit S2 is about 50 cm deep and the fill included a mammoth tusk at the base, bones, artefacts, and red ochre. One more hearth was located in the centre of an adjacent activity area further to the east. Dispersed within the SE part were fragments of molars, ribs, and long bone fragments of Mammuthus primigenius, fragments of axial skeleton or distal parts of limbs of Rangifer tarandus, and various species of carnivore. Adding feature S1 into the site plan (Fig. 3) completes the oval shaped agglomeration of features K1-11 into a spatially homogenous unit. North-west (NW014) e area of mammoth bone deposition (Fig. 6). In contrast to all the other larger sites of the Dolní VestonicePavlov-Milovice, we previously lacked the typical mammoth bone deposit at Pavlov I. The new discovery of an accumulation of parts of postcranial skeletons, such as ribs, pelvises, scapulae, long bones, molars and tusks, belonging to several individuals of Mammuthus primigenius, fills this gap. Representation amongst the remains of other animals, such as Equus ferus, Rangifer tarandus, and Canis lupus was occasional in this area, and lithic artefacts were sparsely distributed as well. Although the find density is smaller compared to Dolní Vestonice I or Milovice I (and the quantity of recovered bones seems low compared to the size and importance of Pavlov I), we now know that mammoth bones were deposited on the sloping terrain west of the site. South-west A e another activity zone with one oval-shaped hearth. At a distance of 120 cm from the hearth, an almost complete skeleton of Canis lupus was recorded, which retained its anatomical position, especially in the thoracic part. The wolf skull found 40 cm away can most probably be associated with the same individual and an accumulation of Dentalia shells was located 80 cm from the wolf skeleton. Various other skeletal elements were dispersed around, namely of Mammuthus primigenius (ribs and long bone fragments) or Rangifer tarandus (antler and limb bone fragments). South-west B-E À test trenches. Within these trenches, remains of hearths and depressions with fragments of molars and ribs of Mammuthus primigenius were recorded, followed by axial skeleton fragments or distal parts of limbs of various carnivores. In this part Fig. 2. Pavlov I, general plan showing the Klíma excavation (1952e1972) and the current excavation (2013e2014) and recorded find density (artefacts, bones) in the newly excavated parts SE014, NW014, and A-J 2013/2014. J. Svoboda et al. / Quaternary International xxx (2015) 1e11 3 Please cite this article in press as: Svoboda, J., et al., Pavlov I: A large Gravettian site in space and time, Quaternary International (2015), http:// dx.doi.org/10.1016/j.quaint.2015.09.015 of the site, a horizon of Early Upper Paleolithic has been detected below the Gravettian complex. Centre (F) e extensive charcoal deposits associated with four shallow pits, 20e30 cm in diameter and 5e10 cm deep. These features complete the last quadrant of Klíma's unit K1 excavated in 1952. Centre (G) e a shallow oval-shaped feature, S3, 160  70 cm in size, included a large mammoth tusk, portions of at least one Rangifer tarandus skeleton (fragments of skull and antler, fragments of vertebrae, ribs, fore and hind limbs), and associated osteological material such as metapodials and phalanges of Canis lupus, a mandibular fragment of Vulpes vulpes/Vulpes lagopus, and a proximal part of a humerus belonging to Equus ferus (Fig. 7). Selected skeletal units retained their anatomical position, such as a wolf paw, parts of a reindeer thorax, and the line from first to third phalanges of this same animal. Finally, the site-plan has been completed by several additional concentrations of bones and artefacts in the previously unexcavated areas H, I, and J. 2.2. Stratigraphy At Upper Paleolithic sites within the Dolní Vestonice-PavlovMilovice area the cultural deposits are mostly located between the Last Glacial Maximum loess above and earlier loess or redeposited Cenozoic marls below (Antoine et al., 2013). Because Pavlov I has been considered as a palimpsest of intensive and overlapping occupations, our focus was on microstratigraphies of cultural deposits wherever these occurred (Figs. 8e9). In collaboration with Klement Rejsek (pers. comm.), the sections were sampled for granulometry, porosity, humus particles, carbonates, nitrogen, and other geochemical components; we also measured magnetic susceptibility (Fig. 8, right column). Generally, the stratigraphic framework at Pavlov I is as follows: 1. The LGM loess. In general, deposition of the LGM loess was rapid and massive, but the actual depth of the loess coverage varies due to irregular subsoil and erosive processes on the surface (Fig. 9). It disappears along the slope where cultural Fig. 3. Pavlov I, general plan with inserted settlement units as defined by Klíma (K1-14) and Svoboda et al. (S1-3). J. Svoboda et al. / Quaternary International xxx (2015) 1e114 Please cite this article in press as: Svoboda, J., et al., Pavlov I: A large Gravettian site in space and time, Quaternary International (2015), http:// dx.doi.org/10.1016/j.quaint.2015.09.015 Fig. 4. Pavlov I South-east with section SE-OX1 in front and the area of feature S1 behind. Fig. 5. Pavlov I South-east, plan of the features S1 (right), pit S2 (centre), and adjacent activity area (left). Distribution pattern of 3D-recorded finds (artefacts, bones) is shown above, left. J. Svoboda et al. / Quaternary International xxx (2015) 1e11 5 Please cite this article in press as: Svoboda, J., et al., Pavlov I: A large Gravettian site in space and time, Quaternary International (2015), http:// dx.doi.org/10.1016/j.quaint.2015.09.015 layers occur on the surface but reaches depths of 3e5 m against the slope, and even 8 m in more distant boreholes. Its geochemical composition varies with the depth (calcareous concretions are dispersed in the upper part and several ferruginous horizons, partly deformed by cryogenic processes, lie in the lower part). Wherever fully developed, the loess deposit includes several horizons of initial pedogenesis. The lack of organic material renders radiocarbon dating impossible, but a sequence of OSL dates, all clustered around 22 ka BP, is available for comparable loess deposits at Dolní Vestonice II (Fuchs et al., 2013) and shows the loess deposition occurred quite rapidly. This loess has sealed the Upper Paleolithic evidence and includes no trace of human presence at any site of the area. 2. Cultural deposits. The lower part of the upper loess, only 50e70 cm loess in depth, is interstratified with several anthropogenic layers with bones and artefacts (Fig. 10). Obviously, deposition of these layers occurred in a time period of restricted but repeated loess deposition. The charcoal was sampled from the individual locations and dated by radiocarbon within the range of 29e33 ka cal BP, which accords with the middle and early Gravettian. Fig. 6. Pavlov I North-west, a mammoth bone deposit. Fig. 7. Pavlov I G, a shallow oval-shaped pit S3 (120  70 cm) with a mammoth tusk and partial skeletons of reindeer, wolf and associated fauna. J. Svoboda et al. / Quaternary International xxx (2015) 1e116 Please cite this article in press as: Svoboda, J., et al., Pavlov I: A large Gravettian site in space and time, Quaternary International (2015), http:// dx.doi.org/10.1016/j.quaint.2015.09.015 3. The palaeosol. In some of the sections there were more or less continuous remains of a brownish-greyish palaeosol at the base of the cultural deposits, 15e40 cm thick, again with charcoal accumulations, dated by radiocarbon between 36 and 38 ka cal BP. Chronostratigraphically analogous palaeosols have been recorded in several nearby sections at Dolní Vestonice IeIII, Pavlov II, and Milovice I, sometimes as the uppermost member of a complex of brown soils of MIS3 (Dolní Vestonice II). Depending on local developmental conditions, they have either the character of tundra gley or pararendzina (Smolíkova, 1991; Smolíkova in Svoboda et al., 2015; Smolíkova in Oliva, 2009; Antoine et al., 2013). At Pavlov I, in a restricted part of sector South-west (trenches D, E), this palaeosol included the lowermost archaeological horizon of Early Upper Palaeolithic character. At the first sight, we observed a shift from imported lithic materials (flints and radiolarites) to the local ones (various Moravian cherts). At Milovice I, a stratigraphically comparable layer yielded a typically Aurignacian industry (and, hypothetically, similar layers could have existed at other earlier excavated sites; Oliva, 2009). Fig. 8. Pavlov I South-east, section SE-OX1 through the features S1 and S2 showing the position of the 14 C samples (calibrated values after OxCal v.4.2, using IntCal13 calibration curve (Bronk Ramsey, 2009; Reimer et al., 2013)) and magnetic susceptibility (MS, right column). 1. Recent soil; 2. loess with post-cryogenic textures; 3. cultural layer; 4. cryotectonics; 5. palaeosol deposit with frost wedges; 6. loess; 7. laminated sheetwash and congelifluction deposits, redeposited Hustopece marls, buckled; 8. coarse angular debris of Jurassic limestones (congelifractates). Fig. 9. Pavlov I South-west, section SW-A013, showing position of the 14 C samples (calibrated values after OxCal v.4.2, using IntCal13 calibration curve (Bronk Ramsey, 2009; Reimer et al., 2013)). Upper loess, with rusty ferruginous horizons at the base; light, brownish-grey gley horizon; loess interstratified with darkish anthropogenic horizons with charcoal (samples 1e3); dark brownish-grey paleosol with charcoal in the upper part (sample 4); limestone scree; yellowish-green marls. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.). Fig. 10. Pavlov I North-west, ground plan of a hearth relict disturbance of the livingfloor by frost wedge polygonal patterns. J. Svoboda et al. / Quaternary International xxx (2015) 1e11 7 Please cite this article in press as: Svoboda, J., et al., Pavlov I: A large Gravettian site in space and time, Quaternary International (2015), http:// dx.doi.org/10.1016/j.quaint.2015.09.015 4. The subsoil is formed by Jurassic limestone debris and by Cenozoic Hustopece marls on top of the elevation, and surrounded by thicker sheetwash and congelifluction deposits on the slopes. 2.3. Cryogenic features There is a running discussion about the presence and extent of permafrost during the Upper Paleolithic in Moravia. The stratigraphic position of cryogenic features within the new sections from Pavlov I suggests that permafrost existed at this site before, during and after the Gravettian, but we do not know how continuous it was. The character of the related features changes in the individual stratigraphic units (Fig. 8). At the base of the sections we observe coarse, angular congelifractates of local limestone with clayish loam, redeposited downslope by congelifluction. Above, still under a cold climate but with more moisture, lies a laminated layer of the Hustopece marls of the Moravian flysch redeposited by Fig. 11. Summary review of the new 14 C dates for Dolní Vestonice IIa and Pavlov I, 2012e2014 excavation (mostly charred wood, dates calibrated in OxCal v.4.2, using IntCal13 calibration curve (Bronk Ramsey, 2009; Reimer et al., 2013), Feb. 17, 2015). J. Svoboda et al. / Quaternary International xxx (2015) 1e118 Please cite this article in press as: Svoboda, J., et al., Pavlov I: A large Gravettian site in space and time, Quaternary International (2015), http:// dx.doi.org/10.1016/j.quaint.2015.09.015 sheetwash and congelifluction. Layers dipped downslope, were buckled, and have shown numerous frost features. Cryotectonic deformations suggest that the movements took place in the frozen state. At one place, features of frost heave and raising of the ground surface were found. Cryogenic features are also visible in the Paleolithic living-floors. Frost wedges penetrate through base of the upper loess, cultural sediment and the palaeosol, where they were bent downslope. At places we observed patterns of frost wedge polygons through the living-floor (Fig. 10). Based on their size, the mean annual air temperature (MAAT) ranged between À1 C and À2 C. A rusty coating of these frost wedges suggests the presence of a segregation ground ice and cryosuction (migration of the ground water to the freezing front). In the LGM loess, patterns of the cryogenic process change. There are parts with lenticular post-cryogenic structures, proving the presence of segregation ground ice and the obvious presence of permafrost. 2.4. Vegetation and fauna Previous geoarchaeological, palaeobotanical and palaeontological evidence from the various Dolní Vestonice and Pavlov sites shows that the Gravettian settlement took place in the context of generally cold climates and in the unique steppic and foreststeppic environments, but was punctuated by rapid fluxes towards warmer periods (the DansgaardeOeschger cycles), and with seasonally diverse habitats varying across the landscape (Beresford-Jones et al., 2011; Pryor et al., 2013; Svoboda et al., 2015). The new excavations at Pavlov I offered an opportunity to collect samples for a variety of environmental analyses which could not have been done previously at this site. The sedimentary content of the cultural deposits was collected for wet-sieving and flotation, and a large volume of palaeobotanical, malacozoological, osteological, and archaeological material is currently in a long-term process of separation and sorting. Systematic wet-sieving also provides more representative samples of mollusc shales, bones and teeth of Rodentia, and bones of Aves compared to the limited samples from the previous excavations. The larger faunal assemblage mainly refers to the evolved Gravettian (Pavlovian) layers and it is composed of various skeletal parts of Mammuthus primmigenius, Rangifer tarandus, Canis lupus, and Equus ferus, followed by species such as Vulpes vulpes/Vulpes lagopus, Lepus, sp., Gulo gulo, and Ursus, sp. The effects of palaeopathology and cut marks are visible on some of the bones, namely on the wolf's extremity bones. In these layers, we document the typical structure of the Pavlovian hunting system, as in the previously excavated materials. 2.5. Radiocarbon chronology Although a variety of dating techniques are used at the sites of the Dolní Vestonice-Pavlov area, radiocarbon chronology continues to be of major importance in constructing fine-grained chronologies of the cultural deposits (Haesaerts et al., 2010; J€oris et al., 2010; Fuchs et al., 2013). At Pavlov I, the radiocarbon dates hitherto obtained, either by Klíma directly or by the later dating of his Fig. 12. Pavlov I, selection of microlithic industry according to trenches and depths. 1e18: Pavlov South-east, unit S1 (1e12: depth 140e160 cm; 13e16: depth 160e165 cm; 17e18: depth 175e180 cm). 19e23: Pavlov South-west, trench A (19e20: depth 303e313 cm; 21e23: depth 380e385 cm). 1e20 flint, 21e23 radiolarite. J. Svoboda et al. / Quaternary International xxx (2015) 1e11 9 Please cite this article in press as: Svoboda, J., et al., Pavlov I: A large Gravettian site in space and time, Quaternary International (2015), http:// dx.doi.org/10.1016/j.quaint.2015.09.015 materials, relate to the central parts of the site and to the middle Gravettian (or evolved Pavlovian) time period (Table 1). Therefore, the new sampling concentrated on microstratigraphic sequences which are developed on the slopes around the central areas (Table 2; Fig. 11). At Pavlov I e South-west, the sequence of twelve radiocarbon dates taken from sections in trenches A, B, D, and E demonstrates a continuity in the formation of the cultural deposits within the time span of 29e33 ka cal BP, which means from the middle to the early Gravettian, and in two cases reaching into the Early Upper Palaeolithic in the subsoil (36e38 ka cal BP). They run parallel with another new sequence of six radiocarbon dates from the 2012 excavation at Dolní Vestonice IIa (Svoboda et al., 2015) and with certain dates from the 1986e1989 excavation at Milovice I (Oliva, 2009). An issue was raised by the section SE-OX1 at Pavlov I e Southeast (Fig. 8) which provided a sequence of middle and early Gravettian dates in the upper part, but two more recent dates from the lower part (Beta 388405 and 388406). Suspiciously recent results are also recorded from the lower positions within the stratigraphies at Pavlov II (GrA-44291) and Pavlov VI (GrA-37629 and OxA-18321). Cryogenic studies show that groundwater concentrated on the permafrost table at the base of the active layer which lies at a certain depth below the exposed Upper Paleolithic livingfloors. As noted by Darden Hood (Beta Analytic Lab, pers. comm.), radiocarbon dates in cores may give good results down to the water table and then become erratic due to a more recent water fluctuation or palaeo water fluctuation. This could be one of the explanations for the error. Finally, in order to clear up the question of the filling of the artificial pits, three dates were also taken from various levels inside the pit S2 at Pavlov I e South-east (Fig. 8). As expected, the results of all three measurements confirm a rather rapid and chaotic refilling process during the main stage of occupation around 30.1e31.6 ka cal BP. 2.6. Lithic industries The evidence from 2013 to 2015 excavation at Pavlov I confirms the main Gravettian (Pavlovian) layer as the major source of the accumulated archaeological, anthropological, and osteological material, but it also expands the interval of site-formation processes deeper into the past. Although the reconstruction of site formation processes and their social and demographic background is still on the level of hypotheses, we can address the lithic analysis with better planigraphic and microstratigraphic evidence. In the southwest part of the site, an Early Upper Palaeolithic horizon represents a typologically poor flake industry with rare endscrapers which, nevertheless, differs markedly from the Gravettian by a dominance of the local Moravian cherts, mainly the spongolites. Evidence of the early Gravettian is restricted spatially and modest as well, but these industries are made of imported flint mainly. It is a blade and microblade industry with simple burins, comparable to the early Gravettian discovered recently at Dolní Vestonice IIa (Svoboda et al., 2015). Finally, the evolved Gravettian (Pavlovian) layers provide a typologically variable blade and microblade industry made of imported flint and radiolarite. Pavlov I was renomed for a variety of microlithic forms recovered in central parts of this site (Klíma, 1954) and the new assemblages from South-east (Fig. 12: 1e18) and South-west (Fig. 12: 19e23) complete this spectrum by additional specimens of backed microblades, microdenticulates, denticulates, and points. If we accept the above explanation of the C14 dates from South-east, than certain Table 1 Pavlov I, summary review of 14 C dates from the 1952e1972 excavation (charred wood, dates calibrated in OxCal v.4.2, using IntCal13 calibration curve (Bronk Ramsey, 2009; Reimer et al., 2013), Feb. 17, 2015). SE e South-east, NW e Northwest; precise location unknown. Site/Section Sample number Result (BP) Deviation Calibration (cal BP) Deviation Pavlov I e SE GrN-4812 26,730 250 31,235e30,535 95.4 GrN-19539 26,650 230 31,178e30,490 95.4 GrN-1272 26,620 230 31,163e30,452 95.4 KN-1286 26,580 460 31,380e29,718 95.4 GrN-22303 26,400 310 31,111e29,881 95.4 GrN-22305 25,840 290 30,760e29,380 95.4 GrA-192 25,530 110 30,101e29,295 95.4 GrN-22304 25,160 170 29,618e28,785 95.4 GrN-1325 25,020 150 29,453e28,709 95.4 Pavlov IeNW GrN-20391 26,170 450 31,105e29,419 95.4 Pavlov I e centre GIN-104 26,000 350 30,916e29,441 95.4 Table 2 Pavlov I, summary review of 14 C dates from the 2013e2014 excavation (charred wood, dates calibrated in OxCal v.4.2, using IntCal13 calibration curve (Bronk Ramsey, 2009; Reimer et al., 2013), Feb. 17, 2015). SE e South-east, SW e South-west; all other letters and numbers relate to numeration of the trenches and squares. The two dates in italics are problematic. Site/Section Sample number Location/Depth (cm) Result (BP) Deviation Calibration (cal BP) Deviation Pavlov IeSW/A Beta 359288 A7/275 25810 130 30,495e29,564 95.4 Beta 359287 A4d/335 26400 140 30,983e30,392 95.4 Beta 359285 A3b/390 27520 150 31,563e31,088 95.4 Beta 359286 A3b/397 28860 170 33,561e32,524 95.4 Pavlov IeSW/B Beta 359289 B5a/388 27050 130 31,271e30,872 95.4 Pavlov IeSW/D Beta 359291 D2c/330 26340 140 30,952e30,321 95.4 Beta 359292 D7/270 28630 170 33,307e31,972 95.4 Beta 359293 D7/290 28560 160 33,155e31,874 95.4 Beta 359294 D7/310 32540 240 37,303e35,876 95.4 Pavlov IeSW/E Beta 388397 E1/350 26920 130 31,210e30,805 95.4 Beta 388398 E1/365 28580 140 33,148e31,952 95.4 Beta 388399 E2/380 33230 220 38,282e36,686 95.4 Pavlov I e SE/unit S1 Beta 388403 OX1/145 26420 120 30,981e30,456 95.4 Beta 388404 OX1/160 28710 120 33,334e32,367 95.4 Beta 388405 OX1/165 27570 130 31,574 e 31,122 95.4 Beta 388406 OX1/170 27410 120 31,455 e 31,061 95.4 Pavlov I e SE/pit S2 Beta 388400 U6/147 26180 110 30,858e30,162 95.4 Beta 388401 U6/167 27660 130 31,664e31,159 95.4 Beta 388402 U6/170 26990 120 31,236e30,848 95.4 J. Svoboda et al. / Quaternary International xxx (2015) 1e1110 Please cite this article in press as: Svoboda, J., et al., Pavlov I: A large Gravettian site in space and time, Quaternary International (2015), http:// dx.doi.org/10.1016/j.quaint.2015.09.015 microdenticulates recovered from the lower locations indicate an earlier origin of this characteristic Pavlovian tool-type (Fig. 12:13e14). 3. Discussion and conclusion Traditionally, the Gravettian was considered as a result of continual evolution in Europe (e.g. Bolus, 2010). Following our model, which interprets modern human immigration to continental Europe as a repeated process, the Gravettian represents a case for the last massive input of “fresh blood” from the Mediterranean, related to significant adaptive changes to the new environments. Although inhabiting periglacial Europe, the Gravettian humans conserved a more tropically-adapted body which supports the model of repeated gene flows from temperate regions (e.g. Svoboda, 2015). The question of Gravettian origins, including the formation of the related settlement clusters, seems to be a complex one, where both the external impulses and local developmental trends should be evaluated. The new evidence of early Gravettian industries at Dolní Vestonice IIa and Pavlov I is still modest and requires further investigation. The present paper aims to demonstrate the complexity of spatio-temporal factors, as well as post-depositional (cryogenic) effects, that may influence the results of a lithic analysis at large and complex sites. At the present stage of knowledge, the occurrence of a blade and microblade industry in south Moravia before 33 ka cal BP becomes synchronous with analogical techno/ typological changes in Lower Austria and the Swabian Jura (Nigst et al., 2008; Bolus, 2010; Moreau, 2012). In contrast to the Swabian sites, we observe in Moravia more radical changes in lithic raw material composition. Elsewhere in Moravia (Stranska skala IIa; Svoboda, 1991), we also observe persistence of the later Aurignacian in a similar stratigraphic position, so that the two entities were partly contemporaneous. In terms of lithic technology and typology, the central European Gravettian seems invasive and may be related to a variety of earlier backed blade and microblade bladelet industries expanding along the Mediterranean and Black Sea coasts several millenia earlier. However, our model of Gravettian origin is more complex than simple introduction of lithic technology and typology from elsewhere. The Gravettian (Pavlovian) cultural complexity, characterized by extensive settlements, variable industries of organic materials, specialized hunting system, rituals and symbolism, reflects an optimal adaptation to climate of the northern latitudes, cold Eurasian steppes and parklands. Acknowledgement This research is part of the EU program FITEAMP CZ.1.07/2.3.00/ 20.0181 (Formation of International Team on Evolutionary Anthropology of the Moravian Populations). References Adovasio, J.M., Soffer, O., Klíma, B., 1996. Upper Paleolithic fibre technology: interlaced woven finds from Pavlov I, Czech Republic, c. 26.000 years ago. Antiquity 70, 526e534. Antoine, P., Rousseau, D.D., Degeai, J.P., Moine, O., Lagroix, F., Kreitzer, S., Fuchs, M., Hatte, Ch, Gauthier, C., Svoboda, J., Lisa, L., 2013. High-resolution record of the environmental response to climatic variations during the Last InterglacialGlacial cycle in Central Europe: the loess-palaeosol sequence of Dolní Vestonice (Czech Republic). Quaternary Science Reviews 67, 17e38. Beresford-Jones, D., Taylor, S., Payne, C., Pryor, A., Svoboda, J., Jones, M., 2011. Rapid climate change in the Upper Palaeolithic: the record of charcoal conifer rings from the Gravettian site of Dolní Vestonice, Czech Republic. Quaternary Science Reviews 30, 1948e1964. Bolus, M., 2010. Continuity or hiatus? The Swabian Aurignacian and the transition to the Gravettian. In: Neugebauer Maresch, Ch, Owen, L. (Eds.), New Aspects of the Central and Eastern European Upper Paleolithic e Methods, Chronology, Technology and Subsistence. OAW, Wien, pp. 139e150. Bronk Ramsey, C., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337e360. Fuchs, M., Kreutzer, S., Rousseau, D.D., Antoine, P., Hatte, Ch, Lagroix, F., Moine, O., Gauthier, C., Svoboda, J., Lisa, L., 2013. The loess sequence of Dolní Vestonice, Czech Republic: a new OSL-based chronology of the last climatic cycle. Boreas 42, 664e677. Haesaerts, P., Bachner, M., Borziac, I., Chirica, V., Damblon, F., Drozdov, N., Koulakovska, L., Pirson, S., 2010. New insight on the environmental background and the chronology of the Early Upper Palaeolithic in central Europe. In: Neugebauer Maresch, Ch, Owen, L. (Eds.), New Aspects of the Central and Eastern European Upper Paleolithic e Methods, Chronology, Technology and Subsistence. OAW, Wien, pp. 9e25. J€oris, O., Neugebauer-Maresch, Ch, Weninger, B., Street, M., 2010. The radiocarbon chronology of the Aurignacian to Mid-Upper Palaeolithic transition along the Upper and Middle Danube. In: Neugebauer Maresch, Ch, Owen, L. (Eds.), New Aspects of the Central and Eastern European Upper Paleolithic e Methods, Chronology, Technology and Subsistence. OAW, Wien, pp. 101e137. Klíma, B., 1954. Pavlov, nove paleoliticke sídliste na jizní Morave. Archeologicke rozhledy 6, 137e142. Klíma, B., 1959. Výzkum paleolitickeho sídliste u Pavlova v roce 1954. Archeologicke rozhledy 11, 3e15. Klíma, B., 1977. Malayja poluzemlyanka na paleoliticheskoy stoyanke Pavlov v Chekhoslovakiyi. In: Praslov, N.D. (Ed.), Problemy paleolita Vostochnoy i Centralnoy Yevropy. Nauka, Leningrad, pp. 144e148. Moreau, L., 2012. Le Gravettien ancien d'Europe Centrale revisite: mise au point et perspectives. L'Anthropologie 116, 609e638. Nigst, P.R., Viola, T.B., Haesaerts, P., Trnka, G., 2008. Willendorf II. Wissenschaftliche Mitteilungen des Nieder€osterreichischen Landesmuseum, vol. 19, pp. 31e58. Novak, M., 2005. Pavlov I e Southeast. Review of spatial distributions. In: Svoboda, J. (Ed.), Pavlov I e Southeast. A Window into the Gravettian Lifestyles, The Dolní Vestonice Studies, vol. 14. Institute of Archaeology, Brno, pp. 53e71. Oliva, M. (Ed.), 2009. Sídliste mamutího lidu u Milovic pod Palavou e Milovice. Site of a Mammoth People below the Pavlov Hills. Anthropos 27. Moravske zemske muzeum, Brno. Pryor, A.J.E., Steele, M., Jones, M.K., Svoboda, J., Beresford-Jones, D.G., 2013. Plant foods in the Upper Palaeolithic at Dolní Vestonice? Parenchyma redux. Antiquity 87, 971e984. Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Haflidason, H., Hajdas, I., Hatte, C., Heaton, T.J., Hoffmann, D.L., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Staff, R.A., Turney, C.S.M., van der Plicht, J., 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0e50,000 years cal BP. Radiocarbon 55, 1869e1887. http://dx.doi.org/10.2458/ azu_js_rc.55.16947. Revedin, A., Aranguren, B., Becattini, R., Longo, L., Marconi, E., Mariotti Lippi, M., Skakun, N., Sinitsyn, A., Spiridonova, E., Svoboda, J., 2010. Thirty thousand-yearold flour: new evidence of plant food processing in the Upper Paleolithic. Proceedings of the National Academy of Sciences USA 107, 18815e18819. Smolíkova, L., 1991. Soil micromorphologic investigation of the section at Dolní Vestonice II. In: Svoboda, J. (Ed.), Dolní Vestonice II e Western Slope. Universite de Liege, Liege, pp. 65e74. ERAUL 54. Soffer, O., 1989. Storage, sedentism and the Eurasian Palaeolithic record. Antiquity 63, 719e732. Svoboda, J., 1991. Stranska skala. Výsledky výzkumu v letech 1985-1987. Pamatky archeologicke 82, 5e47. Svoboda, J. (Ed.), 1994. Pavlov I, Excavations 1952-1953. ERAUL 66/The Dolní Vestonice Studies, vol. 2. Universite de Liege, Liege. Svoboda, J. (Ed.), 1997. Pavlov I e Northwest. The Upper Paleolithic Burial and its Settlement Context. The Dolní Vestonice Studies, vol. 4. Institute of Archaeology, Brno. Svoboda, J. (Ed.), 2005. Pavlov I e Southeast. A Window into the Gravettian Lifestyles. The Dolní Vestonice Studies, vol. 14. Institute of Archaeology, Brno. Svoboda, J., 2015. Early modern human dispersal in central and eastern Europe. In: Kaifu, Y., Izuho, M., Goebel, T., Sato, H., Ono, A. (Eds.), Emergence and Diversity of Modern Human Behavior in Palaeolithic Asia. Texas A&M University Press, College Station, pp. 23e33. Svoboda, J., Hladilova, S., Horacek, I., Kaiser, J., Kralík, M., Novak, J., Novak, M., Pokorný, P., Sazelova, S., Smolíkova, L., Zikmund, T., 2015. Dolní Vestonice IIa: Gravettian microstratigraphy, environment, and the origin of the baked clay production in Moravia. Quaternary International 359e360, 195e210. Trinkaus, E., Svoboda, J., 2006. Early Modern Human Evolution in Central Europe. The People of Dolní Vestonice and Pavlov. In: The Dolní Vestonice Studies 12. Oxford University Press, Oxford e New York. Vandiver, P., Soffer, O., Klíma, B., Svoboda, J., 1989. The origins of ceramic technology at Dolní Vestonice, Czechoslovakia. Science 246, 1002e1008. Verpoorte, A., 2000. Pavlovian reflexes and the Pompeii premise: a spatial analysis of stone artefacts from Pavlov I (Moravia, Czech Republic). Archeologicke rozhledy 52, 577e594. J. Svoboda et al. / Quaternary International xxx (2015) 1e11 11 Please cite this article in press as: Svoboda, J., et al., Pavlov I: A large Gravettian site in space and time, Quaternary International (2015), http:// dx.doi.org/10.1016/j.quaint.2015.09.015 174 3.5.5 Paleolithic hunting in a southern Moravia landscape: The case of Milovice IV, Czech Republic Citace: Svoboda, J., Bochenski, Z., Čulíková, V., Dohnalová, A., Hladilová, Š., Hložek, M., Horáček, I., Ivanov, M., Králík, M., Novák, M., Pryor, A. Sázelová, S., Stevens, R., Wilczyński, J., Wojtal, P. 2011: Paleolithic Hunting in Southern Moravia: The Case of Milovice IV. Geoarchaeology, 26 (6), 836-866. Geoarchaeology: An International Journal, Vol. 26, No. 6, 838–866 (2011) © 2011 Wiley Periodicals, Inc. Published online in Wiley Online Library (wileyonlinelibrary.com). DOI:10.1002/gea.20375 Paleolithic Hunting in a Southern Moravian Landscape: The Case of Milovice IV, Czech Republic Jirˇí Svoboda,1,2, * Zbigniew M. Boche´nski,3 Veˇra Cˇ ulíková,4 Alena Dohnalová,2 Sˇárka Hladilová,2 Martin Hlozˇek,5 Ivan Horácˇek,6 Martin Ivanov,2 Miroslav Králík,2 Martin Novák,1 Alexander J.E. Pryor,7 Sandra Sázelová,2 Rhiannon E. Stevens,8 Jaroslaw Wilczy´nski,3 and Piotr Wojtal3 1 Institute of Archaeology at Brno, Academy of Sciences of the Czech Republic, Královopolská 147, 61200 Brno, Czech Republic 2 Faculty of Science, Masaryk University, Kotlárˇská 2, 61137 Brno, Czech Republic 3 Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Slawkowska 17, 31016 Kraków, Poland 4 Institute of Archaeology at Prague, Academy of Sciences of the Czech Republic, Bezrucˇovo nám. 1, 74601 Opava, Czech Republic 5 Faculty of Arts, Masaryk University, Arne Nováka 1, 60200 Brno, Czech Republic 6 Faculty of Science, Charles University, Vinicˇní 5, 12000 Praha, Czech Republic 7 Department of Archaeology, University of Cambridge, Downing Street, Cambridge CB2 3DZ, UK 8 McDonald Institute of Archaeological research, University of Cambridge, Downing Street, Cambridge CB2 3ER, UK The Dolní Veˇstonice–Pavlov–Milovice area (Czech Republic) on the slopes of the Pavlov Hills provides an opportunity for correlating the geomorphology of the Dyje River valley with Gravettian settlement patterns. Although the sites vary in size and complexity, they create a regular chain of strategic locations at elevations between 200 m and 240 m asl. In 2009, a road collapsed into deserted cellars inside the village of Milovice and revealed a complex of archaeological layers deep within loess, at an elevation of only 175 m asl. This paper presents an analysis of this atypical archaeological site location and compares the results with the other sites. We argue that this location allowed direct contact with mammoth herds concentrated on the floodplain, while the aquatic environment offered possibilities for gathering plants and fishing. This site represents a new aspect of organized settlement, hunting strategies, and short-distance human movements during the Gravettian within this area. © 2011 Wiley Periodicals, Inc. *Corresponding author; E-mail: jsvoboda@sci.muni.cz. GEA266_04_20375.qxd 9/23/11 12:15 PM Page 838 GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, VOL. 26, NO. 6 PALEOLITHIC HUNTING IN A SOUTHERN MORAVIAN LANDSCAPE 839 INTRODUCTION During the past two decades, Paleolithic researchers working in the Moravian geomorphological corridor (Czech Republic) have investigated the relationship between a variety of landscape types, human settlement strategies, and social systems (Svoboda, Lozˇek, & Vlcˇ ek, 1996:195–204; Sˇ krdla & Lukásˇ , 2000; Verpoorte, 2001; Vasil’ev, Soffer, & Kozlowski, 2003; Oliva, 2007). Broadly, they found that Early Upper Paleolithic (EUP; Aurignacian) occupations are located on the margins of Moravian highlands with a good view over the landscape (250–400 m asl) and some distance from rivers, while the Middle Upper Paleolithic (MUP; Gravettian) settlements are found in mid-slope locations (200–300 m asl), although still high enough to control the adjacent river valleys. Late Upper Paleolithic (LUP; Magdalenian) sites, by contrast, are predominantly located in caves. It is expected that these settlement strategies are tied to the dominant resources exploited during the given time period: horse and reindeer herds during the EUP and LUP, versus mammoths supplemented by a variety of small game during the MUP. On a microregional scale, the Dolní Veˇstonice–Pavlov–Milovice area, located on the slopes of the Pavlov Hills (maximum elevation 550 m asl) in the southeastern part of the Czech Republic (Figure 1), provides an ideal case study for investigating the relationship between the geomorphology of the Dyje River valley and MUP (Gravettian) settlement patterns. Although the individual archaeological sites vary in size and complexity, they create an almost regular chain at approximately the same elevation, 200–240 m asl and about 30–70 m above the floodplain (Figure 2). Almost all terrain investigated at these elevations has been found to show evidence of archaeological activity, so that new site locations may even be predicted based on the previous field surveys, as was the case in 2007 when Pavlov VI was discovered Figure 1. Map of the Czech Republic. The square indicates the location of the Dolní Veˇstonice–Pavlov– Milovice area. GEA266_04_20375.qxd 9/23/11 12:15 PM Page 839 SVOBODA ET AL. GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, VOL. 26, NO. 6840 (Svoboda et al., 2009). Mid-slope locations adjacent to the river, from which the valley floodplain and lower slopes can be controlled, are interpreted as optimal locations for mammoth exploitation. These strategic locations allow aerial views of animal herds and easy access to side gullies and blind valleys which are interpreted as natural traps where selected individuals could be killed, as demonstrated by the frequent abundance of mammoth bones at such locations (e.g., Dolní Veˇstonice I and II). In the current discussions questioning the role of humans in mammoth bone accumulations (Soffer, 2003), this settlement pattern may be considered as one of the arguments for intentionality. In 2009, Milovice IV, a new Gravettian site, was discovered in a very atypical location, situated almost on the valley floor at 175 m asl (Figure 3). In this paper we investigate the extent to which the different topographic location is reflected in other aspects of this site’s climatic, environmental, and behavioral features. Although difficult to access and partly destroyed, the site was subjected to a series of paleobotanical, zooarchaeological, and archaeological analyses with the aim of reconstructing the environment and human activities. These data were correlated with the geographic and cultural contexts, and the implications of the observed patterns for different models of behavioral strategy were considered. Figure 2. The Dolní Veˇstonice–Pavlov–Milovice area (marked by the square in Figure 1), showing the topography of the Pavlovské Hills, extension of the floodplain below, and position of individual Gravettian sites (DV ϭ Dolní Veˇstonice, M ϭ Milovice, P ϭ Pavlov). GEA266_04_20375.qxd 9/23/11 12:15 PM Page 840 GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, VOL. 26, NO. 6 PALEOLITHIC HUNTING IN A SOUTHERN MORAVIAN LANDSCAPE 841 MILOVICE IV: LOCATION AND DATING Background Rare historical records repeatedly refer to a layer of bones of “Diluvial creatures” located several meters below the surface of Milovice village; however, the buildings and the depth of the bone material prevented access. In July 2009, a road collapsed into a system of abandoned cellars (Figures 4, 5). Both the location and the excavation methodology at this new site, named Milovice IV, were atypical. Collapse of the sediments enabled us to reach into depths otherwise inacessible, but also posed risks for further excavation and a bias in the record. The rescue excavation took place in 2009 and 2010, and both excavation seasons were linked with repair work on the village road. We stabilized the collapsed area of ca. 2.5 m ϫ 4.0 m using wooden poles, provided facilities for entry of fresh air, cleaned and documented the side sections and the cellar ceiling, recorded three-dimensional provenience of the objects still in place, and excavated the ceiling in the reverse order of usual archaeological procedure: from below to above. Due to instability of the overlying sediments, it was risky to expand the archaeological excavation too far, so that the archaeological features could not be excavated in full and not all types of the material provided statistically sufficient quantities for separation according to the layers. The mass of collapsed sediments were transported and wet-sieved at the Institute of Archaeology in Dolní Veˇstonice; however, these materials lack precise provenience data within Figure 3. View from the Milovice valley over the village toward the Dyje River floodplain in the distance. The arrow indicates the position of Milovice IV. Photo by M. Frouz. GEA266_04_20375.qxd 9/23/11 12:15 PM Page 841 SVOBODA ET AL. GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, VOL. 26, NO. 6842 the archaeological layers. This bias especially concerns the faunal and microfaunal remains and the clay pellets. Stratigraphy A stratigraphic section through the collapsed depression revealed 2.8 m of darkish, redeposited sediments with medieval and recent pottery sherds, followed by several meters of yellowish-brownish loess, which covers the floor of the Milovice valley to a significant depth. The Upper Paleolithic archaeological evidence was recovered from the loess at the total depth of 5 m below the ground surface, where it formed the ceiling of one of the old cellars (the cellar floor was located 7 m below the ground surface). The loess below and above the archaeological complex was thick and homogeneous. In contrast to the nearby Gravettian sites of Dolní Veˇstonice and Pavlov, where the Upper Pleistocene stratigraphies display a series of chernozems and pseudogleys below the archaeological complex and a sequence of initial pseudogleys above it (Klíma et al., 1962; Svoboda, Lozˇek, & Vlcˇek, 1996; Haesaerts et al., 2010; Beresford-Jones et al., 2011), no pedogenesis was recorded within the loess deposits at Milovice IV. This observation suggests that the mass of eolian sediments was blown into the Milovice valley relatively rapidly. As at other Gravettian sites, the human occupation took place during a short period of limited loess deposition and redeposition within Oxygen Isotope Stage 3 (OIS 3), shortly preceding the last loess accumulation, correlated with Oxygen Isotope Stage 2 (OIS 2). Figure 4. Fieldwork at Milovice IV within the collapsed cellar. Deposit of mammoth tusks is visible in the right wall (section 1). Photo by M. Frouz. GEA266_04_20375.qxd 9/23/11 12:15 PM Page 842 GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, VOL. 26, NO. 6 PALEOLITHIC HUNTING IN A SOUTHERN MORAVIAN LANDSCAPE 843 The archaeological complex was relatively thick (0.6–0.7 m) and composed of dark anthropogenic sediments with burnt and unburnt bones, charcoal, ochre, and artifacts (Figure 6). This complex was stratified into several sublayers. The base was extremely dark and rich in burnt bone and charcoal. Three regular kettle-shaped pits were hollowed into the basal loess below; although we could not excavate them completely, depressions of the same shape and size, found frequently at Dolní Veˇstonice, Pavlov, and other sites in the area, have generally been interpreted as boiling pits. Another important feature recorded at the base of the archaeological complex was Figure 5. Planigraphy of Milovice IV (all layers): the cellar showing the collapsed oval-shaped area from the vault in the center, position of the larger bones, documented lithics (black dots), and location of the lateral sections 1 and 2. Scale one meter. GEA266_04_20375.qxd 9/23/11 12:15 PM Page 843 SVOBODA ET AL. GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, VOL. 26, NO. 6844 a group of several mammoth tusks overlying each other, similar to tusk deposits excavated previously at the Gravettian site of Prˇedmostí. Preservation of such regular features suggests that the basal archaeological layer had not been disturbed and lay in its original stratigraphic position. In contrast, the deposition pattern of the middle and upper layers shows the effects of redeposition. Geography The site of Milovce IV is located in the entrance of the Milovice blind valley. Approximately 2 km downslope within the valley lies another Gravettian site, Milovice I, associated with a large mammoth bone deposit and with a wide range of Pavlovian and later Gravettian 14 C ages (Oliva, 2009). The thickness of the cultural layers in the sections, combined with the earlier records of fossil bone finds scattered elsewhere in the village, leads us to suspect that Milovice IV represents one of the larger sites in terms of size, functional complexity, and intensity of occupation. The richness and diversity of the archaeological material recovered confirms this expectation. Although it is difficult to demonstrate an absolute contemporaneity of Milovice IV and I, a site of this size would have blocked the passage of large animals deeper in the valley. A potential explanation for the unusual position of the site could be that Figure 6. Stratigraphy of Milovice IV. Section 1 (left), showing the site’s microstratigraphy in curvature of the cellar wall, with the deposit of several mammoth tusks at the base. Section 2 (right) with a complex hearth and small kettle-shaped pits at the bottom. Below are orthogonal projections of documented lithic artifacts (black dots) within the stratigraphic profiles. GEA266_04_20375.qxd 9/23/11 12:15 PM Page 844 GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, VOL. 26, NO. 6 PALEOLITHIC HUNTING IN A SOUTHERN MORAVIAN LANDSCAPE 845 the cultural layers were redeposited from the valley flanks into the valley bottom by slope processes, landsliding, or gelifluction (such cases were described from Dolní Veˇstonice I and are presumed at Pavlov III and elsewhere in the area). However, the in situ position of the basal layer at Milovice IV, including regular kettle-shaped pits and organized mammoth tusk deposits, argues against any movement of the sediments at this stage, and redeposition can only be postulated when dealing with the middle and upper layers. 14 C Chronology The 14 C ages from the Dolní Veˇ stonice–Pavlov–Milovice area suggest that the duration of the Gravettian occupation during OIS 3 was restricted in time. Figure 7 shows a probability distribution plot of the calibrated (95.4%) dates of samples from major Gravettian sites in the Dolní Veˇstonice–Pavlov–Milovice area using the program OxCal v. 4.1.7 (Bronk Ramsey, 2009). There is a cluster of Early Pavlovian dates, around 27 ka B.P. (32 ka cal. B.P.) detected at the sites of Dolní Veˇstonice II and Pavlov II, but the majority of dates from the largest site agglomerations such as Dolní Veˇstonice I and Pavlov I fall into the Evolved Pavlovian, dated 27–25 ka B.P. (31–30 ka cal. B.P.), and a few dates are even later. This time span coincides with the rapid oscillations of the Greenland ice core record, but a precise correlation, in the absence of more precisely dated microstratigraphies at the archaeological sites, is still a matter of research and debate (Jöris et al., 2010; Haesaerts et al., 2010; Musil, 2010; Beresford-Jones et al., 2011). Certain sites or site sections in the area have provided microstratigraphies with sequences of 14 C ages, showing that the accumulation of these complex deposits took place within time intervals of millennia (Dolní Veˇstonice I) or centuries (Dolní Veˇ stonice IIa, Pavlov II). It should be mentioned that samples for environmental analyses taken from such locations either failed to produce data or did not show much evidence for environmental change; yet analyzing Gravettian microstratigraphies in the Moravian region as a part of site formation processes and in more detail represents a promising research topic. At Milovice IV, four charcoal samples were dated from superimposed positions within the microstratigraphy (Table I). Since the dates are not ordered in sequence in this case and sediments of the middle and upper layers show patterns of redeposition, we expect that the three upper dates relate to materials from higher locations. In general, however, the four dates confirm a relatively rapid formation of this settlement complex during the Evolved Pavlovian stage, with possible persistence into later Gravettian stages. In terms of the climatic record of OIS 3, the interval of occupation coincides with two Dansgaard–Oeschger colder intervals with an amelioration in between. CLIMATIC AND ENVIRONMENTAL ASPECTS Previous environmental reconstructions conducted at archaeological sites in the Dolní Veˇstonice–Pavlov–Milovice area focused on the immediate vicinities of these GEA266_04_20375.qxd 9/23/11 12:15 PM Page 845 SVOBODA ET AL. Figure 7. Plot of calibrated 14 C ages from major Gravettian sites in the Dolní Veˇstonice–Pavlov–Milovice area alongside the NGRIP ice core d18 O record, generated using the 14 C calibration program OxCal v. 4.1.7. GEA266_04_20375.qxd 9/23/11 12:15 PM Page 846 GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, VOL. 26, NO. 6 PALEOLITHIC HUNTING IN A SOUTHERN MORAVIAN LANDSCAPE 847 elevated locations (Svobodová, 1991, Beresford-Jones et al., 2010), whereas the wetland vegetation on the plain below has been reconstructed on the basis of pollen analysis of marshes of the same 14 C age at the site of Bulhary, about 3 km eastward along the Dyje River (Rybnícˇková & Rybnícˇek, 1992). In order to clarify the situation at Milovice IV, located in a marginal position between these two environments, we compiled the available data about vegetation (pollen and charcoal), fauna (mollusks, fishes, toads, small mammals), and isotopes. Vegetation Although samples for pollen analysis were taken from several positions within the Milovice IV microstratigraphy, only one location—a lens of pure loess interstratified between the lower archaeological layers—provided corroded pollen grains, containing a small number of palynomorphs. Pine was dominant among the trees with 11 grains recorded, accompanied by single grains of Corylus and Betula, and by the herbs Asteraceae, Poaceae, and Ranunculaceae. This phenomenon (i.e., pollen preservation in only one horizon of a complex microstratigraphy, and usually in lower position), has been repeatedly observed at other Moravian Gravettian sites (Pavlov, Dolní Veˇ stonice, Petrˇkovice) and means it is not possible to reconstruct the vegetation sequences at most of these sites. Concerning wood used as fuel, Milovice IV belongs to the group of larger Gravettian sites where burnt bone is dominant over wood (as at Prˇedmostí; Beresford-Jones et al., 2010). Thus, charcoal fragments were rare compared to burnt bone, and all are small in dimension. Again, they were concentrated in the lower cultural layer, especially in basal parts of the hearths. Pine (Pinus sylvestris or Pinus cf. sylvestris) was dominant in most of the analyzed samples (total of 24 fragments), followed by spruce (Picea abies, 18 fragments) and/or larch (Larix decidua/Picea abies, 12 fragments). Additional trees are represented by individual occurrences only: fir (cf. Abies alba, 3 fragments) and willow (Salix sp., 2 fragments). An interesting find is a section of willow branch 2–3 years old and 15.5 mm in diameter. Although we could not detect vegetation change through time, the pollen and charcoal samples at Milovice IV are Table I. The Milovice IV 14 C dates (all on conifer charcoal) and calibrations using the radiocarbon calibration program OxCal v. 4.1.7 (Bronk Ramsey, 2009). Location in Microstratigraphy Sample No. Result (14 C yr B.P.) Deviation Calibrated Date (cal. yr B.P.) Upper GrA-45618 25,940 160 30,920–30,553 (68.2%) 31,041–30,382 (95.4%) Middle GrA-44407 24,250 110 29,347–28,857 (68.2%) 29,447–28,583 (95.4%) Middle GrA-48931 26,470 120 31,174–31,003 (68.2%) 31,254–30,905 (95.4%) Lower GrA-44408 25,710 130 30,681–30,357 (68.2%) 30,881–30,266 (95.4%) GEA266_04_20375.qxd 9/23/11 12:15 PM Page 847 SVOBODA ET AL. GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, VOL. 26, NO. 6848 broadly in agreement and do not differ markedly from those recovered from other Gravettian sites in the area. Fauna as Environmental Indicators The malacofaunal and microvertebrate remains contribute important additional indications of the environment during human occupation of the site. The majority of finds were recovered during wet-sieving of the collapsed material, while samples taken directly from the sections were poor. Therefore, we cannot exclude some recent admixture in the Pleistocene faunal record, even if on a restricted scale. Among the Pleistocene snails, relatively complete shells and fragments from various original contexts were numerous. Above all, a relatively large number of species typical for loess environments (Lozˇek, 2001) were observed, namely Vallonia tenuilabris, Helicopsis striata, Succinella oblonga, Trochulus hispidus, and so on, the genera Pupilla and Vertigo being less abundant. A conspicuously high percentage of species linked to various aquatic environments were also recovered, such as Succinea putris, Anisus leucostoma, Galba truncatula, and sporadic Lithoglyphus naticoides. After Lozˇek (2000), the terrestrial species are typical of open ground environments (Vallonia tenuilabris, Helicopsis striata, Chondrula tridens, Granaria frumentum) or woodland/open grounds (Succinella oblonga, Cochlicopa lubrica, Clausilia cf. dubia, Trochulus hispidus, Perpolita hammonis), the typical woodland elements being sporadic—Alinda cf. biplicata, Arianta arbustorum. The species Xerolenta obvia represents a Holocene admixture that occurs only in the historic period in this region (M. Horsák, pers. comm., 2010). One piece of probable aquatic Crustacea and three fish vertebrae of indeterminable species provide evidence of adjacent fresh water environments. In addition, skeletal remains of a few toads (Bufo viridis) were recovered: one right frontoparietal (fused with prootic-exoccipital); five humeri (3 sin. ϩ 2 dext.), five left ilia, four tibiofibulae (1 sin. ϩ 2 dext.), two right femora, two presacral vertebrae, and one urostyle (Figure 8; Table II). Although the oldest known Central European Bufo viridis probably occurs as early as the Early Miocene (Böhme, 2003), this species is common in many Quaternary localities in Germany, Poland, Austria, and the Czech Republic. Bufo viridis is one of the most polytopic amphibian species of the Palearctic, recently inhabiting Europe with the exception of Great Britain, western parts of France, Belgium, and Iberia. It is a thermophilous species usually preferring open areas and edges of forest ponds. During the larval stage of ontogenetic development, this species occurs in wet environments with stagnant water reservoirs; however, adult specimens are resistant against increased aridity and even increased salinity. Therefore, it can also inhabit dry environments in steppes, semideserts, and karstic areas (Barusˇ et al., 1992; Gasc et al., 1997). Small ground mammals are represented by dental and skeletal fragments of the following taxa (MNI): Spermophilus cf. citellus (3), Myodes cf. glareolus (1), Arvicola terrestris (1), Microtus gregalis (1), Microtus arvalis (2), Arvicolidae indet. (3), Apodemus cf. flavicollis (2), and Mus sp. (1). With the exception of the last two taxa (which most probably do not belong to the studied community, as indicated by their GEA266_04_20375.qxd 9/23/11 12:15 PM Page 848 GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, VOL. 26, NO. 6 PALEOLITHIC HUNTING IN A SOUTHERN MORAVIAN LANDSCAPE 849 taphonomic characteristics: nearly complete mandibles in a nonstratified sample), all the taxa are known to represent glacial communities (Table II). M. gregalis is an indicator species of glacial steppe environments, and Microtus arvalis and Spermophilus, which dominate the sample, indicate milder climates and steppe Figure 8. Green toad (Bufo viridis) remains. A, B: right frontoparietal (fused with prootic-exoccipital); C, D: right humerus; E: left ilium; F: left tibiofibula; G: right femur; H, I: presacral vertebra; J, K: urostyle. A, D, F, H, K: dorsal, C, G, I: ventral, E: lateral, J: cranial, B: caudal views. Scale equals 2 mm. GEA266_04_20375.qxd 9/23/11 12:15 PM Page 849 SVOBODA ET AL. GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, VOL. 26, NO. 6850 environments with high primary production. Arvicola is a semi-aquatic form, while Myodes glareolus is an indicator species of woodland and/or arboreal habitats in general. A picture of a rich steppe habitat with riparian tree vegetation along a water body would be in perfect correspondence with the respective fossil record. Isotopic Analysis as a Climatic Indicator As part of the climatic investigations at Milovice IV, an analysis of oxygen and carbon isotopes (d18 O and d13 C) was conducted on five horse teeth from the site. d18 O in terrestrial herbivores is known to precipitate in isotopic equilibrium with body water d18 O, which in turn is linked to local precipitation d18 O (Luz, Kolodny, & Horowitz, 1984; Luz & Kolodny, 1985; Longinelli, 1984). The d18 O of an animal’s tooth enamel thus reflects the d18 O composition of local precipitation during the period of tooth formation. Precipitation d18 O relates to near-surface air temperature across mid-high latitude and Table II. Milovice IV. NISP (number of identified specimens) and MNI (minimum number of individuals) of the animals groups. Taxon NISP MNI Piscae indet. 3 Bufo viridis 20 5 Anura indet. 1 Lagopus lagopus 7 1 cf. Lagopus sp. 3 Tetrao tetrix 1 1 Aves indet. (size Tetrao tetrix/Lagopus sp.) 5 Spermophilus cf. citellus 4 2 Spermophilus sp. 1 1 Apodemus cf. flavicollis 2 1 Arvicola terrestris 1 1 Arvicolidae indet (size Dicrostonyx/Microtus) 3 Arvicolidae indet. 1 1 Myodes cf. glareolus 1 1 Microtus gregalis 1 1 Microtus arvalis 2 2 Lepus sp. 63 2 Alopex lagopus/Vulpes vulpes 18 1 Canis lupus 62 2 Ursus sp. 2 1 Carnivora 11 Equus sp. 31 2 Mammuthus primigenius 130 2 Coelodonta antiquitatis 1 1 Rangifer tarandus 96 3 Cervidae 13 Total 483 31 GEA266_04_20375.qxd 9/23/11 12:15 PM Page 850 GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, VOL. 26, NO. 6 PALEOLITHIC HUNTING IN A SOUTHERN MORAVIAN LANDSCAPE 851 continental environments (e.g., Rozanski, Araguás-Araguás, & Gonfiantini, 1992), and tooth enamel d18 O values can therefore be used in paleoclimatic research to provide information about past temperatures. d13 C in terrestrial herbivore teeth reflects the carbon isotope composition of the animal’s whole diet (Ambrose & Norr, 1993), which in turn can be influenced by the local climate conditions (Heaton, 1999). Teeth grow and mineralize progressively from the crown tip toward the root, recording seasonal variations in d18 O and d13 C during the time the tooth is growing, approximately two to three years for horses (Hoppe et al., 2004). Teeth were sampled using two approaches, first by bulk sampling the enamel across the full remaining crown height to give an average of the longest period of time possible, and second by sampling two of the teeth serially down the length of each tooth to investigate seasonal variability. All samples were pretreated for carbonate analysis according to Balasse et al. (2002) and measured by reacting them with 100% orthophosphoric acid at 90°C to release CO2 for analysis with a PRISM isotope ratio mass spectrometer (located in the Department of Earth Sciences, University of Cambridge). The results from the bulk samples gave a mean d18 O of Ϫ10.1‰ (s ϭ 0.7‰) and a mean d13 C of Ϫ10.6‰ (s ϭ 0.5‰) relative to the PDB isotopic standard (Figure 9). These d18 O data were converted to drinking water d18 O on the SMOW isotopic scale using existing conversion formulas (Coplen, Kendall, & Hopple, 1983; Iacumin et al., 1996; Delgado Huertas et al., 1995), and used to calculate an estimate of mean annual temperature following Rozanski, Araguás-Araguás, and Gonfiantini (1992) of Ϫ3.1°C (Ϯ2.3°C). This reflects the cold glacial climatic conditions inhabited by the horse individuals found at Milovice IV. The intra-tooth d18 O values suggest seasonal temperature variations of at least 6°C. There is limited variation in the intra-tooth d13 C values, indicating that the horses consumed a similar range of C3 flora throughout the year. Further isotopic work on other Moravian Gravettian sites is continuing, and will help to place the Milovice IV values into the broader environmental context of the Pavlovian chronological period. Bulk enamelIntratooth 2 (MIV215)Intratooth 1 (MIV213) 706050403020100 706050403020100 Ϫ9.0 Ϫ9.5 Ϫ10.0 Ϫ10.5 Ϫ11.0 Ϫ11.5 Ϫ12.0 δ13 C (PDB) δ18 O (PDB) δ18 Oandδ13 C(V-PDB) Distance from enamel root junction (mm) Bulk values for whole length of teeth Figure 9. d18 O and d13 C results from five bulk samples and two horse teeth sampled for intra-tooth analysis. GEA266_04_20375.qxd 9/23/11 12:15 PM Page 851 SVOBODA ET AL. GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, VOL. 26, NO. 6852 BEHAVIORAL ASPECTS The second major question addressed in this paper aims to clarify whether human activities performed at Milovice IV differed in some aspects from situations analyzed previously at larger sites from the Milovice area (e.g., Milovice I). The size of our own excavations was limited in space, taking place underground and in the center of the modern village, and given the depth of the overlying sediments only a small portion of a potentially large site could be processed and analyzed. Yet several lines of evidence, namely faunal remains representing food waste, lithic debitage, bone artifacts, personal ornaments, and fired clay pellets, are integrated here to reconstruct human behavioral patterns at this locality. Fauna as Hunter’s Prey The collapse of sediments and risk of further collapse due to excavation limited the number of faunal remains that could be plotted three-dimensionally. In total, more than 20,000 bones and fragments were recovered, but only 390 fragments have three-dimensional provenience recorded and only 35 of them could be determined in terms of type of bone and species. Therefore, we consider the faunal record as a whole (Table II). The majority of animal bones and teeth were unidentifiable fragments smaller than 20 mm, and species and element identifications were possible for only 483 bones and teeth. The identified faunal remains are dominated by fragments of bones and teeth of woolly mammoth (Mammuthus primigenius; NISP ϭ 130), representing at least two individuals, probably killed close to the site (Figure 10). Other taxa (reindeer, Figure 10. Group of mammoth bones in the cellar’s vault (seen from below). Photo by M. Frouz. GEA266_04_20375.qxd 9/23/11 12:16 PM Page 852 GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, VOL. 26, NO. 6 PALEOLITHIC HUNTING IN A SOUTHERN MORAVIAN LANDSCAPE 853 wolf, hare, horse, and fox) are each represented by a few dozen bones and teeth, which belong to between one and three individuals in each case. In addition, 16 bird bones were recovered, the majority of them (NISP ϭ 10) belonging to a minimum of two individuals of ptarmigan; one bone is of a female black grouse. In fact, various parts of the animal’s skeleton are represented (Table III). Despite the small number of finds at Milovice IV, signs of human activity on the bones were visible in the form of cut marks and from evidence of burning. Cut marks from lithic tools were found on several reindeer bones, including marks on a tibia (Binford code number Tp-1; Figure 11), astragalus (Binford code number TA-1 and TA-2), and navicular cuboid, which clearly originate from dismembering the carcass. Meanwhile, traces on a reindeer calcaneus (Binford code number TC-3) were made by inserting a rope or gambrel, possibly for hanging the carcass. Cut marks were also observed on a wolf’s vertebra (Figure 12), possibly from dismembering or filleting the carcass. The high fragmentation of bones into fragments smaller than 20 mm was a very common feature at Milovice IV, but this was not caused exclusively by postdepositional processes, such as the pressure of sediments or collapse of the cellar’s ceiling. The majority of breakages instead result from various human activities such as marrow and grease extraction or preparation of broth. According to ethnoarchaeological observations among the Nunamiuts of Alaska, the length of bone fragments resulting from these activities is smaller than 50 mm (Delpech & Rigaud, 1977). The most characteristic feature at this site, however, is a large number of burned bone fragments, possibly indicating that bone was used as a fuel in the hearths. Certainly, the bones were exposed to a variety of temperatures and burned for different durations of time (following Lyman, 1994). Some bones display dark brown patches on the surface, possibly as a result of heating or roasting meat attached to them. However, the same type of modification was recorded on bones with no meaty content such as a reindeer astragalus or a wolf mandible (Figure 13), and a black grouse bone also displays these brown patches. Buikstra and Swegle (1989) noted that when fleshed bones were heated/roasted in an open fire, they could become carbonized in the area where there is no meat to cover the bone. Accordingly, we suggest these marks at Milovice IV likely result from bones coming into direct contact with flames or hot coals. The amount of burnt bone fragments at Milovice IV, which comprises about 15,000 of the total of 20,000, has no parallel at other sites in south Moravia, such as Dolní Veˇstonice I and II, Pavlov I, or Milovice I (Brugère, Fontana, & Oliva, 2009); rather, it compares better with the large Gravettian sites of central and northern Moravia, namely Prˇedmostí I and Petrˇkovice (Beresford-Jones et al., 2010; N´yvltová Fisˇ áková, 2008). The faunal composition at Milovice IV also differs from the nearest large site Milovice I, dating to an equivalent period, where woolly mammoth dominates the entire assemblage, while small mammals (hares and foxes) are almost absent (Brugère, Fontana, & Oliva, 2009). Rather, the composition at Milovice IV recalls sites like Pavlov I and Pavlov VI, with a more balanced representation of small (hare–fox sized), medium (wolf–reindeer sized), large (horse–bear sized), and very GEA266_04_20375.qxd 9/23/11 12:16 PM Page 853 TableIII.MiloviceIV.NISP(numberofidentifiedspecimens)andMNE(minimumnumberofelements)ofthemostnumerousmammaliantaxa.Severalmammothtusks, becauseoftheirsizeandfragility,wereleftinplaceandnotincorporatedinthisanalysis. MammuthusRangifer Lepussp.Alopex/VulpesCanislupusEquussp.primigeniustarandus SkeletalPartNISPMNENISPMNENISPMNENISPMNENISPMNENISPMNE Tusk Maxillaandcranium21122 Antler Mandible115411 Tooth212110101191916721818 Fragmentsoftooth4 Atlas11 Axis11 Vertebra761111 Ribs3161 Scapula11111111 Humerus111132 Radius321194 Ulna11116232 Carpals1111221155 Metacarpal11332211 Reducedmetacarpal2211 Pelvis22211133 Femur21111165 Patella1144 Tibia221121108 Astragalus33 Calcaneus33112243 Tarsal221122 Metatarsal441121 Metapodial1311128 Phalange883314141133 Sesamoid66223344 Fragmentoflongbone32 Bonefragment52 TotalNISP6347181662563128130199672 GEA266_04_20375.qxd 9/23/11 12:16 PM Page 854 Figure 12. Wolf (Canis lupus). Thoracic vertebra with cutmarks created during dismembering. Scale 20 mm. Figure 11. Reindeer (Rangifer tarandus). Proximal part of a right tibia with cutmarks created during dismembering. Caudal view. Scale 50 mm. GEA266_04_20375.qxd 9/23/11 12:16 PM Page 855 SVOBODA ET AL. GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, VOL. 26, NO. 6856 large mammals (woolly mammoths). The presence of bird remains at Milovice IV, Pavlov I, and Dolní Veˇstonice II also provides good evidence that these animals represented an important contribution to the diet during the Gravettian period (Boche´nski et al., 2009) In sum, despite the limitation of the excavated and sampled area, the faunal record at Milovice IV demonstrates similarities to some of the larger sites of the Pavlov Hills area, namely in terms of the species diversity and presence of various signs of human activity on the bones. Lithic Artifacts The excavation revealed a sample of 5083 lithic artifacts. Given a better visibility of the lithics in the walls and ceiling of the collapsed cellar, part of the collection could be related to the upper, middle, and lower layers (Table IV). Again, the majority of artifacts were found in collapsed sediments without stratigraphic provenience, and these were analyzed together. As at other sites of the area, lithic artifacts are predominantly made of flint originating from fluvioglacial sediments (46%), but the proportion of radiolarite (41%; mostly greenish to brownish hues) is relatively high. These dominant raw materials are also supplemented by various types of cherts, spongolite, quartzites, and rock crystal (altogether, 13%). Technological analysis has shown a complete chain of lithic reduction is represented at the site, from core preparation to final tool production, additional rejuvenation, and reutilization. There were only 25 cores recorded in the assemblage, mostly in an advanced stage of reduction and predominantly of single-platform types (15 pieces). The cores were largely intended for blade or blade-microblade production. Typologically important are five micro-cores made on rough flakes, morphologically similar to massive burins. The blanks for tool production are represented by 159 flakes and 467 nonretouched blades (including 30% of microblades, less than 8 mm wide). They are predominantly Figure 13. Wolf (Canis lupus). Mandible fragment with characteristic red-brown patches. Scale 20 mm. GEA266_04_20375.qxd 9/23/11 12:16 PM Page 856 GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, VOL. 26, NO. 6 PALEOLITHIC HUNTING IN A SOUTHERN MORAVIAN LANDSCAPE 857 noncortical and originate from advanced stages of core reduction. From the morphological point of view, the majority of blades have parallel or convergent lateral edges, but only about 20% of the blades are complete. The average length of complete pieces ranges 40 to 60 mm, with the longest blades up to 85 mm. The width of most pieces varies from 14 to 20 mm (microblades excluded). Typologically, the assemblage of retouched tools is of Gravettian character, although some Aurignacoid features are visible in the endscrapers group. Other characteristic features are the predominance of burins over endscrapers and a high proportion of backed artifacts (Table V). Points and pointed blades occur only rarely. No technological and typological differences are visible between the individual stratigraphic layers. The most numerous burins are on breaks (14 pieces), made by a simple single blow on fragmented coarse and massive blades. The next most numerous are burins on truncations (8 pieces), also made in multiple forms (Figure 14: 16), followed by simple, single-blow burins made on proximal blade ends (four pieces), which could also represent fragments of other tools with a negative scar caused by hafting. Other Table IV. General composition and percentages of lithic industry according the major technological group. The category of flake fragments and small chips representing the fine waste from core processing or tool retouching excluded (3264 pieces, nearly 83% of all artifacts). Upper Middle Lower Major Technological Layer Layer Layer Nonlocalized Total Groups n % n % n % n % n % Cores 0 0.0 4 3.9 0 0.0 21 2.8 25 2.8 Flakes 1 7.7 15 14.6 0 0.0 143 19.0 159 18.1 Blades 8 61.5 63 61.2 8 66.7 388 51.7 467 53.1 Partially retouched 0 0.0 3 2.9 0 0.0 25 3.3 28 3.2 Retouched tools 3 23.1 11 10.7 0 0.0 102 13.6 116 13.2 Burin spalls 1 7.7 7 6.8 4 33.3 72 9.6 84 9.6 Total 13 100 103 100 12 100 751 100 879 100 Table V. Milovice IV. General composition and percentages of retouched tools. Upper Middle Lower Layer Layer Layer Nonlocalized Total n % n % n % n % n % Burins 3 100.0 2 18.2 0 0 33 32.4 38 32.8 Endscrapers 0 0.0 2 18.2 0 0 15 14.7 17 14.7 Backed artifacts 0 0.0 1 9.1 0 0 21 20.6 22 19.0 Points and pointed blades 0 0.0 2 18.2 0 0 3 2.9 5 4.3 Retouched blades 0 0.0 1 9.1 0 0 18 17.6 19 16.4 Combined tools 0 0.0 2 18.2 0 0 6 5.9 8 6.9 Other tools 0 0.0 1 9.1 0 0 6 5.9 7 6.0 Total 3 100 11 100 0 0 102 100 116 100 GEA266_04_20375.qxd 9/23/11 12:16 PM Page 857 SVOBODA ET AL. GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, VOL. 26, NO. 6858 types are transverse burins on flakes (three pieces), massive single-blow burins on coarse flakes (three pieces), a single symmetrical dihedral burin (Figure 14: 15), and a multifaceted burin made on the ventral surface of a distal blade end. Several multifaceted burins (but not as massive as the cores) were made on fragments of coarse flakes. By-products of burin manufacturing are represented by 84 burin spalls. Figure 14. Selection of the lithic industry (dominated by green-grayish radiolarite): microliths (1–10); partially backed points (11–12); endscrapers (13–14); burins (15–16). GEA266_04_20375.qxd 9/23/11 12:16 PM Page 858 GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, VOL. 26, NO. 6 PALEOLITHIC HUNTING IN A SOUTHERN MORAVIAN LANDSCAPE 859 Endscrapers are made predominantly on wider and coarser blades (Figure 14: 13, 14), usually without lateral retouch. The typologically most significant pieces constitute several carinated forms made on flakes in an Aurignacian style. Nearly all of the backed implements are microliths, maximally 0.7 cm wide, including predominantly broken fragments of backed microblades, supplemented by a few crescents and one atypical triangle (Figure 14: 1–10). The larger blade form is represented by two partially backed points (Figure 14: 11, 12). Retouched blades are mostly unilateral and truncations are rare. Partially retouched artifacts are predominantly represented by blades (21 pieces), usually with short areas of retouch caused by the artifact situated on lateral edges. The collection of lithics is completed by a coarse and heavy-duty industry, plaques with traces of ochre grinding, and fragments of mineral dyes. Animal Tissue Artifacts Ivory was an important raw material at all Gravettian-period sites of the area, and was used at Milovice IV to produce a variety of polished points, projectiles, and fine “needles” (circular and oval-shaped in section), all preserved as fragments. These include a large and blunt tusk tip, measuring 28 mm in diameter at the widest point and decorated by short parallel incisions; 13 fragments of ivory projectiles, ovalshaped or circular in cross-section and 5–15 mm in diameter or on the longer axis (Figure 15); and two fragments of a fine “needle,” 2–3 mm in diameter. In addition there are six irregular fragments of mammoth tusk decorated by short incisions, some of which create X-shaped forms (Figure 16). Two fox teeth constitute personal ornaments, including one lower canine partly prepared for perforation and a perforated (but damaged) third upper incisor. This compares well with the type of decorative objects previously found at other sites in the area. Tertiary molluscs (Scaphopoda, Bivalvia, Gastropoda) of Badenian, Sarmatian, and Pannonian ages found at Milovice IV originate from the Carpathian Foredeep or Vienna Basin, indicating a similar composition and origin to the mollusk assemblages found at other Gravettian sites in the Dolní Veˇstonice–Pavlov–Milovice area (Hladilová, 1994, 1997, 1998, 2005; Svoboda et al., 2009). The Milovice IV sample included more or less complete shells of Dentalium badense, Pirenella picta picta, Pirenella picta mitralis, Pirenella nodosoplicata nodosoplicata, Astraea meynardi, Conus vindobonensis, Melanopsis vindobonensis vindobonensis, Zonaria sp., Alaba costellata anomala, Glycymeris pilosa deshayesi, Cardites partschi sp., and some undeterminable fragments. As at the other sites of the area, the shells were typically weathered, indicating collection at outcrops; some of the shells were perforated, or display traces of red ochre or a black coal mass on the surface. In contrast to the other sites, this assemblage appears deliberately heterogeneous: Besides the dominating scaphopods, most other species are represented by only a single specimen. GEA266_04_20375.qxd 9/23/11 12:16 PM Page 859 SVOBODA ET AL. GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, VOL. 26, NO. 6860 Clay Pellets As at the other important sites of the Dolní Veˇstonice–Pavlov–Milovice area (Klíma, 1952; Vandiver et al., 1989), the wet-sieved sediments at Milovice IV provided a collection of typical clay pellets (76 and 523 specimens recovered in 2009 and 2010, Figure 15. Fragments of ivory points. Photo by M. Frouz. GEA266_04_20375.qxd 9/23/11 12:16 PM Page 860 GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, VOL. 26, NO. 6 PALEOLITHIC HUNTING IN A SOUTHERN MORAVIAN LANDSCAPE 861 respectively). The dimensions range from 1 mm to 50 mm, but the majority fall in an interval between 5 mm and 15 mm. Their color ranges from grayish white, pale ocher, to brown and black gray, and a few of them are reddish. The shape is predominantly rounded (caused partly by wet-sieving), with a few of unusual irregular, elongated, or flattened shapes. One conical specimen recalls the animal “legs” of Pavlov I, and other pieces imply some intentional shaping, but no identifiable traces of modeling into zoomorphic or anthropomorhic shapes were recorded. Study of use-wear traces was not possible in most of the cases because the original surface was corroded and also altered during wet-sieving. No fingerprints or other unequivocal imprints of the human body are preserved. Some of the pellets show small cavities and linear holes probably representing natural macropores. The origin of these structures will be subjected to further analysis, given the similarity of some of the traces to the traces of animal hair, found previously on two objects from the site of Pavlov VI (Králík et al., 2008). Since the pellet collection is variable in terms of size, shape, color, hardness, and macroscopic internal structures (and, hence, in its origin), four samples were selected for micropetrographic analysis to identify their mineralogical and petrographic composition (following Gregerová et al., 2010). In one case only, the minerals bear signs of temperature alterations pointing to firing temperatures of ca. 400–450°C. Two Figure 16. Fragments of ivory with incisions. Photo by M. Frouz. GEA266_04_20375.qxd 9/23/11 12:16 PM Page 861 more samples represent an important group of irregular grayish-white pellets, composed of calcareous clay with an admixture of dust particles and sand grains. The fourth sample, a rounded dark gray pellet, was identified as siltite with an admixture of sand and clay. It is worth noting that the dark color of the fourth sample is due to organic matter content, but not the carbon/charred remains from a fire. Rather, this comprises the remains of decaying organic matter in a moist environment (e.g., mud). The minerals do not show evidence of thermal alterations in any of the last three samples. All four analyzed pellets originate from the same material, which was not the local loess, but rather a clay-silt brought to the site from elsewhere. The micropetrographic analysis shows that at least some of the pellets are probably relics of clay modified/consolidated by heat from a hearth. Others, namely the dark-colored pellets, could be just a product of organic relics that decayed in humid environments, without firing. DISCUSSION The chronology of settlement in the Dolní Veˇstonice–Pavlov–Milovice area allows a separation into the Early Pavlovian, Evolved Pavlovian, and later Gravettian substages (Figure 7; Svoboda, Lozˇek, & Vlcˇek, 1996:138 –143), but the majority of these sites and dates, including the new site of Milovice IV, belong to the Evolved Pavlovian horizon, dated 27–25 ka B.P. or 32–30 ka cal. B.P. (Figure 7). During this short period of time, the area functioned as a system of interrelated sites, differing in size, duration of occupation, and seasonality, but located at the same elevation and in similar geomorphological positions on the slopes of the Pavlov Hills. All of these sites may be seen from the hilltop of the remarkable Deˇvicˇky Hill (now crowned by a medieval castle). Milovice IV, by contrast, a site with identical dating and the same cultural inventory (and also visible from Deˇvicˇky), is located at a lower altitude at the bottom of a side valley (175 m asl). Instead of overlooking the access point into the Milovice side valley, Milovice IV blocks its entrance for animal herds. Given the regular features preserved at the base of the archaeological layers at Milovice IV, namely the three kettle-shaped pits and the deposit of several mammoth tusks, we reject the hypothesis that the basal sediments are redeposited downslope from higher locations by slope processes, landsliding, or gelifluction. However, redeposition by slope processes may be expected in the case of the middle and upper layers. This implies the excavated part of Milovice IV site was found in its original position, and represents a genuinely different placement on the landscape than other Gravettian sites of similar date in this region. In terms of the climatic scheme, the time span of the Evolved Pavlovian correlates with rapid global changes in temperature and moisture abundance (Dansgaard– Oeschger events), but it is unclear from the present state of research how far this rhythm of change is reflected in the local environmental conditions, since we have never noted dramatic changes in the composition of vegetation and fauna among the individual sites and layers in the Moravian region. This is also true for the local microregional environments on the slopes of the Pavlov Hills, a remarkable elevation rising ca. 400m above the floodplain, which should equally reflect any patterns SVOBODA ET AL. GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, VOL. 26, NO. 6862 GEA266_04_20375.qxd 9/23/11 12:16 PM Page 862 GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, VOL. 26, NO. 6 PALEOLITHIC HUNTING IN A SOUTHERN MORAVIAN LANDSCAPE 863 of changing altitudinal zonality connected with these climatic fluctuations. Even the evidence of elevated moisture, whether recorded in vegetation, mollusks, or vertebrate microfauna, may either reflect the short-term climatic fluctuations or result from site location. For example, numerous springs on the mountain slopes created basins with swampy ground and small lakes, especially in the side gullies, and influenced the environmental record at the archaeological sites of Dolní Veˇ stonice I and II (Svoboda, 1991), whereas extensive wetlands formed along the Dyje River, on the basal floodplain (e.g., paleobotanical site of Bulhary; Rybnícˇková & Rybnícˇek, 1992). How the human occupations at Milovice IV and other Gravettian sites around the Pavlov Hills relate to the broader climatic oscillations that took place during late OIS 3 therefore remains unclear at this time. CONCLUSION In contrast to previously proposed views of the Gravettian environment which have reconstructed a cold, dry, and treeless landscape, recent research has emphasized a higher proportion of arboreal and thermophile elements, represented in both floral and faunal records (Rybnícˇková & Rybnícˇek, 1992; Svobodová, 1991; BeresfordJones et al., 2010; Musil, 2010). The environmental record at Milovice IV, located directly at the margins of the floodplain, does not contradict this standard picture, observed repeatedly at the Gravettian sites located at higher elevations around the Pavlov Hills, but some evidence for a localized increase in moisture abundance was nevertheless recorded. This is not so much apparent in the vegetation, but rather in the malacofauna record, which includes mollusk species indicating aquatic environments, namely Succinea putris, Anisus leucostoma, Galba truncatula, and sporadically Lithoglyphus naticoides. A fragment of aquatic Crustacea shell, the occurrence of fishes, green toads (Bufo viridis), and the semi-aquatic mammal Arvicola contribute to the general reconstruction of a basically steppic habitat accompanied by riparian tree vegetation along the meandering Dyje River. Despite restrictions in excavating the site, the archaeological analysis shows that most of the household activities documented at the other Gravettian sites in south Moravia also took place at Milovice IV: intensive use and deposition of faunal remains, making hearths and cooking meat, production and use of stone and bone tools, collection and perforation of animal teeth and use of Tertiary shells for decorative purposes, grinding ochre, and firing small pieces of clay. The mammal and bird taxa represented at Milovice IV is similar to Pavlov I, Pavlov VI, or Dolní Veˇ stonice II, but the tendency to burn animal bones and fragment into small pieces is reminiscent of the practices documented at sites of central and northern Moravia (Prˇedmostí, Petrˇkovice). In another words, elevation alone is not a decisive criterion dictating the character of a Pavlovian camp site. Complexity of the site’s microstratigraphy suggests that human activities at the same locality occurred repeatedly, sometimes with a high intensity, but not permanently. Periodically, the location of the site would have allowed close contact with mammoth herds concentrated in the floodplain, and the aquatic environment offered possibilities for gathering plants, fishing, and a variety of additional activities. GEA266_04_20375.qxd 9/23/11 12:16 PM Page 863 Following the recent discovery of starch grains at Pavlov VI, Typha roots could also have been collected in such areas, ground, and used for food (Revedin et al., 2010). The range of these activities, however, had little or no impact on artifact typology recorded at Milovice IV. The atypical location of this site suggests that the settlement strategy of Pavlovian hunter-gatherers was more flexible than previously thought. Several sections of this paper make part of the MSM0021622427 project. We thank Martin Frouz for photographs and Steve Kuhn and two anonymous reviewers for constructive comments. REFERENCES Ambrose, S.H., & Norr, L. (1993). Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In J.B. Lambert & G. Grupe (Eds.), Prehistoric human bone: Archaeology at the molecular level (pp. 1–37). Berlin: Springer Verlag. Balasse, M., Ambrose, S.H., Smith, A.B., & Price, T.D. (2002). The seasonal mobility model for prehistoric herders in the south-western Cape of South Africa assessed by isotopic analysis of sheep tooth enamel. Journal of Archaeological Science, 29, 917–932. Barusˇ, V., Oliva, O., Král, B., Opatrn´y, E., Rehák, I., Rocˇek, Z., Roth, P., Sˇpinar, Z., & Vojtkov, L. (1992). Fauna CˇSFR: Obojzˇivelníci (Amphibia). Praha: Academia. Beresford-Jones, D.G., Johnson, K., Pullen, A.G., Pryor, A.J.K., Svoboda, J., & Jones, M.K. (2010). Burning wood or burning bone? A reconsideration of flotation evidence from Upper Palaeolithic (Gravettian) sites in the Moravian corridor. Journal of Archaeological Science, 37, 2799–2811. Beresford-Jones, D.G., Taylor, S., Paine, C., Pryor, A., Svoboda, J., & Jones, M.K. (2011). Rapid climate change in the Upper Paleolithic: The record of charcoal conifer rings from the Gravettian site of Dolní Veˇstonice (Czech Republic). Quaternary Science Reviews, 30, 1948–1964. Boche´nski, Z.M., Tomek, T., Wilczy´nski, J., Svoboda, J., Wertz, K., & Wojtal, P. (2009). Fowling during the Gravettian: The avifauna of Pavlov I, the Czech Republic. Journal of Archaeological Science, 36, 2655–2665. Böhme, M. (2003). The Miocene climatic optimum: Evidence from the ectothermic vertebrates of Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 195, 389–401. Bronk Ramsey C. (2009). Bayesian analysis of radiocarbon dates. Radiocarbon, 51, 337–360. Brugère, A., Fontana, L., & Oliva, M. (2009). Mammoth procurement and exploitation at Milovice (Czech Republic): New data for the Moravian Gravettian. In L. Fontana, F.X. Chauvière, & A. Bridault (Eds.), In search of total animal exploitation: Case studies from the Upper Palaeolithic and Mesolithic (pp. 45–69). Proceedings of the XVth UISPP Congress, Session C61, Vol. 42, Lisbon, 4–9 September 2006. BAR International Series 2040. Oxford: British Archaeological Reports. Buikstra, J.E., & Swegle, M. (1989). Bone modification due to burning: Experimental evidence. In R. Bonnichsen & M.H. Sorg (Eds.), Bone modification (pp. 247–258). Orono: Center for the Study of the First Americans, University of Maine. Coplen, T.B., Kendall, C., & Hopple, J. (1983). Comparison of stable isotope reference samples. Nature, 302, 236–238. Delgado Huertas, A., Iacumin, P., Stenni, B., Sanchez Chillon, B., & Longinelli, A. (1995). Oxygen isotope variations of phosphate in mammalian bone and tooth enamel. Geochimica et Cosmochimica Acta, 59, 4299–4305. Delpech, F., & Rigaud, J.P. (1977). Etude de la fragmentation et de la repartition des restes osseux dans un niveau d’habitat paléolithique. Bulletin de la société d’études et de recherches préhistoriques, 26, 1–10. Gasc, J.P., Cabela, A., Crnobrnja-Isailovic, J., Dolmen, D., Grossenbacher, K., Haffner, P., Lescure, J., Martens, H., Martínez Rica, J.P., Maurin, H., Oliveira, M.E., Sofianidou, T.S., Veith, M., & Zuiderwijk, A. (1997). Atlas of amphibians and reptiles in Europe. Collection Patrimoines Naturels, 29, Societas Europaea Herpetologica. Paris: Musée National d’Histoire Naturelle & Service du Patrimoine Naturel. Gregerová, M., Cˇ opjaková, R., Beránková, R., Bibr, P., Gosˇ, V., Hanuláková, D., Hlozˇek, M., Holubová, B., SVOBODA ET AL. GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, VOL. 26, NO. 6864 GEA266_04_20375.qxd 9/23/11 12:16 PM Page 864 GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, VOL. 26, NO. 6 PALEOLITHIC HUNTING IN A SOUTHERN MORAVIAN LANDSCAPE 865 Kristová, L., Kuljovská, Z., Machácˇek, J., Mazuch, M., Procházka, R., Sˇ koda, R., & Vsˇiansk´y, D. (2010). Petroarcheologie keramiky v historické minulosti Moravy a Slezska. Brno: Masarykova univerzita. Haesaerts, P., Bachner, M., Borziac, I., Chirica, V., Damblon, F., Drozdov, N., Koulakovska, L., & Pirson, S. (2010). New insight on the environmental background and the chronology of the Early Upper Palaeolithic in central Europe. In C. Neugebauer Maresch & L.R. Owen (Eds.), New aspects of the Central and Eastern European Upper Paleolithic: Methods, chronology, technology and subsistence (pp. 9–25). Wien: Österreichische Akademie der Wischenschaften. Heaton, T.H.E. (1999). Spatial, species, and temporal variations in the13 C/12 C ratios of C3 plants: Implications for palaeodiet studies. Journal of Archaeological Science, 26, 637–649. Hladilová, Sˇ. (1994). Nálezy trˇetihorních fosilií na mladopaleolitické stanici Milovice (jizˇní Morava, Cˇeská republika). Acta Musei Moraviae, 79, 15–29. Hladilová, Sˇ . (1997). Vy´sledky studia miocenních fosilií z pavloviensky´ch lokalit u Dolních Veˇstonic a Prˇedmostí u Prˇerova (sbírky Ústavu Anhropos MZM). Acta Musei Moraviae, 82, 65–78. Hladilová, Sˇ . (1998). Terciérní fosilie z paleoliticky´ch lokalit Milovice, Dolní Veˇ stonice a Prˇedmostí u Prˇerova. In R. Nekuda (Ed.), Ve sluzˇbách archeologie (pp. 109–114). Brno: Institute of Archaeology. Hladilová, Sˇ. (2005). Tertiary fossils, especially molluscs. In J. Svoboda (Ed.), Pavlov I southeast. A window into the Gravettian lifestyles (pp. 374–390). Dolní Veˇ stonice Studies 14. Brno: Institute of Archaeology. Hoppe, K., Stover, S., Pascoe, J., & Amundson, R. (2004). Tooth enamel biomineralization in extant horses: Implications for isotopic microsampling. Palaeogeography, Palaeoclimatology, Palaeoecology, 206, 355–365. Iacumin, P., Bocherens, H., Mariotti, A., & Longinelli, A. (1996). Oxygen isotope analyses of co-existing carbonate and phosphate in biogenic apatite: A way to monitor diagenetic alteration of bone phosphate? Earth and Planetary Science Letters, 142, 1–6. Jöris, O., Neugebauer-Maresch, C., Weninger, B., & Street, M. (2010). The radiocarbon chronology of the Aurignacian to Mid-Upper Palaeolithic transition along the Upper and Middle Danube. In H. Neugebauer Maresch & L.R. Owen (Eds.), New aspects of the Central and Eastern European Upper Paleolithic: Methods, chronology, technology and subsistence (pp. 101–137). Wien: Österreichische Akademie der Wissenschaften. Klíma, B. (1952). Druhy´ sídelní objekt a paleolitická keramická pec v Dolních Veˇstonicích. Archeologické Rozhledy, 4, 193–197. Klíma, B., Kukla, J., Lozˇek, V., & de Vries, H. (1962). Stratigraphie des Pleistozäns und Alter des paläolithischen Rastplatzes in der Ziegelei von Dolní Veˇstonice (Unter-Wisternitz). Anthropozoikum, 11, 93–145. Králík, M., Svoboda, J., Sˇ krdla, P., & N´yvltová Fisˇ áková, M. (2008). Nové nálezy keramicky´ch fragmentu° a otisku° v gravettienu jizˇní Moravy. Prˇehled Vy´zkumu°, 49, 3–22. Longinelli, A. (1984). Oxygen isotopes in mammal bone phosphate: A new tool for paleohydrological and paleoclimatological research? Geochimica et Cosmochimica Acta, 48, 385–390. Lozˇek, V. (2000). Paleoecology of Quaternary Mollusca. Antropozoikum, 24, 35–59. Lozˇek, V. (2001). Molluscan fauna from the loess series of Bohemia and Moravia. Quaternary International, 76/77, 141–156. Luz, B., & Kolodny, Y. (1985). Oxygen isotope variations in phosphate of biogenic apatites, IV: Mammal teeth and bones. Earth and Planetary Science Letters, 75, 29–36. Luz, B., Kolodny, Y., & Horowitz, M. (1984). Fractionation of oxygen isotopes between mammalian bonephosphate and environmental drinking water. Geochimica et Cosmochimica Acta, 48, 1689–1693. Lyman, T. (1994). Vertebrate taphonomy. Cambridge: Cambridge University Press. Musil, R. (2010). Palaeoenvironment at Gravettian sites in Central Europe with emphasis on Moravia (Czech Republic). Quartär, 57, 95–123. N´yvltová Fisˇ áková, M. (2008). Animal osteological material. In J. Svoboda (Ed.), Petrˇkovice: On shouldered points and female figurines (pp. 174–177). Dolní Veˇ stonice Studies 15. Brno: Institute of Archaeology. Oliva, M. (2007). Gravettien na Moraveˇ. Dissertationes Archaeologicae Brunensis/Pragenseque 1, Brno–Praha. Oliva, M. (2009). Sídlisˇteˇ mamutího lidu u Milovic pod Pálavou. Anthropos 27. Brno: Moravské Zemské Muzeum. GEA266_04_20375.qxd 9/23/11 12:16 PM Page 865 Revedin, A., Aranguren, B., Becattini, R., Longo, L., Marconi, E., Mariotti Lippi, M., Skakun, N., Sinitsyn, A., Spiridonova, E., & Svoboda, J. (2010). Thirty-thousand-year-old flour: New evidence of plant food processing in the Upper Paleolithic. Proceedings of the National Academy of Science, 107, 18815–18819. Rozanski, K., Araguás-Araguás, L., & Gonfiantini, R. (1992). Relation between long-term trends of oxygen- 18 isotope composition of precipitation and climate. Science, 258, 981–985. Rybnícˇková, E., & Rybnícˇek, K. (1992). The environment of the Pavlovian: Palaeoecological results from Bulhary, South Moravia. In J. Kovar-Eder (Ed.), Palaeovegetational development in Europe and the regions relevant to its palaeofloristic evolution (pp. 73–79). Wien: Natural History Museum. Sˇ krdla, P., & Lukásˇ, M. (2000). Prˇíspeˇvek k otázce geografické pozice lokalit pavlovienu na Moraveˇ. Prˇehled Vy´zkumu°, 41, 21–33. Soffer, O. (2003). Mammoth bone accumulations: Death sites? Kill sites? Dwellings? In S.A. Vasil’ev, O. Soffer, & J. Kozlowski. (Eds.), Perceived landscapes and built environments (pp. 39–46). BAR International Series 1122. Oxford: British Archaeological Reports. Svoboda, J. (Ed.). (1991). Dolní Veˇstonice II: Western slope. ERAUL 54. Liège: Université de Liège. Svoboda, J., Králík, M., Cˇulíková, V., Hladilová, Sˇ., Novák, M., N´yvltová Fisˇ áková, M., Ny´vlt, D., & Zelinková, M. (2009). Pavlov VI: An Upper Paleolithic living unit. Antiquity, 83, 282–295. Svoboda, J., Lozˇek, V., & Vlcˇek, E. (1996). Hunters between east and west: The Paleolithic of Moravia. New York: Plenum. Svobodová, H. (1991). The pollen analysis of Dolní Veˇstonice II, section No. 1. In J. Svoboda (Ed.), Dolní Veˇstonice II: Western slope (pp. 75–88). ERAUL 54. Liège: Université de Liège. Vandiver, P., Soffer, O., Klíma, B., & Svoboda, J. (1989): The origin of ceramic technology at Dolní Veˇstonice, Czechoslovakia. Science, 246, 1002–1008. Vasil’ev, S.A., Soffer, O., & Kozlowski, J. (Eds.) (2003). Perceived landscapes and built environments. BAR International Series 1122. Oxford: British Archaeological Reports. Verpoorte, A. (2001). Places of art, traces of fire. Archaeological Studies Leiden University 8/Dolní Veˇstonice Studies 6. Leiden: Leiden University. Received 21 December 2010 Accepted for publication 17 July 2011 Scientific editing by Steve Kuhn and Jamie Woodward SVOBODA ET AL. GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, VOL. 26, NO. 6866 GEA266_04_20375.qxd 9/23/11 12:16 PM Page 866 205 3.5.6 Předmostí III: un site pavlovien de la Porte de Moravie (République tchèque, Europe centrale) Citace: Polanská, M., Svoboda, J., Hromadová, B., Sázelová, S. 2014: Předmostí III: un site pavlovien de la Porte de Moravie (République tchèque, Europe centrale). L´anthropologie 118, 255-291. Article original Prˇedmostí III : un site pavlovien de la Porte de Moravie (République tchèque, Europe centrale) Prˇedmostí III: Pavlovian site in Moravian gate (Czech Republic, Central Europe) Michaela Polanská a,*,b , Jirˇí Svoboda c,d , Bibiána Hromadová e , Sandra Sázelová d a Université de Paris I Panthéon-Sorbonne, institut d’art et d’archéologie, 3, rue Michelet, 75006 Paris, France b UMR 7041 ArScAn–équipe ethnologie Préhistorique, maison René-Ginouvès, 21, allée de l’Université, 92023 Nanterre cedex, France c Institut d’archéologie de Brno, ASCR, Královopolská 147, 612 00 Brno, République tchèque d Département d’anthropologie, faculté de la science, Kotlárˇská 2, université de Masaryk, 611 37 Brno, République tchèque e Institut d’archéologie de Nitra, SAV, Akademická 2, 949 21 Nitra, République slovaque Disponible sur Internet le 25 octobre 2014 Résumé Le complexe des gisements de Prˇedmostí est parmi les plus connus du centre de l’Europe centrale. Le site Prˇedmostí III a fait l’objet de plusieurs campagnes de fouilles. Le présent article se focalise sur les découvertes mises au jour en 1982 et 1983. L’industrie lithique est produite in situ sur les galets de rivière en radiolarite. L’association d’un couteau de Kostenki à un microlithe géométrique permet d’attribuer l’ensemble au Pavlovien et plus particulièrement à l’une de ces composantes « le groupe à microlithes géométriques ». Les lames et les lamelles sont majoritairement débitées au percuteur tendre organique. Cette technique identifiée est en concordance avec la découverte d’un objet en ivoire de mammouth portant des traces d’impacts, interprété comme un percuteur. Une partie de la faune étudiée pour le moment montre la forte prédominance du mammouth. Malgré la quantité restreinte du matériel, le site contribue à une meilleure compréhension des industries pavloviennes. # 2014 Elsevier Masson SAS. Tous droits réservés. Mots clés : Gravettien ; Pavlovien ; Prˇedmostí ; Microlithes géométriques ; Couteau de Kostienki ; Possible percuteur en ivoire www.em-consulte.com Disponible en ligne sur www.sciencedirect.com ScienceDirect L’anthropologie 118 (2014) 255–291 * Auteur correspondant. Adresse e-mail : michaelapolanska@yahoo.fr (M. Polanská). http://dx.doi.org/10.1016/j.anthro.2014.09.006 0003-5521/# 2014 Elsevier Masson SAS. Tous droits réservés. Abstract The complex of sites of Prˇedmostí is one of the most famous in the Central Europe. The site Prˇedmostí III has been excavated several times during the last thirty years. This article focuses on the materials discovered in 1982 and 1983. The lithic industry has been knapped in situ on radiolarite river pebbles. The association of a Kostenki’ knifewith geometric microlith indicates a cultural attribution to the Pavlovian and more particularly tothekind describedasthe‘‘groupwith geometricmicroliths’’.Bladesandbladeletsaremainlyproduced with an organic hammer. This fact could fit with the discover of a piece of mammoth tusk with percussion marks on its the distal end that could have been used as a hammer. In spite of the small number of artefacts preserved, the reassessment of that collection contributes to a better understanding of the Pavlovian industries. # 2014 Elsevier Masson SAS. All rights reserved. Keywords: Gravettian; Pavlovian; Prˇedmostí; Geometric microliths; Kostienki’ knife; Likely ivory hammer 1. Introduction Le complexe des sites de Prˇedmostí compte parmi les gisements paléolithiques les plus importants du centre de l’Europe centrale (Fig. 1). Le site Prˇedmostí III se situe à 300 m de l’ensemble des locus de Prˇedmostí I. La localité étudiée a fait l’objet de plusieurs fouilles de sauvetage en vue de travaux d’urbanisation. Les découvertes et les restes fauniques proviennent essentiellement des alentours du bloc 2 de la zone d’habitation (Fig. 1). Leprésentarticleparticiped’unevolontédesynthétiserlesinformationsrelativesauxdifférents ensembles pavloviens du complexe des sites de Prˇedmostí. Ce travail de synthèse a été initié par la récente étude réalisée sur le site de Prˇedmostí Ib (fouille 2006) (Svoboda, 2013a,b, éd.). L’étude se focalise sur le matériel mis au jour lors de la fouille de B. Klíma en 1982–83 (attribué au Pavlovien1 ). Le matériel recueilli est composé d’industrie lithique, de faune, d’un objet qui s’apparente à un percuteur tendre organique en ivoire et d’un galet (décrit anciennement comme une enclume). Ces observations ne permettent pas de tirer de conclusions significativesconcernant lessociétésgravettiennes,néanmoinsellesdonnentdesinformationscomplémentairessurcertains aspects de l’industrie lithique, et sur les liens entre celle-ci et l’objet en matière dure animale. 2. Contexte de la recherche Le site a été fouillé à plusieurs reprises, a livré essentiellement de la faune et serait daté de 16,800 Æ 90 BP non calibré. Cette datation, faite sur un fragment d’os, est contestée (Svoboda et al., 2007) car l’échantillon daté provient des anciennes fouilles de B. Klíma et nous ne disposons d’aucune information concernant sa provenance. 2.1. Historiques de fouilles 2.1.1. Fouilles de B. Klíma de 1982–83 Lors des travaux de construction du complexe d’habitations de Prˇerov, entre 1982 et 1983, plusieurs accumulations d’ossements de faune ont été mises au jour dans l’arrondissement Prˇedmostí2 (Klíma, 1983, 1984, 1985). B. Klíma, accompagné de J. Svoboda et d’autres M. Polanská et al. / L’anthropologie 118 (2014) 255–291256 1 Le terme Pavlovien et son contenu sont actuellement en révision typo-technologique. Pour le moment, nous réservons ce terme aux industries du groupe à microlithes géométriques et du groupe à microscies d’Europe centrale. 2 Prˇedmostí (« endroit devant le pont » en tchèque) est actuellement l’un des arrondissement de la ville de Prˇerov. M. Polanská et al. / L’anthropologie 118 (2014) 255–291 257 Fig. 1. La situation géographique de Prˇedmostí III dans le complexe des sites de Prˇedmostí (Porte de Moravie, République Tchèque ; DAO M. Polanská). Geographical situation at Prˇedmostí III in the complex of other sites at Prˇedmostí (Moravian Gate, Czech Republic; CAD by M. Polanská). fouilleurs de l’Institut d’archéologie AU´ AV Cˇ R de Brno ont ponctuellement surveillé les travaux d’aménagement. La première découverte d’amas de restes fauniques, en position secondaire à cause de la solifluction, date du printemps 1982. Ensuite, pendant l’été 1982, un autre amas a été découvert, composé d’ossements de faune et cette fois de pièces lithiques et a fait l’objet d’une fouille de sauvetage. La couche archéologique en position secondaire (solifluction) a été perturbée par une occupation médiévale (fosses, sépulture [Fig. 2]). Les découvertes faites dans M. Polanská et al. / L’anthropologie 118 (2014) 255–291258 Fig. 2. Le plan de la fouille lors de la construction du bloc 1 et 2 avec l’emplacement schématique des découvertes de la faune et des vestiges sub-récents (modifié selon B. Klíma, 1983 par M. Polanská). The scheme of excavations during the building of bloc 1 and 2 with the positions of animal remains and sub-recent findings (modified after B. Klíma, 1983 by M. Polanská). la partie centrale de l’une des coupes ont justifié l’ouverture d’un décapage horizontal sur 4 m2 (Fig. 3). La couche fouillée a livré en plus des artefacts mentionnés, quelques charbons de bois et de l’ocre rouge. Pour résumer, le matériel recueilli en 1982 provient de plusieurs zones situées à proximité les unes des autres, mais nous ne connaissons pas l’extension exacte de la surface fouillée (sans doute plus de 4 m2 [Fig. 2]). Le matériel recueilli en 1983 provient également de plusieurs endroits. En janvier, le décapage de l’accumulation de restes fauniques a continué sur une surface de 7 m2 (matériel en position secondaire) etn’a livré qu’une industrie lithique peu abondante(Fig. 3). Parmiles artefacts les plus intéressants, soulignons la présence d’un objet en ivoire de mammouth souvent interprété comme un percuteur ou un retouchoir. Pendant l’automne 1983, des travaux d’aménagement menés sur la conduite d’eau chaude et autour de l’église ont été suivis par les archéologues. Ainsi, le long du conduit ont pu être mis en évidence les restes de la faune, répartis sur une distance de 25 m de long. 2.1.2. Fouilles de Z. Schenk de 2005 En août et en septembre 2005, lors du réaménagement d’une canalisation, de 3 m de long, dans la partie nord de la rue Hranická à Prˇerov-Prˇedmostí, une accumulation a été mise au jour et a livré exclusivement des restes fauniques (Ny´vltová-Fisˇáková et Schenk, 2006; Schenk et Mikulík, 2013). 2.1.3. Fouilles de J. Svoboda de 2006 (Svoboda et al., 2007; Svoboda, 2013a,b) En 2006, un sondage couvrant une surface de 2  2 m, sur une profondeur de 3,3 m a été réalisé dans la rue Telicˇkova à Prˇerov–Prˇedmostí (à proximité des commerces actuellement situés M. Polanská et al. / L’anthropologie 118 (2014) 255–291 259 Fig. 3. Le plan de décapage avec l’emplacement de l’industrie lithique (modifié d’après B. Klíma, 1985 par M. Polanská). The scheme of excavations with designed position of lithic industries (modified after B. Klíma, 1985 by M. Polanská). sous le parking, à quelques mètres des sondages de 1982–83 de B. Klíma, et en connexion avec les fouilles de 2005 de Z. Schenk [Fig. 1]). Le mobilier recueilli est composé de faune et de malacofaune. 2.2. Données stratigraphiques Une corrélation des deux coupes stratigraphiques, une située dans la partie centrale du site (fouilles B. Klíma) et une autre située sur la périphérie de Prˇedmostí III (fouilles de Z. Schenk et de J. Svoboda) permet de réaliser une synthèse (Fig. 4). 2.2.1. Partie centrale du site Dans la partie centrale du site, B. Klíma (B. Klíma, 1983, 1984 ; rapport 343/83) a décrit la séquence stratigraphique suivante (Fig. 4) :  sol récent ou argiles redéposées (40–45 cm d’épaisseur) ;  lœss supérieur avec fragments calcaires (80 cm d’épaisseur) ;  couche culturelle formée par des argiles finement stratifiées, redéposées dans un milieu humide, avec des dépôts d’ossements et des artefacts (jusqu’à 30 cm d’épaisseur) ;  argiles lœssiques avec des horizons limoneux jaunes, gélifiés (50–60 cm épaisseur) ;  substrat formé par des graviers et du sable. La couche culturelle (couche 3) est composée de plusieurs microcouches et est structurée en lentilles irrégulières de coloration variable. Elle est formée par des argiles qui atteignent parfois 30 cm d’épaisseur. Étant donné la faible profondeur d’enfouissement, la couche culturelle a été perturbée par différentes activités d’aménagement et des constructions plus récentes et subrécentes. 2.2.2. Périphéries du site La séquence stratigraphique mise au jour sur les périphéries du site en 2005 (Ny´vltováFisˇáková et Schenk, 2006) et en 2006 (3,2 m de profondeur ; Svoboda et al., 2007, 2013) paraît plus complexe (Fig. 4). La couche culturelle, peu développée par rapport à celle de la partie centrale et contenant des ossements, a été protégée par d’épaisses redépositions d´âge sub-actuel et récent (couches 1–9). Une mince couche du lœss supérieur (couche 10) repose directement sur les limons jaunâtres de la base (couche 11). Les phénomènes de structuration en microcouches suivie par leur redéposition sont analogues à ceux observés dans la partie centrale au même niveau. Il s’agit d’après J. Demek d’une congelifluction sous conditions humides (Svoboda et al., 2007) :  argiles marron clair (humus) (15–20 cm d’épaisseur) ;  argiles brunes foncées (2–3 cm) avec des débris (10 cm d’épaisseur) ;  limons lœssiques redéposés formant des lentilles (5 cm d’épaisseur) ;  argiles brunes foncées avec des débris (max. 10–15 cm), des fragments de briques, du fer, et d’autres objets d’âge sub-actuels et interstratifiés avec des lentilles lœssiques (80–100 cm d’épaisseur) ;  gravier (5–10 cm d’épaisseur) ;  limons lœssiques, redéposés (10–20 cm d’épaisseur) ;  argiles brunes foncées avec des fragments de briques et des charbons de bois (10–20 cm d’épaisseur) ; M. Polanská et al. / L’anthropologie 118 (2014) 255–291260 M. Polanská et al. / L’anthropologie 118 (2014) 255–291 261 Fig. 4. Les profils stratigraphiques mis au jour lors des fouilles de 1982 à 1983 et 2006 (no 1 modifié d’après B. Klíma, 1983 par M. Polanská et J. Svoboda). The stratigraphic profiles founded during the excavations in 1982–83 and 2006. (No.1 modified after B. Klíma, 1983 by M. Polanská and. J. Svoboda).  argiles marron clair avec de rares fragments de briques et de charbons de bois (30–40 cm d’épaisseur) ;  limons lœssiques ocreux avec des débris (max. 3 cm) et du gravier (50–60 cm d’épaisseur) ;  lœss clair, avec des Mn-concrétions et des textures post-cryogéniques probablement causés selon J. Demek par le permafrost (15–20 cm d’épaisseur) ;  limons argileux et poussiéreux, finement stratifiés par des mouvements plastiques suivant la pente (congélifluction) dans un milieu humide, et continuant plus profondément dans le sous-sol. Les analyses des pollens réalisées par V. Jankovská sont sans résultats. Les restes des vertébrés ont été localisés entre ces limons et le lœss supérieur (couches 10/11) ainsi que les mollusques dominants Succinella oblonga DRAP et S. O. elongata SNDB, le fragment d´un helicidé Trichia sp. ou Helicopsis striata (MÜLL.), et Vallonia tenuilabris (BR.) (Kovanda in Svoboda et al., 2007). La composition de la faune confirme à la fois un climat froid et humide. 3. La faune Les restes fauniques ont été mis au jour pendant les campagnes de fouille de sauvetage. Les plus importantes découvertes ont été faites pendant les fouilles de B. Klíma. Malheureusement, jusqu’à maintenant, nous n’avons pu localiser et étudier uniquement qu’une partie des restes fauniques. 3.1. Centre du site La faune actuellement disponible à l’étude provenant des années de fouille de 1982–83 de B. Klíma comprend 179 fragments de restes de mammifères (Fig. 5, Tableau 1). Incontestablement, l’espèce la plus représentée est le mammouth (Mammuthus primigenius ; NMI = 140), au moins représenté par 2 individus de catégorie juvenilis et 2 de catégorie subadultus/adultus. L’importante fragmentation ne permet plus la subdivision de cette dernière. Les restes fauniques sont dominés par des fragments de côtes, des fragments crâniens, des mâchoires inférieures, des molaires, des vertèbres (surtout des atlas), puis d’autres os des membres, en particulier leurs parties distales, comme les os du carpe (os magnum, dx.), du M. Polanská et al. / L’anthropologie 118 (2014) 255–291262 Fig. 5. Exemples de la faune de Prˇedmostí III : 1 molaire provisoire de mammouth, 2 incisives de renard avec cassure post-dépositionelle (dessin : B. Klíma, photo S. Sázelová). Selected examples of animal remains at Prˇedmostí III: 1 deciduous molar of mammoth, 2 fox incisor with postdepositional breakage (drawing by B. Klíma, photo by S. Sázelová). métacarpe (metacarpus III, dx.), du tarse (astragalus, sin., deux os naviculare, sin.) et les phalanges ( phalanx III). Les os des autres espèces restent sporadiques, notamment ceux du loup (Canis lupus), du cheval (Equus ferus ; dont os lunatum), ainsi qu’une canine inférieure d’un renard (Vulpes vulpes/V. lagopus). Ensuite, l’ensemble est composé de 22 fragments de côtes et d’os longs attribués à la catégorie des grands, voire extra grands mammifères et un fragment de côte d’un mammifère de taille moyenne, 8 fragments des restes fauniques sont non diagnostiqués (Lavocat, 1966; Ziegler, 2001). D’un point de vue taphonomique, la position stratigraphique de la faune (en microcouches ou en forme de lentilles) était perturbée par la solifluction. Certains os ont été mis au jour verticalement, en position perturbée (Klíma, 1983, 1984, 1985). Peu de restes fauniques présentent des dégradations liées au processus de weathering, ce qui pourrait indiquer l’enfouissement assez rapide sous la terre et le contact minime des racines. Quelques fragments d’ivoire présentent de possibles traces d’impacts ce qui reste à vérifier ultérieurement. B. Klíma (Klíma, 1985) signale la présence d’os brûlés dans les alentours du bloc 2. Malheureusement, cette faune n’a pas été retrouvée pour le moment. 3.2. Périphéries du site En 2005, lors des fouilles de sauvetage de Z. Schenk sur la périphérie du site, le matériel paléontologique a été mis au jour à une profondeur de 2,40 m (le sédiment était fortement perturbé par la gélifluxion). La faune comprenait quelques dizaines d’os, ainsi que des dents. M. Polanská et al. / L’anthropologie 118 (2014) 255–291 263 Tableau 1 Classement des restes fauniques selon les espèces (fouilles 1982–83), pour le moment accessibles à l’Institut d’Anthropos (Musée Morave) de Brno et de l’Institut d’archéologie AV Cˇ R de Brno. Animal remains assigned to species (excavations in 1982–1983), which are partly accessible at Institute of Anthropos (Moravian museum) in Brno and at Institute of archaeology at academy of Sciences of Czech Republic in Brno. Mammuthus primigenius Canis lupus Equus ferus Vulpes vulpes/ V. lagopus J S/A Crâne et dents supérieures 2 6 Mandibule et dents inférieures 2 3 1 Dents indéterminées et fragments de lamelles d’ivoire 13 Fragments d’ivoire 1 Vertèbres 1 7 Côtes 49 Humérus 1 Radius 1 1 Ulna 1 Carpes/tarses 1 7 1 Métacarpes 1 Pelvis 1 2 Patela 2 1 Fibula 1 Phalanges 1 Fragments d’os longs 2 Fragment d’os 40 Total 10 135 2 1 1 M. Ny´vltova Fisˇákova a suggéré l’attribution des restes fauniques à au moins un individu mammifère : soit le mammouth (Mammuthus primigenius), soit le cheval (Equus ferus), soit le loup (Canis lupus). Les restes indéterminés sont répartis entre les catégories des mammifères de taille moyenne et des grands mammifères. La présence du mammouth est attestée grâce à des fragments (mâchoire inférieure, des dents, des vertèbres cervicales), des parties apicales des membres (os d’autopodium) et d’autres os indéterminés. Le cheval est représenté par des fragments crâniens, des côtes, des os du bassin et du carpe, puis quelques restes d’os longs (Ny´vltová-Fisˇáková et Schenk, 2006). Cet ensemble provenant de la périphérie du site a été enrichi en 2006 par la découverte de fragments d’os de mammouth et d’autres os indéterminés (Svoboda et al., 2007). 3.3. Interprétations Étant donné le caractère fragmentaire de l’étude, le manque d’informations spatiales, le nontamisage du sédiment pendant les fouilles, ainsi que la présence de restes fauniques riches et pauvres en viande, nous supposons la réalisation des activités complexes sans pouvoir donner plus d’interprétations. 4. Corpus lithique (fouilles B. Klíma de 1982–1983) L’industrie lithique de Prˇedmostí III provient des fouilles de sauvetage de 1982 et 1983 réalisées pendant l’aménagement du canal de l’eau chaude entre les blocs 1 et 2 d’habitation. Le mobilier lithique étudié issu de ces fouilles est numériquement limité, mais fournit des informations sur l’attribution culturelle du site. 4.1. L’interprétation de B. Klíma (Klíma, 1983, 1984, 1985) Selon B. Klíma il s’agit « . . .d’une collection typologiquement intéressante et homogène. . .qui contient des types intéressants et montrent des marques technologiques de débitage caractéristiques pour l’évolution du Tardiglaciaire ». Néanmoins, comme la collection lithique provient d’un contexte de PKI, cela exclut son rattachement aux occupations du Magdalénien, du Tardiglaciaire ou du Mésolithique. Les trois artefacts brûlés en roche siliceuse témoigneraient de l’utilisation du feu, identifiable également par des traces visibles sur plusieurs ossements et la présence de taches charbonneuses solifluées. Les artefacts lithiques présentent une inclinaisonverticale et ont été retrouvés, soit parmi lesossementsdemammouths,soitdanslapartiebassedel’horizonarchéologiqueetnotammentdans le sillon formé par l’érosion (Fig. 3). B. Klíma interprète l’ensemble comme un atelier spécialisé. 4.2. Étude Selon les notes de B. Klíma, 270 artefacts lithiques taillés proviennent des fouilles de 1982 (Fig. 6), et quelques-uns seulement de celles de l’année 19833 (Fig. 7 ; Klíma, 1984, 1985). Du fait d’un inventaire partiel du matériel lithique, nous sommes aujourd’hui dans l’incapacité de M. Polanská et al. / L’anthropologie 118 (2014) 255–291264 3 B. Klíma ne mentionne pas le nombre exact d’artefacts lithiques provenant de la fouille de 1983. M. Polanská et al. / L’anthropologie 118 (2014) 255–291 265 Fig. 6. Divers outils découverts lors des fouilles de 1982 (dessins : 1–4, 6–11 B. Klíma, 5 M. Polanská). Selected lithic tools founded in 1982 (drawings 1–4, 6–11 B. Klíma, 5 M. Polanská). déterminer l’année de découverte exacte pour une partie du matériel : 133 artefacts lithiques taillés proviennent de 1982, 10 de 1983 et 170 n’ont pas de numéros d’inventaire (Tableau 2). Le matériel recueilli en 1982 et en 1983 provient probablement de zones plus ou moins en connexion, mais pour lesquelles, en l’absence de remontages, nous ne disposons pas d’informations permettant d’étayer l’hypothèse de leur contemporanéité. Aussi, nous les avons traitées comme deux ensembles différents (ensemble 1–fouille de 1982, ensemble 2–fouille de 1983). M. Polanská et al. / L’anthropologie 118 (2014) 255–291266 Fig. 7. Divers outils découverts lors des fouilles de 1983 (dessins : 1–4, 6–11 B. Klíma, 5 M. Polanská). Selected lithic tools founded in 1982 (drawings: 1–4, 6–11 B. Klíma, 5 M. Polanská). 4.2.1. Matières premières La majorité des artefacts lithiques taillés est débitée dans de la radiolarite grise foncée et dans de la radiolarite verte-jaunâtre (Tableaux 3 et 4). Dans les deux cas, la matière première est introduite sur le site sous forme de petits galets, dont la provenance reste pour le moment en question. Les gisements primaires de cette matière première se situent en Slovaquie occidentale et centrale (Vrsˇatecké Podhradie, Podbrancˇ, Brodno), à Mauer près de Wien en Autriche ou secondairement dans les graviers du Danube (Prˇichystal, 2009). Toutefois, la radiolarite est également disponible en Moravie, notamment sous forme de petits galets (5 à 6 cm) dans les graviers à Karpatská prˇedhlubenˇ (Vallée de Haute et Basse Moravie, Bassin d’Ostrava). Leur localisation sous cette forme de petits nodules est signalée à Stará Ves près de Prˇerov (Prˇichystal, 2009). L’étude de la provenance de ces galets, fortement roulés doit être approfondie par une analyse pétrographique. Mais, leur importation à Prˇedmostí III sous cette forme soulève la question des différences dans les stratégies d’approvisionnement par cette matière première (par exemple sous forme de galets roulés des positions secondaires situés peut être en Moravie ou sous forme de plaquettes tectoniques des gisements primaires des Carpates Blancs). M. Polanská et al. / L’anthropologie 118 (2014) 255–291 267 Tableau 2 Prˇedmostí III. Classement technologique de l’industrie lithique provenant des fouilles de 1982–83 (numéros inventoriés) et des artefacts non inventoriés pouvant provenir des deux années de fouilles. Prˇedmostí III. Technological classification of lithics excavated in 1982–1983 (with inventory numbers) and artefacts without inventory numbers, which were excavated in same period. Fouille 1982 Fouille 1983 Artefacts sans numéro d’inventaire Total Brut 115 3 170 288 Outils stricto-sensu 14 3 17 Outils possibles 4 4 8 Total 133 10 170 313 Tableau 3 Prˇedmostí III (fouille 1982). Classement technologique de l’industrie lithique inventoriée (ensemble 1). Prˇedmostí III (excavation in 1982). Technological classification of inventorized lithics (assembledge 1). Radiolarite Silicite indéterminée Silicite erratique Total Brut 109 5 1 115 Outils stricto-sensu 10 4 14 Outils possibles 3 1 4 Total 122 10 1 133 Tableau 4 Prˇedmostí III (fouille 1983). Classement technologique de l’industrie lithique inventoriée (ensemble 2). Prˇedmostí III (excavation in 1983). Technological classification of inventorized lithics (assembledge 2). Radiolarite Silicite indéterminée Silicite erratique Total Brut 2 1 3 Outils stricto-sensu 2 1 3 Outils possibles 2 1 1 4 Total 6 3 1 10 La radiolarite rouge typique est peu représentée sur le site, et il est impossible de préciser son mode d’importation : a-t-elle été ramassée dans la rivière, taillée sur place ou importée individuellement ? Les autres silicites, y compris la silicite erratique (apportée des moraines), sont représentées sur le site et elles ont probablement été importées. La spongolite et le grès silicifié à glauconite ne sont présents chacun que par une seule pièce. Les résultats présentés sont biaisés, car le site n’a fait l’objet que d’une surveillance ponctuelle. En conséquence, une partie de la couche culturelle a sûrement été emportée lors de la construction des bâtiments et des différents travaux d’aménagements. 4.2.2. L’approche technologique La collection de Prˇedmostí III livre donc 3 séries (ensemble 1 et 2, série des pièces sans numéros d’inventaires), certes limitées d’un point de vue quantitatif, mais cohérentes d’un point de vue culturel et des matières premières. L’ensemble 1 se compose de 133 artefacts lithiques taillés, dont 115 bruts, 14 outils stricto-sensu, et 4 outils possibles (à retouche d’utilisation). L’ensemble 2 est représenté par 10 artefacts, dont 3 bruts, 3 outils stricto-sensu et 4 outils possibles (à retouche d’utilisation ; Tableau 4). Il nous est impossible de développer une approche approfondie visant l’étude des systèmes techniques, mais néanmoins nous pouvons effectuer quelques observations typologiques et technologiques. 4.2.2.1. Outils stricto-sensu et outils possibles. Toute la collection fournit de maigres indices typologiques. Les outils stricto-sensu, majoritairement des burins (2 burins d’angle et 2 burins sur cassure), sont peu représentés dans l’ensemble 1 (Tableau 5). Les autres outils (à l’exception des microlithes) sont représentés par un seul exemplaire. Le microlithe géométrique (Fig. 8 : 9) et le couteau de Kostienki double (Fig. 6 : 5) sont sans aucun doute les outils les plus diagnostics. Pour ce dernier, les coups de raffûtage sont donnés sur une troncature inverse située à l’une des extrémités. L’un d’eux est outrepassé et a emporté une partie de l’autre extrémité. Cette surface a ensuite servi de plan de frappe pour les autres coups débordants sur la face supérieure du support. Ces coups servent à raffûter le bord qui porte des retouches d’utilisation sur la face inférieure (Fig. 6 : 5 ; pour voir la définition précise voir Lev et al., 2009). Les microlithes et les armatures sont représentés par 5 pièces (Fig. 8). Le microlithe géométrique est taillé dans de la silicite indéterminée à patine blanche (Fig. 8 : 9). Cet artefact est un exemplaire typique, récemment décrit à Prˇedmostí Ib et à Pavlov I (Polanská, thèse en cours ; M. Polanská et al. / L’anthropologie 118 (2014) 255–291268 Tableau 5 Prˇedmostí III (fouille 1982). Classement de l’outillage stricto-sensu (ensemble 1). Prˇedmostí III (excavation in 1982). Classification of retouched tools stricto-sensu (assembledge 1). Radiolarite Silicite indéterminée Total Burin 4 4 Lame retouchée/1 bord 1 1 Lamelle retouchée/1 bord 2 1 3 Lamelle retouchée/2 bords 1 1 Microlithe géométrique 1 1 Couteau de Kostenki 1 1 Outil indéterminé 2 2 Lame appointée ou bec ? 1 1 Total 10 4 14 Polanská, 2013). Dans le cas présent, il s’agit d’un exemplaire polarisé. Sa base asymétrique est définie à la fois par un bord à bord abattu (droit, à retouche marginale directe) et par une troncature directe oblique. Son extrémité appointée est affûtée par une retouche directe marginale partielle. Les deux autres lamelles retouchées sont en radiolarite : l’une porte une retouche directe marginale partielle et l’autre est aménagée par une retouche inverse courte partielle. Il est possible que les deux aient été abandonnées en cours de retouche (Fig. 8 : 10,12). L’assemblage a également livré deux autres lamelles : un fragment d’une lamelle à retouche directe marginale et une à retouche directe marginale bilatérale. Notons enfin la présence d’un petit bec ou une petite lame appointée. Au final, parmi les outils découverts dans l’ensemble 1, 12 sont sur lame ou lamelle et 2 sur éclat. M. Polanská et al. / L’anthropologie 118 (2014) 255–291 269 Fig. 8. Divers artefacts liés à l’industrie lamellaire (dessins : M. Polanská). Selected artifacts’ in the context of bladelet industry (drawings by M. Polanská). Les possibles outils de l’ensemble 1 sont au nombre de 4 : 1 éclat, 1 éclat laminaire et 2 lamelles (Tableau 6). L’ensemble 2 est composé de 3 outils stricto-sensu, deux en radiolarite (burin cassé sur lame, un outil indéterminé ; Tableau 7) et puis une lame irrégulière, légèrement arquée, à retouche bilatérale (c’est l’outil le plus long de Prˇedmostí III). La retouche est directe, continue, longue par endroit. L’extrémité distale est tronquée par une retouche inverse très courte, de ce fait elle est classée parmi des lames retouchées et non pas parmi des troncatures (Fig. 7 : 7). Les outils possibles sont représentés dans l’ensemble 2 par 3 exemplaires probables à retouche d’utilisation. Deux ont été aménagés sur lame et un sur un sur éclat laminaire (Tableaux 8 et 9). 4.2.2.2. Production lamino-lamellaire. L’ensemble 1 de la collection de Prˇedmostí III a livré 115 pièces brutes (Tableau 9), l’ensemble 2 a livré 3 artefacts et l’industrie (Tableau 10) sans numéros d’inventaire a livré 170 pièces (Tableau 11). Au total, 37 pièces ont une taille inférieure à un centimètre. Il semblerait que l’un des objectifs du débitage soit la production des lamelles en radiolarite in situ (Fig. 8). En pratique, il nous est possible de différencier les artefacts liés à cette production lamellaire (reconnue dans l’ensemble 1 et dans l’ensemble sans numéros d’inventaire), puisqu’ils sont faits en radiolarite, dont la couleur varie de jaunâtre à vert. Il s’agit de la production unipolaire de lamelles axiales, minces, aux bords parallèles et réguliers (Fig. 8 : 5, 7, 10–13). Les M. Polanská et al. / L’anthropologie 118 (2014) 255–291270 Tableau 7 Prˇedmostí III (fouille 1983). Classement de l’outillage stricto-sensu (ensemble 2). Prˇedmostí III (excavation in 1983). Classification of retouched tools stricto-sensu (assembledge 2). Radiolarite Silicite indéterminée Total Burin 1 1 Lame retouchée/2 bords 1 1 Outil indéterminé 1 1 Total 2 1 3 Tableau 6 Prˇedmostí III (fouille 1982). Classement de l’outillage possible (ensemble 1). Prˇedmostí III (excavation in 1982). Classification of possible tools (assembledge 1). Radiolarite Silicite indéterminée Total Lamelle à retouche d’utilisation probable/1 bord 1 1 2 Éclat laminaire à retouche d’utilisation probable/1 bord 1 1 Éclat à retouche d’utilisation probable/1 bord 1 1 Total 3 1 4 Tableau 8 Prˇedmostí III (fouille 1983). Classement de l’outillage possible (ensemble 2). Prˇedmostí III (excavation in 1983). Classification of possible tools (assembledge 2). Radiolarite Silicite indéterminée Silicite erratique Total Lame à retouche d’utilisation/1 bord 1 1 2 Éclat laminaire à retouche d’utilisation probable/1 bord 1 1 Total 1 1 1 3 4 lamelles sélectionnées comme les supports de microlithes suggèrent le débitage dans l’axe central de la table lamellaire, le long de deux (d’où sections quadrangulaires, Fig. 8 : 5, 10–13) ou d’une nervure parallèle (Fig. 8 : 6, 7 exemplaires brutes). Le remontage de tablette de ravivage axiale (percutée à partir de la surface de débitage, Fig. 9 : 1) illustre l’installation et la progression du débitage frontal sur petit galet, à table lamellaire cintrée et au plan de frappe lisse et incliné (Fig. 10). Quelques produits liés à la production lamellaire témoignent des opérations de cintrage réalisées à partir de l’un des flancs (enlèvements de cintrage proximal ou distal (Fig. 8 : 4, 8) ou d’autres moyens d’entretien comme des néo-crêtes (Fig. 8 : 3). Les données morphométriques des microlithes montrent la recherche de support allant de 4 à 6 mm de largeur pour 2 à 3 mm M. Polanská et al. / L’anthropologie 118 (2014) 255–291 271 Tableau 9 Prˇedmostí III. Classement technologique de l’industrie lithique brute provenant de la fouille de 1982 (ensemble 1). Prˇedmostí III. Technological classification of non-retouched lithics excavated in 1982 (assembledge 1). Radiolarite Silicite indéterminée Silicite erratique Total Lame/plein débitage 1 2 3 Lame/indéterminée 2 2 Lame/mise en forme 1 1 Lamelle/plein débitage 14 2 16 Lamelle/indéterminée 4 4 Lamelle de bord 2 1 3 Lamelle de bord/pan cortical 1 1 Lamelle à crête 1 1 Lamelle sous-crête 1 1 Lamelle néo-crête 1 1 Lamelle de burin/pan revers 1 1 Éclat/allongé 6 6 Éclat/indéterminé > 1 cm 16 16 Éclat < 50 % cortex 8 8 Éclat > 50 % cortex 3 3 Éclat/dégrossissage 8 8 Éclat à crête 6 6 Éclat/néo-crête 1 1 Éclat/sous néo-crête 1 1 Éclat/aménagement crête 7 7 Éclat/mise en forme 17 17 Éclat/ouverture de plan de frappe 1 1 Casson > 1 cm 3 3 Tablette 1 1 Chute de burin 3 3 Total 110 4 1 115 Tableau 10 Prˇedmostí III. Classement technologique de l’industrie lithique brute provenant de la fouille de 1983 (ensemble 2). Prˇedmostí III. Technological classification of non-retouched lithics excavated in 1983 (assembledge 2). Radiolarite Silicite indéterminé Chert du type KL ? Total Lame/cortex 1 1 Lame/sous crête 1 1 Éclat/aménagement de crête 1 Total 1 1 1 1 d’épaisseur (Fig. 11 et 12). Toutefois, il semblerait que le seuil entre la production lamellaire et la production laminaire se situe vers 10 mm de largeur et l’épaisseur à partir de 3 mm pour les lames (Fig. 11). Rien n’indique l’existence d’autres schémas de production des lamelles sur le site, notamment concernant la production des supports des microlithes géométriques4 . Le seul microlithe géométrique de la collection est fait dans une silicite indéterminée à patine blanche (Fig. 8 : 9), ainsi que quelques artefacts bruts ou aménagés, qui présentent parfois les cassures dues au débitage (importés ou produits sur le site ?). Le croisement des données dimensionnelles de l’ensemble 1 et de l’ensemble sans numéros d’inventaire confirment les observations effectuées sur la composition des matières premières des deux ensembles. Une majorité des produits lamino-lamellaires sans numéros d’inventaire provient à l’origine de l’année de fouille de 1982, comme le suggère à première vue le débitage sur la radiolarite jaunâtre (Fig. 13). Il semblerait que les dimensions plus importantes des artefacts de l’ensemble 2 sont probablement dues aux modes d’acquisition5 . Il n’y pas de différences dimensionnelles saisissables selon les artefacts débités dans différentes matières premières, à part la présence d’un fragment mésial d’une lame massive en silicite indéterminée (Fig. 14–16). Concernant le débitage laminaire, nous en sommes réduits à quelques observations. Il semble que l’unipolarité (sauf Fig. 7 : 5) soit la règle avec une préférence pour les volumes étroits ou relativement cintrés, les produits sont légèrement courbes. L’observation des talons (en majorité lisses, bien abrasés, voir émoussés) suggère des plans de frappe plutôt lisses et obliques. La production lamellaire est caractérisée, pour la majorité des pièces, par une longueur variant entre 15 et 40 mm, avec un pic situé entre 25 et 30 mm (ensemble 1 et ensemble sans numéro M. Polanská et al. / L’anthropologie 118 (2014) 255–291272 Tableau 11 Prˇedmostí III. Classement technologique de l’industrie lithique brute (artefacts sans numéros d’inventaire). Prˇedmostí III. Classement technologique de l’industrie lithique brute (artefacts sans numéros d’inventaire). Prˇedmostí III. Technological classification of non-retouched lithics (without inventory numbers). Radiolarite Silicite indéterminée Grès silicifié avec glauconite Total Éclat indéterminé < 1 cm 34 1 35 Casson < 1 cm 20 20 Éclat indéterminé > 1 cm 58 1 59 Casson > 1 cm 29 29 Éclat < 50 % cortex 2 2 Éclat > 50 % cortex 12 12 Éclat/dégrossissage 2 2 Éclat à crête 3 3 Éclat/aménagement de crête 4 4 Éclat de mise en forme 2 2 Éclat de retouche 2 2 Total 166 3 1 170 4 La question des productions distinctes des lamelles pour aménager des armatures axiales et la production des supports caractéristiques des microlithes géométriques est actuellement en cours à Pavlov I (Polanská, thèse en cours). 5 Il est possible que la série de l’ensemble 1 et celle sans numéro d’inventaire qui semblent assez fine, proviennent pour la plupart de la même année de fouille. Les artefacts jugés « intéressants » c’est-à-dire essentiellement des outils ou « les pièces techniques » plus diagnostiques ont été numérotés. Le reste du débitage n’a pas fait l’objet d’inventaire. Par contre les artefacts recueillis lors des fouilles de 1983 sont de plus grandes dimensions, essentiellement représentés par des outils. Ceci peut être probablement expliqué soit par rapport au mode d’acquisition moins fin, soit par une sélection d’objets. d’inventaire [Fig. 17 et 18]). Les outils provenant de l’année de fouille 1983 sont de plus grandes dimensions, avec une mesure maximale de 84,7 mm (Fig. 19). 4.2.2.3. Techniques de débitage. La détermination des techniques de détachement des supports lamino-lamellaires n’est pas systématique pour les industries d’Europe centrale. Néanmoins, M. Polanská et al. / L’anthropologie 118 (2014) 255–291 273 Fig. 9. Remontages en radiolarite vert-jaunâtre de l’ensemble 1 et de la série sans numéro d’inventaire (photos M. Polanská). Remontages from green-yellowish radiolarite from the assemblage 1 and without inventory numbers (photos by M. Polanská). pour le moment nous disposons de quelques exemples. La percussion directe au percuteur tendre organique est la technique majoritairement reconnue dans les ensembles gravettiens datés de 30/ 29,000 à 22,000 BP non calibré (entre autres reconnue à Pavlov I, Pavlov II, Pavlov VI, Dolní Veˇstonice II–Western Slope, Dolní Veˇstonice I, Milovice I, Milovice IV, Kasˇov I–Spálenisko, Banka–Horné farské role, Prˇedmostí Ia, Ib ; Willendorf–couche 5 ; Moreau, 2009, 2012 ; Polanská, 2008, 2009, 2011, 2013). Quelques cas de percussion tendre minérale sont toujours parallèlement identifiés parmi les produits de plein débitage ou des sous produits de production lamino-lamellaire. Étant donné le M. Polanská et al. / L’anthropologie 118 (2014) 255–291274 Fig. 10. Représentation schématique de la production lamellaire sur bloc à Prˇedmostí III (DAO M. Polanská). Schematic representation of bladelet production from the bloc from Prˇedmostí III (CAD by M. Polanská). Fig. 11. Rapport entre largeur et épaisseur de l’industrie lithique provenant des fouilles de l’année 1982 (supports lamino- lamellaires). Relation between the width and the thickness of the lithics excavated in 1982 (blade-bladelet blanks). M. Polanská et al. / L’anthropologie 118 (2014) 255–291 275 Fig. 12. Rapport entre largeur et épaisseur de l’industrie lithique sans numéro d’inventaire (supports lamino-lamellaires). Relation between the width and the thickness of the lithics without inventory numbers (blade-bladelet blanks). Fig. 13. Rapport entre largeur et épaisseur de l’industrie provenant des fouilles de l’année 1983 (supports lamino- lamellaires). Relation between the width and the thickness of the lithics excavated in 1983 (blade-bladelet blanks). Fig. 14. Rapport entre largeur et épaisseur de l’industrie lithique provenant des fouilles de l’année 1982 (supports lamino- lamellaires). Relation between the width and the thickness of the lithics excavated in 1982 (blade-bladelet blanks). peu d’industrie du Paléolithique supérieur d’Europe centrale, qui ont fait l’objet de reconnaissance des techniques, nous sommes forcés d’aller chercher des points de comparaison dans le Gravettien occidental. À titre d’exemple, dans le Gravettien français, le tableau des techniques est plus diversifié (Klaric, 2003; Pelegrin, 2012). L. Klaric a identifié l’utilisation du percuteur tendre minéral dans certaines séries gravettiennes du nord de la France et de Belgique et la percussion tendre organique dans les séries du sud de la France (Klaric, 2004). Pour le moment, l’état des recherches sur la question en Europe centrale ne permet pas discuter des changements des techniques au cours du Paléolithique supérieur. À titre indicatif, nous connaissons une seule collection où le débitage au percuteur tendre minérale est majoritaire. Il s’agit de la collection du ramassage de surface de Dolná Krúpa (Slovaquie occidentale). Le matériel lithique homogène, fait en partie sur le silex jurassique de Krakow pour produire de petites lames fines, ne permet malheureusement pas d’attribution culturelle plus précise. Les observations effectuées à Prˇedmostí III sont en concordance avec celles observées sur les autres sites gravettiens. Les critères qui ont permis notre diagnostic à Prˇedmostí III se basent sur ceux décrits par J. Pelegrin (Pelegrin, 2000 : 77) : M. Polanská et al. / L’anthropologie 118 (2014) 255–291276 Fig. 15. Rapport entre largeur et épaisseur de l’industrie lithique sans numéro d’inventaire (supports lamino-lamellaires). Relation between the width and the thickness of the lithics without inventory numbers (blade-bladelet blanks). Fig. 16. Rapport entre largeur et épaisseur de l’industrie lithique provenant des fouilles de l’année 1983 (supports lamino- lamellaires). Relation between the width and the thickness of the lithics excavated in 1983 (blade-bladelet blanks). M. Polanská et al. / L’anthropologie 118 (2014) 255–291 277 Fig. 17. Fouille réalisée en 1982 (ensemble 1). Longueurs en mm de l’industrie lithique brute et de l’outillage (supports lamino-lamellaires). The excavation realized in 1982 (assemblage 1). The length of the non-retouched lithics and lithic tools in millimeters (blade-bladelet blanks). Fig. 18. Longueurs en mm de l’industrie lithique brute de l’ensemble sans numéro d’inventaire (supports lamino- lamellaires). The length of the non-retouched lithics indicated in milimeters without inventory numbers (blade-bladelet blanks).  « talon d’épaisseur réduite mais notable. . .lèvre régulière ». . .  « absence de marque d’impact sur le talon ». L’échantillonnage examiné (supports lamino-lamellaires) est composé de 24 pièces (Tableau 12 ; Fig. 20). La percussion directe au percuteur tendre organique est reconnue dans plus de la moitié des cas. Seuls 4 supports sont débités au percuteur tendre minéral (sous produits de débitage). Les pièces non diagnostiquées sont surtout composées par des lamelles dont les petites dimensions ne permettent pas le diagnostic. En général, les techniques de débitage résultent des observations des produits issus de la séquence du débitage lamino-lamellaire. Étant donné la présence à Prˇedmostí III, d’un artefact en ivoire de mammouth à stigmates compatibles avec un percuteur, nous avons élargi les observations sur les produits non lamino-lamellaires provenant des autres séquences de la chaîne opératoire comme la préparation ou la mise en forme (éclats de dégrossissage, d’aménagement M. Polanská et al. / L’anthropologie 118 (2014) 255–291278 Fig. 19. Fouille réalisée en 1983 (ensemble 2). Longueurs en mm de l’industrie lithique (supports lamino-lamellaires). The excavation realized in 1983 (assemblage 2). The length of the lithics indicated in milimeters. Tableau 12 Prˇedmostí III. Techniques de débitage des supports lamino-lamellaires (percussion directe). Prˇedmostí III. Blade-bladelet debitage techniques (direct percussion). Brut 1982 Outils 1982 Brut 1983 Outils 1983 Sans No d’inv. Total Tendre organique probable 2 2 2 4 2 12 Tendre organique possible 1 1 Tendre minérale probable 2 2 4 Tendre indéterminée 1 1 Indéterminée 4 2 6 Total 9 7 2 4 2 24 de crête, de mise en forme, etc.). Parmi les pièces diagnostiques, une seule est débitée au percuteur minéral dur, les autres sont débitées au percuteur tendre organique. Nous avons déjà souligné la coexistence des deux techniques de percussion directe (tendre organique et minérale) au cours du Gravettien, sans toutefois la justifier ou la replacer dans une séquence de la chaîne opératoire. La collection de Prˇedmostí III comprend un échantillon restreint de pièces lithiques, en conséquence le nombre d’artefacts débités au percuteur tendre minéral peut sembler mineur par rapport aux autres collections examinées. Cette technique est pour le moment peu reconnue dans les ensembles gravettiens d’Europe centrale, sans être liée à la M. Polanská et al. / L’anthropologie 118 (2014) 255–291 279 Fig. 20. Techniques de percussion directe reconnues à Prˇedmostí III (photos M. Polanská). Techniques of direct percussion recognized on lithics artifacts from Prˇedmostí III (photos by M. Polanská). phase de la mise en forme ou de la préparation. Même si elle est plus diagnostiquée dans les sous produits lamino-lamellaires issus de la phase d’entretien du débitage, il y a toujours quelques cas provenant du plein débitage. La question pourra être débattue après avoir systématisé cette approche à d’autres ensembles, plus importants quantitativement, et provenant de conditions homogènes où nous pourrons passer à un autre niveau d’approche. 5. L’industrie en matières dures animales (un fragment de percuteur en ivoire de mammouth ?) L’industrie en matières dures animales de Prˇedmostí III est représentée par deux artefacts, décrits par B. Klíma comme : « un broyeur en ivoire décoré par une série d’incisions parallèles et un fragment d’un « d’un objet en forme de battoir » aménagé en partie sur la compacte d’un fémur de mammouth (sic) » (Klíma, 1985 : 8). C’est l’analyse du débitage du premier artefact qui nous paraît la plus intéressante, notamment du fait de sa ressemblance avec les percuteurs décrits par L. Steguweit entre autres dans les collections de Pavlov I, de Dolní Veˇstonice I et de Prˇedmostí Ia (Steguweit et Trnka, 2008). 5.1. Analyse descriptive de la pièce archéologique en ivoire de mammouth : état, morphologie, données métriques. Il s’agit d’un fragment distal d’ivoire de mammouth de 13,5 cm de long. Malheureusement, il est partiellement abîmé et restauré (partie proximo-mésiale ; Fig. 21). De plus, il manque la surface extérieure de l’ivoire, dont le détachement est probablement dû à des processus postdépositionels (Fig. 22). Une épaisse couche de vernis a également provoqué une altération de la couleur d’origine et empêche aujourd’hui une analyse très approfondie des différents stigmates. Toutefois, nous pouvons signaler la présence de deux ensembles de lignes incisées parallèles, visibles sur la partie mésiale de l’objet et qui s’apparentent peut-être à des éléments décoratifs (Fig. 21). En effet, de tels décors sont relativement fréquents sur certains objets en matières dures animales du Pavlovien morave mais ils forment rarement une composition ornementale élaborée (Svoboda, 1995). Dans le cas de l’artefact de Prˇedmostí III, leur organisation ne confirme, ni n’exclut, leur caractère fonctionnel ou décoratif. En raison de l’altération de la partie distale de l’artefact (Fig. 22), les stigmates sont visibles uniquement sur une portion de la partie active. Cette zone, de moins de 4 cm2 , est caractérisée par une série de dépressions et d’entailles de formes différentes (entailles longitudinales en forme de demi-lune ou subrectangulaire) qui se développent de la partie distale jusque sur la face latérale (Fig. 22). La morphologie de la partie active est légèrement arrondie et présente un « méplat biseauté ou chanfrein6 ». Malheureusement, en raison de la mauvaise conservation de la surface de l’artefact et en l’absence d’autres objets en ivoire de mammouth à Prˇedmostí III, il nous est impossible d’analyser plus en détail les autres stigmates liés au débitage ou à la fonction de l’objet. Toutefois, il est possible de proposer des analogies avec le matériel d’autres sites gravettiens moraves et des percuteurs expérimentaux. M. Polanská et al. / L’anthropologie 118 (2014) 255–291280 6 Par le terme « méplat biseauté ou chanfrein », nous désignons la partie légèrement biseautée, située environ à un centimètre du bord. Cette bordure est marquée par des entailles en marches d’escalier et qui sont transversales par rapport à l’axe de la pièce. À titre indicatif, L. Steguweit a identifié plusieurs objets en rapport avec les débitages des supports lithiques en Moravie et en Autriche (e. g. Pavlov I, Prˇedmostí Ia, Dolní Veˇstonice I ; Steguweit, 2005; Steguweit et Trnka, 2008). Il s’agit en occurrence de ce qu’il a interprété M. Polanská et al. / L’anthropologie 118 (2014) 255–291 281 Fig. 21. Percuteur tendre organique possible en ivoire de mammouth de Prˇedmostí III (photos et DAO B. Hromadová). Possible organic hammer made from mammoth ivory at Prˇedmostí III (photos and CAD by B. Hromadová). comme des percuteurs et des « punchs » en ivoire. En se basant sur des expérimentations réalisées sur de l’ivoire d’éléphant, l’auteur a souligné la solidité et le poids idéal de l’ivoire pour le débitage de supports laminaires (Steguweit, 2005 : 181). En Russie, G. A. Khlopachev a signalé la texture spécifique de l’ivoire, qui assure une bonne résistance mécanique lors de son emploi comme percuteur (Khlopachev, 2006 : 19), contrairement aux expérimentations réalisées en 20107 qui ont démontré une mauvaise résistance aux « chocs sur un talon » de l’ivoire provenant du permafrost (cet ivoire s’étant lentement desséché après son prélèvement hors du permafrost). Nous pensons que les artefacts décrits comme « punchs » par L. Steguweit dans les collections mentionnées méritent un réexamen approfondi. Premièrement, les stigmates d’écrasement dans la partie distale d’un punch ne suffisent pas à eux seuls pour le classer dans la catégorie des punchs (chasse-lame). En effet, le frottement de cette partie distale sur la corniche du plan de frappe laisse d’autres stigmates caractéristiques (par exemple des bourrelets de compactage ou des éraflures longitudinales) qui aide à confirmer la fonction de la pièce (communication personnelle de J. Pelegrin). Deuxièmement, la présence de punch suggère le débitage par percussion indirecte, ce qui n’est pas le cas dans le Pavlovien de Dolní Veˇstonice I. Si à Prˇedmostí Ia, nous avons identifié avec L. Klaric plusieurs lames débitées par percussion indirecte, nous pensons que celles-ci appartiennent très probablement aux occupations néolithiques par ailleurs identifiées sur le site. En l’état de nos connaissances, la percussion indirecte n’a jamais été identifiée formellement dans des ensembles du Paléolithique supérieur en Europe. Cette M. Polanská et al. / L’anthropologie 118 (2014) 255–291282 Fig. 22. La représentation graphique du percuteur possible en ivoire (DAO B. Hromadová et M. Polanská). Grafic representation likely possible hammer of tusk (CAD by B. Hromadová and M. Polanská). 7 Cette expérimentation fut réalisée en juin 2010 à l’initiative de B. Hromadová, et avec le concours de J. Pelegrin, lors du stage techno-tracéologique à Zaraysk (Russie). Les résultats sont pour le moment préliminaires et seront complétés par d’autres essais. technique de percussion n’apparaît formellement, en Europe, que vers la fin du Mésolithique (Pelegrin, 2006 : 40). De ce fait, il faudrait s’assurer avec certitude que l’artefact identifié á Prˇedmostí est bien un punch et il faudrait également écarter la possibilité qu’il appartienne a un ensemble culturel beaucoup plus récent. 5.2. Analyse descriptive du percuteur expérimental en ivoire de mammouth : état, description La surface du percuteur expérimental a, dans un premier temps, été débarrassée de la couche de cément (partie la plus dure du matériau) qui présente 2 à 4 degrés de dureté selon l’échelle de Mohs. En conséquence, nous avons utilisé comme percuteur le noyau en dentine (plus tendre) qui présente, selon N. K. Vereschagin, 2 degrés sur l’échelle de Mohs (Vereschagin et Tikhonov, 1986 : 6). C’est un tronçon de la partie distale d’un ivoire de mammouth avec une densité importante et un poids de 270 g qui a été utilisé pour aménager le futur percuteur. Cette partie de l’ivoire, mûrement choisie, devait assurer une dureté adéquate (Vereschagin et Tikhonov, 1986). Cependant, la zone active s’est déformée très rapidement (en comparaison avec le bois de cervidé traditionnellement utilisé par les expérimentateurs) et ce seulement après quelques coups. La matière du percuteur expérimental semblait relativement molle et plastique, malgré son état de dessèchement à l’air libre durant quelques années après son prélèvement dans le permafrost. Dans ce contexte, la question qui se pose est : quel rôle joue l’état de la matière première lors de l’acquisition ? Il s’agit notamment de déterminer si lors de l’aménagement des outils (en l’occurrence des percuteurs), les hommes préhistoriques utilisaient l’ivoire d’individus morts depuis peu de temps ou s’ils le ramassaient dans un état physique notablement altéré (sec ou craquelé sous l’effet du gel) très longtemps après le décès de l’animal ; ces deux conditions d’acquisition se répercutant de fait sur les propriétés mécaniques de la matière première. Du point de vue des stigmates visibles sur la partie active du percuteur expérimental, on peut observer des entailles profondes et longitudinales en forme de demi-lune ou subrectangulaire (Fig. 23) organisées de manières linéaires qui se développent en petites plages sur la surface écrasée (répétition des coups au même endroit). 5.3. Analyse descriptive du percuteur en ivoire de mammouth de Pavlov I : état, description Une organisation semblable des stigmates est visible sur le percuteur en ivoire, identifié à Pavlov I lors de la campagne de 1953 (Fig. 24) (Steguweit et Trnka, 2008). Il s’agit d’un tronçon d’ivoire de mammouth, dont la partie distale présente une surface bombée et convexe. La zone active couvre toute la partie distale de l’objet (abîmée par de multiples dépressions dues aux coups successifs) et se poursuit jusqu’à la face latérale. Toute la morphologie de la zone active rappelle fortement celle des percuteurs en bois de cervidé du fait de l’utilisation de la totalité de la partie distale du percuteur lors du débitage (Averbouh, 1999 ; Stodiek, 1990). La face latérale est légèrement biseautée et forme une deuxième surface active présentant des négatifs de coups, organisés linéairement. Les coups portés sur la face latérale ont sans doute bien endommagé la surface de l’ivoire et lui ont causé quelques déformations, alors que la bordure résulte de la séparation du tronçon du reste de l’ivoire. La forme de la bordure suggère l’utilisation de l’une des techniques d’enlèvement par percussion avec la formation d’une gorge d’entaillage préparée pour séparer le support du futur percuteur. L’approfondissement progressif de la gorge, par lequel se creuse le négatif d’enlèvement, a finalement donné au tronçon sa forme conique caractéristique (Khlopachev et Giria, 2010 : 36). L’approfondissement du méplat est M. Polanská et al. / L’anthropologie 118 (2014) 255–291 283 causé par l’emploi de cette zone « en prise en marteau ». En d’autres termes, la partie convexe de la face latérale est employée quasiment perpendiculairement par rapport à l’axe du débitage pour porter un coup sur la matière première lithique. L’orientation et l’organisation des négatifs des coups sur la partie distale et la face latérale présentent de légères différences. À l’avenir, il serait intéressant de procéder à des analyses complémentaires et de comparer les stigmates identifiées lors de différentes phases du débitage laminaire (comme c’est le cas pour les percuteurs en bois de cervidés ; Averbouh, 1999). L’état très abîmé de la surface, la forme, ainsi que la profondeur des entailles observées à la fois sur le percuteur de Pavlov I et sur le percuteur expérimental n’excluent pas un emploi identique des deux objets (si tant est qu’au moment de leur utilisation les ivoires aient présenté des propriétés physiques comparables). 5.4. Comparaison des zones actives du possible percuteur en ivoire de Prˇedmostí III, du percuteur de Pavlov I et du percuteur expérimental La synthèse de la comparaison des deux outils (percuteur expérimental, et percuteur identifié à Pavlov I) nous conduit vers l’objet de Prˇedmostí III. Malgré l’absence d’informations M. Polanská et al. / L’anthropologie 118 (2014) 255–291284 Fig. 23. Percuteur tendre organique expérimental en ivoire de mammouth (photos et DAO B. Hromadová). Experimental organic hammer made from mammoth ivory (photos and CAD by B. Hromadová). taphonomiques et d’observations technologiques sur la transformation de la matière dure animale sur le site, il nous est néanmoins possible de comparer les surfaces actives des objets mentionnés (Fig. 25). La morphologie générale et la localisation de la surface active sur l’outil de Prˇedmostí III (Fig. 22) comme celui de Pavlov I (Fig. 24) indique son emploi lors d’opération de débitage lithique. L’analyse approfondie des stigmates fonctionnels est impossible à cause de la mauvaise M. Polanská et al. / L’anthropologie 118 (2014) 255–291 285 Fig. 24. Percuteur tendre organique en ivoire de mammouth, identifié à Pavlov I par L. Steguweit (année de fouille 1953 ; photos et DAO B. Hromadová). Organic hammer from mammoth ivory, identified at Pavlov I by L. Steguweit (excavated in 1953; photos and CAD by B. Hromadová). conservation de la surface et de la couche épaisse de vernis. Néanmoins, grâce aux rapprochements et comparaisons que nous pouvons faire avec le percuteur de Pavlov I, il est possible d’identifier certains détails techniques de l’utilisation du percuteur de Prˇedmostí III. Sur ce dernier, la bordure présente les restes de la forme conique du tronçon (comme dans le cas du percuteur en ivoire de Pavlov I), mais l’objet semble avoir été utilisé « en prise en pinceau ». La localisation et l’orientation des stigmates visibles sur la pièce ainsi que l’absence de surface de détachement et des autres détails techniques caractéristiques de l’utilisation d’un « punch » (Hahn, 1991 ; Provenzano, 1998) contredisent l’hypothèse que cet artefact correspond à ce type de pièce intermédiaire. C’est notamment grâce à cette observation que nous pensons que cet objet a pu servir de percuteur, et qu’il faudrait le distinguer de l’ensemble des objets connus sous l’appellation de « marteaux-pillons-broyeurs ». Cette catégorie est une classe générique assez vague crée par B. Klíma (1967), qui inclut vraisemblablement des outils de fonctions différentes (Goutas, 2013, communication personnelle M. Rasˇková-Zelinková). M. Polanská et al. / L’anthropologie 118 (2014) 255–291286 Fig. 25. Stigmates de l’utilisation de la partie active des percuteurs en ivoire (percuteur possible, percuteur expérimental et percuteur identifié à Pavlov I). Traces of utilisation in the active part of the ivory hammers (likely hammer, experimental hammer, hammer from Pavlov I). 5.5. Lien entre le percuteur possible en ivoire et la production lamino-lamellaire sur le site À Prˇedmostí III, la production lamino-lamellaire est effectuée sur le site au percuteur tendre organique (cf. supra), ce qui concorde avec la présence, la description et l’interprétation de l’objet en ivoire comme percuteur tendre organique. Toutefois, l’analyse du matériel lithique débité au percuteur en ivoire et la publication sont toujours en cours de réalisation (Hromadová, article en préparation). Il s’agit de déterminer si les stigmates observés sur les produits débités à l’ivoire sont les mêmes que lors de la production au percuteur de bois de cervidé. D’après les premières observations effectuées par J. Pelegrin, les différences sont mineures (communication personnelle). Selon L. Steguweit, les produits présentent souvent des cassures dues au débitage, situées sous le bulbe ou dans la partie proximale (Steguweit et Trnka, 2008 : 161). Nous pensons qu’il ne faut pas généraliser ces observations. Premièrement, L. Steguweit a utilisé comme percuteur un ivoire d’éléphant dans un état très évolué (desséché). Deuxièmement, nous rappelons que la technique utilisée (percussion indirecte) par L. Steguweit n’est pas conforme aux techniques de débitage observées sur les sites gravettiens d’Europe centrale (e.g. Polanská, thèse en cours ; Polanská, 2013). 6. Un galet anciennement interprété comme enclume Un galet, anciennement interprété comme une enclume, avait été mis au jour, lors de l’année de fouille de 1982 (Klíma, 1983). Contrairement à l’interprétation de B. Klíma, l’objet ne porte pas de traces d’impacts (Fig. 26). Il présente des bords lisses sans traces d’impacts et les petites dépressions localisées sur l’une des faces semblent naturelles. La collecte des galets plats dépourvus de traces visibles d’utilisation (ramassés probablement dans la rivière de Becˇva proche du site) est attestée à Prˇedmostí Ia depuis le Paléolithique moyen (Klíma, 1990 : Figure 44). M. Polanská et al. / L’anthropologie 118 (2014) 255–291 287 Fig. 26. Galet sans traces d’utilisation (photo M. Polanská). Pebble without traces of utilization (photo by M. Polanská). M. Polanská et al. / L’anthropologie 118 (2014) 255–291288 Fig. 27. Différentes composantes lithiques du complexe des sites de Prˇedmostí. (dessins : 1, 5–9, 11 M. Polanská, 2,10 B. Klíma, 3 d’après Absolon, 1947, 4 d’après Absolon et Klíma, 1977). Different lithics components at site complex of Prˇedmostí. (drawings: 1, 5–9, 11 by M. Polanská, 2,10 by B. Klíma, 3 after Absolon, 1947, after Absolon, Klíma 1977). Les petits galets et les fragments de plaquettes sont souvent interprétés dans le Pavlovien morave comme des enclumes ou des retouchoirs. En réalité, peu de ces artefacts ont fait l’objet d’une analyse approfondie pour fonder ces interprétations. Il faudrait pour étayer cette hypothèse procéder à une réanalyse au cas par cas. Dans la pratique, les petits galets de rivière peuvent être utilisés comme préparateurs. Ce type d’artefact est utilisé, à titre d’exemple, pour les microfacettages des plans de frappe. Ils portent alors des émoussés ou des rayures sur les bords et sur les extrémités. Concernant les retouchoirs, nous en connaissons en os avec des traces situées au milieu des pièces. Ceux en pierre sont connus, par exemples, dans les collections gravettiennes de Kostenki I/1, Kostenki IV, Borschevo II, Shan-Koba (e.g. Semjonov, 1953). 7. Conclusions Les données stratigraphiques de Prˇedmostí III suggèrent la position secondaire du matériel lithique et en matières dures animales due aux phénomènes de solifluction. La faune, partiellement étudiée, est dominée par le mammouth. Néanmoins, l’ensemble de l’industrie lithique de Prˇedmostí III est homogène et son aspect microlithique n’a pas une signification culturelle, mais est lié au débitage à partir de galets de rivière. Elle est répartie entre trois séries cohérentes d’un point de vue culturel, qui attribue l’ensemble au « groupe à microlithes géométriques » (28,000/27,500–26,000/25,500 BP non calibré) du Pavlovien d’Europe centrale. La présence d’artefacts de la phase de préparation de mise en forme, d’aménagement et de ravivage d’outils témoignerait en faveur de taille in situ. Du point de vue de la reconnaissance des systèmes techniques, la collection de l’industrie lithique de Prˇedmostí III a une valeur peu significative. Or, la récente analyse de Prˇedmostí Ib (fouille 2006) et de Pavlov I, et plus particulièrement l’association d’un microlithe géométrique à un couteau de Kostienki, a permis l’attribution culturelle au « groupe à microlithes géométriques » du Pavlovien d’Europe centrale. Cette composante industrielle est représentée pour le moment à Pavlov I (certains secteurs), à Milovice IV et dans d’autres localités de Prˇedmostí I (Polanská, 2011, 2013, thèse en cours) (Fig. 27). Dans le locus Ia, cette industrie est mélangée avec le groupe à microscies (Polanská, thèse en cours ; Polanská, 2013). Prˇedmostí III est donc un autre ensemble dans le complexe des sites de Prˇedmostí I, où est représentée cette composante à côté de celles de Ia et Ib. La présence d’un percuteur tendre organique possible en ivoire de mammouth et la compatibilité de celui-ci avec la technique du débitage reconnue, fait de Prˇedmostí III le premier site d’Europe centrale où a été tenté ce type d’approche. Cette démarche doit être complétée à l’avenir par l’étude d’autres sites. Remerciements Les auteurs souhaitent remercier Messieurs J. Pelegrin, L. Klaric et Madame Y. Maigrot pour leurs conseils, ainsi que les relectures, Monsieur E. Giria pour l’aide avec le matériel expérimental, Madame M. Roblícˇková (Musée morave de Brno) qui a permis l’accès au matériel ostéologique, et Madame S. Scheffer-Farray pour la correction linguistique. Le travail de J. Svoboda et S. Sázelová a été soutenu par le projet européen CZ.1.07/2.3.00/20.0181 et de B. Hromadová par le projet Vega 2/0181/14. Références M. Polanská et al. / L’anthropologie 118 (2014) 255–291 289 Absolon, K., 1947. Kamenné paleolitické nástroje z Prˇedmostí ve sbírkách hanáckého meˇstského musea v Holesˇoveˇ, Prˇíroda 1–2, Brno 3–28. Absolon, K., Klíma, B., 1977. Prˇedmostí. Ein Mammutjägerplatz in Mähren. Fontes Archaeologiae Moraviae 8, Praha. Averbouh, A., 1999. Un fragment de percuteur sur partie basilaire de la grotte magdalénienne d’Enlène (Ariège). BSPF 96 (no 4) 497–504. Goutas, N., 2013. De Brassempouy à Kostienki : l‘exploitation technique des ressources animales dans l‘Europe gravettienne. In: Les Gravettiens (dir. M. Otte). Éditions Errance, Paris 105–160. Hahn, J., 1991. Erkennen und Bestimmen von Stein- und Knochenartefakten. Einführung in die Artefaktmorfologie. Archeologica Venatoria, Band 10 Tübingen. Klaric, L., 2003. L’unité technique des industries à burins du Raysse dans leur contexte diachronique. Réflexions sur la diversité culturelle au Gravettien à partir des données de la Picardie, d’Arcy-sur-Cure, de Brassempouy et du Cirque de la Patrie. [Thèse de doctorat de Préhistoire de l’Université de Paris I]. Klaric, L., 2004. Un usage de la pierre tendre pour le débitage des lames au Gravettien : remarques à propos de l’industrie lithique de la grotte Walou (commune de Trooz, province de Liège, Belgique). In: Le Paléolithique supérieur. Sessions générales et posters, Section 6, Actes du XIVe Congrès de l’UISPP (Liège, Belgique, 2–8 septembre 2001). BAR, Oxford 23–31, [International Series, 1240]. Khlopachev, G.A., 2006. Bivnevye industrii verkhnego paleolita Vostochnoi Evropy. St. Peterburg. Khlopachev, G.A., Giria, E.Y., 2010. Sekrety drevnykh kostorezov Vostochnoi Evropy i Sibiri: pryemi obrabotki bivnya mamonta i roga severnogo olenya v kamennom veke. St. Peterburg. Klíma, B., 1967. Bone industry, decorative objects and art. In: Svoboda, J. (Ed.), Pavlov I. Northwest, DVS 4, Brno, pp. 227–286. Klíma, B., 1983. Zachranˇovací akce v Prˇerove-Prˇedmostí (okr. Prˇerov). rapport de fouille no 343/83. Klíma, B., 1984. Zachranˇovací akcev Prˇerove-Prˇedmostí (okr. Prˇerov) Prˇehled vy´zkumu˚ 1982, AU´ Cˇ AV, Brno, [9, fig. 1–2] Klíma, B., 1985. Pokracˇování zachranˇovací akce v Prˇerove Prˇedmostí (okr. Prˇerov) Prˇehled vy´zkumu˚1983, AU´ Cˇ AV, Brno, [8, fig. 1–3] Klíma, B., 1990. Lovci mamutu z Prˇedmostí. Academia, Praha. Lavocat, R., 1966. Faunes et flores préhistoriques de l’Europe occidentale. Atlas de préhistoire, 3. Boubée et Cie, Paris. Lev, S., Klaric, L., Giria, Y., 2009. O prichinah raznoobraziya nozhey kostenkovskogo tipa (Towards the reasons for the form diversity of Kostenki knives). Rossijskaja arheologija 4 (no 4) 83–92. Moreau, L., 2009. Geißenklösterle. Das Gravettien der Schwäbischen Alb im europäischen Kontext. Tübinger Monographien zur Urgeschichte. Kerns Verlag, Tübingen. Moreau, L., 2012. Le Gravettien ancien d’Europe centrale revisité : mise au point et perspectives. Anthropologie 116 (no 5) 609–638. Ny´vltová-Fisˇáková, M., Schenk, Z., 2006. Prˇerov (Prˇedmostí u Prˇerova, okr. Prˇerov) Prˇehled vy´zkumu˚ 47, AU´ Cˇ AV, Brno 94–96. Pelegrin, J., 2000. Les techniques de débitage laminaire au Tardiglaciaire : critères de diagnose et quelques réflexions. In: Valentin, B., Bodu, P., Christensen, M. (Eds.), L’Europe centrale et septentrionale au Tardiglaciaire. Confrontation des modèles régionaux de peuplement. APRAIF, Nemours, pp. 73–86. Pelegrin, J., 2006. Long blade technology in the Old World: an experimental approach and some archaeological results. In: Apel, J., Knutsson, K. (Eds.), Skilled production adn social reproduction. SAU Stone Studies 2, Uppsala, pp. 37–68. Pelegrin, J., 2012. Sur les débitages laminaires du Paléolithique supérieur. In: Jaubert, J., Delpech, F. (Eds.), François Bordes et la Préhistoire. Editions du CTHS, Paris, pp. 141–152. Polanská, M., 2008. Étude technologique de l’industrie lithique de la couche inférieure de Kasˇov 1–Spálenisko. Technocomplexe gravettien (Slovaquie orientale). [Mémoire de Master 1 de l’université de Paris I]. Polanská, M., 2009. La question de l’attribution au Gravettien ou à l’Epigravettien d’Europe centrale de 4 collections lithiques de Slovaquie : réexamen technologique des séries de : Banka–Horné farské role no de sondage III, IV, V (Slovaquie occidentale) Hrcˇel’- Pivnicˇky : collection de ramassage 1984 (Slovaquie orientale). [Mémoire de Master 2 de l’université de Paris I]. Polanská, M., 2011. L’industrie lithique de Pavlov VI. L’apport du regard technologique au sein des industries pavloviennes. In: Svoboda, J. (Ed.), Pavlov excavation 2007–2011. DVS 18, Brno, pp. 131–154. Polanská, M., 2013. L’industrie lithique (fouille 2006). Collection d’une importance significative pour la compréhension de la « composante lithique à microlithes géométriques » du Pavlovien morave. Prˇedmostí -Building an authentic museum, DVS 19, Brno 44–63. Prˇichystal, A., 2009. Kamenné suroviny v praveˇku vy´chodní cˇásti strˇední Evropy. Masarykova univerzita, Munipress, Brno. M. Polanská et al. / L’anthropologie 118 (2014) 255–291290 Provenzano, N., 1998. Fiche générale des objets à biseau distal. Fiche à biseau distal unifacial sans débitage longitudinal pris sur bois de cervidés. Objet à biseau distal unifacial avec débitage longitudinal pris sur bois de cervidé In: CampsFabrer, H., et al. (Eds.), Fiches typologiques de l’industrie osseuse préhistorique, Cahier VIII : Biseaux et tranchants. Éditions de Cedarc, Treignes, pp. 5–30. Semjonov, S.A., 1953. Kamennye retushery pozdnego paleolita. MIA 39, 446–454. Schenk, Z., Mikulík, J., 2013. Results of recent rescue excavation at Prˇedmostí u Prˇerova. Potential of a Paleolithic site at the beginning of the 21st century. In: Svoboda (Eds.), Prˇedmostí – Building an authentic museum. DVS 19, Brno, pp. 45–64. Steguweit, L., 2005. Gebrauchsmuster an ‘‘Elfenbein-Zylindern’’ aus jungpaläolithischen Fundstellen in Niederösterreich und Mähren. Festschrift für Gernot Rabeder.– Mitt. Komm. Quartärforsch. Österr. Akad. Wiss., 14. pp. 177–193. Steguweit, L., Trnka, G., 2008. Ivory artefacts from the Aurignacian site Albendorf I in the Pullkau valley (Lower Austria) and their interpretation as tools. Wiss. Mitt. Niederöster. Landesmuseum, 19. pp. 149–165. Stodiek, U., 1990. Drei jungpaläolithischen Rendeweihschlägel aus Solutré, dep.Saône-et-Loire, Frankreich. Archäologisches Korrespondenzblatt 20, 363–371. Svoboda, J., 1995. L’art gravettien en Moravie : contexte, dates et styles. L’Anthropologie 99, 258–272. Svoboda, J., 2013a. Location and history of Prˇedmostí, spatial structure and overall stratigraphy. In: Svoboda (Eds.), Building an authentic museum. DVS 19, Brno, pp. 8–17. Svoboda, J., 2013b. Prˇedmostí. Building an authentic museum. DVS 19, Brno. Svoboda, J., Ny´vltová Fisˇáková, M., Novák, M., Demek, J., Kovanda, J., 2007. Prˇedmostí. Prˇehled vy´zkumu˚ 48, Brno 322–330. Vereschagin, H.K., Tikhonov, A.N., 1986. Issledovania bivney mamontov. In: Vereschagin, N.K., Kuzmina, I.E. (Eds.), Mlekopitayuchie chetvertichnoi fauny SSSR. 149, Trudy zoologicheskogo instituta, Leningrad, pp. 3–14. Ziegler, R., 2001. Anextraordinary small mammoth (Mammuthusprimigenius) from SW Germany. Stuttgarter Beiträgezur Naturkunde 300, 1–44. M. Polanská et al. / L’anthropologie 118 (2014) 255–291 291 243 3.5.7 Palaeolithic/Mesolithic stratigraphic sequences at Údolí Samoty and Janova Zátoka Rockshelters Citace: Svoboda, J., Novák, J., Novák, M., Sázelová, S., Demek, J., Hladilová, Š., Peša, V. 2013: Palaeolithic/Mesolithic stratigraphic sequences at Údolí Samoty and Janova zátoka Rockshelters. Archäeologisches Korrespondenzblatt 43, 469-488. JIŘÍ SVOBODA · JAN NOVÁK · MARTIN NOVÁK · SANDRA SÁZELOVÁ JAROMÍR DEMEK · ŠÁRKA HLADILOVÁ · VLADIMÍR PEŠA PALAEOLITHIC/MESOLITHIC STRATIGRAPHIC SEQUENCES AT ÚDOLÍ SAMOTY AND JANOVA ZÁTOKA ROCK SHELTERS (NORTHERN BOHEMIA) This paper is an addition to a series of previous publications discussing the recent Mesolithic discoveries in the sandstone areas of Northern Bohemia, Czech Republic (Svoboda 2003; Svoboda et al. 2007; Šída / Prostředník 2007; Šída / Prostředník / Kuneš 2011). During the 2007-2011 research, previously unknown Late Palaeolithic horizons have come to light below the Mesolithic layers, in sedimentary deposits at the base of two rock shelters, thus providing a more complex evidence of the Pleistocene/Holocene transition and subsequent development. We studied the formation processes of these stratigraphic sequences at two different types of rock shelters – Údolí samoty and Janova zátoka (fig.1). At Údolí samoty (okr. Česká Lípa) we documented a thick sequence with a complex stratigraphy while at Janova zátoka (okr. Děčín) we recorded just a thin sedimentary sequence, partly affected by post-depositional processes. At both sites, we also addressed the question of a change in environment and in resource exploitation around the Pleistocene/Holocene boundary (tab.1). 469Archäologisches Korrespondenzblatt 43 · 2013 Fig. 1 Map of Northern Bohemia (Czech Republic) showing the locations of Údolí samoty (okr. Česká Lípa), Janova zátoka (okr. Děčín), related Mesolithic sites (G), and local raw materials. – Patterns: a extension of glacial sediments with occurrences of erratic flints (after D. Nývlt in: Svoboda 2003, fig. VI,1); b fluvial deposits with rare erratic flints; c approximative concentration of the Stvolínky-type quartzites. – (Map J. Svoboda). ÚDOLÍ SAMOTY (LONELINESS VALLEY), K. Ú. RADVANEC, OKR. ČESKÁ LÍPA Údolí samoty consists of an isolated, north-south oriented valley in the Cretaceous sandstone formation at the foot of the Lusatian Mountains. Geographically, it represents a potential link between the Mesolithic provinces of Česká Lípa Basin to the south and Bohemian Switzerland to the northwest. The rock shelter is located in a prominent position above a brook, near an active water source, and at the place where the valley becomes narrower (fig. 2). As a result of weathering of the sandstone ceiling and continuous influx of allochthonous sediments from above throughout the Late Pleistocene and Holocene periods, a sedimentary sequence – 3m thick – has been deposited during this time span. Therefore, this rock shelter offers a longer and more diversified stratigraphic record. This location was first recognised as an archaeological site during our regional field surveys in 1999. The first test trench exposed a stratigraphic sequence up to 70cm thick, with a recent darkish forest soil, followed by whitish sandy layers containing pottery and charcoal, and whitish and yellowish sand with two lithic artefacts and charcoal. A subsequent trench dug in 2003 revealed a more complex stratigraphy, 2m deep, with intensive Mesolithic occupation at the base (Svoboda 2003, fig.17, 2). In 2011, an area of 2.5m×2.5m was excavated completely and reached solid bedrock at a depth of 3.2m. 470 J. Svoboda et al. · Palaeolithic/Mesolithic stratigraphic sequences of rock shelters in Northern Bohemia sample no. site depth/ result result context (BP) (cal BC) Poz-43847 Údolí samoty pit/upper 115±25 not calibrated Poz-43848 Údolí samoty pit/bottom 139.15±0.4 not calibrated Poz-48373 Údolí samoty 120-140cm 7960±50 6882±113 Poz-43850 Údolí samoty 165cm 8730±50 7770±102 Poz-43849 Údolí samoty 180cm 9360±50 8641±64 OxA-25772 Údolí samoty 270cm 11750±50 11684±127 Poz-23176 Janova zátoka 25cm/pit 9250±60 8466±95 Poz-48371 Janova zátoka 60cm 1960±25 not calibrated Poz-23178 Šamanská rokle 110-120cm 8170±50 7187±85 Poz-23177 Prasečí kámen 90-100cm 7940±50 6863±122 Poz-23179 Šibeniční kámen 110cm 7510±50 6360±67 Tab. 1 Radiocarbon dating of Údolí samoty, Janova zátoka, and other rock shelters excavated after 2005 (for related 14 C dates from Northern Bohemia see Svoboda 2003; Svoboda et al. 2007; Šída / Prostředník / Kuneš 2011). All dates are from charcoal. – Calibrated by OxCal 4.1. using calibration curve IntCal09. Fig. 2 Údolí samoty (okr. Česká Lípa). Location of the rock shelter dominating the shallow valley, during excavation in 2011. – (Photo J. Svoboda). Stratigraphic section This massive sedimentary sequence formed relatively rapidly due to both local weathering and influx of allochthonous material. Effects of bioturbation are visible on the boundaries between the layers, as small dots caused by edaphon activity. A fissure in the central part of the rock shelter ceiling allows continuous water seepage, which has resulted in the formation of two deep longitudinal pits in the sediments below, marked by light-coloured infill bordered by rusty-coloured margins. These pits also served as natural traps for the archaeological material. Generally, the sequence of the layers can be characterised as follows (fig. 3): 1. Darkish forest soil, with needles, depth 0-20cm; 2. Light-greyish sandy layer, with subrecent disturbances and features (pits), depth 20-30cm (in depressions 40cm), 14 C dated 100-150 BP; 3. Whitish coarse-grained sand, with charcoal, depth 30-70cm; 4. Brown-to-greyish sandy/loamy sediments, with effects of edaphon activity (4a – dark brown; 4b – greyish, fine-grained, with charcoal), depth 70-110cm; 5. Whitish sand, with charcoal, depth 110-120cm (maximum 130cm); 6. Yellow, coarse-grained weathered sand (only along the rear wall of the rock shelter); 7. Dark yellowish sand, with charcoal and effects of edaphon activity, depth 120-160cm (maximum 170cm), 14C dated 7960±50 BP; 8. Sublayers of orange burnt sand, with charcoal and burnt bone fragments (locally at the base of 7 and inside 9); 9. Dark greyish, sandy/loamy layer, with charcoal, effects of edaphon activity, and depression features at the base, depth 160-200cm (in depressions 220cm), 14C dated 8730±50 BP and 9360±50 BP; 10. Light greyish sand, with charcoal, depth 200-220cm; 471Archäologisches Korrespondenzblatt 43 · 2013 Fig. 3 Údolí samoty (okr. Česká Lípa). Stratigraphic section. – a distribution of lithic artefacts (G) and ceramic fragments (L) in the layers 1-13. – b photodocumentation of the same section (before excavating the layers 11-13). – (a graphic M. Novák; b photo J. Svoboda). a b 11. Whitish-to-yellowish coarse-grained sand, with undulated rusty bands, depth 220-270cm, 14 C dating failed; 12. Dark greyish sandy location, with charcoal, depth 270-280cm, 14 C dated 11750±50 BP; 13. Whitish coarse-grained sand, with undulated rusty bands, depth 280-320cm; 14. Cretaceous sandstone bedrock. The excavation record, including 3D recording of artefacts and additional material from sieving or floating the sediments, makes it possible to reconstruct the individual archaeological horizons in greater detail. In this preliminary study, we present a coarse-grained separation of the 3m deep section into seven basic material units, including two units containing ceramics (Late Bronze Age to Aeneolithic periods, with Mesolithic admixture at the base), followed by four Mesolithic units and a Late Palaeolithic unit at the base. 472 J. Svoboda et al. · Palaeolithic/Mesolithic stratigraphic sequences of rock shelters in Northern Bohemia Anthracological analysis and vegetation reconstruction Unit 1, 0-70cm, predominantly Late Bronze Age period The upper part of the section is characterised by low species diversity with a high proportion of Pinus sylvestris. The low species diversity is probably due to the anthropogenic activities affecting the surrounding vegetation. Unit 2, 70-120cm, predominantly Bronze Age/Aeneo- lithic Species present in this unit include a high proportion of scots pine and a low proportion of spruce, beech, oak, birch and aspen/willow. Low species diversity is often associated with the Late Bronze Age environmental collapse (Ložek 1998). The layer at a depth of 100- 120cm has a high proportion of oak charcoal. The occurrence of scots pine, spruce, hazel, birch and beech charcoal indicates an increase in species diversity. Hazelnut shells are found in this layer. Unit 3, 120-160cm, Mesolithic The layer at a depth of 120-140cm has a high proportion of oak charcoal. The occurrence of scots pine, spruce, hazel, birch and beech charcoal indicates an increase in species diversity. Hazelnut shells are increasing in quantity. A layer at a depth of 140-160cm contains a large amount of oak charcoal. Pinus sylvestris and Corylus avellana are still very frequent, Tilia sp. and Populus/Salix are still commonly represented and Acer sp. occurs for the first time. Unit 4, 160-180cm, Mesolithic This unit is characterised by a high proportion of Pinus sylvestris, accompanied by lime and hazel. Oak and spruce/larch charcoal are rare. Hazelnut shells are very common. The species composition is similar to the overlying layer (140-160cm). Unit 5, 180-200cm, Mesolithic This unit is characterised by high quantities of charcoal. The layer is distinguished by a high proportion of hazelnut shells. Pinus sylvestris dominates and Corylus charcoal is widespread. The occurrences of oak, spruce/larch, lime and aspen/willow charcoal were recorded at similarly low proportions as in unit 4. Unit 6, 200-240cm, Mesolithic This unit shows a significant decrease in species composition. Pinus sylvestris was dominant and hazelnut shells were frequent. Spruce/larch and oak occurred rarely. A layer at a depth of 220-240cm did not contain any charcoal. It is not known if the absence of charcoal was indicating reduced anthropogenic activity or the rapid sedimentation of sandy material. Unit 7a, 240-260cm, Late Palaeolithic/Mesolithic The species composition of the layer at a depth of 240- 260cm is similar to the species composition of the 200-220cm layer. Pinus sylvestris was widely spread, the abundant presence of spruce/larch charcoal has been documented, and hazelnut shells are occasionally present. The species composition indicates the deterioration of environmental conditions. Unit 7b, 260-300cm, Late Palaeolithic This unit is noticeable for its small quantity of charcoal. Pinus sylvestris was a dominant species and hazelnut shells were rare. The layer at a depth of 260-280cm contained smaller amounts of charcoal and the species diversity is quite low. Only charcoal of coniferous species (Pinus sylvestris, Larix/Picea) were found here. Unit 7c, 300-320cm, Late Palaeolithic This unit is characterised by low amounts of charcoal. The surrounding vegetation can be described as a sparse pine forest. Pinus sylvestris is a dominant species and spruce/ larch and birch were common. Hazelnut charcoal is very rare and a very small charcoal fragment of a deciduous tree (cf. Frangula sp.) was also found (fig. 4a). 473Archäologisches Korrespondenzblatt 43 · 2013 Fig. 4 Údolí samoty (a) and Janova zátoka (b): palaeobotanical spectra, based on macroremains. – (Illustrations J. Novák). a b Vertebrate remains 474 J. Svoboda et al. · Palaeolithic/Mesolithic stratigraphic sequences of rock shelters in Northern Bohemia Tab. 2 Indeterminate bone elements from Mesolithic units at Údolí samoty in relationship to their burning stages (after Cain 2005; 5-3cm 3-2cm unit 3 unit 4 unit 5 unit 3 unit 4 unit 5 unit 6 C CS C CS CS C CS C S CS C CS C stage 0 (unburnt) 1 stage I (<50% carbonised) 1 stage II (>50% carbonised) 3 1 2 1 stage III (fully carbonised) 4 1 stage IV (<50% calcined) 2 4 2 1 1 stage V (>50% calcined) 1 1 1 8 24 2 5 1 2 2 stage VI (fully calcined) 1 2 6 13 4 5 1 total 7 1 2 1 14 41 6 17 1 2 7 1 3 Unit 1, 0-70cm, predominantly Late Bronze Age period Two indeterminate bone fragments were found during sieving. Both were compact bone segments which had undergone the burning stage V (on the scale used in Cain 2005 and Bosch et al. 2012), which means that more than 50% of the organic composition was calcined. Unit 2, 70-120cm, predominantly Bronze Age/Aeneo- lithic The bone and teeth assemblage of two fragments recorded during excavation and 94 fragments discovered during sieving could not be determined with the exceptions of two diaphyseal pieces from a small-sized mammal (such as Vulpes sp. or Lepus sp.). The bone material is highly fragmented – bone pieces are usually smaller than 3cm. We suspect that this fragmentation was caused by burning, because the majority of the fragments (84 pieces) belongs to the burning stages IV-VI (less than 50% of organic composition calcined up to fully calcined bones). Almost all pieces are compact bones or combinations of compact and spongy bone. Unit 3, 120-160cm, Mesolithic In this unit, 18 bones were recorded in 3D and 1225 bones during sieving. They are highly fragmented, mostly from burning. Fragments that were identified include five Cervus elaphus antler pieces and one Sus scrofa upper molar piece. Four tooth fragments were assigned to cervids, two tooth crown fragments probably belong to a boar (cf. Sus scrofa) and one distal part of a phalanx was from a small-sized mammal. Middle-sized mammals (such as Cervus sp. or Sus sp.) were represented by 19 pieces and small-sized mammals by 41 tooth and bone pieces. All fragments were identified as parts of skulls, diaphyses and ribs. Unit 4, 160-180cm, Mesolithic In this unit, 105 bones were recorded during excavation and 738 bone and tooth fragments during sieving, again fragmented and mostly burnt. Pieces that were identified suggest a similar species and skeletal segment composition as in unit 3, but the species identification was only possible for mid-sized mammals (13 pieces) and smallsized mammals (10 pieces). Unit 5, 180-200cm, Mesolithic The bone and tooth assemblage of twelve 3D recorded fragments and 137 fragments found during sieving are mostly unidentifiable, with the exception of one proximal part of a phalanx of a small-sized mammal. As in the previous units, all bones were highly fragmented and burnt. Unit 6, 200-240cm, Mesolithic In this unit, 10 bone fragments were recorded and 47 bone and tooth fragments were found during sieving. As in the previous units, the assemblage is highly fragmented (smaller than 3cm), burnt and mostly unidentifiable, with the exception of a part of an upper boar molar (Sus scrofa) and parts of teeth and diaphyses from a midsized mammal. Unit 7, 240-300cm, Late Palaeolithic The bone assemblage of 3 recorded fragments and 17 fragments found during sieving is similar to the previous units. Almost all bone pieces represent compact bone and were burnt at the stages IV-VI (tab. 2). Unit 1, 0-70cm, recent to Late Bronze Age period Although this unit was largely affected by subrecent and recent disturbances and features (cf. the first two 14 C dates), no recent artefacts were found in association. Several predominantly recent pits were recorded to a depth of 70cm, one of them filled with atypical pottery fragments. A small piece with a (probably) horizontal linear pattern dating to the Late Bronze Age period (Ha A-Ha B; depth 30-40cm), was associated with 47 other, undatable pottery sherds, and two lithic artefacts. Unit 2, 70-120cm, predominantly Bronze Age/Aeneo- lithic The ceramic assemblage of 63 fragments includes only a few ceramic sherds determinable in terms of chronology: a fragment with a parallel finger pattern dating to the Bronze Age (middle or late, depth 100cm), and a funnelshaped rim dating to the Bronze Age or Aeneolithic (later Funnelbeaker culture – Baden – Řivnáč, depth 100cm). The other fragments allow only a general dating to ceramic prehistory. Most of the 53 artefacts recorded during excavation and 373 artefacts discovered during sieving are made from flint. Artefact types include flakes, chips, blades and microblades. The most typical objects are a bifacially flaked arrowhead, Bronze Age/Aeneolithic in age (with a concave base, depth 105cm), and an admixture of some Mesolithic artefacts (a backed microblade and a geometric microlith at the base of this unit). Unit 3, 120-160cm, Mesolithic Extensive areas covered by ash and red-burnt sand occur at the base of this unit, but no regular hearth came to light. In the centre, two deep pits created by water erosion from the ceiling fissure were unearthed, and on the sides, two larger sandstone blocks more than 1m in size, weathered from the rock wall and ceiling, were documented. Smaller stones, especially volcanites, occurred in clusters. An assemblage of 133 artefacts recorded during the excavation and 1794 artefacts discovered during sieving are mostly made from flint. Other raw material types include Bečov-type quartzite, fossil wood, and, as a rare exotic import, a radiolarite bladelet (no. 123, determined by A. Přichystal). Artefact types include small flakes and chips, microblades and a few regular blades. Isosceles triangles appear in a series (some are made from Bečov-type quartzite). Other types present are pointed backed microblades, microburins, splittered pieces, and retouched blades. One blade has a lateral polish (fig. 5a). Unit 4, 160-180cm, Mesolithic An assemblage of 226 artefacts recorded during excavation and 2341 artefacts discovered during sieving are mostly made from flint, several pieces from Bečov-type quartzite and a few individual objects from Tušimice-type quartzite and another bladelet of radiolarite (no. 242). The sieved material includes a large series of geometric microliths: predominantly isosceles and scalene triangles (some of them made from Bečov-type quartzite), some of them reaching extremely small dimensions of only a few millimetres, accompanied by a few narrow trapezoids on blades (intermediate triangle/trapeze forms). Other pieces include microlithic endscrapers, backed pointed microblades and notched blades (fig. 5b). Unit 5, 180-200cm, Mesolithic An assemblage of 493 artefacts recorded during excavation and 451 artefacts discovered during sieving are mostly made from flint, with a low proportion of the Bečov-type quartzite, and others (partly burnt and form- 475Archäologisches Korrespondenzblatt 43 · 2013 Archaeological features and artefact assemblages 2-1cm <1cm unit 3 unit 4 unit 5 unit 6 unit 3 unit 4 unit 5 unit 6 CS C CS C S CS C CS C CS C CS C S CS C CS C 1 1 3 1 5 1 1 2 1 2 1 7 16 2 2 4 18 1 19 2 8 2 8 1 2 1 2 1 17 1 37 5 1 10 26 6 21 2 5 1 2 25 95 14 65 2 2 14 3 4 37 68 20 32 2 8 2 4 110 203 61 110 13 31 2 6 37 80 4 38 2 1 77 250 58 226 2 7 54 35 12 91 199 30 96 2 6 18 3 10 218 585 136 467 9 24 108 40 23 Bosch et al. 2012). – Abbreviations: S spongy bone; CS compact-spongy bone; C compact bone. 476 J. Svoboda et al. · Palaeolithic/Mesolithic stratigraphic sequences of rock shelters in Northern Bohemia Fig. 5 Údolí samoty (okr. Česká Lípa). Lithic artefacts. – a unit 3 (1.2-1.6m), recorded artefacts (italics) and sieved artefacts. Flint, quartzite, radiolarite. – b unit 4 (1.6-1.8m), recorded artefacts (italics) and sieved artefacts. Flint, quartzite, radiolarite. – (Drawings J. Svoboda). a b 477Archäologisches Korrespondenzblatt 43 · 2013 Fig. 6 Údolí samoty (okr. Česká Lípa). Lithic artefacts. – a unit 5 (1.8-2.0m), recorded artefacts (italics) and sieved artefacts. Flint and quartzite. – b unit 6 (2.0- 2.4m), recorded artefacts (italics) and sieved artefacts. Flint. – (Drawings J. Svoboda). a b ing a cluster). Microblades were produced from cubical/ conical microcores and flat cores. Typical are isosceles and scalene triangles accompanied by narrow trapezes, several microburins, a backed pointed microblade, and an endscraper (fig. 6a). Unit 6, 200-240cm, Mesolithic An assemblage of 128 artefacts recorded during excavation and 124 artefacts discovered during sieving are mostly made from flint, with a few objects from Bečovtype and Stvolínky-type quartzites (cf. fig.1). This is a blade and microblade industry produced from unipolar and bipolar cores. Typologically, this unit includes a series of isosceles triangles, narrow trapezes on blades, a truncated blade and a backed microblade, accompanied by an endscraper and two microburins (fig. 6b). Unit 7, 240-300cm, Late Palaeolithic An assemblage of 27 artefacts recorded during excavation and 133 artefacts discovered during sieving are mostly made from flint, with about 20% made from porcellanite. This is a blade and microblade industry, with one backed microblade and one with a notch. Three core fragments are made of porcellanite. Following A. Přichystal (pers. comm.) the porcellanite from this layer differs from the Bohemian key source at Kunětická hora (okr. Pardubice) and one may expect another, more local outcrop (fig. 7). 478 J. Svoboda et al. · Palaeolithic/Mesolithic stratigraphic sequences of rock shelters in Northern Bohemia Fig. 7 Údolí samoty (okr. Česká Lípa). Lithic artefacts: unit 7 (2.4-2.6/3m), recorded artefacts (italics) and sieved artefacts. Flint and porcellanite. – (Drawings J. Svoboda). Typological comparisons In the Central European context, the best comparable stratigraphic sequence to the units 3-6 at Údolí samoty is the Jägerhaus Cave near Beuron (Lkr. Sigmaringen) on the Upper Danube (Taute 1974; Holdermann 2006), which is characterised by a large variety of isosceles and scalene triangles. W. Taute (1974) first noticed that symmetrical and asymmetrical trapezes and trapezoid points may also occur in Beuronian A of the Jägerhaus Cave and M. Heinen (2012) records their restricted presence at sites in Northern Germany. In contrast to the Late Mesolithic rhomboids, these Early Mesolithic trapezes are generally smaller and made on narrow blades (»irregular« after Taute); there are even transitional forms between trapezes and triangles. Údolí samoty and other Bohemian sites differ most notably in their absence of Tardenois points. JANOVA ZÁTOKA (JOHN’S SHELF), K. Ú. JETŘICHOVICE U DĚČÍNA, OKR. DĚČÍN The Janova zátoka rock shelter faces north-northwest in the southern rock wall of the Křinice river meander (fig. 8). The rock shelter is an ideal location for fishing. Due to the composition and morphology of the Křinice area sandstones, rock shelters in the solid rocks are deeper than elsewhere, thus fitting the definition of a cave rather than a rock shelter. The influx of allochthonous sediments from outside was restricted and the sedimentary filling is relatively shallow. In contrast to Údolí samoty which has a complex stratigraphic sequence, Janova zátoka is a representative example of a site with a shallow stratigraphy, where the Mesolithic occupation remains occur just below the surface, and the lower part was locally affected by post-depositional processes (cryoturbation and bioturbation). Today, the river forms a national boundary, which prevented recent anthropogenic disturbances. However, during the last two decades the site was used for temporary camping. On August 8, 2007, V. Sojka collected twelve small flakes and flint blades, burnt flint and quartzite, together with six sherds of medieval pottery, fragments of sedimentary rocks and animal bones on top of the disturbed surface. Subsequently, a standard microtrench was excavated, 1m×1m in size and 60cm in depth. A systematic excavation was conducted in July 2010 (fig. 9). 479Archäologisches Korrespondenzblatt 43 · 2013 Fig. 8 Janova zátoka (okr. Děčín). Location of the cave in the wall of the canyon during excavation in 2010 (arrow). The river Kirnitz/ Křinice creates the national boundary between Germany and the Czech Republic. – (Photo J. Svoboda). The occupied Mesolithic area of c. 5m×3.5m in size in the centre of the rock shelter was completely unearthed, reaching a depth of 160cm. Control trenches on the peripheries and inside the shelter exposed only a sterile sandy layer which became shallower deeper inside the shelter. Stratigraphic section The section is thin and the influx of allochthonous material was limited. Boundaries between lithological layers are irregular due to recent disturbance, archaeological features, cryoturbation, and occurences of larger sandstone blocks. The largest block (120cm×120cm) was found in the left part of the excavated area (fig. 9). Generally, the sequence of the layers can be characterised as follows (fig.10): 1. Darkish, loamy-to-sandy soil (0-15cm); 2. Sandy layer, locally red- or grey-burnt (15-25cm), 14 C dated 9250±60 BP; 3. Greyish-to-brownish, loamy-to-sandy layer, with charcoal, locally having the character of a podzol (15- 30cm); 480 J. Svoboda et al. · Palaeolithic/Mesolithic stratigraphic sequences of rock shelters in Northern Bohemia Fig. 9 Janova zátoka (okr. Děčín). Spatial distribution of lithic artefacts in the excavations 2007 (I) and 2010. – a horizontal distribution including a large boulder (left), an oval-shaped pit and five kettle-shaped pits (centre), and a circular hearth (right). – b vertical distribution of artefacts. – (Illustrations M. Novák / P. Hájková). a b 4. Ochreous sandy layer, locally showing the effect of cryoturbation (20-40cm); 5. Yellowish-to-ochreous sand with brownish bands, locally showing the effect of cryoturbation (30- 60cm); 6. Fine yellowish-to-whitish sand (60-160cm), 14 C misdated 1960±25 BP (probably due to local bioturbation), revision dating failed. The excavation record, including 3D location of artefacts and additional material from sieving or floating the sediments, enables the reconstruction of four basic material units after approx. 15cm intervals, separated into two Mesolithic and two Palaeolithic units. Cryoturbation features in the layers 4-5 Cryoturbations are irregular structures occuring in loams and in regolith due to deep freezing and related frost processes, and they are characterised by undulated and dislocated layers and lenses. A precondition for their formation are stage-like changes of water/ice content which differentiate cryoturbation from the other earth movements. Figure 11 shows a kettle-shaped frost pot. Fragments of rocks or gravels outlining margins of the feature are typical, frequently located diagonally or on the shorter edge and inserted during the frost heaving. There are two theories concerning the origin of frost pots: they are either an expansion of frost wedges or a depression resulting from heaving of fine-grained earths and sinking of the area between the above elevated earthy tongues. Figure 11 shows a fine-grained layer below the frost pot, while cryoturbated earths are located above. Because permafrost is not a necessary precondition for its formation (if a sufficiently thick active layer was present; French 2007), the frost pot may have originated as late as the Late Glacial. 481Archäologisches Korrespondenzblatt 43 · 2013 Fig. 10 Janova zátoka (okr. Děčín). Stratigraphic section. – a distribution of lithic artefacts in the layers 1-6. – b photodocumentation of the left and central part of the same section. – (a illustration M. Novák; b photo J. Svoboda). b a Anthracological analysis and vegetation reconstruction 482 J. Svoboda et al. · Palaeolithic/Mesolithic stratigraphic sequences of rock shelters in Northern Bohemia Fig. 11 Janova zátoka (okr. Děčín). Cryoturbation features. Numbers correspond to the layers in fig.10. – (Photo J. Svoboda). Unit 1, 0-15cm, Mesolithic with ceramic admixture Beech and scots pine are the most common species in this unit. Spruce and silver fir occur frequently. The unit is remarkable for species-rich charcoal assemblages, as proved e.g. by the presence of Acer sp., Alnus sp., Salix/Populus sp., Corylus avellana, Betula sp., Sorbus sp., Taxus baccata and Tilia sp. charcoal. Unit 2, 15-35cm, Mesolithic Two vegetation phases are documented in this unit. The younger phase (15-29cm) shows an increase in species diversity. Oak and pine are still recognised as a forest dominant, but the expansion of beech and silver fir has already been reported here. The occurrences of hazel and yew have increased. An older phase (30-35cm) is characterised by the presence of a sparse oak-pine forest with an occurrence of spruce, hazel and birch. Occasionally Taxus baccata charcoal was present. Unit 3, 35-45cm and deeper, Late Palaeolithic This unit is characterised by an abundance of Pinus sylvestris charcoal, a common occurrence of Picea/Larix and a rare presence of Quercus sp., Fagus sylvatica and Abies alba charcoal. The 14 C date and the associated organic evidence suggest that the presence of oak, beech and silver fir in this basal layer is due to bioturbation (fig. 4b). Leaving the evidence from the Pleistocene layer apart, it can be assumed that the Holocene vegetation near the site consisted of alluvial vegetation, a humid forest on the slopes and valley bottom and sparse pine forests in rocky areas and the edge of the plateau. The upper part of the section shows an increase in pine and a reduction in beech. The first occurrence of hornbeam in the section was found in this unit. Changes in the species composition are probably related to human impact on the vegetation communities. Molluscs Molluscs are rare and only terrestrial gastropod shells were identified. Most pieces are highly fragmented, which makes it very difficult to identify them, and their variability in section is low. Most fragments are sharply angular, the states of their surfaces preservations being variable. Gastropod fragments were discovered only in the layers 1, 5 and 6. In the uppermost layer (1) one shell of Discus perspectivus and one shell fragment of Clausiliidae indet. have been identified. Generally, these gastropods are mostly silvicolous. The remaining material from this layer and all material from the layers 5 and 6 are unidentifiable. It is represented by shell fragments, probably mostly of the family Helicidae (owing to their general dimensions and subtle relics of their original colours – dark bands – perhaps they could be assigned to the proximity of Cepaea shells). The identified gastropods are presumably of local origin, but the presence of the Helicidae in the layers 5 and 6 is probably due to bioturbation. 483Archäologisches Korrespondenzblatt 43 · 2013 5-3cm 3-2cm 2-1cm <1cm unit 2 unit 1 unit 2 unit 1 unit 2 unit 1 unit 2 CS CS C C S CS C CS S CS C S CS C stage I (<50% carbonised) 1 1 1 2 2 3 stage II (>50% carbonised) 3 3 1 5 2 5 9 stage III (fully carbonised) 1 2 1 4 1 2 1 stage IV (<50% calcined) 5 4 5 5 19 29 1 stage V (>50% calcined) 6 2 6 3 1 3 21 31 1 2 1 stage VI (fully calcined) 1 1 3 22 29 1 1 total 1 15 9 1 2 18 12 1 9 73 102 2 5 3 Tab. 3 Indeterminate bone elements from Mesolithic units at Janova zátoka in relationship to their burning stages (after Cain 2005; Bosch et al. 2012). – Abbreviations: S spongy bone; CS compact-spongy bone; C compact bone. Vertebrate remains Unit 1, 0-15cm, Mesolithic with ceramic admixture In this unit, five bone fragments were recorded during excavation and 312 bone and tooth fragments were discovered during sieving. Almost all bones were fragmented and burnt at the stages IV-VI, thus the taxonomic determination was difficult. The few exceptions are the remains of cervids such as Cervus elaphus or Capreolus capreolus (part of astragalus, os triquetral) and suids Sus sp. (fragment of a lower incisor). Rodents were represented by Clethrionomys glareolus (1M1/, 2M/1), Microtus cf. agrestis (M/1) and Sorex minutus (fragment of humerus; a molar fragment, M12/), birds included Passeriformes cf. Motacilla (tarsometatarsus) and several very small fragments of indeterminate egg shells, amphibians by Rana cf. arvalis (ilium) and Anura cf. Rana dalmatina (cruris), and by several vertebrae from pisces (Piscea indet.). All these species are typical elements of a deep river canyon fauna. In addition, an admixture of recent or subrecent bones was determined during the excavation process on the basis of the absence of surface fossilisation and these were excluded from further examination (tab. 3). Unit 2, 15-30cm, Mesolithic A bone assemblage of six bone and tooth fragments were discovered by sieving. As in the case of the unit 1, the bones represent small intederminate pieces with traces of burning. The exception is a rodent tooth, which was classified to Microtus? cf. agrestis (1M1/). Unit 3, 30-45cm, Late Palaeolithic In this layer only two bone fragments were discovered by sieving: a piece of a long bird bone (Aves indet.) and one indeterminate burnt and calcined fragment (at the stage VI). Unit 4, 45cm and deeper, Palaeolithic In this unit only seven compact bone or compact-spongy bone fragments were discovered by sieving, all burnt (at the stages V-VI). Archaeological features and artefact assemblages Unit 1, 0-15cm, Mesolithic with ceramic admixture This layer was largely disturbed by camping and other anthropogenic activities during the last few years and it also included eleven medieval pottery sherds (13th -15th centuries) and several iron sandstone fragments. An assemblage of 101 lithic artefacts recorded during excavation and 139 artefacts discovered during sieving were mostly made from flint. Several quartzite objects were also present. Technological types include blades and microblades from unipolar and bipolar cores. Significant types are three backed pointed microblades and several burins, mostly on broken blades or fragments. Unit 2, 15-30cm, Mesolithic At this depth, the layer was generally undisturbed. The base of the layer is covered by an extensive ashy and redburnt area, and a regular circular hearth occurred in a shallow pan-shaped pit (diameter 70cm, depth 10cm) in the right section of the shelter. In the centre, aside from the largest sandstone block, an oval-shaped pit (70cm× 45cm, depth about 10cm) and a group of at least five kettle-shaped pits were visible due to the dark humous filling and red-burnt margins (diameter 20-25cm, depth about 15cm); additional pits were not easy to see (fig. 9). An assemblage of 67 artefacts recorded during excavation and 219 artefacts obtained from sieving includes a variety of raw materials such as flint, partly burnt, Bečov-type and other quartzites, and a few rare materials. It includes blades, crested blades, microblades and microcores. Significant microlithic types include elongated triangles and a backed pointed microblade associated with a microburin and a notched artefact (fish- hook?). Unit 3, 30-45cm, Late Palaeolithic An assemblage of four artefacts recorded during excavation and 37 lithic artefacts discovered during sieving were made from flint, predominantly white-patinated. Significant types are an atypical backed pointed blade and a wedge-shaped burin. 484 J. Svoboda et al. · Palaeolithic/Mesolithic stratigraphic sequences of rock shelters in Northern Bohemia Fig. 12 Janova zátoka (okr. Děčín). Lithic artefacts: units 1 (0-0.15m; 1-11), 2 (0.15-0.3m; 12-23), 3 (0.3-0.45m; 24-107), and 4 (0.45-0.6m; 137), recorded artefacts (italics) and sieved artefacts. Flint, quartzite, white-patinated flint. – (Drawings J. Svoboda). Unit 4, 45cm and deeper, Palaeolithic An assemblage of six artefacts recorded during excavation and 13 lithic artefacts discovered during sieving were made from white-patinated flint. It includes a microblade and a series of small fragments and chips (fig.12). 485Archäologisches Korrespondenzblatt 43 · 2013 DISCUSSION ON HUMAN SUBSISTENCE Lithic resources The majority of the lithic raw materials is of local or regional origin (fig.1). The southern boundary of glacial reposits with occurrence of erratic flint (Feuersteinlinie) lies a few kilometres north of both sites. Finegrained quartzites of various colourations are present in adjacent Northwestern Bohemia (Bečov-type, Tušimice-type) and in Saxony (Profen/Zauschwitz-type), but one quartzite variety is also scattered as blocs over the Northern Bohemian plateaus (Stvolínky-type; cf. fig.1). The porcellanite, described from Eastern and Northwestern Bohemian outcrops (Přichystal 2009), is expected to occur in Northern Bohemia as well, on contacts between the Cretaceous sediments and the volcanites. In contrast, the few pieces of radiolarite determined by A. Přichystal (pers. comm.) represent an exotic import either from the Czech/Slovakian borderland or from Austria, in both cases from several hundred kilometres distance. Vegetational resources In terms of vegetation (fig. 4), the Late Glacial layers at Údolí samoty are characterised by a low species diversity, anthracomass and only a low amount of hazelnut shells. The presence of hazel during this period is also supported by pollen diagrams from the nearby peatbogs of Mařeničky and Rozmoklá Žába in the Lusatian Mountains (Peša / Kozáková 2012, figs 3-4). The surrounding vegetation best corresponds to an open pine forest where the species composition indicates unfavourable enviromental conditions. In the Middle Mesolithic, the hazelnut shells and anthracomass show the highest quantity. The high amount of hazelnut shells probably correlates with the frequency of human occupation in the rock shelters. The same layers also show the highest species diversity. Surrounding vegetation can be reconstructed as a mosaic with the presence of sparse pine forests, species-rich oak forests (so-called Quercetum mixtum), hazel shrubs and early successional vegetation with aspen and birch. The highest amount of oak charcoal is recorded from the Upper Mesolithic period to the beginning of the agricultural period. During this transition time the presence of hazelnut shells is significantly reduced. In the post-Mesolithic layers, a significant decline of species diversity and an increasing representation of scots pine is recorded. In sum, the almost continuous record of hazelnut shells at Údolí samoty, with a remarkable culmination during the Middle Mesolithic, differs from the hazel curves in the pollen diagrams from the nearby peatbogs. It may be interpreted as an evidence of human activity at the site. Hunting and processing of the faunal remains Hunting strategies at Janova zátoka and Údolí samoty were oriented on mid-sized (boars, roe deer or red deer) and small-sized mammals (hare or fox). In case of small animal remains such as birds, amphibians and rodents, we cannot decide whether they were collected by humans or whether they originate from bird’s pellets, namely of falcon (Falco peregrinus), horned owl (Bubo bubo) or lesser spotted eagle (Aquila pomarina). Nesting of these species in the vicinity of both sites is highly probable. As in other rock shelters in the Northern Bohemian region (cf. Horáček 2003; Svoboda et al. 2007), the largest proportion of animal bone and tooth assemblages from Janova zátoka and Údolí samoty are very small fragments, mostly smaller than 3cm. Moreover, the majority of them was burnt (mainly at the stages IV-VI), although hearth structures were detected at Janova zátoka only. This high and noticeable degree of bone and tooth fragmentation and burning might result from targeted human activities which lead to the almost complete disintegration of animal tissues (cf. Delpech / Rigaud 1977; Lauwerier / Deeben 2011). Several interpretative hypotheses can be proposed: a) If bone was used as fuel, than we would expect the dominance of spongy bones; b) If the aim was extraction of bone marrow or grease procurement, than the highly fragmented bone assemblage might not be associated with in situ burning. Even in this case we would expect the presence of spongy bones and a dark brown colouration (stage I/II) resulting from indirect heating; c) If waste removal was the aim, than the high bone fragmentation, the presence of calcined bones, the presence of bones in a variety of burning stages, and the occurrence of other organic fuel (wood charcoal in this case) will support these hypotheses. In sum, we suggest that the bone assemblages at both sites were most probably the final products of waste removal, although the previous stages such as bone marrow or grease procurement are not excluded. Fishing The location of the Janova zátoka rock shelter directly above the Křinice river (fig. 8) is optimal for fishing, but only several unidentified fish vertebrates from unit 1 may support this hypothesis. However, the preliminary reexamination of the fish remains from Dolský Mlýn (okr. Dĕčín), another rock shelter situated in a similar position above the adjacent Kamenice river, by L. Lõugas (pers. comm.) showed that some vertebrae come from some larger salmonid fish. The find list at Dolský Mlýn according to the depths was as follows: – 95-115cm (post-Mesolithic) Salmo sp. – vertebrae praecaudales I (3 specimens), vertebrae praecaudales (6 specimens), vertebrae caudales (16 specimens) (expected body length c.10-15cm); – 115cm (Mesolithic) Salmo sp. – vertebra caudalis (expected body length c. 35cm); – 145-165cm (Mesolithic) Salmo sp. – vertebra caudalis fragment (expected body length c. 50cm), vertebra praecaudalis (expected body length c.15-20cm); – 180-190cm (Mesolithic) Salmo sp. – vertebra caudalis (expected body length c. 50cm). Thus in the Mesolithic layers, two caudal vertebrae come from c. 50cm individual(s), one caudal vertebra from a c. 35cm individual and one praecaudal from an individual smaller than c. 20cm. Still after L. Lõugas, Atlantic salmon (Salmo salar) and sea or river trout (Salmo trutta) could be considered as representatives for such fish in the given area. Both the Kamenice river and the Křinice river are parts of the Elbe river drainage area. In the Elbe, salmonid fish have always been a part of the fish fauna, with the exception of a few decades of pollution at the end of the 20th century. Recently, the salmon spawning in the small tributaries of the upper part of the Elbe river was restored. Although the new sites provided for the first time continuous stratigraphic and environmental records from the Late Glacial to the Holocene, no significant changes in settlement and resource exploitation strategies could be recorded at the Late Palaeolithic/Mesolithic boundary. These foragers were optimally adapted to the versatile landscape of sandstone plateaus and canyons throughout the climatic change, in order to exploit its changing vegetational and faunal resources. 486 J. Svoboda et al. · Palaeolithic/Mesolithic stratigraphic sequences of rock shelters in Northern Bohemia References 487Archäologisches Korrespondenzblatt 43 · 2013 Acknowledgements We thank Josef Jíša for the support of the excavation at Údolí samoty and Petr Benda, director of the Bohemian Switzerland National Park, for the support of the excavation at Janova zátoka. In addition, we thank Václav Sojka for collaboration in the field, Antonín Přichystal for preliminary determination of lithic materials, Lembi Lõugas for fish remains, Ivan Horáček for microfauna, Petr Jenč for prehistoric pottery, and Michael Baales for comments. Ladislav Nejman helped with English corrections. The excavation was attended by anthropology students from the Masarykova univerzita, Brno, and the archaeology students from the universities at Hradec Králové and Olomouc. – This research is part of the Czech Grant Agency project »Before the Neolithic« (GAP504/13/ 08169S). Zusammenfassung / Abstract / Résumé / Resumé Paläolithische/Mesolithische stratigraphische Abfolgen in den Abris Údolí samoty und Janova zátoka (Nordböhmen) Dieser Beitrag ergänzt die Reihe von Veröffentlichungen zu den mesolithischen Forschungen unter Sandsteinabris in Nordböhmen (Tschechische Republik). Während der letzten Grabungen von 2007 bis 2011 wurden an zwei Stellen unter mesolithischen Horizonten erstmals auch (spät)paläolithische Fundschichten erreicht, die hier kurz vorgestellt werden. Unter dem Abri Údolí samoty kam eine mächtige und komplexe Sedimentfolge zutage, während das Abri Janova zátoka nur eine geringmächtige Sedimentüberlieferung aufwies. Trotz des Übergangs vom Spätglazial zum Holozän, der hier für diese Region erstmals innerhalb einer kontinuierlichen Sedimentfolge überliefert wurde, sind für die spätpaläolithischen und mesolithischen Fundhorizonte keine signifikanten Veränderungen in Siedlungsweise und Landschaftsnutzung feststellbar. Die Jäger und Sammlerinnen waren jeweils gut an die abwechslungsreiche Umwelt der Sandsteinplateaus und Canyons angepasst und nutzten die sich leicht verändernde Flora und Fauna optimal aus. Übersetzung: M. Baales Bosch et al. 2012: M. D. Bosch / P. R. Nigst / F. A. Fladerer / W. Antl-Weiser, Humans, bones and fire: Zooarchaeological, taphonomic, and spatial analyses of a Gravettian mammoth bone accumulation at Grub-Kranawetberg (Austria). Quaternary International 252, 2012, 109-121. Cain 2005: C. R. Cain, Using burnt animal bone to look at Middle Stone Age occupation and behavior. Journal of Archaeological Sciences 32, 2005, 873-884. Delpech / Rigaud 1977: F. Delpech / J.-P. Rigaud, Étude de la fragmentation et de la repartition des restes osseux dans un niveau d’habitat paléolithique. Bulletin de la Société d’Études et de Recherches Préhistoriques 26, 1977, 1-10. French 2007: H. M. French, The Periglacial Environment (Chichester 3 2007). Heinen 2012: M. Heinen, Mikrolithen. In: H. Floss (ed.), Steinartefakte. Vom Altpaläolithikum bis in die Neuzeit (Tübingen 2012) 599-620. Holdermann 2006: C.-S. Holdermann, Silex raw material procurement in the Mesolithic of the Upper Danube valley. JägerhausHöhle – Type locality of Beuronien A, B, and C. In: C.-J. Kind (ed.), After the Ice Age. Settlements, subsistence and social development in the Mesolithic of Central Europe. Proceedings of the International Conference 9th to 12th of September 2003, Rottenburg/Neckar, Baden-Württemberg, Germany. Materialhefte zur Archäologie in Baden-Württemberg 78 (Stuttgart 2006) 163-173. Horáček 2003: I. Horáček, Obratlovčí fauna z pískovcových převisů severních Čech. In: Svoboda 2003, 48-57. Lauwerier / Deeben 2011: R. C. G. M. Lauwerier / J. Deeben, Burnt animal remains from Federmesser sites in the Netherlands. Archäologisches Korrespondenzblatt 41, 2011, 1-20. Ložek 1998: V. Ložek, Late Bronze Age environmental collapse in the sandstone areas of northern Bohemia. In: B. Hänsel (ed.), Mensch und Umwelt in der Bronzezeit Europas (Kiel 1998) 57-60. Peša / Kozáková 2012: V. Peša / R. Kozáková, Die nacheiszeitliche Landschaftsentwicklung des Lausitzer Gebirges. In: T. Puttkammer (ed.), Auf den Spuren der Germanen (Kamenz 2012) 128-143. Přichystal 2009: A. Přichystal, Kamenné suroviny v pravěku východní části střední Evropy (Brno 2009). Šída / Prostředník 2007: P. Šída / J. Prostředník, Pozdní paleolit a mezolit Českého ráje: perspektivy poznání regionu. Archeologické Rozhledy 59, 2007, 443-460. Šída / Prostředník / Kuneš 2011: P. Šída / J. Prostředník / P. Kuneš, New radiocarbon data for the North Bohemian Mesolithic. Interdisciplinaria Archaeologica 2, 2011, 151-157. Svoboda 2003: J. Svoboda (ed.), Mezolit severních Čech. Komplexní výzkum skalních převisů na Českolipsku a Dĕčínsku, 1978- 2003. Dolnověstonické Studie 9 (Brno 2003). Svoboda et al. 2007: J. Svoboda / M. Hajnalová / I. Horáček / M. Novák / A. Přichystal / A. Šajnerová / A. Yaroshevich, Mesolithic settlement and activities in rockshelters of the Kamenice river canyon, Czech Republic. Eurasian Prehistory 5, 2007, 95-127. Taute 1974: W. Taute, Neue Forschungen zur Chronologie von Spätpaläolithikum und Mesolithikum in Süddeutschland. Archäologische Informationen 2-3, 1973/1974 (1974), 59-66. Palaeolithic/Mesolithic stratigraphic sequences at Údolí samoty and Janova zátoka rock shelters (Northern Bohemia) This paper adds to a series of previous publications discussing the Mesolithic discoveries in the sandstone areas of Northern Bohemia (Czech Republic). During the 2007-2011 investigation, Palaeolithic occupation layers were discovered below the Mesolithic. At the Údolí samoty rock shelter we documented a thick and complex stratigraphy while at the Janova zátoka rock shelter we recorded just a thin sedimentary sequence. Although both sites provided for the first time a continuous stratigraphic and environmental record from the Late Glacial to the Holocene, no significant changes in settlement and resource exploitation strategies could be observed. These foragers were optimally adapted to the versatile landscape of sandstone plateaus and canyons throughout the climatic change, and able to exploit its changing vegetational and faunal resources. Séquences stratigraphiques du Paléolithique et du Mésolithique des abris Údolí samoty et Janova zátoka (Bohème du Nord) Le présent article complète la série des publications précédentes concernant les abris mésolithiques situés dans les roches sableuses de la Bohême du Nord (République tchèque). Des couches paléolithiques ont été mises au jour dans le sous-sol mésolithique pendant la campagne de fouille 2007-2011. Pendant celles-ci, nous avons à la fois documenté une stratigraphie épaisse et complexe de l’abri Údolí samoty et découvert une autre, plus restreinte, dans l’abri Janova zátoka. Malgré une stratigraphie continue, allant du Tardiglaciaire jusqu´à l´Holocène, les changements observés dans les stratégies d´occupation humaine et l’exploitation des ressources paraissent minimes. L’adaptation aux paysages versatiles des plateaux sableux et canyons durant le changement climatique était dirigée vers une exploitation optimale des ressources végétales et fauniques. Traduction: M. Polanská Stratigrafické sekvence paleolitu a mezolitu pod skalními převisy Údolí samoty a Janova zátoka (severní Čechy) Tato studie navazuje na sérii předchozích publikací, které se týkaly mezolitického osídlení v pískovcové oblasti severních Čech (Česká republika). V letech 2007-2011 se podařilo objevit pod souvrstvími mezolitu rovněž paleolitické vrstvy. Zatímco převis Údolí samoty poskytl poměrně mocnou a komplexní stratigrafii, v převisu Janova zátoka byla sedimentární výplň mělčí. Přestože byl získán poměrně kontinuální stratigrafický a environmentální záznam od pozdního glaciálu po holocén, zásadní zlom v sídelních a potravních strategiích zaznamenán nebyl. Lovci a sběrači se adaptovali na pestrou krajinu pískovcových plošin a kaňonů napříč klimatickou změnou, s cílem maximálně využít dostupných rostlinných i živočišných zdrojů. Schlüsselwörter / Keywords / Mots clés / Klíčová slova Tschechische Republik / Spätpaläolithikum / Mesolithikum / Sandsteinregion / Abris Czech Republic / Late Palaeolithic / Mesolithic / sandstone / rock shelter République tchèque / Paléolithique final / Mésolithique / région du grès / abri Česká republika / pozdní paleolit / mezolit / pískovce / skalní převis 488 J. Svoboda et al. · Palaeolithic/Mesolithic stratigraphic sequences of rock shelters in Northern Bohemia Jiří Svoboda Martin Novák Akademie věd České republiky Archeologický Ústav Královopolská 147 CZ - 612 00 Brno jsvoboda@sci.muni.cz novak@iabrno.cz Jan Novák Jihočeská univerzita Přírodovědecká fakulta Branišovská 31 CZ - 370 05 České Budějovice prourou@gmail.com Sandra Sázelová Šárka Hladilová Masarykova univerzita Přírodovědecká fakulta Kotlářská 2 CZ - 611 37 Brno sazelova@sci.muni.cz sarka@sci.muni.cz Jaromír Demek Výzkumný ústav Silva Taroucy pro krajinu a okrasné zahradnictví Květinové náměstí 391 CZ - 252 43 Průhonice u Prahy demekj@seznam.cz Vladimír Peša Vlastivědné Muzeum a Galerie v České Lípě Náměstí Osvobození 297 CZ - 470 34 Česká Lípa pesa@muzeumcl.cz 264 4 Závěr Předložená práce nám poskytla antropologický vhled do predomestikačního vztahu člověka a zvířat ve vybraných kulturních kontextech mobilních společností současné arktické a subarktické Sibiře i společností pleistocénu a starého holocénu. Získané zkušenosti z prostoru severozápadní Sibiře jsme tak citlivě využili v rekonstrukci tohoto vztahu v archeologickém kontextu, čímž jsme získali komplexnější obraz jeho dynamiky z hlediska chronostratigrafického zařazení kontextu i ekonomicko-subsistenčních adaptací lidských společností v různých klimatických a biotických podmínkách. Sledované strategie odráží efektivnost kulturních adaptací minulých i recentních společností v exploataci dostupných živočišných zdrojů, přestože se pochopitelně liší skladbou fauny, její distribucí uvnitř sídliště i hierarchizací lidských aktivit uvnitř obývaného areálu. Ty se simultálně odráží v sezónním výběru polohy sídliště a v jeho vnitřním uspořádání (zóny domácí, aktivní a odpadní; lišící se vzájemně rozptylem osteologického materiálu), které zefektivňuje rozčlenění dílčích sekvencí zabití, bourání, stahování, porcování i následnou konzumaci těla zvířete (včetně likvidace odpadu). Uvedené vzorce lidského chování doplňují tendence opětovného použití výhodných poloh pro tábořiště, na které se tyto společnosti opakovaně vrací, stejně tak jako využití geomorfologie krajiny v moderování pohybu zvířat. Dokumentace etnologické sbírky z prostoru severovýchodní Sibiře nám dále ukazuje hraniční limit našeho komplexního pohledu na vztah člověk – zvíře v archeologickém kontextu, neboť dokládá, že ekonomická i symbolická rovina přispívá u každého živočišného druhu různě velkým dílem. Proto významnost konkrétního druhu nelze posuzovat bez znalosti jeho úplného kulturního kontextu.