1 MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA Ústav geologických věd Palynologie a její využití pro interpretace přírodního prostředí a jeho změn Habilitační práce Nela Doláková Brno 2018 2 Bibliografický záznam Habilitační práce Autor: RNDr. Doláková Nela, CSc. Přírodovědecká fakulta, Masarykova univerzita Ústav geologických věd Název: Palynologie a její využití pro interpretace přírodního prostředí a jeho . změn. Počet stran: 296 Klíčová slova: Palynologie, metodika, paleoekologie, neogén, pleistocén, holocén, marinní sedimenty, jeskynní sedimenty, archeologické lokality Nela Doláková, Masarykova univerzita, 2018 3 Bibliographic Entry Author: RNDr. Doláková Nela, CSc. Faculty of Science, Masaryk University Institute of Geological Sciences geologických věd Title: Palynology and its application for the interpretations of natural environments and their changes Number of pages: 296 Keywords: palynology, methodology, palaeoecology, Neogene, Pleistocene, Holocene, marine sediments, cave sediments, archaeological localities Nela Doláková, Masaryk University, 2018 4 Poděkování: Chtěla bych poděkovat všem kolegům i své rodině za trpělivost, pomoc a morální podporu 5 Abstrakt Předkládaná práce je zaměřena na problematiku (paleo)palynologie a jejího využití pro interpretace přírodního prostředí a jeho změn. Informace získané ze studia palynomorf v horninách můžeme využít zejména pro rekonstrukce vegetačního pokryvu v minulosti a jeho změn, interpretace klimatu, paleogeografie nebo stratigrafie. Publikované práce jsou zaměřeny nejen na studium vegetace v terestrických sedimentech, ale i interpretace zachovaných pylových spekter ze sedimentů mořských. V práci je využito 17 autorských publikací. Práce je rozdělena do několika tematických okruhů. První okruh zahrnuje metodické přístupy a obecnou problematiku palynologie. Náplní této kapitoly jsou principy zachování a degradace palynomorf v horninovém prostředí a s těmito procesy spojená problematika redepozic. V kapitole je rovněž přiblížena tématika přípravy vzorků, principů mikroskopického pozorování, základních příkladů popisu zrn a kvantitativního vyhodnocování pylových spekter. V kapitole jsou využity nejen teoretické principy zobecněné v literatuře, ale i vlastní zkušenosti autorky. Druhý okruh komentovaných palynologických studií se týká interpretace vegetace v sedimentech neogenního stáří. Kapitola je rozdělena do dvou částí. První část je zaměřena na interpretace vegetace a jejích změn v čase, které se odrážejí zejména ve vývoji klimatu. Ve druhé části jsou výsledky palynologie v koordinaci s dalšími paleontologickými, sedimentologickými a geochemickými metodami využity k řešení širší geologické problematiky, zejména charakteru mořských pánví, jejich okrajů a vzájemného ovlivňování s prostředím kontinentu. Kapitola - Palynologie vybraných lokalit kvartéru je věnována problematice interpretace vegetačních poměrů ze studia jeskynních sedimentů a archeologických lokalit. Největším problémem interpretace pylových spekter z jeskynních sedimetů je jejich transport do míst ukládání spojený s možností sekundární selekce zrn. Problematika studia palynologie z archeologických lokalit spojuje nejen změny klimatických charakteristik, ale rovněž změny vegetace v důsledku lidských aktivit. 6 Abstract The proposed paper is focused on the (paleo) palynology and its use for the interpretation of natural environment and its changes. The information obtained from the palynomorph study in the rocks can be used especially for the reconstruction of the vegetation cover in the past and its changes, the interpretation of climate and paleogeography or the stratigraphical determination. The published works are focused not only on the study of vegetation in terrestrial sediments, but also on the interpretations of preserved pollen specter from marine sediments. The work uses 18 author's publications. The thesis is divided into several thematic scopes. The first round includes methodological approaches and the general problems of palynology. The contents of this chapter are the principles of conservation and degradation of palynomorph in the rock environment and these processes are connected with problems of redepositions. The chapter also deals with the topic of sample preparations, principles of microscopic observations, basic examples of grain descriptions and quantitative evaluation of pollen spectra. The chapter uses not only the theoretical principles generalized in the literature, but also the author's own experience. The second round of commented palynological studies refers to the interpretation of vegetation in sediments of the Neogene ages. The chapter is divided into two parts. The first part is focused on the interpretation of vegetation and its changes in time, which are reflected mainly in the climate. In the second part, the results of palynology, in coordination with other palaeontological, sedimentological and geochemical methods, are used to resolve broader geological problems, especially the character of the sea basins, their margins and mutual interactions with terrestrial environment. The chapter on palynology of selected Quaternary localities is devoted to the problem of interpretation of vegetation conditions from the study of cave sediments and archaeological sites. The main problem of interpretation of pollen spectra from cave sediments is their transport to sedimentation places associated with the possibility of secondary grain selection. The scope of palynological study from archaeological sites combines not only changes in climatic characteristics but also changes in vegetation due to human activities. 7 Obsah: 1. Úvod…………………………………………………………………………. 8 2. Metodické přístupy a obecná problematika palynologie……….……….. 10 2a) Tafonomické procesy - zachování x degradace palynomorf………………....... 10 2b) Problematika redepozic…………………………………….………………….. 12 2c) Metody studia ………………………………………….……………………… 14 2ca) Příprava vzorků……………………..………………………….….………… 14 2cb) Mikroskopické techniky, základní principy popisu zrn …………...…...….. 16 2cc) Kvantitativní vyhodnocení - tvorba pylových diagramů……………………. 20 3. Palynologie neogénu …………………………………………………….….. 21 3a) Interpretace vegetace a klimatických změn…………………………………… 25 3ab) Charakteristika vegetace v jednotlivých časových úsecích …....………….. 31 3b) Širší problematika neogénu v koordinaci palynologie a dalších paleontologických, sedimentologických a geochemických metod výzkumu… 38 4. Palynologie vybraných lokalit kvartéru………..………………………...… 41 4a) Jeskynní sedimenty………………………………………………………….... 42 4b) Archeologické lokality – vliv člověka na prostředí …………………………. 47 5. Použitá literatura…………………………………………………….…...... 53 6. Přílohy……………………………………………………………………… 67 6a) Seznam přiložených publikací použitých v textu jednotlivých kapitol……… 67 6b) Přiložené publikace ..……………………………………………………...... 69 8 1. Úvod Předkládaná práce je zaměřena na problematiku paleopalynologie a jejího využití pro interpretace přírodních procesů a jejich změn. Palynologie je disciplína, která zkoumá zejména pylová zrna a spory rostlin. Patří sem ovšem i studium dalších mikroobjektů s tzv. acidorezistentními obaly, které se většinou shrnují do skupiny tzv. nepylových objektů. Jedná se např. o mořský i sladkovodní fytoplankton, mikroskopické zbytky hub, živočišné parazity, zbytky srsti nebo těl hmyzu apod. Obecně se pro všechny tyto objekty používá název palynomorfy. V rámci geologie se často hovoří o paleopalynologii, kdy se studují palynomorfy, které prošly procesem fosilizace. Rozvoj oboru je umožněn díky velké schopnosti zachování palynomorf, jejich morfologické rozmanitosti a snadnému transportu (větrem, vodou a živočichy). Můžeme je nalézt téměř ve všech typech sedimentárních hornin, a dokonce i v horninách slabě metamorfovaných. Palynomorfy můžeme studovat jak v sedimentech terestrických, tak i marinních, což představuje jednu z mála možností pro korelace těchto vývojů. Informace získané ze studia palynomorf v horninách můžeme využít zejména pro rekonstrukce vegetačního pokryvu v minulosti a jeho změn, interpretace klimatu i paleogeografie nebo stanovení stratigrafie. Interpretovat můžeme nejen charakter suchozemského prostředí, ale i některé faktory prostředí mořského (např. hloubky, vzdálenost od pobřeží, oxidačně-redukční procesy) a jejich vzájemné ovlivňování – morfologie pobřeží, změny salinity, rozšiřování a ústup mořských pánví. Jako u každé metody existuje celá řada omezení vypovídací hodnoty studovaných palynospekter. Je proto velmi vhodné kombinovat znalosti z palynologie a dalších metod (např. paleontologie, sedimentologie, geochemie atd.), které při vzájemném doplnění poznatků umožní co nejpřesnější přiblížení se k poznání obrazu minulosti a jeho vývoje. Předkládaná práce shrnuje výsledky studia palynologie v sedimentech poměrně velkého časového rozsahu. Zahrnuje období v průběhu posledních 22 milionů let (neogén, pleistocén a holocén – více než 80 lokalit). Každý z těchto časových úseků se vyznačuje specifickým vývojem sedimentace a rozličnými ekologickými a tafonomickými podmínkami. Proto byla následující práce rozdělena do několika oddílů, které se po úvodním shrnutí obecné problematiky soustřeďují na dosažené výsledky studia v jednotlivých obdobích. V práci je využito a komentováno celkem 17 autorských publikací. Z důvodů kompaktnosti zvolených tématických celků bylo použito nejen publikací citovaných v databázích WOS a Scopus, (15), 9 ale rovněž 2 prací v recenzovaných časopisech a 1 kapitoly v monografii. Práce, jejichž výsledky se týkají nejen konkrétních palynologických interpretací, ale i zobecňující metodické problematiky, jsou v textu využity v různých kapitolách. Výsledky některých dalších prací jsou pouze citovvány a v krátkosti zmíněny, nejsou však zahrnuty do výčtu komentovaných prací. Nejzajímavější výsledky týkající se zejména klimatických a paleogeografických změn nebo dopadů lidské činnosti na vegetaci jsou využívány i ve výuce pro studenty geologických a archeologických oborů MU. 10 2. Metodické přístupy a obecná problematika palynologie 2a) Tafonomické procesy - zachování x degradace palynomorf Vysoká fosilizační schopnost palynomorf je umožněna díky složení jejich stěn, tvořených tzv. sporopolleninem. Je to organická polymerní látka příbuzná chitinu, která je odolná vůči působení kyselin – proto je označována jako acidorezistentní. Do jisté míry odolává i zvýšené teplotě a tlaku až do účinků slabší metamorfózy (Brooks1971). Pylová zrna a spory se proto vyskytují v sedimentárních, ale i slabě metamorfovaných horninách. Nejlépe se palynomorfy zachovávají ve vlhkém kyselém prostředí (např. rašeliny), méně v jemně klastických uloženinách mořského, říčního, deltového, jezerního nebo jeskynního prostředí (Moore, Webb, Collinson 1991) a rovněž v některých typech archeologických objektů. Studium palynomorf v sedimentárních profilech má výhodu zejména v dlouhém časovém záznamu, kdy můžeme sledovat změny jednotlivých faktorů prostředí (např. teplota, vlhkost, povaha substrátu), ale i vymírání, migrace, nebo objevování se nových taxonů. Nevýhodou je (obdobně jako u každého fosilního záznamu) převážně selektivní zachování – výsledným obrazem je tzv. oryktocenóza. Oproti makrofloristickým nálezům má palynologie několik výhod a naopak nevýhod. Zatímco rostlinné makrozbytky lze většinou determinovat do úrovně rodu i druhu, palynomorfy jsou v mnohých případech určitelné maximálně do úrovně rodu nebo jen čeledi, ve starších obdobích dokonce pouze jako morfotypy. U rostlinných makrozbytků (zejména listů a kutikul) lze i u vymřelých taxonů posuzovat taxonomické zařazení na základě srovnávací anatomie a morfologie. Tato možnost je u palynomorf omezená. Na druhou stranu se makrozbytky uchovávají většinou jen v sedimentech z mokřadních prostředí s nízkou dynamikou vody (kromě archeologických situací), kde jsou zachovány fosílie především z těchto ekologických prostředí a jejich bezprostředního okolí. Taxony a společenstva vyskytující se ve větší vzdálenosti od těchto k fosilizaci vhodných míst mají jen velmi malou možnost uchování (např. taxony sušších nebo horských stanovišť). V oryktocenózach palynomorf se nám díky značné transportní schopnosti dochovávají fosílie rostlin i z prostředí nepříznivých pro zachování fosilních zbytků. Získáváme tedy komplexnější obraz širšího paleoprostředí. Při palynologických interpretacích je ovšem třeba obezřetně řešit i problematiku rozdílné pylové produkce a transportní schopnosti palynomorf jednotlivých rostlin (rostliny hmyzosnubné x větrosnubné), ve fosilních asociacích navíc rozdílnou fosilizační schopnost zrn. 11 Během transportu a sedimentace palynomorf může vlivem tafonomických procesů docházet k jejich degradaci až zničení, případně ke druhotné akumulaci odolnějších zrn (časté např. u jeskynních a mořských prostředí, viz následující kapitoly). Na degradaci se podílí jak mechanické, tak chemické či biologické, především bakteriální vlivy (např. Havinga, 1964, 1967, 1971). Výsledná oryktocenóza potom může poskytovat značně zkreslený obraz původní vegetace. Velmi nepříznivě se na zachování palynomorf podílí oxidace. Zvýšená oxidace se projevuje v pórovitých – hrubě klastických horninách (zde navíc silné mechanické poškození vlivem transportu klastik - písky, štěrky). V dobře prokysličeném prostředí vzniká i většina kalcitických sedimentárních hornin (vápence, travertin). Oxidační procesy probíhají i v některých typech sedimentů, jejichž vznik je klimaticky podmíněný (jíly pestrých barev, kaolinit). V těchto typech hornin je možnost zachování palynomorf velmi nepravděpodobná. V závislosti na chemickém složení a tloušťce sporopylových obalů podléhají palynomorfy různých rostlin rozkladu vlivem oxidace různou rychlostí (např. pylová zrna čeledi Lauraceae se v sedimentech nedochovávají). Experimentálním studiem odolnosti pylových zrn vybraných rostlinných taxonů v závislosti na zvyšující se intenzitě oxidace se zabývali např. Kwiatowski , Lubliner-Mianowska (1957), Havinga (1971), Hopkins, Mc Carthy (2002) V souvislosti se stupněm zachování palynomorf byly detekovány změny oxidačněredukčních podmínek i v mořských miocenních sedimentech z karpatské předhlubně na Moravě (Doláková et al. 2014, Holcová et al. 2015, Nehyba et al. 2016). Zde bylo v několika vrtech a lokalitách pozorováno periodické střídání palynospekter s pestrými společenstvy a palynospekter, kde převládala pylová zrna jednoho typu. Jednalo se téměř výhradně o pylová zrna konifer (Pinus, Cathaya, Picea, Cedrus). Tato zrna se sice díky své schopnosti dalekého doletu mohou akumulovat i v mořských oblastech daleko od břehu, ale podle výsledků studia dalších metod (geochemie, paleontologie, sedimentologie) periodické změny prostoru mořské pánve nebyly předpokládány (viz kap. 3.). V mořských prostředích s výrazným nedostatkem kyslíku (hypoxické – anoxické) dochází v sedimentu při redukčních procesech k tvorbě mikrokrystalů pyritu. Mohou se tvořit i uvnitř pylových zrn. Po chemické maceraci jsou patrné jako typické drobné krychlovité dutiny, které zůstanou na zrnech viditelné. Mohou být vyvinuty v takovém množství, že způsobí změny morfologie až destrukci zrn (Doláková, Slamková 2003, Kováčová et al., 2011). Z charakteru pylových asociací i morfologických změn na pylových zrnech a sporách lze tedy usuzovat i na změny oxido-redukčního potenciálu sedimentačního prostředí. 12 Degradace palynomorf mechanickými vlivy je způsobena interakcemi zrn s částicemi sedimentu během intenzivního transportu do místa ukládání. Během těchto procesů se dochovávají jen nejmenší nebo morfologicky nejkompaktnější zrna. Tato jsou potom ve výsledné oryktocenóze druhotně nakumulovaná a pro případné interpretace vegetace nadhodnocená. Proces je typický zejména pro uloženiny v jeskynním prostředí a rovněž pro prostředí chladného klimatu s převažující sedimentací klastik, např. spraší – Asteroideae – hromadění v chladných obdobích (Doláková 2007, 2014). Biologické vlivy se uplatňují především v sedimentačních prostředích vhodných pro činnost mikroorganizmů (např. bakterií). Tento proces je nejintenzivnější při půdotvorných procesech. V půdních horizontech dochází většinou ke kompletní ztrátě palynologických dat. Při studiu palynologie je vhodné rovněž zaznamenávat a pokud možno determinovat tzv. nepylové objekty. Jejich vypovídací schopnost je zejména v oblasti ekologie a paleoekologie. Jedná se např. o cysty nebo cenobia řas (mořské, sladkovodní, půdní – chladnomilné x teplomilné, oligotrofní x eutrofní), mikroskopické zbytky hub (např. dřevokazné, mykorhizní, koprofilní), organické výstelky foraminifer (tzv. tapeta), obrněnky, vajíčka živočichů (např. cizopasných). 2b) Problematika redepozic V průběhu opakujícího se procesu sedimentace a zvětrávání nejsou vyloučeny redepozice (přemístění) palynomorf ze sedimentů vzniklých ve starších časových obdobích, do sedimentů mladších, a tím smíšení zrn z různých stratigrafických úrovní. Existence a množství redeponovaných palynomorf závisí na prostředí a typu sedimentace. Nejčastější jsou v sedimentech, které vznikly erozí, transportem a opětovným ukládáním klastik (typicky jeskynní a mělkomořské prostředí). Pokud nelze redeponovaná zrna odlišit od zrn in situ, může docházet k chybným interpretacím stáří i prostředí. Z geologického hlediska mohou být však takovéto redeponované palynomorfy jediným důkazem o původní existenci sedimentů, které byly z daného území kompletně denudovány. Příkladem jsou pylová zrna skupiny Normapolles (skupina vymřelých krytosemenných, rozšířených zejména během křídy), která jsou nalézána v neogenních mořských sedimentech karpatské předhlubně a svědčí o mnohem větším rozšíření křídových sedimentů, než známe z území jižní Moravy dnes (Doláková, Slamková 2003). Jednoznačné odlišení redeponovaných palynomorf je možné pouze v případě determinace typů, které jsou v časovém období reprezentovaném studovaným sedimentem vymřelé nebo pocházejí z prostředí, které neodpovídá procesu sedimentace (např. mořská 13 dinoflagellata v sedimentech spraší). V jiných případech mají redeponovaná zrna odlišný stupeň fosilizace reprezentovaný např. změnou barvy nebo tloušťkou pylových stěn. Často je však rozlišení redeponovaných zrn velmi obtížné, zejména u smíšení sedimentů z časově blízkých období, která obsahují obdobné typy rostlin - např. u mořských sedimentů jednotlivých miocenních stupňů, odkud jsou běžně známé i další redeponované fosílie (např. foraminifery a vápnitý nanoplankton). Složitou problematiku představují redepozice v jeskynních sedimentech (Doláková 2007). Většina jeskynních sedimentů z moravských krasových oblastí je kvartérního stáří. Mnoho rostlin, jejichž pylová zrna nebo spory v těchto sedimentech můžeme najít, se na našem území vyskytuje od neogénu do současnosti - příkladem jsou stromy jako borovice, jilm, olše, dub, lípa, ale i byliny jako trávy, složnokvěté nebo i některé druhy kapradin a další. Mnohé z nich jsou přitom velmi důležité pro stanovení jednotlivých teplotních fází kvartéru (klimatostratigrafie). Tento fakt velmi ztěžuje přesné a jednoznačné stanovení stáří sedimentů, kdy nemůžeme stoprocentně odlišit tercierní redepozice a sediment se může jevit jako vzniklý v daleko teplejším období. (viz kap. 4a). Jednou z metod, které mohou přispět k rozlišení redeponovaných pylových zrn, představuje studium ve fluorescenčním mikroskopu. Metody využití UV fluorescence pro determinaci různě starých palynomorf rozpracoval Van Gijzel (1967a ,b, 1971, 1975, 1978) či Yeloff, Hunt (2005). Organický materiál stěny palynomorf vykazuje při působení UV záření autofluorescenci. Spektrum a intenzita fluorescenčních barev závisí na chemickém složení organických stěn. Toto chemické složení se mění s geologickým stářím a při procesech probíhajících v sedimetech – uhelnatění nebo zvětrávání spojené s oxidací a bioerozí. Při redepozicích proto dochází ke změně intenzity a barvy fluorescenčního spektra studovaných taxonů. Praktickým využitím těchto metod na studiu zejména jeskynních, ale i mořských sedimentů se zabývá práce Doláková, Burešová (2007). Pylová zrna různých rostlinných taxonů vykazují odlišnou úroveň fluorescence v závislosti na chemickém složení a tloušťce exiny (např. pylová zrna trav jeví nízkou intenzitu fluorescence). Při studiu celého pylového spektra nelze proto z úrovně barev říci, zda některé taxony jsou redeponované a jiné in situ. Pro běžné využití tohoto jevu bez dalších složitých měřících přístrojů je nutné zaměřit se na studium jednoho taxonu (odlišná úroveň fluorescence u zrn v jednom vzorku). Pokud ovšem daný taxon má v UV světle velmi tmavé barvy s velmi nízkou intenzitou, tzn. téměř nesvítí, jedná se velmi pravděpodobně o redepozici. Odolné vůči chemickým procesům jsou organické stěny mikroskopických řas a jejichy cysty – vykazují intenzívní fluorescenci. Naopak zbytky 14 živočišných těl – např. různé typy vajíček, jeví tmavé a málo intenzivní fluorescenční barvy (Doláková, Burešová 2007). Studium fluorescence bylo využito pro detekování případných redepozic u pylových zrn rodu Carpinus (habr) z holocenních sedimentů na Pohansku (Doláková et al., 2010). Na základě měření stáří metodou 14 C byla pylová zrna habru zjištěna v sedimentech nejvyššího stáří na území ČR (8 000 let). Na základě studia fluorescence byly redepozice z tercierních sedimentů v podloží vyloučeny. Značnou odolnost vůči oxidačním procesům spojeným se zvětráváním, a tudíž i redepozicemi, mají pylová zrna konifer (Kwaitkowski, Lubliner- Mianowska 1957, Havinga 1964, 1967, Brooks 1971, Hopkins, Mc Carthy 2002). Poměr redeponovaných a in situ zrn konifer s létacími vaky byl studován za pomoci UV-fluorescence ve vzorcích z vrtu Oslavany1 (Nehyba et al. 2016), kde tato zrna tvořila většinu pylového spektra. Pouze malá část zrn jevila odlišný, velmi nízký stupeň fluorescence. Proto byla většina asociace z tohoto hlediska považována za autochtonní a vysvětlení nadměrného množství konifer mělo jiné příčiny (viz kap. 3a, b). Dalším tafonomickým jevem je uchování pylových zrn jednoho druhu ve shlucích. Tento jev ukazuje na ukládání v blízkosti původní rostliny, která pyl produkovala. Z geologického hlediska se tedy jedná o depozici in situ, bez výrazného ovlivnění transportem (nízká dynamika vody). Pozorované shluky byly v tercierních sedimentech typické např. pro sedimentaci v pobřežních bažinách, deltových prostředích nebo tzv. marších (Myricaceae, Chenopodiaceae, Caryophyllaceae, Oleaceae, Onagraceae, Platanus) (Doláková et al. 1999, Doláková 2004, Kováčová et al. 2011). V kvarterních sedimentech je tento jev zajímavý i z archeologického hlediska, např. v profilu holocenními sedimenty na lokalitě Nad Velkým Jejkalem (Národní park Podyjí) byla identifikována pylová zrna obilí typu pšenice (Triticum), která zůstala zachována v nerozpadených prašnících. Tento nález svědčí o pěstování velmi blízko místa uložení. Vzorek z této hloubky (85-94 cm), byl datován radiokarbonovou metodou jako doba římská a období stěhování národů – tyto nálezy mohou indikovat existenci blízkého lidského sídliště, které dosud nebylo archeologicky prokázáno (Šušolová et al. 2016). 15 2c) Metody studia 2ca) Příprava vzorků Vzhledem k malým rozměrům palynomorf a jejich rozptýlení v sedimentech je nutné je z těchto hornin separovat a zkoncentrovat. Využívá se různých postupů macerace, kdy je třeba odstranit co nejvíce anorganických minerálních součástí a organickou hmotu koncentrovat a prosvětlit. Macerace představuje kombinace působení chemických procesů a mechanické přípravy založené na rozmělňování, sítování a hmotnostní separaci (využití těžkých kapalin). Kombinace jednotlivých procesů se přizpůsobuje typu horniny. Nejčastěji používanou metodou jetzv. Erdtmanova metoda acetolýzy (Erdtman1960). Soubor postupů podle různých autorů s přizpůsobeními pro jednotlivé typy hornin shrnuly např. Pacltová 1963, Gabrielová 1986. Alternativní metody macerací, kde jde zejména o vyloučení práce s kyselinou fluorovodíkovou, publikovali Riding, Kyffin-Hughes (2006). V naší praxi se prozatím tyto metody neosvědčily. Nejpoužívanější standardní palynologická macerace pro sedimenty terciéru a kvartéru je založená na těchto principech: 1. Odstranění karbonátů pomocí kyseliny chlorovodíkové (HCl) 2. Odstranění silikátů - kyselina fluorovodíková (HF) 3. Odstranění vytvořených fluoridových gelů (HCl) 4. Hmotnostní separace minerálního rezidua a zkoncentrování pylonosné frakce za pomoci těžké kapaliny (ZnCl2, BrCl2) - hustota = 2g/cm3 5a) U uhelných sedimentů je třeba ještě provést zesvětlení zuhelnatělých palynomorf pomocí oxidace: HNO3, KOH 5b) U palynomorf z mladých – holocenních sedimentů, kde ještě nedošlo ke kompletní fosilizaci, je třeba prosvětlit palynomorfy a jejich organický obsah pomocí tzv. acetolýzy H2SO4 + acetanhydrid kyseliny octové (CH3COOH). Vynechání acetolýzy u pleistocenních a starších sedimentů naopak umožní odlišení kontaminace recentními pylovými zrny a sporami např. při průsaku srážkové vody po puklinách nebo kořenech rostlin (zůstane zachována cytoplazma). Hmotnost zpracovávaných vzorků a volba metody macerace závisí na typu horniny. Odebírá se od několika gramů až po půl kilogramu. Nejvyšší koncetrace a nejlepší zachování palynomorf lze očekávat v sedimentech, které vznikaly v prostředí bez přístupu kyslíku nebo druhotných oxidačních procesů a snížené dynamiky, kde dochází k hromadění organické hmoty (např. rašeliny, sedimenty jezerní, deltové, pobřežních lagun a bažin, slepých ramen řek apod.). 16 1. rašeliny - pomalé ukládání sedimentu, nízká nebo žádná minerální příměs -vysoká koncentrace palynomorf - malé vzorky (cca 20g); 2. sediment s velkou příměsí minerálního materiálu – vysoká rychlost akumulace sedimentu, nízká koncentrace palynomorf - větší vzorky (500g), např. povodňové hlíny nebo spraše Při uchovávání a dalším studiu vymacerovaných palynomorf je nutné zamezit další oxidaci. Výsledný macerát se proto uchovává ve směsi glycerínu, ethanolu a vody. Mikroskopická pozorování lze provádět přímo v tomto tekutém médiu – pylové zrno je možné posunovat a otáčet. Potřebujeme-li preparáty trvalé (uchování preparátu po delší čas), používá se většinou tzv. glycerinová želatina nebo kanadský balzám. 2cb) Mikroskopické techniky, základní principy popisu zrn Palynomorfy se převážně determinují v biologických prosvěcovacích mikroskopech na základě jejich morfologické rozmanitosti. Běžně je používáno zvětšení 200x, 400x a 1000x imerzní objektiv). Výhodou biologických mikroskopů je posuvný stolek, kde je možné za pomoci dvou na sobě kolmých měřítek zaznamenat přesnou polohu zrna v preparátu. K popisu a determinaci pylových zrn byla vytvořena ustálená terminologie založená především na morfologii zrn. Nejdůležitější znaky souvisejí s postavením zrna v tetrádě, vnějším tvarem a velikostí, skulptuře a struktuře stěny, stavbou germinálního aparátu. První souborný atlas morfologických znaků sestavil Erdtman (1957). Nejnovější shrnutí palynologické termilogie představuje práce Punt et al. (2007). Příklady morfologických znaků jsou znázorněny na obr. 1- 5. a) b) Caluna sp. Obr 1. a) Základní tvary tetrád spor a pylových zrn (upraveno Punt et al. 2007) b) tetráda pylového zrna rodu Calluna (foto autorka) 17 a) b) Obr. 2. Rozdíly velikostí pylových zrn: a) pylové zrno rodu Abies, b) pylové zrn rodu Castanea (foto autorka) a) b) Retikulátní Potamogeton klavátní Ilex Obr. 3. a) Členění vnějšího obalu pylových zrn a spor b) Příklady skulptury a ornamentace povrchu zrn: retikulátní - Potamogeton klavátní - Ilex (upraveno Punt et al. 2007, foto autorka) exina intina tectum sloupková vrstva bazální vrstva Abies Castanea 20µm 18 a) pór Poa Engelhardia Carya b ) anulus Betula Obr. 4. Příklady hlavních typů apertur (klíčních štěrbin), jejich umístění a kombinací: a) Pór - pylová zrna s 1 pórem - Poa, 3 póry v různém unítění - Engelhardia, Carya b) Příklad vnitřní stavby póru - anulus, pylové zrno s anulem - Betula (upraveno Punt et al. 2007, foto autorka) a) Kolpa Quercus Galium b) Kombinace póru a kolpy Cornus – Mastixia Sapotaceae Obr. 5 Příklady hlavních typů apertur (klíčních štěrbin), jejich umístění a kombinací: a) Kolpa - zrno se 3 kolpami – Quercus, se 6 kolpami – Galium b) Kombinace póru a kolpy: 3x - Cornus - Mastixia typ, 4x Sapotaceae (upraveno podle Punt et al. 2007, foto autorka) 19 U současných taxonů rostlin jsou pylová zrna a spory dostatečně prostudované k tomu, aby se u jmen palynomorf mohlo využít systematické jméno odpovídajícího rostlinného taxonu. U fosilních palynomorf bohužel v mnohých případech konkrétní botanickou příslušnost determinovaného taxonu stanovit nelze, protože část taxonů je vymřelých, některé taxony exotické nejsou z hlediska pylové morfologie dostatečně prostudovány nebo některé fosilní taxony mají vyšší morfologickou variabilitu, než je známa u taxonů recentních. Proto byla pro účely determinace fosilních palynomorf vytvořena umělá systematika, kde jsou názvy taxonů založené na morfologických znacích pylových zrn a spor. Tato systematika je využívána zejména ve starších pracích (např. Krutzsch 1966, 1971, Pacltová 1958, Nagy 1969, 1985, Planderová 1971, 1990). Morfotaxony se používaly i u názvů zrn, jejichž botanická příslušnost byla nesporná. Část palynologů se naopak snaží pojmenovávat pylové taxony podle botanické příslušnosti, zejména na základě detailnější morfologie založené na studiu v elektronových mikroskopech (např. Zetter 1989, www.paldat.org). V současné době se část specialistů palynologů snaží držet principu priority a používat pro pylová zrna a spory modifikované názvy morfotaxonů (např. Stuchlik et al. 1994, 2014), i když je botanická souvislost s originálními rostlinami jasná. Jako příklad můžeme uvést různá synonyma pro pylová zrna rodu Juglans (ořešák): Multiporopollenites maculosus (Potonié) Thomson & Pflug, Juglans Linne, Jugnlanspollenites juglandoides (KohlmanAdamska). V detailních systematických pracích mívají proto pylové taxony velmi rozsáhlou část synonymiky. Z důvodů přesnější taxonomické determinace některých sporných palynomorf se v poslední době často studují objekty v elektronovém mikroskopu. Využívá se zejména pro determinaci a stanovení příbuznosti taxonů a hledání recentních ekvivalentů dosud neurčených tercierních taxonů na základě morfologie povrchu pylových zrn a spor. Tyto morfologické prvky nebývají v mikroskopech světelných zřetelné. Terminologii využívanou pro morfologické charakteristiky při studiu v elektronovém mikroskopu (SEM) sestavil kolektiv autorů Halbitter et al. (2006) v rámci databáze PALDAT (www.paldat.org). Je ovšem nutné využít kombinaci studia daného objektu v prosvěcovacím mikroskopu (pohled dovnitř zrna a vnitřní stavba terminálního aparátu) a téhož objektu v SEM (podrobná vnější morfologie bez vnitřního pohledu). Metodiku tohoto studia rozpracoval Zetter (1989). Tato metoda však vyžaduje speciální optické mikroskopy, které mají přídavnou optiku pro 20 vytvoření stranově nepřevráceného obrazu. Navíc je zde nutné objekty dále přenášet na vodivé měděné terče, což neumožňuje opětovné pozorování ve světelném mikroskopu. Na ÚGV PřF MU je k dispozici elektronový mikroskop JEOL JSM – 649 OLV, který umožňuje vkládat studované objekty přímo na podložním skle. Pro palynologická studia jsme s kolegyní M. Kováčovou (UK Bratislava) rozpracovaly metodiku přizpůsobenou tomuto elektronovému mikroskopu s možností zpětného prohlížení v mikroskopu optickém (Doláková, Kováčová připraveno do tisku). Studia palynomorf založená na kombinované metodě LM/SEM byla využita zejména pro detreminace palynomorf neogenního stáří. Poprvé bylo použito na zařazení morfotaxonu Monocirculipollis Krutzsch a jeho přiřazení k čeledi Caryophyllaceae (Doláková 2004). Metod LM/SEM bylo použito i pro řešení identifikace problematických morfotaxonů čeledi Fagaceae: Tricolpopollenites liblarensis, Tricolporopollenites cingulum oviformis. Na základě studia v SEM bylo zjištěno, že tato v optickém mikroskopu téměř identická zrna mohou mít různou botanickou příslušnost – Castanea x Castanopsis x Trigonobalanopsis. Jejich rozlišení je možné na základě morfologie povrchu zrn (Dolákova et al 2011). Upřesnění identifikace na základě LM/SEM bylo provedeno i u rodů: Quercus, Platanus, Tamarix, zástupců čeledí Caryophyllaceae a Rutaceae, rozlišení rodů Pinus x Cathaya. Identifikace byla prováděna na základě srovnání s literárními údaji a rovněž na základě studia recentních pylových zrn - Castanea sativa, Tamarix gallica, Citrus limon (Doláková et al. 2011, Kováčová et al. 2011) 2cc) Kvantitativní vyhodnocování - tvorba pylových diagramů Soubor pylů a spor v jednom vzorku, které pod mikroskopem determinujeme a kvantitativně vyhodnocujeme, se označuje jako pylové spektrum. Pylová spektra z chronologicky odebraných vzorků se znázorní v pylovém diagramu. Získáme tak obraz časových změn vegetace na studovaném místě. Nejčastější vyhodnocování pylových spekter se provádí na základě procentuálního zastoupení jednotlivých palynomorf nebo jejich skupin. Nejmenší suma palynomorf v jednom vzorku, ze kterých se pylový diagram vytváří, je 100 determinovaných zrn při minimálním množství 15 determinovaných taxonů. Menší množství není pro interpretaci vegetace dostatečně reprezentativní. Pro kvantitativní (semikvantitativní) vyhodnocování pylových spekter a tvorbu pylových diagramů existuje několik softwarových programů. Jsou založené na procentuálním zastoupení determinovaných taxonů v jednotlivých vzorcích. V mé práci 21 bylo využíváno především programu POLPAL polských autorů Walanus, Nalepka (1999). Tento program umožňuje jednoduše a operativně vložit do tvorby pylových diagramů i zkušenosti palynologa. Tohoto využívám např. při kombinování taxonů s ekologicky podobnými nároky do jedné křivky tzv. syntetického diagramu, což v mnoha případech umožní názornější vizualizaci ekologických charakteristik prostředí (např. Doláková et al. 2010, 2014). Toto kombinování má ovšem svá omezení, protože ne vždy se podaří dané taxony determinovat až do úrovně druhu, což může způsobit nepřesnosti u těch taxonů, které mají různé ekologické nároky pro různé druhy (např. Quercus – dub – sušší stanoviště nebo lužní lesy, existence stálezelených druhů v tercierních palynospektrech). Ještě složitější je to u taxonů tercierních, kde u některých morfotaxonů není stoprocentně objasněná botanická příslušnost, a tudíž ekologická charakteristika. Pylové taxony, které jsou v asociaci výrazně nadhodnocené (akumulují se v důsledku vysoké pylové produkce a tafonomických procesů), a tudíž by výrazně změnily poměr jednotlivých rostlin, je možné vyloučit z celkové sumy 100%. Graf je potom možné sestavit ze dvou částí. Levá část znázorňuje procentuální zastoupení jednotlivých taxonů nebo jejich skupin, kde se za celkovou sumu počítá součet všech pylových zrn s vyloučením nadhodnoceného taxonu. Pravá strana grafu znázorňuje poměr zastoupení původně vyloučeného taxonu k celkové sumě všech determinovaných zrn. Botanikové používají tento princip pro odstranění vlivu ekologicky výrazného stanoviště nad celkovým charakterem širšího okolí (např. převaha Cyperaceae, Polypodiaceae). V mé praxi se tento princip osvědčil pro interpretaci pylových spekter zejména jeskynních nebo mořských sedimentů, kde dochází k selektivním změnám v důsledku tafonomických procesů (Doláková 2014, Doláková et al. 2014). 3. Palynologie neogénu Studium palynologie v sedimentech neogenního stáří (mladší terciér) tvoří největší část mé palynologické práce. Publikované výsledky se soustřeďují na 2 vzájemně propojená témata: 3a) rekonstrukci vegetačních poměrů v jednotlivých časových úsecích, a na jejich základě interpretace paleoekologických charakteristik a stratigrafických údajů; 3b) interpretaci širších geologických charakteristik na základě koordinace výsledků dalších paleontologických, sedimentologických a geochemických metod. Tyto práce se snaží interpretovat poměry v sedimentačních pánvích a řešit vzájemné vztahy kontinentálního a mořského prostředí. 22 Studované lokality patří k velmi geologicky velmi dynamickému území, které je situováno na hranici mezi východními svahy tektonicky klidné Evropské platformy (reprezentované českým masívem) a okrajem tektonicky aktivních, zvyšujících se horských řetězců Západních Karpat. Během neogénu bylo toto teritorium pokryto širokým výběžkem epikontinentální mořské oblasti Centrální Paratethydy. Území mělo během studovaného období velmi komplikovanou geodynamickou historii (Kováč 2000, Kováčová et al. 2011). Vývoj morfologie krajiny se zásadním způsobem projevoval i ve změnách vegetace zobrazené v pylových spektrech. Díky velké prostorové distribuci palynomorf lze pylová spektra studovat i v mořských sedimetech a využít je ke korelaci kontinentálního a mořského prostředí. Publikované výsledky byly soustředěny na lokality geodynamicky odlišných lokálních pánví Centrální Paratethydy: karpatské předhlubně, vídeňské pánve a jihoslovenské a modrokameňské pánve na Slovensku. Studovaný časový interval zahrnuje stupně standardní chronostratigrafické stupnice burdigal až torton, které jsou na území Centrální Paratethydy označovány jako eggenburg až pannon (obr. 6). Stratigrafické členění a hlavní typy sedimentů v karpatské předhlubni na Moravě jsou uvedeny na obr.3. Sedimenty, ve kterých byla palynospektra studována, zahrnují prostředí mořská, nebo různé okrajové vývoje mořské pánve s brakickou až sladkovodní sedimentací, případně delty velkých řek i sedimenty tufitů. Výhodou studia palynospekter v mořských sedimentech je jejich přesná chronostratigrafická datace na základě mořských mikroorganizmů (foraminifera, Ca-nannoplankton). Toto datování potom umožňuje korelace s klimatickými změnami pozorovatelnými v terestrických vývojích. 23 Obr. 6. Chronostratigrafie a biostratigrafie miocénu (Harzhauser, Piller 2007) 24 Obr. 7. Regionální stratigrafické členění neogénu karpatské předhlubně na Moravě (Rasser et al. 2008) Období mladšího terciéru – neogén je charakteristické řadou globálních i lokálních klimatických změn. Změny globálního charakteru jsou zaznamenány především na izotopových hodnotách kyslíku ze schránek organizmů z hlubokomořských vývojů. Přechod z paleogénu do neogénu (oligocén- miocén) je vyznačený krátkou chladnou oscilací známou jako event Mi-1, který byl zaznamenaný před 23,7 mil let (Zachos et al. 2001). Po tomto ochlazení po celou dobu spodního miocénu teploty opět vzrostly. Menší klimatické oscilace odpovídají vrcholům hodnoty izotopů kyslíku (Mi - eventy), které byly zaznamenány opakovaně (Miller et al. 1991, Shackleton et al. 1999). Další teplotní maximum je známé jako Mid-Miocene Climatic Optimum (MMCO), datované do období před 17 až 14,5 miliony let kolem hranice spodního a středního miocénu (Zachos et al. 2001). Toto období představovalo nejteplejší časový interval za posledních 35 mil. let. Po něm následovala 25 celosvětově zaznamenaná fáze přechodného klimatu známá jako Middle Miocene Climatic Transition (MMCT), které se projevovalo v rámci převládajícího globálního klimatu před 16 a 14.8 mil. let jako krátkodobé oscilace klimatu, objemu Východoantarktického ledovcového štítu (EAIS), hladiny světového oceánu a hlubokooceánské cirkulace. V pozdější fázi, od 14,8 - 12,9 mil. let, klimatický vývoj zahrnoval velký vzrůst EAIS spojený s ochlazením Antarktidy, znatelný růst teplotního gradientu, rozsáhlé výkyvy mořské hladiny následované globálním snížením hladiny oceánu a významné změny hlubokomořské cirkulace (Flower and Kennett 1994). V mělkomořských okrajových vývojích byl klimatický záznam kromě globálních podmínek ovlivněn i lokálními geomorfologickými podmínkami a vulkanickou aktivitou během vývoje Alpskokarpatského horského pásma a rovněž průniky chladných nebo teplých oceánských vod (Holcová et al. 2015, Kováč et al. 2017). Terestrická vegetace tyto změny odráží velmi výrazně. Stratigrafie kontinentálních vývojů (kde chybí indexové fosílie) střední Evropy je proto do značné míry založena na studiu těchto klimatických změn (klimatostratigrafie). 3a) Interpretace vegetace a klimatických změn V palynospektrech z území ČR bylo v období neogénu zachyceno mnoho klimatických výkyvů, které jsou typické pro centrální Evropu. Jejich interpretací v terestrických ekosystémech a stratigrafickým zařazením se zabývala a zabývá celá řada autorů (např. Mai 1981, 1991, Planderová 1990, Planderová et al. 1993a,b, Sadowska 1989, 1993, Stuchlik 1992, Stuchlik et Ważynska 1993, Mosbruggeret Utescher 1997, Böhme 2003, Böhme et al. 2006, Bruch et al. 2004, 2007, Kvaček et al. 2006, Kováčová et al. 2011) Celkový charakter klimatu, zejména kombinace teplotních a srážkových poměrů, je zobrazen v tzv. zonální vegetaci (odráží hlavní klimatickou zonaci – tropické deštné lesy, opadavé lesy mírného pásma apod.). Obraz místních paleoekologických a paleogeografických poměrů, často závislých na charakteru substrátu, vyjadřují společenstva azonální (intrazonální x extrazonální, např. vegetace lužních lesů, slaniska, horská vegetace). Azonální vegetační prvky mohou být v palynospektrech lokálně značně nabohacené a mohou zastírat celkový zonální charakter. Lze z nich ovšem interpretovat lokální poměry daného regionu a rovněž vztahy mezi mořským a kontinentálním prostředím (zasolování pobřeží, ingrese sladkých vod, mírný nebo diferencovaný reliéf pobřeží - vznik pobřežních 26 bažin, horská vegetace). Odlišit je navíc třeba, pokud možno i taxony nabohacené v důsledku rozdílné transportní schopnosti palynomorf a tafonomických vlivů (viz kap. 2a,b). Další problém v interpretaci vegetačního pokryvu a klimatických faktorů představují morfotaxony, u nichž je dosud botanická příslušnost systematicky nejistá. Pro interpretace palynospekter proto není možné bezvýhradně využít aktualistických údajů. Pro přesnější představy o paleoprostředí jsou nutné poznatky dalších paleontologických, sedimentologických a geochemických metod. Změny klimatických i dalších paleekologických charakteristik se projevují nejvíce ve vzájemném poměru zastoupení méně teplotně náročných rostlin (reprezentovaných zejména opadavými dřevinami a jehličnany) – tzv. arktotercierních geofloristických prvků (A) a rostlin s vyššími klimatickými nároky (stálezelené velkolisté taxony rostoucí v podmínkách tropického a subtropického pásma) – tzv. flóry paleotropických geofloristických prvků (P). Tento princip jako první navrhl Mai (1981, 1991). Palynologická společenstva charakterizující jednotlivé klimatické změny označil jako pylové obrazy. Stuchlik et al. (1994) rozdělili arktoterciérní taxony (A) na teplé mírné (A1) a chladné mírné (A2). Paleotropické elementy (P) dělí na prvky klimatické zóny tropické (P1) a subtropické (P2). U taxonů, které dosud nemají determinovanou botanickou příbuznost, posuzují ekologickou náročnost na základě celkové charakteristiky společenstev, v nichž se tyto taxony vyskytují (Stuchlik et al. 1993, 1994, 2014). První komplexní interpretace a charakterizace klimatických změn na základě vegetačních poměrů pobřeží Centrální Paratethydy byla shrnuta v pracích pod editorstvím E. Planderové (Planderová et al. 1993a,b). K těmto výsledkům přispěly práce mnohých autorů z jednotlivých území např. Konzalová (1976), Konzalová, Stuchlik (1983, 1992), Nagy (1969, 1985), Planderová (1971, 1984 1990), Sadowská (1989, 1993), Zdražílková (1993) a další. Autoři vymezili v miocenu Centrální Paratethydy čtyři výrazná paleoklimatická období. První interval zahrnující svrchní eger, eggenburg a ottnang je charakterizovaný tropicko – subtropickým klimatem se stále přetrvávající flórou paleogenního charakteru, s typickými paleogenními taxony Cicatricosisporites chattensis, Plicatopollis plicatus, vyskytujícími se jen v jižních oblastech Centrální Paratethydy. V severních oblastech byly nalezeny paleotropické prvky ze skupiny P1 (Dicolpopollis kockeli, Fususpollenites fusus, Sapotaceoidaepollenites), ale bez paleogenních elementů. Kromě zmíněných rozdílů se pylová společenstva na celém území příliš nelišila. Tato shoda byla nejspíše způsobena paleogeografickou situací území. 27 Druhý interval zahrnuje karpat a spodní baden. Jsou pro něj typické velmi hojné paleotropické prvky a vyšší taxonomická diferenciace. Početné jsou taxony P1 i P2. Spodní baden znamenal pro některé charakteristické tropické elementy jejich poslední výskyt (Sapotaceae, Symplocaceae, Schizacaceae). Třetí interval charakterizuje svrchní baden a sarmat. Paleoflóra se stává jednotnou, docházelo k promíchávání flóry nížin s flórou Paratethydy, což mělo za následek rozšíření arktoterciérních prvků na jihu a vzrůstem paleotropických elementů skupiny P2 na severu. V sedimentech z období svrchního sarmatu severně od Karpat převládá močálová teplomilná vegetace s příznivými podmínkami pro tvorbu uhlí. Míšení flór mizí během postupné regrese moře, paleotropická vegetace migruje na jih. Od tohoto období dominují severně od Karpat prvky arktoterciérní. Čtvrtý interval představují stupně pannon a pont. V tomto časovém úseku docházelo k expanzi arktoterciérní flóry a dále ke vzrůstu kvantity chladnomilných taxonů v severní části Paratethydy. Klimatické podmínky v pontu jsou mírné humidní a vegetace se vyznačuje převážně listnatými lesy rozprostírajícími se u břehů teplých vod (Planderová et al. 1993). Na tyto práce navazovaly některé další komplexní publikace, které problematiku rozšiřovaly a upřesňovaly (např. Stuchlik et al. 1994, Nagy 1999). V současnosti jednou z nejvyužívanějších metod pro interpretace paleoklimatu na základě terestrických rostlinných společenstev je tzv. „koexistenční přístup“ - „coexistence approach (CA)“ - který poprvé publikovali Mosbrugger, Utescher (1997). Rozsáhlou diskusi jeho aplikací a problematiku využití zpracovali Utescher et al. (2014). Tato metoda je založená na aktualistickém předpokladu, že tercierní taxony rostly v podobných podmínkách jako jejich nejbližší žijící příbuzní (NLR – „nearest living relatives“). U těchto recentních zástupců jsou definované hlavní ekologické faktory (ekologická valence), které jsou shrnuty do databáze CLIMBOT (zahrnuje více než 800 tercierních rostlinných taxonů v podobě výtrusů, pylových zrn, semen, listů a dřev, jejich nejbližší recentní příbuzné a jejich klimatické parametry). Klimatická charakteristika jednotlivých taxonů vyjadřuje 10 hlavních parametrů - průměrná roční teplota (MAT), průměrná teplota v nejteplejším měsíci (WMT), průměrná měsíční teplota v nejchladnějším měsíci (CMT), průměrné roční srážky (MAP), minimální průměrné roční srážky (MinAP), maximální měsíční srážky (MmaP), minimální měsíční srážky (MmiP), srážky v nejteplejším měsíci (WMP), relativní vlhkost (RH), index aridity (AI). Výsledkem tohoto modelu je získání intervalových hodnot u jednotlivých parametrů (teplotních, srážkových), v rozmezí kterých mohou determinované taxony na určitém místě růst ve společné asociaci (koexistovat). Pro získání koexistenčních 28 intervalů byl navržen program CLIMSTAT (Mosbrugger, Utescher 1997). Jedny z prvních konkrétních výsledků interpretací klimatických charakteristik a jejich vývoje během posledních 25 mil. let vývoje klimatu na základě CA z oblasti SZ Německa publikovali Utescher et al. (2000). Databáze Palaeoflora (http://www.palaeoflora.de/) je neustále rozšiřována a je součástí mezinárodního programu NECLIME - Neogene Climate Evolution in Eurasia, který byl založen v roce 2000 (http://www.neclime.de/). Výsledky této rozsáhlé spolupráce odborníků na neogénní terestrické ekosystémy jsou neustále publikovány a rozšiřovány (např. Bruch et al. 2007, Utescher et al. 2011, Louis et al. 2017). Jednou z prvních syntetizujících prací v rámci tohoto programu byla publikace Bruch et al. 2004. Výsledkem CA analýz z mnoha lokalit střední a jižní Evropy z období časného středního miocénu a časného svrchního miocénu byla rekonstrukce klimatického gradientu. V obou těchto obdobích byl konstatován pouze mírný šířkový gradient. Tento jev patrně souvisel s obrovským plošným rozsahem epikontinentální mořské oblasti Centrální Paratethydy, která klimaticky ovlivňovala suchozemské oblasti ve svém okolí. Detailnější klimatické interpretace související např. s rozdílnou paleogeografií v důsledku zvyšujících se oblastí alpsko karpatského horského pásma jsou patrně studovanou metodou nezachytitelné. Z prostředí karpatské předhlubně byla do klimatických modelů zahrnuta lokalita Židlochovice, kde byly na několika palynospektrech z bodových vzorků vypracovány základní klimatické charakteristiky. Tato lokalita reprezentuje hypostratotyp spodního badenu, a byla proto zpracována podrobněji ve dvou 20 metrových vrtech z paleontologického i sedimentologického hlediska a rovněž metodou CA (Doláková et al. 2014) viz níže. Jako každá interpretační metoda má i CA ve fosilním záznamu svá omezení. Je založena pouze na přítomnosti nebo nepřítomnosti určitého taxonu v paleoasociaci. Nezohledňuje kvantitativní zastoupení některých prvků a vlivy tafonomie – nedochování se taxonů s rychleji rozložitelnou stěnou, nebo taxonů, které se vlivem menší schopnosti distribuce palynomorf nedostanou do studovaného sedimentu, např. mořského prostředí. U tercierních palynospekter, kde je vždy určitý podíl pouze morfologicky determinovaných taxonů, je navíc interval koexistence značně široký. Chyby v interpretaci mohou být u tercierních taxonů rovněž způsobeny nepřesným přiřazením nejbližšího příbuzného, případně změnami ekologické valence některých taxonů - např. určitý druh se vyskytoval v odlišných asociacích než dnes – refugia. Příkladem může být rod Craigia. Tento rod je v 29 současné době zastoupený v asociaci širolistých stálezelených smíšených lesů blízkých tropům, se sezónními zvýšenými srážkami z Číny a severního Vietnamu. V miocenních oryktocenózách se však ve vyšších frekvencích vyskytoval v asociacích pobřežních až uhlotvorných bažin v asociaci opadavých dřevin (s převažujícími Taxodioideae). (Kvaček et al. 2002, 2004, Zetter et al. 2002). V těchto asociacích se pylová zrna rodu Craigia vyskytovala hojně i ve spodním miocénu karpatské předhlubně na Moravě (Doláková 2004, Kováčová et al. 2011) Práci, která propojuje poznatky vegetačních poměrů a geodynamického vývoje z prostoru Centrální Paratethydy, představuje publikace Kvaček et al. (2006). Pro interpretaci a zobrazení vegetačních a paleogeografických poměrů bylo využito digitálního elevačního modelu (DEM). Tento model umožňuje zobrazit představu krajiny na palinspastických mapách s rekonstruovanou orografií vývoje karpatského horstva a okolních sedimentačních pánví. Model vegetace kontinentálního prostředí v okolí Centrální Paratethydy využívá zjednodušený systém vegetačních jednotek (formací), které jsou postačující pro získání předběžného obrazu paleovegetace v prostoru. V rámci mezinárodního týmu byly (na základě studia listové flóry, semen, plodů a palynomorf) pro rekonstrukci rostlinného pokryvu navrženy základní zonální, intrazonální a extrazonální formace (vegetační jednotky). Tyto formace sdružují jednotlivé elementy flóry na základě autekologie jejich nejbližších žijících příbuzných (NLR) a rovněž metod listové fyziognomie. Rostlinná společenstva referenčních fosilních lokalit často obsahovala taxony rozdílných vegetačních formací, z nichž zonální prvky byly použity pro tvorbu map rekonstrukcí fosilní vegetace. Charakteristika formací byla založena na diverzitě a vzájemném poměru zonálních elementů: stálezelených, opadavých, sklerofylních a leguminozních dřevin. Kromě zonální vegetace byly shrnuty i základní typy vegetace azonální (intrazonální, extrazonální). Zonální formace – procentuální zastoupení je poměr ke všem determinovaným zonálním krytosemenným. 1. Temperátní listnatý (širolistý) opadavý les - (Warm-) temperate Broad-leaved Deciduous Forest) s velmi nízkým poměrem stálezelených dřevin, obsahující více než 80% opadavých zonálních krytosemenných dřevin (Parrotia, Zelkova, Ostrya, Acer angustilobum atd). 2. Temperátní smíšený mezofytní les (Warm) - temperate Mixed-Mesophytic Forest zahrnující méně než 80% zonálních opadavých krytosemenných dřevin, méně než 30% 30 stálezelených krytosemenných dřevin, méně než 20% sklerofylních a leguminozních (malolistých) typů s pravidelnou příměsí Tetraclinis salicornioides a dalších teplomilných prvků, méně než 30% zonálních bylin) 3. Subtropický širolistý stálezelený les - Subtropical Broad-leaved Evergreen Forests, zahrnující tzv. mastixiovou flóru “Younger Mastixioid Floras” sensu Mai (1981), obsahující 30 % nebo více listnatých stálezelených teplomilných elementů, reprezentovaných zejména čeleděmi Lauraceae, Theaceae, Mastixiaceae, Symplocaceae, Sapotaceae, Engelhardia, a stálezelené členy čeledi Fagaceae (v pylovém spektru reprezentované morfologickými druhy Castaneoideoipollenites pusillus, Quercoidites henrici, Quercoidites microhenrici) a méně než 25% zonálních bylin. 4. Subtropický a subhumidní sklerofytní les - Subtropical sub-humid Sclerophyllous Forest, obsahující více než 20 % sklerofylních taxonů (Quercus mediterranea, Quercus drymeja) a leguminozních malolistých dřevin Azonální formace – význačné množství těchto prvků ve společenstvech může zastřít celkový charakter klimatických zón - tzv. faciálně ovlivněná společenstva, nejsou vyjádřená v mapách pomocí vzorců, ale pouze bodově u referenčních lokalit. Intrazonální formace: 5. Bažinný les a uhlotvorný močál - Swamp forest and coal-forming mire, kde dominantní postavení mají elementy uhlotvorných dřevin a bylin (Glyptostrobus adalších Taxodioideae, Byttneriophyllum, Nyssa, Myrica, Calamus, Spirematospermum). 6. Močálová a akvatická vegetace - Marsh and aquatic vegetation, zastoupená dominantně vodními bylinami a halofyty (Cyperaceae, Typha, Potamogeton, Stratiotes atd.). 7. Opadavý lužní les - Deciduous riparian forest, tvořený především dřevinami vlhkých substrátů (Taxodium, Alnus, Salix, Populus, Fraxinus, Acer tricuspidatum) Extrazonální formace 8. Horské jehličnaté lesy - Mountain conifer-rich forest reprezentované především rody Cedrus, Tsuga, Picea, Cathaya etc. Tato formace je v mapách znázorněná, je založená většinou na záznamu pylových zrn. Na základě těchto typů vegetace byly výsledky floristických studií analyzovány ve 3 časových intervalech miocénu s odlišnou flórou a paleogeografií a byl z nich vytvořen paleobiogeografický model pro areál Centrální Paratethydy a její periferii. Jednalo se o inervaly : karpat/spodní baden, svrchní baden/spodní sarmat a spodní panon. Limity modelu spočívají v tom, že nebere v úvahu hojnost výskytů, což bylo způsobeno nepravidelným fosilním záznamem. Nicméně procentuálně vyjádřená diverzita 31 je prozatím nejobjektivnější charakteristika rostlinných společenstev. Na paleogeografických podkladech úzkých časových úseků lépe vynikne dynamika vegetace a její vývoj, i když je pro daný čas malý počet referenčních lokalit. Problematická byla transformace palynologických diagramů, ve kterých zůstává stále určitý počet taxonů s pouze morfologickými determinacemi do jednotlivých vegetačních formací, které byly vytvořeny na základě zejména listové fyziognomie. Pokud to bylo možné, byly starší palynologické údaje revidovány, aby se rozšířilo množství taxonů přiřazených do botanického systému. Mnohá zpřesnění ovšem zůstávají otázkou pro budoucí výzkumy. 3ab) Charakteristika vegetace v jednotlivých časových úsecích Prozatím nejnovější kompletaci a interpretaci palynologických údajů doplněnou o literární údaje makrofloristické z území ČR a SR a srovnání s vývojem flóry v sousedních oblastech představuje pulikace Kováčová, Doláková a Kováč (2011). Práce se zaměřila na vegetační a paleoklimatickou analýzu dvou oblastí Centrální Paratethydy a jejího okolí s různým geodynamickým vývojem: karpatské předhlubně na Moravě a vídeňské pánve na Moravě a na Slovensku. Shrnuje výsledky dosavadních výzkumů zaměřených na vegetaci miocénu studovaných areálů (Doláková 2004, Doláková et al. 1999, Doláková, Kováčová 2008, Doláková et al. 2011, Doláková, Slamková 2003). Výsledky pylové analýzy výcházejí ze semikvantitativního hodnocení palynospekter na základě proporcionálního poměru paleotropických a arktotercierních prvků (sensu Mai 1981, 1991, Stuchlik et al. 1994, Neclime koncept NLR.), které jsou vyjadřovány pomocí pylových diagramů. Reprezentují vývoj vegetace a klimatu ve sledovaných stratigrafických intervalech. Interpretace výsledků vychází z konceptu prací Kvaček et al. (2006), Kovar-Eder et al. (2008a, b). Na změnách pylových spekter se kromě klimatického vývoje projevují i změny paleogeografické, jako např. rozšiřování a restrikce mořských pánví – transgrese a regrese spojené se zarovnáváním reliéfu nebo silnou erozí kontinentu, vznik a vzájemné propojování lokálních okrajových pánví, prostředí delt s míšením mořské a sladké vody a přínosem organické hmoty z pevniny, zvyšování reliéfu v důsledku orogeneze, dosouvání karpatských příkrovů – nedochování okrajových facií apod. (Kováč 2000, Nehyba et al. 2008). Z konceptu práce Kováčová, Doláková, Kováč (2011) vyplynuly peleovegetační chjarakteristiky stratigrafických úseků miocénu a byly doplněné údaji z některých starších i novějších vlastních publikací. 32 Základní taxony, které jsou zahrnuty do zonální vegetace skupiny teplomilných stálezelených dřevin (P), jsou - Sapotaceae, Palmae, Engelhardia, Platycarya, stálezelené členy čeledi Fagaceae (morfotaxony Quercoidites microhenrici a Quercoidites henrici, Trigonobalanopsis), Symplocos, Cornaceae - Mastixiaceae, Tricolpopollenites liblarensis, Araliaceae, Rutaceae, Reevesia, Alangium, Theaceae, Styracaceae, Parthenocissus, atd. Základní prvky opadavých dřevin – arktotercierní (A) vegetace jsou: Quercus, Acer, Carpinus, Betula, Juglans, Tilia, Celtis, Carya, Zelkova, Ostrya, Eucommia. Extrazonální horská vegetace je reprezentována rody: Cedrus, Tsuga, Picea, Cathaya, Keteleeria. Azonální vegetace ovlivňovaná edafickými faktory je reprezentována: 1. prvky lužního lesa: Alnus, Salix, Ulmus, Fraxinus, Pterocarya, Platanus, Liquidambar, Cercidiphyllum; 2. pobřežních bažin: Taxodioideae (Glyptostrobus), Myricaceae, Cyrillaceae, Nyssa, Craigia, Sciadopitys, Decodon, Ilex; 3. vodní a příbřežní vegetace: Cyperaceae, Oenotheraceae, Sparganium, Typha, Potamogeton, Nelumbo, Azolla; 4. vegetací otevřených ploch se zástupci heliofyt: stromovitých Olea, bylinných (Poaceae, Caryophyllaceae, Asteraceae, Artemisia, Salvia) a keřovitých (Ericaeae, Buxus, Rosaceae, Ephedra) a pobřežních slanisek (Chenopodiaceae – Salicornia and Gypsophilla, Tamarix) 5. kapraďorosty – teplomilné: Lygodium, Pteris, Schizeaceae, Davaliaceae, ostatní: Polypodiaceae, Osmunda, Selaginella. Prostředí spodnomiocenních stupňů eggenburg – ottnang (obr. 6,7) zachycené v sedimentech jz. části karpatské předhlubně bylo mimořádně variabilní (např. vrty Miroslav, Jezeřany, Šafov, Čejkovice). Sedimentace probíhala v subtropickém klimatu v příbřežní mořské oblasti s velmi morfologicky diferencovaným reliéfem pobřeží – mořské facie se střídaly v čase i prostoru s faciemi lagun a delt (brakické až sladkovodní prostředí). Změny mořského prostředí byly spojené se změnami mořské hladiny, změnami dynamiky, prosvětlení, obsahu kyslíku a salinity a rovněž rychlostí akumulace sedimentů. Tyto změny se projevily jak v mořských ekosystémech, tak i v charakteru pobřežní terestrické vegetace (Doláková et al. 1999, Nehyba et al. 1995, 1997, Doláková 2004). Palynospektra měla charakter subtropického klimatu. V porovnání s mladšími obdobími miocénu jižní části karpatské předhlubně byla typická pravidelná přítomnost pylových zrn čeledi Rutaceae, 33 hojněji byl zastoupený subtropický rod Symplocos a ojediněle byla zjištěna pylová zrna rodu Alangium. Ve facii lužních lesů byl zastoupený hojněji rod Platanus než Alnus. Vegetace otevřených ploch se zástupci heliofyt (Poaceae, Caryophyllaceae, Asteraceae, Ericaeae, Buxus, Ephedra) a pobřežních slanisek (Chenopodiaceae až 37% ve vzorku, patrně rod Salicornia, Tamarix) se v profilech střídala s převahou rostlin pobřežních bažin (Taxodioideae, Myricaceae, Cyrillaceae, Decodon) s hojným podílem teplomilných kapradin. Např. rod Lygodium (až 5 %), Pteridaceae, Gleicheniaceae, vranečky Selaginella a jatrovkou Riccia. Flóra rostoucí na okrajích sladkých vod (Sparganium, Potamogeton, Nelumbo, Cyperaceae) byla rovněž charakteristická a častěji zastoupená než ve spektrech karpatu a badenu. Typická pro palynospektra eggenburgu byla přítomnost formálního rodu Monocirculipollis, který nebyl zjištěn v mladších sedimentech karpatské předhlubně. Na základě studia v elektronovém mikroskopu byl přiřazen čeledi Caryophyllaceae (zmíněno v kapitole 2cb), morfologicky podobnému pylovým zrnům rodu Gypsophilla. Vysoká frekvence jehličin čeledi Pinaceae zahrnující nejčastěji rody Pinus, Cathaya a méně Cedrus, Picea, Abies prokazovala velmi diferenciovaný reliéf pořeží. Rod Tsuga byl na rozdíl od mladších sedimentů zjištěn pouze velmi ojediněle. Nálezy palynologie podpořily dřívější závěry studia makroflóry, která je ve studované oblasti poměrně vzácná. Ojedinělou oryktocenózu ze Znojma a Přímětic determinoval Knobloch (1982, 1984). Interpretoval několik ekologicky odlišných asociací: a) keřovitobylinnou heliofilní vegetaci se zástupci stálezelených sklerofylních dřevin podobnou mediteranním společenstvům tzv. macchie; b) bažinnou vegetaci Glyptostrobus, Myrica; c) akvatickou flóru se Salvinia, Potamogeton, Nymphaea a pobřežní společenstvo s Typha, Decodon, Sparganium. Popsal rovněž akumulaci plodů rodu Limnocarpus, který roste na okrajích brakických vod. Interpretace charakteru vegetace obsažené v sedimentech karpatu byla zpracovávána zejména v rámci mezinárodního projektu Reedice stratotypu Karpatu. Závěry tohoto projektu byly shrnuty v monografii Brzobohatý et al. (2003). Palynospektra byla mimo dalších vrtů a lokalit studována i na stratotypových lokalitách Slup, Hevlín a Dolní Dunajovice (Doláková, Slamková 2003, Doláková et al. 2003). Podle palynologických údajů i dalších geologicko-paleontologických studií (Brzobohatý et al. 2003, Kvaček et al. 2006) byla pobřežní oblast Centrální Paratetydy charakteristická nízkým zarovnaným reliéfem, který představoval příznivé podmínky pro tvorbu hojných bažin v příbřežním a deltovém režimu. Během karpatu nebyla na základě 34 paleobotanického studia patrná výrazná šířková ani výšková vegetační zonace v celé karpato - panonské oblasti Základní charakter zonálních společenstev vyjádřený v poměru teplomilných paleotropických prvků vůči prvkům arktotercierním se oproti eggenburgu a ottnangu výrazně nezměnil. Převažující formaci tvoří subtropické listnaté lesy s vysokým nebo středním podílem stálezelených dřevin. Některé taxony jako Symplocos, Rutaceae a Platanus byly oproti předchozímu období nalézány sporadičtěji. Oryktocenózy bažinných facií (Myricaceae, Taxodioideae, Craigia, Pteridaceae, Polypodiaceae) a lužních porostů (Alnus, Ulmaceae, Lythraceae) se vyskytovaly běžně a často tvořily převažující složku palynospekter. Velmi typické byly asociace s výrazným zastoupením rodu Craigia. Obdobné oryktocenózy byly pozorovány v cyprisových jílovcích ze Severočeské pánve pod formálním taxonem Intratriporopollenites insculptus Mai (Konzalová (1976) a v karpatských sedimentech lokality Korneuburg (Hofmann et al. 2002). Zástupci bylinné a keřovité vegetace otevřených stanovišť byli daleko méně zastoupeni než v období předcházejícím. Typické mořské sedimenty - tzv. “šlír” - byly charakteristické vysokým podílem jehličin, zejména rody Pinus a Cathaya, které se díky velkému doletu pylových zrn těchto větrosnubných rostlin často hromadí v mořských sedimentech (viz kap. 2). Rody Tsuga a Abies jako zástupci extrazonální vegetace rostoucí převážně ve výše položených oblastech se začínají objevovat v sedimetech z mladších období studovaného intervalu. Dokumentují počátek výzdvihu karpatského orogénu (Doláková et al. 2003, Kvaček et al. 2006, Kováčová et al. 2011). Vyskytovali se rovněž zástupci mořských dinofyt a cysty zelených řas skupiny Prasinophyta, které byly místy nalézány v masovém množství. Tyto akumulace mohly být projevem vodního květu, který se vytváří v důsledku omezené cirkulace a stratifikace vodního sloupce. Pylová zrna a spory byly často degradovány a obsahovaly shluky krychlových dutin (pozůstatky po mikrokrystalech pyritu), které svědčí o existenci prostředí se sníženým obsahem kyslíku (viz kap. 2). Existence subtropického humidního klimatu byla podpořena i makrofloristickými nálezy na stratotypových lokalitách Slup a Dolní Dunajovice. Asociace byly tvořeny převahou fosilních listů čeledi Lauraceae (pylová zrna této čeledi se nedochovávají ve fosilním stavu) a nízkým zastoupením opadavé flóry (Knobloch 1967, 1982, Kvaček 2003). Azonální vegetace byla reprezentována bažinnými a lužními lesy s dominancí rodů Glyptostrobus a Myrica. Zjištěny byly i další prvky totožné s nálezy pylových zrn včetně rodu Craigia. 35 Sedimenty spodního miocénu ottnang - karpat byly z palynologického hlediska studovány i z území Modrokameňské pánve na Slovensku (Doláková 2004). Charakter oryktocenóz převážně odpovídal pylovým spektrům z karpatské předhlubně. Nejvýraznější rozdíl představovalo zastoupení formálního rodu Pentapollenites Krutzsch, který v palynospektrech z území Moravy nebyl zjištěn. Asociace palynomorf poněkud chladnějšího klimatu reprezentovaného zvýšením poměru arktotercierních dřevin popsané z konce ottnangu a počátku karpatu ze sousedních oblastí např. Slovenska, Polska (Planderová 1990, Planderová et al.1993a,b, Ważyńska 1998), nebyly v karpatské předhlubni zaznamenány. Tato palynospektra mají ovšem převahu azonálních prvků a změny mohly být odrazem lokálních paleogeografických poměrů (vyšší diferenciace reliéfu). Velmi obdobný charakter karpatských palynospekter byl publikován ze sedimentů pohoří Mecsek z Maďarska (Nagy 1999). Palynospektra z karpatských sedimentů Korneuburgské pánve v Rakousku vykazovala obdobný charakter zejména azonálních formací. Vysoké poměrné zastoupení palem a nálezy rodu Avicenia, který představuje ojedinělý prvek mangrovových porostů v oblasti Centrální Paratethydy, interpretují autoři Hofmann et al. (2002) jako důsledek průniku teplých vod z oblasti Tethydy. Podle nejnovějších studií a statistického vyhodnocení palynospekter pomocí CA (Doláková et al in prep, jsou na pylových diagramech pozorovatelné cyklické změny poměrného zastoupení teplomilných a arktotercierních prvků. Tato periodicita pokračuje i v následujícím stupni baden. Ve středním miocénu, který je na území karpatské předhlubně zastoupený stupněm baden, byl vývoj krajiny ovlivněný zejména postupným výzdvihem horských oblastí Západních Karpat a současnou subsidencí přilehlých nížinných oblastí. V palynospektrech je patrný nástup výrazné výškové vegetační zonace (Kováčová et al. 2011). Interpretace vegetace v sedimentech spodního badenu karpatské předhlubně byla publikována zejména v pracích (Doláková 2004, Doláková et al. 2011, 2014, Kováčová et al. 2011). Palynologická data dokumentují subtropické klima v období doznívajícího miocenního klimatického optima (MMCO) a dominancí zonální formace stálezelených širolistých lesů (až přes 30% - Engelhardia, Platycarya, stálezelené typy Fagaceae: Castanopsis, Trigonobalanopsis). Podíl prvků formace temperátního smíšeného mezofytního lesa a širolistého opadavého lesa byl nižší (např. Quercus, Carya, Celtis, Juglans). Oproti palynospektrům spodního miocénu byl zaznamenaný mírný úbytek některých teplomilných prvků (P1 - Sapotaceae, Palmae, Mastixiaceae, Lygodiaceae). 36 V pylových spektrech byla pozorovaná vyšší diverzita pylových zrn stálezelených i opadavých dubů a nárůst podílu pylových zrn rodu Platanus. Kolísání podílu prvků lužního lesa a pobřežních močálových biotopů a místně zvýšený podíl bylin a heliofytních rostlin vyskytujících se na sušších otevřených areálech byl důsledkem změn humidity. Toto zjištění odpovídá i studiím makrofloristickým. V porovnání s nálezy makroflóry (Knobloch et Kvaček, 1996) indikují palynologické údaje poněkud teplomilnější charakter vegetace. Tento rozdíl může být ovšem způsoben tafonomickými procesy v mořských sedimentech, kde se zejména listová flóra hůře dochovává. Zajímavý fenomén představuje poměrně pravidelná přítomnost rodu Cercidiphyllum, který ve starších sedimentech karpatské předhlubně nebyl dokumentován. Občasné nálezy rostlin typických pro okraje sladkých vod, jako např. Potamogeton, Sparganium a kolonie řas (Botryococcus), dokumentují přítok sladkých vod do mořské pánve. Největší pozornost byla věnována lokalitě Židlochovice. Jako na první lokalitě ze studovaného prostoru byly statisticky spočítány na několika bodových vzorcích výsledky CA (Bruch et al. 2004). Lokalita reprezentuje hypostratotyp sedimentů spodního badenu a byla proto zpracována nověji z co nejširšího paleontologického (foraminifery, CA nanoplankton, otolity, měkkýši, červené řasy, mechovky, palynomorfy) a sedimentologického hlediska (Doláková et al. 2014). Problematika změn paleobiologických, paleoklimatických a sedimentologických podmínek byla pro tuto lokalitu zpracována kontinuálně ve dvou vrtech. Pylová spektra s bohatým a diferencovaným obsahem palynomorf byla zpracována za pomoci CA. Ne všechny studované vzorky byl ovšem k účelům statistického zhodnocení vhodné (viz kap. 2) Na lokalitě Židlochovice byly ve dvou studovaných vrtech provedeny výpočty teplotních a vlhkostních charakteristik za pomoci CA. Zvyšující se kolísání klimatických charakteristik (zejména teploty a humidity, zvyšující se sezonalita) v rámci subtropické kontinentální vegetace představují finální fázi vrcholícího miocenního klimatického optima (MMCO) a nastupující středně miocenní přechodnou klimatickou fázi (MMCT) (Doláková et al. 2014, Holcová et al 2015, 2018) ve smyslu Zachos et al. (2001), Flower , Kennet (1994). Palynologická studia a studium asociací červených řas napomohla rovněž k indikování prvního šířkového teplotního gradientu od spodního badenu v rámci pobřeží Paratethydy (Doláková et al. 2008). Do tohoto období je předpokládána uniformita charakteru klimatu v rámci celé střední Evropy (Bruch et al 2004). 37 Pro studium palynospekter svrchní části středního miocénu (svrchní baden, sarmat) nebyly dosud v moravské části karpatské předhlubně (sedimentace končí ve spodním badenu) ani vídeňské pánve nalezeny sedimenty vhodné k zachování pylových zrn a spor. Všechny dosud zkoumané sedimenty byly palynologicky sterilní. Podstatný nárůst taxonů horské vegetace (Picea, Abies, Tsuga, Cedrus), zvýšení podílu arktotercierní flóry (Quercus, Ulmus, Carya) a úbytek subtropických taxonů (Platycarya, Engelhardia, Myrica, Distylium, teplomilné Fagaceae, Sapotaceae) v palynospektrech svrchního badenu byl dokumentován na lokalitách Slovenské části vídeňské pánve. Tyto změny jsou interpretovány jako důsledek vzrůstu výškového gradientu souvisejícího s výzdvihem horského oblouku Západních karpat (Kováč et al. 1998, Doláková et al. 2011, Kováčová et al. 2011). Studovaná palynospektra svrchního miocénu moravské části Paratethydy pocházela ze sedimentů panonu vídeňské pánve. Vlivem paleogeografických změn se během svrchního miocénu začalo postupně uzavírat spojení s mořskou oblastí Paratethydy. Severní část vídeňské pánve byla postupně vyplňována progradujícími deltovými a říčními faciemi, které přinášely materiál z vyzdvihujících se karpatských horstev. Prostředí se postupně změlčovalo a vyslazovalo (Kováč et al. 1998a,b, 2017). Tento proces byl patrný i ze studia palynologie, kde sporadické výskyty dinoflagelát a zelených řas čeledi Tasmanaceae indikují ještě mořské až brakické prostředí. Místy hojné kolonie rodu Botryococcus se mohou vyskytovat jak v brakické, tak sladké vodě. Ovšem kolonie rodu Pediastrum, cysty Mougeotia, sporangia s glochidii vodní kpradiny Azolla, a pylová zrna pobřežních vodních rostlin jako Nelumbo, Nymphaea, Myriophyllum, Sparganium, Potamogeton reprezentují prostředí sladkých vod (Doláková, Kováčová 2008, Kováčová et al. 2011). Sedimenty pannonu jsou známé bohatými makrofloristickými nálezy (Knobloch 1962, 1963, 1968, 1969, 1972, 1981, 1985), proto jim byla z hlediska palynologie věnována pozornost již v dřívějších výzkumech (Gabrielová 1966, Kalvoda 1979, Lázničková 2006, Konzalová 2005). V palynospektrech pannonských sedimentů byla oproti spodnímu a střednímu miocénu zaznamenána výrazná změna vegetačního pokryvu. V důsledku paleogeografických změn a klimatických oscilací se množství termofilních taxonů začalo snižovat a některé z tohoto prostoru zcela ustoupily do jižnějších oblastí. Morfologicky pestrý reliéf horských pásem v okolních oblastech vytvořil podmínky pro rozšíření temperátních smíšených mezofytních lesů (Quercus, Celtis, Tilia, Carya, Zelkova, Ostrya, Carpinus, Juglans) s minimálním přimíšením stálezelených subtropických taxonů (Engelhardia, Castanea, stálezelené Fagaceae) a extrazonální horskou vegetaci s jehličnany 38 Cedrus, Tsuga, Picea (Doláková, Kováčová 2008, Doláková et al. 2010, Kováčová et al. 2011). V tomto období se lokálně začínají objevovat areály otevřené krajiny se stepním charakterem, tzv. „open woodland“ – „open grassland“, které se projevují zvýšeným procentem výskytu bylinných prvků (10 až 14 % složení spekter) - Poaceae, Artemisia, Chenopodiaceae, Asteraceae, Lamiaceae, Polygonum, Daucaceae, Caryophyllaceae, Thalictrum, Rumex, Valeriana, Dipsacaceae, Galium, Ranunculus) a keřovitých forem (Buxus, Ericaceae, Ephedra). Zjištěny byly rovněž lianovité formy Vitaceae, Lonicera, Rosaceae typ Rubus) a halofyty (Chenopodiaceae) indikující existenci lokálně zasolených substrátů. Azonální vegetace se v jednotlivých sekvencích velmi rychle střídaly v čase i prostoru. Pylová spektra tvoří různé facie intrazonálních společenstev, jako např. zasolené příbřežní louky tzv. marše s Chenopodiaceae, Ericaceae, Poaceae, Tamarix) lužní lesy (Alnus, Salix, Betula, Liquidambar, Myrica, Nyssa), pobřežní močály s Taxodioideae, Nyssa, Myrica střídající se s asociacemi otevřených až stepních ploch (tzv. artemisiové stepi). Na základě pylových společenstev byly za pomoci CA analýzy ze slovenské části vídeňské pánve vypočítány klimatické faktory prostředí (Doláková, Kováčová 2008). Obdobná palynospektra (redukované pobřežní močály a izolovaná sladkovodní jezera obklopená stepními porosty (s dominantním pelyňkem Artemisia) s řídkými dřevinami popsala ze slovenské části Podunajské pánve Planderová (1972, 1990). Ve srovnání s palynospektry z Maďarska konstatovala na slovenském území chladnější a sušší klima (Nagy 1985, 2005, Planderová 1990). Pylová společenstva bohatá na zastoupení bylin popsali ze svrchního pannonu Štýrské pánve Hoffmann, Zetter (2005). 3b) Širší problematika neogénu v korelaci palynologie a dalších paleontologických, sedimentologických a geochemických metod výzkumu Výhodou studia palynologie v mořských sedimentech je možnost korelace palynologických interpretací s paleoklimatickými a paleogeografickými údaji, které vycházejí ze studia dalších paleontologických, sedimentologických, nebo geochemických metod. Proto je poslední dobou práce širšího kolektivu autorů zaměřena na komplexní zpracování studovaných lokalit a tvorbu modelů mořského a terestrického prostředí a jejichvzájemného ovlivňování. 39 Prozatím nejpodrobnějším studiím byly podrobeny sedimenty spodního badenu nannoplanktonové zóny MNN 5 (obr. 6.). Výsledky palynologického studia byly začleněny do celkového pohledu na vývoj prostředí. Interpretace palynospekter i tafonomické procesy se odrazily nejen ve změnách charakteru vegetace, klimatu a morfologie kontinentu, ale i v interpretacích režimu a morfologie mořské pánve (změny obsahu kyslíku, proudění, hloubky, salinity (Doláková et al. 2014, Holcová et al. 2015, Nehyba et al. 2016). Výsledky palynologických studií přispěly i k interpretaci vzniku karbonátových těles mořského původu, které samy jsou palynologicky sterilní. Z hlediska palynologie byly v delších časových profilech zobrazených v sedimentech z vrtných jader patrné periodické sekvence s bohatým obsahem palynomorf (místy s patrnými pseudomorfózami po mikrokrystalech pyritu), střídající se s faciemi s naprostou převahou pylových zrn konifer doprovázenými cystami mořských dinofyt s pouze výjimečně dochovanými dalšími palynomorfami. Tato sekvence bývá následována sedimenty palynologicky sterilními, případně sedimentací vápencových těles. K akumulaci pylových zrn konifer může docházet v důsledku ekologických i tafonomických jevů. Většina pylových zrn konifer má pylová zrna přizpůsobená přenosu větrem (vzdušné vaky). Hromadí se proto v mořských sedimetech vzálených od pobřeží, kam se pylová zrna hmyzosnubných rostlin netransportují. Mohou být navíc doneseny z morfologicky vyvýšených terénů, kde mají některé rody areál původního výskytu (Tsuga, Cedrus, Picea, Ketelleria). Pylová zrna konifer jsou rovněž odolnější vůči oxidickým podmínkám v mořské vodě i v sedimentu (Kwiatkowski, Lubliner Mianowska 1957, Havinga 1964, 1967, Brooks 1971, Hopkins, Mc Carthy 2002). Hojnost a diversita palynomorf v sedimentech je v přímé závislosti na oxidačně - redukčním potenciálu (Martin, Drew 1970, Heusser 1978). Akumulace konifer je typická pro oligotrofní podmínky mořské pánve a zvyšující se klimatické výkyvy. Tato klimatická nestabilita (cyklické změny teplot, a humidity) je předpokládaným počátkem středně miocenní klimatické přechodné fáze (MMCT) (Doláková et al. 2014, Holcová et al. 2015, Nehyba et al. 2016). Výsledkem komplexního výzkumu badenských sedimetů je představa režimu pánve ve vzájemných vztazích s podmínkami na přilehlé pevnině (Holcová et al. 2015, Nehyba et al. 2016). Změna režimu v okrajových částech pánve byla v zóně MNN-5 zaznamenána v časovém intervalu mezi posledním výskytem (LO) druhu Helicosphaera waltrans (14,36 mil. let) a posledním výskytem druhu Sphenolithus heteromorphus (Ca- nanoplankton). V intervalu pod LO H. waltrans vznikaly ve studovaném území pouze siliciklastické sedimenty, režim mořské vody byl více eutrofní - se značným obsahem živin, klima bylo subtropické, poměrně vyrovnané, cyklicita pozorovatelná na mořských organizmech, 40 sedimentech i vegetaci byla nevýrazná. Palynospektra byla diversifikovaná a dobře dochovaná (příklady vrtů Vyškov, Ivaň). V intervalu nad LO H. waltrans byly patrné cyklické změny mořského režimu i klimatu na kontinentu. Sedimentace siliciklastik byla doprovázena v okrajových částech pánve vznikem karbonátových komplexů. Zaznamenány byly cyklické změny mořské hladiny (transgrese, regrese) související s mírou cirkulace vody (dobré prokysličení/ stratifikace vodního sloupce), přínosu živin i teploty (zvyšování sezonality, zvyšování salinity v připovrchových vodách související s aridizací klimatu). Každý cyklus začíná poměrně náhlým oteplováním následovaným postupným ochlazováním. Kromě cyklických změn v zastoupení teplomilných a akrtotercierních prvků spolu s místně zvýšeným zastoupením heliofytních, suchomilných prvků (Olea, Buxus, Ephedra, Poaceae, Asteraceae, Caryophyllaceae, Chenopodiaceae) se projevila cyklicita i ve stupni zachování palynomorf. V periodách zvýšené cirkulace vody a dobrého prokysličení se vyskytovala spektra s nadhodnocením Pinaceae. V tomto období byl rovněž na palynospektrech patrný rozdíl v zastoupení vysokohorských prvků na opačných stranách mořské pánve. Na lokalitách bližších k pasivnímu okraji českého masívu bylo zastoupení konifer poměrně monotónní, bez výrazného poměru vysokohorských prvků. Tyto byly naopak častěji přítomné na okraji pánve směrem k orogeneticky aktivnímu horstvu Západních Karpat, což je dokumentováno na řadě lokalit např. Židlochovice, Lomnice, Rebešovice, Chrlice, Otmarov, Opatovice, Oslavany (Doláková et al. 2014, Holcová et al. 2015, Nehyba et al. 2016). Vznik karbonátového komplexu byl označen jako karbonátový event. (Holcová et al. 2015). Byl doprovázený snížením přínosu terestrického materiálu během transgrese, spojený s oligotrofním režimem, rozšířením tzv. podmořských luk a aridizací klimatu. Siliciklastické vrstvy materiálu uvnitř karbonátů byly palynologicky sterilní. Podle těchto posledních výzkumů z karpatské předhlubně (Doláková et al. 2014, Holcová et al. 2015, Nehyba et al. 2016) lze tedy biostratigraficky korelovat zónu vápnitého nanoplanktonu MNN5 Zone nad LO (=Last Occurrence) Helicosphaera waltrans 4,6-13,9 mil. let s počátteční fází MMCT. Z dosavadních studií lze předpokládat, že cyklicita mořské sedimentace byla vyvolána klimatickými změnami počátku MMCT. 41 4. Palynologie vybraných lokalit kvartéru Vegetace kvartéru (obr. 8) je ovlivněna výraznými klimatickými výkyvy střídajících se chladných a suchých období (glaciálů) a teplejších humidních fází (interglaciálů). Vegetační pokryv krajiny, který se zobrazuje v pylových spektrech uchovaných v sedimentech z archeologických lokalit, se vyznačuje různě intenzívním dopadem lidské činnosti. V období pleistocénu a raného holocénu ještě nedocházelo k ovlivnění krajiny lidskou činností v masivním měřítku. Základní charakter vegetace souvisel se změnami přírodních podmínek. Pouze v těsném okolí lidských sídlišť byl rostlinný pokryv pozměněn např. v důsledku intenzivněji ošlapávaných ploch nebo přibývající dotací dusíkatých látek v důsledku životní činnosti. V mladších obdobích – počínaje kulturním obdobím neolitu – začal člověk měnit krajinu zásadním způsobem zejména v důsledku zemědělství (odlesňování a s ním spojený proces zvýšené půdní eroze a zvýšení intenzity povodňových sedimentů, domestikace rostlin, extenzívní pěstování kulturních plodin, šíření plevelů, změny původních areálů). Základní problematiku změn kvartérní vegetace v čase shrnují v evropském měřítku zejména práce Firbas 1949, Lang 1994, Litt et al. 2008, Ložek 2007. Problematikou vývoje vegetace z hlediska palynologie na území ČR se zabývali např. Rybníčková (1974, 1985), Jankovská (1971, 1987), Svobodová (1990, 1991). V současné době je studium změn vegetace (zejména od období konce posledního glaciálu) velmi aktuální v souvislosti s porozuměním současnému vývoji a věnuje se mu celá řada mladých specialistů. V palynologických společenstvech z kvartérních sedimentů se pro zařazení jednotlivých taxonů používá botanický systém. 42 Obr. 8. Stratigrafie kvartéru (Musil in Přichystal et al. 1996) 4a) Jeskynní sedimenty Palynologická studia jeskynních sedimentů jsou ztížena tafonomickými problémy v uchování a transportu palynomorf. Proto bylo těmto typům sedimentů na území ČR věnováno pouze málo prací. Palynologickým studiem jeskynních sedimentů se do konce devadesátých let zabývala pouze Svobodová (Svobodová 1988, 1992, Svobodová in Seitl et al. 1986, Svobodová in Svoboda 1991). Jednalo se však vždy o sedimenty jeskynních vchodů a otevřených prostor komunikujících s povrchem. 43 Hlavním problémem studia palynologie ve vnitřních částech jeskyní je, že rostlinné zbytky zde nejsou uloženy v blízkosti původního stanoviště, ale jsou do jeskynních prostor druhotně transportovány (prosakující voda, spolu se sedimenty nebo v srsti a potravě živočichů). Jedná se proto vždy o oryktocenozu vzniklou smíšením zbytků rostlin z různých míst z povrchu jeskynních systémů. Často dochází i k redepozici a smíšení palynomorf ze sedimentů uložených v různých časových obdobích. V sedimentech moravských krasových oblastí dochází nejčastěji ke smíšení kvartérních a terciérních palynomorf. Značná část rostlinných taxonů se ovšem na našem území vyskytovala v obou těchto útvarech (např. borovice, jilm, olše, dub, lípa ale i byliny jako trávy, složnokvěté nebo i některé druhy kapradin). Jejich přítomnost a rovněž množství v palynospektrech jsou přitom velmi důležité pro stanovení klimatostratigrafie. Během transportu navíc dochází ke korozi a degradaci zrn, a tudíž ani stav zachování a fosilizace nemusí být spolehlivým rozlišovacím znakem. Tento fakt velmi ztěžuje přesné a jednoznačné stanovení stáří sedimentů, ale i interpretace vegetace na povrchu jeskynních systémů. Jednou z možností odlišení různě starých palynomorf představuje studium ve fluorescenčním mikroskopu (viz kap. 2b) Dalším problémem typickým pro jeskynní palynofacie je selekce palynomorf způsobená odlišnou rezistencí sporopylových obalů vůči transportu (mechanické interakce s horninovými klasty) a chemismu prostředí během sedimentačních pochodů. Tento fakt se projevuje zejména druhotným selektivním nahromaděním odolnějších pylových zrn a spor. Je proto velmi obtížné stanovit, zda palynofacie s převahou určitých prvků ve spektrech odpovídají původnímu ekologickému charakteru prostředí nebo vznikly v důsledku mechanických a chemických procesů během sedimentace. Z moravských krasových území byly zjištěny nadhodnocené akumulace různých pylových zrn a spor. Je evidentní, že existuje několik faktorů ovlivňující tyto akumulace. Prvním z nich je klimaticky podmíněný typ sedimentačního procesu. V příznivějších klimatických fázích se během transportu akumulují zejména pylová zrna lípy a hladké monoletní spory kapradin čeledi Polypodiaceae (dokumentováno např. z jeskyně Ochozské). Drobná pylová zrna podčeledi Asteroideae se naopak kumulují v sedimentech vznikajících během chladného klimatu, např. lokality Sloupsko-Šošůvské, Podhradní, Balcarka, Javoříčko (Doláková 2007, 2014) Další zajímavý tafonomický jev popsali Navarro et al. (2001) z jeskynních sedimentů Španělska. Autoři zjistili, že pylová zrna anemofilních rostlin (zejm. rod Pinus), která bývají díky dobrému transportu větrem a velké pylové produkci v povrchových pylových spektrech silně nadhodnocena, ubývají v palynospektrech z jeskynních sedimentů v závislosti na vzdálenosti od jeskynního vchodu. Naopak pylová zrna rostlin zoofilních se směrem do 44 hloubky jeskyní na složení palynospekter podílejí mnohem častěji. Podle španělských autorů se může jednat o transport způsobený živočichy (pylová zrna zoofilních rostlin bývají morfologicky přizpůsobena ke snadnému zachycování na tělech živočichů). V moravských jeskyních se tento jev podařilo dokumentovat v jeskyni Za hájovnou v Javoříčském krasu (Doláková 2007), kde byla studována palynospektra ze dvou míst jedné vrstvy. Sedimenty z profilu v Narozeninové chodbě, které byly situovány ve větší blízkosti k původnímu jeskynnímu vchodu, obsahovaly převahu pylových zrn borovice a poměrně hojné zastoupení lísky (větrosnubné). Naproti tomu oryktocenózy z téže vrstvy profilu Kostnice II, který byl v pozici vzdálenejší, jsou o tato pylová zrna výrazně ochuzená a naopak silně nadhodnocená o zástupce podčeledi Asteroideae. Spektrum bylo celkově výrazně monotónnější. Faktorem podílejícím se na zachování pylových zrn nepříznivě je vlhkost sedimentu, protože v tomto prostředí se vyskytuje množství hub a bakterií, které rozkládají organickou hmotu, a tudíž i pylová zrna (Navarro et al. 2001). Z uvedených poznatků vyplývá, že pylová spektra z jeskynních sedimentů nelze jednoduše porovnávat se standardními spektry platnými pro jednotlivá období kvartéru z povrchových sedimentů (např. z rašelinišť). Jejich přesná determinace vyžaduje další studia, zejména tafonomická, a neobejde se bez sedimentologického a paleontologického nebo archeologického výzkumu. Podle studií autorů Carrión et al. (1999) lze za dostatečně vypovídající o charakteru prostředí vně jeskynních sytémů považovat taková, kde bylo determinováno více než 15 taxonů při minimálním počtu 200 pylových zrn a spor ve vzorku. V rámci mé práce byla palynologická studia prováděna v sedimentech Moravského krasu (jeskyně Ochozská, Balcarka, Sloupsko- Šošošůvská a Kůlna, Pod hradem, Dagmar, Barová, Tereza, kaverny lomu Mokrá), Javoříčského krasu (Za Hájovnou) a Hranického krasu (Hranická propast). Studované sedimenty byly kvartérního (holocén, pleistocén) i terciérního stáří (Doláková 2007, Doláková 2014). V Ochozské jeskyni byly studovány 2 profily, které měly obdobný charakter palynospekter. Z palynologického hlediska se daly rozdělit do dvou částí. Ve spodní části profilů převládala pylová zrna a spory vegetace chladné stepi (rody Helianthemum, Thalictrum, Selaginella selagineloides, Saxifraga, Ephedra) spolu s teplotně nenáročnými dřevinami, odolnými vůči chladu (Pinus cembra, Betula, Salix) a mokřinnými rostlinami (Cyperaceae, Potamogeton, Botryococcus, Pediastrum). Nálezy cenobií zelené řasy druhu Pediastrum kawraiskyi dokumentují existenci velmi chladného klimatu (Jankovská, Komárek 1982). Tyto části profilů vznikaly s největší pravděpodobností v některé z chladných fází pozdního glaciálu. 45 Svrchní partie obou profilů byly typické jednotvárnými palynospektry s vysokou akumulací pylových zrn lípy (Tilia) a hladkými monoletními sporami čeledi osladičovitých Polypodiaceae. Přes tento vyselektovaný charakter palynospekter prokazují přítomná zrna lípy charakter některého z teplejších klimatických období. Radiometrické datování sintrové polohy v nadloží profilů detekovalo stáří vrstev sedimentů jako vyšší než 28 000 let (Kadlec et al. 2000). Vylučuje tedy holocenní stáří těchto sedimentů s teplomilnějším charakterem vegetace. Velmi obdobná palynospektra byla zjištěna ve stalagmitech z belgické jeskyně Han - sur - Lesse, která byla datována do období 37 000 BP Bastin et al. (1987). Profily, ve kterých byly patrné střídající se klimatické fáze posledního glaciálu (wisla) byly zjištěny i v jeskyni Balcarka. Palynologická studia byla prováděna v zámci záchranného archeologického výzkumu. Vchodové partie jeskyně jsou známy jako sídliště magdalenských lovců (13 000 – 11000 BP) (Nerudová et al. 2010). Spodní části profilů z vnitřních částí jeskynního systému obsahovaly oryktocenózy s převažujícími heliofytními stepními rostlinami (Asteroideae, Artemisia, Poaceae, Ranunculaceae, Delphinium, Chrysosplenium) a málo četnými dřevinami (Pinus, Betula, Alnus), které patrně odpovídají chladné fázi pozdního glaciálu. Nadložní sedimenty obsahovaly vyšší zastoupení dřevin s převahou lísky (Corylus), hojnou borovicí (Pinus), břízou (Betula), olší (Alnus), lípou (Tilia) a sporadicky smrkem (Picea). Tyto sedimenty pravděpodobně vznikaly během teplejších výkyvů posledního glaciálu nebo během raného holocénu (boreál). K bližší charakterizaci by ovšem bylo třeba dalších tafonomických, sedimentologických a archeologických výzkumů. Palynologické studium spodních částí opěrného profilu ve vchodové části jeskyně Kůlna poskytlo možnost srovnání s palynospektry vzorků odebíraných ve vnitřních částech Sloupsko-Šošůvských jeskyní, které jsou s Kůlnou propojené. Opěrný profil v jeskyni Kůlna byl podrobně zpracován z hlediska archeologického i paleontologického. Obsahuje sedimenty, které se uložily v době od závěrečných fází saalského glaciálu (vrstva 14), přes interglaciál eem (vrstvy 13,12,11a,c), poslední glaciál würm (wisla) (9b, 8a, 7a, b, c, 6) a holocén (1-5) (Valoch et al. 1988). Jeho nejsvrchnější vrstvy palynologicky zpracovala Svobodová (1988, 1992). Vrstvy 1- 4 klasifikovala jako holocenní, paleovegetace vrstvy 6 odpovídala chladné oscilaci pozdního glaciálu. Předmětem mého studia byly vrstvy 14 - 7. Z palynologického hlediska bylo možné pozorovat klimatické oscilace, které se odrážely ve vývoji vegetace. Palynospektra spodní části profilu dokumentovala zalesněnější krajinu s mírnějším klimatem. Vrstva 14 indikovala oteplování v období závěru saalského (riss) glaciálu. Vrstva 13 optimum a vrstva 11 zhoršení podmínek na konci interglaciálu eem. 46 Svrchní části profilu (vrstvy 9b - 7a, vrstva 7c byla radiometricky datována do období 45 000 BP) prokazovaly parkovitý charakter krajiny, kde se chladná stepní vegetace (Selaginella selaginoides, Thalictrum, Ephedra, Botrychium) střídala s nehojnými lesními porosty s nenáročnými dřevinami a častými mokřinami (Cyperaceae, Sphagnum). Mírně teplejší charakter klimatu byl pozorován ve vrstvách 8a a 7c (sporadické nálezy taxonů Tilia, Acer, Teucrium, Centaurea scabiosa). Mírné odchylky v charakteru vegetace a nálezech fauny drobných savců mohly být způsobeny lokálními podmínkami v morfologicky členitém povrchu Moravského Krasu. Vzorky z vnitřních partií Sloupsko – Šošůvských jeskyní obsahovaly převahu bylinné stepní vegetace a byly korelovatelné s chladnějšími obdobími z vrchní části profilu v Kůlně (würm až počátek holocénu). Tyto interpretace potvrdily i nálezy části koster jeskynních medvědů (Ursus spelaeus). Nejstarší studovaná palynospektra kvartérních sedimentů byla zjištěna v jeskyni Za Hájovnou v Javoříčském krasu (Doláková 2007, 2014). Převážná většina studovaných sedimentů byla paleontologicky i radiometricky datována jako interglaciál holstein (Musil 2005, Musil et al. 2014). Palynospektra byla studována z několika profilů převážně suťových kuželů v různé vzdálenosti od původního jeskynního vchodu i z několika jeskynních komínů. Palynologická studia potvrdila mírný charakter klimatu, optimální pro růst smíšených lesů (Carpinus, Hedera, Acer, Tilia, Corylus). Ojediněle byla nalézána pylová zrna rodů Pterocarya a Ilex, která představují prvky vegetace typické pro naše území v neogénu. Tyto rody přežívají ve střední Evropě nejstarší kvartérní zalednění a opětně migrují na naše území v teplejších obdobích. Představují vegetaci typickou pro klimatické optimum holsteinského interglaciálu (Dyjakowska 1952, Vodičková-Kneblová 1961, Břízová 1994, Bińka et al. 1997, Reille et al. 2000, Urban, Sierralta 2012). Jejich poslední výskyt je dokumentován právě v interglaciálu holstein (Lang 1994, Litt et al. 2008, Roucoux et al. 2008). Jediná pylová spektra, která měla odlišný charakter, pocházela z jeskynního komínu. Spektrum obsahovalo akumulaci pylových zrn podčeledi Asteroideae a nálezy vlhkomilných prvků. V souhlasu s výsledky studia drobných savců vznikaly tyto sedimenty v podmínkách chladnějšího klimatu a vegetační pokryv tvořila chladná step. Změny palynospekter napomohly i interpretacím sedimentologickým, např. rozdělení suťového kužele do dvou úrovní, které bylo podmíněno klimaticky. V profilech byla pozorována i selekce, degradace a sekundární akumulace odolnějších pylových zrn v důsledku chemickýcch, mechanických i mikrobiologických vlivů (viz výše). 47 4b) Archeologické lokality – vliv člověka na prostředí Záchranný archeologický výzkum lokality Brno-Štýřice III zachytil v rámci střední Evropy poměrně ojedinělý záznam lidského osídlení (epigravettien) v období krátce po skončení posledního glaciálního maxima (LGM; 21 000 ± 2000 cal. BP). Interpretace klimatu se opíraly o studia malakologie, palynologie a antrakologie (Nerudová et al. 2016). Výsledky paleobotanické i malakologické analýzy dokumentovaly glaciální charakter okolní krajiny s převládající světlomilnou vegetací charakteru travnaté stepi až keřovité tundry (Poaceae, Helianthemum, Ephedra). Zjištěny byly otevřené lesní porosty břízy, vrby a střemchy (Prunus padus), které byly podmíněny existencí příznivějšího mikroklimatu a vlhčích stanovišť v okolí velkého vodního toku (Svratka). Lokalita představuje příklad mikroklimaticky příznivějšího refugia pro lidské sídliště z období konce svrchního paleolitu. Toto období je charakteristické absencí archeologické evidence ve značné části Evropy (Feurdean et al. 2014, Heiri et al. (2014) potvrzující dekolonizaci obrovských, dříve osídlených území vlivem extrémních klimatických podmínek předcházejících osídlení magdalénienu (Nerudová et al. 2016). V rámci vědeckovýzkumného záměru MSM0021622427 „Interdisciplinární centrum výzkumů sociálních struktur pravěku až vrcholného středověku“ byly od roku 2005 z komplexního přírodovědného hlediska studovány zejména 2 významné archeologické lokality: Těšetice a Pohansko. Lokalita Těšetice je významné archeologické naleziště s polykulturním osídlením zahrnujícím především sled hlavních neolitických kultur s dominantní starší fází moravské malované keramiky (MMK), dále osadu únětického lidu a posléze i intenzívní osídlení horákovské kultury doby halštatské (Podborský 1988). Od roku 1967 zde probíhá systematický archeologický výzkum. Rozkládá se severozápadně od obce Těšetice a jihozápadně od osady Kyjovice v nadmořské výšce 265-290 m v údolí potoka Únanovka. Zatímco osada starší fáze MMK je situována na vyšších místech svahu, sídliště únětické a halštatské je posunuto níže po svahu východním směrem. Na vrcholku táhlého návrší lokality byl objeven rondel lidu s MMK (Podborský 1988). Dřívější paleobotanický výzkum lokality prováděl Opravil (1961). Studován byl především materiál uhlíků. Největší část vzorků pocházela z halštatských objektů, jen málo z objektů doby bronzové a neolitu. Podle Opravila (1961) se vegetace těšetického halštatu vyznačovala početným zastoupením světlomilných dřevin, hlavně křovin, rostoucích 48 obyčejně na volných prostranstvích, okrajích lesů anebo tvořících podrost ve světlých lesích. Nejrozšířenější lesní společenstva byla svazu Quercion pubescentis. Vedle uhlíků byly nalezeny v mazanici sídelních objektů otisky obilek a plev ovsa (Avena) (Opravil 1961). V rámci výzkumného záměru bylo na lokalitě provedeno 5 mělkých vrtů (do10 m), které většinou obsahovaly palynomorfy jen velmi sporadicky. Jediný vrt, který poskytl bohaté palynologické asociace, byl vrt T4 situovaný v nivě říčky Únanovky cca 500 m jv. od vlastní lokality. Výsledky tohoto vrtu byly propojeny s výsledky dalšího vrtu z nivy Únanovky pod sídlištěm Staré zámky a společně publikovány (Petřík et al. 2014). Sedimenty z obou vrtů v nivních sedimentech poskytly data z významné části období holocénu (v rozmezí 5211-5008 cal. BC po současnost). Vrty by studovány za pomoci metod sedimentologie, palynologie, makrozbytkové analýzy, malakozoologie, datování 14 C. Etapy lidského osídlení byly konfrontovány s vývojem nivní sedimentace. Báze tvorby sedimentace nivy byla zaznamenána na počátku neolitu. Okolní prostředí odpovídalo smíšenému lesu s převahou dubu – Quercetum mixtum (Quercus, Tilia, Carpinus, Pinus), s keřovitým podrostem (Corylus, Cornus). Bylinná složka byla tvořena zejména trávami a ostřicemi (Poaceae, Cyperaceae). Na konci neolitu a počátku eneolitu se začínají v pylových spektrech objevovat zrna obilovin. Klimatické změny během přechodu neolit/ eneolit a vzrůstající intenzita lidské činnosti v souvislosti se zemědělstvím (odlesňování, orba, zvyšující se pěstování kulturních plodin, zejména obilí) vedly i k výrazné akumulaci sedimentů v nivě. Zvyšující se intenzita civilizačního impaktu byla patrná v průběhu celého eneolitu. Ve spektrech se začínají objevovat rostliny typické pro ruderalizovaná stanoviště (Artemisia, Chenopodium). V následujícím období jsou změny v sedimentárním záznamu a vegetaci jen velmi málo zřetelné. Od doby bronzové byla niva pokrytá zejména nitrofilní vegetací. Ačkoli na studovaném území nejsou známé archeologické doklady pro období římské a stěhování národů, v pylovém záznamu dokumentovaném C14 datováním (1320 BC - 1050 BC), jsou z tohoto období zaznamenána zrna obilovin, která lidskou činnost v této době dokládají. Ve vzorcích byla rovněž viditelná převaha bylin nad dřevinami, která by v tomto areálu bez lidského zásahu nebyla pravděpodobná. Zvýšený podíl zaznamenala rovněž líska (Corylus), vyskytující se v prosvětlených oblastech lesních okrajů, která mohla být i lidmi záměrně šířená. Výrazná změna sedimentace i palynospekter byla viditelná od středověku. Podle radiokarbonového datování byly tyto změny patrné od doby hradištní (230 - 410 AD). Dřeviny ze spekter téměř vymizely, zastoupeny byly pouze v podobě lužních porostů v zaplavovaném prostředí nivy (Alnus, Salix). Výrazné odlesnění se proto projevilo zejména 49 v sušších, pro pěstování plodin vhodných místech. Dominantní vegetace měla charakter nitrifikovaných stanovišť (Sambucus, Chenopodiaceae, Cichorioideae, Urtica, Polygonum aviculare). V sedimentačním záznamu od období vrcholného středověku do současnosti byla intenzívní lidská činnost patrná z akcelerace eroze a akumulace v nivě doprovázená zvýšenou koncentrací fosfátů (Petřík et al. 2014). Lokalita Pohansko u Břeclavi představuje jedno z center raně středověkého slovanského osídlení – Velkomoravské říše (9. století). Velkomoravské hradisko BřeclavPohansko patří i v evropském měřítku k nejlépe prozkoumaným a zpracovaným raně středověkým lokalitám svého druhu (Dresler, Macháček 2013). Systematické archeologické výzkumy katedry prehistorie FF MU v Brně pod vedením prof. dr. Františka Kalouska a prof. dr. Bořivoje Dostála zde byly zahájeny v roce 1958 (Vignatiová 1992). Pro vědecké účely zde byla do roku 1990 odkryta, zdokumentována a vědecky vyhodnocena plocha větší než 137 380 m2 (Macháček 2000). Lokalita je situována v nadloží neogenních sedimentů vídeňské pánve. Kvartérní sedimenty, ve kterých se nacházejí archeologické doklady, patří soutokové oblasti, v dnešní době až několik kilometrů široké společné údolní nivě Dyje, Moravy a Kyjovky. Jedná se o litologicky pestré říční (povodňové hlíny, jíly, fluviální písky, štěrky) a eolické sedimenty (váté písky, spraše) a subfosilní půdy (Havlíček 2001, Macháček et al. 2007). Oblast je jedním z nejníže situovaných areálů ČR. Nachází v nadmořské výšce 155-157 m. Kromě velkomoravského osídlení je lokalita je známá jako stará sídelní oblast s archeologickými doklady od mezolitu, přes neolit, eneolit, dobu bronzovou, dobu železnou reprezentovanou hlavně obdobím laténu, dobu římskou a dobu stěhování národů, která zahrnuje nejmladší předslovanské osídlení. V období Velkomoravské říše je známá jako jedno ze tří hlavních sídelních center (Macháček 2005). Širší okolí lokality byla centrem zájmu řady paleobotanických výzkumů zahrnujících rekonstrukce vývoje vegetace údolní nivy Dyje a Moravy (Břízová and Havlíček (2002), Jankovská et al. (2003), Opravil (1962, 1978, 1983b), Rybníček and Rybníčková (2001). Rybníček a Rybníčková (2001) předpokládali během raného atlantiku v území nivy vývoj travnatých subxerofylních doubrav a smíšených dubo-lipových lesů s jedlí na středně vlhkých stanovištích. Vegetace byla intenzivně měněna vlivem odlesňování, pěstování kulturních plodin a pastvy už během doby bronzové a starší doby železné. Podle Ložka (2007) a Opravila (1999) způsobilo zvýšení srážek ve spodním atlantiku zvýšení eroze a první zarovnávání níže položených nik v území údolní nivy. Od této doby 50 krajina postupně nabývá moderního charakteru. Podle Opravila (1978, 1983b, 1999, 2000) měla vegetace v okolí raně středověkých hradišť oproti dnešnímu stavu vyšší diverzitu a jiné kvantitativní proporce v důsledku vyšší morfologické rozrůzněnosti stanovišť. Vegetační pokryv údolní nivy byl tvořen převážně lužními lesy a vlhkými loukami. Jediné dřívější palynologické zpracování pocházející přímo ze sedimentů areálu Pohanska publikovala Svobodová (1990). Ve studovaném profilu zdokumentovala zvyšující se lidský impakt na vegetaci: odlesňování, přítomnost synantropních prvků (jako např. Artemisia, Plantago lanceolata, Convolvulus arvensis, Centaurea cyanus, Viciaceae) a kulturních rostlin (zejména obilniny Cerealia). Ve srovnání s dalším velkomoravským centrem Mikulčice, které mělo charakter městské aglomerace s velkým zemědělským zázemím, bylo Pohansko obklopeno smíšenými dubovými lesy. Bohužel, studovaný profil neobsahoval archeologické záznamy, které by zpřesňovaly polohy s vlastním slovanským osídlením. V současné době představuje lokalita Pohansko jednu z nejdetailněji palynologicky studovaných lokalit. Palynologická studia probíhala v rámci společného výzkumného záměru a grantů Ústavu geologických věd PřF MU a Ústavu archeologie pravěku a středověku FF. Bylo prostudováno 13 vrtů do 20m, 12 kopaných nebo zarážených sond, 2 bagrované profily, 11 profilů objekty, 21 vzorků z hrobových jam a více než 15 jednotlivých vzorků. Největší pozornost byla v součinnosti s archeology věnována profilům v rámci archeologického řezu valem (profil před opevněnín, pod ním a na vnější straně, vzorky z výplně mezi kameny valu). Nejnovější výsledky jsou v současné době odeslány nebo připravovány do tisku v rámci interdisciplinárních výzkumů. Dosud publikované palynologické výzkumy byly shrnuty zejména do prací Macháček et al. 2007 a Doláková et al. 2010. Protože ne všechny profily a vrty poskytly kontinuální palynologická data, byla část výsledků stratigraficky kompilována podle litologických charakteristik a C14 datování. Nejspodnější části některých mělkých průzkumných vrtů zasáhly do svrchnomiocenních sedimentů (pannon) vídeňské pánve, která tvoří podloží kvartérních sedimentů. Jejich palynologický obsah byl diskutován v kapitole 3ab. V jejich nadloží byly místy zachovány sedimenty pleistocenní v podobě hrubozrnných štěrků, které neposkytly palynologické doklady. Největší část studovaných sedimentů patřila holocénu. Nejstarší sedimenty datované metodou C14 pocházely z období mezolitu (14C in 8240 cal BP), nejmladší ze 16. století. Změny v proporcionálním zastoupení jednotlivých rostlinných typů, které byly pozorovatelné v pylových diagramech, byly způsobené zejména 51 změnami povahy substrátu v závislosti na změnách humidity a rovněž lidskou aktivitou (odlesňování, pěstování plodin, pastva). Na bázi studovaných holocenních sedimentů byly palynologicky zdokumentovány tafocenózy původních lesních porostů s nízkým ovlivněním lidskou činností. V pylových spektrech převažovaly habrové doubravy s lípou (Quercus tvořil dominantní složku), které se v čase i prostoru střídaly s lužními lesy (s převahou Alnus, méně Ulmus, Fraxinus, Salix and Populus). Křoviny byly zastoupené méně, pravidelněji byla přítomná líska (Corylus). Dřeviny ve spektrech převažovaly nad bylinami, ale krajina nebyla zcela zalesněná. Nejstarší výrazný úbytek dřevin současně s nálezy pylových zrn obilnin (Cerealia) i polních plevelů jako Polygonum aviculare (rdesno ptačí), (Centaurea cyanus) chrpa modrák a druhotných antropogenních ukazatelů jako: jitrocel kopinatý (Plantago lanceolata) , šťovík kyselý (Rumex acetosella), chmel/konopí (Humulus/Cannabis) a merlíkovité (Chenopodiaceae) prokázaly zemědělskou činnost už v období neolitu (S1: 127cm: 7050 BC - 6450 BC). Protože byly tyto pylové asociace nalezeny ve vrstvách z těsného podloží spodních povodňových sedimentů, jeví se tento výrazný lidský zásah do krajiny jako pravděpodobná příčina zvýšeného výskytu povodní a akumulace povodňových hlín. Výrazné lidské ovlivnění krajiny bylo dokumentováno rovn ěž v palynospekterch ze sedimentů datovaných do období hallstattu (O1: 820 BC - 520 BC). Částečná rejuvenace lesních porostů v nadložních sedimentech poukazuje na snížení intenzity lidského působení. Tato obnova lesa byla potom následována nejvýraznějším odlesněním pozorovaným v období existence velkomoravské aglomerace a vzniku jejího opevnění studovaného zejména ve vzorcích z kultruní vrstvy vytyčené archeologickými nálezy. V nejmladších povodňových sedimentech nad velkomoravskou vrstvou byla pozorována částečná rejuvenace dřevin v podobě zvýšení nálezů zejména pionýrských porostů borovic a břízy (Pinus, Betula). Došlo tedy ke snížení lidského impaktu. V rámci palynologického studia na Pohansku bylo zjištěno několik zajímavých problematik. V pylových spektrech se poměrně často objevovala pylová zrna ořešáku (Juglans). Tato dřevina není na našem území původní. Místní nabohacení v pylových spektrech umožňuje předpoklad záměrného pěstování, i když prozatím nebylo doloženo makrobotanickými nálezy. Existence palynomorf vodních a vlhkomilných rostlin vně a v těsném podloží opevnění a naopak jejich absence ve stejně starých sedimentech z vnitřní strany valu mohou poukazovat na možnos, že opevnění fungovalo jako ochrana nejen proti úočníkům, ale jako ochrana při povodních. Podporu pro toto tvrzení přinesl samotný řez valem, kdy během intenzivních jarních povodních v r. 2007 došlo k zatopení velké části 52 vnitřní strany plochy hradiska. Výskyt pylových zrn habru (Carpinus) v sedimentech datovaných do raného Atlantiku indikuje jeho dřívější šíření na území jižní Moravy, než je tradičně předpokládáno pro území ČR jako celku (Firbas 1949), a podporuje tak interpretace Opravila (1983a) a Rybníčkové (1985). Redepozice těchto pylových zrn z miocenních sedimentů byly vyloučeny na základě studia autofluorescence. 53 Použitá literatura: Bastin B., Deflandre G., Quinif Y., (1987): Mise en évidence ďun réchauffement majeurau sein de la derniére glaciation, enregistré dans un plancher stalagmitique de la Grotte du Pére Noė (Han-sur-Lesse, Belgique). - Colloque international de sedimentologie karstique. Han-Sur-Lesse Belgique, 518-522. Bińka K., Lindner L., Nitychoruk J. (1997): Geologic-floristic setting of the Mazovian Interglacial sites in Wilczyn and Lipnica in southern Podlasie (eastern Poland) and their palaeogeographic connections. - Geological Quarterly, 41, 3, 381-394. Břízová E. (1994): Vegetation of the Holsteinian Interglacial in Stonava - Horní Suchá (Ostrava region). - Sbor. Geol. věd, Anthropozoikum, 21, 29-56. Břízová E., Havlíček P. (2002): Několik poznámek k pylové analýze kvartérních sedimentů z Mikulčic na jižní Moravě. - Zpr. Geol. Výzk. v r. 2001, 124-126. Böhme M. (2003): Miocene Climatic Optimum: evidence from Lower Vertebrates of Central Europe. – Palaeogeography, Palaeoclimatology, Palaeoecology, 195, 389-401. Böhme M., Ilg A., Ossig A., Küchenhoff H. (2006): New method to estimate paleoprecipitation using fossil amphibians and reptiles and the middle and late Miocene precipitation gradients in Europe. - Geology, 34, 6, 425-428. Brooks J. (1971): Some chemical and geochemical studies on sporopollenin: - In: Brooks J., Grant P.R., Muir M., van Gijzel P., Shaw G. (Eds.), Sporopollenin. Academic Press, London. 351-407. Bruch A. A., Uhl D., Mosbrugger V. (2007): Miocene Climate in Europe - Patterns and Evolution. – a first synthesis of NECLIME. Palaeogeogr., Palaeoclimat., Palaeoecol. 253, 1-7. Bruch A. A. Utescher T., Alcade Olivares C., Dolakova N., Ivanov D., Mosbruger V. (2004): Middle and Late Miocene spatial temperature patterns and gradients in Europe - preliminary results based on paleobotanical climate reconstructions. - Cour.forsch.Inst. Senckenberg, 249, 15-27. Bruch A. A., Utescher T., Mosbrugger V., NECLIME members (2010): Precipitation patterns in the Miocene of Central Europe and the development of continentality. Palaeogeography, Palaeoclimatology, Palaeoecology. 304, 202-211. Brzobohatý R., Cicha I., Kováč M., Rögl F. (2003): The Karpatian a Lower Miocene stage of the Central Paratethys. - Masaryk University Brno, 360p. Carrión J. S., Munuera M., Navarro C., Burjachs F., Dupré M., Walke, M. J. (1999): The palaeoecological potential of pollen records in caves: the case of Mediterranean Spain. - Quaternary Science Reviews, 18, 1061-1073. 54 Doláková N. (2002): Palynologické studium sedimentů Šošůvské části Sloupsko – Šošůvských jeskyní a spodní části opěrného profilu v jeskyni Kůlna - Acta Mus. Moraviae, Sci. geol., LXXXVII, 275-288. Doláková N. (2004): Discussion on some Thermophile palynomorphs from the Miocene sediments in the Carpathian Foredeep (Czech Republic) and Modry Kamen basin (Slovakia). - Acta Palaeobotanica 44, 1, 79-85. Doláková N. (2007): Palynological studies in the Cave sediments from the Moravian, Javoříčko and Hranice Karsts - Czech Republic. - Scripta Fac. Sci. Natur. Universitatis Masarykianae Brunensis. 2007, Geology,. 35, 47-53. Doláková N. (2014): Palynological analysis of Sediments from Za Hájovnou Cave. - Acta Musei Nationalis Pragae, Series B - Historia Naturalis, 70 (1-2), 35-42. Doláková N., Burešová A. (2007): Use of fluorescent microscopy in the study of redeposited palynomorphs in the cave and marine sediments of Moravia (Czech Republic). - Acta Palaeobotanica, 47, 1., 275-279. Doláková N., Brzobohatý R., Hladilová Š., Nehyba S. (2008): The red-algal facies of the Lower Badenian limestones of the Carpathian Foredeep in Moravia (Czech Republic). - Geologica Carpathica 59, 2, 133-146. Doláková N., Hladilová Š., Nehyba S. (1999): Development of Sedimentation, molluscs and palynospectra in the Lower Miocene of the south-western Part of the Carpathian Foredeep in Moravia (Czech Republic). - Acta Palaeobotanica, Suppl. No. 2, 269-278. Doláková N., Hladilová Š., Petrová P., Švábenická L., Zlinská A., Halásová E., AndreyevaGrigorovich A. S., Kvaček Z (2003): Hypostratotypes of the Karpatian Stage. - In: Brzobohatý R., Cicha I., Kováč. M., Rögl F. eds.: The Karpatian a lower Miocene stage of the Central Paratethys. Masaryk University Brno, 21-26. Doláková N., Holcová K., Nehyba S., Hladilová Š., Brzobohatý R., Zagoršek K., Hrabovský J., Seko M., Utescher T. (2014): The Badenian parastratotype at Židlochovice from the perspective of the multiproxy study. - Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, Stuttgart, E. Schweitzerbartsche Verlagsbuchhandlun, 271, 2, 169-201. Doláková N., Kováčová M. (2008): Pannonian vegetation from the northern part of Vienna basin. - Acta Musei Nationalis Pragae Series B - Historia Naturalis 64 (2-4), 63-171. Doláková N., Kováčová M., Basistová P. (2011): Badenian (Langhian – Early Serravallian) palynoflora from the Carpathian Foredeep and Vienna Basin (Czech and Slovak Republics). - Acta Musei Nationalis Pragae, Series B - Historia Naturalis 67 ( 1-2), 51-59. Doláková N., Roszková A., Přichystal A. (2010): Palynology and Natural Environment in the Pannonian to Holocene sediments of the Early Medieval Centre Pohansko near 55 Břeclav (Czech Republic). - Journal of Archaeological Science, USA/UK 37, 10, 2538-2550. Doláková N., Slamková M. (2003): Palynological characteristics of Karpatian sediments. in: Brzobohatý R., Cicha I., Kováč. M., Rögl F. (Eds.): The Karpatian a lower Miocene stage of the Central Paratethys. 325-346. Masaryk University Brno. Dresler P., Macháček J. (2013): Vývoj osídlení a kulturní krajiny dolního Podyjí v raném středověku. - Archeologické rozhledy LXV, 4, 663-705. Dresler P., Macháček J. (2009): Břeclav-Pohansko: Stav zpracování výzkumů předhradí. In Archeologie doby hradištní v České a Slovenské republice. - Masarykova univerzita Brno. Dyjakowska J. (1952): Róstlinność plejstocénska w Nowinach Żukowskich [Pleistocene flora of Nowiny Żukowskie on the Lubin Upland]. – Biul. Inst. Geol., 67, 115-181. Erdtman G. (1957): Pollen and Spore Morphology. Plant Taxonomy. Gymnospermae, Pteridophyta, Bryophyta. Almquist and Wiksell, Stockholm, 151 pp. Erdtman G. (1960): The acetolysis method, a revised description. - Svensk Bot. Tidskr., 54, 561pp. Feurdean A, Perşoiu A, Tanţău I et al. (2014): Climate variability and associated vegetation response throughout Central and Eastern Europe (CEE) between 60 and 8 ka. Quaternary Science Reviews 106, 206-224. Firbas F. (1949): Spät- und nachzeitliche Waldgeschichte Mitteleuropas nördlich der Alpen. I. Allgemeine Waldgeschichte, Jena. 480pp. Flower B. P., Kennett J. P. (1994): The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeography, Palaeoclimatology, Palaeoecology, 108, (3-4), 537-555. Gabrielová N. (1966): Preliminary report about palynological research at the locality Poštorná. (in Czech) - Zpr. geol. výzk. 1966, 285-286. Gabrielová N. (1986): Laboratorní metody v mikropaleontologii. - Ústřední ústav geologický. Metodická příručka Ústředního ústavu geologického. Praha, 63 s. Halbritter H., Weber M., Zetter R., Frosch-Radivo A., Buchner R., Hesse M. (2006). PalDat – Illustrated Handbook on Pollen Terminology. - Univ. Vienna, 61pp. Harzhauser M., Piller E.W. (2007): Benchmark data of changing sea – Palaeogeography, Palaeobiogegraphy and events in the Cenral Paratethys during the Miocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 253, 8-31. Havinga A. J. (1964): Investigation into the differential corrosion susceptibility of pollen and spores. - Pollen et Spores, 6, 621-635. 56 Havinga A. J. (1967): Palynology and pollen preservation. - Review of Paleobotany and Palynology, 2, 81-98. Havinga A. (1971): An experimental investigation into the decay of Pollen and spores in various soil types. - In: Brooks J., Grant, P. R., Muir, M., van Gijzel, P., Shaw, G. (eds.), Sporopollenin, Academic Press, London, 446-478. Havlíček P. (2001): Geologická stavba velkomoravského mocenského centra Břeclav Pohansko a jeho okolí. - Zpr. Geol. Výzk. v roce 2000, 71-73. Heiri O., Brooks S. J., Renssen H. et al. (2014): Validation of climate model-inferred regional temperature change for late-glacial Europe. - Nature Communications 5: 4914. Heusser L. (1978): Spores and pollen in the marine realm.- In: Haq, B. U. & Boersma A. (Eds.): Introduction to marine micropaleontology, Elsevier Science, 327–339. Hofmann Ch. Ch., Zetter R., Draxler I. (2002): Pollen- und Sporenvergesellschaftungen aus dem Karpatium des Korneuburger Beckens (Niederösterreich). - Beitr.Paläont. 27, 17- 43. Hofmann Ch. Ch., Zetter R. (2005): Reconstruction of Different Wetland plant Habitats of the Pannonian Basin System (Neogene, Eastern Austria). - Palaios, 20, 266-279. Holcová K., Doláková N., Vass D., Zágoršek K., Zelenka J. (1996): Morský vývoj v spodnom badene v strhársko-trenčskej prepadline z pohľadu foraminiferových, machovkových a ostrakódových spoločenstiev a palynológie. - Mineralia Slovaca, 28, 99-119. Holcová K., Hrabovský J., Nehyba S., Hladilová Š., Doláková N., Demeny, A. (2015): The Langhian (Middle Badenian) carbonate production event in the Moravian part of the Carpathian Foredeep (Central Paratethys): a multiproxy record . - Facies, 61, 1, 3-17. Hopkin, J. A., Mc Carthy F. M. G. (2002): Post-depositional palynomorph degradation in Quaternary shelf sediments a laboratory experiment studying the effects of progressive oxidation. - Palynology, 26, 167-184. Jankovská V. (1971): The development of vegetation on the western slopes of the BohemianMoravian Uplands during the late holocene period. A study on based on pollen and macroscopic analyses. - Folia Geobot. Phytotax., 6, 281-302. Jankovská V. (1987): Entwicklung des Moores Mokré Louky bei Třeboň im Postglazial (paläoökologische Studie). - Follia Geobot. Phytotax., 22, 199-216. Jankovská V., Kaplan M., Poláček L. (2003): Pollenanalytische Forschung in Mikulčice in Poláček, L., (Ed.): Studien zum Burgwall von Mikulčice. - Spisy Archeologického ústavu AV ČR Brno, 39-74. 57 Jankovská V., Komárek J. (1982): Das Vorkommen einiger Chlorokokkalalgen in böhmischen Spätglazial und Postglazial. - Folia Geobot. Phytotax., 17/2, 165–195. Kadlec J., Pruner P., Venhodová D., Hercman H., Nowicki T. (2000): Stáří a geneze sedimentů v Ochozské jeskyni. - Geol.výzk. Mor. Slez. v r. 1999, 19-24. Kalvoda J. (1979): Microflora of the Upper Miocene at the locality Poštorná. - MS, Rigorous thesses. PřF MU, Brno (in Czech). Knobloch E. (1962): Preliminary report about paleobotanical researches in moravian Teritiary. - Zpr. geol. výzk. 1961, 215-217. Knobloch E. (1963): Die Floren des südmährischen Neogens. - N. Jb. Geol. Paläont. Mh., 1: 1-11. Knobloch E. (1967): Pflanzenfunde aus der karpatischen Serie in derVortiefe in Mähren. In: Cicha I., Seneš J. & Tejkal J. (Eds.): Chronostratigraphie und Neostratotypen, Miozän M3 - Karpatien. SAV, Bratislava, 244—256. Knobloch E. (1968): The plant association in Czechoslovakian Teritary. - Čas. mineral. geol., 13 (1): 109-118 (in Czech, German summary). Knobloch E. (1969): Tertiäre Floren von Mähren. - Moravské muzeum a Muz. spol. Brno., 1- 309, Brno. Knobloch E. (1972): Die gegenseitigen Beziehungen der tschechoslowakischen und ungarischen Teritiärfloren. - Földt. Közlöny, Bull. Of the Hungarian Geol.soc., 102, 246-259. Knobloch E. (1981): Micropaleobotanical research of Pannonian and Potian in Moravia and Slovakia. (in Czech, German summary). - Zem. Plyn Nafta, XXVI, 4, 741-757. Knobloch E. (1982): The Early Miocene flora from South Moravia. - Zem. Plyn Nafta, XXVII, 415-428 (in Czech). Knobloch E. (1984): Die Halophile Gattung Limnocarpus C. Reid im Neogen von Mähren. - Věst. Ústř. Úst. Geol. 59, 2, 155-165. Knobloch E. (1985): Die floren des Pannonien im Wiener Becken und in der Donauebene. In Papp et al. (Eds): Chronostratigraphie und Neostratotypen. Miocan M6 Pannonien. - Jugosl. Serb. Akad. Wiss. Künste, Zagreb/Beograd, 616-631. Knobloch E., Kvaček Z. (1996): Miozäne floren der südbohemischen Becken. - Sbor. Geol. věd., Paleontologie, 33, 39-77. Komárek J., Jankovská V. (2001): Review of the Green Algal Genus Pediastrum; Implication for Pollenanalytical Research. - Gebrüder Borntraeger, Berlin, 127pp. 58 Konzalová M. (1976): Microbotanical (palynological) research of the lower miocene of Northern Bohemia. - Rozpr. Čes. Akad. Věd, 86, 12, 1-75. Konzalová M. (2005): Upper Miocene (Pannonian, Pontian) palynomorphs from the south Moravian extension of the Vienna Basin (Czech Republic). - Documenta Naturae, 155, 5, 1-51. Konzalová M., Stuchlik L. (1983): Micropaleontological research of the sediments overlaying the Main brown-coal seam in the Cheb Basin (Miocene, West Bohemia). Čas. Miner. Geol. 28, 4, 363-376. Kováč M. 2000: Geodynamic, paleogeographic and structural evolution of the Carpathian – Pannonian region in the Miocene: New view on the Neogene basins of Slovakia. VEDA, Bratislava, 202pp. (in Slovak). Kováč M., Andreyeva-Grigorovich,A., Bajraktarević, Z., Brzobohatý, R., Filipescu, S., Fodor L., Harzhauser, M., Nagymarosy, A., Oszczypko, N., Pavelić, D., Rögl, F., Saftić, B., Sliva, L. & Studencka, B. (2007): Badenian evolution of the Central Paratethys Sea: paleogeography, climate and eustatic sea-level changes. - Geol. Carpathica 58, 6, 579-606. Kováč M., Baráth I., Kováčová-Slamková M., Pipík R., Hlavatý I., Hudáčková N. (1998a): Late Miocene paleoenvironments and sequence stratigraphy: Northern Vienna basin. - Geologica Carpathica, 49, 6, 445-458. Kováč M., Nagymarosy A., Oszczypko N., Slaczka A., Csontos L., Marunteanu M., Matenco L., Márton E. (1998b): Palinspastic reconstruction of the Carpathian Pannonian region during the Miocene. - In: M. Rakús (Ed.): Geodynamic development of the Western Carpathians. - Geol. Survey of Slovak Republic, Bratislava, 189-217. Kováč M., Hudáčková N., Halásová E., Kováčová M., Holcová K., Oszczypko-Clowes M., Báldi K., Less G., Nagymarosy A., Ruman A., Klučiar T., Jamrich M. (2017): The Central Paratethys palaeoceanography: a water circulation model based on microfossil proxies, climate, and changes of depositional environment. Acta Geologica Slovaca, 9, 2, 75-114. Kováčová M., Doláková N., Kováč M. (2011): Miocene vegetation pattern and climate change in the Northwestern Central Paratethys domain (Czech and Slovak Republic). - Geologica Carpathica, 62, 3, 251- 266. Kovar-Eder, J., Jechorek, H., Kvaček Z., Parashiv V. (2008): The integrated plant record: An essential tool for reconstructing Neogene zonal vegetation in Europe. - Palaios 23, 97- 111. Kovar-Eder J., Suc J.-P., Kvaček Z. (2008): Definition of relevant botanical terms and vegetation units. - www.neclime.de 59 Krutzsch W. (1966): Zur Kenntnis der präquartären periporaten Pollenformen. - Geologie, 15, 55. Berlin. Krutzsch W. (1971): Atlas der mittel- und jungtertiären dispersen Sporen und Pollen sowie der Microplankton formen des nördlichen Mitteleuropas. - Lief. VI, 234pp., Jena. Kvaček Z. (2003): The flora and vegetation of the Karpatian. - In: Brzobohatý R., Cicha I., Kováč M. & Rögl F. (Eds.): The Karpatian a lower Miocene stage of the Central Paratethys. - Masaryk University Brno, 347 - 356. Kvaček Z., Dvořák Z., Mach K., Sakala J. (2004): Třetihorní rostliny severočeské uhelné pánve. - Granit Praha, 160s. Kvaček Z., Kováč M., Kovar-Eder J., Doláková N., Jechorek H., Parashiv V., Kováčová M., Sliva Ľ. (2006): Miocene evolution of landscape and vegetation in the Central Paratethys. - Geologica Carpathica, 57, 4, 295-310. Kvaček Z., Manchester S. R., Zetter R., Pingen M. (2002): Fruites and seeds of Craigia bronni (Malvaceae - Tilioideae) and associated flower buds from the Late Miocene Inden Formation, Lower Rhine Basin, Germany. - Rev. Paleobot. Palynol., 119, 311- 324. Kwaitowski A, Lubliner-Mianowska L (1957): Badanie skladu chemicznego pylku II Badania blon pylkowich.- Acta Societatis Botanicorum Polonae, 26, 501-514. Lang G. (1994): Quartäre Vegetationsgeschichte Europas. - Gustav Fischer Verlag, JenaStuttgart-New York, 462 pp. Lázničková J. (2006): Palynological study of selected localities in Upper Miocene of theMoravian part of theVienna Basin. (in Czech, with English summary). - MS Diploma thesses, MU Brno, 72s. Litt T., Shmincke H. U., Frechen M., Schluchter Ch. (2008): Quaternary. - In: McCann, T. (ed.): The Geology of Central Europe. Vol. 2 Mezozoic and Cenozoic. - Geologic Society London, 1288–1340. Louis F., Bruch A., Utescher T., Spicer R.A, Spicer T. (2017): Reconstructing Cenozoic vegetation from proxy data and models - A NECLIME synthesis (Editorial). Palaeogeography, Palaeoclimatology, Palaeoecology, 467, SI, 1-4. Ložek V. (2007): Zrcadlo minulosti. Česká krajina v kvartéru. - Dokořán, 196 s., Praha. Macháček, J. (2000): Pohansko u Břeclavi po roce 1990. Příspěvek ke čtyřicátému výročí zahájení archeologických výzkumů. - Archaeologia mediaevalis Moravica et Silesiana I. Masarykova univerzita v Brně. Brno, 9-19. Macháček J. (2005): Raně středověké Pohansko u Břeclavi – munitio, palatium nebo emporium moravských panovníků? (Early Medieval centre in Pohansko near Břeclav/ 60 Lundenburg:munitio, emporium or palatium of the rulers of Moravia?). Archeologické rozhledy LVII, 100-138. Macháček J., Doláková N., Dresler P., Havlíček P., Hladilová Š., Přichystal A., Roszková A., Smolíková L. (2007): Raně středověké centrum na Pohansku u Břeclavi a jeho přírodní prostředí. - Archeologické rozhledy LIX, 2, 278-314. Mai H. D. (1981): Entwicklung und klimatische Differenzierung der Laubwaldflora Mitteleuropas in Tertiär. - Flora, 171, 525-582. Mai H. D. (1991): Palaeofloristic changes in Europe and the confirmation of theArctotertiary - Palaeotropical concept. - Review of Palaeobotany and Palynology, 68, 1, 29-36. Martin P. S., Drew C. M. (1970): Additional Scanning Electron Photomicrographs of Southwestern Pollen Grains. - Journal of the Arizona Academy of Science. 6, 2, 140- 161. Miller K. G., Wright J. D., Fairbanks R. G. (1991): Unlocking the icehouse: Oligocene– Miocene oxygen isotopes, eustasy, and margin erosion.- J. Geophys. Res., 96, 6, 829- 848. Moore J. D., Webb J. A., Collinson M. E. (1991): Pollen analysis. - Blackwell Scientific public. London - Edinburgh - Boston - Melbourne - Paris - Berlin - Vienna, 216 pp. Mosbrugger V., Utescher T. (1997): The coexistence approach - a method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 134, 61-86. Musil R. (2005): Jeskyně Za Hájovnou, výjimečná lokalita Javoříčského krasu [Za Hájovnou Cave, exceptional locality of Javoříčko Karst, Moravia]. - Přír. stud. Muz. Prostějovska. 8: 9–42. (in Czech) Musil R., Sabol M., Ivanov M., Doláková N. (2014): Middle Pleistocene stratigraphy of the Deposits in Za Hájovnou cave (Javoříčko Karst, Northern Moravia, Czech Republic) - Acta Musei Nationalis Pragae, Series B - Historia Naturalis, 70 (1–2), 107–119. Nagy E. (1969): Palynological elaborations the Miocene layers of the Mecsek Mountains. A. Magyar Áll. Földt. Int. Évk. II, 2, 237-537. Nagy E. (1985): Sporomorphs of the Neogene in Hungary. - Geologica Hungarica 47, Ser. paleont., 235pp. Nagy E. (1999): Palynological Correlation of the Neogene of the Central Paratethys. - Geol. Inst. of Hungary Budapest, Budapest, 126pp. Nagy E. (2005): Palynological evidence for Neogene climatic change in Hungary. Occassional papers of the Geol. Inst. of Hungary Budapest vol. 205, Budapest, 120. 61 Navarro C., Carrión J. S., Munuera M., Prieto A. R. (2001): Cave surface and the palynological potential of karstic cave sediments in palaecology. - Rev. Paleobot. Palynol., 117, 4, 245-265. Nehyba S., Doláková N., Hladilová Š., Petrová P. (2008): Carpathian Foredeep - western part (CzechRepublic). - In: Mc CannT. (ed) The Geology of Central Europe, vol2. Paleogene and Neogene, 1st edn.The Geological Society, London, 1081-1083. Nehyba S., Hladilová Š., Zdražílková N. (1995): Sedimenty spodního miocénu v širším okolí Miroslavi. - in Hamršmíd B., ed.: Nové výsledky v terciéru Západních Karpat II. Knih. Zem. Plyn Nafta, 16, 85-95. Nehyba S., Hladilová Š., Doláková N. (1997): Vývoj sedimentace a fosilních společenstev ve spodním miocénu jz. části karpatské předhlubně na Moravě. - in ed- Hladilová Š.: Sborník příspěvků - Dynamika vztahů marinnícho a kontinentálního prostředí, Grantový projekt GAČR 205/95/1211, 47-58, Brno Nehyba S., Holcová K., Gedl P., Doláková N. (2016): The Lower Badenian transgressiveregressive cycles – a case study from Oslavany (Carpathian Foredeep, Czech Republic). - N. Jb. Geol. Paläont. Abh. 279, 2, 209-238. Nerudová ed. (2010): Jeskyně Balcarka v Moravském krasu. - Anthropos, MZM, 31, 23, 117s. Nerudová Z., Doláková, N., Novák J. (2016): New Information Augmenting the Picture of Local Environment of the LGM/LGT in the Context of the Middle Danube Region. Holocene, 26, 9, 1345-1354. Opravil E. (1961): Vegetační poměry Znojemska v době halštatské. - Acta Musei Moraviae, Scientiae geologicae, 46, 81-99. Opravil E. (1962): Paleobotanický výzkum slovanského hradiska Na valech u Mikulčic. Arch. Rozhledy, 24, 475 - 482. Opravil E. (1978): Rostlinná společenstva v okolí Mikulčic v období předvelkomoravském a velkomoravském. - Arch. Rozhledy 30, 67-75. Opravil E. (1983a): Habr obecný (Carpinus betulus L.) v československém kvartéru. - Čas. Slez. Muz. Opava (A). 32, 67-82. Opravil E. (1983b): Údolní niva v době hradištní. (ČSSR - povodí Moravy a Poodří). Academia, Praha. 77s. Opravil E. (1999): Umweltentwicklung in der Talaue der March (Ober- und Untermarch). in: Poláček, L., Dvorská, J. (Eds.): Probleme der mitteleuropäischen Dendrochronologie und naturwissenschaftliche Beiträge zur Talaue der March. Internationale Tagungen in Mikulčice V, Brno, 165-180. 62 Opravil E. (2000): Archäobotanische Funde aus dem Burgwall Pohansko bei Břeclav. - In: Poláček, L., (Ed.): Studien zum Burgwall von Mikulčice IV, Brno, 165-169. Pacltová B. (1958): Rostlinné mikrofosílie (hlavně sporomorphy) z lignitových ložisek u Mydlovar v Českobudějovické pánvi. - Sbor. Ústř. Úst. geol., XXV, paleont., Praha. Pacltová B. (1990): Základy mikropaleobotaniky. - SPN, Praha 171 s. PalDat – a palynological database (2000 onwards), www.paldat.org), Division of Structural and Functional Botany, University of Vienna. Petřík J., Petr L., Šabatová K., Doláková N., Lukšíková H., Dohnalová A., Koptíková L., Blaško D. (2015): Reflections of Prehistoric and Medieval human activities in floodplain deposits of the Únanovka Stream, South Moravia, Czech Republic. Zeitschrift für Geomorphologie, 59, 3 393-412. Planderová E. (1971): Palynologistische Charakteristik of Eggenburger Schichtengruppe. in: Steininger F. - Seneš J.: Chronostratigraphie und Neostratotypen, M1 Eggenburgien. - SAV Bratislava, 778-806. Planderová E. (1984): Sporomorphs and Plankton of the Karpathian from Locality Dežerice. - Západné karpaty, sér. paleont., 9, 111-130. Planderová E. (1990): Miocene Microflora of Slovak Central Paratethys and its Biostratigraphical Significance. - Geol. Inst. D. Štúra. Bratislava. 144pp. Planderová E., Ziembińska-Tworzydło, Grabowska I., Kohlman-Adamska A., Konzalová M., Nagy E., Pantić N., Ryłova T., Sadowska A., Słodkowska B., Stuchlik L., Syabraj S., Ważyńska H., Zdražílková N. (1993a): On paleofloristic and paleoclimatic changes during the Neogene of Eastern and Central Europe on the basis of palynological research. - Proceedings of the International Symposium: Paleofloristic and paleoclimatic changes during Cretaceus and Tertiary. September 14-20, 119-129, Dionýz Štúr Institute of Geology in Bratislava. Planderová E., Ziembińska-Tworzydło, Grabowska I., Kohlman-Adamska A., Sadowska A., Słodkowska B., Stuchlik L., Ważyńska H. (1993b): Wahania klimatyczne w Neogenie Europy Środkowej na podstawie zmiennego udziału w palinoflorze składników paleotropikalnych i arktycznotreciorzędowych. - Przeglad Geologićny. Państw. Inst. Geol. 41, 12, 829-834. Warszawa. Podborský V. (1988): Těšetice-Kyjovice 4. Rondel osady lidu s moravskou malovanou keramikou. - Univerzita J. E. Purkyně. Brno, 311 pp. Přichystal A., Hladilová Š., Doláková N., Brzobohatý R., Musil R. (1996): Morava a Slezsko v geologické minulosti. - MZM Brno 42s. 63 Punt W., Hoen P., Blackmore S., Nilsson S., Le Thomas A. (2007): Glossary of Pollen and Spore Terminology. - Review of Palaeobot. and Palynol. 143, 1–2, 1-81. Rasser M.W., Harzhauser M., Anistratenko O.Y., Anistratenko V.V., Bassi D., Belak M., Berger J.-P., Bianchini G., Čičić S., Ćosović V., Doláková N., Drobne K., Filipescu S., Gürs K., Hladilová Š., Hrvatović H., Jelen B., Kasińsk, J.R., Kováč M., Kralj P., Marjanac T., Márton E., Mietto P., Moro A., Nagymarosy A., Nebelsick J.H., Nehyba S., Ogorelec B., Oszczypko N., Pavelić D., Pavlovec R., Pavšič J.,Pavšič J., Petrová P., Piwocki M., Poljak M., Pugliese N., Redžepović R., Rifelj H., Roetzel R., Skaberne D., Sliva L., Standke G., Tunis G., Vass D., Wagreich M., Wesselingh F. (2008): Palaeogene and Neogene . - In: McCann T., ed. (2008): The Geology of Central Europe. Central Europe Volume 6, 2, 1031-1139. The Geological Society, London. Reille M., de Beaulieu J.- L., Svobodova H., Andrieu-Ponel V., Goeury C. (2000): Pollen analytical biostratigraphy of the last five climatic cycles from a long continental sequence from the Velay region (Massif Central, France). - Journal of Quaternary Science, 15, 665–685. Riding J. B., Kyffin-Hughes J. E. (2006): Further Testing of a Non-Acid Palynological Preparation Procedure . - Palynology, 30,1, 69-87. Roucoux K. H., Tzedakis P. C., Frogley M. R., Lawson I. T., Preece R. C. (2008): Vegetation history of the marine isotope stage 7 interglacial complex at Ioannina, NW Greece. – Quaternary Science Reviews, 27, 1378-1395. Rybníček K., Rybníčková, E. (2001): Vegetace a přírodní prostředí jako pozadí archeologických kultur ČR, 28 000 – 1 000 BP. - In: Podborský, V., (Ed.): 50 let archeologických výzkumů Masarykovy Univerzity na Znojemsku. MU Brno, 301-310. Rybníčková E., 1974: Die Entwicklung der Vegetation und Flora im sudlichen Teil der Böhmisch-Mährischen Höhe während des Spätglazials und Holozäns. - Vegetace ČSSR A7. 65, Academia Praha. Rybníčková E. (1985): Dřeviny a vegetace Československa v nejmladším kvartéru (paleobotanická studie). MS Ústav experimentální fytotechniky ČSAV, 125, Brno. Sadowska A. (1989): Miocene palynostratigraphy of the Silesian part of the Paratethys Basin..- Courier Forsch. Inst. Senkenberg 109, 229-235. Sadowska A. (1993): The stratigraphical table of the Neogene floras from Poland. Proceedings of the International Symposium: Palaeofloristic and palaeoclimatic changes during Cretaceous and Tertiary. Dionýz Štúr Institute of Geology, Bratislava, 133-139. 64 Seitl L., Svoboda J., Ložek V., Přichystal A., Svobodová H. (1986): Das Spätglazial in der Barová-Höhle im Mährischen Karst. – Archäologisches Korrespondenzblatt, 16, 393- 398. Shackleton N. J., Crowhurst S. J., Weedon G. P., Laskar J. (1999): Astronomical calibration of Oligocene - Miocene time. - Philos. Trans. R. Soc. Lond., A, 357, 1907-1929. Stuchlik L. (1992): Correlation of the Neogene Floras of Transcaucasia, Ukrainian Carpathians, South Poland and Czechoslovakia. - Paleontologia I Evolució, 24-25, 483 - 488. Stuchlik L. (ed.) (1994): Neogene Pollen Flora of Central Europe. Part 1. - Acta Palaeobotanica, Suppl.1, 1-56. Stuchlik L., Ważynska H. (1993): Wahania klimatyczne w Neogenie Europy Środkowej na podstawie zmiennego udziału w palinoflorze składników paleotropikalnych I arktycznotreciorzędowych. – Przegled Geologićny Państw. Inst. Geol., 41(12), 829- 834. Stuchlik L., Ziembińska-Tworzydło M., Kohlman-Adamska A., Grabowska I., Słodkowska B., Worobiec.E., Durska E. (2014): Atlas of Pollen and Spores of the Polish Neogene, Vol. 4, Angiosperms (2). - W. Szafer Inst. of Botany, Polish Academy of Science, Krakow. 466 pp. Svoboda J., (1991): Neue Erkentnisse zur Pekárna-Höhle im Mährischen Karst. Archäologisches Korrespondenzblatt 21, 39-43. Svobodová H. (1988): Pollenanalytische Untersuchung des Schichtkomplexes 6-1 vor der Kůlna-Höhle. – In: Valoch, K. (ed): Die Erforschung der Kůlna Höhle 1961-1976. Anthropos, 24, 205-210. Svobodová H. (1990): Vegetace jižní Moravy mezi 500-1000 A.D. - Arch. Rozhledy, 42, 170-205. Svobodová H., (1991): Pollen analysis of the Upper Paleolithic triple burial at Dolní Věstonice. - Anthropozoikum 43, 505-515. Svobodová H. (1992): Palaeobotanical evidence on the Late Glacial in the Moravian Karst. – In: Eder-Kovar, J. (ed.): Palaeovegetational Development in Europe and Regions relevant to its Palaeofloristic Evolution. Proceedings of the Pan- European Palaeobotanical Conference Vienna, Museum of Natural History Vienna, Vienna, 19 -23. Šušolová J., Doláková N., Gregerová M., Dundek P., Hadacz R. (2016): Nové poznatky k půdám na území Národního parku Podyjí se zaměřením na výskyt humolitů. - Acta Mus. Moraviae, Sci. Geol., 199-125. 65 Utescher T., Böhme M., Mosbrugger V. (2011): The Neogene of Eurasia: Spatial gradients and temporal trends – the second synthesis of NECLIME. - Palaeogeography, Palaeoclimatology, Palaeoecology, 304, 196-201. Utescher T., Bruch A. A., Erdei B., François L., Ivanov D., Jacques F.M.B.,. Kern A. K Liu Y.-S.(C.), Mosbrugger V., Spicer R.A. (2014): The Coexistence Approach Theoretical background and practical considerations of using plant fossils for climate quantification. - Palaeogeography, Palaeoclimatology, Palaeoecology 410, 58-73 Utescher T., Mosbrugger V., Ashraf A. R. (2000): Terrestrial Climate Evolution in Northwest Germany Over the last 25 Million Years. - Palaios 15, 5, 430-449. Urban B., Sierralta M. (2012): New palynological evidence and correlation of Early Paleolithic sites Schöningen 12 B and 13II, Schöningen Open Lignite Mine. - In: Behre, K.- E. (ed.): Die chronologische Einordnung der paläolithischen Fundstellen von Schöningen, Römisch-Germanisches Zentralmuseum, Mainz, 77-96. Valoch K. et al., (1988): Die Erforschung der Kůlna Höhle 1961-1976. - Anthropos, 24 (N. S. 16). Van Gijzel P. (1967a): Palynology and flourescence microscopy . - Review of Palaeobotany and Palynology, 2, 49-79. Van Gijzel P. (1967b): Autofluorescence of fossil pollen and spores with special reference to age determination and coalification. - Leidse Geol. Meded., 40, 263-317. Van Gijzel P. (1971): Review of the UV-fluorescence microphotometry of fresh and fossil exines and exosporia - In: Brooks J., Grant P. R., Muir M., van Gijzel P. & Shaw G. (eds) Sporopollenin. - Academic Press, London - New York, 659-685. Van Gijzel P. (1975): Polychromatic UV-fluorescence microphotometry of fresh and fossil plant substances, with special reference to the location and identification of dispersed organic material in rocks: - In: Alpern B. (ed.) Colloque International Petrographie de la Matiere Organique des Sediments, Paris. 67-91. Van Gijzel P. (1978): Recent developments in the application of quantitative fluorescence microscopy in palynology and paleobotany. - Annales des Mines de Belgique, 7-8: 836-851. Vignatiová J. (1992): Břeclav-Pohansko. II, Slovanské osídlení jižního předhradí. - Vyd. 1. Masarykova univerzita, Brno, 9-12. Vodičková-Kneblová V. (1961): Entwicklung der vegetation im Elster-Saale-Interglazial im Suchá-Stonava-Gebiet (Ostrava-Gebiet). - Anthropozoikum, 9 (1959): 129-174. Walanus A., Nalepka D. (1999): POLPAL. Program for counting pollen grains, diagrams plotting and numerical analysis. - Acta Paleobot. 2, 659-661. 66 Ważyńska H. (Ed.) 1998: Palynology and paleogeography of the Neogene in the Polish Lowlands. - Pr. Panstw. Inst. Geol., 1-160. Yeloff D. E., Hunt C. O. (2005): Fluorescence microscopy of pollen and spores: a tool for investigating environmental change. - Review of Palaeobotany and Palynology, 133, 203-219. Zachos J., Pagani M., Sloan L., Thomas E. & Billups K. (2001): Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. - Science 292 (5517), 686-693. Zdražílková N. (1993): Paleopalynology of the lower Miocene in Moravia. - Paleofloristic and Paleoclimatic changes during Cretacous and Tertiary. - Proceedings of the international symposium September 1-20, 145-147. Dionýz Štúr Institute of Geology in Bratislava. Zetter R. (1989): Methodik und Bedeutung einer routinemässig kombinierten Lichtmikroskopischen und Rasterelktronenmikroskopischen Untersuchung fossiler Mikrofloren. - Cour. Forsch.-Inst Senckenberg, 109, 51-50. Zetter R., Weber M., Hesse M., Pingen M. (2002): Pollen, Pollenkitt, and Orbicules in Craigia Bronnii Flower Buds (Tilioideae, Malvaceae) from the Miocene of Hambach. - Germany Int. J. Plant Sci. 163, 6, 1067-1071. 67 Přílohy: Seznam přiložených publikací: 1. Bruch A. A., Utescher T., Alcade Olivares C., Doláková N., Ivanov D., Mosbruger V. (2004): Middle and Late Miocene spatial temperature patterns and gradients in Europe – preliminary results based on paleobotanical climate reconstructions. – Cour.forsch.-Inst. Senckenberg, 249: 15-27. Použito pro kapitolu: 3a 2. Doláková N. (2004): Discussion on some Thermophile palynomorphs from the Miocene sediments in the Carpathian Foredeep (Czech Republic) and Modry Kamen basin (Slovakia). – Acta Paleobotanica 44 (1), 79-85. Použito pro kapitoly: 2, 3a 3. Doláková, N. (2007): Palynological studies in the Cave sediments from the Moravian, Javoříčko and Hranice Karsts - Czech Republic. - Scripta Fac. Sci. Natur. Universitatis Masarykianae Brunensis. 2007, Geology, 35, 47-53 Použito pro kapitoly: 2 4a 4. Doláková, N. (2014): Palynological analysis of Sediments from Za Hájovnou Cave. - Acta Musei Nationalis Pragae, Series B – Historia Naturalis, 70 (1–2), 35–42. Použito pro kapitoly: 2, 4a 5. Doláková N., Burešová A. (2007): Use of fluorescent microscopy in the study of redeposited palynomorphs in the cave and marine sediments of Moravia (Czech Republic). - Acta Palaeobotanica, 47, 1, 275-279. Použito pro kapitoly: 2,4ab 6. Doláková N., Hladilová Š., Nehyba S., (1999): Development of Sedimentation, molluscs and palynospectra in the Lower Miocene of the south-western Part of the Carpathian Foredeep in Moravia (Czech Republic). - Acta Palaeobotanica, Suppl. No. 2, W. Szafer Institute of Botany, Polish Academy of Sciences, Krakow, 269-278. Použito pro kapitoly: 2,3a 7. Doláková N., Holcová K., Nehyba S., Hladilová Š., Brzobohatý R., Zagoršek K. Hrabovský J., Seko M., Utescher T. (2014): The Badenian parastratotype at Židlochovice from the perspective of the multiproxy study. - Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 271, 2, 169-201. Použito pro kapitoly: 2,3a 8. Doláková N., Kováčová M. (2008): Pannonian vegetation from the northern part of Vienna basin. - Acta Musei Nationalis Pragae Series B - Historia Naturalis 64, 2–4, 163–171 Použito pro kapitolu: 3a 68 9. Doláková, N., Roszková, A. Přichystal, A. (2010): Palynology and Natural Environment in the Pannonian to Holocene Sediments of the Early Medieval Centre Pohansko near Breclav (Czech Republic). - Journal of Archaeological Science, USA/UK : Elsevier, 37, 10, 2538-2550. Použito pro kapitoly: 2, 4b 10. Doláková N., Kováčová M., Basistová, P. (2011): Badenian (Langhian – Early Serravallian) palynoflora from the Carpathian Foredeep and Vienna Basin (Czech and Slovak Republics). - Acta Musei Nationalis Pragae, Series B - Historia Naturalis 67 ( 1–2): 51-59. Použito pro kapitoly: 2,3a 11. Doláková N., Slamková M. (2003): Palynological characteristics of Karpatian sediments. - In: Brzobohatý R., Cicha I., Kováč. M., Rögl F. (Eds.) : The Karpatian a lower Miocene stage of the Central Paratethys. Masaryk University Brno. 325-346. Použito pro kapitoly: 2,3a 12. Holcová K., Hrabovský J., Nehyba S., Hladilová Š., Doláková N., Demeny A (2015): The Langhian (Middle Badenian) carbonate production event in the Moravian part of the Carpathian Foredeep (Central Paratethys): a multiproxy record . - Facies, 61, 1, Article Number: 419 Použito pro kapitolu: 3b 13. Kováčová M., Doláková N., Kováč M. (2011): Miocene vegetation pattern and climate change in the Northwestern Central Paratethys domain (Czech and Slovak Republic). - Geologica Carpathica, 62, 3, 251—266 Použito pro kapitolu: 3a 14. Kvaček Z., Kováč M., Kovar-Eder J., Doláková N., Jechorek H., Parashiv V., Kováčová M., Sliva, Ľ. (2006): Miocene evolution of landscape and vegetation in the Central Paratethys. - Geologica Carpathica, 57, 4, 295-310. Použito pro kapitolu: 3 15. Nehyba S., Holcová K., Gedl P., Doláková N. (2016): The Lower Badenian transgressive-regressive cycles – a case study from Oslavany (Carpathian Foredeep, Czech Republic). - Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, Stuttgart, 279, 2, 209-238. Použito pro kapitolu: 3b 16. Nerudová Z., Doláková, N., Novák, J. (2016): New information augmenting the picture of local environment of the LGM/LGT in the context of the Middle Danube Region. - The Holocene, 26(9), 1345–1354. Použito pro kapitolu: 4b 69 17. Petřík J., Petr L., Šabatová K., Doláková N., Lukšíková H., Dohnalová A., Koptíková L., Blaško D. (2015): Reflections of prehistoric and Medieval human activities in floodplain deposits of the Únanovka stream, South Moravia, Czech Republic. - Zeitschrift für Geomorphologie, 59, 3, 393-41. Použito pro kapitolu: 4b View publication statsView publication stats Acta Palaeobotanica 44(1): 79–85, 2004 Discussion of some thermophile palynomorphs from the Miocene sediments in the Carpathian Foredeep (Czech Republic) and Modry´ Kamen basin (Slovakia)* NELA DOLÁKOVÁ Institute of Geological Sciences, Faculty of Science, Masaryk University, Kotlárˇská 2, 611 37 Brno, Czech Republic; e-mail: nela@sci.muni.cz Received 14 March 2003; accepted for publication 16 February 2004 ABSTRACT. The sediments from the southern part of the Carpathian Foredeep in Moravia (Czech Republic) and the Modry´ Kamen basin from Slovakia were studied. The sediments are of Eggenburgian to Lower Badenian ages and of marine or brackish origin. The marine facies rapidly changes with lagoonal and deltaic facies during the Eggenburgian–Ottnangian. The palynospectra have warm-subtropical character. Saltmarsh vegetation (37% Chenopodiaceae) interchanged with swamp vegetation. In the Karpatian palynospectra marsh facies occur more uniformly. Marked azonal associations, for example marsh palm forest, riparian forest or the associations with Taxodiaceae and Tiliaceae (Craigia), are typical. The Ottnangian–Karpatian palynospectra from the Modry´ Kamen basin were typical in the occurrence of pollen of Pentapollenites sp. The studied Lower Badenian sediments represent the fully marine conditions. The palynospectra were poor in pollen and spores (except Pinaceae) and rich in Dinoflagellata. At this time the climate was not extremely warm. KEY WORDS: palynology, Miocene, Carpathian Foredeep, Czech Republic INTRODUCTION The sediments from the southern part of the Carpathian Foredeep in Moravia (Czech Republic) were studied palynologically. Palynomorphs have been described from many boreholes and outcrops with the sediments of the Eggenburgian to Badenian age. Palynological studies were compared primarily with sedimentological and palaeontological investigations. The studies were directed firstly on the relationship between the terrestrial and marine ecosystems. Palynological results were compared with the ones from the Modry´ Kamen basin in the southern part of the Slovak Republic. RESULTS The sediments are of Eggenburgian to the Lower Badenian age, and are marine or brackish in origin. As a whole, the palynospectra indicate a warm-subtropical character of climate. Sapotaceae, Palmae, Engelhardia, Platycarya, Castaneoideae, Tricolporopollenites liblarensis (Th.) Th. & Pf., thermophile oaks, Lygodium, and Pteridaceae are frequent. Symplocos, Reevesia, Cornaceae, Parthenocissus, Tricolporopollenites pseudocingulum (Pot.) Th. & Pf., and families Araliaceae and Rutaceae occur regularly but in lower quantities. Alangium and Neogenisporis neogenicus Krutzsch are represented by sporadic occurrences only. Arctotertiary elements are slightly less frequent. Practically all of the palynospectra are strongly influenced by sedimentological * This study was supported by the Grant Agency of the Czech Republic, grant no. 05/00/0550. This paper was presented on the EEDEN Workshop, Kraków 28 June – 1 July 2002 facies. This fact is reflected in the proportional changes between the palaeotropic and arctotertiary elements, and it is very difficult to specify any trends in the climate development from these data. Higher percentages of the arctotertiary elements were observed locally, for example: – Chenopodiaceae, Oleaceae, Ericaceae, Salix, Potamogeton, Ulmaceae, Taxodiaceae – in the sediments of the Eggenburgian–Ottnan- gian, – Alnus, Ulmaceae, Osmunda, Polypodiaceae, Lythraceae, Sparganium – in the Karpatian sediments. In the pollen diagrams of the studied Miocene sediments, no explicit climatic changes are visible. The author cannot specify at the present time if the observed changes are influenced climatologically or caused by the development of the sedimentary basin and adjacent areas. The environment of the studied part of the Carpathian Foredeep was extraordinarily variable during the Eggenburgian–Ottnangian. The marine transgression penetrated the sea coast with highly differentiated relief configurations. The marine facies interchanged rapidly with those of lagoons and deltas. Sediments and molluscs show rapid changes in salinity, dynamics and depths, light and evaporation. The palynospectra reflected many of these changes (Nehyba et al. 1997). Due to oscillations in salinity and occasional higher levels of evaporation halophilous vegetation grew on the coast (up to 37% Chenopodiaceae, Pl. 1, fig. 9). In some places these were accompanied with higher number of Ephedra and Buxaceae. Ericaceae are frequent in the facies manifesting a low salinity. Pollen grains of the species cf. Monocirculipollis zahnaensis Krutzsch (Pl.1, figs 1–4) in one case even in pollen conglomerate, which most probably contradicts the redeposition from older sediments, were typical for the sediments of the Eggenburgian age. These pollen were found in all the Eggenburgian boreholes and they were absent in younger sediments. Krutzsch (1966) described these pollen types from the Palaeocene and Eocene sediments and he considered them as extinct members of the family Buxaceae. Similar pollen types were found also in the Miocene sediments from Turkey (Nurdan Yavus, pers. comm.). According to data in the literature, the pollen type seem to be similar to some members of the families Caryophyllaceae or Amaranthaceae. It is necessary to test this opinion with SEM observations on the detailed features of the pollen. Even the presence of small tri- or tetracolporate grains of Rutaceae is typical for some localities. A large amount of Platanus pollen was also observed in some samples. Saltmarsh vegetation developed in time and space to the various growth stages of the swamp and riparian vegetation. For example facies with Myrica pollen (Pl. 1, fig. 13) overlapping 40%, or Taxodiaceae approaching values of 50% are visible. The freshwater flora with Nelumbo, Potamogeton, Sparganium, and Cyperaceae has been ascertained. Lygodium (Pl.1, fig.14) was also frequent, in one locality its frequency reached more than 5%. Later on, the character of the coast development changed, with the relief becomming flatter. The transgression stage follows in the Ottnangian, the sea probably penetrated further to the north into the area. The sediments include the so called Rzehakia beds (Nehyba et al. 1997). Facies with moorland and marginal swamp appeared in the palynospectra. Taxodiaceae are also frequent. The climate at this time appears to be more humid. Pollen spectra contain a larger amount of spores of thermophile ferns as Lygodium, Pteridaceae, Gleicheniaceae together with Riccia and Selaginella (Pl. 1, fig. 10). Ilex is relatively plentiful. The higher representation of Symplocos pollen is interesting in the samples of Ottnangian age. Striking members in some palynospectra are the higher proportions of Selaginella (up to 6%), their occurrence being visible in the Eggenburgian/Ottnangian and Ottnangian/Karpatian border sediments. They are accompanied by an increased frequency of other pteridophytes. The humid climate was probably connected with the transgression. The Karpatian sedimentation began by gradual transgression on the relatively flat coast, which was connected with anoxic conditions. The frequent alteration of palynomorphs caused by precipitation and growth of pyrite is visible. Later on, fully marine conditions with schlieric sediments developed. In the Karpatian palynospectra the marsh facies occur more uniformly than in the Eggenburgian– Ottnangian. Pollen and spores also confirm a warm to warm-temperate climate. 80 The markedly azonal associations, for example marsh palm forest with Palmae (Pl. 2, figs 9,10), Poaceae, Lygodium, Sparganium, and Potamogeton; riparian forest with Alnus, (Pl. 2, fig. 4), Myricaceae (Pl. 2, fig. 3), Lythraceae (Pl. 2, figs 1,2), or Selaginella (Pl. 2, fig. 13) are frequent in Karpatian sediments. The associations with Taxodiaceae, Intratriporopollenites insculptus Mai (Pl.2, figs 6,7) and Pteridaceae (up to 10%) are typical. According to recent investigations (Kvacˇek et al. 2002) Intratriporopollenites insculptus belongs to the genus Craigia (Malvaceae–Tilioideae). Very similar associations were also described from the lower Miocene of Northern Bohemia (Konzalová 1976). These pollen types were found also in the Eggenburgian sediments of the Carpathian Foredeep. In all the cases they are accompanied with high amount of other hygrophilous elements (except the ones mentioned above also Ericaceae and Salix). Assotiations of markedly colder climatic conditions, known from the adjacent areas (e.g. Slovakia, Austria) from the end of the Ottnangian and the lower Karpatian (Hochuli 1978, Planderová 1990) have not been found. Proportional changes between palaeotropical and arctotertiary elements seems to be influenced by facies in all of the samples studied. The schlieric sediments, representing marine conditions, contain a large amount of Pinaceae and an increasing amount of Oleaceae (Pl. 2, figs 8,12). Sapotaceae have not been found in the uppermost studied Karpatian sediments. Arctotertiary elements increased slightly. However, there are not sufficient data to enable a more exact interpretation of this as representing a colder climate in- terval. Conglomerations of pollen (Monocirculipollis, Chenopodiaceae, Platanus, Oenotheraceae, Myricaceae, Alnus, and others) were found in some facies from the whole of the Lower Miocene. Their presence confirms the low-flow water dynamics and short transport distances to the place of sedimentation. The studied sediments from the Modry´ Kamen basin include the Rzehakia beds and the schlieric layers (Ottnangian–Karpatian). The palynospectra are similar to the ones from the Carpathian Foredeep. The biggest difference is based on the typical occurence of pollen of the formal genus Pentapollenites (Pl. 2 fig. 14–16) which after Krutzsch (1962) is characteristic for Palaeogene. These pollen have also been described from Miocene sediments by Planderová (1990) and Nagy (1985). Planderová interprets these types of pollen as typical for the coal facies of the Slovakian Lower Miocene. However, the author has not observed these pollen types in the Carpathian Foredeep. According to the recent literature (Reille 1995) part of our material is very close to the genus Haplophyllum (Rutaceae). Hofmann and Zetter (2001) described this pollen from the Palaeocene/Eocene of Austria and considered them belonging within the Simaru- baceae. The studied Lower Badenian sediments represent the development of fully marine conditions with a high oxygen content. The palynospectra are generally poor in pollen and spores (except for Pinaceae), and are comparatively rich in Dinoflagellata. The tapeta of foraminifers have also been identified. It is probable that the conifer pollen accumulated in these marine sediments due to their wind dispersal properties. The environment on the seashore was probably rather wet as noted by the presence of spores of Fungi, Polypodiaceae, pollen of Alnus and Ulmus and ranging up to swampy as represented by the pollen of Taxodiaceae and Myricaceae. There are visible only slight changes in the pollen diagrams between the Karpatian and Lower Badenian pollenspectra. In the Badenian a decreasing number of some thermophilous members, such as Engelhardia, Platycarya, Tricolpopollenites henrici (Pot.) Th. & Pf. and T. microhenrici (Pot.) Th. & Pf., and Castanoideae are observed. Oleaceae were also less frequent, although Taxodiaceae regularly have a higher representation while Alnus has steadily lower percentages. In the Badenian palynospectra the higher differentiation of the pollen of thermophilous forms of oaks such as Tricolpopollenites henrici (Pot.) Th. & Pf. and T. microhenrici (Pot.) Th. & Pf. or forms probably similar to the Quercus ilex as well as deciduous ones, are observed (Pl. 2, figs 18–19). The present author cannot currently specify if the changes observed are influenced climatologically or are caused by the development of the sedimentation basin and its adjacent areas. 81 REFERENCES HOCHULI P.A. 1978. Palynologische Untersuchungen im Oligozän und Untermiozän der Zentralen und Westlichen Paratethys. Beitr. Paläont Öster., 4: 1–132. HOFMANN Ch.Ch. & ZETTER R. 2001. Palynological investigation of the Krappfeld area, Palaeocene/Eocene, Carinthia (Austria). Palaeontographica, B, 259 (1–6): 47–64. KONZALOVÁ M. 1976. Microbotanical (palynological) research of the lower Miocene of Northern Bohemia. Rozpr. Cˇ es. Akad. Veˇd, 86 (12): 1–75. KRUTZSCH W. 1962. Mikropaläontologische (sporenpaläontologische) Untersuchungen in der Braunkohle des Geiseltales. II. Die Formspezies der Pollengattung Pentapollenites Krutzsch 1958. Paläont. Abh., 1(2): 75–103. KRUTZSCH W. 1966. Zur Kenntnis der präquartären periporaten Pollenformen. Geologie, 15(55): 16–71. KVACˇ EK Z., MANCHESTER S.R., ZETTER R. & PINGEN M. 2002. Fruits and seeds of Craigia bronni (Malvaceae-Tilioideae) and associated flower buds from the late Miocene Inden Formation, Lower Rhine Basin, Germany. Rev. Palaeob. Palyn., 119: 311–324. NAGY E. 1985. Sporomorphs of the Neogene in Hungary. Geologica Hungarica, ser. Palaeont., 47: 1–470. NEHYBA S., HLADILOVÁ Š. & DOLÁKOVÁ N. 1997. Sedimentary evolution and changes of fossil assemblages in the SW part of the Carpathian Foredeep in Moravia during the Lower Miocene. In: Hladilová Š. (ed.) Dynamika vztahu˚ marinního a kontinentálního prostrˇedí. Sborník prˇíspeˇvku˚. Grantovy´ projekt GACˇ R 205/95/1211. Masarykova univerzita: 40–58. Brno. (In Czech with English summary). PLANDEROVÁ E. 1990. Miocene Microflora of Slovak Central Paratethys and its Biostratigraphical Significance. Geol. Inst. D. Štúra, Bratislava. REILLE M. 1995. Pollen et Spores d’ Europe et d’ Afrique du Nord, (I,II). Marseille. Plate 1 Sporomorphs of Eggenburgian – Ottnangian × 1000, except figs 3,4 and 13 1–4. Monocirculipollis zahnaensis Krutzsch, Cˇ ejkovice 176.8 m, Eggenburgian–Ottnangian 3. SEM × 2300 4. SEM × 5500 5. Reevesiapollis triangulus (Mamczar) Krutzsch, Líšenˇ, Ottnangian 6. Sapotaceoidaepollenites sp., Miroslav 78.4 m, Eggenburgian–Ottnangian 7, 8. Rutaceaepollenites sp., Šafov 12, 17.5 m 9. Chenopodipollis multiplex (Weyl. & Pf.) Krutzsch, pollen conglomerate, Miroslav 78.4 m, Eggenburgian–Ottnangian 10. Echinatisporis miocenicus Krutzsch & Sontag in Krutzsch, Trboušany 65.8 m, Eggenburgian–Ottnangian 11. Symplocoipollenites vestibulum (Potonié) Potonié, Líšenˇ , Ottnangian 12. Potamogetonpollenites sp., Líšenˇ , Ottnangian 13. Myricipites sp., pollen conglomerate, Trboušany 49.7 m, Eggenburgian–Ottnangian, × 500 14. Leiotriletes maxoides maximus (Pflug) Krutzsch, Trboušany 49.7 m, Eggenburgian–Ottnangian PLATES 82 Plate 1 83 N. Doláková Acta Palaeobot. 44(1) Plate 2 Sporomorphs of Ottnangian–Karpatian–Badenian × 1000 1,2. Lythraceaepollenites sp., Ždánice 67, 780–785 m 3. Myricipites rurensis (Pf.& Th.) Nagy, Ždánice 67, 780–785 m, Karpatian 4. Alnipollenites verus Potonié, Ždánice 67, 785–790 m, Karpatian 5. Leiotriletes wolffii wolffii Krutzsch, Nosislav 3, 323 m, Karpatian 6,7. Intratriporopollenites insculptus Mai, Ždánice 68, 815–820 m, Karpatian 8,12. Oleoidearumpollenites microreticulatus (Th. & Pf.) Ziembin´ska-Tworzydło, Nosislav 3, 280.8 m, Karpatian 9,10. Sabalpollenites areolatus (Potonié) Potonié, Ždánice 67, 795–800 m, Karpatian 11. Potamogetonpollenites sp. Ždánice 67, 795–800 m, Karpatian 13. Echinatisporis miocenicus Krutzsch & Sontag in Krutzsch, Nosislav 3, 343 m, Karpatian 14. Pentapollenites fsp. 1, Modry´ Kamen Basin, N91, 345 m, Ottnangian–Karpatian 15, 16. Pentapollenites fsp. 2, Modry´ Kamen Basin, N91, 345 m, Ottnangian–Karpatian 17. Marine Dinophyta, Židlochovice, Badenian 18. Quercoidites granulatus (Nagy) Słodkowska, Židlochovice, Badenian 19. Quercoidites sp. 1 – Quercus ilex type, Židlochovice, Badenian 20. Cercidiphyllites minimireticulatus (Trevisan) Ziembin´ska-Tworzydło, Židlochovice, Badenian 21. Platanipollis ipelensis (Pacltová) Grabowska, Lysice, Badenian 22. Polypodiaceoisporites corrutoratus Nagy, Židlochovice, Badenian 23. Inaperturopollenites hiatus (Potonié.) Th & Pf. – Glyptostrobus type, Ždánice 68, 815–820 m, Karpatian 84 Plate 2 85 N. Doláková Acta Palaeobot. 44(1) Introduction Palynological study of sediments from Za Hájovnou Cave (Javoříčko karst) was carried out within the framework of a complex multiproxy study of this area headed by Prof. R. Musil. Results of earlier palynological studies of Moravian (the eastern part of the Czech Republic) karstic areas were published by Seitl et al. (1986), Svobodová (1988), Svoboda (1991), Svobodová (1992), Doláková and Nehyba (1999), Doláková (2002, 2004, 2005, 2007). Pollen spectra from cave sediments are typified by the absence of in situ plant remains. Palynomorphs are transported into the caves together with sedimentary particles by percolating water or through the activity of animals. Selection, degradation and secondary accumulation of various palynomorphs is clearly due to their different resistances to chemical and mechanical processes, and microbial attack during transport and sedimentation (Elsik 1971, Havinga 1971, Jankovská 1971, Draxler, 1992, Carrión et al. 1999, Doláková and Nehyba 1999, Navarro et al. 2001, Doláková 2002, 2007). The mixing of different age components – especially Quaternary and redeposited Tertiary elements – is also well known (eg. Doláková and Nehyba 1999, Doláková 2002, 2007). This phenomenon causes complications in interpretation of the original surface vegetation. Comparison with the results from other paleontological and geological methods is necessary. Material and methods About 50 samples of cave sediments from Za Hájovnou Cave were studied from a palynological point of view. The palynological samples were treated with HCl (20%), HF, KOH and HCl (10%) and heavy liquid ZnCl2 (density = 2g/cm3 ) for standard maceration. The omission of acetolyse enabled clearer identification of pollen contamination eg by percolating water. The final residue from each sample was mounted in preparation for biological microscopy, and diluted with glycerol. The pollen diagram was calculated from the total of a minimum of 100 determined pollen grains and spores (minimally from 15 taxons) using the POLPAL programme (Walanus and Nalepka 1999). Several plant types were combined according to their ecological grouping (Carpinus + Tilia, Quercus + Acer, herbs undif., herbs aquatic, flood plain forest – Alnus, Ulmus, Fraxinus, Salix, ferns + Sphagnum). The pollen diagram was separated into two parts due to the over-representation of Asteraceae: in the left section was the pollen sum (100%), excluding Asteraceae. The right section showed the proportion of Asteraceae and was calculated from the sum of all the determined pollen grains. This form of presentation offers clearer visualisation of the basic character of the vegetation changes. A composite pollen diagram (Text-fig. 1) was constructed on the basis of average representation of elements from single layers (arithmetic mean of samples collected from several places within 1 layer). Other diagrams (Text-figs 2a, b) indicate differences among the palynospectra collected from different spots within a single layer. Results The samples from profiles: ZH P-2 (Velikonoční jeskyně (= Easter corridor): Komín I (= Chimney I), ZH P-5 (Vykopaná chodba (= Excavated corridor): Kostnice II 35 SBORNÍK NÁRODNÍHO MUZEA V PRAZE Řada B – Přírodní vědy • sv. 70 • 2014 • čís. 1–2 • s. 35–42 ACTA MUSEI NATIONALIS PRAGAE Series B – Historia Naturalis • vol. 70 • 2014 • no. 1–2 • pp. 35–42 PALYNOLOGICAL ANALYSIS OF SEDIMENTS FROM ZA HÁJOVNOU CAVE NELA DOLÁKOVÁ Masaryk University, Faculty of Sciences, Institute of Geological Sciences, Kotlářská 2, 611 37, Brno, the Czech Republic; e-mail: nela@sci.muni.cz Doláková, N. (2014): Palynological analysis of sediments from Za Hájovnou Cave, Javoříčko Karst. – Acta Mus. Nat. Pragae, Ser. B, Hist. Nat, 70(1-2): 35–42, Praha. ISSN 1804-6479. Abstract. The sediments of profiles ZH P-2, 5, 7, 8b, 9, 10 and 11 from Za Hájovnou Cave (Javoříčko Karst) were studied from a palynological point of view. Most of layers (except layer 1c/ZH P-10, layer 7e /ZH P-2) were paleontologically dated as Holsteinian Interglacial. The palynospectra confirmed the mild character of the climate during sediment deposition (Carpinus, Hedera, Acer, Tilia, Corylus, single Pterocarya and Ilex). The proportion of individual elements as well as relationship between trees and herbs varied. Changes in number of morphologically different pollen grains (primarily Pinaceae, Asteroideae) in correlated layers (2a, 2b/ ZH P-5 and 2,2b/ZH P-8b, and layer 4 – debris cone) from profiles ZH P-10, ZH P-11and ZH P-8b were recorded in the direction towards the cave interior. This phenomenon is most likely related to the resistance of the pollen grains to chemical and mechanical conditions during transport. ■ Javoříčko karst, Za Hájovnou Cave, Quaternary, Palynology Received January 20, 2014 Issued October, 2014 DOI 10.14446/AMNP.2014.35 36 Text-fig. 1. Composite pollen diagram. Text-fig. 2. Pollen diagram. a – layer 2b from ZH P-5 correlating with 2b of ZH P-8 nd 9; b – layer 4 (debris cone) of profiles ZH P-10 and ZH P-11. (Charnelhouse II), ZH P-7 (Chodba naděje (=Corridor of Hope)), ZH P-8b and 9 (Spojovací chodba/Narozeninová chodba (=Connection Passage/Birthday corridor)), ZH P-10 and 11 (Narozeninová chodba) were analysed from palynological point of view. Profile descriptions are presented in the contribution by Musil (2014). The first palynological study from Za Hájovnou Cave was published by Doláková (2005, 2007). Not all the palynospectra contained a sufficient number of pollen grains and spores for analysis. Some of the samples were almost sterile, another part contained only a small number of palynomorphs. Samples with the most abundant palynospectra came from profiles ZH P-8b and 9. Only layer 4 of profiles ZH P-10 and ZH P-11 and layers 2a and 2b from profile ZH P-5 contained enough pollen grains and spores to construct a pollen diagram. Most of the palynologically studied sediments (except ZH P-1, layer1c and ZH P-2, layer 7e) were dated as Holsteinian Interglacial (Musil 2005, Lundberg et al. 2014). Sample ZH P-10, layer 1c was assigned as a melange of Holocene and older sediments (Musil 2014). It contained only a small amount of pollen from Pinus, Asteraceae, Daucaceae and Ranunculaceae. The sample from layer 7e of ZH P-2 was the only one from the Komín I profile in which palynomorphs were found. There was a large over-estimation of small Asteroideae. Pollen from Chrysosplenium/R.trichophylus type typical for damp places had also accumulated here along with some other herbs (Poaceae, Galium, Ranunculaceae). No pollen from trees or large sized pollen grains were observed. This oryctocoenoses provides evidence of mechanical selection during transport with sediment flow. According to a personal study of cave sediments (Balcarka – Doláková 2004, Pod Hradem – personal data of the author) such palynospectra could support the paleozoological interpretation of development in a colder steppe environment (Musil 2005, Ivanov 2005). The palynospectra from other studied samples of layer 4 (debris cone) from profiles: ZH P-10 and 11, ZH P-5: layers 2a, 2b and the whole ZH P-8a similarly confirmed the mild character of the climate during sediment deposition, by virtue of the abundant wood elements (Carpinus, Tilia, Juglans, Quercus, sporadic Acer, single Hedera, Pterocarya, Ilex - Tab.1). Pterocarya and Ilex are the surviving members of Tertiary floras. The presence of Pterocarya continued to the Holsteinian Interglacial in Europe. It dissapeared from the palynological record during the Saalian complex Stage and it is not known from any younger warmer phases (Lang 1994, Litt et al. 2008, Roucoux et al. 2008). The above mentioned plants created the typical vegetation of the climatic optimum of the Holsteinian Interglacial (Dyjakowska 1952, Vodičková-Kneblová 1961, Břízová 1994, Lang 1994, Bińka et al. 1997, Reille et al. 2000, Urban and Sierralta 2012). The general character of most studied pollen spectra is quite similar, however the proportions of individual elements fluctuate. Composite pollen diagrams indicate changes among pollen spectra in recognised layers (Text-fig. 1). The relationship between trees and herbs varied, herbs mostly prevail. Dominance of arboreal pollen was observed in layers: 2b and 5: 1.2–1.5 m and 9.5–10 m from ZH P-8b and 9, and in part of the debris cone: layer 4 upper. Pinus sylvestris type or Corylus formed the highest proportion of them. Elements of flood plain forest such as Alnus, Ulmus, Fraxinus, Salix were mostly rare. Betula, Picea and ferns and Sphagnum are observed continuously but at a low percentage. Nonarboreal pollen dominated in most samples. Asteraceae prevailed in these cases. Poaceae were also common. The occurrence of other herbs was also recorded: Artemisia, Brassicaceae, Campanula, Galium, Lamiaceae, Liliaceae, Ranunculaceae, Delphinium type, Silenaceae, Urtica and single specimens of other herbs. Hygrophilous herbs such as Chrysosplenium/Ranunculus trichophylus type and Valeriana were common. Pollen from aquatic flora (Sparganium, Potamogeton) were rare. Ferns mostly represented by the smooth spores of Polypodiaceae, rarely Polypodium vulgare and Pteridium. Algae such as Botryococcus, Mougeotia and a single Pediastrum were found locally. Algae were absent in samples from the debris cone (layer 4). The greatest difference in pollen picture was observed in layer 5, the deepest studied layer: 9.5-10 m in profile ZH P-9. Trees prevailed over herbs (67:33%) with the most abundant being Corylus together with Carpinus, Tilia and Alnus. Juglans also occurred here. In this layer was the lowest proportions of Pinus and Asteroideae from all the samples. Only Poaceae represented the more abundant herbs. This palynospectrum probably represented the vegetation of deciduous woodland with only a small admixture of conifers. In the overlying samples there was an increased proportion of Pinus, Asteroideae and other herbs and a decrease in Corylus, Alnus and Tilia until they became absent at the 6.5–7.5 m level. It is difficult to decide whether this phenomenon is a result only of climate deterioration or also due to taphonomic reasons. The highest percentage of Pinus (over 60%) together with a minority of other trees was recorded in the upper part of the debris cone (layer 4 upper). The pollen picture in the lower part of the debris cone differs with Pinus representing only 10% of the pollen found, Corylus over 25%, Carpinus and Tilia also occured, but more herbs were common (Text-fig. 1). This difference could indicate climatic variations during deposition of the debris cone. According to paleontological results, layers 2a and 2b from ZH P-5 correlate with 2a and 2b from ZH P-8b. The pollen diagram from these layers indicates a decreasing number of Pinaceae and dominance of tree pollen, and increasing number of herb pollen (mainly Asteroideae) in the direction towards the cave interior (Doláková 2005) (Text-fig. 2a). These facts are most likely related to the resistance of the pollen exines to chemical and mechanical conditions during transport. A similar phenomenon was observed in layer 4 (the debris cone) of the profiles ZH P-10 and ZH P-11 (Text-fig. 2b). Differences in the pollen picture were probably caused by mixing of sedimentary material transported through the former cave entrance and near the chimney. A difference in pollen record between samples of layer 4 (the debris cone) collected from ZH P-10 and ZH P-11 compared to ZH P-8b is evidence enough to indicate that sedimentation of this layer occured over a longer time span during slight climatic oscillation. Therefore the layer was divided into 2 sublayers: layer 4 upper and the underlying: layer 4 lower (Text-fig. 1). 37 Discussion Navarro et al. (2001) established that the amount of the anemophilous pollen (eg. Pinus) decreased and that the amount of zoophilous pollen (Asteraceae/Cichorioideae) increased in the direction from the cave entrance into the inner parts. They presumed that the anemophilous pollen, often overestimated in surface samples due to massive pollen production and extensive flight range, decreased inside the caves due to their mechanical properties. Conversely, the anemophilous pollen grains (with morphological adaptations for easier attachment to animal hair) more frequently form part of the pollen spectra from the deeper parts of caves. This fact may be caused by transport of pollen grains by animals. In the Ramesh Cave (about 2000 m above sea level, sediments dated 64–32 ka), Draxler (1992) interpreted the existence of pollen from climatically demanding plants among other types to be a consequence of the cave bear nourishment (honey). The decrease in Pinus pollen recorded there is in clear agreement with our results from Za Hájovnou Cave (see above, Text-figs 2a, b). An overestimation of Cichorioideae was visible only in layer 3ba (Text-fig. 1). Asteroideae together with Pinus prevailed in most of the studied samples from Za Hájovnou Cave. According to Carrión et al. (1999) the pollen spectra from cave sediments reflect the surface environment reliably only when several requirements are fulfilled: a) taxonomic diversity reliably above 15 taxons per sample, b) pollen counts of more than 200 grains excluding Asteraceae, c) less than 20% indeterminable pollen. From cave sediments from the Moravian karstic areas not only is the prevailing pollen from the Asteroideae but also a more or less monotonous oryctocoenoses with overrepresentation of smooth monolete Polypodiaceae spores, Tilia and Corylus are also known (Doláková 2000, 2002, 2004, 2005). These pollen types are small and compact and are known to be both mechanically and chemically resistant (Havinga 1971, Jankovská 1971, Draxler 1992). According to this information , the most reliable pollen spectra which reflected the vegetation cover outside the caves came from layers 2a and 2b (ZH P-8b and ZH P-5), the debris cone, layer 4 (ZH P-10), and layer 5: 9-10m (ZH P-8b and 9). Care must be taken in interpretation of the vegetation and climatic character of other studied palynospectra. In some other site even a single common pollen grain could provide useful information. The wide variety and selectivity of the palynological record from Za Hájovnou Cave did not allow accurate reconstruction of changes in vegetation. The general character of the pollen pictures corresponds to the climatic optimum of the Holsteinian interglacial when compared to studies of several localities in Central Europe (eg. Dyjakowska 1952, Vodičková-Kneblová 1961, Břízová 1994, Lang 1994, Kondratienė and Šeirienė 2003, Urban et al. 2011, Bittmann 2012, Urban and Sierralta 2012). The findings of Pterocarya (often taken as a marker for the Holsteinian) in the upper parts of the profile observed after deterioration of the climate as reflected in the section of layer 5: 6.5–9 m from ZH P-9 (Text-fig.1) also support this interpretation. The samples from layer 5: 9.5–10 m of profile ZH P-9 and layer 4 lower of ZH P-8b support the Corylus expansion described by Urban et Sierralta 2012 from Schöningen lignite mine profile 12B LPAZ R 3b (MIS 9). The limited palynological results from Za Hájovnou Cave do not provide sufficient data to clearly differentiate if the sediments could be related to MIS 11 or MIS 9; the assumption that they are Holsteinien is a topical theme for discussion (eg. Geyh and Müller 2005, Scourse 2006, Nitychoruk et al. 2006, Roe et al. 2009, Bittmann 2012, Urban and Sierralta 2012). The overall characteristics of the environment and stratigraphic position based on other paleontological methods is discussed in detail in a contribution by Musil et al. (2014). According to faunistic and sedimentological characteristics, the studied sediments can be divided into two groups. Sediments older than the debris cone contained bones which were nearly always complete, never weathered, and often even in the correct anatomical positions. In sediments above the debris cone the bones were invariably fragmentary, many of them covered by sinter crusts. No fossils except palynomorphs have been found inside the debris cone. The difference between the palynospectra from the upper and lower parts of the debris cone sediments could indicate climatic variations during deposition of the debris cone (see above, Text-fig. 1). Pollen spectra from lower layers and the debris cone contained a limited number of Tertiary pollen relics such as Pterocarya, Ilex, Celtis, which were not observed in the older part of the sediments. These data are in clear agreement with other Holsteinian localities (see above). Conclusions About 50 samples from profiles: ZH P-2, 5, 7, 8 and 9, 10 and 11 from Za Hájovnou Cave were assessed palynologically. The pollen spectrum of layer 7e is without any tree pollen but with an accumulation of Asteroideae and several hygrophilous herbs and thus may support the paleozoological results suggesting development in a colder steppe environment. The general character of other palynospectra confirmed the mild character of the climate during the Holsteinian Interglacial due to the occurence of plants such as Carpinus, Hedera, Tilia, Pterocarya and Ilex which are typical for the climatic optimum of this time span. Such a pollen picture is in clear accordance with other similar localities from Central and Western Europe. The difference in pollen record inside the debris cone (layer 4) prompts division of layer 4 into 2 sublayers (layer 4 upper and layer 4 lower) which developed during varying climatic conditions. Detailed reconstruction of vegetations cover, their changes and development is difficult to interpret from the cave sediments. Selection, degradation and secondary accumulation of various palynomorphs, due to their different resistances to chemical and mechanical processes and microbial attack during transport, were recorded. This phenomenon was documented by numerical changes in the different pollen grains from several spots within a single layer in a direction towards the inner cave parts (primarily a decrease in Pinaceae, and increase in Asteroideae). 38 The overall characteristics of the environment and stratigraphic position based on other paleontological methods will be discussed in the contribution Musil et al. (2014) References Bińka, K., Lindner, L., Nitychoruk, J. (1997): Geologicfloristic setting of the Mazovian Interglacial sites in Wilczyn and Lipnica in southern Podlasie (eastern Poland) and their palaeogeographic connections. – Geological Quarterly, 41(3): 381–394. Bittmann, F. (2012): Die Schöninger Pollendiagramme und ihre Stellung im Mittleeuropäischen Mittelpleistozän. – In: Behre, K.-E. (ed.), Die chronologische Einordnung der paläolithischen Fundstellen von Schöningen, RömischGermanisches Zentralmuseum, Mainz, pp. 97–111. Břízová, E. (1994): Vegetation of the Holsteinian Interglacial in Stonava- Horní Suchá (Ostrava region). – Sborník geologických věd, Anthropozoikum, 21: 29–56. Carrión, J.S., Munuera, M., Navarro, C., Burjachs, F., Dupré, M., Walker, M.J. (1999): The palaeoecological potential of pollen records in caves: the case of Mediterranean Spain. – Quaternary Science Reviews, 18: 1061–1073. http://dx.doi.org/10.1016/S0277-3791(98)00002-X Doláková, N. (2000): Palynologické zhodnocení sedimentů z Ochozské jeskyně. Část 2. Profil u Zkamenělé řeky. – Geologické výzkumy na Moravě a ve Slezsku v roce 1999: 5–9. (in Czech) Doláková, N. (2002): Palynologické studium sedimentů Šošůvské části Sloupsko -Šošůvských jeskyní a spodní části opěrného profilu v jeskyni Kůlna [Palynological studies of the sediments from the Šošůvka part of the Sloup-Šošůvka cave and from the lower part of the supporting profile in the Kůlna cave (Moravian Karst)]. – Acta Musei Moraviae, Scientiae geologicae, 87: 275–288. (in Czech, with English summary) Doláková, N. (2004): Palynologické výzkumy v jeskyni Balcarka [Palynological studies in the Balcarka cave (Moravian Karst)]. – Geol.výzk. Mor. Slez. v r. 2003: 2–4. (in Czech) Doláková, N. (2005): Palynologická studia v jeskyni „Za Hájovnou“, Javoříčský kras [Palynological studies in the “Za Hájovnou” Cave, Javoříčko Karst, Moravia]. – Přírodovědné studie Muzea Prostějovska, 8: 83–88. (in Czech) Doláková, N. (2007): Palynological studies in the Cave sediments from the Moravian, Javoříčko and Hranice Karsts - Czech Republic. – Scripta Facultatis Scientiarum Naturalium UniversitatisMasarykianae Brunensis., Geology, 35: 47–53. Doláková, N., Nehyba, S. (1999): Sedimentologické a palynologické zhodnocení sedimentů z Ochozské jeskyně [Sedimentological and palynological evaluation of the sediments from the Ochozská jeskyně cave]. – Geologické výzkumy na Moravě a ve Slezsku v roce 1998: 7–10. (in Czech) Draxler, I. (1992): Palynologische Untersuchungen von Höhlensedimenten im Nixloch bei Losenstein – Ternberg (Oberösterreich). – Mitt. Komm. Quartärforsch., 8: 21–29. Dyjakowska, J. (1952): Róstlinność plejstocénska w Nowinach Żukowskich [Pleistocene flora of Nowiny Żukowskie on the Lubin Upland]. – Biul. Inst. Geol., 67: 115–181. (in Polish) Elsik, W. C. (1971): Microbiological degradation of Sporopollenin. – In: Brooks, J., Grant, P. R., Muir, M., van Gijzel, P., Shaw, G. (eds), Sporopollenin, Academic Press, London, pp. 480–511. http://dx.doi.org/10.1016/B978-0-12-135750-4.50023-7 Geyh, M. A., Müller, H., (2005): Numerical 230Th/U dating and a palynological review of the Holsteinian/Hoxnian interglacial. – Quaternary Science Reviews, 24: 1861–1872. http://dx.doi.org/10.1016/j.quascirev.2005.01.007 Havinga, A. (1971): An experimental investigation into the decay of Pollen and spores in various soil types. – In: Brooks J., Grant, P. R., Muir, M., van Gijzel, P., Shaw, G. (eds), Sporopollenin, Academic Press, London, pp. 446–478. http://dx.doi.org/10.1016/B978-0-12-135750-4.50022-5 Ivanov, M. (2005): Obojživelníci a plazi lokality Za Hájovnou - Javoříčský kras [Amphibians and reptiles from the “Za Hájovnou” Cave, Javoříčko Karst, Moravia]. – Přírodovědné studie Muzea Prostějovska. 8: 89–108. (in Czech) Jankovská, V., (1971): The development of vegetation on the western slopes of the Bohemian-Moravian Uplands during the Late Holocene period. A study based on pollen and macroscopic analyses. – Folia Geobot. Phytotax., 6: 281–302. Kondratienė, O., Šeirienė, V. (2003): Vegetation and climate of the Buténai Interglacial (Holsteinian) in Lithuania. – Geological Quaterly, 47(2): 139–148. Lang, G. (1994): Quartäre Vegetationsgeschichte Europas. – Gustav Fischer Verlag, Jena-Stuttgart-New York, 462 pp. Litt, T., Shmincke, H. U., Frechen, M., Schluchter, Ch. (2008): Quaternary. – In: McCann, T. (ed.), The Geology of Central Europe. Vol. 2 Mezozoic and Cenozoic, Geologic Society London, pp. 1288–1340. Lundberg, J., Musil, R., Sabol, M. (2014): Sedimentary history of Za Hájovnou Cave (Moravia, Czech Republic):Aunique Middle Pleistocene palaeontological site. – Quaternary International, 339-340: 11–24. http://dx.doi.org/10.1016/j.quaint.2013.04.006 Musil, R. (2005): Jeskyně Za Hájovnou, výjimečná lokalita Lavoříčského krasu [Za Hájovnou Cave, exceptional locality of Javoříčko Karst, Moravia]. – Přírodovědné studie Muzea Prostějovska. 8: 9–42. (in Czech) Musil, R., Sabol, M., Ivanov, M., Doláková, N. (2014): Middle Pleistocene stratigraphy of the deposits in Za Hájovnou Cave (Javoříčko Karst, northern Moravia, Czech Republic). –Acta Musei Nationalis Pragae, Ser. B., Historia Naturalis, 70(1-2): 107–119. Navarro, C., Carrión, J. S., Munuera, M., Prieto A. R. (2001): Cave surface and the palynological potential of karstic cave sediments in palaecology. – review of Paleobotany and Palynology, 117(4): 245–265. http://dx.doi.org/10.1016/S0034-6667(01)00095-1 Nitychoruk, J., Bińka, K., Ruppert, H., Schneider J. (2006): Holsteinian Interglacial = Marine Isotope Stage 11?. – Quaternary Science Reviews, 25: 2678–2681. http://dx.doi.org/10.1016/j.quascirev.2006.07.004 39 Reille, M., de Beaulieu, J.-L., Svobodova, H., Andrieu-Ponel, V., Goeury, C. (2000): Pollen analytical biostratigraphy of the last five climatic cycles from a long continental sequence from the Velay region (Massif Central, France). – Journal of Quaternary Science, 15: 665–685. http://dx.doi.org/10.1002/1099-1417(200010)15:7<665::AI D-JQS560>3.0.CO;2-G http://dx.doi.org/10.1002/1099-1417(200010)15:7<665::AI D-JQS560>3.3.CO;2-7 Roe, H. M., Coope ,G. R., Devoy, R. J. N., Harrison, C. J. O., Penkman, K. E. H., Preece, R. C., Schreve, D. C. (2009): Differentiation of MIS 9 and MIS 11 in the continental record: vegetational, faunal, aminostratigraphic and sea-level evidence from coastal sites in Essex, UK. – Quaternary Science Reviews, 28: 2342–2373. http://dx.doi.org/10.1016/j.quascirev.2009.04.017 Roucoux, K. H., Tzedakis, P.C., Frogley, M.R., Lawson, I.T., Preece, R.C. (2008): Vegetation history of the marine isotope stage 7 interglacial complex at Ioannina, NW Greece. – Quaternary Science Reviews, 27: 1378–1395. http://dx.doi.org/10.1016/j.quascirev.2008.04.002 Scourse, J. (2006): Comment on: Numerical 230Th/U dating and a palynological review of the Holsteinian/Hoxnian Interglacial by Geyh and Müller. – Quaternary Science Reviews, 25: 3070–3071. http://dx.doi.org/10.1016/j.quascirev.2006.03.006 Seitl, L., Svoboda, J., Ložek, V., Přichystal,A., Svobodová, H. (1986): Das Spätglazial in der Barová-Höhle im Mährischen Karst. – Archäologisches Korrespondenzblatt, 16: 393–398. Svoboda, J. (1991): Neue Erkentnisse zur Pekárna-Höhle im Mährischen Karst. – Archäologisches Korrespondenzblatt, 21: 39–43. Svobodová, H. (1988): Pollenanalytische Untersuchung des Schichtkomplexes 6-1 vor der Kůlna-Höhle. – In: Valoch, K. (ed), Die Erforschung der Kůlna Höhle 1961–1976. Anthropos, 24, Brno, pp. 205–210. Svobodová, H. (1992): Palaeobotanical evidence on the Late Glacial in the Moravian Karst. – In: Eder-Kovar, J. (ed.), Palaeovegetational Development in Europe and Regions relevant to its Palaeofloristic Evolution. Proceedings of the Pan- European Palaeobotanical Conference Vienna, Museum of Natural History Vienna, Vienna, pp. 19–23. Urban, B., Sierralta, M. (2012): New palynological evidence and correlation of Early Paleolithic sites Schöningen 12 B and 13II, Schöningen Open Lignite Mine. – In: Behre, K.-E. (ed.), Die chronologische Einordnung der paläolithischen Fundstellen von Schöningen, Römisch-Germanisches Zentralmuseum, Mainz, pp. 77–96. Urban, B., Sierralta, M., Frechen, M. (2011): New evidence for vegetation development and timing of Upper Middle Pleistocene interglacials in Northern Germany and tentative correlations. – Quaternary International, 241: 125–142. http://dx.doi.org/10.1016/j.quaint.2011.02.034 Vodičková-Kneblová, V. (1961): Entwicklung der vegetation im Elster-Saale-Interglazial im Suchá-Stonava-Gebiet (Ostrava-Gebiet). – Anthropozoikum, 9(1959): 129–174. Walanus, A., Nalepka, D. (1999): POLPAL - Program for counting pollen grains, diagram plotting and numerical analysis. – Acta Paleobotanica, 2: 659–661. 40 Explanations of the plate PLATE 1 Typical pollen grains (all magnifications 1 000 x) 1. Hedera sp. - layer 2b, profile ZH P-8b. 2. Pterocarya sp. - layer 2b, profile ZH P-8b. 3., 4. Tilia sp. - layer 5–9.5 m, profile ZH P-9. 5., 6. Carpinus sp. - layer 5–9.5 m, profile ZH P-9. 7. Juglans sp. – layer 4, profile ZH P-11. 8. Celtis sp. - layer 5–9.5 m, profile ZH P-9. 9. Quercus sp. - layer 4, profile ZH P-10. 10. Salix sp. - layer 5–10 m, profile ZH P-9. 11., 12. Corylus sp. - layer 5–9.5 m, profile ZH P-9. 13. Galium sp. - layer 3ba, profile ZH P-11. 14. Asteraceae Cichorioideae - layer 3b, profile ZH P-11. 15. Asteraceae Asteroideae - layer 2b, profile ZH P-8b. 16. Chrysosplenium/Ranunculus trichophyllum type layer 5–8.5 m, profile ZH P-9. 17. Poaceae - layer 5–9.5 m, profile ZH P-9. 18. Alnus sp. - layer 5–9.5 m, profile ZH P-9. 19. Pinus sylvestris type - layer 4, profile ZH P-11. 41 PLATE 1 42 Acta Palaeobotanica 47(1): 275–279, 2007 Use of fluorescent microscopy in the study of redeposited palynomorphs in the cave and marine sediments of Moravia (Czech Republic) NELA DOLÁKOVÁ1 and ALENA BUREŠOVÁ2 1,2 Institute of Geological Sciences, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic; e-mail: nela@sci.muni.cz Received 23 Jube 2006; accepted for publication 13 February 2007 ABSTRACT. Reworked palynomorphs occur in the cave sediments of the Moravian karstic areas as well as in marine sediments of the Carpathian Foredeep (Czech Republic). Their preservation states may be different or similar under the light microscope. The mutual distinguishing features of primarily Quaternary and Tertiary ones, or of the palynomorphs from particular Miocene stages are therefore often very difficult to determine. Observation under the fluorescent microscope can help to determine the reworked palynomorphs in Quaternary as well as Miocene sediments. KEY WORDS: fluorescent microscopy, redeposited palynomorphs, Miocene, Quaternary, Czech Republic INTRODUCTION It is not necessary for palynological studies to be done only in autochthonous sediments (i.e. of organic and chemical development). The sediments develop mostly through disintegration, transport and resedimentation of older rocks. Therefore we can often find the older redeposited palynomorphs in younger sediments. The occurrence of reworked palynomorphs is typical for cave sediments. These sediments do not contain plant remains in their original positions. Palynomorphs are transported to the sedimentation places with sedimentary particles or through the activity of animals. These facts create the possibility of mixing components of different ages as well as selection of palynomorphs due to their varied degrees of resistance (Doláková & Nehyba 1999, Doláková 2000, 2002). The preservation state of the redeposited grains can be similar to the grains that are contemporary to the development of the sediments and therefore it is frequently difficult to mutually distinguish them. Very similar problems arise in the Miocene marine sediments from the Carpathian Foredeep. Several transgression and regression cycles occurred in this region. The redepositions of foraminifers and calcareous nannoplankton from the older Miocene stages into the younger ones are commonly known from this area (Brzobohatý et al. 2003). Thus, the occurrence of redeposited palynomorphs is likewise possible. The decision about whether some pollen and spores typical for the climatic zonations are in situ or not is therefore of great importance. It is even important to diagnose the potential amounts of redepositions within frequent usual species, because the high percentage of such redeposition could change the image of palaeovegetation. Observation under fluorescence microscopy introduces a possibility to detect the reworked palynomorphs. These methods were elaborated mostly by van Gijzel (1967a, b, 1971, 1975, 1978). All our macerated sediments were rich in clays; they were partly calcareous, and for the most part not coalified. For the maceration, 276 HCl, HF (not heating) and heavy liquid ZnCl2 were used. Pure glycerine was mostly used as the observation medium. Part of the samples (especially from the cave sediments) were microscopically studied directly in ZnCl2 due to the exclusion of further dilution of mostly very small palynomorph amounts. RESULTS The sediments of the karstic formations from the Moravian part of the Czech Republic (Moravian, Javoříčko and Hranice Karsts) are of Holocene, Pleistocene and Miocene ages (Doláková 2000, 2002, 2004a, b, Doláková & Nehyba 1999). The mixing of components of different ages – especially Quaternary and redeposited Tertiary – is common in these areas. Observed under the light microscope, their preservation states can be very similar. It is therefore often very difficult to distinguish the ages of individual palynomorphs known both from the Quaternary and Tertiary e.g. Pinus, Ulmus, Alnus, Quercus, Corylus, and Betula, which consequently causes complications in age determination and climatic reconstructions. For example, 300 Quaternary and 80 verifiable Tertiary palynomorphs were determined in one sample from Ochoz cave (Doláková & Nehyba 1999), their preservation states being very alike (Pl. 1, fig. 3a, b). Similar problems arise in the Miocene marine sediments from the Carpathian Foredeep. The occurrence of redeposited Cretaceous palynomorphs is quite usual and well detected. Under the optical microscope, the existence of palynomorphs redeposited from the older Miocene stages is often not possible to prove. We try to use the observations under the fluorescent microscope to detect some redeposited palynomorphs (Burešová 2005). Van Gijzel (1967a, b, 1971, 1975, 1978) focused his attention on the methods of determining the properties of UV-fluorescence on fresh and fossil pollen and spores. He found that the fluorescence spectra are closely related to the chemical composition of palynomorphs. They also depend on the different levels of resistance to geological age, corrosion and coalification of pollen and spore walls. Similarly, weathering redepositions connected with the oxidization of rocks and activities of bacteria and fungi also change the intensity and colours of the studied pollen and spores (van Gijzel 1971). These characteristics are then significant for determining the systematics and age of palynomorphs. Most of these methods require a lot of complicated measuring and equipment (van Gijzel 1967a, b, 1975) for routine palynological studies. For the orientational detection of the reworked palynomorphs, the relative observation of the colour spectra seem to be convenient. It is necessary to attentively observe the change in colour for a single type of palynomorph. With increasing age, coalification and corrosion, the colours shift from blue-green, white or yellow and strong fluorescence to orange, red or brown and weak fluorescence. Thus, each type of secondary pollen shows a larger variation in fluorescent colours than the autochthonous material (van Gijzel 1971). New data about the effect on fluorescence of the physical processes associated with peat erosion and re-sedimentation in reservoirs during the Holocene were provided by Yeloff and Hunt (2005). According to van Gijzel (1967b), the maceration methods may also cause variation in fluorescence (the use of hydrofluoric acid can shift fluorescent colours of pollen to the red end of the spectrum and darker). From our experience, glycerine gelatine was found not to be a suitable mounting medium for the study of fluorescence. In a short time, the gelatine changes colour (develops a dark circle) and the palynomorphs fade. Glycerine as well as ZnCl2 seem to be suitable. The studied objects have sufficiently stable colours for the duration of observation. The autochthonous pollen grains (except grasses), both from the studied Quaternary cave (Pl.1, fig.1a, b, 3a, b, 5a, b) and Miocene marine sediments (Pl. 1, fig 2a, b), have light colours (white, light-yellow, light-orange) and intensive fluorescence during UV observation. The pollen grains in the brackish more coalified material from the Lower Miocene sediments manifest shifts of colour towards brownish-orange and a decreasing intensity of fluorescence (Pl. 1, fig.6). Verifiably redeposited palynomorphs from the Moravian Quaternary karstic sediments have typical dark brown colours with a very low intensity of fluorescence (i.e. pollen grains of Taxodiaceae – Pl. 1, fig. 3a, b). It is therefore possible to assume the grains of similar colours to also be redeposited (Pl. 1, fig. 1a, b). 277 Good identification of redeposition is possible (from the different colours) in the mixture of specimens of several ages of the one genus e.g. Pinus from the Quaternary (Pl. 1) and from the Miocene (Pl. 1, fig. 2) palynospectra. The detection of single unusual pollen grains and spores brought out more difficulties. Some types of palynomorphs have primarily low fluorescence or their exines are easier disintegrated than others (i.e. Poaceae, Lygodium); therefore, the redepositions are very hard to confirm or eliminate. Other interesting observations are connected with the different colours of the algal bodies. After Brooks (1971) and Yeloff and Hunt (2005) the sporopollenin content of lower plants is chemically different from that of higher plants. The rate of corrosion of the algal remains and fungal spores is different from that of spores and pollen grains (van Gijzel 1971); therefore, they differ considerably in fluorescence from the other plant remains in the fossil material. In the studied Quaternary sediments (cave sediments, soils), the cenobia of Botryococcus and Pediastrum show striking blue-green colours (Pl. 1, figs 7, 8a, b). In the Miocene sediments these were yellowish-white with a very high intensity (Pl. 1, fig. 6). These phenomena enable the detection of even small parts of algae among other plant remains. ACKNOWLEDGEMENT We would like to express our thanks to Dr. P. Pokorný and Dr. S. Sarkar (University Brno) for their remittance to issues of fluorescence microscopy. This study was supported by Grant Agency of the Czech Republic, Grant 205/04/1021. REFERENCES BROOKS J. 1971. Some chemical and geochemical studies on sporopollenin: 351–407. In: Brooks J., Grant P.R., Muir M., van Gijzel P. & Shaw G. (eds) Sporopollenin. Academic Press, London – New York. BRZOBOHATÝ R., CICHA I., KOVÁČ M. & RÖGL F. 2003. The Karpatian a Lower Miocene stage of the Central Paratethys. Masaryk University, Brno. BUREŠOVÁ A. 2005 (unpubl.). Paleobotanické výzkumy v sedimentech pleistocénu a raného holocénu na Moravě. (Paleobotanical researches in the sediments of the Pleistocene and Early Holocene in Moravia). Archives of the Masaryk University Brno. (in Czech). DOLÁKOVÁ N. 2000. Palynological studies from the Ochozská Cave and from the Šošůvka part of the Sloup-Šošůvská Cave (Moravian Karst). Geolines, 11: 172–174. DOLÁKOVÁ N. 2002. Palynologické studium sedimentů Šošůvské části Sloupsko-Šošůvských jeskyní a spodní části opěrného profilu v jeskyni Kůlna. (summary: Palynological studies of the sediments from the Šošůvka part of the Sloup-Šošůvka Cave and from the lower part of the supporting profile in the Kůlna cave (Moravian Karst). Acta Mus. Moraviae, Sci. Geol., 87: 275–288. DOLÁKOVÁ N. 2004a. Palynologická studia jeskynních sedimentů moravských krasových oblastí. Česká speleologická společnost. 3. národní speleologický kongres, Sloup: 13–15. Sloup. (in Czech). DOLÁKOVÁ N. 2004b. Palynological studies in the Cave sediments from the Moravian, Javoříčko and Hranice Karsts – Czech Republic. 11th In ternational Palynological Congress, Granada 2004, Acstract. Polen, 14: 269–270. DOLÁKOVÁ N. & NEHYBA S. 1999. Sedimentologické a palynologické zhodnocení sedimentů z Ochozské jeskyně. (Sedimentological and Palynological value of the sediments from the Ochozská jeskyně cave). Geol.Výzk. Mor. Slez. in 1998: 7–10. Brno. (in Czech). Van GIJZEL P. 1967a. Palynology and flourescence microscopy. Rev. Palaeobot. Palynol., 2:49–79. Van GIJZEL P. 1967b. Autofluorescence of fossil pollen and spores with special reference to age determination and coalification. Leidse Geol. Meded., 40: 263–317. Van GIJZEL P. 1971. Review of the UV-fluorescence microphotometry of fresh and fossil exines and exosporia: 659–685. In: Brooks J., Grant P.R., Muir M., van Gijzel P. & Shaw G. (eds) Sporopollenin. Academic Press, London – New York. Van GIJZEL P. 1975. Polychromatic UV-fluorescence microphotometry of fresh and fossil plant substances, with special reference to the location and identification of dispersed organic material in rocks: 67–91. In: Alpern B. (ed.) Colloque International Petrographie de la Matiere Organique des Sediments, Paris. Van GIJZEL P. 1978. Recent developments in the application of quantitative fluorescence microscopy in palynology and paleobotany. Ann. Mines Belgique, 7–8: 836–851. YELOFF D.E. & HUNT C.O. 2005. Fluorescence microscopy of pollen and spores: a tool for investigating environmental change. Rev. Palaeobot. Palynol., 133: 203–219. 278 Plate 1 1a. Part of pollen spectrum of the Late Glacial cave sediments – light microscope – red circle Pinus sp. autochthonous, green circle Pinus sp. redeposited, Ochoz cave 1b. The same under the fluorescent microscope (UV light) 2a. Part of pollen spectrum from the Badenian marine sediments – light microscope – green circle redeposited Pinus sp. (the cubic caves in the grain are caused by crystallization of pyrite in the anoxic marine environment), Židlochovice 2b. The same under the fluorescent microscope (UV light) 3a. Redeposited Taxodiaceae from the Late Glacial cave sediments – light microscope, Ochoz cave 3b. The same under the fluorescent microscope (UV light) 4. Taxodiaceae from the Badenian marine sediments, the fluorescent microscope (UV light), Židlochovice 5a. Helianthemum sp. from the Late Glacial cave sediments – light microscope, Ochoz cave 5b. The same under the fluorescent microscope (UV light) 6. Pinus and Botryococcus sp. from Eggenburgian brackish sediments, the fluorescent microscope (UV light), Trboušany 7. Cenobium of Pediastrum sp., fluorescent microscope, late Pleistocene, Krumlov Forest 8a. A – cenobium of Pediastrum sp. and B – several parts of another Pediastrum, fluorescent microscope, late Glacial cave sediments, Ochoz cave 8b. A, B part of the same under the light microscope P L A T E 279 N. Doláková & A. Burešová Acta Palaeobot. 47(1) Plate 1 N. Jb. Geol. Paläont. Abh. 271/2 (2014), 169–201 Article Stuttgart, February 2014 The Badenian parastratotype at Židlochovice from the perspective of the multiproxy study Nela Doláková, Katarína Holcová, Slavomír Nehyba, Šárka Hladilová, Rostislav Brzobohatý, Kamil Zágoršek, Juraj Hrabovský, Michal Seko, and Torsten Utescher With 6 figures Abstract: Two shallow boreholes were drilled in 2010 into the Badenian (Langhian) parastratotype at Židlochovice (Carpathian Foredeep, NN5 Zone, Czech Republic). Their profiles (26 m of sediment) were studied comprehensively (sedimentology, palaeontology – calcareous nannoplankton, red algae, palynology, Foraminifera, Bryozoa, Brachiopoda, Ostracoda, Mollusca, Teleostei and Elasmobranchii). The sedimentary succesion was biostratigraphically correlated with the NN5 Zone (14.9- 13.9 Ma), namely with the initial time of the Middle Miocene Climatic Transition. Seven lithofacies representing multiple alternations of mudstone, sandstone and limestone facies were recognised within sedimentary succession. Fossils generally indicated a normal marine, warm to subtropical environment. The generally shallowing trend from the bottom (epibathyal/circalittoral) to the top (shallow infralittoral) of the sedimentary succession with repeated palaeobathymetric changes could be recognized in both boreholes. A mainly subtropical character of terrestrial flora was recorded. Within this framework, either warm wet conditions with seasonal increases, or cooler phases were observed. The abrupt change from mudstone deposited in a calm palaeoenvironment of the upper bathyal/circalittoral to the variegated deposits of shallow water represents the most significant event correlable with the FO of Orbulina (approximately 14.5-14.6 Ma). The interval below the FO of Orbulina can be characterized by mudstone facies and significantly stable conditions of deposition, high nutrient input and a decrease of oxygen content at the bottom. Seasonal stratification of the water column is probable. Within this interval, cooling and an increase of seasonality were recorded. Above the FO of Orbulina, there is evidence of shallowing connected with a higher flow regime and higher sedimentation rate. The alternation of thick redalgal limestone bodies (a stable shallow palaeoenvironment with low terrigenous input and seagrass meadows) and variegated sandstone, mudstone and limestone interbeds (in an unstable deeper environment) possibly reflects orbitally forced climatic cyclicity. Key words: Badenian, parastratotype, multiproxy quantitative analysis, palaeoecology, climate. 1. Introduction The locality of Židlochovice – the clay pit of an old brickyard (coordinates: long 16°37‘ 30‘‘; lat. 49°02‘ 34‘‘; Z = 219-240 m a.s.l.) – is located at the southern part of the Carpathian Foredeep in Moravia (Czech Republic), which represents a peripheral system of Central Paratethys basins (Fig. 1A). This site has provoked the interest of many palaeontologists for a very long time due to its rich fossil assemblages of foraminifera, bryozoans, ostracods, microflora (nannoplankton and red algae), molluscs (bivalves, gastropods, cephalopods), sea urchins, corals, and the fish otoliths and teeth (i.e., Procházka 1893; cicha et. al. 1956; PaPP et al. 1978; Říha 1983; BrzoBohatý 1997; Doláková et al. 2008; zágoršek 2010a). Outcropping deposits were assigned as a regional faciostratotype of the Lower Badenian by PaPP et al. (1978) corres- pondingtotheLanghianinthestandardchronostratigraphy (hohenegger et al., in press). ©2014 E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, Germany www.schweizerbart.de DOI: 10.1127/0077-7749/2014/0383 0077-7749/2014/0383 $ 8.25 E 170 N. Doláková et al. Fig. 1. A – Location of Židlochovice boreholes. B – Correlation of Židlochovice boreholes with biostratigraphical events and global sequences 1 ranges from graDstein et al. (2012); 2 – Mediterranean ranges from Distefano et al. (2008); aBDul aziz et al. (2008); hüsing et al. (2010); 3 – ranges from the Carpathian Foredeep (šváBenická 2002, this work); 4 – strati- graphicalrangeofŽIDLboreholes;5–discrepancyinsuccessionofbiostratigraphicalevents(FOofOrbulinasuturalisand LOofHelicosphaerawaltrans)betweenMediterraneanareaandŽidlochovicesuccession. The Badenian parastratotype at Židlochovice 171 The outcrop sediments were biostratigraphically correlated with the NN5 nannofossil biozone and Orbulina suturalis (foraminiferal zone) (PaPP et al. 1978; Fig. 1B).They primarily consist of unlaminated glauconitic calcareous clays – “tegel” – with intercalations of calcareous sands or sandstone and limestone with a dominance of red algae and bryozoans. The environment was interpreted as a shallow circalittoral on the basis of Foraminifera and Mollusca (PaPP et al. 1978). However, the study of faciostratotype from the 1970s is insufficient for current detailed interpretation. Therefore, the goal of the revision was to reevaluted biostratigraphy and to reconstruct an ecosystem evolution in the faciostratotype locality using the multiproxy quantitative analysis by trying to achive a high resolution oft he records. In the present day, the claypit is abandoned and covered with slope debris. Therefore, two shallow boreholes representing the original parastratotype section were drilled in 2010: the lower interval was documented as ŽIDL-1 (11.9 m, 230 m a.s.l.) and the upper as ŽIDL-2 (16.9 m, 246 m a.s.l.). The drilled cores were studied in detail from the perspective of their sedimentology, palynology, calcareous nannoplankton, red algae, Foraminifera, Mollusca, Brachiopoda, Ostracoda, Bryozoa and Teleostei – otoliths, teeth, Elasmobranchii (teeth). Some of detailed palaeobiological analyses have been already published (seko et al. 2012 – Ostracoda; Pavézková et al., in press – Brachiopoda, tomaštíková & zágoršek 2012) – Bryozoa). 2. Geological setting The locality at Židlochovice is located in the Carpathian Foredeep (CF) near the boundary of the eastern slopes of the Bohemian Massif that dip below Neogene sediments and Carpathian flysh nappes (Fig. 1A). The Badenian deposits of the CF in Moravia (Czech Republic) represent the final stage of the depositional history of the outer peripheral basins in the NW of the Central Paratethys (meulenkamP et al. 1996). At the beginning of the Middle Miocene, extensive erosion took place in the Western Carpathians. The Badenian transgression in the Moravian part of the Carpathian Foredeep could be correlated with global sea level cycle TB 2.4 (harDenBol et al. 1998, 14.8-13.6 Ma) though local cycles were strongly controlled by tectonics (kováč et al. 2001) and associated with basin subsidence and continuous mountain chain uplift during the synrift stage of back arc basin development. The basins were filled with clastics transported from uplifted areas (kvaček et al. 2006). The studied sedimentation area was profoundly differentiated. In general scheme at the beginning of transgression in the shallow or elevated places, sand, gravel, biostromal and biohermal limestone or calcareous sandstone with a dominance of red algae and bryozoas (Doláková et al. 2008; zágoršek 2010a) were deposited. By contrast, a hundred meter deep depression was filled with unlaminated calcareous clays – “tegel” (BrzoBohatý 1997; kováč 2000; kováč et al.2007). 3. Methods A lithofacies analysis was conducted according to tucker (1995), Walker & James (1992) and nemec (2005). The shape and roundness of the coarsest grain fraction (> 4mm – sieve separation, 17 samples) were estimated visually under a microscope using the PoWers (1982) method. Combined sieving and laser methods were used for grain size analysis (22 samples). The Retch AS 200 sieving machine analysed the coarser grain fractions (4 mm-0.063 mm, wet sieving); the Cilas 1064 laser diffraction granulometer was used for analyses of the finer fractions (0.0004-0.5 mm). Ultrasonic dispersion, distilled water and washing in sodium polyphosphate were used prior to the analyses in order to avoid flocculation of the analysed particles. Average grain size is expressed as the graphic mean (Mz), uniformity of the grain size distribution/sorting as the standard deviation (σI) (folk & WarD 1957). Fossils (with the exception of palynomorphs, red algae and calcareous nannoplankton) were studied from washing residue (fractions 63-2000 µm) – 26 foraminifera samples from the ŽIDL-l borehole and 24 samples from the ŽIDL- 2 borehole (Appendices 1, 2), molluscs (13+8) (Appendix 4), ostracods (13+8), brachipods (13+8), bryozoans (13+8), bonefish and sharks (6+7) (Appendix 5), and fragments of coralline algae. Calcareous nannoplankton was studied in slides (26+24) (Appendix 3), coralline red algae in thin sections (3+3) (Appendix 6), and palynomorphs after standard palynological maceration in slides with pure glycerine observation medium (16+16) (Appendix 7). A KAPPA STM 723 stereomicroscope, Arsenal SZP 1102 ZOOM (bryozoans), WILD Heerbrugg (otoliths, teeths), Nikon SMZ1 (molluscs, brachiopods), and Nikon Alphaphot (red algae, palynomorphs) have been use for taxonomic analyses. The palynological problematic taxa identification was done using the scanning electron microscope JEOL JSM – 649 OLV (Institute of Geological Sciences, Masaryk University); ostracods – JEOL JSM 6390 (AVSR Banská Bystrica); foraminifera – JEOL JSM 6380 LV (Charles University in Prague); and bryozoan – low-vacuum SEM Hitachi S3700N (Paleontological Department of the National Museum in Prague). About 200300 specimens of foraminifera from each sample were determined and the relative abundance of taxa were calculated (Appendices 1, 2). The taphonomical analysis of foraminiferal assemblages included the study of abrasion and corrosion and the size sorting of tests (holcová 1996, 1999). The palaeoecological interpretations 172 N. Doláková et al. Fig. 2. List of lithofacies recognised in the drill holes Židlochovice 1 and 2 (Mz – mean/average grain size, σIstandart deviation/sorting – counted according to folk & WarD (1957). were based on the actuoecological data of culver & Buzas (1980, 1981), Den Dulk et al. (1998, 2000), Jorissen et al. (1995), kaiho (1994, 1997), van hinsBergen et al. (2005), and murray (2006). Slides for the study of calcareous nannoplankton were prepared using the following technique: approximately 0.5 cm3 of rock sample was pulverized and watered with 5 ml of water. One minute after shaking, one drop of suspension from the middle of the water column was dripped on a microscope slide. After this drying, standard microscope slides were prepared and analysed using a light microscope (normal and crossed nicols, 1000 x magnification). The abundance of nannoplankton was expressed semiquantitatively as a number of specimens in the visual field of the microscope. The following categories were distinguished: (i) very rare: 1-2 specimens; (ii) rare: 3-5 specimens; (iii) common: 6-10 specimens; (iv) abundant: 11-20 specimens; (v) very abundant: 21-40 specimens; (vi) mass occurrence: above 40 specimens. The relative abundances of calcareous nannoplankton species in assemblages were evaluated quantitatively based on 200-500 determined specimens from individual samples (Appendix 3). Calcareous nannoplankton and foraminiferal assemblages were statistically classified using the multivariate techniques of PAST software (hammer et al. 2001). Euclidean distance was chosen for quantification of object distance. Four tested methods (PCA; cluster analysis: paired group, single linkage, Wards method; nonmetric MDS, CABFAC Factor analysis) gave comparable results. Finally, results of the CABFAC Factor analyses were selected for publication, because its results were the most illustrative. Molluscs were evaluated semiquantitatively from 100 g dry weight of sediment: less than 5 fragments were classed as rare (1), 615 fragments as common (2), 1635 fragments as abundant (3). Numbers of molluscan fragments reflect the abundances of molluscan clasts among other bioclasts and rock pieces in the washed residuum and do not express the numbers of animals (Appendix 4). A few samples of bryozoans from more lithified rock were “laboratory weathered” and/or treated with acetic acid as described by zágoršek et al. (2011). The method might selectively dissolve some part of the skeleton unabling the precise determination. However, without the treatment, the number of determinable specimens considerable decreased. Ostracod assemblages were analyzed with a focus on taxonomy and palaeoecology, the later based on distribution of the specimens and species along the borehole profiles, the quantification of the valves/carapaces ratio, and the species richness by using Simpson’s Reciprocal Index (seko et al. 2012). For genera description of Rhodophyta, the methods by Woelkerling (1988) and Braga et al. (1993) were used. Microfacies were described according to flügel (2004). PlanimetricanalysiswascalculatedwithJMicrovisionsoftware(roDuit 2008). Standard maceration with HCl (20 %), HF, KOH and The Badenian parastratotype at Židlochovice 173 HCl (10 %) and ZnCl2 (density = 2 g/cm3 ) was used for the palynological samples. Pure glycerine was most frequently used as the observation medium. The percentage of individual taxa was calculated from the total sum of a minimum of 150 determined pollen grains and spores by using the POLPAL programme (Walanus & nalePka 1999). The palaeotropical and arctotertiary elements were classified according to stuchlik et al. (1994). The terminology used for vegetation units and partly for creating the pollen diagrams follows kvaček et al. (2006) and kovar-eDer et al. (2008). The pollen diagram was arranged into two parts due to the overrepresentation of conifers: in the left section is the pollen sum (100 %), excluding conifers, thus giving a better visualisation of the basic character of the vegetation changes. The right section shows the proportion of Pinus and Cathaya and was counted from the sum of all grains. 4. Results 4.1. Sedimentarygeology The lithofacies within the studied core profiles were defined according to their grain size, rare preserved sedimentary structures and petrology. Seven lithofacies were recognised within the drill holes. Their characteristics are presented in Fig. 2 and their distribution can be followed in the presented lithostratigraphic logs in Fig. 6A, B. Mudstone lithofacies (M1 and M2) dominate in both drill holes, with a slightly higher in drill hole ŽIDL-1, forming 69.7 % of the succession, compared to 66.7% in drill hole ŽIDL-2. The relative proportion of other lithofacies significantly differs between the studied drill holes. The ŽIDL-1 drill hole is characterized by a low content of sandy facies (only 8.3 % of the profile and only S2 facies was recognized), a comparably higher content of limestone facies L (17.9 %), and presence of heterolithic facies (4.1 %). The ŽIDL-2 drill hole shows a comparably higher presence of sandy facies (S1, S2, S3; 22.0 % of the profile), lower content of facies L (11.4 %) and the absence of the heterolithic facies. Interpretation: The highly abundant mudstone lithofacies reveal dominant deposition from suspension in relatively calm conditions. Variations in the content of sand, bioturbation, preservation of planar bedding and shell debris also reflect periods of a relatively higher input of material transported in traction (possibly by storm currents). Sandy lithofacies and their alternation with mudstone ones can be connected with deposition in the lower shoreface or a transitional zone to a deeper environment. The sharp bases of the beds, occurrence of transported limestone clasts, shell debris and planar lamination all support the role of an increased water energy. The absence of clear wavy structures could point to deposition below the normal wave base; we can speculate about a high energy coast possibly non barred. Heterolitic facies reflects the rapid alternation of clastic input into the depositional environment. The thick beds of limestone facies can be connected with the stable conditions of deposition and also with a severe reduction of clastic input. Thin limestone interbeds could also be connected with the erosion and redeposition of limestone into deeper environments (possibly from the impact of storms). The multiple alternation of relatively thin beds composed of mudstone, sandstone and limestone facies (especially in the ŽIDL-2 drill hole) are interpreted as cyclic changes of depositional conditions (possibly climatically driven). Repeated coarsening upward cycles in the successions with the transition from mudstone facies to sandstone and/or finally limestone can be interpreted as parasequences. The significantly stable conditions of deposition are presumed for the lower parts of the succession in the ŽIDL-1 drill hole. 4.2. Biostratigraphy Four planktonic foraminiferal and calcareous nanoplankton bioevents were used for biostratigraphical correlation (Fig. 1B) (1) Praeorbulina circularis occurs from the base to the top of both sedimentary successions (2) The FO (i.e. First Occurrence) of Orbulina suturalis was recorded at the level 5.7-5.8 m of the ŽIDL-1 borehole, in the ŽIDL-2 borehole, Orbulina suturalis occurs from the base (3) Neither Globorotalia preamenardii nor other younger index species were found. (4) Sphenolithus heteromorphus was recorded along the whole sedimentary succession; (5) Helicosphaera ampliaperta as well as Helicosphaera waltrans, commonly and continuously occuring in underlying deposits, were not recorded (6) Uvigerina macrocarinata, the marker of the regional Central Paratethyan substage (Moravian, cicha et al. 1998), occurs from the base to the top of both sedimentary succesion (7) Among molluscs, a characteristic Badenian taxon is Costellamussiopecten spinulosus. The FO of the species “Chlamys” trilirata (ŽIDL-2) lies above the base of the Middle Miocene in Paratethys, and this species occurs only in the Lower and ?Middle Badenian (manDic 2004). Some of the pec- 174 N. Doláková et al. Fig. 3. CABFAC Factor analysis (PAST softaware) of assemblages of benthic foraminifera, planktonic foraminifera and calcareous nannoplankton assemblages. tinid species at Židlochovice also occur in the Grund Formation in the AlpineCarpathian Foredeep in Lower Austria (correlated with the Lower Lagenidae Zone – manDic 2004). Only Costellamussiopecten cf. spinulosus – typical exclusively for the upper parts of the Lower Badenian (Upper Lagenidae Zone – man- The Badenian parastratotype at Židlochovice 175 Dic 2004) – is entirely absent in the Grund Formation, whichindicatesthatthesediments atŽidlochoviceare slightly younger than the sediments of the Grund Formation (the situation is identical in Kralice nad Oslavou – zágoršek et al. 2009). Based on events (1) – (5), the ŽIDL-1 and 2 boreholes can be correlated with the upper part of the NN5 Zone of calcareous nannoplankton (martini 1971) above the LO of Helicosphaera waltrans and the upper part of the M5 and lower part of the M6 zones of planktonic foraminifera (Berggren et al. 1995). According to the regional Central Paratethys chronostratigraphy (using also regional bioevents (6) and (7), the age of the sediments at Židlochovice can be interpreted as Badenian, more exactly as upper part of the Early Badenian (sensu PaPP et al. 1978; kováč et al. 2007) or upper part of Mid Badenian according to to the latest subdivision of the Badenian (hohenegger et al. in press.). 4.3. Palaeobiology 4.3.1. Foraminifera and calcareous nannoplankton Foraminiferal and calcareous nannoplankton assemblages (Appendices 1, 2) were statistically classified and results of CABFAC Factor analysis are presented in Fig. 3: Assemblages of benthic foraminifera can be well characterized by four factors which explained 83.64 % of variance; the 5th and next factors explain each only less than 1.5 % of variance. (B1) The “Epiphytic” Factor 1 dominated by Asterigerinata planorbis (4065%) may have alternated with Elphidium spp. – Amphistegina spp. Factor 4. Epiphytic species, which substantially dominated, allow to interpret a well-aerated environment of seagrass meadows. The assemblages often contain robust corroded and abraded tests of shallow water species (mainly Elphidium spp.) as well as foraminifera from different palaeoenvironments (e.g. Uvigerina spp., Lenticulina spp.) which indicates the postmortal transport of tests by bedload in a higherenergy environment and/or reworking of tests. (B2) The “Highnutrient” Factor 2 with 30-55 % of Pullenia bulloides, Nonion commune – Hansenisca soldanii, Melonis pompiloides, Heterolepa dutemplei and biserial textulariids: these high nutrient markers (deep infauna, detrivore) indicate a high content of nutrients in the sediment. (B3) The “Cibicidoides – lowoxic markers” Factor 3 is dominated by Bolivina dilatata, smallsized Cibicidoides sp., Globocassidulina oblonga and Cassidulina spp. (30-50 %). Foraminiferal tests are smallsized and well preserved. The association of lowoxic infaunal species along with opportunistic oxic species may indicate (i) seasonal changes in water circulation – stratification with hypoxic bottom environment change during the year to nonstratified well oxygenated water with a bloom of epifaunal suspension feeder, or (ii) hypoxia only in the sediment (lowoxic infauna: Bolivina, Globocassidulina and Cassidulina marker of phytodetritus supply). At the bottom, there is a well aerated environment with Cibicidoides sp. Generally, stress conditions can be expected. Statistical classification of planktonic foraminifera by CABFAC Factor analysis is presented in Fig. 3. Four factors explained 90-94 % of variance, % of variance for the following factors does not exceed 2 %. (P1) The smallsized Globigerina Factors 1 and 2 (Fourchambered G. praebulloides Factor 1 and G. tarchanensis – Turborotalita quinqueloba Factor 2) differs from the others in that its smallsized specimens. Relative abundances of fourchambered globigerinas reached values 15-35 % in samples with high factor loading of the Factor 1 while fivechambered globigerinids represent 50-80 % of assemblages with high factor loading of the Factor 2. The relative abundancesofgroupsoffiveand fourchamberedglobigeri- nasnegativelycorrelated(correlationcoefficient0.52). The both groups represent opportunistic, stresstolerant assemblages, isotopic studies (holcová & Demeny 2012)indicatethe bloomof this smallsized specimens to be probable after freshwater input. Fivechambered globigerinids can indicate cold nonstratified water (ruPP & hohenegger 2008); while Distefano et al. (2010) described these foraminifers under hypersaline conditions. Summarizing these interpretations, stress condition represented mainly by salinity oscillations can be expected for samples with high factor loadings of these factors. Dominance of fivechambered globige- rinidsmaybeaccompaniedwithmixedwatercolumn. (P2) The Globigerina bulloides Factor 3 contains common largesized Globigerina bulloides and Globigerinella regularis (15-30 %) and characterized foraminiferal assemblages generally with low P/Bratio (to 20 %) and higher relative abundances of Globigerinoides spp. and orbulinas (5-15 %). The warmwater and oligotrophic species (Globigerinella regularis, 176 N. Doláková et al. Globigerinoides spp. and orbulinas) (reynolDs & thunell 1985; hemleBen et al. 1989; PuJol & vergnauD grazzini 1995; sPezzaferri 1995; Bicchi et al. 2003; ruPP & hohenegger 2008) co-occurred with eutrophic marker Globigerina bulloides (reynolDs & thunell 1985; hemleBen et al. 1989) what may indicate the seasonal succession of different groups of plankton. (P3) In samples with high factor loading of the Paragloborotalia mayeri Factor 4, 25-60 % of nominative species were recorded which can be accompanied by small-sized Globigerina ex gr. praebulloides. The cooccurrence of more eutrophic Globigerina spp. with rather oligotrophic and warmer water Paragloborotalia may indicate the succession of seasonal popula- tions. Calcareous nannoplankton assemblages can be excellently classified by 3 factors which represent 99-75 % of variance (Fig. 3): (N1)ReticulofenestraminutaFactor1groupedassemblages with more than 80% of small sized Reticulofenestra minuta The small reticulofenestras are considered to be stress-tolerant taxa indicating stress characterized by quick changes within that environment, including the oscillation of salinity (WaDe & BroWn 2006) and nutrient content (hallock 1987; Beaufort & auBry 1992; flores et al. 1997; Wells & okaDa 1997;Bollmannetal.1998;kameo2002). (N2) The Reticulofenestra haqii – R. minuta Factor 2 (small to medium-sized Reticulofenestra) is characterized besides small R. minuta also by 5-15 % of specimens from R. haqii group (sensu holcová 2012). (N3) The Coccolithus pelagicus – Reticulofenestra spp.Factor3 – is characterized byrelativeabundances ofCoccolithuspelagicusover15%(15-45%)Thespecies is a traditional indicator of cold and nutrient-rich water (okaDa & mcinyre 1979; Winter et al. 1994), but its common occurrence has also been recorded in waters of up to 18 °C, which can be used as a tracer of the periphery of areas of enhanced productivity (cachao & moita 2000). 4.3.2. Mollusca The systematic and palaeoecological evaluation of molluscs is based on work by BagDasaryan et al. (1966), PaPP et al. (1978), stuDencka (1986), stuDencka et al. (1998), schultz (2001), manDic & harzhauser (2003),andmanDic (2004). Molluscs were present in all the studied samples of both boreholes. The mollusc fauna consist predominantly of bivalves; gastropods are less frequent. Small gastropods of the genera Bittium, Alvania, Solariorbis, Gibbula, or Rissoina were ascertained in some intervals of both boreholes: ŽIDL-1: 2.7-2.8 m, 5.5-5.6 m, 8.4-8.5 m, 10.1-10.2 m; ŽIDL-2: 8.1-8.2 m, 8.7-8.8 m, and 9.7-9.8 m. The changing numbers of molluscan shells or their fragments in the individual samples generally reflect the changes in molluscan fauna abundance depending on the changing palaeoecological conditions, mostly the changes in water aeration. In the basal part of ŽIDL-1, a low molluscan abundance was ascertained (up to 7.2-7.3 m). In the upper part, the amount of shells/fragments relatively increased (maximum in 3.7- 3.8 m). In the rest of the profile the amount of material varied. In the lower intervals of the ŽIDL-2 profile, there was a low amount of material (minimum in 15.9-16 m); in the upper part of the profile, a gradual increase (maximum in 10.8-10.9 m) was observed, followed by a subsequent decrease (the minimum at 8.7-8.8m). Being an efficient active swimmer, Costellamussiopecten prefers deeper calm waters without strong currents and rather soft clay substrate (BagDasaryan et al. 1966). “Chlamys” trilirata and Aequipecten macrotis belong to epibionts usually exhibiting byssal attachment to the substrate and needing primary and secondary hard substrates for shell attachment. They predominantly occur in rocky sublittoral environments (manDic & harzhauser 2003), namely in less exposed, deeper infralittoral (shallow subtidal) zones. Cubitostrea digitalina is typical for the highly exposed rocky medio/sublittoral (intertidal to shallow subtidal) to depths of 10 m (manDic & harzhauser 2003). At Židlochovice, the oysters occurred more or less continuously, but mostly in fragments. Nuculana and Corbula represent sediment or suspension feeders, shallowlyburrowing into muddy bottoms ofintertidal/subtidal to bathyal depths. Nuculana is adapted to stagnant waters with lower oxygen and higher hydrogen sulphide contents. Corbula is generally an opportunistic genus, optimally adapted to unstable conditions.The predominanceofthin-shelledindeter- minablebivalvefragmentsandsmallherbivoregastropods in most samples indicates a calmer sedimentary environment. The general presence of stenohaline bivalves and occasional brachiopods, together with the The Badenian parastratotype at Židlochovice 177 almost total absence of brackish and estuary elements, confirms a fully marine (~35 ‰) sedimentary environ- ment. Among the bivalves, suspension feeders dominate, confirming the environment to be rich in organic detritus and planktonic microorganisms. The small gastropods are mostly herbivores living in/on the algal vegetation on the bottom (seagrass meadows). The intervals with their presence can be – more or less – correlated with a general decrease of shells/fragment amounts, which can be interpreted as the consequence of probable temporary lower water aeration (decrease of O2 /increase of H2S content – stagnant water, ?greater depth). 4.3.3. Ostracoda Fiftytwo ostracod taxa were identified from the ŽIDL- 1 and ŽIDL-2 boreholes. The occurrence of “Gen. indet.” moravica (Heliocythere moravica – paper in preparation) confirms the early Badenian age of the deposits (PaPP et al. 1978; seko et al. 2012). The sedimentation rate affects the postmortal disintegration of the carapace, and the increase of carapaces (valves/ carapace ratio) toward the upper part of both boreholes might reflect an increase of the sedimentation rate (oertli 1972). In the lower half of the ŽIDL-1 borehole, the amount of valves (33 to 301) is substantially higher than the amount of preserved carapaces (0 to 4). This ratio changes rapidly at a depth of 5.5-5.6 m, at which the carapaces once prevailed over valves (25:49). In the remaining samples (toward the top), an increase is still visible and remains stable with an average value of 35 % of the carapace (valve:carapace ratio) sample. A growing increase of carapaces (toward the top) is also observed in the ŽIDL-2 borehole. The maximum increase (39:104) occurs in the upper part 8-18.2 m (seko et al. 2012). Another remarkable change was observed at the depth of 5.5-5.6 m of the ŽIDL-1 borehole. A turnover in the assemblage composition indicates a transition between two marine habitats (seko et al. 2012). In the lower part of the ŽIDL-1 borehole (12-7.2 m), we observed a higher amount of specimens like Buntonia subulata subulata, Cytherella pestiensis postdenticulata, Henryhowella asperrima, Bosquetina carinella, Parakrithe dactylomorpha and Krithe sp. which according to gross (2006) are indicative of deeper circalittoral to epibathyal environments. On the contrary, the occurrence of epineritic Cytheridea acuminata (12-7.2 m; not only) could indicate a transition to an infraneritic environment, supported by the presence of epineritic to infraneritic Aurila opaca, Cnestocythere lamelicosta. There was a significant increase in specimens of Aurila species, Cnestocythere lamellicosta, Loxocorniculum hastatum, Pokornyella deformis, Senesia philippi and Tenedocythere sulcatopunctata, which prefer epineritic environments and tolerate a decrease in salinity (gross 2006). The disappearance of circalittoral to epibathyal ostracods indicates the transition to shallow infrallitoral (5.6-0.9 m). In the assemblage of the ŽIDL-2 borehole, a decrease in the abundance of deeper circalittoral to epibathyal species (Henryhowella asperrima) is observed toward the top. Furthermore, indicators of a shallower palaeoenvironment (Senesia philippi) and infralittoral and phytal species (Cnestocythete lamellicosta) became dominant part of assemblage. In comparison to the ŽIDL-1 borehole, the change in species dominance and composition is not so significant. Aurila species dominate in the samples and in this parameter the assemblage of the ŽIDL-2 borehole is similar to the assemblage of the upper part of the ŽIDL-1 borehole (5.6-0.9 m), reflecting shallow infralittoral conditions (seko et al. 2012). The ostracod assemblages have been analysed according PSH Platycopids Signal Hypothesis (Whatley et al. 2003). The percentage of Platycopida is not higher then 11.5 %, indicating a well oxygenated palaeoenvironment (oxygen content ›5 ml/l; Whatley et al. 2003). This interpretation does not agree with foraminifera and mollusc assemblages which indicate a poorly oxygenated environment. This contradiction can be explained either by results of modern data, which unsupported PSH (BranDão & horne 2009) or by seasonal variations of the oxygen content at the seafloor and in the sediment. 4.3.4. Bryozoa tomaštíková & zágoršek (2012) identified 116 bryozoan taxa; 23 of them are mentioned for the first time in this locality. Bryozoans dominate in all the studied samples: cheilostomes represent almost 70 % (81 species), while only 35 species of cyclostomes were found. Among the determined bryozoan species, those from temperate and tropical environments dominate. Very common are Metrarabdotos maleckii, Steginoporella cucullata, S. tuberculata and Adeonella polystomella, characteristic for recent tropical seas (moissette 1988). Generally, the diverse bryozoan fauna indicate normal marine, temperate to subtropical environments. Based on bryozoan growth form analysis (according to 178 N. Doláková et al. hageman et al. 1997 and mckinney & Jackson 1989), shallow water prevails. The most common bryozoan colonial growth forms are erect; encrusting growth forms are less abundant. There were only two reteporiforms and no free living growth forms were found. The absolute number of species of entire growth form depends on the preservation (zágoršek et al. 2012a). However, the oscillation in the ratio between erect and encrusting forms in the same sedimentary succession may indicate changes in the environment. In the lower part of the ŽIDL-1 borehole, palaeoecological analyses based on the evaluation of the ratio between erect and encrusting bryozoans indicate lower temperatures at the sea bottom because of greater water depth (80-100 m), thus resulting in a large amount of erect bryozoans. In higher parts of the ŽIDL-1 and ŽIDL-2 profiles, minor differences in the ratio of both growth types confirm a relatively stable, rather shallow and warm sea environment with estimated depth about 20- 30 m (as similarly interpreted also in Přemyslovice see zágoršek et al. 2012b). The lower part of the ŽIDL-2 borehole (a depth of 17-15.7 m) shows a remarkably large proportion of erect bryozoan growth forms, the largest being at a depth of 16 m (19 erect and only 4 encrusting species were identified). The increase in the proportion of erect growth forms may indicate an increase of depth and therefore a decrease of temperature at the sea floor, which is comparable to the interval of the ŽIDL- 1 borehole at the depth of 9.3 m. In the following sequences, the ratio between the erect and encrusting bryozoan growth forms gets closer: at the depth of 12.8 m it is almost the same (26/24), showing what is probably the shallowest environment and therefore the warmest water in the studied sedimentary succesion, comparable to those at the depth of 3.8 m in the ŽIDL-1 borehole. In samples from depths of 7.3 m in ŽIDL-1 and 10.9 m in ŽIDL-2, the total number of species rapidly decreased. This may indicate an unsuitable environment; probably the increase of water energy also corresponds to a higher amount of reteporiforms bryozoans in these samples. The second event is represented by samples at 3.8 m in ŽIDL-1 and 9.8 m in ŽIDL-2, where the diversity of the bryozoan community is the highest. These samples may be interpreted as bryozoan events comparable with those described by zágoršek (2010b) from other sections of the Carpathian Foredeep. Summarizing, the lowest part of the studied sedimentary succesion (the lower part of the ŽIDL-1 borehole culminating at 9.3 m) represents a deeper and therefore cooler environment similar to those described for example from Korytnica (zágoršek et al. 2012a) than the rest of the profile. Conversely, the younger part (the upper part of the ŽIDL-2 borehole culminating at 12.8 m) indicates the shallowest and warmest environment similar to those reported from Přemyslovice (zágoršek et al. 2012a) in comparison with the rest of the profile. 4.3.5. Brachiopoda Brachiopods have been studied for the first time (Pavézková et al., in press) at Židlochovice. There were 4 speciesidentified,allfromthefamilyMegathyrididae, namelyArgyrothecacuneata,Argyrothecasp.,Joania sp., and Megathiris detruncata. In both boreholes, brachiopods occur in negligible amounts, although Argyrotheca cuneata is relatively the most numerous species. All species recognized in Židlochovice are generally common in the Miocene sediments of the Central Paratethys. Extant representatives of Megathyrididae are mostly shallow water species, exhibiting a cryptic mode of life (logan 1979). The occurrence of brachiopods at Židlochovice – in spite of their scarcity – significantly supplements not only total spectrum of Badenian fauna from this locality, but also mosaic of Badenian brachiopod occurrences in the Carpathian Foredeep on the territory of the Czech Republic. 4.3.6. Ichthyofauna Ichthyofauna was represented intermittently by otoliths (14 species) and singularly by the isolated teeth (1 species) of teleosts and sharks (1 species) in both boreholes. Due to poor taxonomic representation in the small size of samples from the boreholes, the results are approximate. The ŽIDL-1 borehole shows the occurrence of otoliths of mesopelagic fishes such as Valenciennellus tripunctulatus, Diaphus acutirostrum, D. cahuzaci, D. regani and Notoscopelus mediterraneus throughout the section accompanied by teeth of the bathypelagic shark Deania sp. at 2.8-3.0 m. Such an assemblage is indicative of the deepest sublittoral with good communication with mesopelagic environments (BrzoBohaty 1997). Picture deviation from this trend only occurs at 10.6-10.8 m, where shallow water taxa such as Lesueurigobius ex gr. vicinalis and maybe even a juvenile specimen of Acropomatidae indet. are present, possibly indicating an episodic shallowing of the environment. This also seems to be in accordance The Badenian parastratotype at Židlochovice 179 Fig. 4. Co-occurrence of foraminiferal and calcareous nannoplankton clusters (Fig. 3) and their schematized position in the basin. with the numerous gypsum fragments in the washed residuum from this level. Mesopelagic fish otoliths persist in the lower part of the ŽIDL-2 borehole, where epimesopelagic Vinciguerria poweriae, Benthosema fitchi and Diaphus div. sp. dominate. At the same time, some sublittoral elements (Brachydeuterus, Gobiidae) occur. The upper part is characterised by sublittoral elements – teeth of sparids, otoliths of juvenile gobiids and mere fragments of juvenile mesopelagic diaphids. Taking into account the original palaeobathymetric analyses based on otoliths from the Židlochovice brickyard, the deepest environment in the bottom part of the original loam pit (150-250 m, BrzoBohatý 1997) was clearly indicated by adult otoliths of the nonmigrating bathydemersal macrourid Trachyrincus scabrus. To the top of the whole Židlochovice section, the fish fauna reflects a general shallowing from the shallow bathyal/deeper circa-littoral to the shallow sublittoral. The ichthyofauna in the whole section indicates normal salinity. 4.3.7. Red algae and microfacies Red-algal limestone consists of coralline algae (12.5- 57.7 %) and bryozoans (1.9-38.3 %). Other determined components (foraminifers, echinoids, polychaetes, molluscs), if present at all, represent less than 3 %. However, the volume of unrecognized fragments in some samples is 0.5-51 %. Lithoclasts can constitute 0.18-2 %. Micrite is always present in 2.25-3 % and sparite forms in 0.14-8 %. The limestone is of low porosity (0.2-5 %). Samples can be classified as coralline algal and coralline algal – bryozoans microfacies. Composition of samples with respect to the identified facies is given in Appendix 6. The growth forms of the coralline algae are monospecific protuberant rhodoliths, multispecific rhodoliths with the nucleus of fragments of other frequently protuberant corallines, simple abraded protuberances and the debris of them. Rhodoliths are mostly found in fine biogenic sandy matrices rich in micrite. On the contrary, protuberances are usually 180 N. Doláková et al. Fig. 5. Pollen diagram (A) arranged after paleoecological groups: left side – pollen sum (100%) excluding conifers, the right side proportion of Pinus and Cathaya (100% all grains). Zidlochovice CA palaeoclimate data (B): Temperatures: MAT- mean annual temperature, CMT- temperature of the coldest month, WMT- temperature of the warmest month. Precipitation: MAP- mean annual precipitation, thick line segments: all taxa, thin line segment: wet taxa excluded. accompanied by lithoclasts. Although coralline algal assemblages consist of six genera: Lithothamnion, Mesophyllum, Phymatolithon, Lithophyllum, Spongites and Sporolithon, the first two mentioned dominate in the assemblage. It can be concluded that the algae of the subfamily Melobesioideae The Badenian parastratotype at Židlochovice 181 predominateoverthesubfamiliesofLithophylloideae, Mastophoroideae and Sporolithoideae in all samples. This assemblage is frequent in nontropical marine environments (aguirre et al. 2000). Although coralline algaespeciesdescriptionsare beyondthe scopeofthis paper, it should be noted that Phymatolithon calcareum (Pallas) aDey & mckiBBin was observed by as monospecificabraded protuberances as wellas crusts in multispecific rhodoliths. According to the presented data, three limestone facies can be evaluated. First, rhodolith floatstone (RFgm) in a grainstone matrix consists of multispecific and monospecific rhodoliths floating in a fine-grained biogenic sandy matrix (ŽIDL-1, 6.3 m). Lithoclasts are present as low amounts values or are absent. These facies indicate deposition in the outer shelf environment with evidence of storms events (flügel 2004). Second, coralline algal detritus limestone (CAdl) consists of abraded protuberances; however, few multispecific rhodoliths are present (ŽIDL-1: 4.5-5 m, ŽIDL-2: 10.6 m and 13.3 m). Facies correspond to coralline algal grainstone and to lithoclastic coral- linealgallimestone.Othercomponentsarelithoclasts, unsorted allochems, sparite, and micrite. The facies indicate an environment of middle to inner shelf, with higherterrigenousinput(flügel 2004).P.calcareum indicatesa depth of 36-93m(Basso 1998). Third, bioclastic breccias (Bbr) consist of angular fragments of rhodoliths and molluscs (ŽIDL-2, 9.6 m). The matrix is mainly micritic, without lithoclasts or mediumsized allochems. The limestone facies successions thus indicate changes of depositional environment in the drill cores. The transition from rhodolith floatstone to coralline algal detritus limestone from the ŽIDL-1 interval of 6-34.5 m indicates the shallowing of the environment. 4.3.8. Palynology The most diversified pollen spectra have been found in environments with reduced oxygen content (ŽIDL- 1: 11.9-7.5 m and ŽIDL-2: 16.81-5.6 m), also evident as cubic caves where there were pyrite crystals in the pollen grains. The overdominance of conifers and frequent dinoflagellates with a very small amount of other pollen and spores were observed in ŽIDL-1 at 76 m and in ŽIDL-2 at 15.26 m. The remaining samples were sterile or very poor in palynomorphs. A mainly subtropical character of flora was interpreted (Fig. 5). Three zonal forest formations were spread around the basin. Subtropical Broadleaved forests comprised up to 30 % of the evergreen elements (100 % without Pinus, Cathaya): including Sapotaceae, Engelhardia, Platycarya, evergreen Fagaceae – Castanopsis, Trigonobalanopsis, morphotypes Tricolporopollenites henrici, T. microhenrici, Tricolporopollenites liblarensis, Reevesia, Cornus/ Mastixia, Rutaceae and Araliaceae, Pteridaceae (Fig. 5A). Proportions of most thermophilous elements of P1 sensu stuchlik et al. (1994) were slightly lower in comparison with the Lower Miocene palynospectra of the CF (Doláková et al. 1999, 2011; Doláková & slamková 2003; kováčová et al. 2011).The share of deciduous woody elements resulting in warm temperate Mixed Mesophytic and Broadleaved Deciduous forest types (i.e. Quercus, Carya, Celtis, Juglans, Tilia, Betula, Acer) was lower in all the studied samples (to a maximum of 17 %). A higher diversity of “oak type” pollen grains (e.g., Quercus robur/pubecscens) has been recorded in comparison with the Lower Miocene sediments from CF (Doláková et al. 1999; kováčová et al. 2011). The fluctuation of coastal swamp (Taxodiaceae, Cyrillaceae, Myricaceae) and riparian elements (Ulmus, Fraxinus, Liquidambar, less generous Alnus, Salix, Lythraceae) could be as a result of humidity changes (our interpretation). Pollen grains of Platanus represent a marked component of the pollen spectra. Herbs and heliophilous elements such as Poaceae, Asteraceae, Caryophyllaceae, Chenopodiaceae and Ericaceae are consistently present. Urtica, Plantago, Thalictrum, Salvia, Lavandula and Ephedra have been recorded locally. The sporadic occurrence of Botryococcus and the pollen of the aquatic coastal plants Sparganium, Potamogeton and Nymphaea indicate freshwater inflow in some facies. Frequent various Pinaceae (Pinus, Cathaya) were components of mountain coniferrich forest (with the admixture of Cedrus, Tsuga, and Picea in higher altitudes) and along with Sciadopitys they were also a part of the intrazonal lowland formations. The development of the main climatic characteristic is expressed in the graphs of the Coexistence Approach (Fig. 5B). The general climatic conditions are in accordance with Bruch et al. (2004). Warm wet conditions can be observed in the lowest interval of the studied sequence (ŽIDL-1: 11.9-10.6 m). The seasonality increases in the middle part of ŽIDL-1 (with well expressed seasonality of precipitation – the driest month ~2040 mm; the wettest month 200- 250 mm); this is followed by a cooler phase evident from the upper part of ŽIDL-1. A slightly increasing portion of arctotertiary elements is also visible from 182 N. Doláková et al. Fig. 6. A, B – Correlation of bioevents an lithology within studied groups of fossils. a) ŽIDL-1. b) ŽIDL 2. Cadl: coralline algal detrital limestone, Carg: coralline algal branch rudstone to floadstone and grainstone, RF: rhodolith floatstone in grainstone biodetrital matrix, E: epiphytic gastropods. the palynograph (Fig. 5A). The repeating of warm wet conditions is recorded in the lowest part of ŽIDL-2: 16.8-15.7 m. 5. Discussion 5.1. Age Thedatingofglobalbiostratigraphicaleventsrecorded in the studied succession differs in the world’s oceans (graDstein etal.2012)fromthatoftheMediterranean area (aBDul aziz et al. 2008; Distefano et al. 2008; hüsing et al. 2010). The differences are summarized inFig.1B.Due to the communication of the Central Paratethyan Sea with the Mediterranean, the correlation of bioevent timing with the Mediterranean dates is rather probable. The succession of the guide bioevents – the LO of Helicosphaera ampliaperta which precedes the FO of Orbulina suturalis – agrees with the Mediterranean area. However, co-occurrence of the Helicosphaera waltrans and Orbulina suturalis described from the Mediterranean was not recorded in the faciostratotype at Židlochovice. This discrepancy caused that lower boundary of studied succession can be dated only approximately: (i) in case of later appearance of Orbulina suturalis in the study area, the age of this boundary must be younger than 14.36 Ma (= the LO of Helicosphaera waltrans); (ii) more probably age ranges between 14.91 Ma (= the LO of Heli- The Badenian parastratotype at Židlochovice 183 cosphaera ampliaperta) and c. 14.5-14.6 Ma (= FO of Orbulina suturalis in Mediterranean area). The upper boundary is older than the FO of Globorotalia praemenardii which is dated in the Mediterranean area to 13.92 Ma (Distefano et al. 2008). 5.2. Climate The changing of warm wet conditions, seasonality in- creasesandacoolerphasewithinthemainsubtropical character of terrestrial flora could represent the final phase of the Miocene Climatic Optimum Böhme (2003), utescher et al. (2000), Bruch et al. (2010). Decreasing of the most thermophilous elements in comparisonwiththe LowerMiocenepalynospectraof the CF, higher diversity of “oak type” pollen grains and evidence of the NS oriented climatically dependent gradient(Doláková et al. 1999;Doláková et al. 2008;kováčová etal.2011;Doláková &kováčová,in prep.) indicate the beginning of the Middle Miocene Climatic Transition (14.8-12.0 Ma) (floWer & kennett 1994, see also harzhauser et al. 2011). The overdominance of conifers was similarly found in some other pollen spectra from CF from the NN5 zone (e.g. Oslavany, Rebešovice). From palaeoecological point of view, this can be caused for several reasons: the morphology of the land (sandy dunes or mountainous areas), huge pollen production and the great amount of air transport. Accumulation in marine sediments distant from the seashore and greater resistance to oxygenation could also play a role (heusser 1978, hoPkins & mccarthy 2002). This interpretation is supported by the synchronously plentiful occurrence of dinoflagellates. 184 N. Doláková et al. 5.3. Marine environment The co-occurrence of calcareous nannoplankton and foraminiferal assemblages distinguished by factor analysis in the samples made it possible to compile the model of marine environment (Fig. 4): (1) The highnutrient benthic foraminiferal assemblages accompanied by the calcareaous nannoplankton assemblages with higher abundances of Coccolithus pelagicus represent the deepest water assemblages recorded only in mudstone. As Coccolithus pelagicus is a marker of eutrophic waters, it agrees with the expected high amount of nutrients in the sediment; The “Cibicidoides – lowoxic marker” Factor cooccurs mainly with the planktonic assemblages dominated by small fivechambered globigerinids. Both assemblages tolerate unstable, stress conditions (oscillations of salinity and/or nutrient supply). Cooccurrence with Turborotalita quinqueloba may indicate mixed water column. (2) The epiphytic foraminifera represent the shallowest environment with seagrass meadows recorded mainly with the Reticulofenestra minuta and with all planktonic foraminifera assemblages. Because epiphytic foraminifers indicate shallow water sea (depth in the first tens of meters, murray 2006), the postmortem transport of planktonic foraminifera by superficial currents and/or the reworking of plankton is expected, which agrees with the variegated planktonic assemblages. Horizons with smallsized foraminiferal tests within the limestone body (4-6 m of ŽIDL-1 borehole) indicate a sizesorting of tests due to transport in suspensions (i.e. storms) or in flows. The epiphytic foraminifera occur in limestone and sand. The distribution of fossil assemblages along the studied sedimentary successions (Fig. 6A, B shows the alternation of three main types of palaeoenvironments: (1) The interval below the FO of Orbulina (below 6.8 m of the ŽIDL-1 borehole) can be characterized by mudstone lithofacies deposited from suspension in relatively calm conditions. Rich benthic foraminiferal assemblages with a higher abundance of infauna, a high nutrient marker including elongate biserial textulariids (mainly Spiroplectinella) indicate a rich source of nutrients in the sediment; all these species are detrivores; the majority of them can tolerate a decrease of oxygen content in accord with the presence of Mollusca. The higher abundance of Coccolithus pelagicus in the calcareous nannoplankton assemblages also indicates a higher nutrient source for primary producers. On the other hand, the oligotrophic planktonic foraminifera indicate episodical stratification. Episodic increase of Spiroplectinella abundance (above 5 %) imply that this event depend on specific palaeoecological conditions (? supply of specific nutrients) and cannot be isochronous biostratigraphical zone (Spiroplectammina Zone sensu grill 1941). The predominance of Ostracoda valves indicates a slow sedimentation rate. Ostracoda, Bryozoa, molluscs and fish otoliths and teeth indicate a deeper environment. There is a decrease of oxygen caused by the absence of algae and other organic material creating a suitable surface for encrusting bryozoans. Ichthyofauna proved to have good communication with the mesopelagic environment. Diversified terrestrial vegetation with up to 30 % of broadleaved evergreen and thermophylous elements, a lower proportion of deciduous woody taxa of zonal angiosperms and swamp, and riparian and heliophylous azonal taxons were observed in the pollen spectra. The changing of the warm wet conditions, seasonality increases, and cooler phase were recognized. The deepest environment in the bottom part of the original loam pit of the Židlochovice brickyard (150-250 m, BrzoBohatý 1997) was documented. At the levels of 9.8 m and 8.9 m, the shortterm deviation from a fully marine environment are suggested by elevated levels of stresstolerant foraminifera and rare opportunistic mollusc assemblages. The postmortal transport of foraminiferal tests is very probable, which also confirms the sedimentological record with variations in the content of sand, bioturbation, preservation of planar bedding and shell debris, reflecting periods of higher input of material transported by current in traction (possibly during storms). The seasonality increase followed by beginning of the cooler phase were recorded in pollen spectra. (2) The upper interval with Orbulina is characterized by a variegated palaeoenvironment with rapid alternations of lithofacies. Generally, two horizons can be distinguished: (2a) Thick beds of limestone can be connected with stable conditions of deposition and with the reduction of clastic input. Epiphytic foraminifera as well as phytal ostracoda and epiphytic gastropods indicate the occurrence of seagrass meadows. Abraded and corroded tests reflect a high-energy environment around the wave base and shallowing. Limestone with red algae is present. Ostracoda, Bryozoa, molluscs and fish otoliths and teeth indicate shallow water conditions. The The Badenian parastratotype at Židlochovice 185 increased ratio of Ostracoda valves/carapaces indicates the rapid burial of shells, or the general increase in the depositional rate; this could also be caused by rapid episodic sedimentation after intensive episodic rainfalls. Palynomorphs, when present, are marked by the dominance of conifers and marine Dinoflagellata. These accumulations (similar to some others of the same age in the CF – Oslavany, Rebešovice) may be caused for palaeoecologic or taphonomic reasons. (2b) Sandy lithofacies and their alternation with mudstone and thin limestone interbeds were deposited in a higher flow regime. The absence of clear wavy structures points to deposition below the normal wave base. Heterolitic facies support the rapid alternation of clastic input in the depositional environment. Thin limestone interbeds could also be connected with erosion and the redeposition of limestone into a deeper environment (possibly as a result of storms). These lithofacies mainly contain opportunistic small-sized Cibicidoides and the lowoxic markers indicate the instability of the environment, the coexistence of oxiphylic taxa at the seafloor, and lowoxic conditions in the sediment, or seasonal changes of oxygen content at the seafloor due to the seasonal stratification of the water column. Common Globocassidulina and Cassidulina is considered to be a marker of phytodetritus input, which may be seasonal. Palynospectra are mostly impoverished (such as in 2a). Only at the interval of 15.6-16.8 m from ŽIDL-2 there were well diversified pollen and spores indicating warm wet conditions. 6. Conclusions 1) Two shallow boreholes recording 26 m of sediment were drilled in 2010 on the Badenian parastratotype at Židlochovice (Carpathian Foredeep, NN5 Zone, Czech Republic). In comparison with the original definition of the parastratotype: – The sedimentary succession was studied using sedimentological and palaeontological methods. – All systematic groups were newly reworked (calcareous nannoplankton, Foraminifera, Ostracoda, Mollusca, Teleostei except Anthozoa and Echinoidea), or extended (red algae, Bryozoa, Brachiopoda, Elasmobranchii, pollen grains); detailed quantitative study was used. – The environment of sedimentation and its development over time was newly interpreted. – The stratigraphical position of the parastratotype was stated more precisely. 2) Biostratigraphical dating of the sedimentary succession enabled a correlation with the NN5 Zone 14.9 to 13.9 Ma, namely with the initial time of the Middle Miocene Climatic Transition. 3) Seven lithofacies were recognised within the sedimentary succession representing multiple alternations of mudstone, sandstone and limestone facies. The fauna generally indicated a normal marine, warm to subtropical environment. Individual groups of fauna and flora confirm what appears to be a generally shallowing trend from the bottom (epibathyal/circalittoral) to the top (shallow infralittoral) of the sedimentary succession with repeated palaeobathymetric changes in both boreholes. Though influence of local tectonic movements is expected, the general shallowing may be correlated with regressive phase of the TB 2.4 cycle dated on 14.2-13.6 Ma (harDenBol et al. 1988). A mainly subtropical character of terrestrial flora within warm wet conditions, seasonality increases and a cooler phase were observed. The most significant event correlable with the FO of Orbulina (c. 14.5-14.6 Ma) is the abrupt change from mudstone deposited in the calm palaeoenvironment of upper bathyal/circalittoral to the variegated deposits of shallow water. The lower interval below the FO of Orbulina can be characterized by mudstone facies and significantly stable conditions of deposition, high nutrient input and a decrease of oxygen content at the seafloor and/or in sediment. Episodical stratification of the water column is probable. Interval cooling and an increase of seasonality were recorded. Based on FO of Orbulina, shallowing connected with a higher flow regime and a higher sedimentation rate are supported. The alternation of thick redalgal limestone bodies (a stable shallow palaeoenvironment with low terrigenous input and seagrass meadows) and variegated sandstone, mudstone and limestone interbeds of an unstable deeper environment could reflect orbitally-forced climatic cyclicity. Acknowledgements The research is supported bythe Grant Project 205/09/0103 (Grant Agencyof the Czech Republic)and MSM0021620855. We are grateful to the native speaker lector Mrs. sarka rousava for correction of the English language. milos Bartol, Patrick grunert and mathias harzhauser are gratefully acknowledged for valuable remarks and comments in their reviews, and günter schWeigert for his help with the editorial arrangement. 186 N. Doláková et al. References aBDul aziz, h.a., Di stefano, l.m., foresi, f.J., hilgen, s.m., iaccarino, k.f., kuiPer, f., lirer, g., salvatorini, a. & turco, e. (2008): Integrated stratigraphy and 40Ar/39Ar chronology of early Middle Miocene sediments from DSDP Leg 42A, Site 372 (Western Mediterranean). – Palaeogeography, Palaeoclimatology, Palaeoecology, 257: 123-138. aguirre, J., riDing, r. & Braga, J.c. (2000): Diversity of coralline red algae: origination and extinction patterns from the Early Cretaceous to the Pleistocene. – Paleo- biology,26:651-667. BagDasaryan, k.g., tatishvili, k.g., kazachashvili, z.r., muschelishvili, l.v., BaDzoshvili, c.i., achveliDiani, e.g., zhgenti, e.m., taktakishvili, i.g. & kvalishvili, g.a. (1966): Spravochnik po ekologii morskich dvustvorok.– 353pp.;Moscow(Nauka). Basso, D. (1998): Deep rhodolith distribution in the pontian Islands, Italy: A model for the paleoecology of a temperate sea. – Palaeogeography, Palaeoclimatology, Palaeoecology, 137: 173-187. Beaufort, l. & auBry, m.P. (1992): Palaeoceanographic implications of a 17 m.y. long record of highlatitude Miocenecalcareousnannoplanktonfluctuations.–Proceedings ofthe Ocean Drilling Program, Scientific Re- sults,120:530-549. Berggren, W.a., kent, D.v., sWisher iii, c.c. & auBry, m.P. (1995): A revised cenozoic geochronology and chronostratigraphy. – In: Berggren, W.a., kent, D.v., Bicchi, e., ferrero, e. & gonera, m. (2003): Palaeoclimatic interpretation based on Middle Miocene planktonic Foraminifera: the Silesia Basin (Paratethys) and Monferrato (Tethys) records. – Palaeogeography, Palaeoclimatology, Palaeoecology, 196: 265-303. Böhme, m. (2003): Miocene Climatic Optimum: evidence from Lower Vertebrates of Central Europe. – Palaeogeography, Palaeoclimatology, Palaeoecology, 195: 389-401. Bollmann, J., Baumann, k.h. & thierstein, h.r. (1998): Global dominance of Gephyrocapsa coccoliths in the late Pleistocene: Selective dissolution, evolution, or global environmental change? – Paleoceanography, 13: 517-529. Braga, J.c., Bosence, D.W.J. & steneck, r.s. (1993): New anatomical characters in fossil coralline algae and their taxonomic implications. – Palaeontology, 36 (3): 535- 547. BranDão, n.s. & horne, J.D. (2009): The Platycopid Signal of oxygen depletion in the ocean: A critical evaluation of the evidence from modern ostracod biology, ecology and depth distribution. – Palaeogeography, Palaeoclimatology, Palaeoecology, 283: 126-133. Bruch, a.a., utescher, t., alcaDe olivares, c., Dolakova, n., ivanov, D. & mosBrugger, v. (2004): Middle and Late Miocene spatial temperature patterns and gradients inEurope–preliminaryresultsbasedonpaleobotanical climate reconstructions. – Courier Forschungsinstitut Senckenberg, 249: 15-27. Bruch, a.a., utescher, t., mosBrugger, v. & neclime memBers (2010):Precipitationpatterns intheMiocene of Central Europe and the development of continentality. – Palaeogeography, Palaeoclimatology, Palaeoecology, 304: 202-211. BrzoBohatý, r. (1997): Paleobathymetrie spodního badenu karpatské předhlubně na Moravě z pohledu otolitových faun. – In: hlaDilová, š. (Ed.): Sborník příspěvků: Dynamika vztahů marinního a kontinentálního prostře- dí,Grantovýprojekt205/95/1211,3745,MUBrno. cachao, m. & moita, m.t. (2000): Coccolithus pelagicus, a productivityproxyrelatedtomoderatefrontsofWestern Iberia.–MarineMicropaleontology,39:131-155. cicha, i., Paulík, J. & teJkal, J. (1956): Stručné shrnutí výsledkůgeologickýchapaleontologickýchpracívmiocénujz.částivněkarpatské pánvenaMoravě.–Zprávyo Geologických Výzkumech, 1955: 13-15. cicha, i., rögl, f., ruPP, c. & čtyroká, J. (1998): Oligocene-Miocene foraminifera of the Central Paratethys. – Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft, 549: 13-25. culver, s.J. & Buzas, m. (1980): Distribution of recent benthic foraminifera off the North American Atlantic Coast.–SmithsonianContributionstoMarineSciences, 6:1-512. culver, s.J. & Buzas, m. (1981):Distribution of recent benthic foraminifera in the Gulf of Mexico. – Smithsonian ContributionstoMarineSciences,8:1-898. Den Dulk, m., reicharD, g.J., memon, g.m., roelofs, e.m.P., zachariasse, W.J. & van Der zWaan, g.J. (1998): Benthic foraminiferal response to variations in surface waterproductivityandoxygenationinthenorthern Arabian Sea. – Marine Micropaleontology, 35: 43- 66. Den Dulk, m., reicharD, g.J., van heyst, s., zachariasse, W.J. & van Der zWaan, g.J. (2000): Benthic Foraminifera as proxies of organic matter flux and bottom water oxygenation? A case history from the northern Arabian Sea. – Palaeogeography, Palaeoclimatology, Palaeoecology, 161: 337-359. Deuser, W.g. & ross, e.h. (1989): Seasonally abundant planktonic foraminifera of the Sargasso Sea: Succession,deepwater fluxes, isotopic compositions, and paleoceanographicimplications.–Journal ofForaminiferal Research, 19: 268-293. Di stefano, a., foresi, l.m., lirer, f., iaccarino, s.m., turco, e., amore, f.o., moraBito, s., salvatorini, g., mazzei, r. & aBDul aziz, h. (2008): Calcareous planktonhighresolutionbiomagnetostratigraphyforthe Langhian of the Mediterranean area. – Rivista Italiana diPaleontologiaeStratigrafia,114:51-76. Doláková, n., BrzoBohatý, r., hlaDilová, š. & nehyBa, s. (2008):TheredalgalfaciesoftheLowerBadenianlimestones of the Carpathian Foredeep in Moravia (Czech Republic).–GeologicaCarpathica,59(2):133-146. Doláková, n., hlaDilová, š. & nehyBa, s. (1999): Development of sedimentation, molluscs and palynospectra in the Lower Miocene of the southwestern part of the Carpathian Foredeep in Moravia (Czech Republic). – Acta Palaeobotanica, Supplements, 2: 269-278. Doláková, n., kováčová, m. & Basistová, P. (2011): Badenian (Langhian – Early Serravallian) palynoflora from the Carpathian Foredeep and ViennaBasin(Czechand The Badenian parastratotype at Židlochovice 187 Slovak Republics). – Acta Musei Nationalis Pragae, (B), 67 (1-2): 51-59. Doláková, n. & slamková, m. (2003): Palynological characteristicsofKarpatiansediments.–In:BrzoBohatý, r., cicha, i., kováč, m. & rögl, f. (Eds.): The Karpatian, a lowerMiocene stage ofthe Central Paratethys, 325-346; Brno (Masaryk University). DunBar, r.B. (1983): Stable isotope record of upwelling and climate from Santa Barbara Basin, California. – In: thieDe, J. & suess, e. (Eds.): Coastal upwelling, its sedimentrecord,PartB.Sedimentaryrecordsofancient coastalupwelling,217-246;NewYork(Plenum). fairBanks, r.g., sverDlove, m., free, r., WieBe, P.h. & Bé, a.W.h. (1982): Vertical distribution and isotopic fractionationoflivingplanktonic foraminifera fromthe PanamaBasin.–Nature,298:841-844. flores, J.a., sierro, f.s., francés, g., vasquez, a. & zamarreno, i. (1997): The last 100,000 years in the western Mediterranean: Sea surface water and frontal dynamics as revealed by coccolithophores. – Marine Micropaleontology 29: 351-366. floWer, B.P. & kennett, J.P. (1994): The middle Miocene climatic transition: East Antarctic ice sheet develop- ment,deepoceancirculationandglobalcarboncycling. – Palaeogeography, Palaeoclimatology, Palaeoecology, 108 (3-4): 537-555. flügel, E. (2004): Microfacies of carbonate rocks. – 976 pp.;Berlin,Heidelberg& NewYork(Springer). folk, r.l. & WarD, W. (1957): Brazos River bar: a study in the significance of grainsize parameters. – Journal of Sedimentary Petrology, 27: 3-26. fontanier, c., Jorissen, f.J., anschutz, P. & chaillou, g. (2006): Seasonal variability of foraminiferal faunas at 1000 m depth in the Bayof Biscay.– Journal of Forami- niferalResearch,36:61-76. graDstein, f.m., ogg, J.g., schmitz, m.D. & ogg, g.m. (2012):The Geologic Time Scale 2012. – 1176pp.; New York (Elsevier). grill, r. (1941): Stratigraphische Untersuchungen mit Hil- fevonMikrofaunenimWienerBeckenunddenbenach- bartenMolasseanteilen.–OelundKohle,37:595-602. gross, m. (2006): Mittelmiozäne Ostracoden aus dem Wiener Becken (Badenium/Sarmatium, Österreich). – Österreichische Akademie der Wissenschaften, Schriftenreihe der Erdwissenschaftlichen Kommissionen, Sonderbände, 1: 12-24. hageman, s.J., Bone, y., mcgoWran, B. & James, n.P. (1997): Bryozoan colonial growth forms as paleoenvironmental indicators: Evaluation of methodology. – Palaios, 12: 406-419. hallock, P. (1987): Fluctuations in the trophic resource continuum: a factor in global diversity cycles? – Paleoceanography, 2: 457-471. hammer, Ø., harPer, D.a.t. & ryan, P.D. (2001): PAST: Paleontological Statistics Software Package for Educationand Data Analysis.– PalaeontologiaElectronica, 4: 19. harDenBol, J., thierry, J., farley, m.B., Jacquin, t., De graciansky, P.c. & vail, P.r. (1998): Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins. – In: De graciansky, P.c., harDenBol, J., Jacquin, t. & vail, P.R. (Eds.): Mesozoic and Cenozoic Sequence Stratigraphy of European Basins. – SEPMSpecialPublications,60:313. harzhauser, m., Piller, W., müllegger, s., grunert, P. & micheels, a. (2011): Changing seasonality patterns in Central Europe from Miocene Climate Optimum to Miocene Climate Transition deduced from the Crassostrea isotope archive. – Global and Planetary Change, 76: 77-84. hemleBen, c., sPinDler, m. & anDerson, o.r. (1989): Modern Planktonic Foraminifera. – 363 pp.; New York (Springer). heusser,l.(1978):Sporesandpolleninthemarine realm. – In: haq, B.u. & Boersma, A. (Eds.): Introduction to marine micropaleontology, 327-339; Amsterdam (Elsevier). hohenegger, J., ĆoriĆ, s. & Wagreich, m. (in press): Timing of the regional Badenian Stage (Middle Miocene, Central Paratethys). – Geologica Carpathica. hohenegger, J., ĆoriĆ, s., khatun, m., Pervesler, P., rögl, f., ruPP, c., selge, a., uchman, a. & Wagreich, m. (2009): Cyclostratigraphic dating in the Lower Badenian (Middle Miocene) of the Vienna Basin (Aus- tria):theBaden-Soosscore.–InternationalJournalof EarthSciences,98:915-930. holcová, k. (1996): Determination of transport of foraminiferal tests in the fossil record (South Slovakia Basin Middle Miocene). – Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 1996: 193-217. holcová, k. (1999): Postmortem transport and resedimentation of foraminiferal tests: relations to cyclical changes of foraminiferal assemblages. – Palaeogeography, Palaeoclimatology, Palaeoecology, 145: 157-182. holcová, k. (2012): Morphological variability of the Paratethyan Oligocene-Miocene small reticulofenestrid coccolites and its paleoecological and paleogeographical implications. – Acta Palaeontologica Polonica, 58: 651-668. holcová, k. & Demeny, a. (2012): The oxygen and carbon isotopic composition of Langhian foraminiferal tests as a paleoecological proxy in a marginal part of the Carpathian Foredeep (Czech Republic). – Geologica Carpathica, 63: 121-137. hoPkins, J.a. & mccarthy, f.m.g. (2002): Postdepositional palynomorph degradation in Quaternary shelf sediments a laboratory experiment studying the effects of progressiveoxidation.–Palynology,26:167-184. hüsing, s.k., cascella, a., hilgen, f.J., kriJgsman, W., kuiPer, k.f., turco, e. & Winson, D. (2010): Astrochronology of the Mediterranean Langhian between 15.29 and 14.17 Ma. – Earth and Planetary Science Letters, 290: 254-269. Jorissen, f.J., Destinger, h.c. & WiDmark, J.g.v. (1995): A conceptual model explaining benthic foraminifera mi- crohabitat.–MarineMicropaleontology,26:3-15. kaiho, k. (1994): Benthic foraminiferal dissolvedoxygen indexand dissolved oxygenlevelsin themodern ocean. – Geology, 22: 719-722. kaiho, k. (1997): Effect of organic carbon flux and dissolved oxygen on the benthic foraminiferal oxygen in- dex(BFOI).–MarineMicropaleontology,37:67-76. 188 N. Doláková et al. kameo, k. (2002): Late Pliocene Caribbean surface water dynamicand climatic changesbasedon calcareous nannofossil records. – Palaeogeography, Palaeoclimatology, Palaeoecology, 179: 211-226. kováč, m. (2000): Geodynamical, paleogeografical and structural development of CarpathianPannonian region in Miocene: New perspective on Neogene basins of Slovakia. – 1-176; Bratislava (VEDA) (in Slovak). kováč, m., anDreyeva-grigorovich, a., BaJraktareviĆ, z., BrzoBohatý, r., filiPescu, s., foDor, l., harzhauser, m., nagymarosy, a., oszczyPko, n., PaveliĆ, D., rögl, f., saftiĆ, B., sliva, l. & stuDencka, B. (2007): BadenianevolutionoftheCentralParatethysSea:paleogeography,climate and eustatic sealevelchanges. – Ge- ologicaCarpathica58(6):579-606. kováčová, m., Doláková, n. & kováč, m. (2011): Miocene vegetationpatternandclimatechangeintheNorthwestern Central Paratethys domain (Czech and Slovak Re- public).–GeologicaCarpathica,62(3):251-266. kováč, m., nagymarosy, a., holcová, k., huDáčková, n. & zlinská, a. (2001): Paleogeography, paleoecology and eustacy: Miocene 3rd order cycles of relative sealevel changes in the Western Carpathian – North Pan- nonianbasins.ActaGeologicaHungarica,44(1):1-45. kovar-eDer, J., Jechorek, h., kvaček, z. & Parashiv, v. (2008):The integrated plantrecord:An essential tool forreconstructingNeogenezonalvegetationinEurope. – Palaios, 23: 97-111. kvaček, z., kováč, m., kovar-eDer, J., Doláková, n., Jechorek, h., Parashiv, v., kováčová, m. & sliva, l. (2006): Miocene evolution of landscape and vegetation in the Central Paratethys. – Geologica Carpathica, 57 (4): 295-310. logan, a. (1979): The Recent Brachiopoda of the Mediterranean Sea. – Bulletins de l’Institute océanographique deMonaco,72:11-12. manDic, o. (2004): Pectinid bivalves from the Grund Formation (Lower Badenian, Middle Miocene, AlpineCarpathian Foredeep) – taxonomic revision and stratigraphic significance. – Geologica Carpathica, 55 (2): 129-146. manDic, o. & harzhauser, m. (2003): Molluscs from the Badenian(Middle Miocene)ofthe GaindorfFormation (Alpine Molasse Basin, NE Austria) – taxonomy, pale- oecologyandbiostratigraphy.–AnnalesdesNaturhistorischen MuseumsinWien,(A),104:85-127. martini, e. (1971): Standard Tertiary and Quaternary calcareous nanoplankton zonation. – In: Proceedings of the 2nd Planktonic Conference, Roma 1970, 739-785; Roma. mckinney, f.k. & Jackson, J.B.c. (1989): Bryozoan evolution. – 238 pp.;Boston (Unwin Hyman). meulenkamP, J.e., kováč, m. & cicha, i. (1996): On Late Oligocene to Pliocene depocentre migration and the evolutionof the Carpathian Pannonian system. – Tectonophysics, 266: 301-317. moissette, P. (1988): Faunes de bryozoaires du Messinien d’Algerie occidentale. – Documents des Laboratoires de Geologie Lyon, 102: 1-351. murray, J.W. (2006): Ecology and applications of benthic foraminifera. – 426 pp.; Cambridge (Cambridge University Press). nemec, W.(2005): Principles of lithostratigraphic logging and facies analyses. Institutt for Geovitenskap, Universitat Bergen, 128 pp. oertli, h.J. (1971): The aspect of Ostracode faunas a possiblenewtoolin petroleumsedimentology.– In:Oertli, H.J. (Ed.): Paléoécologie des Ostracodes. – Bulletins du Centre de Recherches Pau SNEA, 137-151. okaDa, h. & mcintyre, A. (1979): Seasonal distribution of modern coccolithophores in the western North Atlantic Ocean.–MarineBiology,54:319-328. PaPP, a., cicha, i., seneš, J. & steininger, f. (1978): Chronostratigraphie und neostratotypen, Miozän der Zent- ralenParatethys,4,M4Badenien(Moravien,Wielicien, Kosovien). Bratislava (VEDA). Pavézková, J., hlaDilová, š. & Bitner, m.a. (in press): Miocene brachiopods from the Židlochovice locality, Czech Republic. – Geologické výzkumy na Moravě a veSlezsku. PoWers, m.c. (1982): Comparison chart for estimating roundnessand sphericity.– AGIData Sheet18. Procházka, v.J. (1893): Miocen židlochovický na Moravě a jeho zvířena. – Rozpravy České Akademie věd, 2 Třída II, Praha. PuJol, c. & vergnauD grazzini, c. (1995): Distribution patternsofliveplanktic foraminifersasrelatedto regional hydrographyand productive systemsofthe Mediter- raneanSea.–MarineMicropaleontology,25:187-217 reynolDs, l. & thunell, r.c. (1985): Seasonal succession of planktonic foraminifera in the subpolar North Paci- fic.–JournalofForaminiferalResearch,15:282-301. roDuit, n. (2008): JMicroVision: Image analysis toolbox for measuring and quantifying components of highdefinition images. Version 1.2.7. oftware available for free download at http://www.jmicrovision.com/accessed October, 2008. ruPP, c. & hohenegger, J. (2008): Paleoecology of planktonic foraminifera from the BadenSooss section (Middle Miocene, Badenian, Vienna Basin, Austria). – Geologica Carpathica, 59: 425-445. Říha, J. (1983): Ostrakodi vápnitých jílů (téglů) spodního badenu (Terciér, miocén) okolí Brna. – Acta Musei Moraviae, Scientiae Nature, 68: 57-83 (in Czech). seko, m., PiPík, r. & Doláková, n. (2012): Early Badenian ostracod assemblage of the stratotype Židlochovice (Carpathian Foredeep, Czech Republic). – Central European Journal of Geosciences CEJGD1100049R1,London:Springer,4 (1):111-125. schultz, o. (2001): Catalogus Fossilium Austriae. Band 1. Bivalvia neogenica (Nuculacea – Unionacea).– 379pp.; Wien (Österreichische Akademie der Wissenschaften). sPezzaferri, s. (1995): Planktonic foraminiferal paleoclimatic implications across the OligoceneMiocene transition in the oceanic record (Atlantic, Indian and south Pacific). – Palaeogeography, Palaeoclimatology, Palaeoecology, 114: 43-74. sPötl, c. & vennemann, t.W. (2003): Continuousflow IRMS analysisofcarbonate minerals.– RapidCommu- nicationsinMassSpectrometry,17:1004-1006. stuDencka, B. (1986): Bivalves from the Badenian (Middle Miocene) marine sandy facies of Southern Poland. – Palaeontologia Polonica, 47: 11-28. The Badenian parastratotype at Židlochovice 189 stuDencka, B., gontscharova, i.a. & PoPov, s.v. (1998): The bivalvefaunas as a basisfor reconstruction ofthe Middle Miocene history of the Paratethys. – Acta GeologicaPolonica,48 (3):285-342. stuchlik, l. (1994): Neogene Pollen Flora of Central Europe. Part 1. – Acta Palaeobotanica, Supplements, 1: 1-56. tomaštíková, t. & zágoršek, K. (2012): Mechovky z lokality Židlochovice (Bryozoa from the locality Židlochovice). – Geologické Výzkumy na Moravě a ve Slezsku,2012:53-56. tucker, m. (1988): Techniques in Sedimentology. – 394 pp.; Oxford (Blackwell). utescher, t., mosBrugger, v. & ashraf, a.r. (2000): Ter- restrialclimateevolutioninnorthwestGermanyoverthe last 25 Million years. – Palaios, 15 (5):430-449. van hinsBergen, D.J.J., kouWengoven, t.J. & van Der zWaan, g.J. (2005): Paleobathymetry in the backstripping procedure: Correction for oxygenation effects on depth estimates. – Palaeogeography, Palaeoclimatology, Palaeoecology, 221: 245-265. WaDe, B.s. & BoWn, P.r. (2006): Calcareous nannofossils in extreme environments: the Messinian Salinity Crisis, Polemi Basin, Cyprus. – Palaeogeography, Palaeoclimatology, Palaeoecology, 233: 271-286. Walanus, a. & nalePka, D. (1999): POLPAL. Program for countingpollengrains,diagramsplottingandnumerical analysis.–ActaPaleobotanica,2:659-661. Walker, r.g. & James, n.P. (1992) – Facies Models. Response to sea level changes. Geological Association Canada, 13-80. Wells, P. & okaDa, H. (1997): Response of nannoplankton to major changes in seasurface temperatrure and movements of hydrological fronts over site DSDP 594 (south Chatham Rise, southeastern New Zealand), during the last 130 kyr. – Marine Micropalaeontology, 32: 341-363. Whatley, c.r., Pyne, s.r. & Wilkinson, P.i. (2003): Ostracoda and palaeooxygen levels,with particular reference to the Upper Cretaceous of East Anglia. – Palaeogeography, Palaeoclimatology, Palaeoecology, 194: 355-386. Winter, a., JorDan, r.W. & roth, P.h. (1994): Biogeographyof the living coccolithophores in the oceans. – In: Winter,a.&siesser,W.(Eds.):Coccolithophores,161- 178; Cambridge (Cambridge University Press). Woelkerling,W.J. (1988): The coralline red algae: an analysis of the genera and subfamilies of non-geniculate Corallinaceae. – 268 pp.; London & Oxford (Oxford University Press). zágoršek, k. (2010a): Bryozoa from the Langhian (Miocene) of the Czech Republic. Part I: Geology of the studied sections, systematic description of the orders Cyclostomata, Ctenostomata and “Anascan” Cheilostomata (Suborders Malacostega levinsen, 1902 and Flustrina smitt, 1868). – Acta Musei Nationalis Pragae, (B), 66 (12): 31-36. zágoršek, k. (2010b): Bryozoa from the Langhian (Miocene) of the Czech Republic. Part II: Systematic description of the suborder Ascophora levinsen, 1909 and paleoecological reconstruction of the studied paleoenvironment. – Acta Musei Nationalis Pragae, (B), 66 (34): 139-255. zágoršek, k., holcová, k., nehyBa, s., kroh, a. & hlaDilová, š. (2009): The invertebrate fauna of the Middle Miocene (Lower Badenian) sediments of Kralice nad Oslavou (Central Paratethys, Moravian part of the Carpathian Foredeep). – Bulletins of Geosciences, 84(3):465-496. zágoršek, k., nehyBa, s., tomanová-Petrová, P., hlaDilová, š., Bitner, m.a., Doláková, n., hraBovský, J. & Jašková, v. (2012b): Local catastrophe caused by tephra input near Přemyslovice (Moravia, Czech Republic) during the Middle Miocene. – Geological Quarterly, 56 (2): 269-284. zágoršek, k., ostrovsky, a.n. & vávra, n. (2011): The new cheilostome bryozoan Metrarabdotos nehybai from the Middle Miocene of Moravia (Czech Republic): palaeofaunistic, taxonomic and ontogenetic aspects. – Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 260 (1):21-31. zágoršek, k., raDWańska, u. & raDWański, a. (2012a): Bryozoa from the Korytnica Basin (Middle Miocene; Holy Cross Mountains, Central Poland). – Bulletins of Geosciences,87(2):201-218. Manuscript received: September 24th, 2013. Revised version accepted by the Stuttgart editor: December 9th, 2013. Addresses of the authors: nela Doláková, slavomír nehyBa, rostislav BrzoBohatý, JuraJ hraBovský, Institute ofGeological Sciences,Masaryk University,Kotlářská 2,61137Brno,CzechRepublic; e-maisl: nela@sci.muni.cz, slavek@sci.muni.cz katarína holcová, Institute of Geology and Paleontology, Charles University in Prague, Albertov 6.128 43 Praha 2, Czech Republic; e-mail: holcova@natur.cuni.cz šárka hlaDilová, Department of Biology, Faculty of Education, Palacky University, Purkrabská 2, 771 40 Olomouc, Czech Republic; e-mail: sarka.hladilova@upol.cz kamil zágoršek, Department of Paleontology, National Museum, Václavské nam. 68, CZ 115 79 Prague, Czech Republic; e-mail: kamil_zagorsek@nm.cz michal seko, Geological Institute, Slovak Academy of Sciences, Ďumbierska 1, 974 01 Banská Bystrica, Slovakia; e-mail: michal.seko47@gmail.com torsten utescher,SteinmannInstitute,UniversityofBonn, Nussallee 8, Bonn, Germany; e-mail: utescher@geo.unibonn.de 190 N. Doláková et al. Appendices Appendix 1: List and relative abundances of benthic foraminiferal species. Z1/11.5-11.6m Z1/10.2- 10.3m Z1/9.8- 9.9m Z1/9.0- 9.1m Z1/8.9- 9.0m Z1/8.5- 8.6m Z1/7.8- 7.9m Z1/7.2- 7.3m Z1/6.8- 6.9m Z1/6.3- 6.4m Z1/6.3m Z1/6.0- 6.1m Z1/5.7- 5.8m Ammoniabeccarii(linne) 0.38 0 1.16 0 0 0 0 0 0 0.45 0 0 0 Ammoniatepida(cushman) 0 0.88 0 0 0 0.81 0.4 0 0.45 0 0 0 0.66 Amphicoryna badenensis (D’orBigny) 0.38 0 0 0 0 0 0.4 0 1.35 5.41 0.76 0 0 Amphistegina bohdanowiczi BieDa 0 0 0 0.39 0 0 0 0 0 0 0 0 0 Amphisteginamammilla(fichtel etmoll) 0 0 0 0 0 0 0 0 0 0.9 0 0 0 Angulogerina angulosa (Williamson) 0 0 0 0 0 0 0 0 0 0 0 0 0 Asterigerinata planorbis (D’orBigny) 0 5.31 12.79 6.25 12.02 4.86 2.82 0.87 1.35 20.27 26.72 31.39 39.07 Baggina sp. 2.26 0 0.78 0.39 0 0.81 2.82 1.74 1.35 0.9 0 0 0 Bolivina antiqua D’orBigny 0 0 0 1.17 0 0.81 0 0.43 0 0.9 0.38 0.73 0 Bolivinadilatatadilatatareuss 0.75 8.41 17.44 1.56 11.24 0 2.42 1.3 3.59 0 0.38 0 0.66 Bolivina hebes macfaDyen 0 0 0 0 0 0 0 0 0 0 0.38 0 0 Bolivinaplicatellacushman 0.75 3.54 0.78 0.39 1.16 4.45 4.03 3.04 1.79 0 0 0 0 BolivinapokornyicichaetzaPletalova 0 0 0 0 0.39 0 0 0 0 0 0 0 0 Bolivinascalprataretiformiscushman 0 0 0 0 0 0 0 0 0 0 0 0 0 Buchnerinabuchneri(margerel) 0.38 0 2.33 0.39 2.33 0 0.4 0.43 1.79 0 0 0 0 Bulimina elongata D’orBigny 6.39 4.87 6.98 2.34 5.43 6.88 4.03 0.43 0 2.25 0.38 0.73 3.97 Bulimina striata D’orBigny 6.02 0 1.55 1.17 0.78 0.81 0.4 4.78 2.69 4.5 1.15 0 1.32 Cancris auriculus (fichtel et moll) 1.13 0 0 0 0.78 0 0.4 0 0 0 0.76 0 0 CassidulinalaevigataD’orBigny 0.75 6.19 2.71 2.73 2.33 1.62 2.02 3.48 1.35 1.35 0.38 0 4.64 Cibicides sp. (small-sized) 0 5.31 8.53 2.34 13.95 2.02 0.81 3.91 4.93 0.9 13.74 10.95 19.21 Cibicidoides austriacus (D’orBigny) 0 0 0 0 0 0 0 0 0 0 0 0 0 Cibicidoides ungerianus (D’orBigny) 0.38 0.88 0.39 0 1.55 0 0 0.87 1.35 6.31 7.25 10.22 3.97 Dentalina sp. 0 0 0 0 0 0.4 1.21 0 0.45 0.45 0 0 0 Elphidiumcrispum(linne) 0 0 0 0.39 0 0 0 0 0 0.9 0.38 0 0 Elphidium fichtellianum (D’orBigny) 0 0.88 0.39 0 0 0 0 0.43 0.45 1.8 1.15 0 0.66 Elphidium flexuosum (D’orBigny) 0 0 0 0 0 0 0 0 0 0 0 0 0 Elphidiummacellumfichtel etmoll 0 3.54 1.16 1.95 1.55 3.64 1.61 1.3 0 7.21 8.4 13.14 5.96 Elphidiumortenburgense(egger) 0 0 0 0 0 0 0 0 0 0 0.38 0 0 Elphidium rugosum (D’orBigny) 0 0 1.16 0 0 0.4 0.81 0 0 0 1.15 3.65 1.99 Elphidium sp. (juvenile) 0 0 0 0 0 0 0 0 0 0 0 0 3.97 Ehrenberginaserratareuss 0 0 0 0 0 0 0 0 0 0 0 0 0 Fursenkoina acuta (D’orBigny) 1.13 0.44 0 1.17 0 0.4 0.81 0.87 0 0 0 0 0 Chilostomellaovoideareuss 0 0 0 0 0 0 0 0 0 0 0 0 0 Globocassidulinaoblonga(reuss) 2.26 3.98 5.43 3.52 6.98 3.64 5.24 8.7 4.04 0.9 5.34 0.73 2.65 Globulina gibba D’orBigny 0 0 0.78 0 0 0 0 0 0.9 0.45 0 0 0 Globulina spinosa D’orBigny 0 0 0 0.39 0 0 0 0 0 0.45 0 0 0 Grigelis pyrula (D’orBigny) 0 0 0 0 0 0 0.4 0 0 0 0 0 0 Hansenisca soldanii (D’orBigny) 3.01 9.29 0.78 5.08 2.33 3.24 4.84 5.22 5.83 1.35 1.15 2.19 0 Hanzawaiaboueana(D’orBigny) 1.13 2.65 0.78 1.56 0.78 0 0.4 1.3 0.45 3.15 1.53 0.73 1.99 Heterolepa dutemplei (D’orBigny) 11.65 7.08 5.04 15.23 7.75 11.74 8.06 10.43 8.07 4.05 0.76 5.11 0 Heterostegina sp. 0 0 0 0 0 0 0 0 0 0 0 0 0 Hoeglundina elegans (D’orBigny) 0.75 0.88 0 0.78 0.78 0.4 3.63 1.74 1.35 1.35 0.76 0.73 0 Karreriellachilostoma(reuss) 0.38 0 0 0 0 0 0 0 0 0.9 0.38 0 0 Laevidentalina elegans (D’orBigny) 0 0 3.49 0.39 1.16 1.62 0 0 0 0 0 0 0 Lagena striata (D’orBigny) 0.38 0.44 0 0 0 0 0 0.43 0 0 0 0 0 Lagena hexagona (Williamson) 0 0 0 0 0 0 0 0 0 0 0 0 0 Lenticulinacalcar(linne) 0 0 0.39 1.95 0 2.83 0 0.87 3.14 0 0 0.73 0 Lenticulina clypeiformis (D’orBigny) 0 0 0.39 0 0 0 0 0 0 0 0 0 0 Lenticulina inornata (D’orBigny) 0.38 0 0.78 0.78 0.78 0 2.02 0.87 0.9 1.35 0 0 0 Lenticulina orbicularis (d´orBigny) 0 0 0 0 0 0 0 0 0 0 0 0 0 Lenticulina sp. (broken or abraded) 0 0 0 0 0 0 0 0 0 0 0 1.46 0 Lenticulina sp. (juvenile) 0 0 0 0 0 0 0 0.43 0 0 1.91 0 0 Lenticulina vortex (fichtel et moll) 0 0 0 0 0 0 0 0 0 0 0 0 0 Lobatula lobatula (Walker et JacoB) 0.75 1.33 0.39 1.95 1.16 3.64 0.81 0 0 14.41 11.45 10.22 7.28 Marginulina hirsuta D’orBigny 0 0 0 0 0 0 0 0 0 0 0.38 0 0 The Badenian parastratotype at Židlochovice 191 Appendix 1: continued Z1/5.1- 5.2m Z1/4.8- 5.0m Z1/4.3- 4.4m Z1/4.2- 4.3m Z1/4.0- 4.2m Z1/3.6- 3.7m Z1/3.1- 3.2m Z1/2.6- 2.8m Z1/2.2- 2.3m Z1/2.0- 2.1m Z1/1.9- 2.0m Z1/1.7- 1.8m Z1/1.2- 1.3m Z1/1.0- 1.1m Paleoecological characteristic (Jorissenetal.1992,1995,2007, kaiho 1994, De stigter et al. 1998; De Dulk et al. 2000, sPezzaferri et al.2002,van hinsBergen etal.2005, murray 2006, BálDi 2006) 0 0 0.93 0 0 0 0 0 0 0.37 0 0 1.23 0.39 Euryhaline 0 0 0 0 0 0 0 0 0 0 0 1.74 0 0.39 Euryhaline 0 0 0 0 0 0 0 0 0 0 0.63 0 0 0.39 51.28 5.26 12.09 0 0.49 0 2.14 1.82 36 5.9 7.59 1.74 2.87 4.31 Oxiphylic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Oxiphylic 0 0 0 0 0 0 2.5 0 0 0 0 0 0 0 22.22 52.63 46.05 12.39 37.93 14.29 14.64 15 0 40.96 29.75 21.3 23.77 13.73 Epiphytic 0 0 0 0 0 0 0 0 0 0 0 0.43 0 0 0 0 0 1.71 0 3.67 0.36 0.91 0 1.11 0 0 0 0.39 Hypoxic, infauna 0 0 0 6.84 0 11.02 7.86 11.36 0.5 0.37 0.63 8.26 1.64 1.57 Hypoxic, infauna 0 0 0 0 0 0 1.07 0 0 0 0 0 0.82 0.78 0 0 0 3.42 0 0 3.57 0.91 0.5 0 0 3.48 2.05 0.39 0 0 0 0.43 0 0 0.36 0 0 0 0 0 0 0 Hypoxic, infauna 0 0 0 0 0 0 0 5 0 0 0 0 0.41 0 0 0 0 0.43 0 1.22 1.07 2.27 0 0.37 0.63 2.61 2.46 0.39 0 0 0.93 0 0.99 3.67 2.5 3.18 0 1.11 0 3.91 2.46 0.78 Hypoxic, infauna, high-nutrient 0 0 0.47 3.42 0 0 6.79 3.64 0 0.74 2.53 1.3 1.64 3.92 0 0 0 0 0 0 0 0 0 0 0 0 0 0.39 0 0 0 10.26 0.49 4.49 6.79 4.09 0 0 0 6.09 4.92 4.31 Phytodetritus supply 0.85 9.47 4.19 10.26 12.81 9.8 4.29 10.91 1.5 2.95 0 11.74 15.98 7.45 Oxiphylic, stress-tolerant 0 0 0 0 0 0 0 0 0 0 0 0 0.41 0.39 Oxiphylic 0 5.26 4.19 4.7 6.4 4.9 3.57 6.36 6.5 1.85 6.96 7.83 5.74 2.35 Oxiphylic 0 0 0 0 0 0 0 0 0.5 0 1.27 0 0 0.78 10.26 11.58 15.35 1.71 10.84 8.57 3.57 1.82 8 7.38 6.33 2.17 4.1 2.75 Euryhaline 0 0 0 0.43 1.97 1.63 0 0.45 0.5 1.85 1.9 1.74 2.87 2.75 Euryhaline 0 0 0 0.43 0 0 0 0 0 0 0 0 0 0 Euryhaline 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Euryhaline 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Euryhaline 0 0 0.47 0 0 0.41 2.86 0 0 0 0.63 0.87 0.41 1.57 Euryhaline 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Euryhaline 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.43 0 0 0 0 0 0 0 0 0 0 Hypoxic, infauna, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hypoxic 0.85 0 0.47 11.97 0 5.71 3.57 4.55 0.5 3.32 1.27 2.61 1.64 2.35 Phytodetritus supply 2.56 0 0 0 0.49 0.41 0.36 0 0 0 0.63 0 0 0.39 0 1.05 1.86 0.43 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.71 0 1.63 2.14 0.91 1 0.37 0.63 0.43 0.41 3.14 Hypoxic, infauna, high-nutrient 0.85 2.11 0 0.43 0 1.22 2.5 0.45 0 1.48 0 0 1.64 1.57 5.98 5.26 4.65 2.56 1.48 2.04 0.36 2.27 12.5 4.43 8.23 2.17 2.87 2.75 Oxiphylic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Oxiphylic 0 0 0 0 0 0 1.07 0 0 0 0 0 0.82 3.53 0 0 0 0 0 0 0 0 0.5 0 0 0 0 1.18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.43 0 0 0 0 0 0 0 0.43 0.41 0.39 0 0 0 0 0 0 0.36 0 0.5 0 0 0 0 0 0.85 0 0 0 0 0 0 0 0 0.74 0 0 0 1.18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.43 0 0.82 0.36 0.45 1 0.37 0.63 0.43 0 0 0 0 0.47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.27 5.26 5.12 7.69 20.69 18.37 8.93 5 8.5 11.81 6.33 5.65 6.56 7.45 Oxiphylic 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 192 N. Doláková et al. Appendix 1: continued Z1/11.5-11.6m Z1/10.2- 10.3m Z1/9.8- 9.9m Z1/9.0- 9.1m Z1/8.9- 9.0m Z1/8.5- 8.6m Z1/7.8- 7.9m Z1/7.2- 7.3m Z1/6.8- 6.9m Z1/6.3- 6.4m Z1/6.3m Z1/6.0- 6.1m Z1/5.7- 5.8m Martinottiella karreri (cushman) 0 0 0 0 0 0 0 0 0 0.9 0 0 0 Melonis pompiloides (D’orBigny) 0.75 1.77 1.55 1.95 0.78 2.83 2.02 4.78 8.07 1.35 3.44 0 0 Nonion commune (D’orBigny) 10.15 3.1 5.04 3.52 4.65 7.29 7.26 6.52 7.17 1.8 2.29 0 0.66 Nonion sp. 0 0 0 0 0 0 0 0 0 0 0 0 0 Nodosaria hispida d´orBigny 0 0 0 0 0.78 0 0.4 0.43 0 0 0 0 0 Nummoloculinacontraria(D’orBigny) 0 0 0 0 0 0 0 0 0 0 0 0 0 Oridorsalisumbonatus(reuss) 0 0 0 0 0 0 0 0 0 0.45 0 0 0 Neugeborina longiscata (D’orBigny) 0 0 0 0 0 0 0 0 0 0 0 0 0 Pappina parkeri (karrer) 0 1.77 0 0.78 0 0.81 0.4 0.43 0 0 0 0 0 Pararotalia aculeata (D’orBigny) 0 0 0 0 0 0 0 0 0 0 0 0.73 0 Planularia lanceolata (D’orBigny) 0 0 0 0 0 0 0 0 0.45 0.45 0 0 0 Plectofrondicularia digitalis (neugeBoren) 2.26 0.88 0.78 2.73 0.78 1.21 0 0.87 2.24 1.35 0 0 0 Praeglobobuliminapyrula(D’orBigny) 1.88 1.33 0 0.39 1.55 3.64 1.21 1.74 0.9 0.9 0 0 0 Porosononion granosum (D’orBigny) 0 0.44 0 0 0.39 0 0.81 0.87 2.24 0 0 0.73 0 Pseudotriloculina consobrina (D’orBigny) 0 0.44 0 0.39 0 0 1.21 0 0.9 0.45 0.38 0 0.66 Pullenia bulloides (D’orBigny) 5.64 0.44 2.71 5.86 2.33 2.83 4.03 3.91 1.35 2.25 2.67 0.73 0 Pyramidulina raphanistrum (linne) 0.75 0 0 0.78 0 0 0 0.43 0 0 0 0 0 Quinqueloculina buchiana d’Orbigny 0 0 0 1.95 0 0 0 0 0.45 0 0 0 0 Quinqueloculina hauerina (d’Orbigny) 1.88 0.44 0 2.34 0.78 4.05 2.42 0.43 1.79 0 0 1.46 0 Reussellaspinulosa(reuss) 0 0 0 0.39 0 0 0 0 0 0 0.38 0 0 Rosalina sp. (cf. semiporata (egger) 0 0 0 0.39 0 0 0 0.43 0 0.45 0.38 1.46 0 Semivulvulina deperdita (D’orBigny) 11.28 0 0 0 1.94 3.64 6.45 6.09 4.48 0.45 1.15 0 0 Sigmovirgulina tortuosa (BraDy) 0 0 0 0 0 0 0 0 0 0 0 0 0 Siphonina reticulata (czJzek) 0 0 0 0 0 0 0 0 0 0 0 0 0 Sphaeroidina bulloides D’orBigny 0.38 0 0 0 0 0 0.4 0.87 0.45 1.8 0.38 0 0 Spiroloculina sp. 0 0.44 0 0.78 0.39 0.4 1.61 0 0 0.45 0.38 0 0 Spirorutilus carinatus (D’orBigny) 1.13 2.65 1.16 6.25 1.94 6.88 8.47 8.26 2.24 0 0 0 0 Stilostomella adolphina (D’orBigny) 2.63 6.19 3.1 4.69 1.94 2.02 2.82 2.61 2.69 0 0.38 0 0 Stilostomella elegans (D’orBigny) 4.14 0 3.1 1.17 2.71 3.24 3.23 0 2.24 1.35 0 0 0 Textularia gramen D’orBigny 0 0.44 1.55 1.56 1.16 1.62 4.03 1.74 0 0 0 0 0 Textularialaevigata D’orBigny 0.38 0.44 0 0 0 0 0 0 0.45 0 0 0 0 Trifarina bradyi cushman 0.75 0.44 1.55 0 0.39 0 0 0.43 0 1.8 0 0 0 UvigerinaaculeataD’orBigny 0 0.44 0.78 2.73 1.94 2.02 1.61 3.04 9.42 0.45 0 0 0 Uvigerinabononiensisfornasini 0 0 0 0 0 0 0 0 0 0 0 0 0 UvigerinamacrocarinataPaPP etturnovsky 14.29 0 0 3.13 0.39 2.43 0.81 2.17 4.93 0.45 0.76 0.73 0 Uvigerina pygmoides PaPP etturnovsky 0 0 0 0 0 0 0 0 0 0 0 0.73 0 Uvigerinasemiornatad´orBigny 0 0 0 0 0 0 0 0 0 0 0 0.73 0 Valvulineria complanata (D’orBigny) 0.38 12.39 2.33 3.91 0 0 0 0 0 0 0 0 0.66 P/B-ratio 13.64 41.6 32.28 20.74 37.38 40.05 29.34 48.2 44.25 43.22 30.13 9.87 11.7 Foraminiferal number (specimens/1 g of rock sample) 308 348.3 571.5 129.2 374.55 529.71 1263.6 799.2 720 156.4 75 15.2 34.2 The Badenian parastratotype at Židlochovice 193 Appendix 1: continued Z1/5.1- 5.2m Z1/4.8- 5.0m Z1/4.3- 4.4m Z1/4.2- 4.3m Z1/4.0- 4.2m Z1/3.6- 3.7m Z1/3.1- 3.2m Z1/2.6- 2.8m Z1/2.2- 2.3m Z1/2.0- 2.1m Z1/1.9- 2.0m Z1/1.7- 1.8m Z1/1.2- 1.3m Z1/1.0- 1.1m Paleoecological characteristic (Jorissenetal.1992,1995,2007, kaiho 1994, De stigter et al. 1998; De Dulk et al. 2000, sPezzaferri et al.2002,van hinsBergen etal.2005, murray 2006, BálDi 2006) 0 0 0 0 0 0 0.36 0 2 0 1.9 0 0 0.39 0 0 0 3.85 0 0.41 1.07 1.82 3.5 0.37 7.59 0 1.23 5.49 Hypoxic, infauna, high-nutrient 0 0 0 0.43 0.49 1.63 0.71 1.36 0 0.37 0.63 0 0 1.57 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.57 0 0 0 0 0 0 0.36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.63 0 0 0 0 0 0 0 0 0 0 0.45 0 1.11 0 0 0 0 0 0 0 0.43 0 0.41 0.36 0.91 0 1.11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.63 0 0 0,39 Hypoxic, infauna, high-nutrient 0 0 0 0 0.99 0.41 1.79 3.64 0.5 0.74 0 1.74 0.41 0 Euryhaline 0 0 0.47 0 0 0 0 0 0.5 0 0 0 0.82 0 0 0 0 0 0 0.41 1.07 0.45 0 0.74 0.63 0.43 0 0 Hypoxic, infauna, high-nutrient 0 0 0 0 0 0 0 0 0 0 0.63 0 0 0 0 0 0 0 0 0 0 0 0.5 0.37 1.9 0 0 0,39 Oxiphylic 0 1.05 0 0 0 0 0 0 0 0 0 0 0 0 Oxiphylic 0 0 0 2.56 0 1.22 1.07 2.27 1.5 0.74 0 4.35 3.69 3,53 0 0 0 0 0 0 0 0 0.5 0.74 0 0 0 0 0 0 0 0.43 1.97 0 1.43 0 1.5 0.37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.82 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.82 0.5 0.37 0 0 0.41 0,78 0 0 0 1.28 0 0 2.14 0.91 0 0.37 0.63 0.43 0.82 0,78 0 0 0 0 0 0 0.36 0.45 1 0 0 0.87 0 1,18 0 0 0 4.27 0.49 1.22 4.29 4.55 2 1.85 1.9 3.48 2.87 4,31 0 0 0 0.43 0 0 0.36 0 1 1.11 1.9 0 0 0 0 0 0 0 0 0 0 0 0 1.85 2.53 0.43 0.41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,18 0 0 1.4 2.56 1.48 0.41 0 0 0 0 0 0 0 0,39 0 0 0 0 0 0 0 0 0 0 0 0 0 1,18 Hypoxic, infauna, high-nutrient 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hypoxic, infauna, high-nutrient 0 0 0 0.43 0 0 1.07 0 3 0.37 1.9 0.87 0 0,39 Hypoxic, infauna, high-nutrient 0 0 0.93 0 0 0 0 0 0 0 0 0 0 0 Hypoxic, infauna, high-nutrient 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 Hypoxic, infauna, high-nutrient 0 1.05 0 0.43 0 0 0 0 0.5 0 0 0.43 0.41 1,18 Hypoxic, infauna, high-nutrient 0 1.04 40.27 41.65 1.93 29.55 34.73 48.39 32.43 16.36 37.55 42.29 31.46 34,28 23.4 9.6 132.6 243.03 41.4 130.95 107.25 263.03 59.2 116.64 25.3 160.8 160.2 279,36 194 N. Doláková et al. Z2/16.9-17.0m Z2/16.6-16.4m Z2/15.9-16.0m Z2/15.4-15.5m Z2/15.1-15.2m Z2/14.4-14.8m Z2/14.1-14.2m Z2/13.9-14.0m Z2/13.8-13.9m Z2/13.7-13.8m Z2/13.3-13.4m Z2/12.9-13.0m Z2/12.2-12.3m Z2/11.5-11.6m Z2/11.0-11.2m Z2/10.8-10.9m Z2/9.9-10.0m Z2/9.2-9.3m Z2/8.8-8.9m Z2/8.5-8.6m Z2/8.3-8.4m Z2/7.8-7.9m Z2/6.9-7.0m Z2/6.0m Ammoniabeccarii(linne) 0 0 0 0 0 0 0 0 0 0.42 0 0 0 0 0 0 0.75 0.82 0 0 0 0 0 0 Ammonia tepida (cushman) 1.12 2.09 2.87 0 1.51 0 0.41 0 0 0 0.4 0 0.81 1.32 0.98 0 0 0 0 0.8 0 0.42 0 0 Amphicoryna badenensis (D’orBigny) 0 0.42 0.41 0 0 0.42 0 0 0 0 0 0 0 0 0 0.45 0 0 0 0 0 0.84 0 0.37 Amphistegina bohdanowiczi BieDa 0.37 0 0 0 0 0 0.82 0 1.41 5.02 1.62 1.52 0 0 2.44 3.13 6.02 6.58 3.42 1.2 4.29 0.84 0 0 Amphisteginamammilla (fichtel etmoll) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.41 0 0 0.48 0 0 0 Angulogerina angulosa (Williamson) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.12 Asterigerinata planorbis (D’orBigny) 12.3 11.3 13.5 38.9 32.1 47.1 7.76 6.43 14.1 11.3 32.4 14 4.03 4.82 42.4 31.3 22.9 36.2 31.2 29.7 38.6 26.4 1.35 0.75 Baggina sp. 0 0.84 0 0 0 0 0.41 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0 0.84 0 0 Bolivina antiqua D’orBigny 2.23 0 0.41 0 0.75 0 0.41 0 0 0 0 1.14 6.85 7.02 0.49 0.45 0.75 0.41 0 0.4 0.48 0.42 0 0 Bolivinadilatatadilatatareuss 6.69 12.6 17.6 0 2.64 0.42 7.76 22.9 3.76 4.6 0.4 5.3 0 6.14 0.49 2.23 0 0.82 1.71 0.8 0 3.35 14.4 1.5 Bolivina hebes macfaDyen 1.12 0 0 2.29 0 0 0 0 0 0 0 0 0 0.44 0 0 0 0 0 0 0 0 0 0 Bolivinaplicatellacushman 1.86 4.6 1.23 0.76 0.38 0 0.41 0.8 0 0 0 0.38 12.5 3.51 0 2.23 1.13 0.41 0.43 1.2 0 0 3.6 1.87 BolivinapokornyicichaetzaPletalova 0.37 0 1.64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bolivinascalprataretiformiscushman 0 0 0 0 0 0 0 0 0 0 0 0 0 6.58 0 0 0 0 1.28 0 0 0 0 0 Buchnerinabuchneri(margerel) 1.49 3.77 2.05 1.53 0.75 0 1.22 2.81 0.47 0 0.4 0.38 2.42 3.51 0 0.45 0 0.41 1.71 0.4 0 0 0.45 0.37 Bulimina elongataD’orBigny 3.35 3.77 2.05 0.38 1.51 1.26 5.31 5.22 4.23 4.18 1.21 4.17 0.4 0 0 0.89 2.63 0.41 0.85 3.61 0 1.67 4.05 2.62 Bulimina striata D’orBigny 2.23 2.09 0.82 0.38 0.75 0 1.22 1.2 0 0.84 0 1.14 2.02 2.19 0.49 0 4.89 1.65 0 2.41 0 2.93 0.9 2.62 Cancris auriculus (fichtel et moll) 0 0 0 0 0 0.42 0 0 0 0 0.4 0 0 0.44 0 0 0.38 0 0 0 0 0 0 0 CassidulinalaevigataD’orBigny 4.83 2.09 3.28 0 0.75 1.26 9.39 10.8 2.35 3.77 0 9.09 4.84 6.14 0.49 0.89 1.13 0.82 1.71 0.4 0 0.42 2.25 0 Cibicides sp. (small-sized) 4.83 9.62 16 8.78 6.79 2.52 12.7 14.5 16 5.02 10.1 18.9 16.9 13.6 3.9 13.4 0.75 2.06 11.5 7.63 1.9 18.8 0 0.37 Cibicidoides austriacus (D’orBigny) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Cibicidoides ungerianus (D’orBigny) 0.74 1.26 2.87 3.05 2.26 2.94 2.86 2.01 3.29 2.09 0 3.79 1.61 3.51 0.49 3.57 1.5 3.29 2.56 2.41 5.24 2.93 2.25 3.37 Dentalina sp. 0 0 0 0.38 0.75 0 0 0 0 0 0 0 0 0.44 0 0.45 0.38 0 0 0 0 0 0 2.25 Elphidiumcrispum(linne) 0 0 0 0 0 0 0 0 0 1.67 0.4 0 0 0 4.39 0 0.38 4.12 0.43 1.2 15.2 0 0 0 Elphidiumfichtellianum(D’orBigny) 0 0 0 0.76 0.38 0 0 0.4 0.47 0.84 2.02 0.76 0 0 1.46 0.89 0.75 0.82 0.43 0 0 0 0.45 0 Elphidium flexuosum (D’orBigny) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Elphidiummacellumfichtel etmoll 2.97 1.67 0 12.6 8.68 14.7 4.9 4.02 9.39 6.28 12.2 7.95 2.02 1.32 7.8 5.36 5.64 8.23 7.69 7.23 3.81 4.18 0.9 0 Elphidiumortenburgense(egger) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Elphidium rugosum (D’orBigny) 0 1.26 0 0.38 0.38 2.52 0.82 0.8 0.94 0.42 3.24 1.89 0 0.88 0.49 3.13 2.63 0.41 2.56 2.01 1.43 0.42 0 0 Elphidium sp. (juvenile) 0 0 1.64 0 0 0 0 0 0 0 0 0 0 0.44 0 0 0 0 0 0 0 0 0 0 Ehrenberginaserratareuss 0 0.42 0 0 0 0 0 0 0 0 0.4 0 0.4 0.88 0.98 0 0.38 0 0.43 0.4 0 0 2.7 3 Fursenkoina acuta (D’orBigny) 0.37 0 0.41 0 0 0 0 0.8 0 0.42 0 0.38 0 0 0 0 0 0 0 0.4 0 0 0 0 Chilostomellaovoideareuss 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.41 0 0 0 0 0 0.37 Globocassidulinaoblonga(reuss) 8.55 12.1 8.2 0 4.91 0 4.08 4.02 2.35 0.84 1.21 2.65 4.03 4.39 0 1.79 0.75 0.41 2.14 2.41 0 5.02 3.15 0.37 Globulina gibba D’orBigny 0.37 0 0 0 0 0.42 0.82 0 0 0.42 0 0.38 0 0 0 0 0.38 1.23 0.43 0.4 0 0 0 1.87 Globulina spinosa D’orBigny 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.41 0 0 0 0 0 0 Grigelis pyrula (D’orBigny) 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0 0.98 0 0.38 0.41 0 0 0.95 0 2.25 1.5 Hansenisca soldanii (D’orBigny) 2.97 1.67 2.87 0.76 1.89 0.42 2.04 4.02 1.41 1.67 1.62 1.89 2.02 1.32 1.95 3.57 1.88 0.41 1.28 0.8 0 0.42 3.15 1.87 Hanzawaia boueana (D’orBigny) 1.12 1.26 0 0 1.51 0.84 0.82 0.4 0.47 0.42 0.81 0.38 0.81 1.32 0 1.34 1.5 0 0.85 1.61 0 2.09 4.5 4.12 Heterolepa dutemplei (D’orBigny) 4.09 2.93 2.05 1.15 5.66 1.26 7.76 3.21 11.3 15.1 5.67 2.65 1.21 0.44 8.78 1.34 8.27 3.7 4.27 5.22 1.9 2.09 1.8 3.37 Heterostegina sp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hoeglundina elegans (D’orBigny) 0.37 0 0.82 0.38 0 0 0 0 0 0 0 0 0 0 0 0.45 0 0 0 0 0 0.42 2.25 4.49 Karreriellachilostoma(reuss) 0 0 0 0 0 0 0 0 0 0 0 0 0 0.44 0 0 1.13 0.82 0.43 0 0 0.42 0.45 5.62 Laevidentalina elegans (D’orBigny) 0 0 1.64 0 0 0 0 1.61 0.47 0 0 1.52 4.03 0 0 0 0 0 0 0 0 0 0 3.75 Lagena striata (D’orBigny) 0 0 0 0 0 0 0 0.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Lagena hexagona (Williamson) 0 0 0 0 0 0 0 0.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Lenticulinacalcar(linne) 0 0 0 0 0 0 2.45 0 1.88 0 0 0 0.4 0.44 0.49 0 1.5 0 0 0 0 0 0 0.37 Lenticulina clypeiformis (D’orBigny) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Lenticulina inornata (D’orBigny) 0.37 0 0 0.38 0.75 0 0 0 0.47 0 0 0.76 0.4 0 0 0 0 2.06 0 2.41 0 1.26 0.45 6.74 Lenticulina orbicularis (d´orBigny) 0 0 0 0 0 0.42 0 0 0.47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Lenticulina sp. (broken or abraded) 0 0 0 0 0 0 0 0 0 7.95 1.62 0 0 0 0 0 0 0 0 0 0 0 1.35 0 Lenticulina sp. (juvenile) 0.74 0.84 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Lenticulina vortex (fichtel et moll) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Lobatula lobatula (Walker et JacoB) 7.81 8.79 5.33 19.1 8.3 17.7 15.1 4.82 13.2 11.3 15.4 11 11.7 13.6 10.7 8.48 9.77 8.23 12 12.1 6.67 10.5 3.6 3 Marginulina hirsuta D’orBigny 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.75 0 0 0 0 0 0 0 The Badenian parastratotype at Židlochovice 195 Z2/16.9-17.0m Z2/16.6-16.4m Z2/15.9-16.0m Z2/15.4-15.5m Z2/15.1-15.2m Z2/14.4-14.8m Z2/14.1-14.2m Z2/13.9-14.0m Z2/13.8-13.9m Z2/13.7-13.8m Z2/13.3-13.4m Z2/12.9-13.0m Z2/12.2-12.3m Z2/11.5-11.6m Z2/11.0-11.2m Z2/10.8-10.9m Z2/9.9-10.0m Z2/9.2-9.3m Z2/8.8-8.9m Z2/8.5-8.6m Z2/8.3-8.4m Z2/7.8-7.9m Z2/6.9-7.0m Z2/6.0m Martinottiella karreri (cushman) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Melonis pompiloides (D’orBigny) 1.49 0.84 0.41 0 0.75 0.42 2.45 0.4 0.94 0.42 2.02 0.38 2.02 1.32 1.46 4.02 3.01 1.65 1.71 1.61 2.86 2.93 2.7 3.37 Nonion commune (D’orBigny) 1.86 3.35 2.46 0.76 1.13 0 2.04 1.2 4.23 3.77 1.62 2.27 2.02 0.88 0.49 1.79 0.75 2.06 0.85 1.2 0.48 2.09 7.66 10.5 Nonion sp. 0 0 2.46 0 0 0 0.82 2.41 0 3.77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Nodosaria hispida d´orBigny 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0 0 3.6 1.12 Nummoloculina contraria (D’orBigny) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.93 0 0 0 0 0 0 0 0 0 Oridorsalisumbonatus(reuss) 0 0.42 0 0 0 0 0 0 0.47 1.26 0 0 0 0 0 0 0.38 2.06 0 0 6.19 0.42 0 0 Neugeborina longiscata (D’orBigny) 0 0 0 0 0 0 0 0 0 0 0 0.38 0 0 0 0 0 0 0 0 0 0 0 0 Pappina parkeri (karrer) 0 0.42 0 0 0 0 0 0 0 0 0 0 0.81 0 0 0 0 0 0 0 0 0 0 0 Pararotalia aculeata (D’orBigny) 0 0 0 0 0 0 0 0 0.94 0.42 0.81 0 0 0 0.49 0 0 0 0 0 1.43 0 0 0 Planularia lanceolata (D’orBigny) 0 0 0 0 0 0 0 0 0 0 0 0 0.81 0.44 0 0 0 0 0 0 0 0 0 1.12 Plectofrondicularia digitalis (neugeBoren) 0.74 0.42 0.82 0 0.75 0 0 0.8 0 0.42 0 0.38 0.4 0 0 0.45 0.75 0 0 0.4 0.95 0.42 0.45 0 Praeglobobuliminapyrula(D’orBigny) 0 0 0 0 0 0 0 0 0 0.42 0 0 0 0 0 0 0.75 0 1.28 0 0 0 1.8 0.37 Porosononion granosum (D’orBigny) 4.46 3.35 3.69 0 0 1.68 0.82 0 0.47 0 0 0 0.81 0 0 0 0 0 0 0 0 0 1.8 0 Pseudotriloculina consobrina (D’orBigny) 0 0 0.41 0 1.89 0 0 0 0.47 0 0.4 0 1.21 0 0 0.45 0 0 0 0 0 0 0 0 Pullenia bulloides (D’orBigny) 0 0 0 0.38 0.38 0 0.82 0.4 1.41 1.67 0.81 1.89 0 0.88 0 0.89 1.5 1.23 1.28 2.01 0.48 0.84 2.7 5.24 Pyramidulina raphanistrum (linne) 0 0 0 0 0 0 0.41 0 0 0 0 0 0 0 0 0 0 0.41 0 0 0 0.42 0 0.37 Quinqueloculina buchiana D’orBigny 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.42 0 0 Quinqueloculina hauerina (D’orBigny) 0 0 0 0 0 0 0 0 0 0.42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reussellaspinulosa(reuss) 1.12 0 1.64 3.44 1.89 1.26 0 0 0 0.42 0 0.76 0.4 1.75 0.49 1.79 1.5 0.41 1.28 1.61 0 2.51 0 0 Rosalina sp. (cf. semiporata (egger) 1.12 0 0 1.91 1.89 1.68 0 0 0 0 0 0 1.21 0.88 0 0.45 0 0 0.43 0 0 0 0 0 Semivulvulina deperdita (D’orBigny) 1.49 2.09 0 0 1.89 0.42 0 0.8 0.94 0.42 1.62 0 0 0 0 0 1.13 0 1.71 0.8 0 0.42 0 0 Sigmovirgulina tortuosa (BraDy) 0 0 0 0 0 0 0 0 0 0 0 0 1.21 0.44 0 0 0 0 0 0 0 0 0 0 Siphoninareticulata(czJzek) 0 0 0 0 0 0 0 0 0 0 0 0 1.21 0 0 0 0 0 0 0 0 0 0 0 Sphaeroidina bulloides D’orBigny 0 0.42 0.41 0 0.75 0 0 0 0 0 0 0 0.4 1.75 0.49 0.89 1.5 0 0.85 0.4 0 0 0.45 3.75 Spiroloculina sp. 0.37 0.84 0 0 0 0 0 0.8 0 0 0 0 3.23 0 0.49 0.45 0.75 0.41 0.43 0.4 0 0 0.45 0.75 Spirorutilus carinatus (D’orBigny) 0.74 0 0 0 0 0 0 0 0.47 0.42 0 0.38 0 0 0 0 1.13 0.41 0 0.4 0 0.84 0.45 0.37 Stilostomella adolphina (D’orBigny) 4.83 1.67 0 0 3.4 0 0 0 0 0.42 0.4 0 0 2.63 0.49 2.68 2.63 0.82 0.85 1.61 0.48 0.42 5.41 3.75 Stilostomella elegans (D’orBigny) 1.49 0.84 0 0.38 0 0 0 0 0.47 0.42 0 0 0.4 1.75 1.46 0 1.13 1.23 0 0 0.48 0.42 9.46 4.87 Textularia gramen D’orBigny 1.49 0 0 0.76 0.38 0 0.41 0 0.94 0.84 0.81 0.38 0 0 0 0 0 2.06 0 0 5.71 0.84 0 0 Textularialaevigata D’orBigny 0 0 0 0 0 0 0 0.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Trifarina bradyi cushman 1.49 0 0 0 1.13 0 0.41 1.2 0 0 0 1.14 3.63 1.75 0 0.45 0 0 0 0.4 0 0 2.7 0.37 Uvigerina aculeata D’orBigny 0.74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.42 0 0.75 Uvigerinabononiensisfornasini 1.12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.75 Uvigerina macrocarinata PaPP etturnovsky 0 0 0 0.38 0.38 0 0 0 0 0 0 0 0.4 0 0.98 0 2.63 1.23 0 0.8 0 0 2.25 0 Uvigerina pygmoides PaPP etturnovsky 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Uvigerina semiornata d´orBigny 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.8 0 Valvulineria complanata (D’orBigny) 2.23 0 0 0 0 0 2.45 0 0 0 0 0 0 0.44 0 0 1.13 0 0 0.4 0 0 0 4.87 P/B 37.6 35.6 31.8 2.6 31.4 6.3 9.93 41 3.62 4.02 6.44 23.9 34 29.2 8.89 28.4 45.6 41.7 26.9 37.6 11 25.8 41 34.9 Foraminiferal number (specimens/1 g of rock sample) 287 337 358 242 139 408 54.6 141 22.1 33.2 17.6 312 691 587 15 313 176 50.2 320 239 18.9 64.4 96.9 123 196 N. Doláková et al. 196N.Dolákováetal. Appendix2:Listandrelativeabundancesofplanktonicforaminiferalspecies. Z1/11.5-11.6m Z1/10.2-10.3m Z1/9.8-9.9m Z1/9.0-9.1m Z1/8.9-9.0m Z1/8.5-8.6m Z1/7.8-7.9m Z1/7.2-7.3m Z1/6.8-6.9m Z1/6.3-6.4m Z1/6.3m Z1/6.0-6.1m Z1/5.7-5.8m Z1/5.1-5.2m Z1/4.8-5.0m Z1/4.3-4.4m Z1/4.2-4.3m Z1/4.0-4.2m Z1/3.6-3.7m Z1/3.1-3.2m Z1/2.6-2.8m Z1/2.2-2.3m Z1/2.0-2.1m Z1/1.9-2.0m Z1/1.7-1.8m Z1/1.2-1.3m Z1/1.0-1.1m Paleoecologicalcharacteristic(Reynolds & Thunell 1985; hemleben et al. 1989; KelleR & macleod 1992; Pujol & VeRgnaud gRazzini 1995;bicchietal.2003;sPezzafeRRi 1995;RuPP & hoheneggeR 2008) Turborotalitaquinqueloba(naTland) 0 21.7 34.2 0 55.2 6.06 14.6 18.2 28.8 7.69 7.08 0 5 0 0 0 38.9 0 34.8 34.2 45.2 2.08 5.66 0 20 31.3 47.4 Mixed wather column, (?)eutrophic, stress, tolerant Globigerina ottnangiensis Rogl 9.52 3.11 0 0 0 0 4.85 5.61 6.21 15.4 2.65 0 25 0 0 0 0 25 0 3.36 8.1 4.17 0 11.6 8.82 5.36 2.26 Globigerina tarchanensis subboTina et chuTzieVa 0 11.2 18.7 4.48 19.5 0 3.88 17.8 0 0 0 6.67 0 0 0 0 41.9 0 28.3 29.5 27.6 8.33 11.3 3.16 17.7 35.7 25.6 Globigerina praebulloides blow 26.2 28.6 9.76 13.4 5.84 24.9 32 18.7 13 11.8 6.19 0 5 0 0 0 0 0 0 0 0 0 0 5.26 0 0 0 Globigerinabulloides d’oRbigny 14.3 1.24 4.88 8.96 0.65 21.8 12.6 7.48 14.7 4.73 7.08 0 0 0 0 16.7 6.59 25 17.4 6.04 6.67 27.1 35.9 34.7 16.5 10.7 3.01 Eutrophic, intermediate dweller Globigerina bulloides d´oRbigny (with bulla) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Globigerinoides bisphericus Todd 9.52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.2 0 0 0 0 3.13 3.77 0 1.18 0 0 Oligotrophic, superficial dweller Globigerinoides quadrilobatus d´oRbigny 2.38 0 0 2.99 0 0 0.97 0 1.69 1.78 0.88 0 0 0 0 0 0 0 0 0 0 1.04 0 0 0.59 0.89 0 Oligotrophic, superficial dweller Globigerinoides trilobus (Reuss) 0 0 0 0 0 0 0 0 1.13 7.1 4.42 6.67 0 0 0 0 0 25 0 0.67 0 3.13 0 9.47 0 0 3.76 Oligotrophic, superficial dweller Praeorbulinacircularisblow 7.14 0 0 2.99 0 1.82 0 0.93 0 0.59 1.77 0 0 0 0 16.7 0.6 0 0 0.67 0 3.13 0 0 0 0 1.5 Oligotrophic, superficial dweller OrbulinasuturalisbRonnimann 0 0 0 0 0 0 0 0 0 0 0 13.3 0 0 0 16.7 0 0 0 0 0 5.21 0 0 0 0 0 Oligotrophic, superficial dweller Globigerinella regularis (d’oRbigny) 7.14 3.73 8.13 13.4 2.6 3.03 4.85 1.87 6.78 12.4 11.5 40 20 0 0 0 1.8 25 2.17 0.67 0.95 19.8 7.55 5.26 1.76 2.68 2.26 Oligotrophic Paragloborotaliaacrostoma(wezel) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Paragloborotalia mayeri (cushman et ellisoR) 23.8 30.4 24.4 53.7 16.2 42.4 26.2 29.4 27.7 38.5 55.8 26.7 40 0 0 0 7.78 0 17.4 20.8 10 15.6 32.1 22.1 32.4 13.4 10.5 Superficialdweller Globorotaliaperipherodondablow et banneR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Intermediate dweller Globorotalia bykovae (aisensTaT) 0 0 0 0 0 0 0 0 0 0 2.65 6.67 5 0 0 50 1.2 0 0 4.03 1.43 7.29 3.77 8.42 1.18 0 3.76 Intermediate dweller Catapsydrax sp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Globoquadrina altispira (cushman et jaRVis) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Z2/16.9-17.0m Z2/16.6-16.4m Z2/15.9-16.0m Z2/15.4-15.5m Z2/15.1-15.2m Z2/14.4-14.8m Z2/14.1-14.2m Z2/13.9-14.0m Z2/13.8-13.9m Z2/13.7-13.8m Z2/13.3-13.4m Z2/12.9-13.0m Z2/12.2-12.3m Z2/11.5-11.6m Z2/11.0-11.2m Z2/10.8-10.9m Z2/9.9-10.0m Z2/9.2-9.3m Z2/8.8-8.9m Z2/8.5-8.6m Z2/8.3-8.4m Z2/7.8-7.9m Z2/6.9-7.0m Z2/6.0m Turborotalitaquinqueloba(naTland) 18.5 30.3 65.8 0 31.4 0 18.5 26 37.5 0 5.88 25.3 28.1 26.6 0 25 3.59 9.2 15.6 19.3 0 21.7 18.2 0 Globigerina ottnangiensis Rogl 3.09 6.06 0 0 0 0 0 0 0 0 0 0 0 1.06 0 0 4.93 5.17 2.46 3.33 11.5 0 0 2.1 Globigerina tarchanensis subboTina et chuTzieVa 11.7 15.9 27.2 0 15.7 0 0 38.7 0 0 41.2 26.5 44.5 43.6 0 8.06 0 0 10.7 0 0 0 0 0 Globigerina praebulloides blow 8.64 18.2 1.75 71.4 4.96 37.5 11.1 5.2 0 30 0 12.1 7.81 0 40 27.4 27.4 20.1 19.7 20.7 23.1 32.5 7.79 21.7 Globigerinabulloidesd’oRbigny 9.26 0 0 0 5.79 12.5 25.9 0 12.5 30 23.5 0 0 4.26 15 4.84 20.2 12.6 3.28 14.7 30.8 0 8.44 18.2 Globigerina bulloides d´oRbigny (with bulla) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Globigerinoides bisphericus Todd 0 0 0 0 0.83 0 0 0 0 0 0 0 0.78 0 0 0 0 0 0.82 0 0 0 0.65 1.4 Globigerinoides quadrilobatus d’oRbigny 1.23 0 0 0 0 0 0 0 12.5 0 0 0 0 0 0 0 0 2.3 0 0 0 0 1.3 8.39 Globigerinoides trilobus (Reuss) 0 0 0 0 1.65 0 0 0 0 0 5.88 0 0 1.06 0 0 2.69 4.02 0 0 11.5 0 1.3 14.7 Praeorbulinacircularisblow 0 0 0 0 0.83 0 0 0 0 0 0 0 0 0 0 0.81 0.45 1.72 0 0 0 0 0 0.7 OrbulinasuturalisbRonnimann 0 0 0 0 4.13 0 0 0 0 0 5.88 0 0 1.06 0 0 0.45 0 0 0 3.85 0 0 0.7 Globigerinella regularis (d’oRbigny) 3.09 0 0 0 3.31 6.25 14.8 3.47 0 20 5.88 12.1 0 1.06 20 1.61 6.73 4.6 2.46 2 15.4 0 0 1.4 Paragloborotaliaacrostoma(wezel) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Paragloborotalia mayeri (cushman et ellisoR) 43.2 29.6 5.26 28.6 31.4 37.5 25.9 22.5 37.5 10 5.88 22.9 15.6 21.3 25 31.5 33.6 39.7 45.1 39.3 3.85 45.8 59.7 23.8 Globorotaliaperipherodondablow et banneR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Globorotalia bykovae (aisensTaT) 1.23 0 0 0 0 0 3.7 4.05 0 10 5.88 1.2 3.13 0 0 0.81 0 0 0 0.67 0 0 1.95 4.9 Catapsydrax sp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Globoquadrina altispira (cushman et jaRVis) 0 0 0 0 0 6.25 0 0 0 0 0 0 0 0 0 0 0 0.57 0 0 0 0 0.65 2.1 Appendix3:Listandrelativeabundancesofcalcareousnannoplanktonspecies. Z1/0.7-0.8m Z1/1.0-1.1m Z1/1.2-1.3m Z1/1.7-1.8m Z1/1.9-2.0m Z1/2.0-2.1m Z1/2.6-2.8m Z1/3.1-3.2m Z1/3.6-3.7m Z1/4.0-4.2m Z1/4.3-4.4m Z1/4.8-5.0m Z1/5.1-5.2m Z1/5.7-5.8m Z1/6.0-6.1m Z1/6.3-6.3m Z1/6.3-6.4m Z1/6.8-6.9m Z1/7.2-7.3m Z1/7.8-7.9m Z1/8.5-8.6m Z1/8.9-9.0m Z1/9.0-9.1m Z1/9.8-9.9m Z1/10.2-10.3m Z1/10.3m Z1/10.9m Z1/11.1m Z1/11.5-11.6m Z1/11.8m Remarks (paleoecological characteristics accordingbeaufoRT&aubRy 1992; wells & oKada 1997; floRes et al. 1997; bollmann etal.1998;Kameo 2002;wade & bRown 2006) Coccolithuspelagicus (wallich)schilleR 19.7 19.6 24.2 45.6 8.68 17.1 15.5 29.2 14.3 10.9 2.56 14.3 18.4 2.56 11.6 13.1 5.94 9.58 32.6 14.4 19.8 10.5 41.8 14 39.7 12.1 7.28 7.44 22.4 9.68 High-nutrient Reticulofenestra minuta RoTh 73.9 76.5 69.7 46.5 86.8 81.1 70.8 62.8 73.7 85.3 97.4 85.7 80.2 95.7 80.4 81.5 86.8 79.2 56 72.1 67.6 77.3 39 78.6 11 69.5 44.1 31 61.8 53 Stress-tolerant, euryhaline ReticulofenestrahaqiibacKman 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.94 1.25 0 0 0 0 0 0 22.4 0 36.4 48.4 0 30 Reticulofenestra pseudoumbilica gaRTneR 0 0.71 0.41 1.77 0.91 0 5.31 3.59 2.76 0 0 0 0 0.85 1.79 1.36 0 2.08 4.85 3.15 3.15 3.64 4.78 0.44 10.1 6.73 2.3 4.55 4.82 0 Cyclicargolithus abisectus (mülleR) wise 0.38 0 0.41 0 0.46 0 0.44 0 0 0 0 0 0 0 0 0 0 0 0 1.35 0 0 0.8 0 0.46 0 0 0 0 0 Reworked - Oligocene Reticulofenestra bisecta (hay, mohleR & wade) RoTh 0 0 0.41 0.88 0 0 0 0 0 0 0 0 0 0 1.79 1.36 0 0 0.44 0 0 0 1.99 0 0.91 0.45 0 0 0 0.92 Reworked - Oligocene Reticulofenestradaviesi(haq)haq 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0 0 0 0 0 0 0 Reworked - Oligocene Cyclicargolithus floridanus (RoTh & hay) buKRy 0.38 0 0.82 0 0 0 0.44 0 0.92 0.78 0 0 0.94 0 2.68 0 0 0 2.64 0 0.9 0 2.79 0 0 0.45 0 1.24 1.32 0 Helicosphaera carteri (wallich) KamPTneR 1.89 0 0.82 1.33 0 0 0.44 0.9 0.92 0 0 0 0 0 0.89 0 0.91 1.25 0 0 2.25 0.45 2.39 1.31 1.37 3.14 0.77 1.24 2.63 0.92 Helicosphaera walbersdorfensis mülleR 2.27 1.42 1.64 1.33 2.74 0.9 4.87 0.9 4.15 2.33 0 0 0.47 0 0.89 2.71 0.46 4.58 1.76 7.21 3.6 6.36 4.38 4.37 9.59 4.04 7.66 4.55 5.7 2.76 Syracosphaerapulchralohmann 1.14 1.42 0 0.44 0 0.9 0.88 0.9 1.84 0 0 0 0 0 0 0 0 1.25 0 0 0.45 0.45 0 0.44 0.91 1.79 1.53 1.24 0 0.46 SphenolithusheteromorphusdeflandRe 0 0 0.41 0 0.46 0 0 0.9 0 0 0 0 0 0 0 0 0 0.42 0 0 0.45 0 0.4 0 0.91 0 0 0 0 0.46 Sphenolithusmoriformis(bRonnimann &sTRadneR) bRamleTTe & wilcoxon 0 0 0.82 0 0 0 0 0.45 0.46 0.78 0 0 0 0 0 0 0 0 0.44 0.9 0.45 0.91 0.4 0.44 0 0 0 0 0 0 Pontosphaeramultipora (KamPTneR)RoTh 0.38 0.36 0.41 1.77 0 0 1.33 0 0.92 0 0 0 0 0 0 0 0 0.42 0.88 0.9 0 0 0.8 0.44 0.91 0 0 0 1.32 0 Discoaster variabilis maRTini & bRamleTTe 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.44 0 0 0 0 0 0 0 0 0.41 0 0 Discolithinalatellipticabáldi-beKe&báldi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.46 0.9 0 0 0 0.46 Reworked - Oligocene Braarudosphaerabigelowii(gRan &bRaaRud) deflandRe 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.46 Euryhaline Thoracosphaera spp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0.85 0 0 0 0 0 0 0 0 0 0 0 0.9 0 0 0 0.46 Oligotrophic, stratified Eifelithus spp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reworked -Cretaceous, Eocene Watzenauria spp. 0 0 0 0.44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.35 0.45 0 0 1.37 0 0 0 0 0.46 Reworked - Cretaceous Nannoplankton abundance (semiquantitative, for explanantion see Method) vi vi v v v iv iv iii iv iii i i iv ii i vi vi vi ii iv iv iii iii v ii v v iv iv vi Z2/16.9-17.0m Z2/16.6-16.4m Z2/15.9-16.0m Z2/15.4-15.5m Z2/15.1-15.2m Z2/14.4-14.8m Z2/14.1-14.2m Z2/13.9-14.0m Z2/13.8-13.9m Z2/13.7-13.8m Z2/13.3-13.4m Z2/12.9-13.0m Z2/12.2-12.3m Z2/11.5-11.6m Z2/11.0-11.2m Z2/10.8-10.9m Z2/9.9-10.0m Z2/9.2-9.3m Z2/8.8-8.9m Z2/8.5-8.6m Z2/8.3-8.4m Z2/7.8-7.9m Z2/6.9-7.0m Z2/6.5m Z2/6.0m Remarks (paleoecological characteristics according beaufoRT & aubRy 1992; wells & oKada 1997; floRes et al. 1997; bollmann et al. 1998; Kameo 2002, wade & bRown2006;stratigraphicalrangegRadsTeinetal.2012) Coccolithuspelagicus (wallich)schilleR 4.85 15.1 7.41 3.3 12.6 15.16 4.62 9.83 23.1 7.96 6.43 1.77 3.57 0.93 12.7 14.43 10.3 12.06 11.79 12.96 1.36 4.65 12.15 5.09 21.21 High-nutrient Reticulofenestra minuta RoTh 79.3 67.3 66.67 94.34 81.4 81.97 50.4 46.15 28.0 79.65 85.7 84.07 60.2 79.44 67.4 40.21 45.4 23.05 36.59 48.61 59.09 82.95 80.97 85.65 0 Stress-tolerant, euryhaline ReticulofenestrahaqiibacKman 8.81 5.31 16.67 0 0 0 42.0 42.74 42.6 9.29 3.57 7.08 33.4 16.36 15.5 34.36 37.1 56.74 42.68 30.09 31.36 0 0 1.39 69.26 Reticulofenestra pseudoumbilica gaRTneR 2.64 4.49 3.7 0.94 0 0.82 0.42 0 0 1.77 0.71 2.21 0.45 0.47 3.3 4.47 4.13 6.38 1.22 3.7 5.91 6.2 2.02 2.78 0 Cyclicargolithus abisectus (mülleR) wise 0 0 0 0 0 0 0 0 1.22 0 0 0 0 0 0 0 0.83 0 0 0 0 0 0 0 0.43 Reticulofenestra bisecta (hay, mohleR & wade) Roth 0 0 0 0 0 0 0 0 1.22 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0 0 Reworked - Oligocene Reticulofenestradaviesi(haq)haq 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.78 0 0 0.43 Reworked - Oligocene Cyclicargolithus floridanus (RoTh & hay) buKRy 1.32 0.41 0.37 0 0 0 0 0.43 1.22 0 0 0.88 0 0 0 0 0 0 1.22 0 0 0.78 0 0 0 Reworked - Oligocene Helicosphaera carteri (wallich) KamPTneR 0 1.63 1.48 0 0.9 0 0 0 1.22 0 0 0.44 0 0 0 2.41 0 1.42 1.63 0 0 0.78 1.62 1.85 0 Helicosphaera walbersdorfensis mülleR 1.32 2.04 2.22 0.94 2.71 1.64 1.68 0 0 0.44 2.14 0.44 2.23 0.93 0.94 2.75 1.24 0 2.85 2.31 0.45 3.1 1.21 2.31 3.46 Syracosphaerapulchralohmann 0 2.45 1.11 0.47 2.26 0.41 0.84 0.43 0 0.44 0 0 0 0.93 0 0.69 0.83 0 0.81 0.46 0.45 0 0.81 0.46 3.03 SphenolithusheteromorphusdeflandRe 0.44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.81 0 0.43 Sphenolithusmoriformis(bRonnimann &sTRadneR) bRamleTTe & wilcoxon 0 0.41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.78 0 0 0.43 Pontosphaeramultipora (KamPTneR)RoTh 0.44 0.82 0.37 0 0 0 0 0 1.22 0.44 0 0 0 0 0 0.34 0 0.35 0.41 0.93 0 0 0 0.46 0 Discoaster variabilis maRTini & bRamleTTe 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.43 Discolithinalatellipticabáldi-beKe&báldi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.34 0 0 0 0 0 0 0 0 0 Reworked - Oligocene Braarudosphaerabigelowii(gRan &bRaaRud) deflandRe 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Euryhaline Thoracosphaera spp. 0 0 0 0 0 0 0 0 0 0 1.43 1.33 0 0.93 0 0 0 0 0 0.93 0.91 0 0 0 0 Oligotrophic, stratified Eifelithus spp. 0 0 0 0 0 0 0 0 0 0 0 0.44 0 0 0 0 0 0 0.41 0 0 0 0 0 0 Reworked - Cretaceous, Eocene Watzenauria spp. 0.88 0 0 0 0 0 0 0.43 0 0 0 1.33 0 0 0 0 0 0 0.41 0 0.45 0 0 0 0.43 Reworked - Cretaceous Nannoplankton abundance (semiquantitative, for explanantion see Method) iii v v iv iv v iv iv i ii i iii vi v ii v vi v v iv iii ii v v v TheBadenianparastratotypeatŽidlochovice197 198 N. Doláková et al. Appendix 4: List and relative abundances of mollusca. ŽIDL- 1 0.9-1 1.4-1.5 2.3-2.4 2.7-2.8 3.7-3.8 4.2-4.3 5.5-5.6 7.2-7.3 7.8-7.9 8.4-8.5 9.2-9.3 10.1- 10.2 11.9-12 BIVALVIA Cubitostrea digitalina (DuBois, 1831) 1 2 1 1 1 Ostreidae indet. 2 1 1 1 2 1 2 ?Pododesmus striatus (Brocchi, 1814). 1 1 Crassadoma multistriata (Poli, 1795) 2 2 2 1 1 2 2 ?Aequipecten sp. 2 2 1 1 1 Costellamussiopecten cf. spinulosus (münster, 1833) 2 2 1 1 1 Aequipectencf.scabrellus(lamarck,1819) 1 1 Pectinidae indet. 2 1 1 2 2 Cardiidae indet. 1 Carditidae indet. 1 Veneridae indet. 1 Nuculanacf.fragilis(chemnitz,1784) 1 1 1 1 Nuculana sp. 1 Nucula sp. 1 Bivalvia indet. 2 2 2 1 1 2 2 1 1 GASTROPODA Bittium sp. 2 1 Alvania sp. 1 1 Solariorbis sp. (cf. woodi (hörnes, 1856) 1 Gastropoda indet. 2 Cirripedia indet. 1 1 ŽIDL- 2 8.1-8.2 8.7-8.8 9.7-9.8 10.8- 10.9 12.7- 12.8 14.3- 14.4 15.9-16 16.9-17 BIVALVIA Cubitostrea digitalina (DuBois, 1831) 1 1 2 1 1 Ostreidae indet. 2 2 2 2 2 1 1 1 Ostrea sp. 1 ?Pododesmusstriatus(Brocchi,1814) 1 1 1 Crassadoma multistriata (Poli, 1795) 2 2 2 2 2 2 2 2 Aequipecten cf. macrotis (soWerBy in smith, 1847) 1 2 2 2 1 1 Aequipectencf.scabrellus(lamarck,1819) 1 ?Aequipecten sp. 1 1 Costellamussiopecten cf. spinulosus (münster, 1833) 2 1 1 Flexopectencf.scissus(favre,1869) 1 1 1 ?”Chlamys” trilirata (almera et Bofill, 1897) 1 1 1 ?Macrochlamis sp. 1 Pectinidae indet 2 2 2 3 2 2 1 1 Cardiidae indet. 1 Veneridae indet. 1 Nuculana cf. fragilis (chemnitz, 1784) 1 ?Spondylus sp. 1 ?Corbula sp. 1 Bivalvia indet 2 3 2 1 2 GASTROPODA Bittium sp. 3 1 1 Alvania sp. 3 ?Gibbula sp. 1 Rissoina sp. 1 Solariorbis sp. cf. woodi (hörnes, 1856) 1 Gastropoda indet. 3 2 Cirripedia indet. 1 1 semiquatitative abundance (number of fragments): 1 - rare (1-5 fragments); 2 - common (6-15 fragments); 3 - abundant (over 15 fragments) The Badenian parastratotype at Židlochovice 199 Appendix 5: List and relative abundances of ichthyofauna. Deaniasp.(tooth) „g.Etrumeus”weileri Vinciguerriapoweriae Valenciennellustripunctulatus Benthosemafitchi Diaphusacutirostrum Diaphuscahuzaci Diaphushaereticus Diaphuskokeni Diaphusregani Diaphustaaningi Diaphussp.juv.corroded Lampichthysschwarzhansi Notoscopelusmediterraneus Grammonussp. Physiculusaff.huloti Gadiculusargenteus Gadomustejkali Coelorinchussp. Trachyrincusscabrus Merlucciusaff.merluccius Sparidaeindet.(tooth) Brachydeuterussperonatus Acropomatidaeindet. Trachurusaff.picturatus Lesueurigobiusex.gr.vicinalis Deltentosteustelleri Gobiidaeindet.juv.corroded ŽIDL-2: 6.6-6.7 m + 7.6-7.8 m + 10.6-10.8 m + 11.6-11.8 m + + 14.6-14.8 m + 15.6-15.8 m + + + + + + 16.6-16.8 m + + + + + ? + ŽIDL-1: 2.8-3.0 m + + 6.6-6.8 m + + + + + 7.5-7.8 m + + 8.6-8.8 m + + + 9.6-9.8 m + + + + + + 10.6-10.8 m + + + clay pit + ? + + + + + + + ? + + + + + + + + + + + + + + Appendix 6: Composition of studied limestone samples with identified facies. Thin-section/components Corallines Bryozoa Molluska Foraminifera Echinoids Serpulids Unsorted Micrite Sparite Litoclasts Pores Facies 42139-11151 ŽIDL-2 13.3 m 27.31 3.41 1.46 2.44 0.98 0 41.95 11.22 5.37 5.85 0 CAdl 42139-11251, ŽIDL-2 13.3 m 20.3 15.35 0 0.99 0 0 36.14 25.25 0.5 1.49 0 CAdl 42139-111051, ŽIDL-210.6 m 35.61 1.95 0.98 0 0 0 27.32 1.95 14.15 18.5 0 CAdl 42139-11351, ŽIDL-2 9.6 m 48.81 13.27 1.42 0 1.42 0.47 12.32 19.43 0 2.84 0 Bbr 42139-11551, ŽIDL-1 6.3 m 18.36 13.53 0 0.97 1.45 2.42 42.51 13.4 7.25 0 0.48 RFgm 42139-11751, ŽIDL-1 6.3 m 45.06 30.2 0 0 0 0 15.35 7.43 1.49 0 0.5 RFgm 42139-11851, ŽIDL-1 6.3 m 49.76 14.43 0 0 0.5 0.5 17.41 15.92 1 0.5 0 RFgm 42139-11951, ŽIDL-1 6.3 m 45.55 13.37 0 0 0.99 1.49 22.77 12.38 0 3.47 0 RFgm 42139-111151, ŽIDL-1 6.3 m 57.71 38.31 0 0 0 0 0.5 3.48 0 0 0 RFgm 42139-11651, ŽIDL-1 4.7-4.8 m 13.8 17.24 0 0.49 0 0.49 28.8 4.43 14.78 18.23 2.46 CAdl 42139-11451, ŽIDL-1 4.5-5 m 12.5 1.92 0 2.4 1.44 0 50.96 12.2 8.17 10.58 0 CAdl 200 N. Doláková et al. Appendix 7: List and relative abundances of palynomorphs. ŽIDL-2 - 246 m a s.l. ŽIDL 1 - 230m a s.l. Taxon/m 15.6-8 16 16 16.6-8 16.8 7 7.5-8 8.5 9.7 10 10.6-8 10.911.1 11.8 11.9 marine Dinophyta several types Types with branched projections x x xx xx xx x xx xx x x x x x x other Dinophyta Ovoidites… several types x x xx . Cyanophyta gen. indet. Sigmopollis laevigatoides krutzsch &Pacltová 1990 x x x Chlorophyta Tasmanaceae Pterospermellaeisenack1972,PleurozonariaWetzel1933 x x x x x x x x x Botryococcus Botryococcusbraunii kützing 1969 . x x . x x . . x x kubic caves x x x x x x x x Sporophyta - „ - gen. indet. Toroisporis sp. 1 ?Polypodiaceae gen. indet. Laevigatosporites haardti (Potonié & venitz 1934) thomson & Pflug 1953 1 1 1 2 3 2 1 2 1 2 2 Davaliaceae Davalia Verrucatosporites alienus (Potonié 1931) thomson & Pflug 1953 1 1 Dennstaedtiaceae Paesia Verrucatosporites favus (Potonié 1931) thomson & Pflug 1953 1 1 1 1 1 1 x Gleicheniaceae gen. indet. Neogenisporisneogenicuskrutzsch1962 1 Lycopodiaceae Lycopodium Retitriletes sp. 1 1 Lygodiaceae Lygodium Leiotriletes wolffi krutzsch krutzsch 1962 1 1 1 1 1 Corrugatosporites multivallatus (thomson &Pflug 1953) PlanDerová 1990/microvallatus(krutsch1967)nagy1985 1 - „ - Leiotriletesmaxoideskrutzsch1962 1 1 1 Lygodiaceae gen. indet. Leiotriletessp.,TriplanosporitessinuosusPflug1952exthomson &Pflug 1953 1 1 1 1 1 Osmundaceae Osmunda Baculatisporitesprimarius(Wolff 1934)thomson &Pflug 1953 1 1 1 x 1 1 1 Pteridaceae gen. indet. Undulozonosporitessemiverrucatus(krutzsch1967)stuchlik 2001 1 Pteridaceae Pteris Polypodiaceoisporites muricinguliformis nagy 1959/corrutoratus nagy 1985 3 3 1 2 2 3 7 5 5 1 5 1 Selaginellaceae Selaginella Echinatisporis miocenicus krutzsch & sontag in krutzsch 1963 1 Gymnosperms Pinaceae Pinus haploxylon and sylvestris types 63 600 228 182 168 348 278 120 540 650 198 260 46 200 123 Cathaya Cathayapolleniteskrutzschi(sivak 1976)PlanDerová 1990 13 100 28 14 14 27 44 28 63 70 23 31 9 35 27 Keteleeria Keteleeriapollenitesdubius (chlonova 1960) sloDkoWska 1994 1 1 1 2 1 1 1 Picea Piceapollis sp. 4 9 3 4 4 2 3 4 3 5 1 2 3 2 Abies Abiespollenites sp. 1 1 2 2 1 1 Cedrus Cedripitesmiocaenicuskrutzsch 1971 2 2 2 5 5 4 2 5 3 1 4 2 4 Tsuga Zonalapollenitesmaximus(raatz1937)krutzsch 1971 2 1 6 1 2 2 1 1 5 1 Sciadopitaceae Sciadopitys Sciadopityspollenitesserratus(Potonié &venitz 1934) raatz1937 2 7 7 2 2 3 4 5 4 1 5 2 3 2 Taxodiaceae Taxodium, Glyptostrobus type Inaperturopolleniteshiatus (Potonié)thomson &Pflug; I. conce- pidites(WoDehouse)krutzsch 1 21 21 23 20 12 7 46 8 32 3 14 14 50 Sequoia Sequoiapollenites polyformosus thierg. 2 1 3 Ephedraceae Ephedra Ephedripites div. fsp. 1 1 1 Angiosperms Aceraceae Acer sp. Aceripollenites striatus (Pflug 1959) thiele-Pfeifer 1980 1 1 1 1 2 Aquifoliaceae Ilex Ilexpollenitesmargaritatus(Potonié1931)raatz1937exPotonié 1960 2 1 1 1 1 2 - „ Ilexpollenitespropinquus(Potonié 1931)thiergart 1937 ex Potonié 1960 2 3 3 2 2 3 3 3 Araliaceae Aralia Araliaceoipollenitesedmundi(Potonié 1931)Potonié 151ex Potonié 1960 1 1 1 1 2 Hedera Araliaceoipollenitesreticuloidesthiele-Pfeifer1980 1 1 Asteraceae gen. indet. Tubulifloriditesmacroechinatus(trevisan1967)nagy1985 1 1 1 1 1 gen. indet. Cichorieaciditesgracilisnagy1969(nagy1985) Artemisia Artemisiapollenites sellularis nagy 1969 2 Betulaceae Alnus Alnipollenites verus (Potonié 1931 ex Potonié 1960) 2 4 8 2 2 2 6 3 7 2 4 1 2 1 4 Betula Betulaepollenitesbetuloides(Pflug1953)nagy1969 3 4 4 2 3 2 1 4 4 2 4 Carpinus Carpiniditescarpinoides(Pflug1953)nagy1985 1 2 2 Ostrya Ostryapollenitesrhenanus(thomson 1950)nagy 1969 1 1 Buxaceae Buxus Buxapollisbuxoideskrutzsch1966 2 1 1 1 2 1 2 2 1 ?Caryophyllaceae gen. indet. Caryophyllidites microreticulatus nagy 1969 Caryophyllaceae, Alismataceae Stellaria, Alisma Minutipollisgranulatuskrutzsch 1966 Caryophyllaceae gen. indet. 17 8 15 12 12 1 6 8 8 10 3 5 8 1 2 Cercidiphyllaceae Cercidiphyllum Cercidiphyllites minimireticulatus (trevisan 1967) ziemBińskatWorzyDło 1994 1 1 6 1 1 2 1 Cornaceae Cornoideae, Mastix- ioideae Cornaceaepollis satzveyensis (Pflug 1953) ziemBińska-tWorzyDło 1994 1 1 1 1 2 2 2 1 2 Corylaceae Corylus Triporopollenites coryloides Pflug 1 1 Cyrillaceae, Clethraceae gen. indet. Tricolporopollenitesmegaexactus (Potonié 1931) thomson & Pflug 1953 2 6 3 2 2 4 4 13 5 12 3 4 4 8 - „ - Tricolporopollenites exactus (Potonié 1931) graBoWska 1994 3 2 2 4 3 1 1 2 2 1 4 4 Calluna Ericipitescallidus(Potonié1931)krutzsch1970 1 1 2 2 Eucommiaceae Eucommia Eucommioipollisparmularius(Potonié 1934)ziemBińskatWorzyDło 1994 2 1 1 2 2 1 1 1 Fagaceae Fagoideae Tricolporopollenitespseudocingulum(Potonié 1931)thomson & Pflug 1953 2 1 2 2 3 1 4 2 1 Trigonobalanus Fususpollenites fusus (Potonié 1931) keDves 1978 2 The Badenian parastratotype at Židlochovice 201 ŽIDL-2 - 246 m a s.l. ŽIDL 1 - 230m a s.l. Taxon/m 15.6-8 16 16 16.6-8 16.8 7 7.5-8 8.5 9.7 10 10.6-8 10.911.1 11.8 11.9 Castaneoideae, Trigo- nobalanopsis Tricolporopollenitescingulum(Potonié 1931)oviformisthomson &Pflug 1953 6 4 3 4 4 5 8 16 9 21 3 6 6 10 ?Castaneoideae X Lythraceae (Decodon) Tricolporopollenitescingulum(Potonié 1931)pusillus thomson &Pflug 1953 4 3 2 4 3 1 3 4 2 3 3 1 2 4 gen. indet. Quercoidites henrici (Potonié 1931) Potonié, thomson, thiergart. 1950 4 1 3 3 1 2 2 1 2 3 gen.indet. Quercoidites microhenrici (Potonié 1931) Potonié, thomson, thiergart. 1950 7 20 14 8 12 14 14 31 7 21 1 8 7 25 - „ - Quercoiditessp.,Q. granulatus(nagy 1969) sloDkoWska 1994, Q. asper (Pflug &thomson 1953) sloDkoWska 1994 3 5 5 5 8 9 3 8 5 6 2 1 5 Quercusilextype 3 1 8 7 4 9 Fagus Faguspollenitesverusraatz1937 3 2 3 3 2 1 4 3 1 3 gen. indet. Tricolporopollenites liblarensis (thomson 1950) graBoWska 1994 18 13 26 31 28 10 16 20 15 5 15 1 17 7 15 gen. indet. Tricolporopollenitesquisqualis (Potonié 1934) krutzsch 1954 11 2 7 3 8 4 1 3 2 3 Hamamelidaceae Liquidambar Liquidambarpollenitesstigmosus(Potonié1934)krutzsch1954 1 1 1 1 1 1 2 3 3 1 3 Periporopollenites orientalis (nagy 1969) kohlan-aDmska & ziemBińska-tWorzyDło 2009 3 2 1 1 Parrotia-Distylium type Tricolporopollenitesindeterminatus (romanovicz) ziemBińskatWorzyDło 1994 1 Parrotia-Distylium type Tricolporopollenitesstarosedloensiskrutsch &Pacltová1969 Chenopodiaceae gen. indet. Chenopodipollis multiplex (WeylanD & Pflug 1957) krutzsch 1966 3 2 2 1 1 2 1 Juglandaceae Carya Caryapollenitessimplex(Potonié 1931)raatz1937 3 6 5 3 3 1 7 8 12 4 3 7 21 4 5 Pterocarya Pterocaryapollenitesstellatus(Potonié1931)thiergart 1937 1 1 2 1 2 3 2 1 1 2 1 1 Juglans Juglanspollenitesverusraatz1937 4 9 5 4 4 5 1 4 4 1 1 4 2 Engelhardia Engelhardtioiditespunctatus (Potonié 1931) Potonié 1951 ex Potonié 1960, E. quietus (Potonié 1931) Potonié 1951 12 21 25 15 12 20 14 29 8 33 1 25 16 18 Platycarya Platycaryapollenites miocaenicus nagy 1969 6 3 8 6 7 4 8 7 3 5 2 4 5 7 Lamiaceae gen. indet. 1 4 1 Lavandula t. 2 Salvia t. 2 2 Lythraceae gen. indet. Lythraceaepollenites sp. 1 4 1 3 2 1 6 ?Magnoliaceae gen. indet. Magnoliapollisneogenicuskrutzsch1970 1 1 Myricaceae Myrica Myricipitesbituitus(Potonié1931)nagy 1969/coryphaeus(Potonié 1931) Potonié 1960 7 15 14 9 11 13 17 21 8 17 4 6 26 Nyssaceae Nyssa Nyssapolleniteskruschi(Potonié 1931)nagy 1969 1 1 1 Nymphaeaceae Nymphaea Nymphaeaepollenites nagy 1969 1 1 Oleaceae Olea t. Oleaidearumpollenites sp. 15 9 14 18 15 2 8 20 11 13 4 8 7 Sambucus, Fraxinus Oleaidearumpollenitesmicroreticulatusthomson &Pflug Fraxinus Fraxinoipollenites sp. 5 3 6 5 5 8 11 7 4 15 5 4 Plantaginaceae Plantago Plantaginacearumpollenitesmiocaenicusnagy 1 1 1 Platanaceae Platanus Platanipollis ipelensis (Pacltová) graBoWska 13 6 9 16 16 6 17 19 8 14 3 1 3 6 Polygonaceae Rumex Rumex t. 1 1 2 2 2 2 1 Ranunculaceae Thalictrum Thalictrum t. 1 1 1 4 2 3 Rosaceae ? Sorbus Sorbus t. cf. Rubus type Rubus t. 1 1 1 1 1 Rubiaceae Galium Galium t 3 2 1 5 1 2 4 2 Rutaceae gen. indet Rutacearumpollenites sp. 1 2 3 1 2 2 3 1 Salicaceae Salix Salixipollenites sp. 7 1 1 1 3 4 3 1 2 1 3 Sapotaceae gen. indet. - several types Sapotaceoidaepollenites div. sp. 2 2 1 1 1 Staphyleaceae Staphylea Staphylea t. 1 Sterculiaceae Reevesia Reevesiapollistriangulus(mamczar1960)krutzsch 1970 1 1 1 Symplocaceae Symplocos Symplocoiditesvestibulum(Potonié 1931)Potonié 1960 1 1 1 ?Tamaricaceae ?Tamarix Tamarixpollenites sp. 1 1 4 1 Tiliaceae Craigia Intratriporopollenitesinsculptusmai 1961 1 2 1 1 Tilia Intratriporopollenites instructus (Potonié 1931) thomson & Pflug 1953 1 2 1 1 1 1 1 2 1 Tricolporopollenites indet. gen. indet. - several types Tricolporopollenites indet. 9 15 10 12 8 10 9 27 5 18 6 6 Ulmaceae Ulmus Ulmipollenites undulosus Wolff 1934 19 23 23 18 17 29 30 35 7 8 8 18 10 14 Zelkova Zelkovaepollenites potoniei nagy 1969 2 1 2 1 1 1 2 4 2 2 gen. indet. 1 Celtis Celtipollenites sp. 17 18 13 19 19 2 7 20 15 5 4 11 2 13 Urticaceae gen. indet. Urtica t. 3 1 Verbenaceae gen. indet. Tricolporopolleniteswackersdorfensisthiele-Pfeifer 1980 1 1 Clerodendrum type Clerodendrumpollenites minimireticulatus skaWinska 1994 1 Vitaceae Parthenocissus Tricolporopollenitesmarcodurensisthomson &Pflug 1953 1 Liliopsida Arecaceae gen. indet. Arecipitessp. 1 1 1 Calamus DicolpopolliskockeliPflanzl1956 1 2 1 2 1 1 1 2 2 Butomaceae Butomus Butomuspolenites sp. Poaceae gen. indet. Graminides sp. 2 6 4 1 1 1 1 1 3 7 Potamogetaceae Potamogeton Potamogeton sp. 2 1 1 Sparganiaceae Sparganium Sparganiaceaepollenites sp. 1 1 202 N. Doláková et al. View publication stats 165 Geology Important changes in the paleogeography of the Western Carpathians can be documented during the Late Miocene. The basins represent grabens or half grabens; partly „pull apart“ basins along strike slipe zones, but mostly flexural type basins without apparent brittle tectonics, except for normal faults at the basins´ margins (Kováč 2000). The Vienna Basin is situated within the AlpineCarpathian mountain chain, between the Eastern Alps and the Western Carpathians. It represents a polyhistoric basin with Neogene to Quaternary sedimentary fill, deposited in various types of basins in relation to the paleotectonic development of the orogen. During the Late Miocene, due to paleogeographic changes, the connection with the Pannonian basin became gradually closed. Lake Pannon retreated southwards, and the northern coast of the back-arc basin was slightly elevated due to progradation of deltaic and alluvial facies, especially in the lowlands. Lake Pannon was continuously filled by sediments transported by rivers from uplifting mountain chains. The sedimentary environments changed from deep to shallow lake and deltaic environment, followed by development of alluvial plains. Due to Paratethys isolation, the salinity decrease led to the development of a totally fresh-water environment by the end of this period. (Kováč et al. 1998). Material and methods All the studied samples were pelitic, partly calcareous sediments. The lignite layers have not been used in these studies. The pollen data come from the well-preserved and welldetermined plant macrofossil samples of the E. Knobloch collection deposited in the Moravian Museum Brno, (Postorna, Dubnany, Moravske Nova Ves surface localities – 13 samples), claypit Gbely, deep boreholes (Suchohrad 32, Suchohrad 38, Jakubov 54 – 30 samples), and six shallow boreholes (28 samples) made by the interdisciplinary research programme (archeology, natural environment) of the Masaryk University Brno at the Slavic (Great Moravian) settlement Pohansko near Břeclav. For maceration of the samples, HCl, HF and heavy liquid ZnCl2 were used. Pure glycerine or glycerine gels were used mostly as the observation media. The coexistence approach is an efficient and reliable method for quantitative terrestrial palaeoclimate reconstructions in the Tertiary. It is based on the assumption that Tertiary plant taxa have similar climatic requirements to their nearest living relatives. The aim of the coexistence approach is to find for a given fossil flora, the climatic interval in which all the nearest living relatives of the fossil flora can coexist (Mosbrugger and Utescher 1997). SBORNÍK NÁRODNÍHO MUZEA V PRAZE AC TA M U S E I N AT I O N A L I S P R AG A E Řada B – Přírodní vědy • sv. 64 • 2008 • čís. 2–4 • s. 165–173 Series B – Historia Naturalis • vol. 64 • 2008 • no. 2–4 • pp. 165–173 PANNONIAN VEGETATION FROM THE NORTHERN PART OF VIENNA BASIN NELA DOLÁKOVÁ Institute of Geological Sciences,Masaryk University,Kotlářská 2,611 37 Brno,Czech Republic,e-mail:nela@sci.muni.cz MARIANNA KOVÁČOVÁ Comenius University,Faculty of Sciences,Department of Geology and Palaeontology,Mlynská dolina, SK – 842 15 Bratislava,Slovak Republic,e-mail:kovacova@fns.uniba.sk Doláková, N., Kováčová, M. (2008): Pannonian vegetation from the northern part of Vienna Basin. – Acta Mus. Nat. Pragae, Ser. B, Hist. Nat., 64(2–4): 165–173. Praha. ISSN 0036-5343. Abstract. The studied pollen assemblages come from the Pannonian (Tortonian and Early Messinian) sediments in the Moravian and Slovak part of the Vienna Basin. Vienna Basin represents a pull-apart basin situated between the Eastern Alps and Western Carpathian mountain ranges. Due to the paleogeographic changes and climatic oscillations during the Late Miocene, the number of thermophilous taxa decreased, and some of them disappeared completely. The variable heights and forms of the uplifted mountain chains created ideal conditions for mixed mesophytic forests and extrazonal vegetation (Cedrus, Tsuga, Picea). The swamp, riparian, often hydrophilous (Azolla, Nymphaea, Potamogeton) and halophyte (Chenopodiaceae) plants represent coastal swamps, local lagoons, and marshlands. Occasional occurrences of dinoflagellates indicate slightly higher salinities, whereas green algae of the genus Pediastrum represent freshwater environments. The amount of herbaceous plants (Artemisia, Asteraceae, Lamiaceae, Polygonum, Daucaceae, Caryophyllaceae, Plantago) increased. n Late Miocene, Palynology, Vienna Basin, Paleoclimate Received August 8, 2008 Issued December 2008 166 Vegetation and climate Detailed palaeontological study of the Late Miocene sediments of the Vienna Basin were realized by Bůžek (1962) at the locality of Poštorná. At different localities, systematic macrofloristic studies were carried out by Knobloch (1962, 1963, 1968, 1969, 1972, 1981, 1985). In these studies Knobloch categorised the Pannonian and Pontian vegetation of this area into the four different mutually associated floristic biotopes – 1.vegetation of the open water level (Azolla, Nymphaea, Trapa, Potamogeton, Ceratophyllum) 2. coastal and coastal rim plants (Carex, Scirpus, Phragmites, Sparganium) 3. plants associated with brown coal swamp forest (Glyptostrobus, Nyssa, Alnus, Byttneriophyllum, Myrica, Acer), and 4. vegetation growing on the moist inner land stands (Carpinus, Betula, Fagus, Liquidambar, Ulmus, Platanus) At the Poštorná locality, Gabrielová (1966) interpreted a marshy environment during the Pannonian based on the pollen data from the coal seam. Kalvoda (1979), Lázničková (2006) and Doláková et al. (2006) identified many herbaceous taxa. Konzalová (2005) carried out a detailed palynological study of the Pannonian palynospectra. She documented an aquatic environment with a mix of freshwater and brackish plankton, coastal herbaceous plants, swamp and riparian forest, mixed mesophytic forest, and extrazonal vegetation. In the studied samples she found an absence of Myrica compensated for by water plants frequently showing higher inundation. Based on the previously published research and our new pollen data, it was possible to characterize vegetation assemblages and climate during the Pannonian. Due to paleogeographical changes and climatic oscillations, the number of thermophilous taxa decreased during this time span, and some of them disappeared completely from this area (e. g. Sapotaceae, Palmae). Mostly broadleaved deciduous elements of warm – temperate mixed mesophytic forests such as Quercus, Celtis, Carya, Tilia, Zelkova, Ostrya, Liquidambar, Carpinus, Betula, Juglans dominate generally (Pl.1, figs 2, 10-14). Thermophilous elements and mixtures of Engelhardia, evergreen Fagaceae morphospecies Quercoidites microhenrici, and less frequently Quercoidites henrici, Trigonobalanopsis, Symplocos, Cornaceaepollis satzveyensis, Tricolpopollenites liblarensis up to a maximum of 25 % were present (Pl I., figs 5-9). The various heights and forms of the uplifted mountain chains created ideal conditions for a higher presence of extrazonal vegetation (Cedrus, Tsuga, Picea, Cathaya) (Pl.1, figs 15,16) in the investigated area. Nevertheless, according to Ferguson et al. (1998) Cathaya which grows nowadays at high altitudes, was adapted in the Miocene to the lower ground conditions with enough air humidity. The sharply demarcated facies changing both in time and space in their individual pollen spectra were created by intrazonal types of vegetation or by high amounts of herbaceous plants. They included marshes and coastal swamps with Taxodiaceae, Nyssa, and bush woods with Myrica. Ilex and Sciadopitys replenished the plant spectra in the floodplain lowlands. The prevailing vegetation types were often riparian forests with Alnus (up to 20%, often 4-porate pollen grains), Salix, Pterocarya, Liquidambar, Betula (up to 14%), Fraxinus, Platanus (Pl.1, figs 1-3). Polypodiaceae, Osmunda, and some thermophile ferns (Lygodiaceae) occured in the moist and shady places. Shrubs and lianas such as Buxus, Ephedra, Ericaceae, Vitaceae, Lonicera, Rosaceae type Rubus (Pl. 3, figs 15,16) occurred on drier substrates in the associated riparian forests. Accumulations of Chenopodiaceae in the interfluvial areas probably indicate local saline swampy environments during falls in sea level. The increased amounts of herbs (up to 30% in pollen spectra) indicate the existence of local open places such as wet meadows (Thalictrum, Rumex, Valeriana, Dipsacaceae, Lamiaceae, Galium) or areas which were never inundated (Artemisia – up to 17%, Asteraceae, Campanula, Fabaceae, Daucaceae, Caryophyllaceae, Plantago – Pl. 3). Poaceae could even have been components of the associations forming the undergrowth of the forest margin. Aquatic plants created belts in shallow waters (Nelumbo, Nymphaea, Myriophyllum, Sparganium, Potamogeton – Pl. 2.), and along the water/land boundaries (Decodon, Polygonum persicaria, Caltha, Valeriana – Pl. 3). Very interesting findings are represented by microsporangia – massulae (within small circled microspores) with very characteristic glochidia of the freshwater fern Azolla bohemica (Pl. 2) described by Pacltová (1958). Isolated glochidia, found separately, were also frequent. According to Knobloch (1981) this genus occurs in eutrophic waters today. Due to the absence of glochidia, part of microsporangia is indistinguishable from the genus Salvinia. Similar results were published by Konzalová (2005) from the locality of Poštorná near Pohansko. Knobloch (1981) identified seeds and fruits of both mentioned taxa at Pannonian – Pontian localities within this area (Azolla – Dubňany, Čáry, and Salvinia – Ořechov-Mistřín). Occasional occurences of dinoflagellates and green algae Tasmanaceae indicate a slightly higher salinity, Botryococcus can thrive in both brackish or freshwater environments, whereas green algae Pediastrum, Mougeotia, aquatic ferns Azolla, and aquatic and coastal plants (Nelumbo, Nymphaea, Myriophyllum, Sparganium, Potamogeton etc.) represent freshwater environments. The noticeable Pediastrum cenobia belong predominantly to the species P. simplex and P. boryanum which are typical for open waters of eu- to mesotrophic conditions (Komárek and Jankovská 2001, Miola et al. 2006, Zetter 1987). The non-pollen palynomorph Sigmopollis occurred commonly. This morphotype is very similar to the Quaternary type 128 after Van Geel et al. (1983). In our samples it was often accompanied by type 74 as referred to by the same authors. Both these types possibly pertain to algal palynomorphs according to Van Geel et al. (1983), and Miola et al. (2006), indicating open water environments in eu-/mesotrophic conditions. Observations under the fluorescent microscope also support their determination as algal spores. Due to the chemical differences in sporopollenin of lower and higher plants, and also to different rates of corrosion, the algal bodies show very high fluorescence intensities, whereas other palynomorphs show much lower, and fungal remains are completely invisible (Van Gijzel 1971, Yeloff and Hunt 2005, Doláková and Burešová 2007). The fact that the sea level fell at the beginning of the Late Miocene and led to large-scale erosion of older sedi- 167 ments in the area of the back-arc basin system is documented in the Early Pannonian pollen spectra, where a lot of redeposited sporomorphs of subtropical and tropical ferns appeared (Slamková 2004). A higher percentage of nonarboreal pollen (10-14%) indicates local marshes and partly open woodland vegetation. The increase in halophyte taxa documents the presence of coastal swamps, local lagoons and marshlands during the lowstand of the brackish sea (Kvaček et al. 2006). During the Late Pannonian, the Western Carpathian paleogeography started to change. Lake Pannon retreated southwards and the northern coast of the back-arc basin was slightly elevated due to progradation of deltaic and alluvial facies, especially in the lowlands. Swamp vegetation with straight growth in the swamp substratum is mainly characterized by Taxodiaceae trees. They are often present in association with Myricaceae, less often with Nyssaceae. The riparian forest elements subdominantly occurred with Alnus and Ulmus, mixed mesophytic forests with Carya, Quercus, Craigia, Carpinus, Fagus and herbs were represented by Chenopodiaceae, Asteraceae, Ericaceae, Poaceae and Artemisia. Extrazonal vegetation of the mountain areas with Picea, Tsuga, Abies, Cedrus is common in the pollen spectra. Paleoclimatic data quantified by the Coexistence approach method (Mosbrugger and Utescher 1997) characterized a climate in several categories. Using primary pollen data from the Pannonian sediments of the Slovak part of the Vienna Basin, the mean annual temperature (MAT) was between 15.6–21.7°C, the coldest month temperature (CMT) between 5.0 13.6°C, the warmest month temperature (WMT) between 13.8–27.9 °C, mean annual precipitation (MAP) between 373.0– 520.0 mm, the wettest month precipitation (WtMP) between 73.0– 45.0 mm, the driest month precipitation (DMP) between 5.0– 9.0 mm, and the warmest month precipitation (WMP) between 27.0–227.0 mm (Kováč et al. 2006). Discussion A temperate climate with broad-leaved deciduous and warm – temperate mixed mesophytic forests, was interpreted for all the areas adjacent to the Vienna Basin. Increasing amounts of herbaceous plant pollen were also observed. It was presumed by Utescher et al. (2000), that the gradual cooling started from the 14 Ma untill the Late Pliocene and seasonality increased from the beginning of the Late Miocene Planderová et al. (1993a,b) noticed a clear floristic differentiation in representation of paleotropical and arctotertiary elements between the southern and northern part of Central and Eastern Europe during the Pannonian. The Danube Basin situated at the Alpine-CarpathianPannonian junction represents a region of the Central Paratethys, strongly influenced by the orogen building processes and climatic changes (Kováč 2000). In the reference section of the Tajná 1 borehole, in the Lower Pannonian sequence, dominant vegetation was formed by the swamp representatives Taxodiaceae – Myricaceae with subdominant presence of Nyssa, Alnus, Carya, Quercus deciduous, Engelhardia, Chenopodiaceae and Poaceae. In the Middle Pannonian sequence, changes in proportion of the dominant elements are apparently related to the mild cooling of climate and beech has been partly supplanted by fir and deciduous oak. Taxa ratio in the predominant association changed. The proportion of beech in Abies-Quercus (deciduous) – Fagus association decreased. Oleaceae, Myrica, Carya, Pterocarya, Alnus, Nyssa, Picea, Tsuga and Cedrus occurred subdominantly (Kováč et al. 2006). Presence of an increasing number of coniferous taxa Picea, Tsuga and Abies also observed in earlier studies of the Pannonian sequences (Nagy and Planderová 1985), can be interpreted as a consequence of two factors: higher relief in the hinterland of the basin or transition to seasonality. From the Danube Basin, Planderová (1972, 1984, 1990) described reduced marshes, isolated lakes with floras surrounded by steppe meadows with scarce woody plants. In comparison with Hungary, the climate was cooler and drier with a dominance of Artemisia over other herbaceous pollen (Nagy 1985, Nagy and Planderová 1985, Planderová 1990) during the Late Miocene. Erdei et al. (2007) confirmed the significant role of paleogeography – subsidence of the Pannonian basin – in the appearance of Pannonian floras and vegetation types with extremely low diversities. The authors characterised most of the Pannonian localities by monotonous azonal swamp associations with Byttneriophyllum predominating which indicates warmer climatic conditions. In Poland, Wazynska (1998), Sadowska et al. (1993) and others presumed a temperate and relatively arid climate, thus not stimulating the development of swamp forest with Nyssa and Taxodium. They were replaced by moist riparian forests with Alnus, Celtis and Pterocarya. More arid terrains were occupied by mixed forests with large amounts of conifers, especially pines, and with only scarce paleotropical relics. The amount of herbaceous plant pollen increased during this time span (Poaceae, Artemisia, the family Asteraceae, Daucaceae etc.). Pannonian (Meotian) pollen data from the Ukraine indicate the development of steppe or forest-steppe areas with Poaceae and Artemisia (Syabraj 2000, Syabraj et al. 2007). Kovar-Eder (1987) analyzed Pannonian vegetation and climate in the Central Paratethys region. She has established that the percentage of evergreen species increased towards the southeastern part of the investigated area, and arguments for either xeromorphic mediterranean-like vegetation or for steppe-like conditions are invalid. Very rich pollen assemblages were determined from the Late Pannonian sediments of the Styrian Basin (Hoffmann and Zetter 2005). Six associated paleo-plant habitats were distinguished by the authors in the ancient wetland system, namely, belts of aquatic plants, freshwater marsh habitat, clastic swamp habitat, natural levee or crevasse-splay habitat, organic swamp and wet-prairie habitat. They identified 40 herbaceous taxa, which documented not only closed forest, but also the herbaceous vegetation of more xeric layers. Conclusion Due to paleogeographical changes and climatic oscillations, thermophilous taxa numbers decreased during the studied time span, and some of them disappeared completely from the northern part of the Vienna Basin. Based on the 168 macropalaeobotanical and pollen data, a temperate climate with broad-leaved deciduous and warm-temperate mixed mesophytic forests was interpreted. The marked facies mutually changing in time and space in their individual pollen spectra were created by intrazonal types of vegetation (marshes, riparian, coastal and aquatic) or by high amounts of herbaceous plants (existence of local open places such as drier substrata in the associated riparian forests, and wet meadows). Variable height and form of the uplifted mountain chains created ideal conditions for a higher presence of extrazonal vegetation. Based on pollen data from the Pannonian sediments of the Slovak part of the Vienna Basin quantified climatic data (mean annual temperature, mean annual precipitation...) were calculated. Comparison with the adjacent areas confirms the existence of a climatically dependent gradient between the southern and northern part of Central and Eastern Europe during the Pannonian as documented by floristic differentiation in representation of paleotropical and arctotertiary elements. Increasing amounts of the herbaceous plants pollen were also observed. Acknowledgements The study has been sponsored by the Research Project MSM0021622427 (Czech Republic), projects of the Slovak Research and Development Support Agency APVV-51- 011305, APVV-0280-07 and European Science Foundation EUROCORES programme TopoEurope project ESF-EC- 009-07. References Bůžek, Č. (1962): Contribution to knowledge of Pannonian Flora in Poštorná u Břeclavi. – Čas. mineral. geol., 7 (3): 257-259. (in Czech, German summary) Doláková, N., Burešová, A. (2007): Use of fluorescent microscopy in the study of redeposited palynomorphs in the cave and marine sediments of Moravia (Czech Republic). – Acta Palaeobotanica, 47 (1): 275-279. Doláková, N., Kováčová, M., Beláčková, K., Lázničková, J. (2006): Development of the open land areas during the Miocene in the Czech and Slovak parts of the Central Paratethys. Scripta Fac. Sci. Nat. Univ. Masaryk. Brun., Geology, 33-34 (2003-2004): 24-25. Erdei, B., Habbly, L., Kázmér, M., Utescher, T., Bruch, A. (2007): Neogene flora and vegetation development of the Pannonian domain in relation to paleoclimate and paleogeography. – Palaeogeogr., Palaeoclimatol., Palaeoecol., 253: 115-140. Ferguson, D.K., Pingen, M., Zetter, R., Hofmann, Ch. Ch. (1998): Advances in our knowledge of the Miocene palnt assemblage from Kreuzau, Germany. – Rev. Paleobot. Palynol., 101: 147-177. Gabrielová, N. (1966): Preliminary report about palynological research at the locality Poštorná. – Zpr. geol. výzk. 1966, pp.285-286. (in Czech) Hofmann, Ch.Ch., Zetter R. (2005): Reconstruction of Different Wetland plant Habitats of the Pannonian Basin Systém (Neogene, Eastern Austria). – Palaios, 20: 266-279. Kalvoda, J. (1979): Microflora of the Upper Miocene at the locality Poštorná. – MS, Rigorous thesis, PřF MU, pp. 100 Brno (in Czech). Knobloch, E. (1962): Preliminary report about paleobotanical researches in moravian Teritiary. – Zpr. geol. výzk. 1961, pp. 215-217. (in Czech). Knobloch, E. (1963): Die Floren des südmährischen Neogens. – N. Jb. Geol. Paläont. Mh., 1: 1-11. Knobloch, E. (1968): The plant association in Czechoslovakian Teritary. – Čas. mineral. geol., 13 (1): 109-118 (in Czech, German summary) Knobloch, E. (1969): Tertiäre Floren von Mähren. – Moravské muzeum a Muz. spol. Brno., 1-201, pp. 309, Brno. Knobloch, E. (1972): Die gegenseitigen Beziehungen der tschechoslowakischen und ungarischen Teritiärfloren. – Földt. Közlöny, Bull. Of the Hungarian Geol.soc., 102: 246-259. Knobloch, E. (1981): Micropaleobotanical research of Pannonian and Pontian in Moravia and Slovakia. – Zem. Plyn Nafta, XXVI (4): 741-757 (in Czech, German sum- mary). Knobloch, E. (1985): Die floren des Pannonien im Wiener Becken und in der Donauebene. – In: Papp et al. (eds): Chronostratigraphie und Neostratotypen. Miocaen M6 Pannonien. – Jugosl. Serb. Akad. Wiss. Künste, Zagreb/Beograd. pp. 616-631. Komárek, J., Jankovská, V. (2001): Review of the Green Algal Genus Pediastrum; Implication for Pollenanalytical Research. – Gebrüder Borntraeger, Berlin, 127pp. Konzalová, M. (2005): Upper Miocene (Pannonian, Pontian) palynomorphs from the south Moravian extension of the Vienna Basin (Czech Republic). – Documenta Naturae, 155 (5): 1-51. München. Kováč, M. (2000): Geodynamický, paleogeografický a štruktúrny vývoj karpatsko-panónskeho regiónu v miocéne: nový pohlad na neogénne panvy Slovenska. Veda, Bratislava, pp. 5-203 (in Slovak). Kováč, M., Baráth, I., Fordinál, K., Grigorovich, A.S., Halásová, E., Hudáčková, N., Joniak, P., Sabol, M., Slamková, M., Sliva, Ľ., Töröková, I., Vojtko, R. (2006): Late Miocene to Early Pliocene sedimentary environments and climatic changes in the Alpine-Carpathian-Pannonian junction area: a case study from the Danube Basin northern margin (Slovakia). – Palaeogeogr., Palaeoclimatol., Palaeoecol., 238 (1-4): 32-52. Kováč, M., Baráth, I., Kováčová-Slamková, M., Pipík, R., Hlavatý, I., Hudáčková, N. (1998). Late Miocene paleoenvironments and sequence stratigraphy: Northern Vienna Basin. – Geol. Carpath., 49 (6): 445-458. Kovar-Eder, J. (1987): Pannonian (Upper Miocene) Vegetational Character and Climatic Inferences in the Central Paratethys Area. – Ann. Naturhist. Mus., 88, A, Wien: 1987, 117-129. Lázničková, J. (2006): Palynological study of selected localities in Upper Miocene of theMoravian part of the Vienna Basin. – MS, diploma thesis, MU Brno: 77 pp. (in Czech, with English summary). 169 Kvaček, Z., Kováč, M.,. Kovar-Eder, J., Doláková, N., Jechorek H., Parashiv, V., Kováčová, M., Sliva, Ľ. (2006): Miocene evolution of landscape and vegetation in the Central Paratethys. – Geologica Carpathica., 57 (4): 295-310. Miolla, A., Bondesan, A., Corain, L., Favaretto, S., Mozzi, P., Piovan, S., Sostizzo, I. (2006): Wetkabds in the Venetian Po Plain (northeastern Italy) during the Last Glacial Maximum: Interplay between vegetation, hydrology and sedimentary invironment. – Rev. Paleobot. Palynol., 141 (1-2): 53-81. Mosbrugger, V., Utescher, T. (1997): The coexistence approach – a method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils. – Palaeogeogr., Palaeoclimatol., Palaeoecol., 134: 61-86. Nagy, E. (1985): Sporomorphs of the Neogene in Hungary. – Geologica Hungarica, ser. Palaeont., 47: 1-470. Nagy, E., Planderová, E. (1985): Palynologische Auswertung der Floren des Pannonien. – In: Papp et al. (eds): Chronostratigraphie und Neostratotypen. Miocaen M6 Pannonien. – Jugosl. Serb. Akad. Wiss. Künste, Zagreb/ /Beograd., 586-615pp. Pacltová, B. (1958): The plant microfossils (mainly sporomorphae) of the lignite deposits near Mydlovary in the České Budějovice basin. – Sbor. Ústř. Úst. geol. Paleont., XXV: 109-176 (in Czech, English summary). Planderová, E. (1984): Palynological evolution of Pannonian sediments from the West Carpathians. – Záp. Karpaty, sér. Paleont., 9: 131-134. Planderová, E. (1972): Pliocene Sporomorphs from the West Carpathians Mountains and their Stratigraphisc interpretation. – Geol. Práce. Zprávy, 59: 209-284. Planderová, E. (1990): Miocene Microflora of Slovak Central Paratethys and its Biostratigraphical Significance, Geol. Inst. D. Štúra, Bratislava, 144pp. Planderová, E., Ziembińska-Tworzydło, M., Grabowska, I., Kohlman-Adamska, A., Konzalová, M., Nagy, E., Pantić, N., Ryłova, T., Sadowska, A., Słodkowska, B., Stuchlik, L., Syabraj, S., Zdražílková, N., (1993a): On paleofloristic and paleoclimatic changes during the Neogene of Eastern and Central Europe on the basis of palynological research. – Proceedings of the International Symposium: Paleofloristic and paleoclimatic changes during Cretaceus and Tertiary, Dionýz Štúr Institute of Geology in Bratislava, pp. 119-129. Planderová, E., Ziembińska-Tworzydło, M., Grabowska, I., Kohlman-Adamska, A., Sadowska, A., Słodkowska, B., Stuchlik, L., Ważyńska H. (1993b): Wahania klimatyczne w Neogenie Europy Środkowej na podstawie zmiennego udziału w palinoflorze składników paleotropikalnych i arktycznotreciorzędowych. – Przeglad Geologićny.Państw. Inst. Geol., 41(12): 829-834. Slamková, M. (2004): Paleovegetácia a klimatické trendy počas stredného a vrchného miocénu vo Viedenskej panve; Dizertačná práca. – MS, Archív Katedry geológie a paleontológie, 87 pp.(in Slovak, English summary). Syabraj, S. (2000): Tertiary Flora, Vegetation and Climate of Ukraine. – Chin. Bull. of Bot., 17: 95-101. Syabraj, S., Utescher, T., Molchanoff, S., Bruch, A. A. (2007): Vegetation and paleoclimate in the miocene of Ukraine. – Palaeogeogr., Palaeoclimatol., Palaeoecol. 253 (1-2), 169-184. Stuchlik, L., ed. (1994). Neogene Pollen Flora of Central Europe. Part 1. – Acta Palaeobotanica, Suppl. 1: 1-56. Ważyńska, H. ed. (1998): Palynology and Paleogeography of the Neogene in the Polish Lowlands. – Prace Panstw. Inst. Geol., CLX, 45pp. Utescher, T., Mosbrugger, V., Ashraf, A. R. (2000): Terrestrial Climate Evolution in Northwest Germany Over the last 25 Million Years. – Palaios, 15 (5): 430-449. Van Geel, B., Hallewas, D.P., Pals, J.P. (1983): A Late Holocene deposit under Wetfiese Zeedijk near Enkhuizen (prov. of N-Holland, The netherlands): paleoecological and archaeological aspects. – Rev. Paleobot. Palynol., 38: 269-335. Van Gijzel, P. (1971): Review of the UV-fluorescence microphotometry of fresh and fossil exines and exosporia. – In Brooks, J., Grant, P. R., Muir, M., Van Gijzel, P., Shaw, G. (eds.).: Sporopollenin: Academic Press, London–New York, pp.659-685. Ważyńska, H. (1998): Palynology and Paleogeography of the Neogene in the Polish Lowlands. – Prace Panstw. Inst. Geol. CLX: 45p. Yeloff, D. E., Hunt, C. O. (2005): Fluorescence microscopy of pollen and spores: a tool for investigating environmental change. – Rev. Paleobot. Palynol., 133: 203-219. Zetter, R. (1987): Untersuchungen and Pediastrum – Arten aus dem Ober Miocän des Burgenlandes (Österreich). – Beiträge zur Paläontologie von Osterreich., 13: 69-87. 170 PLATE 1 171 PLATE 2 172 PLATE 3 173 Explanation to the plates PLATE 1 1. four-porate Alnus – Alnipollenites verus POTONIÉ; Poštorná 3. 2. Betulaepollenites betuloides (PFLUG) NAGY; Pohansko V9, 6 m. 3. Salixipollenites sp. + Alnipollenites sp.; Pohansko V9, 6 m. 4. Nyssapollenites rodderensis (THIERGART) KEDVES; Pohansko V9, 4.2 m. 5. Engelhardia sp. – Engelhardtioidites quietus (POTONIÉ) POTONIÉ; Pohansko V9, 3 m. 6. Tricolporopollenites liblarensis (THOMSON) GRABOWSKA; Pohansko V7, 4.2 m. 7. Reevesiapollis triangulus (MAMCZAR) KRUTZSCH; Moravská Nová Ves 7. 8. Quercoidites henrici (POTONIÉ) POTONIÉ,THOMSON etTHIERGART; Pohansko V9, 3 m. 9. Platanus sp. – Platanipollis ipelensis (PACLTOVÁ) GRABOWSKA; Pohansko V9, 3 m. 10. Sciadopitys sp. – Sciadopityspollenites serratus (POTONIÉ et VENITZ) RAATZ; Pohansko V9, 6 m. 11. Zelkova sp. – Zelkovaepollenites potoniei NAGY; Pohansko V9, 6 m. 12. Quercus sp. Quercoidites sp.; Pohansko V9, 6 m. 13. Quercus robur type; Pohansko V9, 3 m. 14. Juglans sp. Juglanspollenites verus RAATZ; Pohansko V9, 3 m. 15. Picea sp – Piceapollis sp; Poštorná 3 16. Tsuga sp. – Zonalapollenites maximus (RAATZ) KRUTZSCH; Pohansko V9, 6 m. PLATE 2 1. Microsporangium Azolla bohemica PACLTOVÁ; Pohansko V9, 6 m. 2. Isolated glochidia of Azolla bohemica PACLTOVÁ; Pohansko V9, 6 m. 3. Micosporangium cf. Salvinia x cf. Azolla; Pohansko V9, 6 m. 4. Pediastrum boryanum (TURP) MENEGH; Pohansko V9, 4.2 m 5. Pediastrum simplex MEYEN; Pohansko V3, 8 m. 6. Pediastrum boryanum (TURP) MENEGH var. boryanum; Pohansko V3, 8 m. 7. Nelumbo sp. – Nelumbopollenites europaeus (TARASEWICH) SKAWIŃSKA; Pohansko V9, 4.2 m. PLATE 3 1–5. Artemisia sp. several types cf. Artemisiapollenites sellularis NAGY; Pohansko V9, 3 m. 6. Plantago sp. – Plantaginacearumpollenites miocaenicus NAGY; Pohansko V9, 3 m. 7. Centaurea jacea type – Pohansko V9, 3 m. 8.,9. Daucaceae gen. indet. several types; Pohansko V9, 3 m. 10. Caryophyllaceae gen. indet.; Pohansko V9, 3 m. 11. Asteroideae – Senecio type.; Pohansko V9, 3 m. 12. Asteroideae – Cichoreacidites gracilis NAGY; Pohansko V9, 3 m. 13. Asteroideae – Tubulifloridites macroechinatus (TREVISAN) NAGY; Pohansko V9, 4.2 m. 14. cf. Echinops type; Pohansko V9, 3 m. 15. Fabaceae gen. Indet; Pohansko V9, 3 m. 16. Rosaceae gen. indet.; Pohansko V9, 3 m. 17. Rosaceae – Prunus type; Pohansko V9, 3 m. 18. Thalictrum sp.; Pohansko V9, 3 m. 19. Humulus/Cannabis type; Moravská Nová Ves 20. Ranunculus type; Pohansko V9, 6 m. 21. Polygonum persicaria – Persicarioipollis persicarioidites KRUTSCH; Pohansko V9, 6 m. Palynology and natural environment in the Pannonian to Holocene sediments of the Early Medieval centre Pohansko near Breclav (Czech Republic) N. Doláková*, A. Roszková, A. Prichystal Institute of Geological Sciences, Masaryk University, Kotlárská 2, 611 37 Brno, Czech Republic a r t i c l e i n f o Article history: Received 29 June 2009 Received in revised form 4 May 2010 Accepted 22 May 2010 Keywords: Early Middle Ages Great Moravia Pohansko Palynology Non-pollen objects Carpinus a b s t r a c t Pohansko (Czech Republic) is an important Early Medieval centre of the Great Moravian Empire (9th century AD). The locality has a settlement with archaeological findings from Mesolithic to the modern times. The studied sediments belong to the stream and flood deposits of the Dyje river, aeolian sands and buried soils. The lower parts of some boreholes penetrated into the Upper Miocene sediments. 172 samples were palynologically analysed. The original forest with relative small human impact was observed on the base of Holocene layers. Even sporadic Cerealia pollen were found here. A deforestation was visible in the cultural layer; it is linked with existence of the Great Moravian agglomeration and its fortification. Later, a partial forest reconstruction probably took place in the surroundings. Very abundant pollen of human-exploited plants (cereals, herbs) were discovered in the filling of archeological feature O1. The possible practical potential of rampart also as the flooding protection was indicated by the existence of marshy plants palynomorphs. The existence of oxbow was proved in the excavated probe S3. The lowermost sample was dated by 14C as 7830 Æ 60 BP. The findings of Carpinus pollen in the layer dated as Early Atlantic support the earlier spreading of this genus in the Czech Republic (i.e. South Moravia). Ó 2010 Elsevier Ltd. All rights reserved. 1. Introduction The archaeological locality Pohansko near Breclav lies approximately 2 km from the town of Breclav (South Moravia, eastern part of the Czech Republic) (Fig. 1). It was a significant Early Medieval centre in the core area of the Great Moravian Empire, 9th century AD, interpreted as a munitio, emporium and palatium of the Moravian Early Medieval rulers (Machácek, 2005). The site lies at an altitude of about 155e157 m a. s. l. and is situated about 12 km from the confluence of the Dyje and Morava rivers. Today the surrounding area is woody and boggy with meadows and floodplain forests. One of the key problems of this Early Medieval fortified site (as with other Early Medieval sites in South Moravia) that must be solved in co-operation with geologists and palaeobotanists is determining a conclusion about its decline. It is believed that at the end of the 9th century AD, such environmental events occurred that caused extensive flooding and the covering of the Early Medieval sites by flood sediments. Palynological studies have been carried out within a framework of broad interdisciplinary (archaeological, geological, environmental) research between the Faculty of Science and the Faculty of Arts, Masaryk University. 2. Description of the studied area 2.1. Archaeology Fifty-year-long ongoing archaeological research studies have led to the discovery of settlement traces from prehistoric times (Mesolithic) to the Middle Ages. Findings of microlithic stone artefacts are typical for the Mesolithic age (Kalousek, 1966). The Neolithic settlement in the above-mentioned locality was represented by Linear Pottery culture. According to Podborský (1993), the beginning of Linear Pottery culture in the Moravia area is dated between 7650 and 7450 BP. More frequent are Eneolithic artefacts: a fragment of greenschist axe (Dostál, 1975) and finds connected with the Funnel Beaker culture and Channelled Ware. Even some artefacts from the Bronze Age have been found here (Dresler, 2008). According to a non-verified information, one burial-ground from the Hallstatt period was found before systematic excavation. Plentiful decorations from the La Téne Age are known to be * Corresponding author. E-mail address: nela@sci.muni.cz (N. Doláková). Contents lists available at ScienceDirect Journal of Archaeological Science journal homepage: http://www.elsevier.com/locate/jas 0305-4403/$ e see front matter Ó 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.jas.2010.05.014 Journal of Archaeological Science 37 (2010) 2538e2550 Fig. 1. 1. Localisation of the studied area. 2. Part of the geological map. 3. Aerial photo (after www.mapy.cz) of fortification with mark of the boreholes and profiles. 4. Extreme flooding (2006) through the opening in the fortification e according to Machácek et al., 2007. 5. Kopcany e only the one preserved church from the Great Moravia Empire (9th century). 6. Geological profile e according to Machácek et al., 2007. 1 e original surface 2 e Great Moravian rampart 3 e buried semiterrestric gleysols 4e6 e sandy-clay flood loams 7 e wind-blown sands (sand dune) 8 e grey fluvial fine sands and/or sandy clays 9 e weakly clay sands and sandy gravels 10 e coarse or middle-grained Upper Pleistocene fluvial sands and gravels 11 e coarse-grained fluvial gravels 12 e blue-grey sandy clays and clays e Neogene 13 e boreholes. connected to this area. Relics of the Roman age have also been left here (Dostál, 1975). The youngest pre-Slavonic artefacts are examples of pottery from the Migration Period. The time of the greatest expansion is embodied by Pohansko from the period 900e1000 AD within the Great Moravian Empire (Machácek, 2005). After its destruction (Fig. 2), or since 1500 AD, there have no longer been any settlements here. 2.2. Geological background of the locality From a geological point of view, the Early Medieval Centre of Pohansko lies within an extended flood plain near the confluence of the Morava and Dyje rivers (Fig. 1). The flat valley around the ring wall reaches a width of about 4 km and is filled with Holocene flood loams. Towards the confluence, the width reaches up to 10 km. The Fig. 2. 1. The inner part of the fortification. 2. The outer part of the fortification e destruction. 3. Excavated test trench S3 e sediments of oxbow, with 14 C dating. 4. Archaeological feature O1 e Flood loams and clays intercalated with buried terrestric gleysols. N. Doláková et al. / Journal of Archaeological Science 37 (2010) 2538e25502540 marginal slopes of the valley protrude some 5 m above the flood plain and are composed of Middle Pleistocene (Riss) fluvial sandy gravels with Late Würmian dunes of wind-blown sands. In some places these dunes also protrude from under Holocene flood loams in the flood plain; one of them was used to build the Early Medieval fortified site. The dune could have originated in the Dryas III (Late Würm), i.e. 1210e1700 BP (Havlícek, 2004). The sand dunes were also partly resedimented in the Holocene, as is evidenced by some buried Mesolithic chipped artefacts. The fine to medium grained blown sands have a yellowish to brownish colour and, especially at the dune base, alternate with coarser grained layers of what were probably of fluvial genesis. These Quaternary fluvialeeolian rocks form the uppermost part of the Cenozoic filling of the Vienna basin, a large geological unit of the Outer Carpathians. The bedrock of the Quaternary deposits in the area of Pohansko was obtained through boreholes at various depths from 4.4 to 8.1 m and is represented by grey clays of the Pannonian Age. Originally the sand dunes had a height of between 6 and 8 m, but recently because of younger flood loam deposits, they are only 1e2 m above the flood plain. Some lower dunes were even buried under the flood loams. The beginning of flood loam sedimentation is estimated to be about 3000e4000 BP at the initial phase of the Subboreal period (Brízová and Havlícek, 2002; Havlícek, 2004; Havlícek and Smolíková, 1994; Opravil, 1983b). From the 10th and especially 12th century AD (Opravil, 1983b), the more intensive sedimentation of flood loams precipitated (or substantially contributed to) early medieval settlement at Pohansko and other similar sites in the flood plain near the Morava and Dyje confluence (Machácek et al., 2007). The deposition of flood loams was not continuous and a few hiatuses occurred. Pelísek (1942) describes two soil horizons within the flood loam sequence in the area of the Lower Morava depression. Opravil (1999) estimates their origin to be the end of the Subboreal (i.e. about 2900 BP) and the end of the older Subatlantic (around 1000 AD). Flood loams and clays intercalated with buried terrestric gleysols in the construction of the Great Moravian fortification are recorded in Pohansko (Fig. 2) even before this time. As both semiterrestric soils underlie the whole fortification area, we can safely say that they pre-date the Great Moravian times. The deposition of the youngest flood sediments, which covered the ruins of the fortification from the outer side, took place after a short break in deposition marked by the formation of humic horizon “A” of the upper buried soil in the flood plain. The surface of this soil was active during both the construction and destruction of the Great Moravian rampart. After this intermezzo, the deposition of flood loams has continued, with some interruptions, tothe present. This is evidenced by the layer of the youngest flood clays, which covered the ruins of the rampart from the outer side (Machácek et al., 2007). 2.3. Paleovegetation reconstructions based on previous paleobotanical studies Several authors such as Brízová and Havlícek (2002), Jankovská et al. (2003), Opravil (1962, 1978, 1983b), Rybnícek and Rybnícková (2001) and Svobodová (1990) have attempted to create reconstructions of the vegetation composition of the South Moravian regions near the confluence of the Morava and Dyje rivers that were acquired on the basis of macroflora and palynology. Rybnícek and Rybnícková (2001) presume the development of grassy subxerophyle oak woods in the bottom lands of the Early Atlantic (Neolithic) and the development of mixed linden-oak woods with elms in the medially wet areas. There was a striking human influence registered there. Due to progressive deforestation, intensive agriculture and herding in pastures, humans changed the mesoclimate during the Bronze and Older Iron Ages. They caused the secondary development of stands of xerothermic vegetation and, similarly, the development of peat in the valleys. Several authors (i.e. Firbas, 1949; Lozek, 2007; Opravil, 1999) suppose that there were transient climatic (primarily humidity) oscillations during the whole younger Atlantic to Subboreal. The intensification of precipitation in the Lower Subatlantic caused an increase in erosion and the first levelling of the lower niches of the bottom land, according to Lozek (2007) and Opravil (1999). Since then the modern-day cultural landscape has gradually developed. Opravil (1978, 1983a, 1999) made reconstructions of plant assemblages in the surroundings of the Early Medieval Centre (Great Moravia) Mikulcice on the basis of fossil macroflora. In the more variegated morphology here, he noticed greater diversity and other quantitative proportions in the fossil plants compared to today’s. The surface of the bottom land was formed by fluvial sandy gravel overgrown with sporadic vegetation before the main deposition of the flood sediments. Moor vegetation, alders and the edges of shrubby willows developed in the depressions along the water streams and erosive trenches. Forest formations, primarily hard flood-forest, grew in the elevated benches. Svobodová (1990) conducted the first palynological analyses of sediments from the Pohansko and Mikulcice localities. She documented increased human impact in the profile: deforestation, synanthropic elements (such as Artemisia, Plantago lanceolata, Convolvulus arvensis, Centaurea cyanus, Viciaceae) and cultural plants (Cerealia). She proved that the environment of Mikulcice had the character of a town with a great agricultural foundation, whereas Pohansko was surrounded by mixed oak wood (unfortunately without any chronological or archeological support). Findings of anthropogenic elements were documented by Brízová and Havlícek (2002) from the underlying sediments of the cultural layer of the Mikulcice fortification. 3. Methods Overall, 172 samples were palynologically analysed. They came from 3 profiles in the archaeological section R18 across the rampart and its ruins, the sedimentary filling of archaeological feature (a pit) O1, excavated test trench S3, separate samples from the sedimentary filling of the rampart structure and 13 boreholes V1eV13 (to a depth of 8 m) (Fig. 1). The studied Holocene sediments belong to the stream and flood loams of the Dyje river, aeolian sands and buried soils. The lower parts of the boreholes penetrated into Pleistocene fluvial sandy gravels and the underlying clay sediments of the Upper Miocene (Pannonian) age (Machácek et al., 2007). The sediments contained a varied amount of organic matter. Primarily soils and flooding loams had typically low proportions of palynomorphs. During soil-forming processes, the oxidation and intensive activities of Bacteria and Fungi can cause partial or total decomposition of the organic walls of pollen grains and spores. More resistant palynomorphs (Alnus, Tilia, Pinaceae) could be overestimated in the pollen diagrams (Havinga, 1967). The flooding sediments are deposited very quickly in a large capacity (mostly in early spring), which means that the palynomorphs are very dispersed in the mass of inorganic material. The sediments were macerated using the HCl, HF, KOH and acetolysis (Erdtman, 1960). The application of heavy liquid (ZnCl2) was used to increase the number of palynomorphs. For the identification of palynomorphs, the following publications were consulted: Beug (2004), Erdtmann (1957), Erdtmann et al. (1961), Komárek and Jankovská (2001), Moore et al. (1991), Reille (1995), Rybnícková (1974), Van Geel et al. (1983), Zetter (1987). N. Doláková et al. / Journal of Archaeological Science 37 (2010) 2538e2550 2541 The pollen diagrams were created using the POLPAL programme (authors Walanus and Nalepka, 1999). Five samples were dated by 14 C dating in the Poznan Radiocarbon Laboratory (T. Goslar). Some profiles and boreholes contained time-comparable lithological (geologicepedologically defined) horizons (Figs. 1 and 2) related to the development of the Dyje river bottom (see above). Due to these facts, the vegetation history could be interpreted from the most plentiful pollen spectra of different spots in the equivalent layers. On this basis, two combined pollen diagrams were constructed e one from the inner parts of the fortification (Figs. 1 and 5), another from outside of the rampart (Figs. 2 and 6). We usually did not make pollen diagrams for each individual plant, but instead plotted several plants into “ecological floral units” to give a basic idea of the vegetation relationships. We realize that there is some simplification: e.g Quercus (Opravil, 1978, 1983b) could be a member of either mesophyte oak-lime-hornbeam or flood-plain forest vegetation, depending on the species. 1. The unit “oak-lime-hornbeam forest” contains Quercus þ Loranthus, Carpinus, Tilia, Acer (Fig. 3); 2. The group “Flood-plain forest” contains Alnus and Ulmus, Fraxinus, Salix and Populus; 3. “Marshy and aquatic herbs” contains Potamogeton, Sparganium, Filipendula, Myriophyllum, Nymphaea, Nuphar, Typha, Cyperaceae, Caltha (Fig. 3); 4. Some primary as well as secondary anthropogenic indicators are marked in yellow (Fig. 4); 5. All other herbs were included in the unit called “Other herbs”. 4. Results 4.1. The oldest sediments The bottom sediments (6e8 m) were sedimentologically dated as Upper Neogene-Pannonian (Machácek et al., 2007) (Fig. 1). The pollen spectra with only Miocene palynomorphs (i.e. Engelhardia, Symplocos, Glyptostrobus, Tsuga, Cedrus) (V9 e 6 m, V2 and V3 e 8 m) testified to these ages (Doláková and Kovácová, 2008). Redeposited Miocene palynomorphs were also occasionally found in some Holocene sediments (from a base of up to 1.5 m deep). The preservation states of individual palynomorphs known both from the Quaternary and Tertiary (e.g. Pinus, Ulmus, Alnus, Quercus, Juglans) may be different or not under a light microscope. Observation under a fluorescent microscope can help to determine the reworked palynomorphs (Van Gijzel, 1971; Yeloff and Hunt, 2005; Doláková and Buresová, 2007). Particular coarse-grained Upper Pleistocene fluvial sands and gravels, in positions similar to the boreholes (about 3,8e8.5 m) (Fig. 1), represent the basal Quaternary layers (Machácek et al., 2007) here and were palynologically sterile (due to their mechanical properties). 4.2. The basal Holocene fluvial sands Pollen spectra from fluvial fine sands and/or sandy clays correspond to the former research of flood-plain vegetation near the confluence of the Morava and Dyje rivers (see above). The pre-domination of oak-lime-hornbeam forest (Quercus was most frequent) alternating with flood-plain forest (dominant Alnus, and less Ulmus, Fraxinus, Salix and Populus) was visible in the pollen diagrams (Figs. 5 and 6), V5, V13 e outside of the ramparts (Fig. 6), V1 (Fig. 7), P1, S3 (Figs. 2 and 8). This phenomenon could have been caused by primeval human activity or climatic reasons. There was regular occurrence of the pollen of Betula. Pinus sylvestris is frequent; Picea was found in low quantities. The infrequent pollen grains of Abies were transported here from the more distant higher areas. The occurrence of Juglans pollen is very interesting and disputatious. This genus had no natural occurrence in Central Europe in the Holocene. Its cultivation by humans or re-deposition from the underlying Miocene sediments should not be ruled out (see discussion). In addition, there is a minor proportion of shrubs (sporadically Rosaceae e Prunus and Rubus); only Corylus was commonly found. Trees dominated over herbs, but the landscape was not completely forested. Associations of open locally moist areas were represented mainly by the following herbs: grasses e Poaceae, Asteraceae, Cyperaceae, Ranunculaceae, fewer Euphrasia, Chrysosplenium and Symphytum. There were also plants growing at the edges of bodies of water: Typha, Potamogeton, Nymphaea. Nevertheless, there were some anthropogenic indicators in these layers e archaeophytes such as Cerealia (Figs. 3 and 4) and field weed such as Polygonum aviculare, C. cyanus (profile P1 e 2 m) (Fig. 3). There were also secondary anthropogenic elements, original to this landscape, but spreading thanks to human activity, which created suitable places for them due to deforestation, ruderalisation, pasturage and agriculture. They are as follows: P. lanceolata, Rumex acetosella, R. acetosa, Artemisia (Fig. 3), and Chenopodiaceae. These facts indicated that there was agriculture in the period preceding Slavonic settlement, even in the time before the sedimentation of the flooding loam in the bottom land. A charcoal particle from a depth of about 5 m in borehole V13 was dated by 14 C as the 7350 Æ 50 cal BP (6370e6070 cal BC). The 14 C dating of overlaying sediment: 3 m: 8240 cal BP (7470e7070 cal BC) proved the big sedimentological dynamics of the bottom land. The Cerealia-type pollen (Cerealia X Glyceria species) from these layers should be considered (see discussion). 4.3. The lower flooding sediments A marked decrease in pollen grains of woody genera already in the overlying lower flooding sediments and the lower buried soil inside of them was documented. Their palynomorph content is generally very low (see chapter 3.). Only a few samples yielded more palynomorphs capable of creating an image of the vegetation. Oaks (Quercus), hornbeams (Carpinus) and elms (Ulmus) almost disappeared. Alders (Alnus) decreased and only poplars (Populus) and pines (Pinus) remained. In contrast to the decrease of trees, herbs (primarily grasses and ferns) increased (Fig. 5). It is presumed that the great amount of deforestation allowed more flooding. The regular occurrence of spores of Sphagnum, the increased percentage of sedges (Cyperaceae) and the finding of aquatic plants Myriophyllum spicatum (Fig. 7), Utricularia and green algae of Botryococcus in the layers directly beneath and outside of the fortification all provide evidence for the existence of marshes here. The fortification must have been partially built on a swamp. It may have also played a role in protecting against flooding. Practical evidence of this was shown in 2006, a year of extreme flooding (Fig. 1). The opening in the fortification for archaeological investigation caused the inundation of a large part of the locality. 4.4. Sand dune Borehole V1 (Fig. 7) was located on the sandy dune and contained slightly loamy aeolian sands. Within the whole borehole, the predominance of herbs over trees was noticeable (mainly Poaceae and Asteraceae). P. sylvestris is the richest arboreal element. It is the typical tree of sand dunes and also a significant pioneer tree, penetrating open spaces such as fallow land first. It is often overvalued in pollen spectra due to its strong resistance during N. Doláková et al. / Journal of Archaeological Science 37 (2010) 2538e25502542 deposition (Havinga, 1967) or high pollen production and large dispersion range. Tilia was more frequent here than in other boreholes. This could be related to its better resistance in sandy sediments. The number of elements of flood-plain forest was lower. The alternating predominance of flood-plain forest over oak-limehornbeam forest e similar to other boreholes and profiles e is conspicuous. The pollen spectra indicated vegetation of drier places with bad ground. Fig. 3. Main pollen types, LM magnification 1000Â. 1. Quercus sp. e O1, 150 cm. 2. Tilia sp. e P1, 160 cm. 3. Acer sp. e V5, 320 cm. 4. Juglans sp. e V5, 320 cm. 5. Carpinus sp. e V5, 320 cm. 6. Carpinus sp.e S3, 135 cm. 7. Loranthus sp.e O1, 150 cm. 8. Galium sp. e O1, 154 cm. 9. Cerealia e Triticum type e V5, 320 cm. 10. Cerealia e Secale type e O1, 154 cm. 11. Cyperaceae e P1, 200 cm. 12. Plantago lanceolata e V5, 250 cm. 13. Centaurea cyanus e P1, 200 cm. 14. Polygonum aviculare e V1, 230 cm. 15. Rumex sp. e V5, 250 cm. 16. Salix sp. e P1, 200 cm. 17. Myriophyllum sp. e O1, 150 cm. 18. Sphagnum sp. e P3, 15 cm. 19. Botryococcus sp. e S3, 110 cm. 20. Probably aquatic moss, type 340 e S3, 110 cm. 21. Salvinia sp. e S3, 90 cm. N. Doláková et al. / Journal of Archaeological Science 37 (2010) 2538e2550 2543 4.5. Excavated test trench S3 Most of the sediments were dark humic flooding loams (Fig. 2). Palynology confirmed the sedimentological results regarding the existence of an oxbow inside of the locality. Freshwater green algae Pediastrum boryanum, frequent Botryococcus (Fig. 8) as well as zygospores of Zygnemataceous algae, including Spirogyra and Mougeotia, occurred in these sediments. There were plenty of nonpollen types 128A and 74 (Van Geel et al., 1983), as well as some possible algal palynomorphs. Sphagnum was sporadic, however, there was an abundance of spores of type 340 found belonging to the aquatic mosses, according to Miola et al. (2007) (Fig. 3). Fig. 4. Author of SEM photos e J. Stelcl. 1e3. Daucaceae e Peucedanum sp. e O1, 150 cm 1. LM 1000 magn. 2e3 SEM. 4e6. Quercus sp. e O1, 150 cm 4. LM magn. 1000Â, 5e6 SEM 7e9. Artemisia sp. e O1, 154 cm. 7. LM 1000 magn. 8e9 SEM. 10e12. Poaceae e wild grasses e O1, 150 cm. 10. magn. 1000Â, 11e12 SEM. 13e15. Cerealia Triticum type e O1, 150 cm. 13. LM magn. 1000Â, 14e15 SEM. N. Doláková et al. / Journal of Archaeological Science 37 (2010) 2538e25502544 Fig. 6. Combinated pollen diagram e boreholes outside of fortification. Fig. 5. Combinated pollen diagram e boreholes and profiles from inner part of fortification. N. Doláková et al. / Journal of Archaeological Science 37 (2010) 2538e2550 2545 Common sporangia with microspores of the water fern Salvinia natans (Fig. 3) were found at some depths. There was also a regular occurrence of water rim genera of Potamogeton, Typha, Sparganium and the family Cyperaceae, sporadic M. spicatum and several objects resembling Charophytes gyrogonia. These fossil types indicate an open water environment in eu- to mesotrophic conditions. From the uppermost part of the sediments, the water indicators decreased. The 14 C dating manifested surprisingly high ages of the dated sediments (Fig. 2): S3 1.27 m: 7830 Æ 60 BP (7050e6450 cal BC) as Lower AtlanticeNeolithic; S3 0.4 m: 2210 Æ 30 BP (380e190 cal BC) as Lower SubatlanticHallstatt; La Téne. The pollen diagram can be divided into two parts (Fig. 8). The boundary is created by the practically sterile samples from the middle part of the profile. A pre-domination of trees over herbs was observed in the lower part. In addition to Pinus, elements of oak-lime-hornbeam forest also occurred. The pollen of Carpinus occurred sporadically, but it was found at almost all depths from the lower part of the test trench (even below the sample dated as Early Atlantic). These findings are significant as they confirm the earlier spreading of Carpinus (Figs. 3 and 6) in the Czech Republic and refute the traditional assumption of their Subboreal penetration (see discussion). Corylus reached 8% in some samples. Elements of flood-plain forest prevailed in the lowermost part, where anthropogenic indicators Cerealia and Juglans were found, although to a lesser extent than in the upper part. There were a visibly decreasing number of trees, increasing number of herbs and more frequent primary and secondary indicators of human activity (Cerealia, C. cyanus, P. lanceolata, P. aviculare, Rumex acetosa, Chenopodiaceae) in the upper part of the studied layers. The prevailing presence of flood-plain forest is visible at the samples dated as Hallstatt, which correspond to the abundant occurrence of Salvinia (see above in this chapter). A markedly Fig. 8. Pollen diagram e excavated test trench S3. Fig. 7. Pollen diagram of borehole V1 e through the sandy dune. N. Doláková et al. / Journal of Archaeological Science 37 (2010) 2538e25502546 increasing amount of Pinus is noticeable in the uppermost sample, compared to other boreholes and profiles (see below). 4.6. The cultural layer A cultural layer of about 0.30 m was uncovered at a depth of about 0.5 m from the surface in section R18 (Fig. 2). It represents the homogenized upper buried soil with artefacts from the Great Moravia age. Generally, herbs prevailed over trees (Fig. 9). The base of the cultural layer probably occludes the natural floodplain surface from the beginning of Early Medieval times. The initial deforestation (mainly oak-lime-hornbeam forest group) was connected with the existence of the Great Moravian agglomeration and its fortification. High quality timber was already consumed from the immediate vicinity of Pohansko (as a building material for houses and fortification and as fuel). Opravil (2000) analysed the coalified tree remains from the construction of a protective wall. He concluded the following composition: 75% Quercus, 5% Ulmus and 3% Fraxinus. Corylus also had an increasing tendency. Juglans could have been cultivated by the inhabitants of Pohansko. Herbs were evidently also abundant (e.g. Asteraceae, Poaceae, Cyperaceae, Ranunculaceae, Rosaceae, Rubiaceae). Cereals were found in the whole cultural layer with the maximum amount of 5%. Pollen grains of other cultural and synantropic plants (e.g. Humulus-Cannabis, P. lanceolata, P. major/ media, Urtica) were found. Chenopodiaceae increased mostly in the upper part of the cultural layer, which was related to ruderalisation caused by human activity. The surroundings of the fortification could have been used as pastures or fields. 4.7. Archaeological feature O1 Samples from the wall of archaeological feature (a pit) O1 were almost sterile. Another two samples came from the anthropogenic filling of this object. The lower samples were dated by 14 C as 2560 Æ 50 years BP (820e520 cal BC) as Lower Subatlantic e Hallstatt. The samples contained about 24% trees and 76% herbs (Fig. 9). Elements of flood-plain forest slightly prevail over the oak-limehornbeam forest. Pinus was the most abundant tree in both samples. Abies was also more highly represented. We can assume that it was carried by the wind from more distant regions. Abies was used as a revetment of a grave in the nearby Great Moravia locality Mikulcice (Opravil, 1962). It could have been that this precious tree was imported on special occasions from more distant places. In both samples Sambucus, which prefers moist nitrogenous soil, was found. Juglans and Corylus may have been cultivated for nuts. Herbaceous pollen was very abundant (Fig. 9). Meadow herbs include Centaurea sp., Centaurea jacea, Euphorbiaceae, Euphrasia, Fabaceae (Lotus, Trifolium), Rosaceae and Veronica. Plants such as Daucaceae (Fig. 4), Fabaceae, Galium, Polygonaceae and Ranunculaceae could belong to a category of herbs which grew near the edges of woods or in damp places. There was a frequent occurrence Fig. 9. Pollen diagram from the Great Moravian cultural layer and filling of the archaeological feature O1. N. Doláková et al. / Journal of Archaeological Science 37 (2010) 2538e2550 2547 of marshy and aquatic herbs (Cyperaceae, Chrysosplenium, Myriophyllum, Potamogeton/Sparganium). In both samples, a prominently high amount (over 13%) of Cereal (Triticum and Secale) types (Figs. 3 and 4) were found (Fig. 9). This is evidence of the probable manipulation or processing of cereals in human settlement. The following plants were connected to the presence of human and agricultural activities: weeds such as Polygonum persicaria and Silenaceae and other synantropic herbs such as Urtica, Humulus/Cannabis, P. lanceolata, Plantago major/ media and P. aviculare. We suppose that some plants could have been collected or cultivated and used as medicinal plants (e.g. Sambucus, Euphrasia, Salvia, Plantago, Alchemilla, Urtica, Valeriana, Artemisia). Some plants could have been used for dyeing textiles (e.g. the fruits of Sambucus and some Rosaceae, leaves of Urtica, Juglans and Betula). It is necessary to support this hypothesis with further research and evidence. Both samples are different from the other samples from Pohansko. The higher accumulation of normally scarce pollen could be connected to human activity within the location of the fort. 4.8. Samples of sediments from the stone rampart The pollen spectra were very poor. They contained almost all the trees known from the other samples in this locality. Asteraceae were the abundant herbs. There were many charcoal particles and non-pollen objects. Most of them were spores of terrestrial algae and spores and conidia of Fungi often living on decomposed wood (some of them on oak). Sporadic cysts of marine algae originated from the Neogene under-layer. They could have been redeposited or people could have used the Neogene sediments as filling for the stone ramparts. 4.9. Overlays of the cultural layer Above the cultural layer, humic loam was noticed in the inner part of the rampart and youngest flood clays, which covered the destroyed part of the rampart from the outer side. These youngest flood sediments levelled the flood-plain surface (Opravil, 1983b; Havlícek, 2001). In these samples there was evidence of the partial regeneration of woodland. The large quantity of Pinus pollen that is manifest indicates that the process of succession is still continuing. The same phenomenon is visible in all the uppermost parts of the profiles and boreholes. This landscape regeneration seems to be the result of a decrease in the intensity of human activity. 5. Discussion and interpretations The occurrence of Carpinus in the sediments dated as Early Atlantic is noteworthy. Its spreading into the Czech Republic (Bohemia and Moravia) during the Subboreal is assumed to be based on a traditional idea (i.e. Firbas, 1949). In addition, Kalis et al. (2003) does not assume its penetration in the Early Atlantic forests in Central Europe. Magyari (2002) noted the first appearance of Carpinus in the SE Carpathians and in the North Hungarian Middle mountains around 8500 cal BP and their role as an important element of the woodlands from about 7500 cal BP. Glacial refugia for Carpinus are referred to in the Balkan Peninsula (Huntley, 1988; Willis, 1994; Bozilova and Tonkov, 2000) and in restricted areas of the Hungarian plains (Magyari, 2002; Feurdean, 2005). According to Ralska-Jasiewiczova et al. (2002), an isopollen map of the spreading of Carpinus from Italy and Romania shows that it reached the SE of Poland in 7000 BP. Several authors (Gardner, 2002; Ralska-Jasiewiczova et al., 2002) presume the expansion of Carpinus to be an anthropogenic activity (from 6800 cal. BP). Rybnícková (1985) supposed the much earlier spreading of Carpinus in the area of the confluence of the Dyje and Morava rivers than in other regions of the Czech Republic. The scarce findings of Carpinus in the Mesolithic age and the increased occurrence of settlements where Linear Pottery was used (Lower Neolithic) confirm, according to Opravil (1983a), the early arrival of Carpinus in South Moravia. From the time of the climaticoptimum Atlantic, macro remains such as wood and nutlets have been found (Opravil, 1983a, 1984). Our findings of Carpinus (6%) (Fig. 6) in the layer dated as Mesolithic (V 13 e 8240 cal BP), and also below it, also confirm the earlier spreading of Carpinus in the Czech Republic (i.e. South Moravia). The occurrence of pollen grains of Juglans is very interesting and disputatious in the area studied. It occurred in nearly all types of sediment at almost all the depths of this locality (e.g. S3 1.27 m: 7830 Æ 60 cal BP) (Fig. 8). The present area of the natural extent of Juglans is in the mesophyte forest of the Balkans, northern Turkey, the Caucasus and Central Asia. The occurrence of Juglans is traditionally interpreted as an import from southern Europe during Roman times (Hajnalová, 2001). From several investigations, it is presumed that there is an older occurrence of it in the northern Alps. Another example is the coalified Juglans wood that was found in the Slovakian Neolithic locality Sarisské Michalany (Hajnalová, 2001). Cyprien et al. (2004) presents pollen diagrams from France (lower Loire) with grains of Cerealia, Fagopyrum and Juglans occuring at about 6300 cal B.C.; nevertheless, Behre (2007) recommends a thorough reinvestigation of the site. Griffiths et al. (2004) assumes Juglans in the pre-Holocene refugias of the Balkans (Slovenia and Greece). The survival of Juglans during the last glacial stage is assumed by Carrión and Sánches-Gómez (1992) in southern Spain. Pollen grains of Juglans were found by Jankovská et al. (2003) in some handmade boreholes in the neighbouring Slavonic fort of Mikulcice (flooding sediments of 2.20e2.30 m) and also by Svobodová (1990) in Pohansko at a depth of 1.60 m. Due to the presence of redeposited Neogene pollen grains in some Holocene samples, the eventual redeposition of Juglans pollen could not be excluded. Long-distance transport by strong winds from southern areas could be considered. The findings of Cereal-type pollen in the pre-Neolithic (V 13e8240 cal BP) sediments are disputable. Secondary anthropogenic indicators P. aviculare, P. lanceolata, R. acetosella, HumulusCannabis (which could, however, be original to this landscape) were found. Cereal-type pollen was found in parts of Central Europe sporadically and known from the pre-Neolithic period, according to Lang (1994). The first cereal pollen found in the Neolithic (7600 cal BP) was in south-west Germany (Rösch, 2000). The possibility of the pre-Neolithic origin of Cereals in Central Europe is discussed by Behre (2007) and Kalis et al. (2003). According to Zolitschka et al. (2003), there is a strong influence of human activity on the natural landscape in the late Neolithic, indicating that agriculture was expanding over most of Central Europe. These changes coincide with the start of colder and moister climatic conditions following the “Holocene climatic optimum” (Davis et al., 2003). According to Behre (2007) and Beug (2004), apart from cultivated cereals, several species could belong to the Cerealia-type pollen. Particularly the Glyceria species, growing in wet habitats, could be expected in Central European pollen diagrams, according to Behre (2007). Similar vegetation types are typical for the basal Holocene pollen spectra in our area of study (Figs. 1, 2 and 4). Long distance transport of cereal pollen must also be considered (Behre, 2007). Roszková (2007) found the Triticum-type pollen in the locality at the Giant Mountains at an altitude of 1471 m a. s. l., which could have been transported by wind currents from the lowland. N. Doláková et al. / Journal of Archaeological Science 37 (2010) 2538e25502548 6. Conclusions Palynological studies were done in the boreholes and profiles from the inside and outside space of the settlement. The investigated material was composed of mineral sediment with mostly a small admixture of organic particles. The lowermost parts of some boreholes penetrated into the Upper Miocene sediments of the Vienna basin. The age of the studied Holocene sediments were dated from the Mesolithic (14 C in 8240 cal BP) up to the 12th century or even more recent times (the youngest flood loam). Variations in the proportions of individual plant types of the studied Holocene layers were probably controlled by the character of deposition caused by changing humidity as well as by human activity (clearance, agriculture, pasture). The predominance of flood-plain forest against the mesophyte oak-lime-hornbeam forest, which is visible (several times) in the pollen spectra, indicates increased aerial and edaphic humidity. The first significant decrease of arboreal pollen was detected in the level preceding the lower flood loams and lower soil horizon. There is evidence of human impact in these layers (the occurrence of Cerealia, field weed such as P. aviculare, C. cyanus, as well as secondary anthropogenic elements P. lanceolata, R. acetosella, Humulus e Cannabis and Chenopodiaceae). These facts indicate that there was agriculture in the Neolithic period e in the time before the sedimentation of the flooding loam in the bottom land. There may have been human activity at the first accumulation of these flooding sediments. A striking human influence was also registered in the layers dated as Hallstatt. The partial rejuvenation of forest was visible in the overlaying horizons. This rejuvenation was followed by the greatest deforestation in the Great Moravian cultural horizon. The findings of pre-Neolithic Cereal-type pollen such as Juglans are disputable. The palynomorphs demonstrate that the stone ramparts served not only as protection against invasions by Hungarians, but additionally as a flood prevention barrier. The occurrence of Carpinus pollen in the layer dated as Early Atlantic, and also beneath it, confirms the earlier spreading of Carpinus in the Czech Republic (i.e. South Moravia). This concurs with earlier findings of macro remains from the old settlement regions of the Czech Republic. Acknowledgements The study was supported by Research project MSM0021622427 (Czech Republic) Inter-disciplinary Centre for Research into Prehistoric to High Medieval Social Structures. We are grateful to Sarka Rousava for correction of the English language and to anonymous reviewers for constructive comments. References Behre, K.E., 2007. Evidence for Mesolithic agriculture in and around central Europe? Veg. Hist. Archaeobot. 16, 203e219. Beug, H.J., 2004. Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Verlag Dr. Friedrich Pfeil, München. Bozilova, E.D., Tonkov, S.E., 2000. Pollen from Lake Sedmo Rilsko reveals southeast European Postglacial vegetation in the highest mountain area of the Balkans. New Phytol. 148, 315e325. Brízová, E., Havlícek, P., 2002. Nekolik poznámek k pylové analýze kvartérních sedimentu z Mikulcic na jizní Morave. Zpr. Geol. Výzk. v r 2001, 124e126. Carrión, J.S., Sánches-Gómez, P., 1992. Palynological data in support of the survival of walnut (Juglans regia L.) in the western Mediterranean area during Last Glacial times. J. Biogeogr. 19, 623e630. Cyprien, A.L., Visset, L., Carcaud, N., 2004. Evolution of vegetation landscapes during the Holocene in the central and downstream Loire basin (Western France). Veg. Hist. Archaeobot. 13, 181e196. Davis, B.A.S., Brewer, S., Stevenson, A.C., Guiot, J., 2003. The temperature of Europe during the Holocene reconstructed from pollen data. Quat. Sci. Rev. 22,1701e1716. Doláková, N., Kovácová, M., 2008. Pannonian vegetation from the northern part of Vienna basin. Sborník Národního muzea v Praze (Acta Musei Nationalis Pragae), Rada B, Prírodní vedy 64 (2e4), 163e171. Doláková, N., Buresová, A., 2007. Use of fluorescent microscopy in the study of redeposited palynomorphs in the cave and marine sediments of Moravia (Czech Republic). Acta Palaeobot. 47 (1), 275e279. Dostál, B., 1975. Breclav e Pohansko. Velkomoravský velmozský dvorec, UJEP Brno. Dresler, P., 2008. Opevnení Pohanska u Breclavi. MS PhD. Ústav archeologie a muzeologie FF MU, Brno. Erdtman, G., 1960. The acetolysis method, a revised description. Svensk Bot. Tidskr. 54, 561e564. Erdtmann, G., 1957. Pollen and Spore Morphology. Plant Taxonomy. Gymnospermae, Pteridophyta, Bryophyta. Almquist and Wiksell, Stockholm. Erdtmann, G., Berlund, B., Praglovski, J., 1961. An Introduction to a Scandinavian Pollen Flora. Almqvist & Wiksell, Stockholm. Feurdean, A., 2005. Holocene forest dynamics in northwestern Romania. Holocene 15 (3), 435e446. Firbas, F., 1949. Spät- und nachzeitliche Waldgeschichte Mitteleuropas nördlich der Alpen. I. Allgemeine Waldgeschichte. Jena. Gardner, A.R., 2002. Neolithic to Copper Age woodland impacts in the northeast Hungary? Evidence from the pollen and sediment chemistry records. Holocene 12 (5), 541e553. Griffiths, H.I., Krystufek, B., Reed, J.M., 2004. Balkan biodiversity: pattern and process in the European hotspots. Kluwer Academic Publishers, Dordrecht. Hajnalová, E., 2001. Ovocie a ovocinárstvo v archeobotanických nálezoch na Slovensku. Nitra. Havinga, A.J., 1967. Palynology and pollen preservation. Rev. Paleobot. Palynol. 2, 81e98. Havlícek, P., 2001. Geologická stavba velkomoravského mocenského centra BreclavPohansko a jeho okolí. Zpr. geol. Výzk. v r. 2000, 71e73. Havlícek, P., 2004. Geologie soutokové oblasti Dyje s Moravou. Breclav. In: Hrib, M., Kordiovský, E. (Eds.), Luzní les v Dyjsko-moravské nive, pp. 11e19. Havlícek, P., Smolíková, L., 1994. Vývoj jihomoravských niv. Vest. Ces. geol. Úst. 69 (1), 23e40 (Bull. Czech Geol. Surv.). http//www.mapy.cz (accessed 30.1.2007). Huntley, B., 1988. Glacial and Holocene vegetation history: Europe. In: Huntley, B., Webb, T. (Eds.), Vegetation History. Kluwer, Dordrecht, pp. 341e383. Jankovská, V., Kaplan, M., Polácek, L., 2003. Pollenanalytische Forschung in Mikulcice. In: Polácek, L. (Ed.), Studien zum Burgwall von Mikulcice. Spisy Archeologického ústavu AV CR, Brno, pp. 39e74. Kalis, A.J., Merkt, J., Wunderlich, J., 2003. Environmental changes during the Holocene climatic optimum in central Europe e human impact and natural causes. Quat. Sci. Rev. 22, 33e79. Kalousek, F., 1966. Habitat mésolithique à Pohansko près de Breclav (Moravie). Investigations archéologiques en Thécoslovaquie, Prague. Komárek, J., Jankovská, V., 2001. Review of the Green Algal Genus Pediastrum. Implication for Pollenanalytical Research. Gebrüder Borntraeger, Berlin. Lang, G., 1994. Quärtare Vegetationsgeschichte Europas. Gustav Fischer Verlag, JenaeStuttgart-New York. Lozek, V., 2007. Zrcadlo minulosti. Ceská krajina v kvartéru. Dokorán, Praha. Machácek, J., Doláková, N., Dresler, P., Havlícek, P., Hladilová, S., Prichystal, A., Roszková, A., Smolíková, L., 2007. Early Medieval centre at Pohansko near Breclav and its natural environment. Arch. rozhledy LIX (2), 278e314. Machácek, J., 2005. Rane stredoveké Pohansko u Breclavi e munitio, palatium nebo emporium moravských panovníku? (Early Medieval centre in Pohansko near Breclav/Lundenburg: munitio, emporium or palatium of the rulers of Moravia?). Arch. rozhledy. LVII, 100e138. Magyari, E., 2002. Holocene biogeography of Fagus sylvatica L. and Carpinus betulus L. in the Carpathian-Alpine region. Folia Historico-Naturalia Musei Matraensis 26, 15e35. Miola, A., Bondesan, A., Corain, L., Favaretto, S., Mozzi, P., Piovan, S., Sostizzo, I., 2007. Wetlands in the Venetian Po plain (northeastern Italy) during the last glacial maximum: interplay between vegetation, hydrology and sedimentary environment. Rev. Paleobot. Palynol. 141 (1e2), 53e81. Moore, P.D., Webb, J.A., Collinson, M.E., 1991. Pollen Analysis, second ed. Blackwell, London. Opravil, E., 1962. Paleobotanický výzkum slovanského hradiska Na valech u Mikulcic. Arch. rozhledy. 24, 475e482. Opravil, E., 1978. Rostlinná spolecenstva v okolí Mikulcic v období predvelkomoravském a velkomoravském. Arch. rozhledy. 30, 67e75. Opravil, E., 1983a. Habr obecný (Carpinus betulus L.) v ceskoslovenském kvartéru. Cas. Slez. Muz. Opava (A) 32, 67e82. Opravil, E., 1983b. Údolní niva v dobe hradistní. (CSSR e povodí Moravy a Poodrí). Academia, Praha. Opravil, E.,1984. Poznámky k rekonstrukciprírodního prostredí v neolitu CSSR. Studia Minora Facultatis Philosophicae Universitatis Brunnensis. E 29, 167e178. Brno. Opravil, E., 1999. Umweltentwicklung in der Talaue der March (Ober- und Untermarch). Brno. In: Polácek, L., Dvorská, J. (Eds.), Probleme der mitteleuropäischen Dendrochronologie und naturwissenschaftliche Beiträge zur Talaue der March. Internationale Tagungen in Mikulcice V, pp. 165e180. N. Doláková et al. / Journal of Archaeological Science 37 (2010) 2538e2550 2549 Opravil, E., 2000. Archäobotanische Funde aus dem Burgwall Pohansko bei Breclav. Brno. In: Polácek, L. (Ed.), Studien zum Burgwall von Mikulcice IV, pp. 165e169. Pelísek, J., 1942. Pohrbené pudy v aluviích dolní Moravy. Príroda 35, 148e150. Podborský, V., 1993. Praveké dejiny Moravy. Muzejní a vlastivedná spolecnost v Brne. Ralska-Jasiewiczova, M., Latalowa, M., Wasylikowa, K., Tobolski, K., Madeyska, E., Wright, H.E., Tuner, Ch, 2002. Late Glacial and Holocene History of Vegetation in Poland Based on Isopollen Maps. Polish Academy of Sciences, Krakow. Reille, M., 1995. Pollen et Spores d’Europe et d’Afrique du nord. Laboratoire de Botanique Historique et Palynologie, Marseille. Rösch, M., 2000. Long term human impact as registered in an upland pollen profile from the southern Black Forest, south-western Germany. Veget. Hist. Archaeobot. 9, 205e218. Roszková, A., 2007. Pylové analýzy vybraných kvartérních lokalit (Stríbrná bystrina, Rýchory) Krkonosského národního parku. Acta Mus. Moraviae. Sci. Geol. 92, 157e168. Rybnícek, K., Rybnícková, E., 2001. Vegetace a prírodní prostredí jako pozadí archeologických kultur CR, 28 000 e 1 000 BP. In: Podborský, V. (Ed.), 50 let archeologických výzkumu Masarykovy Univerzity na Znojemsku. MU, Brno, pp. 301e310. Rybnícková, E., 1974. Vegetace CSSR A7. Die Entwicklung der Vegetation und Flora im südlichen Feil der Böhmisch - Mährischen Höhe während des Spätglazials und Holozäns. Academia, Praha. Rybnícková, E., 1985. Dreviny a vegetace Ceskoslovenska v nejmladsím kvartéru (paleobotanická studie). MS Ústav experimentální fytotechniky CSAV, Brno. Svobodová, H., 1990. Vegetace jizní Moravy mezi 500e1000 A.D. Arch. Rozhledy. 42, 170e205. Van Geel, B., Hallewas, D.P., Pals, J.P., 1983. A Late Holocene deposit under Wetfiese Zeedijk near Enkhuizen (prov. of N-Holland, The Netherlands): paleoecological and archaeological aspects. Rev. Paleobot. Palynol. 38, 269e335. Van Gijzel, P., 1971. Review of the UV-fluorescence Microphotometry of Fresh and Fossil Exines and Exosporia. In: Brooks, J., Grant, P.R., Muir, M., van Gijzel, P., Shaw, G. (Eds.), Sporopollenin. Academic Press, London-New York, pp. 659e685. Walanus, A., Nalepka, D., 1999. POLPAL. Program for counting pollen grains, diagrams plotting and numerical analysis. Acta Paleobot. 2, 659e661. Willis, K.J., 1994. The vegetational history of the Balkans. Quat. Sci. Rev. 13, 769e788. Yeloff, D.E., Hunt, C.O., 2005. Fluorescence microscopy of pollen and spores: a tool for investigating environmental change. Rev. Palaeobot. Palynol. 133, 203e219. Zetter, R., 1987. Untersuchungen and Pediastrum eArten aus dem Ober Miocän des Burgenlandes (Österreich). Beiträge zur Paläontologie von Osterreich 13, 87e89. Zolitschka, B., Behre, K.E., Schneider, J., 2003. Human and climatic impact on the environment as derived from colluvial, fluvial and lacustrine archives e examples from the Bronz Age to the Migration period, Germany. Quat. Sci. Rev. 22, 81e100. N. Doláková et al. / Journal of Archaeological Science 37 (2010) 2538e25502550 63 SBORNÍK NÁRODNÍHO MUZEA V PRAZE AC TA M U S E I N AT I O N A L I S P R AG A E Řada B – Přírodní vědy • sv. 67 • 2011 • čís. 1–2 • s. 63–71 Series B – Historia Naturalis • vol. 67 • 2011 • no. 1–2 • pp. 63–71 BADENIAN (LANGHIAN – EARLY SERRAVALLIAN) PALYNOFLORA FROM THE CARPATHIAN FOREDEEP AND VIENNA BASIN (CZECH AND SLOVAK REPUBLICS) NELA DOLÁKOVÁ Masaryk University,Faculty of Sciences,Institute of Geological Sciences,Kotlářská 2,611 37,Brno,Czech Republic, e-mail:nela@sci.muni.cz MARIANNA KOVÁČOVÁ Comenius Universtity,Faculty of Sciences,Department of Geology and Palaeontology,Mlynská dolina G,SK-84215 Bratislava,Slovak Republic,e-mail:kovacova@fns.uniba.sk PETRA BASISTOVÁ Masaryk University,Faculty of Sciences,Institute of Geological Sciences,Kotlářská 2,611 37,Brno,Czech Republic, e-mail:162649@sci.muni.cz Doláková, N., Kováčová, M., Basistová, P. (2011): Badenian (Langhian – Early Serravallian) palynoflora from the Carpathian Foredeep and Vienna Basin (Czech and Slovak Republics). – Acta. Mus. Nat. Pragae, Ser. B, Hist. Nat., 67(1-2): 63-71, Praha. Abstract. The Badenian (Langhian - Early Serravallian) marine sediments from the adjacent areas within the Central Paratethys and NE part of the Vienna Basin, were studied from a palynological perspective. The pollen data document a subtropical climate during the Miocene Climatic Optimum with dominant representation of zonal vegetation being evergreen broadleaved forests. Higher differentiation of oak type pollen, increasing number of Platanus pollen and different types of herb were observed. Some thermophilous elements (especially Sapotaceae, Palmae, Mastixiaceae and Lygodiaceae) decreased and there was an increase of the warm to cold temperate zone taxa which were first registered during the Late Badenian. These findings together with a higher proportion of extrazonal vegetation (Tsuga, Picea and Abies) in the Late Badenian pollen spectra document changes due to the uplift of the Carpathian Mountain chain. n Palynology, Badenian, Langhian, Early Serravallian, Carpathian Foredeep, Vienna Basin Received December 10, 2010 Issued August 2011 Introduction The adjacent areas within the Central Paratethys in the Czech and Slovak republics, the Carpathian Foredeep and Vienna Basin, were studied from a palynological perspective. The Lower Badenian (early Langhian) transgressions from the Mediterranean toward the Central Paratethys realm flooded the Pannonian Basin and continued along straits in the Carpathian Chain into the Carpathian Foredeep. During the Lower Badenian, in addition to the shallow partial basins, depressions of unstratified calcareaous clay developed which were more than a hundred metres deep – "tegels" (Brzobohatý 1982, 1997; Chlupáč et al. 2002). The isolation of eastern parts of the Central Paratethys at the end of this period (Late Langhian) resulted in the “Middle Badenian” salinity crisis. Thick evaporite sediments were deposited in the Carpathian Foredeep. During the Upper Badenian (Early Serravallian), the most recent total marine flooding covered the whole back-arc basin and a great part of the foredeep (Kováč et al. 2007). The globally observed Middle Miocene Climatic Optimum is, according to Böhme (2003) and Utescher et al. (2000), clearly reflected in the studied Badenian material. Mountain chain uplift and strong relief development is documented by the origin of river drainage feeding into the huge deltaic systems of the back arc basin (Kováč 2000; Konečný et al. 2002). The lowermost Badenian strata, which can be recognized almost everywhere in the Central Paratethys realm, contain planktonic foraminiferal assemblages in which the genus Praeorbulina is associated with the genus Orbulina in the calcareous nannoplankton Sphenolithus heteromorphus Zone NN5 (Berggren et al. 1995; Fornaciari, Rio 1996). The time span of the Late Badenian is approximately coeval to the upper part of the MN7 Globorotalia peripheroacuta Lineage Zone of Berggren et al. (1995) and the lower part of the Discoaster exilis Zone NN6 (Martini 1971). Material and methods In total 64 Lower Badenian and 39 Upper Badenian samples of marine clays were studied palynologically. The Lower Badenian samples came from the boreholes Ivaň, Rebešovice, Chrlice, Opatovice, Otmarov, Přemyslovice and outcrops Brno-Královo Pole, Moravské Knínice 64 and Sivice, situated in the southern part of the Carpathian Foredeep and from the three regional stratotype localities Oslavany (OV-1), Židlochovice (Ž–1) and (Ž–2). The Late Badenian sediments came from the boreholes Gajary 23, Sekule 1, Jakubov 54, Zohor 1, Lozorno and outcrop at the faciostratotype locality Devínska Nová Ves situated in the Vienna Basin. Standard maceration with HCl (20%), HF, KOH and HCl (10%) was carried out. Due to the increasing number of palynomorphs, heavy liquid (ZnCl2) with a density of 2g/cm3 was utilised. Pure glycerine or glycerine gelatine were most frequently used as the observation media. The percentage of the individual taxa were calculated from the total sum of a minimum 150 determined pollen grains and spores. The palaeotropical and arctotertiary elements are classified based on the Neogene pollen flora of Central Europe (Stuchlik et al.1994). The vegetation units terminology was used according to Kvaček et al. (2006) and Kovar-Eder et al. (2008). To resolve the situation with problematic taxa identification, Quercus, Platanus, selected herbs, Castanea x Castanopsis, a recent Castanea pollen material has been studied under SEM. These observations and photos were done using Scanning Electron Microscope JEOL JSM – 649 OLV at the Institute of Geological Sciences, Masaryk University in Brno. Vegetation The Lower Badenian palynospectra were rich in Dinoflagellata and foraminiferal linings (Pl. 1, figs 1-3). Sporadic occurrences of Botryococcus (Pl. 1, fig. 4) and pollen of aquatic coastal plants Sparganium, Potamogeton and Utricularia (Pl. 2, fig. 25) indicated a fresh water influence on some facies. The proportion of zonal vegetation with evergreen broadleaved forests (Sapotaceae, Engelhardia, Platycarya, evergreen Fagaceae – Castanopsis, Trigonobalanopsis, morphotypes Tricolporopollenites henrici, T. microhenrici, T. liblarensis, Reevesia, Cornus-Mastixia, Rutaceae and Araliaceae and Pteridaceae) represents up to 30% of the pollen spectra (Pl. 2). In the Miocene time interval, the thermophilous morphotaxa Gothanipollenites gothani and Clerodendrumpollenites microechinatus were first found in Lower Badenian sediments of the studied area. The broad-leaved deciduous elements of warm – temperate mixed mesophytic forests such as Quercus, Castanea, Carya, Celtis, Juglans, Tilia, Zelkova, Ostrya, Carpinus, Betula and Cercidiphyllum generally did not exceed 10%. A higher diversity of ”oak type” pollen grains, e.g. Quercus robur-pubecscens, were recorded in the pollen spectra (Pl. 2, figs 6-10, Pl. 4, figs 7-12). Cercidiphyllum and Castanea/Castanopsis were identified from the Lower Badenian pollen spectra (Pl. 2, fig. 15; Pl. 3, figs 1-15). The azonal vegetation was represented by riparian forests with Ulmus, Alnus, Fraxinus, Liquidambar, Salix and Lythraceae and the coastal swamps by Nyssa, Sciadopitys, Taxodiaceae, Cyrillaceae and Myricaceae. Pollen grains of Platanus ipelensis sensu Pacltová (1984) were abundantly present for the first time in the Lower Badenian taphocenoses (Pl. 2, figs 11-14, Pl. 4, figs 10-12). In the pollen spectra herbs and heliophilous elements Poaceae, Asteraceae, Caryophyllaceae, Chenopodiaceae, Ericaceae and Ephedra were regularly present, less frequent were Urtica, Plantago, Salvinia and Lavandula (Pl. 2). There were noticeable polyporate pollen grains with microechinate perforate sculptures visible under SEM, they were determined as Caryophyllaceae cf. Saponaria (Pl. 4, figs 1-3), or without perforations – Thalictrum type (Pl. 4, figs 4-6). An extremely high proportion (more than 60%) of Pinaceae pollen was present in some samples (Pl. 1). From the borehole Oslavany and the uppermost parts of boreholes Židlochovice 1, practically only Pinaceae and dinoflagellates were found. This could be due to taphonomical and ecological reasons (long air-transport range and therefore accumulation in marine sediments distant from the sea- shore). In comparison with the Lower Miocene spectra, portion of the thermophilous elements P1 sensu Stuchlik et al. (1994), Symplocos, Sapotaceae, Palmae, Mastixiaceae and Lygodiaceae started to decrease since the Badenian (Doláková, Slamková 2003; Doláková et al. 1999). An increased proportion of the arctotertiary taxa (Quercus, Ulmus and Carya) were noted in the Upper Badenian palynospectra from the Vienna Basin. Thermophilous elements (Platycarya, Engelhardia, Myrica, Distylium and thermophilous Fagaceae) were still present, but Sapotaceae had disappeared. Herbs were represented predominantly by the halophytic taxa – mainly Chenopodiaceae. The higher proportions (up to 30%) of extrazonal (mountain) vegetation in the pollen spectra (Picea, Abies, Tsuga, Cedrus) were first recorded from the Upper Badenian. The main reason of this phenomenon is the uplift of the Carpathian Mountain chain and subsidence of adjacent lowlands. Discussion Lower Badenian macrofloristic remains from the Carpathian Foredeep are rare. Only in the Lower Badenian marine sandstones at Smolín near Pohořelice, Knobloch (1963, 1968) and Knobloch et al. (1975), described poorly preserved Lauraceae leaves Daphnogene bilinica, and Betulaceae leaves. The macrofloristic taphocenoses from the vicinity of Česká Třebová were described by Knobloch (1968); Knobloch et al. (1975) as an association totally dominated by arctotertiary elements (prevailing being Myrica lignitum, Alnus cf. feroniae, Pinus, Salix, Populus, Fagus, Pterocarya, Parrotia, Ulmus and Fraxinus). Equally previously published palynological results from the Lower Badenian sediments of the Carpathian Foredeep (Basistová, 2009; Bruch et al. 2004; Hladilová et al. 1999, 2001) our results indicate a more thermophilous – subtropical character of the climate. Macrofloristic findings from the Upper Badenian were described at the localities Opava – Kateřinky, and borehole Smolkov near Opava (Knobloch 1968). An absence of laurophylous leaves was observed and a generally warm – temperate character of the paleoclimate equaly to sediments with Lower Badenian floras. In the Upper Badenian pollen spectra from boreholes OS-1 Kravaře and OS-2 Hať in the vicinity of Opava, the arctotertiary elements (with a high proportion of Pinaceae, 65 partly mountain vegetation) dominated and thermophilous taxa were represented only by Engelhardia and Lygodiaceae (Cicha et al. 1985). Planderová and Gabrielová (1975) noticed a decrease in the most thermophilous elements (Sapotaceae, Symplocos, Palmae, Mastixiaceae and Lygodiaceae) in the Lower Badenian pollen spectra in comparison with Early Miocene spectra. Based on this data they interpreted a subtropical climate with humidity oscillations during the Badenian time interval. Based on the Upper Badenian pollen spectra Planderová (1990) interpreted a drier and colder climate in comparison with the Lower Badenian time span. In comparison with the Karpatian pollen spectra, the proportion of herbs and heliophillous elements in Badenian material is higher (Doláková and Slamková 2003). Holcová et al. (1996) observed up to 30% thermophilous taxa in the Lower Badenian pollen spectra from the borehole N-95 in Strháry-Trenč graben from the South Slovakia basin. Based on many palynological studies, Oszast and Stuchlik (1977), Łancucka-Srodoniowa (1966) and Dyjor and Sadowska (1984) observed some differences between Badenian floras from the Lowlands in Southern Poland (more subtropical and warm – temperate) and from the mountain regions (2-3 altitudinal zones with warm-temperate mixed forests and with coniferous forests in the upper parts). Planderová et al. (1993a,b) noted a lack of paleotropical elements of the P1 group in the Lower Badenian in the northern part of the Paratethys area. In the Upper Badenian they observed these elements only in the southern Paratethys area (Hungary and former Yugoslavia). Based on the flora of Parschlung (Karpatian/Early Badenian) Kovar-Eder et al. (2004) indicated a drier warm-temperate climate with relatively rare subtropical humid elements, while subhumid sclerophyllous woody taxa were well represented. Kováč et al. (2008) and Kvaček et al. (2006) previously published palynological studies of Badenian sediments. In comparison with these data it is evident that even though the Badenian climate was generally subtropical, the proportion of key termophilous taxa rapidly decreased in the Upper Badenian. Conclusions Pollen flora from the Lower Badenian sediments indicated the presence of evergreen broadleaved forests, constituting up to 30% of the pollen spectra. In comparison with the Lower Miocene time span the proportion of thermophilous elements, Sapotaceae, Symplocos, Palmae, Mastixiaceae and Lygodiaceae, decreased in the Badenian pollen spectra. A greater differentiation of “oak type” pollen and a higher amount of Platanus pollen were recorded in the studied samples which corresponds with the results of Knobloch and Kvaček (1996). Herbs and heliophilous vegetation started to be more frequent than in Lower Miocene floras. In comparison with macrofloristic findings, the pollen grains indicate that the Lower Badenian floras had a more thermophilous character. Due to the need for more detailed analyses and correlation, this study will continue on a larger scale and Badenian sediments from Hungary, Slovenia, and Austria will be analysed in the future. Initiation of altitudinal zonation (Kováč et al. 1998, Kováčová et al. in press) is documented by an increase of mountain elements and arctotertiary taxa (Quercus, Ulmus and Carya), a decrease of thermophilous elements (Platycarya, Engelhardia, Myrica, Distylium and thermophilous Fagaceae), and the disappearance of Sapotaceae in the palynospectra during the Upper Badenian. Acknowledgements The study was supported by the Projects 205/09/0103 (Grant Agency of the Czech Republic), APVV-0280-07, VEGA 2/0060/09, ESF-EC-009-07, VEGA 1/0483/10. References Basistová, P. (2009): Palynospektra ze sedimentů badenu karpatské předhlubně; Diplomová práce. – MS, MU: 63 pp. Brno. Böhme, M. (2003): Miocene Climatic Optimum: evidence from Lower Vertebrates of Central Europe. – Palaeogeogr., Palaeoclimatol., Palaeoecol., 195: 389-401. Bruch, A., Utescher, T., Alcade Olivares C., Dolakova, N., Ivanov, D., Mosbrugger, V. (2004): Middle and Late Miocene spatial temperature patterns and gradients in Europe – preliminary results based on paleobotanical climate reconstructions. – Cour. Forsch. Inst. Senckenberg, 249: 15-27. Berggren, W.A., Kent, D.V., Swisher, III. C.C., Aubry, M.P.A (1995): Revised Cenozoic geochronology and chronostratigraphy. – In: Berggren, W.A., Kent, D.V., Hardenbol, J. (eds.): Geochronology, time scale and global stratigraphic correlations: a unified temporal framework for a historical geology. – Soc. Econ. Paleontol. Mineral. Spec. Publ., 54: 129-212. Brzobohatý, R. (1982): Rybí fauna spodnobadenských vápnitých jílů v Brně – Králově Poli a její paleogeografický význam. – Čas. Mor. muz., Vědy přír., 67: 57-64. Brzobohatý, R. (1997): Paleobathymetrie spodního badenu karpatské předhlubně na Moravě z pohledu otolitových faun. – In: Hladilová, Š. (ed.): Sborník příspěvků – Dynamika vztahů marinního a kontinentálního prostředí, MU Brno, pp. 37-45. Cicha, I., Brzobohatý, R., Čtyroká, J., Gabrielová, N., Krejčí, O., Krystek, I., Mátl, V., Molčíková, V., Novotná, E., Řeháková, Z., Soták, J., Staňková, J., Knobloch, E., Váca, F. (1985): Neogén v opěrných vrtech OS-1 Kravaře a OS-2 Hať v opavské pánvi. – Sbor. Geol.Věd., Geologie 40: 183-229. Doláková, N., Hladilová, Š. Nehyba, S. (1999): Development of Sedimentation, molluscs and palynospectra in the Lower Miocene of the south-western Part of the Carpathian Foredeep in Moravia (Czech Republic). – Acta Palaeobot., 2: 269-278. Doláková, N., Slamková, M. (2003): Palynological characteristics of Karpatian sediments. – In: Brzobohatý, R., Cicha, I., Kováč, M., Rögl, F. (eds.): The Karpatian a Lower Miocene stage of the Central Paratethys. Masaryk University Brno, Brno, pp. 325-346. 66 Dyjor, S., Sadowska, A. (1984): Problem granicy między utworami badenu I sarmatu w regione Starej Kuźni Koło Kedzięrzynaw świetle badań palynologicznych. – Acta Palaeobot., 24: 27-51. Fornaciari, E., Rio, D. (1996): Latest Oligocene to early Middle Miocene quantitative alcareous nannofossil biostratigraphy in the Mediterranean region. – Micropaleontology 42(1): 1-36. Hladilová, Š., Nehyba, S., Doláková, N., Hladíková, J. (1999): Comparison of some relics of Miocene sediments on the eastern margin of the Bohemian Massif. – Geol. Carpathica, 50: 31-33. Hladilová, Š., Doláková, N., Nehyba, S., Hladíková, J. (2001): Nové výsledky studia spodnobadenských sedimentů a fosilií z některých vrtů v karpatské předhlubni jižně od Brna. – Geol. výzk. Mor. Slez. v r. 2000: 31-34. Brno. Holcová, K., Doláková, N., Vass, D., Zagoršek, K., Zelenka, J. (1996): Morský vývoj v spodnom badene v strhársko-trenčskej prepadline z pohľadu foraminiferových, machovkových a ostrakódových spoločenstiev a palynológie. – Mineralia Slovaca, 28: 99-119. Chlupáč, I., Brzobohatý, R., Kovanda, J., Stráník, Z. (2002): Geologická minulost České republiky. – Academia, Praha, 436 pp. Knobloch, E. (1963): Die Floren des südmährischen Neogens. – N. Jb. Geol. Paläont. Mh., 1: 1-11. Knobloch, E. (1968). The plant association in Czechoslovakian Tertiary. – Čas. Miner. Geol., 13(1): 109-118. [in Czech, German summary] Knobloch, E., Bůžek, Č, Holý, F., Kvaček, Z., Němejc, F. (1975): Signifikant megafloral assemblages in Neogene of Central Europe. – In: Cicha I. (ed.): Biozonal division of the Upper Tertiary Basins of the Eastern Alps and Western Carpathians, Czech Geol. Survey, Prague, pp. 87-100. Knobloch, E., Kvaček, Z. (1996): Miozäne floren der südbohemischen Becken. – Sbor. Geol. věd., Paleontologie 33: 39-77. Konečný, V., Kováč, M., Lexa, J., Šefara, J. (2002): Neogene evolution of the Carpatho – Pannonian region: an interplay of subduction and back-arc diapiric uprise in the mantle. – EGS Stephan Mueller Spec. Publ., Ser. 1: 105-123. Kováč, M. (2000): Geodynamický, paleogeografický a štruktúrny vývoj karpatsko – panónskeho regiónu v miocéne: nový pohlad na neogénne panvy Slovenska (Geodynamic, paleogeographic and structural evolution of the Carpathian – Pannonian region in the Miocene: New view on the Neogene basins of Slovakia). – VEDA: 1-202. Bratislava. [in Slovak] Kováč, M., Nagymarosy, A., Oszczypko, N., Slaczka, A., Csontos, L., Marunteanu, M., Matenco, L., Márton, E. (1998): Palinspastic reconstruction of the Carpathian – Pannonian region during the Miocene. – In: M. Rakús (ed.): Geodynamic development of the Western Carpathians, Geol. Survey of Slovak Republic, Bratislava, pp. 189-217. Kováč, M., Andreyeva-Grigorovich, A., Bajraktarević, Z., Brzobohatý, R., Filipescu, S., Fodor, L., Harzhauser, M., Nagymarosy, A., Oszczypko, N., Pavelić, D., Rögl, F., Saftić, B., Sliva, Ľ., Studencka, B. (2007): Badenian evolution of the Central Paratethys Sea: paleogeography, climate and eustatic sea-level changes. – Geol. Carpathica, 58 (6): 579-606. Kováč, M., Hudáčková, N., Hlavatá, J., Sopková, B., Andrejeva-Grigorovič, A., Halásová, E., Kováčová, M., Kováčová, P., Sliva, Ľ., Baráth, I. (2008): Miocénne usadeniny vo vrtoch z regiónu Záhorská nížina: sedimentológia, biostratigrafické zaradenie a prostredie depozície. – Geol. práce, Správy 114: 7-49. Kováčová, M., Doláková, N., Kováč, M.: Miocene Vegetation Pattern and Climate Change in the Northwestern Central Paratethys Domain (Czech and Slovak Republic). – Geol. Carpathica, 2011, 62, 3, 251—266.. Kovar-Eder, J., Jechorek, H., Kvaček, Z., Parashiv, V. (2008): The integrated plant record: An essential tool for reconstructing Neogene zonal vegetation in Europe. – Palaios, 23: 97-11. Kovar-Eder, J., Kvaček, Z., Strobitzer-Hermann M. (2004): The Miocene Flora of Parschlung (Styria, Austria) – Revision and Synthesis. – Ann. Naturhist. Mus. Wien., 105A: 45-459. Kvaček, Z., Kováč, M., Kovar-Eder, J., Doláková, N., Jechorek H., Parashiv, V., Kováčová, M., Sliva, Ľ. (2006): Miocene evolution of landscape and vegetation in the Central Paratethys. – Geol. Carpathica, 57(4): 295-310. Łancucka-Srodoniowa, M. (1966): Tortonian flora from „Gdów Bay“ in the south of Poland. Acta. Paleobot., 7: 1-135. [in Polish] Martini, E. (1971): Standard Tertiary and Quaternary calcareous nannoplankton zonation. – Proc. of 2nd Planctonic conference, Roma 1970, pp. 739-785. Pacltová, B. (1984): Some Pollen of Recent and Fossil Species of the Genus Platanus L. Methodological Study. – Acta Univ. Carol., Geol., 4: 367-391. Planderová, E. (1990): Miocene Microflora of Slovak Central Paratethys and its Biostratigraphical Significance. – Geol. Inst. D. Štúra, Bratislava, 144 pp. Planderová, E., Gabrielová, N. (1975): Biozones of Neogene stages from viewpoint of micropaleobotany. – In: Cicha, I. (ed).: Biozonal division of the Upper Tertiary basins of the Eastern Alps and West Carpathians, Geol. Survey Prague, pp. 101-109. Planderová, E., Ziembińska-Tworzydło, M., Grabowska, I., Kohlman-Adamska, A., Konzalová, M., Nagy, E., Pantić, N., Ryłova, T., Sadowska, A., Słodkowska, B., Stuchlik, L., Syabraj, S, Zdražílková, N. (1993a): On palaeofloristic and palaeoclimatic changes during the Neogene of Eastern and Central Europe on the basis of palynological research. – Proceedings of the International Symposium: Palaeofloristic and palaeoclimatic changes during Cretaceous and Tertiary. Dionýz Štúr Institute of Geology, Bratislava, pp. 119-129. Planderová, E., Ziembińska-Tworzydło, M., Grabowska, I., Kohlman-Adamska, A., Sadowska, A., Słodkowska, B., 67 Stuchlik, L., Ważynska H. (1993b): Wahania klimatyczne w Neogenie Europy Środkowej na podstawie zmiennego udziału w palinoflorze składników paleotropikalnych i arktycznotreciorzędowych. – Przegled Geologićny Państw. Inst. Geol., 41(12): 829-834. Stuchlik, L. (1992): Correlation of the Neogene floras of Transcaucasia, Ukrainian Carpathians, South Poland and Czechoslovakia. – Paleontologia i Evolució, 24-25: 483-488. Stuchlik, L. ed. (1994): Neogene Pollen Flora of Central Europe. Part 1. – Acta Palaeobot., Suppl.1: 1-56. Utescher, T., Mosbrugger, V., Ashraf, A. R. (2000): Terrestrial Climate Evolution in Northwest Germany Over the last 25 Million Years. – Palaios, 15(5): 430-449. Explanation of the plates PLATE 1 1. Foraminiferal tapetum, Židlochovice 1 (2.3 m). 2. Marine dinoflagellates, Židlochovice 2 (8.9 m). 3. Marine dinoflagellates: a – LM, b – SEM, Židlochovice 1 (11.1 m). 4. Botryococcus sp., Židlochovice 1 (7 m). 5. Cathayapollis potoniei (SIVAK) ZIEMBIŃSKA-TWORZYDŁO, Židlochovice 1 (7 m). 6. Cedripites miocaenicus KRUTZSCH, Židlochovice 1 (8,5 m). 7. Cathayapollis sp., SEM, a – whole pollen grain, b – detail, Židlochovice 1 (11.1 m). PLATE 2 1. Sapotaceae: Sapotaceoipollenites sapotoides (PFLUG et THOMSON) POTONIÉ; Moravské Knínice. 2. Mastixioideae: Cornaceaepollis satzvayensis (PFLUG) ZIEMBIŃSKA-TWORZYDŁO, Židlochovice 1 (10.9 m). 3. Quercoidites henrici (POTONIÉ) POTONIÉ, THOMSON et THIERGART, Ivaň (43.75 m). 4. Platycaryapollenites miocaenicus NAGY, Židlochovice 1 (10.9 m). 5. Hedera type: Araliaceoipollenites reticuloides THIELEPFEIFER; Židlochovice 1 (9.7 m). 6.–10. Quercus robur-pubescens type: Quercoidites granulatus (NAGY) SLODKOWSKA; 6,7 – Židlochovice (excavation); 8 – Židlochovice 1 (10.3 m); 9,10 – Moravské Knínice. 11.–14. Platanus sp.: Platanipollis ipelensis (PACLTOVÁ) Grabowska; 11,12 – Židlochovice 1 (10.3 m); 13 – Židlochovice 1 (11.1 m). 15. Cercidiphyllum sp.: Cercidiphyllites minimireticulatus (Trevisan) ZIEMBIŃSKA-TWORZYDŁO, Židlochovice 1 (10.9 m). 16. Urtica sp.: Triporopollenites urticoides NAGY, Židlochovice 2 (16 m). 17. Plantago sp.: Plantaginacearumpollenites miocaenicus NAGY, Židlochovice 1 (10.3 m). 18. Lavandula sp.: a,b, Židlochovice 1 (0.9 m). 19. Salvia verticillata type; Židlochovice 1 (9.7 m). 20.–23. Caryophyllaceae gen. indet.: Caryophyllidites microreticulatus NAGY, 20 – Židlochovice 1 (10.9 m); 21, 22 – Židlochovice 1 (7 m); 23 – Židlochovice 1 (10.3 m). 24. Galium type, Židlochovice 1 (9.7 m). 25. Utricularia sp.; Židlochovice 1 (9.7 m). 26. Asteraceae: Tubulifloridites macroechinatus (Trevisan) NAGY, Ivaň (16.2 m). 27. Asteraceae: Cichoreacidites gracilis NAGY, Ivaň 43.7 m). PLATE 3 1.–9. Castanea sp. – recent pollen, 1–6 LM; 7–9 SEM. 10.–12. Castanea sp.: Tricolporopollenites cingulum (POTONIÉ) oviformis THOMSON et PFLUG – form A, Židlochovice1 (11.1 m), 10 – LM; 11–12 – SEM. 13.–15. Castanopsis sp.: Tricolporopollenites cingulum (POTONIÉ) oviformis THOMSON et PFLUG – form B, Židlochovice 1 (11.1 m), 13 LM; 14–15 SEM. 16.–18. ?Fagaceae: Tricolporopollenites liblarensis (THOMSON) Grabowska, Židlochovice 1 (11.1 m), 16 – LM; 17–18 – SEM. PLATE 4 1.–3. Caryophyllaceae: cf. Saponaria sp., Židlochovice 1 (11.1 m), 1 – LM; 2–3 – SEM. 4. –6. cf. Thalictrum sp., Židlochovice 1 (11.1 m), 4 – LM; 5–6 SEM. 7. –9. Quercus sp., Židlochovice 1 (11.1 m), 7 – LM; 8–9 SEM. 10.–12. Quercus sp., Židlochovice 1 (11.1 m), 10 – LM; 11–12 SEM. 13.–15. Platanus sp.: Platanipollis ipelensis (PACLTOVÁ) Grabowska, Židlochovice (11.1 m), 13 – LM; 14–15 – SEM. LM – light microscope SEM– scanning electron microscope Magnification of all photographs is indicated directly in figures. 68 PLATE 1 69 PLATE 2 70 PLATE 3 71 PLATE 4 1 3 Facies (2014) 61:419 DOI 10.1007/s10347-014-0419-z ORIGINAL ARTICLE The Langhian (Middle Badenian) carbonate production event in the Moravian part of the Carpathian Foredeep (Central Paratethys): a multiproxy record Katarína Holcová · Juraj Hrabovský · Slavomír Nehyba · Šárka Hladilová · Nela Doláková · Atilla Demény  Received: 30 January 2014 / Accepted: 1 September 2014 © Springer-Verlag Berlin Heidelberg 2014 carbonates were transported to the outer shelf by gravity flows. Climatic instability and relative sea-level changes, induced mainly by substantial tectonic activity, caused the carbonate bodies to be small with a high ratio of siliciclastic components, indicating only a short-term and spatially restricted environment suitable for carbonate production. Exceptionally, carbonate production persisted longer during the whole sea-level cycle (“Rousínov Ridge”). Siliciclastic intercalations in these larger limestone bodies represent catastrophic rain events that transported a higher amount of terrigenous material into the basin. The specific climatic conditions of the carbonate production event, namely climatic instability and aridification with episodic intensive rain, were associated with the Middle Miocene climatic transition in the study area. Keywords  Carbonate–siliciclastic complex · Paleoecology · Middle Miocene climatic transition · Langhian · Carpathian Foredeep Introduction The study area, the Central Paratethys, represents a chain of Oligocene and Miocene epeiric seas in Central and Eastern Europe with marked oscillations of paleoecological parameters and episodic communication with the oceanic realms (Rögl 1999). Siliciclastic sedimentation strongly prevailed in the basin. Rare occurrences of carbonates were recorded from the Early Miocene (Nebelsick 1989), but only carbonates from the Middle Miocene have been described from many places. In addition to the studied Moravian part of the Carpathian Foredeep (Doláková et al. 2008), they were also recorded in the Eastern Alpine Foredeep (Mandic 2004), the Vienna and Styrian basins (Schaleková 1973; Baráth Abstract  The carbonate production event in the Moravian part of the Carpathian Foredeep is known as a deposition of a carbonate–siliciclastic complex in the marginal part of the basin, correlating with the time period from the last occurrence of Helicosphaera waltrans (14.36 Ma) to the last occurrence of Sphenolithus heteromorphus (13.34 Ma). Sedimentological and microfacial data, analysis of foraminifera, calcareous nannoplankton, red algae, mollusks, palynology, as well as oxygen and carbon stable isotopes from foraminiferal tests, were used to interpret the specific paleoenvironment of the carbonate production event. The event was accelerated by a decrease of terrigenous input due to a large transgression and, primarily, an increasingly arid climate. Production of carbonate was related to oligotrophic conditions, expansion of sea-grass meadows, summer downwelling circulations and winter stratification of the water column. Autochthonous and semi-autochthonous carbonates were deposited in shallow-water near the fair-weather wave-base; allochthonous K. Holcová (*)  Institute of Geology and Paleontology, Charles University in Prague, Albertov 6, 12843 Prague 2, Czech Republic e-mail: holcova@natur.cuni.cz J. Hrabovský · S. Nehyba · N. Doláková  Departure of Geology and Paleontology, Masaryk University, Kotlárˇská 2, 600 00 Brno, Czech Republic Š. Hladilová  Department of Biology, Faculty of Education, Palacký University, Purkrabská 2, 771 40 Olomouc, Czech Republic A. Demény  Institute for Geological and Geochemical Research, RCAES, Hungarian Academy of Sciences, Budaorsi ut 45, Budapest 1112, Hungary Facies (2014) 61:419 1 3 419  Page 2 of 26 et al. 1994; Kysela 1988; Riegl and Piller 2000; Wiedl et al. 2012), the Pannonian Basin in Hungary (Randazzo et al. 1999; Moissette et al. 2007) and Slovakia (Vass et al. 2007), the Zrin-Dvor Basin in Croatia (Basso et al. 2008; Martinuš et al. 2012) and Bosnia–Herzegovina (Pezelj et al. 2013), the Carpathian Foredeep in Poland (Pouyet and Tarkowski 1998) and Ukraine (Radwan´ski et al. 2006) and the Transylvanian Basin in Romania (Filipescu and Gîrbacea 1997). The aim of this study is to evaluate the influence of global and local paleoclimatic, paleogeographic and tectonic factors on carbonate production in the Moravian part of the Carpathian Foredeep based on a multiproxy analysis. Geological setting The Early–Middle Miocene Carpathian Foredeep is a peripheral foreland basin that developed from subsurface loading of the Alpine-Carpathian orogenic belt on the passive margin of the Bohemian Massif. The Carpathian Foredeep exhibits striking lateral variations in basin width, depth and stratigraphy of deposits, along with variations in the pre-Neogene basement composition and tectonic subsidence. The basin continued to the south (the Alpine Foredeep/Alpine Molasse Zone) and to the northeast (the Polish part of the Carpathian Foredeep) (Oszczypko 1998; Nehyba et al. 2008a). The distinctive geometry of the Early Badenian deposits reflects the important reconstruction of the basin. The location of the basin and the distribution and character of the deposits could be explained by the tectonic development of the Carpathian orogenic wedge. Both eustasy and tectonics governed the depositional architecture of the basin during the Early–Middle Badenian (Nehyba and Šikula 2007; Nehyba et al. 2008a). Pelitic sediments (“Tegel”) with sandstone intercalations and biohermal bodies strongly dominate volumetrically within the basin with a maximum thickness of about 600 m. These mudstones vary in silt and clay content, amount of shell debris, intensity of bioturbation and sedimentary structures. They were interpreted as predominantly outer shelf deposits or hemipelagites (Papp et al. 1978; Cicha 2001; Nehyba et al. 2008a). Limestone bodies are represented by lenses in siliciclastic complexes. Their thickness varies by a few meters, occassionally reaching a few tens of meters (maximum 40 m). Limestone bodies (called “Leitha-limestones” or “Lithothamnian-limestones; Papp et al. 1978) are concentrated in three areas and their positions in the succession are not necessarily isochronous. Their occurrences are connected with the prograding coast line in the western and north-western margins of the preserved Carpathian Foredeep in Moravia. At the eastern margin, redeposition of the red-algal limestones into more internal parts of the basin apparently played an important role (Doláková et al. 2008). Biohermal bodies, restricted both areally and in thickness, are represented mainly by red algal limestones and, more rarely, by bryozoan bioherms. The rich fossil content of the bioherms has attracted the attention of paleontologists since the nineteenth century; many works describing individual fossil groups originate from the 2nd half of the 20th century. These works are summarized by Hladilová and Zdražílková (1989) and Doláková et al. (2008). Most recent contributions were focused on the bryozoan limestones from Podbrˇežice (Zágoršek and Holcová 2005: Bryozoa and Foraminifera; Nehyba et al. 2008b: oxygen and carbon isotopes from bryozoan fragments; Hrabovský et al. 2015). However, a detailed multiproxy analysis of the ecosystem evolution is missing. Material and methods This work is focused on a detailed analysis of two limestone bodies north of the town of Rousínov in the middle part of the Carpathian Foredeep in Moravia (Czech Republic): the sections of Kroužek (molluscan and bryozoan biodetritic and biomicritic limestone) and Podbrˇežice (bryozoan biodetritic limestone/bryozoan bank) (Hladilová and Zdražílková 1989; Fig. 1). These sections, situated on the western margin of the Foredeep basin, were compared with limestone bodies from boreholes in Židlochovice situated at the eastern margin of this marine basin (Doláková et al. 2014) and with denudation relicts in Middle Badenian deposits (including carbonates) from Kralice (Zágoršek et al. 2007, 2009). Microfacies and red algae were studied in thin-sections. The ratio of microfacial components was evaluated using JMicrovision software and the point-counting method. They were evaluated according to a 250–400 points/thinsection scale. Quantitative data were collected from 24 thin-sections. Twelve components were distinguished in the samples (Table 1). Components were recognized and classified according to Flügel (2004). We classified mixed siliciclastic limestones with more than 10 % of lithoclasts according to Mount (1985). Limestones with less than 10 % of lithoclasts were classified according to Dunham (1962) and Wright (1992). Woelkerling (1988) and Braga et al. (1993) were followed in generic description of coralline algae (Sporolithalles, Corallinales, and Rhodophyta). Foraminifera and molluscs were studied from 63– 2,000 μm fractions. Molluscs were studied from 38 samples (Kralice nad Oslavou: 12 samples; Židlochovice boreholes: ŽIDL1—13 samples, ŽIDL2—8 samples) and foraminifera from 106 samples (Podbrˇežice: 21 samples; Kroužek: 24 samples; Kralice nad Oslavou: 12 samples; Židlochovice boreholes: ŽIDL1—26 samples and ŽIDL2—23 samples). Ultrasonic treatment was used for further cleaning of Facies (2014) 61:419 1 3 Page 3 of 26  419 Fig. 1  Locations of sections studied (a) and their lithology (b) Facies (2014) 61:419 1 3 419  Page 4 of 26 molluscs. For the molluscan fauna from Kroužek, the material of Šob (1940), kept in the collections of the Moravian Museum in Brno (Hladilová 1984), was studied. About 200– 300 specimens of foraminifera from each sample were determined and relative abundances of taxa, as well as plankton/ benthos ratios (P/B ratio), were calculated. Benthic foraminiferal assemblages and calcareous nanoplankton were statistically classified using the multivariate techniques of PAST software (Hammer et al. 2001). Calcareous nannoplankton was studied from the same 106 samples as the foraminifera. The abundance of nannoplankton was expressed semi-quantitatively as the number of specimens in the visual field of the microscope (Zágoršek et al. 2007). About 200–500 specimens of calcareous nannoplankton were determined from individual samples and the relative abundances of taxa were calculated. For palynological studies, two samples from sandy siltstones, one limestone sample of the Podbrˇežice section and four samples from sandy siltstones of the Kralice section were studied (Fig. 1). The samples were treated with cold HCl (35 %) and HF (70 %), removing carbonates and silica. Separation of the palynomorphs from the rest of the residue was carried out using ZnCl2 (density = 2 g/cm3 ). No Tertiary palynomorphs were observed in the limestone, the only samples containing contemporary pollen contamination. Palynomorphs were recorded only in siliciclastic intercalations in carbonates from the Židlochovice boreholes (Doláková et al. 2014). Oxygen and carbon isotopic composition tests of the foraminiferal can be evaluated only for well-preserved samples from the Židlochovice and Kralice sections. The methods used were described by Holcová and Demeny (2012). Groups of small-sized, four-chambered Globige‑ rina sp. and Cibicidoides spp. were chosen for isotopic analysis. Planktonic foraminifera for isotopic analysis were picked from a size fraction of 63–200 μm, in which no specimens with reproductive chambers were observed. Cibicidoides spp. were picked from the 63–300 μm fraction. The carbon and oxygen isotope compositions of calcite were determined at the Institute for Geological and Geochemical Research, RCAES, Hungarian Academy of Sciences (Budapest, Hungary). Results Biostratigraphy Biostratigraphic correlation of the carbonate production event was based on the occurrence/absence of planktonic Table 1  Volume of identified components in the study samples, counted using JMicrovision The code of each thin-section is in the left column and identified microfacies (MicF) are in far right column CRA coralline red algae, BRY bryozoans, Mol mollusks, FRM foraminifera, serpulids, SRP polychaetes, BRC brachiopods, UNS unidentified allochems, PRS pores, LIT lithoclasts, MIC micrite, SPR sparite CRA BRY MOLL FRM ECHN SRP BRC UNA PRS LIT MIC SPR MicF 27611151 17.4 17.2 2.7 0.3 0.3 1.2 2 14.3 4.9 4.9 34.2 0.3 3 27611251 10.7 32.5 3.5 0.2 0.2 2.1 1.4 2.3 10.7 1.9 28.3 6.3 3 27611351 1.5 41.6 0.5 1 0.3 0.8 0 2.3 14.8 2.5 26.6 8.3 3 276111251 10.7 59.9 2.7 0 0.3 0 0 0.3 7.7 1 16.2 1.3 3 27611551 52.5 16.2 0.3 0.8 0 0.3 0 3.7 6.7 2 16.2 1.5 3 27611451 27.3 35.3 1 2.3 0.5 0 0 3.3 2.8 3.3 18.8 6.3 3 27611651 20 31.3 1 1.5 0.3 0.3 0 1.5 1.3 4.3 32.5 6.3 3 27611751 7 43 0.7 1.7 0.2 0.2 0 2.9 0.5 1.2 40.5 1.9 3 27611851 4.2 43.8 1 2 0.3 0.8 0.8 6.2 0.5 2.5 33.1 5 3 276111351 5.2 41.3 0.3 1 0 5.2 0 5.2 5.5 2.2 28.9 5.2 3 27611951 6.2 44.6 1.8 0.8 0 0.3 0 5 0.5 3 22.4 15.5 3 276111051 6.7 35.7 12.2 1.5 0 0 0 5.5 1.5 1 25.7 10.2 3 276111151 3.7 37.9 2.2 1 0.5 0 0 6 1.8 4 37.7 5.2 3 17311351 26.5 16.8 17.3 2.2 0 0.7 0 1.5 4.5 8.2 4.5 17.8 1 17311451 17.9 24.6 5.5 2.7 0 0.3 0 5.2 4 10 5.5 24.4 1 17311751 53.9 11 3.7 1.3 0 1 0 2.7 1 4 4.5 18 1 17311951 40.3 15.3 8 0 0 1.8 0 4 7.5 3.5 6.5 13.3 1 173111051 25.2 18 10.7 0.74 0.3 0.5 0 3.2 8.2 7.9 1 24 1 173111151 16.2 15.5 92 1.25 2.5 0 0 4 5.5 16.5 1.5 31.4 1 17311251 6.2 40.1 3.2 2.5 0.8 0.3 0 6.7 3.2 12.4 14.4 10.2 2 173111251 6.5 33.9 2.5 2.7 0 2.5 0 5 6.7 13.2 14.5 12.5 2 173111351 10.7 23.6 7.5 1.5 0 0 0 4.5 17.2 9.2 6.2 19.7 2 17311551 4.5 18.9 2 5.5 0 0.8 0 16.7 1.7 15.9 12.2 21.9 2 17311651 4.3 24 3 2.3 0 1 0 13 1.8 16.8 16.8 17.3 2 Facies (2014) 61:419 1 3 Page 5 of 26  419 foraminifera and calcareous nannoplankton index species. The dating of the first and last occurrences (FO, LO) of index species differs in the world’s oceans (Gradstein et al. 2012) and in the Mediterranean area (Di Stefano et al. 2008; Abdul Azis et al. 2008; Hüsing et al. 2010). The differences are summarized in Fig. 2. Due to the connection of the Central Paratethyan Sea with the Mediterranean, the correlations of bioevents with the Mediterranean dating are more probable. Our succession of bioevents follows well the successions in the Mediterranean area (Di Stefano et al. 2008; Abdul Azis et al. 2008; Hüsing et al. 2010), where the LO of Praeorbulina spp. is an indefinable event that may be observed above/before the LO of Helicosphaera waltrans. The same succession of bioevents was described in the Carpathian Foredeep by Švábenická (2002). Of the index species, Praeorbulina (LO: 14.9 Ma; Gradstein et al. 2012; Mediterranean area: Abdul Azis et al. 2008), Orbulina (FO: 15.1 Ma; Gradstein et al. 2012; Mediterranean: 14.6 Ma; Abdul Azis et al. 2008; Hüsing et al. 2010) and Sphenolithus heteromorphus (LO: 13.53 Ma; Gradstein et al. 2012; Mediterranean area: 13.419 Ma; Abdul Azis et al. 2008; Hüsing et al. 2010) were recorded in all rocks included in the carbonate production event. Helicosphaera ampliaperta (LO: 14.91 Ma; Gradstein et al. 2012) and H. waltrans [last common occurrence (LCO) in the Mediterranean area 14.357 Ma; Abdul Aziz et al. 2008] are missing. According to the above-mentioned data, the carbonate production event can be correlated with the upper part of the NN5 Zone of calcareous nannoplankton and the M6 Zone of planktonic foraminifera (Berggren et al. 1995); numerically, the range from 14.36 Ma (LO of H. waltrans) to 13.34 Ma (LO of S. heteromorphus) can be estimated based on the Mediterranean dating of bioevents. In the local Central Paratethys stratigraphy, this interval represents the Middle Badenian (Hohenegger et al. 2014). Lithology The mixed siliciclastic-carbonate complex can be lithologically characterized by alternations of the following: (1) Mudstone lithofacies revealing dominant deposition from suspension in relatively calm conditions. Variations in the sand content, bioturbation, preservation of planar bedding and shell debris also reflect periods of a relatively higher input of material transported by currents in traction (storms?); (2) Sandy lithofacies and their alternations with mudstone lithofacies can be connected with deposition in the lower shoreface or transition zone to a deeper environment. The sharp bases of the beds, occurrence of transported limestone clasts, shell debris and planar lamination suggest a higher flow regime. The absence of clear wavy structures points to deposition below the fair-weather wave-base; (3) Heterolithic facies support rapid fluctuation of siliciclastic input into the environment. Limestone beds, 10–110 cm in thickness, indicate stable conditions of deposition and severe reduction of siliciclastic input. Multiple alternations of relatively thin beds composed of mudstone, sandstone and limestone are interpreted as cyclic changes of depositional conditions (climatically driven?). Repeated coarsening-upward successions with a transition from mudstone to sandstone and/or finally limestone can be interpreted as parasequences (Fig. 1). In the Kralice area (Zágoršek et al. 2007, 2009; Fig. 1), a carbonate production event is manifested by deposition of calcareous mudstones to muddy limestones. The sediment can be interpreted as having been deposited in a shallow marine setting. The absence of sedimentary structures induced by waves or tidal activity may point to offshore conditions. Shells were eroded in coastal environments, transported offshore by gravity currents or storm-induced flows (tempestites), and rapidly deposited. Horizontal lamination in mudstone points to the pulsed nature of sedimentation. Intercalations of poorly sorted sand with angular psefitic clasts, intraclasts of sandy clay or clayey sand originating from the underlying bed, and shell debris with abundant Rhodophyta reveal a typical textural inversion that can be explained by highly disparate sediment deposition/transport environments. Transport of outsized isolated angular clasts can be explained by rock falls (Nemec 1990), Fig. 2  Biostratigraphic correlation of the sections studied Facies (2014) 61:419 1 3 419  Page 6 of 26 a relatively dramatic relief of the basin floor and redeposition of large clasts into shallow marine environments by density currents. In the large limestone bodies (Kroužek and Podbrˇežice, Fig. 1), three lithofacies were macroscopically identified. The first is detrital limestone with reworked lithoclasts and bioclasts (biodetrital grainstone). The amount of detrital material varies both in volume and in grain size. The second lithofacies reveals a very limited siliciclastic admixture; bioclasts are separated by a sparitic or micritic groundmass (rudstonefloatstone). Ripple cross-stratification and grading were the most common sedimentary structures and were identified especially within grainstones. The third lithofacies is calcareous marl to sandstones. These “clastic intercalations” are only thin interbeds within the dominant limestones. The lithology and sedimentary structures indicate dynamic changes in depositional conditions. Alternations of relatively calm periods and predominant deposition from suspension with periods characterised by either tractional or gravity currents can be supposed. Biofacies The main allochems in the samples are bryozoan colonies, coralline algae, unsorted allochems, lithoclasts and mollusks with minor foraminifera and serpulids; the groundmass consists of micrite and sparite (Fig. 3; Table 1). The skeletal assemblage can be classified as heterozoan (James 1997) or as rhodalgal (Carannante et al. 1988). Three microfacies were identified based on skeletal components, the volume of lithoclasts and the mean grain size. Compositions of each microfacies are summarized in Fig. 3 and Table 1. The microfacies are: (1) sandy coarse-grained coralline algal–bryozoan–mollusc limestone (Fig. 4a); (2) sandy bryozoan–coralline algal limestone (Fig. 4b); and (3) bryozoan to bryozoan–coralline algal rudstone to floatstone with grainstone matrix (Fig. 4c–d). Differences in the fossil content of siliciclastic and mixed siliciclastic‑carbonate units Based on the occurrence of Helicosphaera waltrans, the Mid Badenian sediments (sensu Hohenegger et al. 2014) of the Carpathian Foredeep in Moravia can be divided into two intervals (Švábenická 2002). In the older interval containing H. waltrans, carbonates were not recorded; in the Fig. 3  Composition of microfacies in the Podbrˇežice and Kroužek sections. Ranges of component percentages in individual microfacies are summarized. a Coarse-grained coralline algal–bryozoan–mollusc sandy limestone; b Sandy bryozoan–coralline algal limestone; c Bryozoan to bryozoan–coralline algal rudstone to floatstone with grainstone matrix Fig. 4  Microfacies (a–d) and coralline algae (e–h). a Coarsegrained coralline algal–bryozoan–mollusc sandy limestone, Kroužek. Limestone composed of protuberances and debris of coralline algae (appearing as black) and elongated mollusk shells; b Sandy bryozoan–coralline algal limestone, Kroužek. Sample consists mostly of bryozoan debris with fewer coralline algae; c–d Bryozoan to bryozoans–coralline algal rudstone to floatstone, Podbrˇežice. Bryozoan colonies float in a grainstone to micritic matrix and are encrusted with coralline algae; e Sporolithon lvovicum (Maslov) Bassi, Braga, Zakrevskaya and Petrovna-Radionova; f Lithothamnion roveretoi Airoldi; g Lithophyllum sp. 1; h Spongites fruticulosa Kützing ▸ Facies (2014) 61:419 1 3 Page 7 of 26  419 Facies (2014) 61:419 1 3 419  Page 8 of 26 younger interval without H. waltrans, carbonates occurred. To define the specific paleoceanographic situation during a carbonate production event, firstly, the general differences between the intervals with and without the deposition of carbonates were tested using a Kruskal-Wallis test (Fig. 5). The test showed that the units differ in relative abundances of textulariids, epiphytic and oxyphilic benthic foraminifera, Globigerina praebulloides and reworked calcareous nannoplankton (higher in the siliciclastic-carbonate unit), an abundance of calcareous nannoplankton and a relative abundances of infauna, high-nutrient benthic foraminiferal markers and Helicosphaera spp. (lower in the siliciclasticcarbonate unit). Visual estimation (Fig. 5) showed higher variances in abundances of Turborotalita quinqueloba, Par‑ agloborotalia mayeri, Reticulofenestra minuta and highnutrient markers in the siliciclastic-carbonate unit. Planktonic assemblages in the siliciclastic‑carbonate unit In the siliciclastic-carbonate unit, planktonic organisms are generally rare and only calcareous plankton was recorded. However, siliceous plankton (diatoms and radiolaria) was mentioned from isochronous siliciclastics of the Carpathian Foredeep (Řeháková in Papp et al. 1978; Sláma 1983); in the sections studied, they were recorded only below the first limestone bodies in the Židlochovice boreholes. Calcareous nannoplankton The Kruskal–Wallis test documented statistically significant differences in nannoplankton abundance between the limestones and siliciclastics in the siliciclastic-carbonate complex (Fig. 6; Table 2): abundances are approximately two times lower in the limestone bodies than in the siliciclastics. In the former, peaks of calcareous nannoplankton abundance can be correlated with siliciclastic intercalations (Fig. 6). Calcareous nannoplankton assemblages contain a total of 15 Miocene species, of which Reticulofenestra minuta, R. haqii, Coccolithus pelagicus and Thoracosphaera spp. are common to abundant. The Kruskal–Wallis tests showed statistically significant differences in the abundance of Thoracosphera spp., which is higher in the limestone bodies and of Reticulofenestra minuta which are higher in siliciclastic intercalations within the limestones (Fig. 6; Table 2). Though the assemblages look generally very similar, dominated by Reticulofenestra minuta, nonmetric multdimensional scaling (n-MMDS) showed the differences between assemblages from a larger limestone body (Kroužek and Podbrˇežice) and from an area dominated by siliciclastics (Židlochovice and Kralice). Comparison of multivariate statistical classification of samples with relative abundances of the most common taxa showed that variable but generally higher abundance of Thoracosphaera spp. characterize assemblages from the larger limestone body. Assemblages from the Židlochovice and Kralice areas are less diverse with abundant Reticu‑ lofenestra minuta and variable abundance of Coccolithus pelagicus. A higher abundance of Reticulofenestra haqii is recorded in the Židlochovice area; Braarudosphaera bigelowi appears in the Kralice area (Fig. 7). Planktonic foraminifera (Fig. 8z, ab) The Kruskal– Wallis test showed the differences between planktonic foraminiferal assemblages in the limestone bodies, siliciclastics and siliciclastic intercalations to be statistically significant. These differences concern the P/B-ratio and the abundance of cool-water/high nutrient plankton (Globige‑ rina spp. and Turborotalita quinqueloba), Globorotalia spp. and Turborotalita quinqueloba (higher in siliciclastics, lower in limestone bodies; Fig. 6). Of note, the P/Bratio in limestones exceeds 10 % mainly in the siliciclastic intercalations. nMMDS as well as relative abundances of the most common taxa showed variable compositions of assemblages. Assemblages from the Podbrˇežice section substantially differ by a high abundance of Globigeri‑ noides spp. and Orbulina suturalis and a low abundance of 5-chambered Turborotalita quinqueloba and Globigerina ottnangiensis. Assemblages from the Židlochovice and Kralice boreholes are characterized by a higher abundance of globorotaliids; a scarcity of four-chambered Globigerina spp. was recorded in the Židlochovice area (Fig. 9). Benthic biota in the siliciclastic‑carbonate units Coralline algae (Fig. 4e–h) Lithothamnion roveretoi Airoldi, Lithothamnion sp. 1, Mesophyllum cf. printzianum Woelkerling & Harvey Adey, Lithophyllum sp. 1, and Spongites fruticulosa Kützing were identified in the Podbrˇežice section (Hrabovský et al. submitted). Sporolithon lvovicum (Maslov) Bassi, Braga, Zakrevskaya & Petrovna-Radionova, Lithothamnion sp. 2, Mesophyllum curtum Lemoine, M. cf. printzianum Woelkerling & Harvey, Phymatolithon sp., Lithophyllum sp. 1, L. sp. 2, Hydrolithon lemoinei (Miranda) Aguirre, Braga & Bassi, and Spongites fruticulosa Kützing were identified in the Kroužek section (Hrabovský et al. submitted). According to these authors Mesophyllum cf. print‑ zianum and Spongites fruticulosa inhabit present-day inner shelf environments with normal salinity. A diverse assemblage comparable to that at Kroužek was documented in Židlochovice (Hrabovský et al. submitted). Benthic foraminifera (Fig. 8a–y, ac–ad). The abundances of benthic foraminifera in limestones vary from 50 to 700 Fig. 5  Differences in the relative abundance of groups of microfossils between the siliciclastic and siliciclastic-carbonate units. Statistically significant differences (tested by Kruskal–Wallis test) are marked by light yellow arrows (p value from 0.05–0.0001) or dark yellow arrows (p value <0.0001). SC siliciclastic unit with H. wal‑ trans; S-CC siliciclastic-carbonate unit above the LO of H. waltrans; p- p-values for tested parameters Facies (2014) 61:419 1 3 Page 9 of 26  419 Facies (2014) 61:419 1 3 419  Page 10 of 26 Facies (2014) 61:419 1 3 Page 11 of 26  419 specimens/g of rock; values of 700–1,000 specimens/g were reached in the siliciclastic intercalations in the Podbrˇežice section. In the siliciclastics, there abundances may reach more than 1,000 specimens/g. Kruskal–Wallis tests showed statistically significant differences in the composition of benthic foraminiferal assemblages (Fig. 6; Table  2): siliciclastics differ from limestones in higher abundances of infauna, high-nutrient markers and textulariids, in the lower values of BFOI (=the Benthic Foraminiferal Oxygenation Index, Kaiho 1994), and in lower abundances of epiphytic foraminifers and Elphidium spp. Siliciclastic intercalations in limestones are characterized by higher abundances of Ammonia spp. Generally, the high abundances of Asterigerinata planorbis (40–60 %) are very characteristic for all samples from the limestones bodies. In limestones, three groups of benthic foraminifera species with statistically significant differences of relative abundances based on Spearman correlation coefficients can be distinguished (Fig. 10): (1) Bulimina spp., Bolivina spp., Hansenisca soldanii, Melo‑ nis pompiloides, Cassidulina spp., Globocassidulina spp., lagenids and textulariids; (2) Ammonia spp., Elphidium spp., and Nonion commune; (3) Cibicidoides spp. and Lobatula lobatula. The nMMDS (Fig. 11) clearly separated assemblages from the Kralice sections due to the higher abundances of taxa from group (1), mainly Cassidulina spp. Assemblages from the limestones of the Židlochovice section can be characterized by dominance of taxa from groups (2) and (3), Asterigerinata planorbis (common) and at some levels higher abundances of Bolivina dilatata, Globocassidulina spp., and Cassidulina spp. from group (1). Assemblages from the Podbrˇežice and Kroužek sections are very similar and differ from the assemblages of Fig. 6  Differences in quantitative parameters of microfossil assemblages among siliciclastics (CLT), carbonates (LST) and siliciclastic intercalations in limestones (ICL) in the siliciclastic-carbonate unit. Statistically significant differences (tested by Kruskal–Wallis test) are marked by yellow arrows. P values are summarized in Table 2. BFOI the benthic foraminiferal oxygenation index; ratio between oxyphilic and hypoxic benthic foraminifera Table 2  Kruskal–Wallis test p values: evaluated differences in quantitative parameters of microfossil assemblages among siliciclastics, carbonates and siliciclastic intercalations in limestones of the siliciclasticcarbonate unit Characteristics Limestones/ intercalations Limestones/ elastics Clastics/ intercalations Benthic forminifera  Foraminiferal number 0.00945 0.01822 0.5916  Agglutinated 0.3894 0.0037 0.000704  BFOI 0.9545 2.8E−9 2.29E−7  Infauna 0.785 2.63E−8 1.06E−6  High-nutrient 0.765 1.02E−8 4.41 E−8  Epiphytic 0.2009 3.66E−9 4.03E−6  Euryhaline 0.008256 0.00119 5.14E−5  Elphidium spp. 0.1666 2.78E−6 1.40E−5  Ammonia spp. 0.2015 0.0635 0.01594  Large 0.2455 0.08701 0.2553 Planktonic forminifera  P/B-ratio 0.403 1.33E−8 7.39E−5  Turborotalita quinqueloba 0.2875 5.96E−7 1.73E−8  Small Globigerina spp. 0.8907 4.05E−8 0.00015  Globigerina praebulloides 0.1306 1.65E−6 3.41 E−5  Cool-water/high-nutrient 0.8137 7.48E−7 0.000139  Warm-water/low-nutrient 0.7173 0.001562 0.000501  Globigerinoides spp. 0.3765 0.197 0.8912  Orbulina spp. 0.9011 0.142 0.2554  Globorotalia spp. 0.6837 2.96E−6 4.37E−7 Calcareous nannoplankton  Calcareous nannoplankton abundance 0.01537 1.26E−6 5.31 E−5  Coccolithus pelagicus 0.5828 0.1381 0.5193  Reticulofenestra minuta 0.4382 0.1391 0.04827  Reticulofenestra haqii 0.229 0.9195 0.3475  Thoracosphaera spp. 0.03226 1.51E−9 4.13E−6  Cyclicargolithus floridanus 0.2261 0.8105 0.2788 ◂ Facies (2014) 61:419 1 3 419  Page 12 of 26 the Židlochovice and Kralice areas by abundant Asterigeri‑ nata planorbis and the absence of taxa from group (1). The assemblages of Kroužek section and of the middle part of Podbrˇežice section differ from the other ones at Podbrˇežice only in slightly higher abundances of small-sized cibicidoids and Lobatula lobatula. Molluscs The molluscan association at Kroužek is relatively rich; it includes species of Corbula, Ostrea, Turri‑ tella, Conus, Nassarius, Petaloconchus, Lemintina, Gen‑ ota, Bittium, etc. At Židlochovice, the molluscan fauna consists predominantly of bivalves; gastropods are less common. Small gastropods of the genera Bittium, Alvania, Solariorbis, Gibbula, and Rissoina were identified in some Fig. 7  a–d Differences in the calcareous nannoplankton assemblages using non-metric multdimensional scaling (nMMDS); e–h Comparison of relative abundances of common taxa; i Location of sections studied in basin; j Shepard plot of nMMDS Fig. 8  Foraminifera. a–e Asterigerinata planorbis (d’Orbigny), Kr 21, Pr 21, Kr 21, Pr 9, Kr 9; f–l Small-sized Cibicidoides spp., Kr 21 Kr 17, Kr 7, Kr 12, Kr 12, Kr 9, Kr 22; m Lobatula lobatula Walker and Jacob, Kr 23; n Cibicidoides austriacus (d’Orbigny), Kr 23; o Quinqueloculina akneriana d’Orbigny, Kr 23; p Elphidium flexuosum (d’Orbigny), Kr10; q Elphidium subtypicum Papp, Kr 22; r Elphidium fichtelianum (d’Orbigny), Kr 2; s Elphidium macel‑ lum (d’Orbigny), Kr 7; t Nonion sp., Pr 21 undeterminable corroded and broken test; u Uvigerina acuminata Hosius, Pr 14; v Bolivina plicatella Cushmann, abraded test, Pr 10; w Pullenia bulloides (d’Orbigny), Pr 14; x Melonis pompiloides (Fichtel and Moll), Kr 17; y Ammonia viennensis (d’Orbigny), abraded test, Pr 20; z–aa Glo‑ bigerinoides bisphericus Todd, 26-Kr 7, 27, Kr 22; ab Globorotalia peripheroronda Blow and Banner, Kr22; ac Pararotalia aculeata (d’Orbigny), Kr 10; ad Amphistegina bohdanowiczi Bieda, Kr 10. Lenght of scale bars 100 µm ▸ Facies (2014) 61:419 1 3 Page 13 of 26  419 Facies (2014) 61:419 1 3 419  Page 14 of 26 intervals. At Kralice, the mollusc fauna is composed predominantly of bivalves; fragments of pectinids dominate, chitons are rare, and gastropods are completely absent. Palynomorphs From a palynological point of view, all samples from limestone bodies (with sand intercalations) were sterile. These sediments were not suitable for the preservation of palynomorphs due to their large grain size (without clay admixture) and chemical conditions during sedimentation. Pollen grains were probably washed out from these sediments and destroyed by oxidation. The absence of pollen grains in ancient carbonate environments was also described by Heusser (1978). The palynomorph content seemed to be also dependent on the redox potential in the siliciclastics (Heusser 1978; Doláková et al. 2014). Large segments of the ageequivalent sediments from the boreholes in Židlochovice, Rebešovice, Chrlice, Opatovice and Oslavany were Fig. 9  a–d Differences in the planktonic foraminifera assemblages using non-metric multdimensional scaling (nMMDS); e–h Comparison of relative abundances of common taxa; i Locations of sections studied in the basin; j Shepard plot of nMMDS Facies (2014) 61:419 1 3 Page 15 of 26  419 studied (Hladilová et al. 1999; Doláková et al. 2011; Doláková et al. 2014). They revealed periodic changes of oryctocoenoses with diversified pollen spectra followed by a strong dominance of conifers together with marine dinoflagellates and, afterward, the disappearance of all pollen and spores. Above that succession, limestone layers were recorded. Flora with up to 30 % of evergreen, broad-leaved forest elements (Engelhardia, Platycarya, evergreen Fagaceae: Castanopsis, Trigonobalanopsis) is thought to have a mainly subtropical character. The share of warm-temperate mixed-mesophytic and broad-leaved deciduous forest members (i.e., Quercus, Carya, Celtis, Juglans) was lower. A higher diversity of “oak type” pollen grains (e.g., Quercus robur-pubecscens) and the general occurrence of Platanus pollen were typical. The proportions of most thermophilous elements of P1 sensu Mai (1981, 1991) and Stuchlik (1994) slightly decreased in comparison with the Lower Miocene palynospectra of the Carpathian Foredeep (Doláková et al. 2011; Kovácˇová et al. 2011). The abundant and diverse Pinaceae (with an admixture of Cedrus, Abies, Picea, Cathaya and Tsuga) were components of mountain conifer-rich forests. Fluctuation of coastal swamp and riparian elements could be a result of humidity changes. Herbs and heliophilous elements such as Poaceae, Asteraceae, Caryophyllaceae, Chenopodiaceae, Olea, Buxus and Ephedra indicate the existence of more open areas and floral elements growing on drier places at this time. Warm-wet conditions, an increase in seasonality and cooler phases were observed within the subtropical character of the terrestrial flora (Doláková et al. 2014). Oxygen and carbon isotopes Stable oxygen and carbon isotopic values from bulk samples of limestones and siliciclastic intercalations from a large limestone body (“Rousínov ridge”) were compared (data from Nehyba et al. 2008b). The Kruskal-Wallis test showed a statistically significant difference between δ18 O and δ13 C values in the siliciclastic intercalations of the Kroužek section (Fig. 12a). Kroužek limestones are more δ13 C-enriched Fig. 10  Statistically significant correlations (p values < 0.05) among relative abundances of benthic foraminifera in limestones: three groups of species are distinguished by different colors of circles. Positive values of Spearman coefficient are given in wide arrows, negative values next to slender arrows Facies (2014) 61:419 1 3 419  Page 16 of 26 than those from Podbrˇežice. In the Židlochovice boreholes (Fig. 12b), the planktonic foraminifers have lower δ13 C and δ18 O values relative to their benthic counterparts. This difference in δ13 C values is enhanced for the limestone-hosted tests relative to those collected from siliciclastic layers. At some levels (ZIDL1/3.1 m; ZIDL2/12.9 m), the isotopic differences between planktonic and benthic foraminifera are minimal. Contrary to the Židlochovice data, in the siliciclastics from the Kralice section (Fig. 12c), carbon isotope compositions of foraminifers are significantly lower in planktonic tests than in benthic ones, while the isotopic oxygen difference between plankton and benthos is only slightly lower. In these limestones, the isotopic carbon compositions of these foraminifer types overlap, while δ18 O values are higher for plankton, opposite to samples from the Židlochovice boreholes. Fig. 11  a–d Differences in benthic foraminifera assemblages using non-metric multidimensional scaling (nMMDS). e–h Comparison of relative abundances of common taxa. i Location of studied sections in basin. j Shepard plot of nMMDS Fig. 12  a Differences in isotopic oxygen and carbon values of bulk sediment between the Kroužek and Podbrˇežice sections; b Isotopic oxygen and carbon values of foraminifera tests in the ZIDL-1 borehole; c Isotopic oxygen and carbon values of foraminifera tests in the Kralice section ▸ Facies (2014) 61:419 1 3 Page 17 of 26  419 Facies (2014) 61:419 1 3 419  Page 18 of 26 Discussion Correlation of the Middle Miocene carbonate production event across the Central Paratethys A carbonate production event, manifested by the deposition of a mixed carbonate–siliciclastic unit in the Moravian part of the Carpathian Foredeep is dated by the co-occurrence of Praeorbulina, Orbulina and Sphenolithus heteromor‑ phus, and the absence of H. waltrans. A similar biostratigraphic position of the siliciclastic-carbonate unit was also recorded in the Ugljevic section (Pezelj et al. 2013). In the Transylvanian Basin, the studied limestones contain only Orbulina sp. (Filipescu and Gîrbacea 1997; Zágoršek et al. 2010); nevertheless, nannoplankton assemblages enable correlation with the upper part of the NN5 Zone without H. waltrans (Holcová, unpublished data). Croatian limestones from the Zrin Basin (Martinuš et al. 2012) can be correlated with the NN5 Zone; H. waltrans was not recorded. The cooccurrence of Praeorbulina and Orbulina is characteristic for the appearance of limestones in the Mailberg Formation of the Eastern Alpine Foredeep in Austria (Mandic 2004). The formation correlates with chron C5Bn.r, based on paleomagnetic data from C´orić et al. (2004). The age of the limestone bodies in Hungary, Poland and Ukraine (Pisera and Studencki 1989; Randazzo et al. 1999; Radwan´ski et al. 2006) cannot be determined so strictly; nevertheless, the same age is very probable. However, other younger intervals involving carbonate production in the Badenian were described from Ukraine (Gorka et al. 2012). Despite these uncertainties, the carbonate production event in the Central Paratethys can be correlated with the NN5 Zone. While magnetostratigraphic dating in the Eastern Alpine Foredeep (chron C5Bn.r, based on paleomagnetic data; C´orić et al. 2004) enumerated the age at 15.034– 14.888 Ma, the biostratigraphic events dated the carbonate production in the Moravian part of the Carpathian Foredeep, in the Transylvanian Basin, and in the Zrin Basin to the upper part of the NN5 Zone, above the LO of H. wal‑ trans at approximately 14.4–14.3 Ma (the LO of H. wal‑ trans) to 13.42 Ma (the LO of S. heteromorphus). Factors triggering the Middle Miocene carbonate production event The start of the mixed siliciclastic-carbonate sedimentation was connected with the following paleoenvironmental changes: (1) Decrease of siliciclastic input in the basin; the decrease can be indirectly interpreted from the disappearance of siliceous plankton, which may be caused by the lack of a silica source. The silica in the Early-Middle Badenian deposits of the Carpathian Foredeep could originate from distal Badenian acidic air fall tephra or from the weathered crystalline basement along the passive, i.e., western, margin of the basin. The strongly restricted occurrence of volcaniclastic beds in the successions studied points to the dominant role of a decreased input of reworked and weathered siliciclastics. The reduction of siliciclastic input can be connected either to transgressive and early highstand conditions, aridification of climate, or to both. The beginning of the Middle Miocene was characterized in the Carpathian Foredeep by a large marine transgression affecting the entire circum-Mediterranean area (Rögl 1999; Popov et al. 2004; Kovácˇ et al. 2007; Piller et al. 2007). The carbonate production event is connected to the culmination of this transgression, which is documented by the occurrence of the denudation relicts of siliciclastic-carbonate deposits far on the Bohemian Massif (Hladilová and Zdražílková 1989). Thus, deposition of the carbonate–siliciclastic complex corresponds to the maximum flooding zone. The Langhian aridification events were described from the Mediterranean area (Hüsing et al. 2010). The first discrete paleoenvironmental step, at 15.074 Ma, might be linked to reduced riverine discharge and climatic cooling (Hüsing et al. 2010). The dating of this step agrees with the appearance of carbonate bodies in the Alpine Foredeep (Mandic 2004). The second discrete step occurred at 14.489 Ma. This age corresponds to the onset of carbonate sedimentation in the Carpathian Foredeep. Findings of pollen grains of herbs and heliophilous plants such as Poaceae, Asteraceae, Caryophyllaceae, Chenopodiaceae, Olea, Buxus and Ephedra indicate the existence of more open and dryer areas at that time; (2) The appearance of sea-grass meadows and a well-aerated sea-floor can be interpreted from the statistically significant increase in the abundance of epiphytic as well as oxyphilic taxa. Pyrite infillings of foraminiferal tests, described from the older siliciclastic interval (Tomanová-Petrová and Švábenická 2007), disappeared, which also indicates an increase of oxygenation. This may be correlated with the establishment of downwelling (anti-estuarine) circulation (Brzobohatý 1987; Báldi 2006) and the culmination of the third order transgression, connected with the appearance of a shallow marginal part of the basin suitable for the expansion of sea-grass meadows. Seagrasses are, indirectly, important producers of biogenic CaCO3 because their epibionts, invertebrate shells and coralline algae occur often in high density (Brasier 1975). Sea-grass respiration and photosynthesis cause variations in the O2 and CO2 content of seawater, which influences the rate of CaCO3 fixation by marine organisms (Davies 1970). (3) Environmental instability and an increase in seasonality can be interpreted from the variable abundances of the opportunistic Reticulofenestra minuta. It indicates environmental stress in the upper part of the water column, characterized by fast changes within that Facies (2014) 61:419 1 3 Page 19 of 26  419 environment, including fluctuations of salinity from brackish to hypersaline (Wade and Brown 2006), and oscillations of the nutrient content between oligotrophic and eutrophic (Wells and Okada 1997; Flores et al. 1997; Kameo 2002). Instability can also be interpreted from the large variation in the abundance of Turborotalita quinqueloba, a marker of cold, non-stratified water masses (Hohenegger et al. 2008), and Globorotalia mayeri. The large abundance variability of high-nutrient markers in the benthic assemblages shows the instability of environmental conditions at the sea floor. The bimodal abundance distributions of all these groups may indicate short-term (maybe seasonal) changes of nonstratified, mixed eutrophic waters with small Turborotalita quinqueloba and high nutrient markers at the bottom; the stratified water column is marked by oligotrophic warmer water with Globorotalia mayeri in the upper part. Salinity fluctuations in the upper part of water column cannot be excluded (Kendl, pers. comm., determined dinoflagellate markers of hypersaline conditions). The alternation of stratified and mixed water columns is also confirmed by the oxygen and carbon isotope data (Fig. 12). The instability (probably connected with increased seasonality) can be connected with environmental and climatic changes preceding the Middle Miocene Climate Transition (MMCT) at 13.82 Ma (Holbourn et al. 2005). In terrestrial climates, the MMCO/MMCT transition is characterized by an increase in the mean annual range of temperature, mainly due to decreasing cold month temperatures (Bruch et al. 2010); increased seasonality is principally expressed in the seasonality of precipitation (Doláková et al. 2014). While the decrease of terrigenous input and oxic conditions with seagrass meadows accelerated the production of carbonates, the instability of the environment was a rather unfavorable factor. It could have caused the reduced thickness of limestone bodies and high amount of siliciclastic components in the carbonates, indicating only short-term and spatiallyrestricted intervals suitable for carbonate deposition. Cyclicity in the mixed limestone‑siliciclastic complex Orbital forcing climatic cyclicity strongly influenced the evolution of the Middle Miocene ecosystems in the Central Paratethys (Hohenegger et al. 2009) and affected the paleobiological, as well as the geochemical and sedimentological, characteristics of sediments. Cyclical changes in the mixed siliciclastic-carbonate units are manifested by the alternation of paleoenvironments suitable for the deposition of limestones and siliciclastics. The direct relation between orbital forcing climate changes (wet-dry climatic cycles) and pelagic limestone-marl alternation was documented in the Langhian succession of the Conero Riviera by Mader et al. (2004). According to these authors, limestones represent dry/colder-water periods and marls represent wet/ warmer-water periods with limited productivity and increased terrigenous supply. To test the character of cyclical changes in the study area and compare the local model with the Mediterranean one, the paleoenvironments represented by the limestones and siliciclastics in the mixed limestone-siliciclastic unit were interpreted separately. Paleoenvironment during deposition of limestones Generally, the limestones in the Central Paratethys are interpreted as warm-water (Filipescu and Gîrbacea 1997; Pouyet and Tarkowski 1998; Riegl and Piller 2000; Radwan´ski et al. 2006; Basso et al. 2008; Doláková et al. 2008; Martinuš et al. 2012; Pezelj et al. 2013). However, Randazzo et al. (1999) considered the limestones from the Pannonian Basin as being cool-water. This interpretation does not agree with other paleoclimatological data from the Central Paratethys (Kvacˇek et al. 2006; Doláková et al. 2014). The estimated paleotemperatures agree with a subtropical climate, which is expected from the biofacies analysis of red algal limestones (Kroeger et al. 2006). In agreement with results from the other Central Paratethys basins, rhodalgal or bryorhodalgal facies dominate within the Early‒Middle Badenian limestones (Pisera and Studencki 1989; Randazzo et al. 1999; Studencki 1999; Radwan´ski et al. 2006; Doláková et al. 2008; Martinuš et al. 2012; Wiedl et al. 2012). Using recent analogues from the Mediterranean (Martinuš et al. 2012), subtropical, lowto moderate-energy clean waters with a depth of 10–80 m (mainly 20–40 m) are expected during deposition of these types of carbonates. Mollusc assemblages from Kroužek correspond well to this microfacies interpretation. A simple paleoecological analysis (Hladilová 1984) generally indicated a shallow (littoral to sublittoral, with a maximum depth of up to 80 m) warm-water environment of marine salinity (above 30 ‰), good aeration, sufficient light and a prevailing soft bottom. Variations in water energy can be observed. Recorded mollusc and foraminifera species are suspension-feeders, detritivores, predators and herbivores. The ratio between these trophic groups in assemblages varies but suspension-feeders, herbivores or predators always predominate over detritivores and deposit-feeders. This indicates a deficiency of organic detritus in the sediment as a nutrient source during deposition of the limestones. During the deposition of limestones in the Podbrˇežice area the upper water column was characterized by a low abundance of plankton. The presence of Globigerinoides spp. indicates oligotrophic and well-stratified waters (Reynolds and Thunell 1985; Hemleben et al. 1989), and the characteristic nannoplankton genus, Thoracosphaera spp., is a general proxy for oligotrophy or stratification (Höll et al. Facies (2014) 61:419 1 3 419  Page 20 of 26 1998; Vink et al. 2002). Thus, a stratified water column with oligotrophic conditions in the upper layer can be expected during the deposition of limestones, also confirmed by the absence of Turborotalita quinqueloba. The latter occurs in siliciclastics and is a marker of a cold, non-stratified water body. However, autochthony of the planktonic foraminifera in the limestone bodies is questionable. Transport of plankton is confirmed by the assumed depth for Asterigerinata assemblages (up to 100 m; Holcová and Zágoršek 2008), in which live planktonic foraminifera are extremely rare. The transport mechanism of planktonic foraminifera from central to marginal parts of the basin may have been expected downwelling circulation (Brzobohatý 1987; Báldi 2006). The discrepancy between downwelling circulation leading to mixed water masses and presence of markers of a stratified water column may be explained by seasonal changes of the circulation pattern, with downwelling in summer and a stratified water body in winter, which is in agreement with the data of Hohenegger et al. (1999) and others. Seasonality is supported by the variable oxygen isotope composition of benthic foraminifera which may indicate mixing of seasonal populations (Holcová and Demeny 2012). The increase in oxygen values in the Kralice section at the transition from siliciclastics to limestones and the oxygen isotope composition of bulk sediment from the limestone bodies in the “Rousínov Ridge”, stratigraphically higher than that of isochronous data from the Mediterranean (Mader et al. 2004; Fig. 12a), may indicate higher evaporation in the marginal part of the Central Paratethys basin and a decrease of temperature. Higher evaporation is supported by assemblages composed only of miliolids in the upper part of the Kroužek section. The absence of coral patch reefs in the Moravian part of the Carpathian Foredeep, which are known from isochronous rocks in Austria, Hungary, Ukraine and Poland (Pisera and Studencki 1989; Randazzo et al. 1999; Radwan´ski et al. 2006; Martinuš et al. 2012; Wiedl et al. 2012), may be also due to both fluctuations in salinity and lower temperatures. Salinity fluctuations are more likely because the Polish and partly Ukrainian basins were located at a higher latitude than Moravia (Popov et al. 2004). Although it is not possible to exclude the influence of lower temperatures on the oxygen isotope values and on the absence of coral patch reefs during deposition of limestones in the Carpathian Foredeep, increasing salinity appears to have been the decisive factor. Paleoenvironment during deposition of siliciclastics in the limestone‑siliciclastic unit During deposition of siliciclastics, both planktonic and benthic assemblages showed enhanced productivity. In the upper layer of the water column, the abundance of calcareous nannoplankton and planktonic foraminifera increased. The increase of small, 5-chambered Turborotalita quinque‑ loba indicates a non-stratified water column characterized by intensive vertical mixing or upwelling (Reynolds and Thunell 1985; Hemleben et al. 1989). Globorotaliids, as is the case with other abundant groups of planktonic foraminifera, are classified as cold-temperate taxa (Bicchi et al. 2003) and indicate surface water stratification (Pérez-Folgado et al. 2003). Alternation of assemblages dominated by T. quinque‑ loba and by Globorotalia indicates that the alternation of stratified and mixed water bodies persisted from the period of carbonate production. The increase in nutrient content at the bottom, indicated by a higher abundance of high-nutrient markers and detritivores (textulariids and deeper infauna), is connected with the appearance of organic detritus in the sediment. The lower Benthic Foraminiferal Oxygenation Index, as well as the disappearance of oxyphilic epiphytic taxa, showed a decrease of oxygen content at the bottom. There are two possible ways to explain the nutrient sources: terrigenous input or seasonal upwelling. The decrease in carbon isotope values of planktonic foraminifers from the siliciclastics in the marginal area of the basin (Kralice section) in comparison with the values from the central part of the Carpathian Foredeep (which are near to the values from the Mediterranean Sea and Atlantic Ocean) favours terrestrial input. Furthermore, the occurrence of Cassidulina as a marker of phytodetritus supply and its decrease from marginal (Kralice) to more central parts of the basin suggests input of nutrients from the continent. Thus, deposition of siliciclastics corresponded with a more humid climate with higher rainfall. In the Zrin Basin (Pezelj et al. 2013), high-nutrient markers (Bulimina, Globocassidulina and Valvulineria) occur also in siliciclastics. The alternation of siliciclastic and carbonate sediments can be explained by sea-level fluctuations (Mandic 2004) in the Eastern Carpathian Foredeep: the marly layers are characterized by an enhanced richness and heterogeneity of benthic foraminifera and by abundant planktonic foraminifera. These indicate open-marine conditions of the upper middle shelf, while carbonate production might be linked with shallowing. To summarize, the genesis of the mixed limestone-siliciclastics unit can be explained by alternating wet and dry phases: during the wet phase, siliciclastics were deposited due to higher terrigenous input. Carbonates were deposited during the dry intervals, connected with low nutrient input and at least occasional increases in salinity. For both intervals, short-term (probably seasonal) changes between mixed and stratified water masses are assumed. Spatial paleoenvironmental variations during times of carbonate deposition Though generally limestones were deposited in a uniform environment, some differences among individual areas existed: Facies (2014) 61:419 1 3 Page 21 of 26  419 1. In the Kralice Bay (Zágoršek et al. 2009; Holcová and Demeny 2012), sedimentation of carbonates is connected with the regressive phase of fourth or lower orders of sea-level changes. Carbonates contain a high admixture of siliciclastics and indicate rather unfavourable conditions for carbonate production. A facies study shows the pulsed nature of sedimentation, a relatively dramatic relief of the basin floor and redeposition of clasts to shallow marine environments by density currents. Molluscs represent a mixture of different environments, which also indicates higher water energy. Bivalves, as well as benthic foraminiferal assemblages, differ from other sections by higher abundances of detritivores and suspension feeders, confirming the environment to be rich in organic detritus and suspended organic particles. Holcová and Demeny (2012) interpreted the bay to be influenced by seasonal phytodetritus supply connected with the bloom of opportunistic taxa. However, the almost total absence of brackish and estuarine elements, and the presence of occasional brachiopods, confirm that the terrigenous input did not decrease salinity, because brackish-water biota have not been recorded either by autochthonous or allochthonous taxa. The situation in the upper part of the water column is very well comparable with that of the “Rousínov Ridge”: planktonic foraminifera are rare and very likely have been transported by superficial currents from the central part of the basin. More abundant and probably autochthonous planktonic foraminifera were recorded in sample KRA8 with its higher oxygen isotope values; this may indicate a decrease of temperature and/or increase in salinity. Since a lower temperature in the upper part of the water column is less likely, a higher rate of evaporation in the marginal part of the basin is preferred. Higher variations in benthic isotope values may have been caused be greater seasonal differences. The occurrence of Thoracospharea spp. indicates oligotrophic waters and, together with different oxygen isotope values for plankton and benthos, also indicates at least a seasonal termohaline stratification of the water column. 2. Limestones from the Židlochovice site were deposited, as at Kralice, during a sea-level lowstand (of fourth or lower order; Doláková et al. 2014). Similar to Kralice, the mixing of elements of the deeper infralittoral and shallow sublittoral, or on rare occasions, even with elements of an exposed rocky coastline, indicates relatively high water energy; the almost total absence of brackish and estuarine elements confirms that even at the eastern coast of the Carpathian Foredeep brackish biota did not exist or were rare. Foraminiferal assemblages from Židlochovice differ in their higher abundance of detritivores: infaunal Boliv‑ ina dilatata and markers of terrigenous input, Globo‑ cassidulina spp. and Cassidulina spp. The appearance of Turborotalita quinqueloba indicates non-stratified and the most eutrophic waters in comparison with other areas of limestone deposition studied. Variable isotope values may be explained by the allochthony of some limestones. The isotope values from thin limestone bodies correspond to values from siliciclastic intercalations in the “Rousínov Ridge”; therefore, an allochtonous origin of material is expected. Deposition of allochthonous limestones may be connected with comparable catastrophic climatic events, as assumed for deposition of the siliciclastic intercalations. 3. The “Rousínov Ridge” limestones were deposited during the whole fourth or lower order transgressiveregressive cycle (Zágoršek and Holcová 2005). Various environments at the “Rousínov Ridge” can be interpreted mainly from microfacial differences that show the decisive role of hydrodynamic conditions in the differentiation of the limestone bodies. The Kroužek section is characterized by more lithoclasts, molluscs, a diverse assemblage of coralline algae and sparite, suggesting a more dynamic and shallower paleoenvironment with a higher input of lithoclasts in comparison with Podbrˇežice, where a deeper and sheltered environment existed. Also, a higher abundance of the opportunist Cibicidoides sp. and of euryhaline foraminiferal species indicate more stress and an unstable near-shore environment with salinity fluctuations in the Kroužek section in comparison with Podbrˇežice. Molluscs from Kroužek differ from other sections in that bivalves are dominant and gastropods occur only sporadically. This dissimilarity can be explained both by primary differences in the molluscan assemblages, and probably also by a certain degree of sorting of shells. The primary differences are probably related to water energy, depth and substrate types. Specific conditions of the Podbrˇežice sections indicate a facies with pedunculate bryozoans and a high amount of micrite, recorded for the first time from the Central Paratethys. Hageman et al. (2000) interpreted the paleoecological differences between rhodolith and rhodolith–bryozoan accumulations and assumed that bryozoans and a higher abundance of micrite indicate a deeper and colder environment, which is supported by microfacies and foraminiferal data. The statistically significant (Kruskal–Wallis test) increase in the carbon isotope composition in Kroužek may also have been caused by higher evaporation. To summarize the individual interpretations, the paleobiological, microfacies and sedimentological differences in the individual carbonate bodies reflect variations in the intensity of terrigenous input (higher in Facies (2014) 61:419 1 3 419  Page 22 of 26 Kralice and Židlochovice; lower on the “Rousínov Ridge”), the environmental dynamics, depth (above and below wave base) and morphology of the sea floor, which was predisposed to gravity flows. These flows are thought to occur mainly in the Židlochovice area, where the majority of limestones most likely consist of allochthonous components. Genesis of siliciclastic intercalations within the limestones Thin (cm-thick) siliciclastic intercalations were recorded in the limestones bodies of the “Rousínov Ridge.” They occur at irregular distances, from tens of centimetres to two metres. The temporal frequency of these intercalations is hard to estimate due to the unknown depositional rate. Fig. 13  Paleoenvironmental model of the carbonate production event Facies (2014) 61:419 1 3 Page 23 of 26  419 Generally, the sedimentation rate of comparable types of carbonates is high, but diagenetic compaction may substantially decrease the thickness. However, an occurrence every few hundred years is likely. A high abundance of Ammonia sp. in these intercalations (Fig. 6) accompanied by a low abundance of infauna suggest a decrease in salinity during their deposition. A higher abundance of Reticulofenestra minuta and higher BFOI indicate stress conditions. In Podbrˇežice, an increase in the abundance of the suspension-feeder Lobatula lobat‑ ula (Murray 2006) and detritivorous infaunal species, as well as of plankton, both primary producers (nannoplakton) and consumers (planktonic foraminifera) and, particularly of small-sized Globigerina spp. (Zágoršek and Holcová 2005), indicate a high level of nutrients in suspension. In the Kroužek section situated nearer to the coastline, siliciclastic intercalations are more numerous and of a greater thickness. Both oxygen and carbon isotope values are statistically significantly lower in the intercalations in this section (Fig. 12a). All these observations could indicate that siliciclastic intercalations were deposited during high episodic input of terrigenous material with nutrients connected to the input of freshwater. This may correspond with “extreme climate events” deduced from the strongly negative excursions in δ18 O and δ13 C in the Ostrea isotope archive (Harzhauser et al. 2011). The expected frequency of siliciclastic intercalations of about several hundreds of years corresponds with the assumed frequency of catastrophic storm and rainfall events. As mentioned above, deposition of the thin allochthonous limestone bodies at the western coastline near Židlochovice may be related to comparable catastrophic climatic events as the deposition of siliciclastic intercalations. Comparable intercalations have been described in the Eastern Alpian Foredeep (Mandic 2004). Similar to our interpretations, the disappearance of plankton, the decrease of benthic foraminifera diversity and the dominance of opportunistic Cibicidoides and euryhaline Elphidium in these intercalations may have been caused by a salinity decrease due to freshwater input. Based on the paleoenvironmental interpretation presented above, a paleoenvironmental model of a carbonate production event has been compiled in Fig. 13. Conclusions 1. A carbonate production event in the Central Paratethys, connected with deposition of a siliciclastic-carbonate unit in the marginal part of the basin, can be correlated with the culmination of transgression in the NN5 Zone. The event was caused by a decrease of terrigenous input due to the high-stand conditions and, above all, aridification. Aridification preceded the Middle Miocene Climate Transition. The event can also be correlated with the increase of seasonality that emphasized the cyclical character of the siliciclastic-carbonate unit. An increase of environmental instability led to small carbonate bodies with a high percentage of siliciclastic components, indicating only short-term and spatially restricted conditions conducive to carbonate production. 2. Orbitally-forced cyclicity caused the alternating deposition of carbonates and siliciclastics. The production of carbonates was connected with dry periods that caused a decrease of nutrient input from the continent, oligotrophic conditions and the expansion of seagrass meadows. The postulated seasonality probably led to downwelling circulations with mixed warm oligotrophic water masses in summer and a well-stratified water column in winter. In the upper layer of the water column, salinity fluctuations occurred. Siliciclastics were deposited during a wet period with a concomitant increase of nutrient input from the continent. 3. Carbonate bodies were deposited in various positions within a paleodepth of the first tens of metres, whereby accumulation of allochthonous carbonate material cannot be excluded. They correlate with lowstand conditions. Exceptionally, larger limestone bodies were deposited under transgressive, highstand and lowstand conditions. Differences in the individual carbonate bodies reflect variations in the intensity of terrigenous input, the dynamics of the environment, the depth (above and below the fair-weather wave-base) and the morphology of the sea-floor. 4. Siliciclastic intercalations in the limestone bodies represent catastrophic rainfall events that transported a higher amount of terrigenous material to the basin, including phytodetritus, which represents a food source for suspension-feeders. The input of freshwater is responsible for a decrease in salinity. Acknowledgments  This research was supported by grant nos. PRVOUK P44 and GAČR 205/09/0103. We are grateful to Mrs. Sarka Rousava for correction of the English language. The constructive reviews of Natália Hudácˇková (Comenius University in Bratislava, Slovakia) and of an anonymous reviewer substantially improved the manuscript. References Abdul Aziz HA, Di Stefano LM, Foresi FJ, Hilgen SM, Iaccarino KF, Kuiper F, Lirer G, Salvatorini A, Turco E (2008) Integrated stratigraphy and 40Ar/39Ar chronology of early Middle Miocene sediments from DSDP Leg 42A, Site 372 (Western Mediterranean). Palaeogeogr Palaeoclimatol Palaeoecol 257:123–138 Báldi K (2006) Paleoceanography and climate of the Badenian (Middle Miocene, 16.4–13.0 Ma) in the Central Paratethys based on Facies (2014) 61:419 1 3 419  Page 24 of 26 foraminifera and stable isotope (δ18 O and δ13 C) evidence. Int J Earth Sci (Geol Rund) 95:119–142 Baráth I, Nagy A, Kovácˇ M (1994) Sandberské vrstvy-vrchnobádenské marginálne sedimenty východného okraja Viedenskej panvy. Geol Práce Spr 99:59–66 Basso D, Vrsaljko D, Grgasovic T (2008) The coralline flora of Miocene maërl: the Croatian „Litavac“. Geol Croat 61:333–340 Berggren WA, Kent DV, Swisher III.CC, Aubry M-P (1995) A revised Cenozoic geochronology and chronostratigraphy. In: Berggren WA, Kent DV, Hardenbol J (eds) Geochronology, time scale and global stratigraphic correlations: A unified temporal framework for an historical geology. Soc Econ Paleont Miner Spec Publ 54:129–212 Bicchi E, Ferrero E, Gonera M (2003) Palaeoclimatic interpretation based on Middle Miocene planktonic Foraminifera: the Silesia Basin (Paratethys) and Monferrato (Tethys) records. Palaeogeogr Palaeoclimatol Palaeoecol 196:265–303 Braga JC, Bosence DWJ, Steneck RS (1993) New anatomical characters in fossil coralline algae and their taxonomic implications. Palaeontology 36:535–547 Brasier MD (1975) An outline history of seagrass communities. Palaeontology 18:681–702 Bruch AA, Utescher T, Mosbrugger V, NECLIME members (2010) Precipitation patterns in the Miocene of Central Europe and the development of continentality. Palaeogeogr Palaeoclimatol Palaeoecol 304:202–211 Brzobohatý R (1987) Contribution to paleogeography of the Miocene basins of the Central Paratethys from otolith fauna. Miscell Micropalaeont II/2, Knihovn zem plyn nafta 6b:101–111 Carannante G, Estban M, Milliman JD, Simone L (1988) Carbonate lithofacies as paleolatitude indicators: problems and interpretations. In: Nelson CS (ed) Non-tropical shelf carbonates—modern and ancient. Sediment Geol 60:333–346 Cicha I (2001) Nácˇrt stratigrafie strˇedního miocénu v alpsko-karpatské prˇedhlubni (Dolní Rakousko, Morava). Scripta Fac Sci Natur Univ Masaryk Brunen 30:23–26 C´orić S, Harzhauser M, Hohenegger J, Mandic O, Pervesler P, Roetzel R, Rögl F, Scholger R, Spezzaferri S, Stingl K, Švábenická L, Zorn I, Zuschin M (2004) Stratigraphy and correlation of the Grund Formation in the Molasse Basin, northeastern Austria (Middle Miocene, Lower Badenian). Geol Carpath 55:207–215 Davies GR (1970) Carbonate bank sedimentation, Eastern Shark Bay, Western Australia. Am Assoc Petrol Geol Mem 13:85–16 Di Stefano A, Foresi LM, Lirer F, Iaccarino SM, Turco E, Amore FO, Morabito S, Salvatorini G, Mazzei R, Abdul Aziz H (2008) Calcareous plankton high resolution bio-magnetostratigraphy for the Langhian of the Mediterranean area. Riv Ital Paleont Stratigr 114:51–76 Doláková N, Brzobohatý R, Hladilová Š, Nehyba S (2008) The red-algal facies of the Lower Badenian limestones of the Carpathian Foredeep in Moravia (Czech Republic). Geol Carpath 59:133–146 Doláková N, Kovácˇová M, Basistová P (2011) Badenian (Langhian– Early Serravallian) palynoflora from the Carpathian Foredeep and Vienna Basin (Czech and Slovak Republics). Acta Mus Natur Pragae, Ser B: Hist Nat 67:51–59 Doláková N, Holcová K, Nehyba S, Hladilová Š, Brzobohatý R, Zágoršek K, Hrabovský J, Seko M, Utescher T (2014) The Badenian parastratotype at Židlochovice from the perspective of high resolution stratigraphy. N Jb Geol Paläont 271:169–201 Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. In: Hamm WE (ed) Classification of carbonate rocks, a symposium. Amer Ass Petrol Geol, Tulsa, OK, pp 108–171 Filipescu S, Gîrbacea R (1997) Lower Badenian sea-level drop on the western border of the Transylvanian Basin: foraminiferal palaeobathymetry and stratigraphy. Geol Carpath 48:325–334 Flores JA, Sierro FS, Francés G, Vasquez A, Zamarreno I (1997) The last 100,000 years in the western Mediterranean: Sea surface water and frontal dynamics as revealed by coccolithophores. Mar Micropaleont 29:351–366 Flügel E (2004) Microfacies of carbonate rocks. Analysis, interpretation and application. Springer, Berlin, Heidelberg, New York Gorka M, Studencka B, Jasionowski M, Hara U, Wysoka A, Poberzhskyy A (2012) The Medobory Hills (Ukraine): Middle Miocene reef systems in the Paratethys, their biological diversity and lithofacies. Biul Panstwow Inst Geol 449:147–174 Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (2012) The geologic time scale 2012. vol 2, Elsevier, New York Hageman SJ, James NP, Bone Y (2000) Cool-water carbonate production from epizoic bryozoans on ephemeral substrates. Palaios 15:33–48 Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeont Electron 4(1):1–9 Harzhauser M, Piller WE, Müllegger S, Grunert P, Michels A (2011) Changing seasonality patterns in central Europe from Miocene Climate Optimum to Miocene Climate Transition deduced from the Crassostrea isotope archive. Glob Planet Change 76:77–84 Hemleben C, Spindler M, Anderson OR (1989) Modern planktonic foraminifera. Springer, New York Heusser LE (1978) Spores and pollen in the marine realm. In: Haq BU, Boersma A (eds) Introduction to marine micropaleontology, 1st edn. Elsevier, New York, pp 327–339 Hladilová Š (1984) A contribution to the knowledge of the variability of the species Ancilla (Baryspira) glandiformis (Lamarck, 1810) (Mollusca: Gastropoda). Scr Fac Sci Natur Univ Masaryk Brunen 14:239–260 Hladilová Š, Zdražílková N (1989) Paleontologické lokality karpatské prˇedhlubneˇ na Moraveˇ. Prˇírodoveˇdecká fakulta Jana Evangelisty Purkyneˇ, Brno Hladilová Š, Nehyba S, Doláková N, Hladíková J (1999) Comparison of some relics of Miocene sediments on the eastern margin of the Bohemian Massif. Geol Carpath 50:31–33 Hohenegger J, Yordanova E, Nakano Y, Tatzreiter F (1999) Habitats of larger foraminifera on the upper reef slope of Sesoko Island, Okinawa, Japan. Mar Micropaleont 36:109–168 Hohenegger J, Andersen N, Báldi K, C´orić S, Pervesler P, Rupp C, Wagreich M (2008) Paleoenvironment of the Early Badenian (Middle Miocene) in the southern Vienna Basin (Austria)—multivariate analysis of the Baden-Sooss section. Geol Carpath 59:461–487 Hohenegger J, C´orić S, Khatun M, Pervesler P, Rögl F, Rupp C, Selge A, Uchman A, Wagreich M (2009) Cyclostratigraphic dating in the Lower Badenian (Middle Miocene) of the Vienna Basin (Austria)—the Baden-Sooss core. Int J Earth Sci 98:915–930 Hohenegger J, C´orić S, Wagreich M (2014) Timing of the regional Badenian Stage (Middle Miocene, Central Paratethys). Geol Carpath 65:55–66 Holbourn AE, Kuhnt W, Schulz M, Erlenkeuser H (2005) Impacts of orbital forcing and atmospheric CO2 on Miocene ice-sheet expansion. Nature 438:483–487 Holcová K, Demeny A (2012) The oxygen and carbon isotopic composition of foramiferal tests like paleoecological proxy in the marginal part of the epicontinental sea (example from the early Badenian (=Langhian) of the Central Paratethys). Geol Carpath 63:121–137 Holcová K, Zágoršek K (2008) Bryozoa, foraminifera and calcareous nannoplankton as environmental proxies of the “bryozoan event” in the Middle Miocene of the Central Paratethys (Czech Republic). Palaeogeogr Palaeoclimatol Palaeoecol 267:216–234 Höll C, Zonneveld KAF, Willems H (1998) On the ecology of calcareous dinoflagellates: the Quaternary eastern equatorial Atlantic. Mar Micropaleont 33:1–25 Facies (2014) 61:419 1 3 Page 25 of 26  419 Hrabovský J, Basso D, Doláková N (2015) Diagnostic characters in fossil coralline red algae (Corallinales, Sporolithales, Rhodophyta) from the Lower Badenian (Early Langhian) of Židlochovice, Podbrˇežice and Kroužek (Carpathian Foredeep, Czech Republic). J System Palaeont (in press) Hüsing SK, Cascella A, Hilgen FJ, Krijgsman W, Kuiper KF, Turco E, Winson D (2010) Astrochronology of the Mediterranean Langhian between 15.29 and 14.17 Ma. Earth Planet Sci Lett 290:254–269 James NP (1997) The cool-water carbonate depositional realm. In: James NP, Clarke AD (eds) Cool-water carbonates. SEPM SpecPubl 56:1–20 Kaiho K (1994) Benthic foraminiferal dissolved-oxygen index and dissolved oxygen levels in the modern ocean. Geology 22:719–722 Kameo K (2002) Late Pliocene Caribbean surface water dynamics and climatic changes based on calcareous nannofossil records. Palaeogeogr Palaeoclimatol Palaeoecol 179:211–226 Kovácˇ M, Andreyeva-Grigorovich A, Bajraktarević Z, Brzobohatý R, Filipescu S, Fodor L, Harzhauser M, Nagymarosy A, Oszczypko N, Pavelić D, Rögl F, Saftić B, Sliva Ľ, Studencka B (2007) Badenian evolution of the Central Paratethys Sea: paleogeography, climate and eustatic sea-level changes. Geol Carpath 58:579–606 Kovácˇová M, Doláková N, Kovácˇ M (2011) Miocene vegetation pattern and climate change in the northwestern central Paratethys domain (Czech and Slovak Republic). Geol Carpath 62:251–266 Kroeger KF, Reuter M, Brachert TC (2006) Palaeoenvironmental reconstruction based on non-geniculate coralline red algal assemblages in Miocene limestone of central Crete. Facies 52:381–409 Kvacˇek Z, Kovácˇ M, Kovar-Eder J, Doláková N, Jechorek H, Parashiv V, Kovácˇová M, Sliva Ľ (2006) Miocene evolution of landscape and vegetation in the Central Paratethys. Geol Carpath 57:295–310 Kysela J (1988) Mikrofácie, typy porozity litavských vápencov a vrchnotriasových dolomitov podložia viedenskej pánvy. Záp Karpaty sér Geol 13:9–142 Mader D, Cleaveland L, Bice D, Montanari A, Koeberl C (2004) High-resolution cyclostratigraphic analysis of multiple climate proxies from a short Langhian pelagic succession in the Conero Riviera, Ancona (Italy). Palaeogeogr Palaeoclimatol Palaeoecol 211:325–344 Mai HD (1981) Entwicklung und klimatische Differenzierung der Laubwaldflora Mitteleuropas im Tertiär. Flora 171:525–582 Mai HD (1991) Palaeofloristic changes in Europe and the confirmation of the Arctotertiary-Palaeotropical concept. Rev Palaeobot Palynol 68:29–36 Mandic O (2004) Foraminiferal paleoecology of a submarine swell— the Lower Badenian (Middle Miocene) of the Mailberg Formation at the Buchberg in the Eastern Alpine Foredeep: initial report. Ann Naturhist Mus Wien 105A:161–174 Martinuš M, Fio K, Pikelj K, Ašcˇic Š (2012) Middle Miocene warmtemperate carbonates of Central Paratethys (Mt. Zrinska Gora, Croatia): paleoenvironmental reconstruction based on bryozoans, coralline red algae, foraminifera, and calcareous nannoplankton. Facies 59:481–504 Moissette P, Dulai A, Escarguel G, Kázmér M, Müller P, Saint Martin JP (2007) Mosaic of environments recorded by bryozoan faunas from the Middle Miocene of Hungary. Palaeogeogr Palaeoclimatol Palaeoecol 252:530–556 Mount J (1985) Mixed siliciclastic and carbonate sediments: a proposed first-order textural and compositional classification. Sedimentology 32:435–442 Murray JW (2006) Ecology and applications of benthic Foraminifera. Cambridge University Press, Cambridge Nebelsick JH (1989) Temperate water carbonate facies of the Early Miocene Paratethys (Zogelsdorf Formation, Lower Austria). Facies 21:11–40 Nehyba S, Šikula J (2007) Depositional architecture, sequence stratigraphy and geodynamic development of the Carpathian Foredeep (Czech Republic). Geol Carpath 58:53–69 Nehyba S, Doláková N, Hladilová Š, Petrová P (2008a) Carpathian Foredeep – western part (Czech Republic). In: McCann T (ed) The geology of central Europe, vol 2. Paleogene and Neogene, 1st edn. The Geological Society, London, pp 1081–1083 Nehyba S, Zágoršek K, Holcová K (2008b) Stable isotope composition of bryozoan skeletons from Podbrˇežice (Middle Miocene, Central Paratethys, South Moravia, Czech Republic). In: Hageman SJ, Key M, Winston JE (eds) Bryozoan studies 2007. Proceedings of the 14th International Bryozoology Association Conference, Boon, North Carolina. Virginia Mus Nat Hist Spec Publ 15:163–175 Nemec W (1990) Aspects of sediment movement on steep delta slopes. In: Colella A, Prior DB (eds) Coarse-grained deltas. Int Assoc Sediment Spec Publ 10:29–73 Oszczypko N (1998) The Western Carpathian Foredeep—Development of the foreland basin in front of the accretionary wedge and its burial history (Poland). Geol Carpath 49:415–431 Papp A, Cicha I, Seneš J, Steininger F (1978) M-4 Badenien (Moravien, Wielicien, Kosovien). Chronostratigraphie und Neostratotypen, Miozän der Zentralen Paratethys VI, VEDA, Bratislava Pérez-Folgado M, Sierro FJ, Flores JA, Cacho I, Grimalt JO, Zahn R, Shackleton NJ (2003) Western Mediterranean planktonic foraminifera events and millennial climatic variability during the last 70 kyr. Mar Micropaleont 48:49–70 Pezelj Đ, Mandic O, C´oric S (2013) Paleoenvironmental dynamics in the southern Pannonian Basin during initial Middle Miocene marine flooding. Geol Carpath 64:81–100 Piller WE, Harzhauser M, Mandic O (2007) Miocene Central Paratethys stratigraphy—current status and future directions. Stratigraphy 4:151–168 Pisera A, Studencki W (1989) Middle Miocene rhodoliths from the Korytnica Basin (Southern Poland): environmental significance and paleontology. Acta Palaeont Polon 34:179–209 Popov SV, Rögl F, Rozanov AY, Steininger FF, Shcherba IG, Kovácˇ M (2004) Lithological-paleogeographic maps of Paratethys. 10 Maps Late Eocene to Pliocene. Cour Forsch-Inst Senckenberg 250:1–46 Pouyet S, Tarkowski R (1998) Les bryozoaires Cheilostomes du Miocene d’Olimpow (Pologne, Paratéthys Centrale). Geobios 31:39–45 Radwan´ski A, Górka M, Wysocka A (2006) Middle Miocene coralgal facies at Maksymivka near Ternopil (Ukraine): A preliminary account. Acta Geol Polon 56:89–103 Randazzo AF, Müller P, Lelkes G, Juhász E, Hámor T (1999) Coolwater limestones of the Pannonian basinal system, Middle Miocene, Hungary. J Sediment Res 69:283–293 Reynolds L, Thunell RC (1985) Seasonal succession of planktonic foraminifera in the subpolar North Pacific. J Foram Res 15:282–301 Riegl B, Piller WE (2000) Biostromal coral facies—a Miocene example from the Leitha Limestone (Austria) and its actualistic interpretation. Palaios 15:399–413 Rögl F (1999) Mediterranean and Paratethys. Facts and hypotheses of an Oligocene to Miocene paleogeography (short overview). Geol Carpath 50:339–349 Schaleková A (1973) Vrchnobádenské Corallinaceae z lomu Rohožník-Vajar na západním úpatí Malých Karpát. Acta geol geogr Univ Comeniae 26:211–221 Sláma P (1983) Lower Badenian Radiolaria in the Moravian part of the Carpathian foredeep. Knihovn Zem Plyn Nafta 4:145–170 Stuchlik L (1994) Neogene Pollen Flora of Central Europe. Part 1. Acta Palaeobot, Suppl 1:1–56 Studencki W (1999) Red-algal limestones in the Middle Miocene of the Carpathian Foredeep in Poland: facies variability and palaeoclimatic implications. Geol Quart 43:395–404 Facies (2014) 61:419 1 3 419  Page 26 of 26 Šob A (1940) Geologické pomeˇry v jihozápadní cˇásti Vyškovského úvalu. Zpr Geol Úst Čechy Moravu 16:73–95 Švábenická L (2002) Calcareous nannofossils of the Upper Karpatian and Lower Badenian deposits in the Carpathian Foredeep, Moravia (Czech Republic). Geol Carpath 53:197–210 Tomanová Petrová P, Švábenická L (2007) Biostratigraphy and paleoecology of the Middle Miocene sediments in the Carpathian Foredeep, Czech Republic. Geol Carpath 58:333–352 Vass D, Elecˇko M, Konecˇný V (2007) Geology of Lucˇenská kotlina depression and Cerová vrchovina upland. Štát Geol Úst Dion Štúra, Bratislava Vink A, Brune A, Höll Ch, Zonneveld KAF, Willems H (2002) On the response of calcareous dinoflagellates to oligotrophy and stratification of the upper water column in the equatorial Atlantic Ocean. Palaeogeogr Palaeoclimatol Palaeoecol 178:53–66 Wade BS, Bown PR (2006) Calcareous nannofossils in extreme environments: The Messinian Salinity Crisis, Polemi Basin, Cyprus. Palaeogeogr Palaeoclimatol Palaeoecol 233:271–286 Wells P, Okada H (1997) Response of nannoplankton to major changes in seasurface temperature and movements of hydrological fronts over site DSDP 594 (south Chatham Rise, southeastern New Zealand), during the last 130 kyr. Mar Micropalaeont 32:341–363 Wiedl T, Harzhauser M, Piller WE (2012) Facies and synsedimentary tectonics on a Badenian carbonate platform in the southern Vienna Basin (Austria, Central Paratethys). Facies 58:523–548 Woelkerling WJ (1988) The coralline red algae: An analysis of the genera and subfamilies of nongeniculate Corallinaceae. Oxford University Press, London, Oxford Wright VP (1992) A revised classification of limestones. Sediment Geol 76:177–186 Zágoršek K, Holcová K (2005) A bryozoan and foraminifera association from the Miocene of Podbrˇežice, south Moravia (Czech Republic): an environmental history. In: Moyano HG, Cancino JM, Wyse Jackons PN (eds) Bryozoan studies 2004, Taylor & Francis, London, pp 383–396 Zágoršek K, Holcová K, Nehyba S, Kroh A, Hladilová Š (2009) The invertebrate fauna of the Middle Miocene (Lower Badenian) sediments of Kralice nad Oslavou (Central Paratethys, Moravian part of the Carpathian Foredeep). Bull Geosci 84:465–496 Zágoršek K, Holcová K, Trˇasonˇ T (2007) Bryozoan event from Middle Miocene (Early Badenian) lower neritic sediments from the locality Kralice nad Oslavou (Central Paratethys, Moravian part of the Carpathian Foredeep. Int J Earth Sci (Geol Rundsch) 97:835–850 Zágoršek K, Filipescu S, Holcová K (2010) New Middle Miocene Bryozoa from Garbova de Sus (Romania) and their relationship to the sedimentary environment. Geol Carpath 61:495–512 GEOLOGICA CARPATHICA, JUNE 2011, 62, 3, 251—266 doi: 10.2478/v10096-011-0020-0 Miocene vegetation pattern and climate change in the northwestern Central Paratethys domain (Czech and Slovak Republic) MARIANNA KOVÁČOVÁ1 , NELA DOLÁKOVÁ2 and MICHAL KOVÁČ1 1 Department of Geology and Paleontology, Faculty of Sciences, Comenius University, Mlynská dolina, 842 15 Bratislava, Slovak Republic; kovacova@fns.uniba.sk; kovac@fns.uniba.sk 2 Institute of Geological Sciences, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic; nela@sci.muni.cz (Manuscript received October 13, 2010; accepted in revised form December 16, 2010) Abstract: The case study area covers the slopes of the tectonically quiet European platform and foreland of the tectonically active Carpathian mountain chain (Carpathian Foredeep and Vienna Basin). Therefore the research on pollen spectra mirrors not only the evolution of landscape in two areas with different geodynamics, but also climatic changes in the Central Paratethys domain during the studied time interval. According to the pollen data, the Early to Middle Miocene vegetation reflects subtropical climate with very mild (negligible) cooling events during this period. This is indicated by common occurrence of thermophilous taxa in the whole sedimentary record. The Middle Miocene landscape evolution, conditioned by uplift of the Carpathian mountain chain and subsidence of adjacent lowlands, led to commencement of the altitudinal zonation. The terrestrial and aquatic ecosystems confirm a subtropical climate (Miocene Climatic Optimum, Mi3 event) with some possible long term changes in humidity. The Late Miocene paleogeographical changes, but also general climatic oscillations in the northwestern Central Paratethys realm, resulted in decrease of the number of thermophilous taxa during this time (change in latitudinal position of the vegetation cover). Variously high mountain relief of the uplifted mountain chains (altitudinal zonality) created ideal conditions for mixed mesophytic forests (to open woodland – open grassland type), still with presence of evergreen taxa. A subtropical climate with gradual transition to warm temperate climatic conditions is supposed on the basis of the reconstructed vegetation cover. Key words: Miocene, Paratethys, Carpathian Foredeep, Vienna Basin, paleoclimate, palynology. Introduction The Miocene vegetation pattern and climatic changes were studied by means of palynology in the northwestern part of the Central Paratethys domain (Fig. 1). To determine changes in vegetation pattern (altitudinal zonation) and influence of the global climatic changes (latitudinal zonation) two areas with different geodynamics and therefore also with different landscape evolutions have been choosen. To the West there was the tectonically quiet Variscan Bohemian Massif, and to the East the neo-Alpine tectonically active uplifting Western Carpathian mountain chain. The samples were taken from marine, brackish to freshwater sediments of the Carpathian Foredeep (Czech Republic) and Vienna Basin (Czech and Slovak Republic) in the time interval: Early to Late Miocene—Eggenburgian to Pannonian (Burdigalian to Tortonian, sensu Harzhauser & Piller 2007). The analysed sediments were well biostratigraphically dated (Hladilová 1988; Nehyba et al. 1997; Doláková et al. 1999; Rögl et al. 2003; Hudáčková et al. 2003; Kováč et al. 2004, 2006, 2007, 2008). Paleogeography The study area – the contact zone between the North European Platform and Western Carpathian orogen had a very complicated Neogene geodynamic history (e.g. Royden 1985, 1988; Ratschbacher et al. 1991a,b; Kováč & Hók 1993; Lankreijer et al. 1995; Meulenkamp et al. 1996; Nehyba et al. 1997; Kováč et al. 1997, 1998a,b, 2001, 2003; Kováč 2000; Kvaček et al. 2006; Harzhauser & Piller 2007). All processes such as subduction, collision, back arc basin development and its tectonic inversion are recorded in great paleogeographical changes (Tomek & Hall 1993; Konečný et al. 2002). These changes strongly influenced not only the relation between areas flooded by the sea and continental areas, but also development of landscape and the evolution of altitudinal zonation in this region (Fig. 2). The Early Miocene geodynamic development of the Bohemian Massif and Western Carpathians junction area was strongly affected by subduction of the flysch troughs basement below the East Alpine—Western Carpathian orogen and development of the Outer Western Carpathian accretionary wedge from Flysch Belt units (Kováč et al. 1997, 1998a; Kováč 2000; Konečný et al. 2002; Kvaček et al. 2006). Territory in-between the platform and the front of the Carpathian orogen was covered by a wide arm of the Central Paratethys Sea during this time. The Eggenburgian marine transgression flooded the Carpathian Foredeep on the slopes of the Bohemian Massif in the West, continuing eastwards to the Pouzdřany and Ždánice residual flysch troughs. The eastern margin of the Early Miocene sea arm was represented by the western and northern parts of the present Vienna Basin (Fig. 2A). This sea arm represented a system of particular www.geologicacarpathica.sk 252 KOVÁČOVÁ, DOLÁKOVÁ and KOVÁČ GEOLOGICA CARPATHICA, 2011,62, 3, 251—266 basins with highly complicated shoreline contours and a variable mutual communication with the open sea. As well as a shallow marine environment with common lagoons and deltas at the sea margin (Nehyba et al. 1997; Kováč et al. 1998a,b, 2004), a bathyal to neritic deep water sedimentary environment with proved upwelling in the axial part of the basin was documented (residual flysch troughs), still during the Ottnangian (Roetzel et al. 2006; Grünert et al. 2010). The Early Miocene transgression, following sea connection with the Mediterranean via the Alpine Foredeep, can be correlated Fig. 1. Geographical position of studied floral sites. MIOCENE VEGETATION AND CLIMATE CHANGE IN CENTRAL PARATETHYS (CZECH AND SLOVAK REPUBLIC) 253 GEOLOGICA CARPATHICA, 2011,62, 3, 251—266 Fig. 2. Paleogeography of the Central Paratethys (according to Kováč 2000). with the first Burdigalian global sea-level rise (sensu Vail et al. 1977; Haq et al. 1988; Haq 1991; Kováč 2000). At the end of the Ottnangian, the transpressive tectonics resulted in a partial uplift of the Alpine-Carpathian chain, followed by closing of the sea connections with the Mediterranean in front of the Alps. Short term isolation of the Western Carpathian sedimentary basins took place. This process was accompanied by closing of the residual flysch troughs and folding and thrusting of their sedimentary fill towards the platform. Gradual uplift of the Outer Western Carpathian accretion wedge started (Kováč et al. 1998a). On the other side, initial rifting of the Pannonian back arc basin began in the Western Carpathians hinterland (Horváth et al. 1988). The Karpatian transpressive tectonics led to extrusion of the Western Carpathian orogene (ALCAPA Microplate) from the Alpine domain (Ratschbacher et al. 1991a,b; Kováč et al. 1998a). Oblique collision between the orogen and the Bohemian Massif resulted in left lateral displacement along this zone followed by opening of the Vienna Basin “pull apart” depocentres (Royden 1985; Tomek & Hall 1993; Lankreijer et al. 1995; Fodor 1995; Kováč et al. 2004). Initial rifting in the Pannonian back arc basin opened new marine connections in this time. The sea transgression from the Mediterranean advanced via the Trans-Tethydian Trench Corridor (Rögl 1998; Pavelič 2001). The broad Karpatian sea flooding extended beside the back arc basin also into the Vienna Basin and the Western Carpathian Foredeep domain (Fig. 2B). The continental areas were represented beside the European platform by uplifted parts of internal zones of the Eastern Alps and Western Carpathians; the accretion wedge of the Outer Carpathian Flysch Belt showed a minimal uplift in its western part only. The Middle Miocene geodynamic development influenced factors such as the end of subduction in front of the Western Carpathian orogen, its soft docking on the slopes of the European platform (Konečný et al. 2002) and back arc synrift subsidence in the Pannonian Basin domain (Horváth et al. 1988). Voluminous acid and calc-alkaline volcanism is 254 KOVÁČOVÁ, DOLÁKOVÁ and KOVÁČ GEOLOGICA CARPATHICA, 2011,62, 3, 251—266 observed during this time. The Central Paratethys Sea can be characterized in this time as an epicontinental sea with a number of archipelagoes and a lot of separate basins. The sea flooding extended in front of the orogen (foredeep basin), as in the Pannonian back arc basin area. In the study area (southern part of the Carpathian Foredeep and Vienna Basin), the late Early Badenian transgression was completely controlled by tectonics (Lankreijer et al. 1995; Kováč et al. 2001, 2004) and associated with basin subsidence and continuous mountain chain uplift. During the Middle Badenian a part of the Western Carpathian basins were isolated with the resulting salinity crisis (Kováč et al. 1998b); in the southern part of the Carpathian Foredeep the sedimentation ended. The Vienna Basin still subsided and was connected towards the Pannonian domain by straits in the uplifting Malé Karpaty and Leitha Mountains. The changes in relief led to development of a drainage system, the paleo-Danube river delta entered the Vienna Basin and voluminous deltaic sequences started to be deposited (Kováč et al. 2004; Lambert et al. 2008). The Late Badenian flooding covered the whole northen part of the Pannonian back arc basin system (Fig. 2C). In the Vienna Basin the transgression was accelerated by basin subsidence and sea-level rise (Kováč et al. 2001, 2006). The basins were filled by clastic material transported by rivers, entering the basin from elevated mountain ranges in the basin surroundings. In front of the orogene, the Carpathian Foredeep started to disintegrate and depocentres moved from West towards East (Meulenkamp et al. 1996). During the Sarmatian, closing of the Central Paratethys Sea connections with the Mediterranean Sea led to isolation and salinity decrease in all the Western Carpathian basins. The sea started to be shallower, but its extent did not change significantly. The Late Miocene geodynamic development represents the final stage of the Pannonian back arc basin evolution, with related thermal subsidence (Horváth 1988; Kováč et al. 1993; Lankreijer et al. 1995; Konečný et al. 2002). The Vienna Basin represented a partly isolated bay at its northwestern boundary during this time (Kováč et al. 1998a; Kvaček et al. 2006). Uplift of the Western Carpathian mountain chain was accompanied by the next development of the river net, resembling the Pliocene paleogeography (Fig. 2D). The Central Paratethys brackish sedimentary environment – represented by Lake Pannon in the study area (Magyar et al. 1999) gradually changed into a freshwater lake environment, particularly in the back arc basin domain. During the Pannonian, the Vienna Basin was filled by a huge amount of deltaic sediments (Kováč et al. 1998, 2004, 2006; Harzhauser et al. 2004). The shallow-water fluvial to lacustrine environment changed to swamps and alluvial plains with ephemeral lakes representing the greater part of its territory until the end of the Late Miocene. The Pannonian and Pontian mountain ranges gained features similar to their present form. Material and methods In this study, 44 outcrops and boreholes (Carpathian Foredeep – Eggenburgian—Early Badenian (23 localities), Czech andSlovakparts of Vienna Basin– Karpatian—Pannonian (21 localities)) were analysed. Due to the absence of index fossils, the studied Lower Miocene sediments are undistinguishably (Upper Eggenburgian—Ottnangian). The analysed samples come from the localities in the southern part of the Carpathian Foredeep – boreholes Šafov 12, Šafov 13, Čejkovice, Únanov, Miroslav, Trboušany, Nosislav 3, Židenice. Carpathian Foredeep marine and brackish sediments, Karpatian in age, were evaluated from several stratotype localities Slup, Hevlín, Dolní Dunajovice, Medlov, boreholes Nosislav 3, Ždánice 67, 68 and from the Vienna Basin boreholes Zohor 1 and Gbely 139 were analysed (Doláková & Slamková 2003). Palynological data, Early Badenian in age, come from the Carpathian Foredeep marine sediments from the localities Židlochovice, Lysice, boreholes Moravské Knínice, Sivice, Chrlice, Opatovice and Otmarov. Pollen data, Late Badenian in age, come from outcrop Devínska Nová Ves and borehole Lozorno 1 in the Vienna Basin. Studied sediments, Late Miocene in age, with well-determined plant macrofossils (Knobloch 1968, 1985) come from the Poštorná, Dubňany, Moravská Nová Ves outcrops; clay pit Gbely, boreholes Suchohrad 32, Suchohrad 38, Jakubov 54 and six shallow Pohansko boreholes near Břeclav city. In the chemical treatment 20—30 g of dry sediment was used. The samples were treated with cold HCl (35%) and HF (70%), removing carbonates and silica. Separation of the palynomorphs from the rest of the residue was carried out using ZnCl2 (density=2 g/cm3 ). Sieving was done using 10 µm nylon sieve. The palynological residue, mixed with glycerine, was prepared on slides. A transmitted light microscope with 250, 400, 630, 1000 (oil immersion) magnifications and SEM microscope was used for pollen counting and identification. Original micrographs are housed at the Institute of Geological Sciences MU in Brno. The pollen diagrams have been created using POLPAL 4 software (Walanus & Nalepka 1999). To have a better idea about the vegetation composition the differentiated vegetation groups (zonal, azonal, extrazonal) were used sensu Kovar Eder et al. (2008a,b) and Kvaček et al. (2006). A semiquantitave evaluation of climate evolution has been done based on the proportion of paleotropical (thermophilous) and arctotertiary elements (sensu Mai 1981, 1991) in terms of mesophytic plants. We devided the floristic elements of zonal vegetation into two groups. In the thermophilous-mesophytic group we included Engelhardia, Sapotaceae, Palmae, evergreen Fagaceae (including morphospecies Quercoidites microhenrici and Quercoidites henrici), Trigonobalanopsis, Symplocos, Cornaceaepollis satzveyensis, Tricolpopollenites liblarensis, Araliaceae, Rutaceae. Mostly broad-leaved deciduous elements of warm-temperate mixed mesophytic forests such as Quercus, Celtis, Carya, Tilia, Zelkova, Ostrya, Carpinus, Betula, Juglans are included into the group of arctotertiary—mesophytic elements. Extrazonal mountain vegetation is represented by: Cedrus, Tsuga, Picea, Cathaya. Azonal vegetation is influenced by edaphic factors and in our study it is represented by riparian forests with Alnus, Salix, Ulmus, swamps with Taxodiaceae, Myricaceae, Nyssaceae and aquatic plant communities. All the studied material is housed at the Institute of Geological Sciences MU in Brno and the Faculty of Sciences of Comenius University in Bratislava. MIOCENE VEGETATION AND CLIMATE CHANGE IN CENTRAL PARATETHYS (CZECH AND SLOVAK REPUBLIC) 255 GEOLOGICA CARPATHICA, 2011,62, 3, 251—266 Early Miocene Results and discussion During the Karpatian the thermophilous elements like Rutaceae, Symplocos and Platanus occurred less regularly. Temperate taxa are represented generally in low frequencies, but the amount and diversity of the temperate mesophytic eleEggenburgian—Ottnangian—Karpatian (Late Aquitanian— Late Burdigalian) During the Early Miocene thermophilous taxa Engelhardia, Platycarya, Sapotaceae, Palmae and ferns Lygodium, Pteridaceae, ?Davalliaceae, Schizaeaceae—Cyatheaceae were frequent. Evergreen Fagaceae were represented by the Trigonobalanopsis type, morphotaxa Tricolporopollenites microhenrici and Tricolpopollenites liblarensis, Tricolporopollenites henrici. Also Symplocos, Reevesia, Parthenocissus, Araliaceae, Rutaceae and morphotaxa Cornaceaepollis satzveyensis, Tricolporopollenites pseudocingulum were common in pollen spectra. Arctotertiary elements Carya, Juglans, Quercus, Betula, Liquidambar were less frequent (Fig. 3). The vegetation of the salt marshes and also insolated places (Chenopodiaceae up to 37 %, Ilex, Tamarix, Ericaceae, Poaceae less Ephedra, Asteraceae and Buxaceae) was typical. Due to the salinity oscillations as well as occasional higher evaporation sensu Hladilová (1988), the coasts of individual sea gulfs and lagoons could be repeatedly salinized and overgrown by the halophilous flora (Doláková et al. 1999). Pollen grains of the formal genus Monocirculipollis assigned to the family Caryophyllaceae (sensu Doláková 2004), were typical for this time span being absent in younger ones (Fig. 6). Salt marsh vegetation was sometimes replaced by swamp plants. Taxodiaceae, Myricaceae, Cyrillaceae, Gleicheniaceae, Decodon, Lygodium, Selaginella. Even the aquatic flora appeared – Sparganium, Potamogeton, Onagraceae, Nelumbo, Cyperaceae (Figs. 3, 5, 7). The genus Platanus was the common member of the pollen spectra since this time span. A permanently low amount of intrazonal elements (Taxodiaceae, Myricaceae and ferns) without strong oscilation occurred in the palynospectra. Regularly higher ratios of Fagaceae, Carya and also heliophilous taxa were observed. Pinaceae (up to 40 %) and extrazonal vegetation, including abundant Cathaya and less frequent Cedrus, Picea, Abies, occurred frequently (Fig. 3). A high proportion of Ulmaceae, Myrica, Alnus was observed in sediments of the Eggenburgian—Ottnangian. Pollen spectra contain a larger amount of spores of thermophilous ferns as Lygodium (up to 5 %), Pteridaceae, Gleicheniaceae together with Selaginella and bryophyte Riccia (Fig. 3). These findings are in a good conformity with macrofloristic results of Knobloch (1982) who described a unique oryctocoenosis from the rhyolite tuffites at Znojmo and Přímětice. He considered them as the shrubby – arboreal heliophilous vegetation with mostly evergreen fine dentate or spiny leave (sclerophyllous) similar to Mediterranean “macchias”. Swamp vegetation with Glyptostrobus, Myrica, aquatic flora with Salvinia, Potamogeton, Nymphaea and coastal reed with Typha, Decodon, Sparganium were identified based on macrofloristic remains too (Knobloch 1982). The accumulations of Limnocarpus fruits growing in the brackish water were described by Knobloch (1984). The pollen often found in clumps (Myricaceae, Chenopodiaceae, Caryophyllaceae, Oleaceae, Onagraceae, Platanus) support the low water dynamics and a short transport (Figs. 5, 6, 7). ments slightly increased (Fig. 4). Mountain vegetation with Tsuga and Abies was common (Fig. 4). Subtropical humid climate was also supported by the macrofloristic remains described from the stratotype localities Slup and Dolní Dunajovice. Leaves of the family Lauraceae predominated with small proportion of deciduous trees in this association (Knobloch 1967, 1982; Kvaček 2003). The azonal vegetation is represented by swamp and riparian forests dominated by Glyptostrobus and Myrica. Marshy-palm forest with Calamus, Poaceae, Lygodium, Sparganium, Potamogeton and riparian forest with Alnus, Ulmus, Myricaceae, Lythraceae or Selaginella are frequent (Figs. 4, 8). The associations with Taxodiaceae, Craigia and Pteridaceae (up to 10 %) and Polypodiaceae document a well developed swamp environment (Figs. 4, 8). During the present time the genus Craigia occurs in broad-leaved evergreen and deciduous mixed forests and seasonally wet forests. However, according to Kvaček et al. (2002), ecological tolerances of its fossil representatives may have been greater during the Tertiary. This tree surely tolerated swampy conditions and entered even coal-forming forests in wetland habitats namely swamp forests dominated by the Taxodiaceae and many other swampy and riparian woody plants as well aquatic herbs. Konzalová (1976) described a very similar horizon with Intratriporopollenites insculptus Mai (Craigia) from the coal seam formation and Cypris claystones of the North Bohemian basins. During this time interval the plant assemblages with higher portion of arctotertiary elements were described by several authors from the Silesian part of the Carpathian Foredeep in the Polish Lowland (Oszast & Stuchlik 1977; Stuchlik 1980; Sadowska 1989; Ważyńska et al. 1998). The decrease of thermophilous elements during the Ottnangian—Early Karpatian has been recognized and defined as the microfloristic Zone MF-3 by Planderová (1990) and Planderová et al. (1993a,b). Such an event has never been found in the Carpathian Foredeep. This fact is probably related to different paleogeography. The most similar pollenspectra of Karpatian age was published by Nagy (1999) from the Mecsek Mts. Environmental interpretation of data from the Carpathian Foredeep is similar to the conditions in the Korneuburg Basin (Hofmann et al. 2002), except for absence of Avicenia and the lower portion of the Palmae in the studied area. Early Miocene was the warmest period of the Miocene in the Pannonian Basin and the sporomorphs indicate a warm subtropical climate (Nagy 2005). Middle Miocene Badenian—Sarmatian (Langhian—Serravallian) Swamp elements (Taxodiaceae) have more regular occurrence without oscillations in comparison with the Karpatian. Olea type pollen was less frequent in comparison with Lower Miocene pollen spectra. In the Badenian pollen spectra the = a. ·;:::: .o Ci> u co [ E 2 -e £ -t; 8 g b inwer- 1 I .. ... .. ... r · V\ 0\ 1 I = 0< < l G) r.n I"c °' Cl Chrlice .0 -0 Cl) .j, I :g ;;; ga. >g -g·- >- co Q) O" 5 8. Q) 0 a. c .s::: s2 Q) o-g_ -a_ a. ffi r.n 7-B. 5 E o 0 o E r ..= - :fi o .S Cl) "(ij "E 0N m-.....................'Tl'.,,1--....... ........_ '!',...,......."·1......,....................1.....·p·...........u:::::::"J..........· ·..·...................,=·· :j+'=i I 0 >--' 0 E .c{ E Ci'. if ffJ o ii: >--' LowerBadenian{0\ 82 2 833-1 , , I 1 , I ·. ... .. .................... .... . ... .. I I... .I..'.. ............... .·. .1 I,I !¥1 ... E , ' I,. s..i ,w -'.Medlov .. · ... .. .. · ..·... .......... ...·- · ....... ; .. .. ··· · · · · : · · ·· · ·.. .... ··........ ···· · /. N V\ >--' I § ' p .f I I N 0\ 'i t I I """ II I 'h -= I -----, :;>'i 0 < Karpatian I ;: ';" I I - 1 1 I t I >- 0 5)..'•''•' -'''1 ·· J,,.'' "!'.I F"•' I· ............... rl= =F r u0 h 725-730 Filanice 68 ... i.-...."l ;............ c· . -..... i... . ... ... ... ..p ;.p:::. ·::: ·- ·····- · -· .. ·-· ·- --· •• 1 :;>'i 0 < Ottnangian-{ Karpatian "790 '-7 09 05 -1 r= I -t L- ,.. b -1 >- 8. :;>'i h h 815--820 .. .. . .. . .P.. •I ......... I I Ill 0 l ITcbousany ... .. . ·I··.. .. ... .. r: r: ·:·.. .r ::: ::: ::· ::: ::::: :::. ··1 O< :4 :7 :.1>• . R r .. ..,... , . • · II I MIOCENE VEGETATION AND CLIMATE CHANGE IN CENTRAL PARATETHYS (CZECH AND SLOVAK REPUBLIC) 257 1 1 1 Ottnangian 1 1 1 1 Y r ·1 p ,..r-r · ···.. · ... : 1 1 · • .. _.. ·• :"·" )klu I :'.:' I 1 L = ' '[ :' I ;... fEggenburgian ; 1 : r....,...... :..:•• - ·LE........,l........J,....'.....,....... ES.......'..........,.........,......... 1810- . ,, ' I ... - . .. P=. . - I I :: !.............................,........bl...........:..!..,...................,........., 1 r:,!... .......,.........,!..::..: EE....;.. .. h:. 30 % 10 % 00 % 20 % 30 % 0 % 10 % 20 % 0 % 10% 30 % 0 % Fig. 3. Vegetation assemblage distribution during the Eggenburgian-Early Badenian time intervals. MIOCENE VEGETATION AND CLIMATE CHANGE IN CENTRAL PARATETHYS (CZECH AND SLOVAK REPUBLIC) 257 co 0 0 "' iG J•. '$. 0 "' ad.\) SnLJfd .. : I n [ ]nf................. ....,....... .......,.....................................,..................,.......................:...........,....................................,....,............:..................................:..t ";J?. ........M....•••••:.M••. :••••••••••• _,•••••u....._.:._.J.....:......:.....:..._,, ...........m....:.....:........,..._,....._.,............-..._\.....L•...i. ...uL.._J............. ..._.... ..:...•.:••••••_,•.L ..........._.,,...............:.....L.f 0 ;:";!!. .........._.... .·.. .....:_,.,:.......................... .. .[ 0 '$. 0 "' '$. 0 ueped! dweMs :in.\4dosaw N en -Ne!µa1opJ'lf M : 0 .I<: !II c: ca .c I I I I t I I I I I I I I I I I I l I I I I I I I I I I I I I I I I I CO .q- lO V M CO m V V CO ....:N M i.ri r..: oti i.ri u:i c.O cO i.ri r---'.O O O ..- ..-..- ..- ..- ..-- N N N N N M M al ca GEOLOGICA CARPATHICA, 2011, 62,3, 251-266 258 KOVÁČOVÁ, DOLÁKOVÁ and KOVÁČ GEOLOGICA CARPATHICA, 2011,62, 3, 251—266 Fig.5.EarlyMiocenesporomorphsfromthestudiedarea.1–Chenopodiaceaeaccumulation,2–Asteraceae—Asteroideae–TricolporopollenitesgrandisNagy,3–Asteraceae—Cichorioideae–CichoreaciditesgracilisNagy,4–Oleaceae–(Oleoidearumpollenitessp.),5– Oleaceae accumulation, 6 – Ephedra sp. + Chenopodiaceae, 7 – Ericaceae (Ericipites callidus (Potonié) Krutzsch), 8 – Caryophyllaceae (Monocirculipollis sp. Krutzsch), 9 – Caryophyllaceae accumulation, 10 – Mastixia – (Tricolporopollenites satzvayensis Pflug), 11 – Myrica accumulation, 12 – Taxodiaceae – ?Glyptostrobus sp., 13 – Potamogeton – (Potamogetonicidites paluster (Mamten) Mohr), 14 – Nelumbo sp. (Nelumbopolleniteseuropaeus(Tarasewich)Skawińska),15–Cyperaceae–(CyperaceaepollispiriformisThile-Pfeifer). MIOCENE VEGETATION AND CLIMATE CHANGE IN CENTRAL PARATETHYS (CZECH AND SLOVAK REPUBLIC) 259 GEOLOGICA CARPATHICA, 2011,62, 3, 251—266 Fig. 6. Eggenburgian palynomorphs. 1a,b, 3, 4a,b – Tamarix sp.; 1, 3, 4 – LM 1000ξ; 1a – SEM 5500ξ; 1b – SEM 12,000ξ; 4a – SEM 5500ξ; 4b – SEM 12,000ξ. 2 – Tamarix gallica – recent – LM 1000ξ; 2a – SEM 6000ξ. 5a,b, 6 – Salix sp.; 5 – LM 1000ξ; 5a – SEM 5000ξ; 5b – SEM 12,000ξ. 6 – SEM 6000ξ. 7a,b, 8, 9 – Rutaceae; 7, 8, 9 – LM 1000ξ; 7a – SEM 5000ξ; 7b – SEM 12,000ξ. 10, 11, 12 – Platanussp.;10a,b, 11, 12 – LM 1000ξ; 10a – SEM 4000ξ; 10b – SEM 10,000ξ. 260 KOVÁČOVÁ, DOLÁKOVÁ and KOVÁČ GEOLOGICA CARPATHICA, 2011,62, 3, 251—266 Fig.7.Karpatiansporomorphsfromthestudiedarea.1–Engelhardiasp.withcavitiesafterpyritecrystals;2–Palmae–Monocolpopolle- nitestranquillus(Potonié)Thomson&Pflug;3–Palmae–Arecipitessp.;4–Poaceae–Graminiditessp.;5–Sparganiumsp.–(Sparganiaceaepollenites neogenicus Krutzsch); 6 – Alnus sp. – (Alnipollenites verus (Potonié) Potonié); 7 – Myrica sp. (Myricipites coryphaeus (Potonié)Potonié);8–Myricasp.(Myricipitesperegriniformis(Gladkova)Grabowska&Wazynska);9,10–Lythraceae;11,12–Craigia sp. (Intratriporopollenites insculptus Mai); 13 – Taxodiaceae – ?Glyptostrobus sp.; 14 – Selaginella sp. (Echinatisporis miocenicus Krutzsch & Sontag in Krutzsch); 15 – Pteris sp. – (Polypodiaceoisporites muricinguliformis Nagy); 16 – Ilex sp. – (Ilexpollenites margaritatus(Potonié) Raatz);17–Tsugasp. –(Tsugaepollenitesmaximus (Raatz) Nagy; 18–Lygodium sp. (Leiotriletesmaxoides maxoides W.Kr.). MIOCENE VEGETATION AND CLIMATE CHANGE IN CENTRAL PARATETHYS (CZECH AND SLOVAK REPUBLIC) 261 GEOLOGICA CARPATHICA, 2011,62, 3, 251—266 Fig.8.Badeniansporomorphsfromthestudiedarea.1–Mastixiasp.–(TricolporopollenitessatzvayensisPflug);2–Sapotaceae–(Sapotaceoipollenites sapotoides (Pflug & Thomson) Potonié); 3 – Quercoidites henrici (Potonié) Potonié, Thomson & Thiergart; 4, 5 – Quercoidites microhenrici (Potonié) Potonié, Thomson & Thiergart; 6, 7 – Q. robur (Quercoidites granulatus (Nagy) Slodkowska); 8 – Quercoidites sp.; 9–Zelkovasp.–(ZelkovaepollenitespotonieiNagy),10–Tiliasp.—(Intratriporopollenitesinstructus(Potonié)Thomson),11–Loran- thaceae–GothanipollenitesgothaniKrutzsch;12–Symplocossp.–Symplocoipollenitesvestibulum(Potonié)Potonié,13–Cercidiphyllum sp.–(Cercidiphyllitesminimireticulatus(Trevisan)Ziembińska-Tworzydło);14,15–Distylium–Parrotiatype–(Tricolporopollenitesindeterminatus(Romanovicz) Ziembińska-Tworzydło);16 – Platanussp.;17 –Pteridaceae –(Segmentizonosporitespaucirugosus(Nagy) Stuchlik); 18 – Caryophyllaceae (Caryophyllidites microreticulatus Nagy); 19 – Marine dinoflagellates; 20 – foraminiferal lining. 262 KOVÁČOVÁ, DOLÁKOVÁ and KOVÁČ GEOLOGICA CARPATHICA, 2011,62, 3, 251—266 higher differentiation of the Fagaceae in thermophilous evergreen (morphotypes Tricolporopollenites henrici and Tricolporopollenites microhenrici) and deciduous oaks, some thermophilous taxa Gothanipollenites gothani (Loranthaceae) or Tricolporopollenites indeterminatus (Hammamelidaceae) occurred (Fig. 9). Herbs such as Caryophyllaceae (Minutipollis granulatus Krutzsch) were common. Early Badenian Lauraceae and Betulaceae leaves from the Carpathian Foredeep have been found at the Smolín locality (Sitár et al. 1978). During the Late Badenian the following were frequently present: Pinaceae (Pinus, Picea, Abies, Tsuga) and deciduous elements with Quercus, Alnus, Ulmus, Carya. Subtropical taxa are commonly represented by Magnolia, Platycarya, Engelhardia, Myrica, Trigonobalanopsis and Distylium. Paleoecological conditions favoured development of swamp forests with Taxodiaceae, Nyssa and Myrica and riparian forest elements with Alnus, Ulmus and Pterocarya. Drier areas were overgrown with mixed mesophytic forest represented by Pinus, Juglans, Carya, Sciadopitys and the extrazonal vegetation type is documented by the presence of Picea, Tsuga and deciduous oaks. Herbs are represented mostly by Poaceae. During the Early Sarmatian time interval the azonal vegetation was well developed in swamps with Taxodiaceae, Myrica, Nyssa and salty marshes with Poaceae and halophytes (Chenopodiaceae). Riparian forests with Alnus, Salix and Ulmus were also common. The extrazonal vegetation portion increased mainly in the mountain vegetation elements. The decrease to disappearance of the Taxodiaceae, Nyssaceae, Myricaceae and halophytes suggests a large reduction of the swamp biotops. Riparian forests with Ulmus, Salix, Alnus and Poaceae were still present. Gradual decrease of thermophilous taxa indicates moderate cooling. Syabryaj & Vodoryan (1975) described similar, well diversified pollen spectra from the NE Carpathian territory in Čop—Munkacevo. Ivanov (1995) and Ivanov et al. (2002) described presence of Symplocos in Badenian pollen spectra from NW Bulgaria. In our studied material we noticed Symplocos presence only from Early Miocene localities, probably due to temperature gradient. There was a warm subtropical climate. Early Badenian transgression and uplift of the Alpine and Carpathian Mountains produced favourable local climate for vegetation change (Nagy 2005). Late Miocene Pannonian—Pontian (Tortonian—Messinian) In the pollen spectra from the Early Pannonian sensu Harzhauser et al. (2004) or Early Tortonian sensu Harzhauser & Piller (2007), mostly broad-leaved deciduous elements dominate, with some thermophilous elements admixture of Engelhardia, Ilex, Castanopsis and Castanea, suggesting a warm temperate mixed mesophytic forest with low representation of evergreen elements. The proportion of NAP – non arboreal pollen – Ericaceae and Chenopodiaceae is higher (10 and 14 % respectively) suggesting local marshes and open herbaceous plant communities within the forests. Mountain conifers, such as Picea, Tsuga, Abies, Cedrus are common accessories. Lowland vegetation was comprised of the azonal Alnus, Pinus, Ulmus mixed and broad-leaved riparian forest with common deciduous oaks, and swamp taxa Taxodiaceae, Nyssa, Myrica. Sporadic occurrences of dinoflagellates and green algae Tasmanaceae indicate a slightly higher salinity, Botryococcus can thrive in both brackish or freshwater environments, whereas green algae Pediastrum, Mougeotia, aquatic ferns Azolla, and aquatic and coastal plants (Nelumbo, Nymphaea, Myriophyllum, Sparganium, Potamogeton etc.) represent a freshwater environment (Doláková & Kováčová 2008). In the pollen spectra, from the middle Pannonian (sensu Harzhauser et al. 2004), coniferous woody plants of mountain vegetation (Picea, Abies, Tsuga, Cedrus, Pinus) and deciduous oaks were abundant. Angiosperm trees and shrubs with Alnus, Betula, Liquidambar, Myrica, Nyssa and Salix indicate a well developed riparian forest. The subdominance of herb species is good evidence of the local open woodland environment. The facies mutually changing in time and space in individual pollen spectra are created by azonal types of vegetation (marshes, riparian, coastal and aquatic) or by high amounts of herbaceous plants Artemisia, Plantago, Polygonum, Asteraceae, Lamiaceae, Daucaceae, Caryophyllaceae, which indicate existence of local open areas. In the Slovak part of the Danube Basin Planderová (1972, 1990) described reduced marshes, isolated lakes surrounded by steppe meadows (dominance of Artemisia) with rare woody plants. In comparison with Hungary she considered the climate cooler and drier (Nagy 1985; Nagy & Planderová 1985; Planderová 1990). Hoffmann & Zetter (2005) determined a pollen assemblage rich in herbs from the Late Pannonian in the Styrian Basin. The extensive Pannonian and Pontian sea and the protective mountain range provided a very equable, warm temperate climate, where even the summer season was not too dry (Nagy 2005). Conclusions Development of Miocene vegetation patterns in the area of the northwestern Central Paratethys was derived (above all) from palynological analysis. The case study area covers the slopes of the tectonically quiet European platform and the foreland of the tectonically active Carpathian mountain chain (Carpathian Foredeep and Vienna Basin). Interpretation of pollen spectra reflects both, the landscape evolution in two areas with different geodynamics, and the climatic changes in the Central Paratethys domain during the studied time intervals. Based on pollen data, the Early to Middle Miocene vegetation document a subtropical climate with very mild (negligible) cooling during this period. This is indicated by common occurrence of thermophilous taxa: Sapotaceae, Palmae, Engelhardia, Platycarya and Tricolporopollenites henrici, Lygodium and Pteridaceae. Reevesia, Cornus-Mastixia, Symplocos, Parthenocissus, Tricolporopollenites pseudocingulum, Rutaceae and Araliaceae. The proportion of the temperate elements such us Carya, Pterocarya, Juglans, Celtis, Fagus is noticeably lower. The lower portion of extrazonal (mountain) vegetation and well developed riparian forests with Alnus, Craigia, Pteridaceae, Polypodiaceae, Lythraceae, MIOCENE VEGETATION AND CLIMATE CHANGE IN CENTRAL PARATETHYS (CZECH AND SLOVAK REPUBLIC) 263 GEOLOGICA CARPATHICA, 2011,62, 3, 251—266 Fig.9. Pannonian palynomorphs from the studied area. 1 – Picea sp. – (Piceapollis sp.); 2 – Nyssa sp. – (Nyssapollenites rodderensis (Thiergart) Kedves);3 –Quercusroburtype;4 –Salixipollenites sp.+Alnipollenitessp.;5 –Rosaceaegen.indet.;6,7 –Artemisia div. sp.;8–Cichorioideae–(CichoreaciditesgracilisNagy);9–Asteroideae—(Tubulifloriditesmacroechinatus(Trevisan)Nagy);10–Centaureajaceatype;11–Daucaceaegen.indet.;12–Caryophyllaceaegen.indet.;13–Polygonumpersicaria–(Persicarioipollis pliocenicus Krutzsch); 14 – Pediastrum simplex Meyen; 15 – Microsporangium with glochidium of Azolla bohemica Pacltová. 264 KOVÁČOVÁ, DOLÁKOVÁ and KOVÁČ GEOLOGICA CARPATHICA, 2011,62, 3, 251—266 Cyperaceae, Sparganium, Potamogeton, Nelumbo and swamps with Taxodiaceae, Myricaceae alternated with salt marshes represented by Chenopodiaceae up to 37 %, Poaceae, Caryophyllaceae, Asteraceae, Ericaeae, Lythraceae, which document a moderate relief of landscape during the whole Early Miocene. The frequent pollen clumps support a theory of the low water dynamics and a short transport distance. The alteration in palynomorphs caused by the crystallization of pyrite in anoxic conditions was observed. The Middle Miocene landscape evolution, conditioned by the uplift of the Carpathian mountain chain and subsidence of adjacent lowlands, led to commencement of the altitudinal zonation. This process is documented by changes in paleovegetation cover. In spite of this presence of zonal vegetation with evergreen broadleaved forests supplemented by azonal vegetation (riparian forests, swamps) is typical of the Early Badenian. Only several thermophilous plants, such as Engelhardia and Platycarya, which were frequent in all of the Early Miocene associations, decreased in the Early Badenian pollenspectra. From the Late Badenian a higher proportion of extrazonal (mountain) vegetation were present in pollen spectra (Picea, Abies, Tsuga, Cedrus). The terrestrial and aquatic ecosystems confirm a subtropical climate with visible changes at the boundary between the Early and Late Badenian. An increased proportion of the arctotertiary taxa during the Late Badenian is documented in pollenspectra by Quercus, Ulmus and Carya, whereas Platycarya, Engelhardia, Myrica, Distylium and thermophilous Fagaceae are less frequent. Herbs are represented mainly by the halophytes (Chenopodiaceae). Vegetation during the Early Sarmatian time interval was formed by swamp elements with Taxodiaceae, Myricaceae, Nyssaceae. High elevation species of woody plants Tsuga, Picea, Cedrus, Abies are indicative of mountainous relief resulting from volcanic activity. During the Late Sarmatian the proportion of swamp elements decreased and was replaced mostly by riparian forests. The Late Miocene paleogeographical changes and general climatic oscillations in the northwestern Central Paratethys realm reflected the decrease especially of the thermophilous taxa Engelhardia, Castanea, evergreen Fagaceae Quercoidites microhenrici, and to a lesser extent of Quercoidites henrici, Trigonobalanopsis, Symplocos, Cornaceaepollis satzveyensis, Tricolpopollenites liblarensis. An apart from the mountain vegetation the amount of herbaceous plants in the pollen spectra increased during this time span. The varying height’s of the moutain relief of the uplifted mountain chains (altitudinal zonality) created ideal conditions for extrazonal vegetation (Cedrus, Tsuga, Picea) and dominance of mixed mesophytic forests with Quercus, Celtis, Carya, Tilia, Zelkova, Ostrya, Liquidambar, Carpinus, Betula, Juglans and with regular presence of evergreen taxa. The swamp, riparian, often hydrophilous (Azolla, Nymphaea, Potamogeton) and halophytic (Chenopodiaceae) plants represent coastal swamps, local lagoons, and marshlands. The higher percentage of the herbs (Artemisia, Asteraceae, Lamiaceae, Polygonum, Daucaceae, Caryophyllaceae, Plantago) and shrubs in the comparison with older time intervals, shows that local open woodland – open grassland started to develop during the Pannonian. The gradual retreat of areas flooded by the sea, as well as following retreat of the lake and swamp environment was confirmed by the decrease of azonal vegetation towards the end of this period. The reconstructed vegetation cover suggest a subtropical climate with gradual transition to warm temperate climatic conditions. Acknowledgments: The authors wish to express their gratitude to reviewers L. Hably, Z. Kvaček and D. Ivanov for useful and constructive comments. This work was supported by the Slovak Research and Development Agency under the contracts APVV-LPP 0120-06, APVV-0280-07, ESF-EC- 0006-07, ESF-EC-0009-07 and the Slovak Grant Agency VEGA (Projects No. 2/0060/09, 1/0483/10) and Czech Grant Agency under the contract No. 205/09/0103. References Doláková N. 2004: Discussion on some Thermophile palynomorphs from the Miocene sediments in the Carpathian Foredeep (Czech Republic) and Modrý Kameň Basin (Slovakia). Acta Paleobot. 44, 1, 79—85. Doláková N. & Kováčová M. 2008: Pannonian vegetation from the northern part of Vienna Basin. Acta Mus. Nat. Pragae, Ser. B, 64(2—4),163—171. Doláková N. & Slamková M. 2003: Palynological characteristics of Karpatian sediments. In: Brzobohatý R., Cicha I., Kováč M. & Rögl F. (Eds.): The Karpatian a lower Miocene stage of the CentralParatethys.MasarykUniversityBrno,325—346. Doláková N., Hladilová Š. & Nehyba S. 1999: Development of sedimentation, molluscs and palynospectra in the Lower Miocene of the south-western Part of the Carpathian Foredeep in Moravia (Czech Republic). Acta Palaeobot., Suppl. No. 2, 269—278. Fodor L. 1995: From transpression to transtension: Oligocene—Miocene structural evolution of the Vienna basin and the East Al- pine-WesternCarpathianjunction.Tectonophysics242,151—182. Grünert P., Soliman A., Harzhauser M., Müllegger S., Piller W.E. & Rögl F. 2010: Upwelling conditions in the Early Miocene Central Paratethys Sea. Geol.Carpathica61, 2, 129—145. Haq B.U. 1991: Sequence stratigraphy, sea-level change and significance for the deep sea. Spec. Publ. Int. Ass. Sed. 12, 3—39. Haq B.U., Hardenbol J. & Vail P.R. 1988: Mesozoic and Cenozoic chronostratigraphy and cycles of sea level changes. In: Wilgus C.K., Hastings B.J., Posamentier H., van Wagoner J.C., Ross C.A. & Kendall C.G. St. C. (Eds.): Sea level changes: an integratedapproach. SEPMSpec.Pub.42,71—108. Harzhauser M. & Piller E.W. 2007: Benchmark data of changing sea – Palaeogeography, palaeobiogeography and events in the Cenral Paratethys during the Miocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 253, 8—31. Harzhauser M., Daxner-Höck G. & Piller E.W. 2004: An integrated stratigraphy of the Pannonian (Late Miocene) in the Vienna Basin. AustrianJ. Earth Sci. 95/96, 6—19. Hladilová Š. 1988: Palaeoecology of Eggenburgian Molluscs (Bivalvia, Gastropoda) from the HV-301 Čejkovice borehole (Moravia). Čas. Miner. Geol. 3, 1—33 (in Czech). Hofmann Ch.Ch. & Zetter R. 2005: Reconstruction of different wetland plant habitats of the Pannonian Basin System (Neogene, EasternAustria).Palaios20,266—279. Hofmann Ch.Ch., Zetter R. & Draxler I. 2002: Pollen- und Sporenvergesellschaftungen aus dem Karpatium des Korneuburger Beckens(Niederösterreich).Beitr.Paläont.27,17—43. MIOCENE VEGETATION AND CLIMATE CHANGE IN CENTRAL PARATETHYS (CZECH AND SLOVAK REPUBLIC) 265 GEOLOGICA CARPATHICA, 2011,62, 3, 251—266 Hochuli P.A. 1978: Palynologische Untersuchungen im Oligozän und Untermiozän der Zentralen und Westlichen Paratethys. Beitr. Paläont Österr. 4, 1—132. Horváth F., Dovenyi P., Szalay S. & Royden L.H. 1988: Subsidence, thermal and maturation history of the Great Hungarian Plain. In: Royden L.H. & Horváth F. (Eds.): The Pannonian Basin.AAPGMemoir45,355—372. Hudáčková N., Halásová E., Fordinál K., Sabol M., Joniak P. & Kráf J. 2003: Biostratigraphy and radiometric dating in the Vienna BasinNeogene(Slovakpart).SlovakGeol. Mag. 9, 4, 233—235. Ivanov D.A. 1995: Palynological data about the presence of the family Symplococaceae in the Miocene of Northwestern Bul- garia.Geol.Carpathica46,1,37—40. Ivanov D., Ashraf A.R., Mosbrugger V. & Palamarev E. 2002: Palynological evidence for Miocene climate change in the Forecarpathian Basin (Central Paratethys, NW Bulgaria). Palaeogeogr. Palaeoclimatol. Palaeoecol. 178, 19—37. Knobloch E. 1967: Pflanzenfunde aus der karpatischen Serie in der Vortiefe in Mähren. In: Cicha I., Seneš J. & Tejkal J. (Eds.): Chronostratigraphie und Neostratotypen, Miozän M3 – Karpatien. SAV, Bratislava, 244—256. Knobloch E. 1968: The plant association in Czechoslovakian Tertiary. Čas. Miner. Geol. 13, 1, 109—118 (in Czech, German summary). Knobloch E. 1982: The Early Miocene flora from South Moravia. ZemníPlynNafta XXVII, 415—428(inCzech). Knobloch E. 1984: Die Halophile Gattung Limnocarpus C. Reid im Neogen von Mähren. Věst. Ústř. Úst. Geol. 59, 2, 155—165. Knobloch E. 1985: Die floren des Pannonien im Wiener Becken und in der Donauebene. In: Papp et al. (Eds.): Chronostratigraphie und Neostratotypen. Miozän M6 Pannonien. Jugosl. Serb. Akad. Wiss. Künste, Zagreb/Beograd, 616—631. Konzalová M. 1976: Microbotanical (palynological) research of the Lower Miocene of Northern Bohemia. Rozpr. Čes. Akad. Věd 86,12,1—75. Konečný V., Kováč M., Lexa J. & Šefara J. 2002: Neogene evolution of the Carpatho-Pannonian region: An inter-play of subduction and back-arc diapiric uprise in the mantle. EGS Stephan MuellerSpec. Publ. Ser.1,105—123. Kováč M. 2000: Geodynamic, paleogeographic and structural evolution of the Carpathian-Pannonian region in the Miocene: New view on the Neogene basins of Slovakia. VEDA, Bratislava, 1—202 (in Slovak). Kováč M., Nagymarosy A., Soták J. & Šutovská K. 1993: Late Tertiary paleogeographic evolution of the West Carpathians. Tec- tonophysics226,1—4,401—416. Kováč M., Bielik M., Lexa J., Pereszlényi M., Šefara J., Túniy I. & Vass D. 1997: The Western Carpathian intramountain basins. In: Grecula et al. (Eds.): Geological evolution of the Western Carpathians. Miner. Slovaca, 43—65. Kováč M., Nagymarosy A., Oszczypko N., Ślączka A., Csontos L., Marunteanu M., Matenco L. & Márton E. 1998a: Palinspastic reconstruction of the Carpathian-Pannonian region during the Miocene. In: Rakús M. (Ed.): Geodynamic development of the Western Carpathians. Geol. Surv. Slovak Republic, Bratislava, 189—217. Kováč M., Baráth I., Kováčová-Slamková M., Pipík R., Hlavatý I. & Hudáčková N. 1998b: Late Miocene paleoenvironments and sequence stratigraphy: Northern Vienna Basin. Geol. Carpathica 49, 6, 445—458. Kováč M., Nagymarosy A., Holcová K., Hudáčková N. & Zlinská A. 2001: Paleogeography, paleoecology and eustacy: Miocene 3rd order cycles of relative sea-level changes in the Western Carpathian–NorthPannonianbasins. ActaGeol.Hung.44/1,1—45. Kováč M., Andreyeva-Grigorovich A.S., Brzobohatý R., Fodor L. Harzhauser M., Oszczypko N., Pavelič D., Rögl F., Saftič B., Sliva L. & Stráník L. 2003: Karpatian paleogeography, tectonics and eustatic changes. In: Brzobohatý R., Cicha I., Kováč M. & Rögl F. (Eds.): Karpatian – a Lower Miocene Stage of the CentralParatethys.MasarykUniversityBrno,49—72. Kováč M., Baráth I., Harzhauser M., Hlavatý I. & Hudáčková N. 2004: Miocene depositional systems and sequence stratigraphy of the Vienna Basin. Cour. Forsch.-Inst. Senckenberg 246, 187—212. Kováč M., Baráth I., Fordinál K., Grigorovich A.S., Halásová E., Hudáčková N., Joniak P., Sabol M., Slamková M., Sliva L., Töröková I. & Vojtko R. 2006: Late Miocene to Early Pliocene sedimentary environments and climatic changes in the AlpineCarpathian-Pannonian junction area: a case study from the Danube Basin northern margin (Slovakia). Paleogeogr. Paleoclimatol. Paleoecol. 238, 32—52. Kováč M., Andreyeva-Grigorovich A., Bajraktarević Z., Brzobohatý R., Filipescu S., Fodor L., Harzhauser M., Nagymarosy A., Oszczypko N., Pavelić D., Rögl F., Saftić B., Sliva L. & Studencka B. 2007: Badenian evolution of the Central Paratethys Sea: paleogeography, climate and eustatic sea-level changes.Geol.Carpathica58,6,579—606. Kováč M., Hudáčková N., Hlavatá J., Sopková B., Andrejeva-Grigorovič A., Halásová E., Kováčová M., Kováčová P., Sliva L. & Baráth I. 2008: Miocene deposits in the boreholes from the Záhorska lowland area: sedimentology, biostratigraphy and environmental condition. Geol. Práce, Spr. 114, 7—49 (in Slovak, English abstract). Kováč P. & Hók J. 1993: The Central Slovak Fault System – field evidence of a strike-slip. Geol. Carpathica 44, 3, 155—160. Kovar-Eder J., Jechorek H., Kvaček Z. & Parashiv V. 2008a: The integrated plant record: An essential tool for reconstructing Neogenezonal vegetation in Europe. Palaios 23, 97—11. Kovar-Eder J., Suc J.-P. & Kvaček Z. 2008b: Definition of relevant botanical terms and vegetation units. www.neclime.de Krutzsch W. 1989: Palaeogeography and historical phytogeography (paleochorology) intheNeophyticum. Pl.Syst. Evol. 162,5—61. Kvaček Z. 2003: The flora and vegetation of the Karpatian. In: Brzobohatý R., Cicha I., Kováč M. & Rögl F. (Eds.): The Karpatian a lower Miocene stage of the Central Paratethys. Masaryk University Brno, 347—356. Kvaček Z., Manchester S.R., Zetter R. & Pingen M. 2002: Fruites and seeds of Craigia bronni (Malvaceae—Tilioideae) and associated flower buds from the Late Miocene Inden Formation, Lower RhineBasin,Germany.Rev.Paleobot.Palynol.119,311—324. Kvaček Z., Kováč M., Kovar-Eder J., Doláková N., Jechorek H., Parashiv V., Kováčová M. & Sliva L. 2006: Miocene evolution of landscape and vegetation in the Central Paratethys. Geol. Carpathica 57, 4, 295—310. Lambert O., Schlögl J. & Kováč M. 2008: Middle Miocene toothed whale with Platanista-like teeth from the Vienna Basin (Western Carpathians, Slovakia). Neu. Jb. Geol. Paläont. Abh. 250, 2, 157—166. Lankreijer A., Kováč M., Cloetingh S., Pitoňák P., Hlôška M. & Biermann C. 1995: Quantitative subsidence analysis and forward modelling of the Vienna and Danube Basins: thin skinned versusthickskinnedextension.Tectonophysics252,433—451. Magyar I., Geary D.H., Sütő-Szentai M., Lantos M. & Müller P. 1999: Integrated biostratigraphical, magnetostratigraphic and chronostratigraphic correlations of the Late Miocene Lake Pannondeposits. Acta Geol. Hung. 42, 1, 5—31. Mai H.D. 1981: Entwicklung und klimatische Differenzierung der LaubwaldfloraMitteleuropasinTertiär.Flora171,525—582. MaiH.D.1991:PalaeofloristicchangesinEurope andtheconfirmation of the Arctotertiary – Palaeotropical concept. Rev. Palae- obot.Palynol.68,1,29—36. Meulenkamp J.E., Kováč M. & Cicha I. 1996: On Late Oligocene to 266 KOVÁČOVÁ, DOLÁKOVÁ and KOVÁČ GEOLOGICA CARPATHICA, 2011,62, 3, 251—266 Pliocene depocentre migration and the evolution of the Carpathian-Pannonian system. Tectonophysics 266, 301—317. Nagy E. 1985: Sporomorphs of the Neogene in Hungary. Geol. Hung.,Ser.Palaeont.47,1—470. Nagy E. 1999: Palynological correlation of the Neogene of the CentralParatethys. Geol.Inst.Hung.,Budapest,1—126. Nagy E. 2005: Palynological evidence for Neogene climatic change in Hungary. Occass. Pap. Geol. Inst. Hung., Budapest, Vol. 205, 120. Nagy E. & Planderová E. 1985: Palynologische Auswertung der Floren des Pannonien. In: Papp A., Jámbor Á. & Steininger F.F. (Eds.): Chronostratigraphie und Neostratotypen: Miozän der Zentralen Paratethys, Band VII. M6, Pannonien. Akadémiai Kiadó, Budapest, 586—615. Nehyba S., Hladilová Š. & Doláková N. 1997: Sedimentation and fossil assemblages development during the Early Miocene in Southwest part of Carpathian Foredeep in Moravia. In: Hladilová Š. (Ed.): Dynamics of marine and continental environment relationships. Grant Project report GAČR 205/95/ 1211,Brno,47—58(inCzech). Oszast J. & Stuchlik L. 1977: Vegetation in Podhala during the Neogene. Acta Paleobot. XVIII, 1, 45—86 (in Polish). Pacltová B. 1982: Organically preserved microfossils as indicators of the paleoenvironment. In: Novák V.J.A. & Mlíkovský J. (Eds.):Evolutionandenvironment. ČSAV,Praha, 757—773. Pavelić D. 2001: Tectonostratigraphic model for the North Croatian and North Bosnian sector of the Miocene Pannonian Basin System.BasinResearch13,359—376. Planderová E. 1972: Pliocene sporomorphs from the Western Carpathians Mountains and their stratigraphic interpretation. Geol. Práce, Spr. 59, 209—283. Planderová E. 1990: Miocene microflora of Slovak Central Paratethys and its biostratigraphical significance. Geol. Inst. D. Štúra, Bratislava, 1—144. Planderová E., Ziembińska-Tworzydło M., Grabowska I., KohlmanAdamska A., Konzalová M., Nagy E., Pantić N., Ryłova T., Sadowska A., Słodkowska B., Stuchlik L., Syabraj S. & Zdražílková N. 1993a: On palaeofloristic and palaeoclimatic changes during the Neogene of Eastern and Central Europe on the basis of palynological research. Proceedings of the International Symposium: Palaeofloristic and palaeoclimatic changes duringCretaceousandTertiary.DionýzŠtúrInst.Geol.,119—129. Planderová E., Ziembińska-Tworzydło M., Grabowska I., KohlmanAdamska A., Sadowska A., Słodkowska B., Stuchlik L. & Ważyńska H. 1993b: Climate in Central Europe during the Neogene based on presence palaeotropical and arctotertiary sporomorphs. Przegl. Geol., 41, 12, Państw. Inst. Geol., Bratislava, 829—834 (in Polish). Ratschbacher L., Merle O., Davy P. & Cobbols P. 1991a: Lateral extrusion in the Eastenn Alps. Part 1. Boundary conditions and experimentsscaledforgravity. Tectonics10, 245—256. Ratschbacher L., Frisch W., Linze H.G. & Merle O. 1991b: Lateral extrusion in the Eastern Alps. Part 2. Structural analysis. Tectonics 10, 257—271. Roetzel R., Ćorić S., Galović I. & Rögl F. 2006: Early Miocene (Ottnangian) coastal upwelling conditions along the southeastern scarp of the Bohemian Massif (Parisdorf, Lower Austria, CentralParatethys).Beitr.Paläont.30,387—413. Royden L.H. 1985: The Vienna basin: a thin skinned pull apart basin. In: Biddle K.T. & Christie-Blick N. (Eds.): Strike-slip deformation, basin formation and sedimentation. Soc. Econ. Paleont. Mineralogists,Spec. Publ.,Tulsa37,319—339. Royden L.H. 1988: Late Cenozoic tectonics of the Pannonian basin system. In: Royden L. & Horváth F. (Eds.): The Pannonian Basin: A study in basin evolution. AAPG Memoir 45, 27—48. Rögl F. 1998: Paleogeographic considerations for Mediterranean and Paratethys Seaways (Oligocene to Miocene). Ann. Naturhist. Mus. Wien 99A, 279—310. Rögl F., Brzobohatý R., Cicha I., Ćorić S., Daxner-Höck G., Doláková N., Harzhauser M., Hladilová Š., Kroh A., Kvaček Z., Mandic O., Olshtynska A., Pisera A., Reichenbacher B., Schultz O., Švábenická L., Tempfer P., Vávra N. & Zorn I. 2003: Paleobiological characterization of the Karpatian Stage. In: Brzobohatý R., Cicha I., Kováč M. & Rögl F. (Eds.): The Karpatian a lower Miocene stage of the Central Paratethys. Masaryk University Brno, 357—360. Sadowska A. 1989: Miocene palynostratigraphy of the Silesian part of the Paratethys Basin. Cour.-Forsch. Inst. Senckenberg 109, 229—235. Sadowska A. 1993: The stratigraphical table of the Neogene floras from Poland. Proceedings of the International Symposium: Palaeofloristic and palaeoclimatic changes during Cretaceous and Tertiary. Dionýz Štúr Inst. Geol., Bratislava, 133—139. Sitár V., Knobloch E., Roman S. & Ticleanu N. 1978: Die Makroflora des Badenian (Rumänien und Tschechoslowakei). In: Papp A., Cicha I., Seneš J. & Steininger F.F. (Eds.): Chronostratigraphie und Neostratotypen. Miozän der Zentralen Paratethys. M4 Badenien. (Moravien, Wielicien, Kosovien). Veda, Bratislava,555—563. Stuchlik L. 1980: Chronostratigraphy of Neogene in the South of Poland (North part of Paratethys) based on palaeobotanical research. Przegl. Geol.8,443—448 (inPolish). Syabryaj S.V. & Vodoryan N.S. 1975: Vegetation and paleogeographical conditon of Middle Sarmatian in the Carpathian area from the data of diatom, spore and pollen analysis. Ukraine Bot.Zsurnal33,1,71—77. Tomek Č. & Hall J. 1993: Subducted continental margin imaged in theCarpathiansofCzechoslovakia.Geology21,535—538. Walanus A. & Nalepka D. 1999: POLPAL. Program for counting pollen grains, diagrams plotting and numerical analysis. Acta Paleobot., Suppl. 2, 659—661. Ważyńska H. (Ed.) 1998: Palynology and paleogeography of the NeogeneinthePolishLowlands.Pr.Panstw.Inst.Geol.,1—160. Vail P.R., Mitchum R.M.J., Todd R.G., Widmier J.M., Thompson S., Sangree J.B., Bubb J.N. & Hatlelid W.G. 1977: Seismic stratigraphy and global changes of sea level. In: Clayton C.E. (Ed.): Seismic stratigraphy – application to hydrocarbon exploration. Amer. Assoc. Petrol. Geol.Mem. 26, 49—212. GEOLOGICA CARPATHICA, AUGUST 2006, 57, 4, 295—310 www.geologicacarpathica.sk Miocene evolution of landscape and vegetation in the Central Paratethys ZLATKO KVAČEK1 , MICHAL KOVÁČ2 , JOHANNA KOVAR-EDER3 , NELA DOLÁKOVÁ4 , HENRIETTE JECHOREK5 , VALENTIN PARASHIV6 , MARIANNA KOVÁČOVÁ2 and UBOMÍR SLIVA2 1 Charles University, Faculty of Science, Albertov 6, CZ-128 43 Praha 2, Czech Republic; kvacek@natur.cuni.cz 2 Department of Geology and Paleontology, Faculty of Sciences, Comenius University, Mlynská dolina, SK-842 15 Bratislava, Slovak Republic; kovacm@fns.uniba.sk; kovacova@ fns.uniba.sk 3 Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, D-07191 Stuttgart, Germany; eder.smns@naturkundemuseum-bw.de 4 Department of Geology and Paleontology, Faculty of Sciences, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic; nela@sci.muni.cz 5 Carl-von-Ossietzky-Straße 5, D-02826 Görlitz, Germany; hjechorekgr@surfeu.de 6 Faculté de Géologie, Université de Bucharest, Str. N. Balcescu, Bucharest, Romania; paleovaly@yahoo.com (Manuscript received June 27, 2006; accepted in revised form December 8, 2005) Abstract: The digital elevation model (DEM) helps to express Neogene landscapes and vegetation on palinspastic maps with reconstructed orography. To reconstruct ancient vegetation cover, basic zonal vegetation formations and their characteristics have been defined based on diversity and proportions of zonal woody evergreen, deciduous, sclerophyllous and legume-type elements, besides intrazonal (azonal, e.g. coal-forming, aquatic and riparian) and extrazonal (montane conifer-rich) vegetation. Three time intervals have been analysed – Karpatian to Early Badenian, Late Badenian to earliest Sarmatian and Early to Middle Pannonian. After evaluating respective local sites of leaf, fruit/seed and spore/pollen assemblages, paleogeobotanical maps have been constructed for the area of the Central Paratethys and its periphery. Key words: Miocene, Central Paratethys, paleogeography, palinspastic maps, digital elevation models, vegetation mapping. Introduction It is a common task of geobotany today to express interpreted vegetation over larger areas on maps, because the extent of various types of plant communities is an important factor, for example, in tracing human influence or migrations of terrestrial animals. However, several aspects of such studies are different considering Neogene vegetation (KovarEder et al. submitted). The paleogeographic configuration of land and sea was different from the present situation. The regional relief changed in connection with orogeny processes. The floristic spectra included elements mostly extinct or no longer living in Europe. The time slices for the respective maps are many million years distant from the Recent. Global climate, atmospheric circulations and the world ocean varied depending on the time interval studied. To overcome these problems a team of specialists is needed. The paleogeographic background with an approximate demarcation of sea, basins and approximate relief is the first premise to attempt such a paleogeobotanical mapping. Complex and well determined spectra of plant elements from the reference sites with both megafossil and spore/pollen records are most relevant. The megafossil record usually reflects the situation near the site and is differentiated according to the lithofacies. It also reflects the presence of plants producing poorly preservable pollen (e.g. Lauraceae) and indicates more strongly floristic changes than the spore/pollen spectra. Leaves may convey information on the vegetation physiognomy. Fruits and seeds are better indicators of systematic affinities. Pollen and spores may undergo long distance transport by wind and their spectra thus include information on the composition and changes of upland vegetation, which usually consists of mountain conifer-rich forests. It is problematic to transfer frequencies of any kind of plant organs in the fossil spectra into true abundances of plants in a community or landscape, because the fossil record is biased either by overproduction of fossil organs (e.g. pollen, diaspores) and taphonomic processes (e.g. deciduous vs. evergreen foliage, more rapid decay of delicate leaves). In our analyses, we relied mostly on qualitative proportions of elements, that is the floral diversity, within the given assemblage. A synthetic view over a large area that includes several countries should be obtained based both on own experiences including authentic knowledge of plant fossil sites and the review of the published data. In the latter cases, it is often a difficult task to critically re-evaluate older taxonomical interpretations, both in the megafossil and pollen spectra. Particularly the interpretations of various pollen types within the natural system look very different today from the traditional morphological or semi-natural systems used previously (or even at present). Particularly by efforts of large-scale comparisons with living plants (Stuchlik 1994) and electron scanning microscopy (Walther & Zetter 1993; Ferguson et al. 1998; Zetter 1998; Liu et al. 2001), surprising solutions for several sporomorphs have been suggested and important natural affinities have been recognized (e.g. Mastixia, i.e. Cornaceaepollis satzveynsis, Trigonobalanopsis, i.e. Castaneoipollenites pusillus, etc.). Studies of pollen in situ and 296 KVAČEK et al. co-occurrence with megafossils are also important. Thus it has recently become obvious that the tilioid pollen does not belong in most cases to Tilia, a deciduous zonal element, but to Craigia & Dombeyopsis lobata or Banisteriaecarpum & Byttneriophyllum tiliaefolium (alias “Alangium”) plants both intrazonal, frequent constituents of the Glyptostrobus swamp forests (e.g. Kvaček et al. 2002). This paper introduces a new methodology of the Neogene paleogeobotanical mapping presenting it on three time slices of the Neogene in the Central Paratethys. Methodology Digital Elevation Models (DEMs) of the Central Paratethys (Fig. 1) in individual time intervals of the Miocene, which help us to express landscapes with expected orography, were constructed on the basis of present knowledge of geodynamic evolution of the Alpine-Carpathian-Pannonian region (Csontos et al. 1992; Kováč et al. 1993, 1997, 2001, 2002; Meulenkamp et al. 1996; Baráth et al. 1997; Plašienka et al. 1997; Plašienka & Kováč 1999; Bezák et al. 2002; Konečný et al. 2002; Soták & Kováč 2002; Bielik et al. 2004), existing palinspastic maps (Kováč et al. 1989, 1998, 2003; Magyar et al. 1999; Kováč 2000; Popov et al. 2004), as well as burial and uplift history of sedimentary or other rock complexes (Horváth et al. 1988; Dunkl 1992; Kováč et al. 1994; Hurai et al. 1995; Dunkl & Demény 1997; Danišík et al. 2004, etc.). Models of the Central Paratethys vegetation (Figs. 2—4) use a simplified system of vegetation units (formations), which are usually sufficient to get tentative pictures of paleovegetation in space. Our attention has been paid to distinguish zonal, intrazonal (azonal) and extrazonal formations on the basis of autecology and leaf physiognomy of elements, whose grouping has been attempted in this respect (Kovar-Eder & Kvaček 2003; Kovar-Eder et al. submitted). The characteristics of the elements have been mostly derived from autecologies of their nearest living relatives or analogues. Reference fossil localities/plant assemblages often included taxa of different vegetation formations, of which zonal elements are relevant for the maps of the reconstructed fossil vegetation. However, it is apparent from the sedimentary settings that assemblages dominated by intrazonal elements prevailed in the record of megafossils, mainly from the basin deposits. Extrazonal conifer-rich mountain vegetation was represented in pollen spectra, exceptionally in megafossil records from the intra-montane basins. Not only altitude, but also the direction of exposure of mountain slopes and substrate may have influenced the composition of the conifer stands. Volcanic settings are the best environments to bring information on zonal vegetation of mesic habitats. Percentages of zonal herbs as well as Non Arboreal Pollen (NAP) as a whole in pollen spectra may refer to close canopy forests versus open woodland to steppe vegetation. Even intrazonal elements can bring information on the character of climate (e.g. the presence of palms), although the intrazonal assemblages usually bear “cool” aspects due to higher proportion of deciduous arboreal elements. For the purpose of the presented paleovegetation maps several formations have been distinguished and characterized mostly based on the proportion of broad-leaved deciduous, broad-leaved evergreen, sclerophyllous and legume-type components of zonal woody angiosperms (Kovar-Eder et al. submitted). Zonal formations 1. (Warm-) temperate Broad-leaved Deciduous Forest with very low proportion of evergreen woody elements (vegetation unit 1) includes more than 80 % of zonal deciduous woody elements of angiosperms, such as Parrotia, Zelkova, Ostrya, Acer angustilobum etc. 2. Warm-temperate Mixed-Mesophytic Forest (vegetation unit 2) includes less than 80 % deciduous woody elements of zonal angiosperms, less than 30 % evergreen broad-leaved woody taxa of zonal angiosperms and less than 20 % sclerophyllous and legume type elements, regular admixture of Tetraclinis salicornioides and other thermophilous elements, less than 30 % of zonal herbs of zonal angiosperms. 3. Subtropical Broad-leaved Evergreen Forests including the “Younger Mastixioid Floras” sensu Mai (1964) (vegetation unit 3) includes equal or more than 30 % broad-leaved evergreen and thermophilous elements, represented mainly by Lauraceae, Theaceae, Mastixiaceae, Symplocaceae, Sapotaceae, Engelhardia, and evergreen Fagaceae (represented in pollen spectra by morpho-species Castaneoideoipollenites pusillus, Quercoidites henrici, Quercoidites microhenrici – types) and less than 25 % of zonal herbs among zonal angiosperms. 4. Subtropical Sub-humid Sclerophyllous Forest (vegetation unit 4) includes more than 20 % sclerophyllous taxa (Quercus mediterranea, Quercus drymeja) and legume-type microphyllous woody elements of zonal angiosperms. Intrazonal formations 5. Swamp forest and coal-forming mire (not expressed by patterns on maps, vegetation unit 7) is dominated by coal-forming woody and herbaceous elements (e.g. Glyptostrobus and other Taxodiaceae, Byttneriophyllum, Nyssa, Myrica, Calamus, Spirematospermum, etc.). 6. Marsh and aquatic vegetation (not expressed by patterns on maps, vegetation unit 8) is dominated by aquatic herbs and helophytes (Cyperaceae, Typha, Potamogeton, Stratiotes, etc.). 7. Deciduous riparian forest (not expressed by patterns on maps, vegetation unit 9) is dominated by woody elements of moist substrates (Taxodium, Alnus, Salix, Populus, Fraxinus, Acer tricuspidatum, etc.). Extrazonal formations 8. Mountain conifer-rich forest is dominated (mostly in pollen records, vegetation unit 10) by Pinaceae (including Cedrus, Tsuga, Picea, Cathaya, etc.). 297MIOCENE EVOLUTION OF LANDSCAPE AND VEGETATION IN THE CENTRAL PARATETHYS Fig. 1. Geological maps: A – Alpine-Carpathian-Pannonian region, B – Position of the ALCAPA and Tiszia Dacia microplates. The network of localities is quite loose and does not sufficiently cover the study area. Thus the gaps between them have been only tentatively extrapolated according to the reconstructed relief. The construction of the maps proceeded in two steps. First, circles of reference sites have been placed on palinspastic maps that include reconstructed sea depths and orography. The sites received name abbreviations (e.g. MA for Mataschen.), which are included in the explanations of the figures and in the review of the sites (available in the digital form on request). Different colours of circles have been used to designate the vegetation formations. The presence of extrazonal mountain conifers in the palynospectra has been marked as a bluegreen rim, all kinds of intrazonal vegetation as the brown centre or brown full circle. Colours of zonal vegetation have been divided as follows: light green for the Deciduous Broad-leaved Forest (unit 1), green for the Mixed Mesophytic Forest (unit 2), dark green for mostly evergreen forests (unit 3), and orange for sub-humid, partly sclerophyllous forest types (unit 4). In the next step, we used various raster patterns (as specified in the explanations of the maps) to depict probable 298 KVAČEK et al. vegetation formations between and around the reference sites. The intrazonal vegetation was omitted because of its limited extent compared with the scale of the maps. The approximate position of extrazonal conifer belts has been placed according to the nearby palynodata and orography. Early Miocene – model of the Karpatian landscape and vegetation of the Central Paratethys During Early Miocene, the Central Paratethys was situated at least 200—300 km to the south of its present position. The sea, located along the southern slopes of the European platform, covered the southwestward dipping subduction zone in front of the developing Alpine-Carpathian orogene. The accretion wedge, build up by external Alpine and Carpathian Flysch Belt units, was marked in that time only with islands, forming an archipelago along the platform margin. The uplifted islands, composed of units of the Outer Carpathian nappe pile, were surrounded by residual flysch troughs with turbidite deposition. Toward the south, the epicontinental sea stretched over a large part of the internal zones of the Alpine and Carpathian mountain chains, included the northern lithosphere fragment of ALCAPA and the southern fragment of Tisza-Dacia (Csontos et al. 1992; Csontos 1995). The lithospheric fragments (or microplates) moved towards the subduction zone separately, their amalgamation set at first since the Middle Miocene. The southern boundary of the Central Paratethys Sea was represented by the Dinaride mountain chain, dividing it from the Mediterranean Sea. In late Early Miocene, the subduction gradually converted to a collision from the west to the east. The weight of the overriding Carpathian orogene front and deep subsurface load of the submerging plate led to development of a flexure on the platform margin. The foredeep basin developed along the whole front of the Outer Carpathian accretion wedge. The evolution of the accretion wedge was associated with compression, controlling folding and thrusting of the Flysch Belt nappe piles (Kováč et al. 1998). The internal units of the Carpathians, belonging to the ALCAPA and Tisza-Dacia microplates, started to collapse due to stretching in consequence of the subduction pull (Royden 1993a,b), as well as due to asthenospheric mantle upheaval in the western part of the back-arc region. The extension led to initial rifting of the Pannonian basin system (Horváth 1993). By basin opening, besides normal and low angle faults, strike slip faults also played an important role (Vass et al. 1988, 1993; Tari et al. 1992; Fodor 1995; Kováč et al. 1998; Konečný et al. 2002). In the west a sinistral shear dividing the Alpine and Carpathian orogenes opened the Vienna Basin, in the east a dextral shear along the external and internal Carpathians boundary (Pieniny Klippen Belt) opened the Transcarpathian Basin towards the northern part of the East Slovak Basin. Extension in the western part of the back-arc region led to beginning of the formation of the Danube Basin, associated with structural unroofing of the deepest AlpineCarpathian structural units. During the Karpatian, a new marine connection opened between the Central Paratethys and the Mediterranean Sea. This connection is supposed through the trans-Dinaride corridor situated in the area of Slovenia and northern Croatia (Rögl 1998). Apart from tectonics, the global sea-level rise during the late Burdigalian had an important role in the development of this seaway (TB 2.2 cycle, sensu Haq et al. 1988; Hardenbol et al. 1998; Kováč et al. 2001). The sea transgression, with new elements of marine fauna and flora, flooded the present territory of the Drava and Sava Basins (Pavelić 2001), from where the sea penetrated into the Mura, Zala and Styrian Basins. The NE oriented flooding then followed the way between the northern margin of the Mecsek Mts and the southern margin of the Transdanubian Range reaching the North Hungarian—South Slovak sedimentary area. Northwards, the sea spread to the Bánovská kotlina Depression, the Vienna Basin, the Váh river valley and the East Slovak Basin (Kováč et al. 1993). The Karpatian sea covered especially the western part of the Carpathian Foredeep, in the east the sea extended especially over the area of the present Outer Carpathian units of accretionary wedge with wide marine connections into the East Slovak Basin (Rudinec 1989, 1990; Kováč et al. 1995). The DEM paleogeographical model of the Central Paratethys during the Karpatian (Fig. 2) documents the beginning of the Carpathian orogene uplift. The ratio between continental and marine environments (ratio of land and surface covered by the sea) can be very roughly interpreted due to the enormous erosion of the Early Miocene sediments at the begin of the Middle Miocene (Kováč et al. 2003). The erosion is documented by a total absence of marginal facies particularly in northern areas of the Central Western Carpathians and by very sporadic findings of the Karpatian sediments in the Outer Carpathians, folded together with the Flysch Belt deposits (Cieszkowski 1992; Oszczypko 2003). The results of study of fluid inclusions also confirm erosion of 2 to 5 km thick pile of deposits (Hurai et al. 2002), as well as an important angular unconformity between the Karpatian and Badenian strata at many places in the Pannonian basin system. The Carpathian paleo-relief was probably low at this time. In many places, the pre-Tertiary basement units were covered by Paleogene and Early Miocene sediments, much larger in extent than those preserved today in the Paleogene and Neogene basins. In the Western Carpathians, for example, a continuous sedimentary area covering the territory from the Bánovská kotlina Depression to the Vienna Basin has been recorded (Kováč et al. 1993), without indication of an uplift of the Považský Inovec core mountain (Kováč et al. 1994, 1997). The paleo-river net started to develop in areas with higher relief. The Eastern Alps belonged to such places, where rivers fed deltas in the Alpine Foredeep and the southern part of the Vienna Basin (Aderklaa Formation), and later in the uplifted parts of both the Central Western Carpathians and the Outer Carpathians in the western segment of the Carpathian collision zone (Kováč 2000). Considerations about prevailing low paleo-relief are also supported by the paleobotanical study, which docu- 299MIOCENE EVOLUTION OF LANDSCAPE AND VEGETATION IN THE CENTRAL PARATETHYS Fig. 2. DEM of the Central Paratethys: landscape & vegetation cover during the Karpatian. Abbreviations of the localities with numbers of vegetation units: BE – (3, 8) Bełchatów, KRAM-P 211/214; BR – (3, 9) Berzdorf; DD – (3) Dolní Dunajovice, Slup, Hevlín; DE – (3, 7) Dežerice; GB – (3, 10) Core Gbely 139, depth 650—660 m; HA – (9) Haiden; HI – (3, 9) Core Hidas 53, 1071.0—763.3 m; HR – (3, 7) Hrádek/N., Kristina Mine, Turów; KA – (3) Kamenný Újezd, Olešník, Hluboká; KL – (3, 10) Kłodnica area, Biała and Twardawa cores; KO – (4, 9, 10) Core Komló 120; KZ – (3, 9, 10) Komló-Zobák puszta; LA – (3) Laa/Thaya; LE – (3, 10) Leánykö; LI – (3, 9) Lintsching; LM – (1, 7, 8) Lipnica Mała; MA – (4) Magyaregregy; MO – (3, 7, 8, 10) Modrý Kameň, Stredné Plachtince, Ďurkovce, Dolné Príbelce; MY – (4) Mydlovary; NO – (3, 7, 9) Core Nosislav 3, 368—345 m; NS – (2, 7, 8) Nowy Sącz; PA – (4, 9) Parschlug; PE – (9) Core Pécsvárád 44; PI – (3, 8, 9) Core Piliny 8; PU – (3, 8, 10) Core Püspäkhatran 4; TE – (3, 9) Core Tekeres 1; TR – (2, 8, 9) Teiritzberg; VA – (3, 9, 10) Core Várpalota 133; ZA – (7) Zangtal near Voitsberg; ZD – (3, 9, 10) Cores Ždánice 67, depth 765—858 m, Ždánice 68, depth 700—820 m; ZE – (3, 9, 10) Core Zengővárkony 59; ZO – (9, 10) Core Zohor 1, depth 1495—1500 m. 300 KVAČEK et al. ments an altitudinally not much differentiated character of vegetation in the whole Carpathian-Pannonian region during the Karpatian. Similarly, no obvious latitudinal and longitudinal changes were observed there. Some zonation marks, indicated by the diferentiation of the paleovegetation cover, are visible in the lowlands and margins of the marine sedimentary area. Karpatian vegetation (Fig. 2) is documented by reference sites, of which only some have been dated by marine fauna. The age of the others is indicated by the mammalian MN5 Zone and thus may overlap with the Early Badenian. In other cases the boundary to the Ottnangian may also be uncertain (MN4 Zone). Three zonal forest formations were spread over the Central Paratethys region during the Karpatian. Subtropical broad-leaved forests with high to medium proportion of evergreen elements were spread in the western part and continued into the Boreal Province westwards in the form of the typical Younger Mastixioid Floras sensu Mai (1964). The corresponding phytostratigraphic unit of the Boreal Province has been called the Floral Assemblage (“Florenkomplex”) Františkovy Lázně – Kleinleipisch (Mai 1995, 2001; Czaja 2003), but direct dating to the lower part of the MN5 Zone is available only for Františkovy Lázně in the Cheb Basin outside the Central Paratethys. Domination of thermophilous elements (Engelhardia, Platycarya, Sapotaceae, Symplocaceae, evergreen Fagaceae, such as Trigonobalanopsis, in pollen records expressed by Castaneoideaepolis pusillus-, Castaneoideaepolis oviformis-, Tricolporopollenites liblarensis-, Quercoidites henrici- types, etc.) is apparent for the Karpatian—Early Badenian time span (Planderová 1990, Zone MF5; Doláková & Slamková 2003). Only in the central and northern parts near mountains (e.g. Lipnica Mała, Nowy Sącz), the proportion of the broad-leaved deciduous elements increased resulting in the warm-temperate Mixed Mesophytic and Broad-leaved Deciduous Forest types. Some sites (Mydlovary – Knobloch & Kvaček 1996; Parschlug – Kovar et al. 2004; Magyaregregy – Hably 2002) have a sub-humid character (subtropical forests with high proportion of sub-humid and sclerophyllous elements). This may indicate some heterochronity, which we are unable to resolve from the paleobotanical record and short-time fluctuation of perhumid and seasonal climate, as proposed by exothermic vertebrates (Böhme 2003). A distinct East-West gradient is apparent, when broader parts of Europe are compared (Kovar-Eder et al. submitted). Extrazonal mountain zones with conifers were probably as high as 1500—2000 m a.s.l. and more. The upland forests were dominated by Pinus, Abies, Cathaya and only at still higher altitudes with the admixture of Cedrus, Tsuga, and Picea, as demonstrated in the pollen spectra (Nagy 1992; Doláková & Slamková 2003). Various Pinaceae (Pinus, Cathaya) and Sciadopitys entered also intrazonal lowland formations. Intrazonal coal-forming forests appeared mainly in the inter-Alpine basins (Leoben-Bruck Basin, Parschlug, Fohnsdorf, and Mecsek Mts – Hably 2002, p. 92). Besides Glyptostrobus these thermophilous communities occasionally included palms, e.g. Calamus-type at Teiritzberg, evergreen oaks, Nyssa, Myrica, Cyrilla (Zittau Basin), and not yet clarified enigmatic Rhoipites pseudocingulum (= Rhustype). Among other mostly intrazonal elements, ferns of Gleicheniaceae, Schizaeaceae (Lygodium), Osmunda and Polypodiaceae sensu lato (including, e.g. Pronephrium) were well represented. Pollen of Avicennia (Korneuburg Basin) suggests the presence of impoverished mangrove shrubs in the NW part of the Central Paratethys. Paleobotanical data are lacking for this time interval from the eastern part of the studied region because of unfavourable conditions for the preservation of fossil plants there (Syabryaj 2003). Assemblages from the upper part of the Smoliarka Horizon (Rylova et al. 1999) and Rozhok (zone IV FC sensu Yakubovskaya 1993) in Belarus give evidence that the subtropical vegetation of the mastixioid type may have extended north-eastwards from the Central Paratethys. Middle Miocene – model of the Late Badenian landscape and vegetation of the Central Paratethys During the Middle Miocene, the active collision/subduction in front of the Carpathians shifted eastwards due to gradual break-down of the submerging slab (Tomek & Hall 1993). In the west, this process led to the termination of collision between the orogene and the European platform, followed by gradual uplift of the Outer Carpathian accretionary wedge and by the migration of foredeep depocentres from the Western Carpathian foreland towards the Eastern Carpathians (Jiříček 1979). The sea flooding in the front of the Carpathian orogene gradually schifted from west to east. At the end of the Early Badenian, the sea abandoned the western part of the foredeep (Czech Republic), marine sedimentary areas extended only in the northern front of the Western Carpathians and in the front of the Eastern Carpathians. The foredeep at the edge of the Western and Eastern Carpathians reached its maximum extent during Late Badenian—Early Sarmatian time, when 2500 m of sediments were deposited (Meulenkamp et al. 1996). The Sarmatian compression associated with uplift of the Outer Western Carpathians draw the sea away from the northern part of the Carpathian Foredeep for ever (Kováč et al. 1998). A connection between the Carpathian Foredeep and the Pannonian basin system remained preserved only in the Eastern Carpathian region (Kováč 2000; Kováč et al. 1998). The Middle Miocene development of the back-arc basin region was controlled by two geodynamic factors: in the western and central parts of the Pannonian basin system it was upheaval of asthenosphere mantle masses, in the eastern part it was stretching of an overriding plate induced by subduction pull in front of the Eastern Carpathians. In the western part of the back-arc basin, subsidence of the Vienna and Danube Basins caused depocentres above the thinned crust and lithosphere associated with volcanic activity in the hinterland of the Central Western Carpathians (Wernike 1985; Nemčok & Lexa 1990; Tari et al. 1992; Konečný et al. 2002). In the east, orogene that was parallel to the backarc basin depocentres opened in the area of the Transcar- 301MIOCENE EVOLUTION OF LANDSCAPE AND VEGETATION IN THE CENTRAL PARATETHYS pathian and Transylvanian Basins. Mighty acid and later also “island arc” type volcanic activity appeared in a belt along the eastern border of the back-arc region in the hinterland of the Eastern Carpathians (Konečný et al. 2002). Synrift subsidence of the back-arc basin in the Pannonian basin system was associated with mighty acid and calc-alkaline volcanic activity (Kováč 2000; Konečný et al. 2002). Individual depocentres formed in the extensional tectonic regime. The main types were grabens and half-grabens associated with normal and low angle faults, although some pull apart basins opened along active strike-slip faults (Vass et al. 1988, 1993; Tari et al. 1992; Fodor 1995; Kováč et al. 1998; Konečný et al. 2002; Kováč 2000). The Badenian marine conection of the Central Paratethys with the Mediterranean Sea is supposed through a trans-Dinaride corridor (Rögl 1998), at a similar place as during the Karpatian. The Early Badenian sea-level rise, which can be correlated with the early Langhian global sea-level change (TB 2.3 cycle sensu Haq et al. 1988; Hardenbol et al. 1998), is documented only in the SW part of the Pannonian basin system – from the Styrian Basin (Rögl et al. 2002). In the northern parts of the back-arc region wide-ranging erosion of Early Miocene deposits is observed. In depressions (future basin depocentres), fan deltas or terrestrial red coloured sediments were deposited during this time. The Early Badenian tectonically-controlled transgression, followed by rapid subsidence (deep sedimentary environment), started about 15 Ma. The basins were filled by clastics transported by rivers running from uplifted areas of the Eastern Alps and the Western Carpathians. After sealevel fall (documented by erosion of the Early Badenian carbonate platforms in the SW part of back-arc basin – Vienna and Styrian Basins), the “Middle Badenian” transgression, which can be correlated with the global sea-level change in late Langhian (TB 2.4 cycle sensu Haq et al. 1988; Hardenbol et al. 1998), took place. The Central Paratethys sea reached the present extent in the intra-Carpathian Neogene basins, except the uplifted North Hungarian—South Slovak sedimentary area. Since that time, a gradual filling up of the Pannonian basin system by deltas has been observed, leading to shallowing of sedimentary environment and development of isolated depocentres. Basins situated in the north and east suffered from isolation. A salinity crisis took place in the Carpathian Foredeep as well as in the Transcarpathian and Transylvanian Basins. The Late Badenian transgression, which can be correlated with the global sea-level change at the Langhian/Serravalian boundary (TB 2.5 cycle, sensu Haq et al. 1988; Hardenbol et al. 1998; 13.65 Ma.) represents the last full marine flood of the Central Paratethys. Since the end of the Late Badenian (12.7 Ma), an isolation of epicontinental sea in the Intra-Carpathian region can be documented and a direct connection of the Central Paratehtys with the Mediterranean is not expected. The Sarmatian flood, from the Eastern Paratethys region, can be correlated with the late Serravalian global sea-level change (TB 2.6 cycle sensu Haq et al. 1988; Hardenbol et al. 1998). The sedimentary environment was dominantly shallow marine with decreased salinity. The DEM model of the Central Paratethys during the Late Badenian (Fig. 3) documents uplift of the Western Carpathians, including accretionary wedge in front of the orogene and broad marine flood in the back-arc basin region. The intra-Carpathian region gained the characteristic features of an archipelago sea, with many small islands surrounded by shallow epicontinental sea. The paleogeography was still strongly influenced by tectonic processes (Styrian phase), as it is well marked by rapid changes of subsiding depocentres (sea bays, small basins) and position of the coastal line. The paleo-relief of the Carpathians significantly changed during the Middle Miocene, due to strong tectonic influence. The belt of the Outer Carpathians, bordered by internal parts of the orogene, started to be uplifted. The land surface was also strongly differentiated by volcanic activity, some stratovolcanoes reached heights of 2000 to 3000 m a.s.l. The river net transporting eroded clastic material headed mostly towards the back-arc area. Fair-sized altitudinal differences between lowlands and mountains are documented by paleobotanical studies. Mixed pollen spectra with mountain and lowland vegetation taxa indicate only seemingly the decrease of thermophilous taxa and the increase of more dominant temperate taxa (Sitár & Kováčová-Slamková 1999; Slamková 2004). The Badenian vegetation in the Central Paratethys can generally be characterized as thermophilous without dominance of typical boreal plant elements. Hence, we cannot document sufficiently a gradual cooling of climate indicated in the literature (Böhme 2003) that influenced the European flora from the Late Badenian onwards. Late Badenian vegetation (Fig. 3) has been documented from sites more often dated by marine fauna (due to an extensive marine transgression), but also from some others that are dated by mammals to Zone MN6 or by regional correlation. The differentiation of the levels within the Badenian has not always been accomplished and such sites are exceptionally included into the map. Some sites overlap with the lowermost Sarmatian, which is floristically hardly distinguishable (see Syabryaj & Stuchlik 2004; merged into a single “Florenkomplex” Stare Gliwice-Unterwohlbach by Mai 1995). The southernmost sites in Romania, Serbia and Hungary differ from the remaining ones by thermophilous, partly sub-humid aspects under subtropical climatic conditions, which continued from previous times. A general cooling trend appears in other sites by an increasing role of deciduous elements, while thermophilous plants withdrew stepwise southwards and only a part survived, mainly Tetraclinis, Amentotaxus, Magnolia, Lauraceae, Engelhardia and others. This is in the contrast to the preceding “Wieliczien” thermophilous humid mastixioid assemblage even in the Polish part of the Carpathian Foredeep (Łancucka-Środoniowa & Zastawniak 1997). From the differentiation of vegetation in the Late Badenian it is obvious that the climatic gradient between the southern and northern parts of the Central Paratethys increased at that time, partly due to altitudinal differenciation, as noted above. A noteworthy forest-forming tree was Fagus accompa- 302 KVAČEK et al. Fig. 3. DEM of the Central Paratethys: landscape & vegetation cover during the Late Badenian. Abbreviations of the localities and numbers of vegetation units: AL – (2) Core Alsóvadász 1; BU – (1, 9) Burkalo; CI – (3) Ciocadia; DNV – (2, 7, 10) Devínska Nová Ves – brickkiln; ET – (4) Eger-Tihamér; GK – (2, 8, 9, 10) Gdów area, core Kłaj 1, depth 30—405 m; HI – (2, 10) Core Hidas 53; HN – (2, 7, 9) Handlová-Nováky; KO – (1, 9) Kolisky; KS – (1, 9) Kosov; MS – (1, 7) Myshin; NO – (2, 9) Nográdszakál, Páris valley; PI – (3) Pirlage; PS – (3) Pistynka; SE – (4) Selishte; TE – (2, 10) Core Tengelic 2; VE – (1, 9) Verbovets; ZA – (2, 9) Zalescy. 303MIOCENE EVOLUTION OF LANDSCAPE AND VEGETATION IN THE CENTRAL PARATETHYS nied by other deciduous Fagaceae. Acer was diversified in several species, among which Acer aegopodifolium (syn. A. quercifolium – see Ströbitzer-Hermann 2002; Walther & Zastawniak 2005) appears for the first time in the Central Paratethys (Kovar-Eder et al. 1994), together with Ginkgo, Eucommia both arriving from Asia via the Turgay migration route. Over most of the Central Paratethys, warm-temperate Mixed Mesophytic Forest thrived, only in the Western Carpathians and the Transcarpathian Ukraine some sites already acquired the character of Broad-leaved Deciduous Forest, probably due to influence of mountains or due to cooling effect of intensive volcanic activity (Navrotskaja et al. 1991; Syabryaj 1992). The proportion of herbs was generally low, not indicating lowland open vegetation (Syabryaj & Stuchlik 2004). Extrazonal mountain forests are well discernible in pollen assemblages, as at Devinská Nová Ves (Sitár & Kováčová-Slamková 1999), where the coniferous belt reflected by the dominant pollen of Pinus includes additional high-mountain elements, such as Cedrus and Tsuga. Its lower boundary may have decreased towards 1200 m a.s.l. However, this guess is only inferred from the analogous Recent situation in the Colchis area (Stuchlik & Kvavadze 1987; Klotz 1990). In the intrazonal Glyptostrobus peat-forming forests, Byttneriophyllum and Alnus constituted a basic community, which became wide spread later in the Neogene. Among riparian elements, Platanus leucophylla is occasionally present. Lignite-forming communities are typically developed in intra-montane depressions (e.g. Handlová and Nováky) and they are also common in the lowlands outside the Paratethys area in Poland and Germany (Lusatia seam 1). The corresponding phytostratigraphical level in the Boreal Province is probably represented by the Floral Assemblage Schipkau-Konin sensu Mai (2001), but this correlation is opposed by Krutzsch (2000.) The paleofloristic differentiation around the Late Badenian and Early Sarmatian boundary has been discussed with little success to give clear-cut differences based on plant megafossils (Němejc 1951, 1967; Shvareva 1965; Sitár 1967, 1982). It is still uncertain, which Early Miocene elements did not enter the Sarmatian flora, where broadleaved deciduous trees predominate. In her pollen assemblages, Planderová (1990) created a transitional Zone MF7 for this type of flora in the Slovak Neogene. Its pollen spectra include a very low proportion of or no thermophilous Symplocaceae, Sapotaceae and Cyrillaceae. Late Miocene – model of the Middle Pannonian landscape and vegetation of the Central Paratethys During the Late Miocene, the area of the Central Paratethys gained paleogeographical features similar to the present situation in the Carpathian-Pannonian region. The main difference was represented by flooding of the intraCarpathian region and the foredeep depocentres, which were restricted to the southeastern foreland of the Eastern Carpathians in that time (Jiříček 1979; Meulenkamp et al. 1996). Thus a connection of the brackish Eastern Paratethys with the Lake Pannon originated (Magyar et al. 1999). The Late Miocene geodynamic development of the Carpathians can be characterized by termination of collision between the Western Carpathian and the European platform and reinforced collision connected with subduction in front of the Eastern Carpathians. This process was followed not only by the uplift of the accretionary wedge loop, but also by the uplift of the whole Carpathian orogene mountain chain. Pull of the active subduction in front of the Eastern Carpathians southern edge led to the “second” rifting phase in the back-arc basin at the begining of the Pannonian, followed by thermal post-rift subsidence (Lankreijer et al. 1995; Kováč 2000; Konečný et al. 2002). Among the Late Miocene basins of the intra-Carpathian domain formed in an extensional regime, flexural basins without important fault activity prevailed, although in the Early Pannonian normal and strike slip faults allowed development of small pull-apart basins (Vass et al. 1988, 1993; Tari et al. 1992; Fodor 1995; Kováč et al. 1998; Kováč 2000; Konečný et al. 2002). The Lake Pannon – the Pannonian basin system was gradually filled up by deltaic deposits, generally from the northwest toward the southeast. The sedimentary environment gradually changed from a brackish deepwater to a shallow water – lake environment due to isolation from the Mediterranean and Eastern Paratethys (Magyar et al. 1999). At the northern margin of the Lake Pannon, marshes, swamps and deltaic systems spread in an everlarger extent. Due to the retreat of the coastal line the lacustrine environment changed generally into alluvial also in the Late Pannonian. Later, in the Pliocene a broad area of lowlads appeared in the hinterland of the Carpathian chain. Scattered mountains (e.g. the Transdanubian Range Mts, Bükk Mts, Apuseni Mts) and basalt volcanoes formed higher morphological elevations. At the end of the Late Miocene, tectonic inversion of the basin system (Horváth 1993, 1995; Horváth & Cloetingh 1996) led to the retreat of the aquatic sedimentary environment in the whole intra-Carpathian area, exept the central and southeastern regions. Uplift of the Eastern Alps, the Western and Eastern Carpathians was associated with angular unconformity between the Middle and Late Miocene (or younger) strata. The architecture of the Late Miocene fill of the Pannonian basin system was distinctly influenced by paleogeographical changes. From the sequence stratigraphy and depositional systems point of view, the succession of the Late Miocene sediments can be characterized at first by a dominant portion of proximal deltaic deposits (A—C zones, sensu Papp 1951), which pass upward into distal deltaic to basinal fine-grained clay—silt—sandy facies (D, E zones). Fluvio-lacustrine sediments with coal seams (F—H zone) formed the terminal part of the Pannonian. The overlying Pliocene strata were deposited mostly in an alluvial sedimentary environment. The Pannonian cyclicity can be correlated by global changes Tor-1 cycle (11.6—9.3 Ma, sensu Hardenbol et al. 1998) and Tor-2 cycle (9.3—7.2 Ma, sensu Hardenbol et al. 1998). 304 KVAČEK et al. The DEM model of the Central Paratethys during the Middle Pannonian (Fig. 4) documents the extinction of the sedimentary area of the Carpathian Foredeep, except its southeastern part and uplift of the Carpathian mountain chain. At that time, a maximum extent of brackish seawaters covered the intra-Carpathian domain. The expected paleo-relief of the Carpathian orogenic chain in the Late Miocene began to match the present-day situation, characterized by the presence of both mountains and lowland areas. A difference can be seen in the more elevated belt of the Outer Carpathian accretionary wedge, which formed a natural barrier between flat territories of the European platform and the ever-subsiding Pannonian basin system covered by the Lake Pannon. During the Pannonian and Pliocene, basalt volcanic activity also participated in paleo-orography of the back-arc region (Kováč et al. 1998; Kováč 2000). The Middle Pannonian vegetation (Fig. 4) corresponds to the warm temperate climatic zone with evidence of sporadically present termophilous and evergreen taxa. A higher percentual proportion of non-arboreal pollen (10 to 14 %) indicates local vegetation of partly open woodland (i.e. woods with open canopy). An increase of halophytic taxa documents the presence of coastal lagoons and marshlands during the lowstand of the brackish sea. Swamp vegetation, which grew directly on swamp substrates, is characterized mainly by noteworthy Taxodiaceae trees. They are often present in the association with Myricaceae and subordinary Nyssaceae. The riparian forest elements subdominantly occurred with Alnus and Ulmus. The extrazonal vegetation of the mountain areas with Picea, Tsuga, Abies, Cedrus is well represented in the pollen spectra. During the Late Pannonian, the Western Carpathian paleogeography started to change. The Lake Pannon withdrew southwards, the nothern margin of the back-arc basin was slightly uplifted with the progradation of deltaic and alluvial facies, especially in lowlands. These areas were often covered by hygrophilous plants: Myrica, Salix, Ulmus, Alnus. Herbs were represented by Chenopodiaceae, Asteraceae, Ericaceae, Poaceae and Artemisia. Unevenly high moutain relief of the uplifted mountain chains created ideal conditions for the mixed mesophytic forests with Carya, Quercus, Craigia, Carpinus, Fagus, Picea, Abies, Tsuga and Pinus. The reference sites considered on the map have been assigned to the Pannonian zones C—E sensu Papp 1951, namely the time slice before the major spreading of the lignite facies over the Pannonian Basin (zone F). The dating is based mostly on molluscs or regional correlation, rarely on mammals (MN9 Zone). Additional sites of Early Pannonian age (zones A—B) are shown in brackets on the map. They indicate the previous vegetation type at the Sarmatian/Pannonian boundary. Most leaf assemblages of Pannonian age are at least partly intrazonal and it is difficult to obtain a true picture of zonal vegetation from them. Most spore/pollen assemblages, mainly from the Hungarian Pannonian, have not been revised and the stratigraphic position of pollen samples remains partly uncertain. At the very beginning of the Pannonian, subtropical conditions returned to some parts of the Central Paratethys. The thermophilous vegetation from southern Austria (Mataschen, Styrian Basin, Pannonian B – Kovar-Eder 2004) can also be found to the north-western periphery outside the Paratethys (Gozdnica) and may correspond to the Floral Assemblage (“Florenkomplex”) Düren sensu Mai (1995) in western Europe with the latest occurrences of mastixioid plants. However, the dating of Gozdnica is still under dispute (see Dyjor et al. 1992, 1998; Mai, personal communication). Later in the Pannonian, thermophilous evergreen, partly sub-humid vegetation remained in the south and south-eastern parts (Serbia, southern Hungary, the Borod Basin in Romania). In the Middle Pannonian, broad-leaved deciduous and Mixed Mesophytic warm-temperate to temperate forests with a low proportion of evergreen elements generally became widespread over the Central Paratethys (Styrian Basin, Molasse Zone, Vienna Basin). Characteristic elements in these communities included Fagus haidingeri—pliocenica complex, Quercus (?Castanea) kubinyii, Quercus pseudocastanea—pseudorobur complex, Carpinus sp. div., Betula, Acer integrilobum, Acer vindobonense and Acer subcampestre (syn. Acer jurenakyi) (Kovar-Eder 1988; Ströbitzer-Hermann 2002; Ströbitzer-Hermann & KovarEder 2003). Cooling trends can be traced in spore/pollen spectra from the cores in the Pannonian Basin (Nagy & Planderová 1985; Nagy 1992). At some sites (Alsóvadász, Suchohrad) somewhat higher frequencies of Chenopodiaceae and Artemisia (max. 15 %) may indicate patches of herbaceous vegetation on marshes within broad-leaved deciduous forests. However, high mean annual precipitation (Bernor et al. 2003) prevented the development in this aera of open woodland and grassland vegetation like that suggested for south-eastern to southern Ukraine outside the Central Paratethys (Syabryaj 1999, 2003). Temperate purely deciduous broad-leaved forests were also spread during the Middle Pannonian in the Western Carpathians (e.g. sites at Nové Ustie in the Orava Basin and Martin in the Turiec Basin). In most cases these assemblages include a considerable proportion of intrazonal elements, both woody and aquatic (Trapa). Characteristic riparian woody elements were Salicaceae, Platanus leucophylla, Alnus ducalis, Alnus cecropiifolia, and partly intrazonal Quercus gigas and Pterocarya paradisiaca. The dominant peat-forming community during the whole Pannonian consisted mostly of the Glyptostrobus-Byttneriophyllum-Alnus swamp forest. This swampy coal-forming vegetation reached its widest distribution over the Pannonian Basin during the Late Pannonian, as the large extension of the lignite facies in Hungary, southern Moravia, Slovakia and Serbia corroborates (Knobloch 1969; Givulescu 1992; Pantić & Dulić 1993; Hably 2003). Extrazonal montane conifers of all kinds (including Tsuga, Cedrus, Picea, Abies, Keteleeria) were found in pollen spectra throughout the Pannonian Basin as regular accessories. In the intra-montane basins macrofossils of these conifers were also formed (Nove Ustie, Martin). Therefore we may expect high mountain conifer belts reaching over 1500 m a.s.l. on the Carpathian and Alpine ridges and descending to medium altitudes, mixed with deciduous broad-leaved elements. 305MIOCENE EVOLUTION OF LANDSCAPE AND VEGETATION IN THE CENTRAL PARATETHYS Fig. 4. DEM of the Central Paratethys: landscape & vegetation cover during the Middle Pannonian. Abbreviations of the localities (in brackets earliest Pannonian, not considered for raster pattern) and numbers of vegetation units: AL – (1, 10) Core Alsóvadász 1, depth 155.8—240 m, Cszerehát environment; BE – (1, 8, 9, 10) Belchatow, upper level (section VI.1, KRAM-P 17, Stawek-1A); BO – (9, 10) Bobrov, core V 6; DE – (3) Delureni; DU – (4, 9) Dubona I; EB – (9) Ebersbrunn; (GO) – (3, 8, 9, 10) Gozdnica; HI – (2, 8, 9, 10) Core Hidas 53, depth 298—367 m; (HO) – (8, 9) Höllgraben; KO – (9) Kogelwald, core KO 4; (KU) – (7, 8) Kunovice, cores KU 1, depth 42-46 m, KU 2, depth 109—174 m; LA – (2, 9) Laaerberg; (MA) – (3, 8) Mataschen near Fehring; ME – (1-2, 9, 10) Core Megyaszó 1, depth 52—206 m; MI – (2, 8) Mistřín, DV 4 Mine; MR – (1, 8, 9) Martin, Turiec Basin; MU – (7, 9) Münzengraben, core MÜ 21; (NE) – (3) Neuhaus/Klausenbach; NI – (1, 8, 10) Nitra environs, Vozokany, core N-7, Rohoznica, core N-8, Mechenice, core B-23, Pohranice, core B-25; NU – (8, 9) Nové Ustie, Orava Basin; OR – (7, 8) Ořechov, Polešovice, cores UH 18, depth 11.3 m, UH 19, depth 14.1—29.4 m; (PA) – (2, 8, 9) Paldau; PO – (7, 9) Pöllau, core PÖ 2; RE – (3, 8, 9) Reith near Unterstorcha; RU – (2, 7, 9) Rudabánya; SK – (3, 9) Sremska Kamenica; SO – (1, 8, 9) Sośnica; (SU) – (2, 9, 10) Core Suchohrad 32, depth 625—638 m; TA – (1, 9, 10) Tata, Core TVG 26 depth 7—39m; TO – (1, 9, 10) Core Tököl 1, depth 688.5—730 m; (VC) – (3, 4) Valea Crisului; VO – (2, 8, 9) Vösendorf; WO – (8, 9) Wörth near Kirchberg/Raab. 306 KVAČEK et al. Paleoclimatic trends Palaeoclimatic proxies are available for many sites considered in the presented maps (see Mai 1995). Most of them have been derived from “intuitive” comparisons with extant vegetation, while the objective co-existence and leaf physiognomical (CLAMP) methodologies have not been largely applied so far. Broad-leaved evergreen forests, including the “Late Mastixioid Floras”, were usually compared with similar forests in monsoon East Asia. In general, the climate corresponding to this type of vegetation was humid to per-humid (annual sum of precipitation about 1000 to 3000 mm), with heavy rains prevailing in the summer, but without any month with a humidity deficit. The temperature of the coldest month varied between 4—10 ºC and absolute minima rarely reached under zero. The Mean Annual Temperature (MAT), according to various estimates (e.g. Mai 1995) varied in larger spans, according to the percentage of evergreen taxa, from 13 to almost 20 ºC. The climate must have been quite equable, with a range of temperature less than 25 ºC. This is a prevailing condition in the Karpatian to Lower Badenian stages over the Central Paratethys. Only in some parts, high summer mean temperatures over 20 ºC and also dry substrate caused a relative humidity deficit and local expansions of sub-humid sclerophyllous (microphyllous) evergreen forests. This type of forest has nothing to do with the etesian (Mediterranean-type) climate and was probably more similar to the microphyllous montane forests in drier parts of the Himalayas today. The cooling trends expressed by the decline of MAT in the Late Badenian over northern and eastern parts of the Central Paratethys caused changes in the forests. Evergreen elements mostly withdrew southwards and only less frost-sensitive trees remained forming the Mixed Mesophytic Forest with high representation of deciduous taxa. MAT, under which this type of vegetation optimally thrives, is variously estimated, depending on what type of forests is brought for comparison – East Asiatic or North American (Wolfe 1979). While in the former, the Coldest Month Mean Temperature (CMMT) is usually quite low (up to —2 ºC), the latter thrives in warmer, subtropical conditions (northern Florida – mean annual temperature ca. 20 °C, January mean up to 10 ºC). In general, the following estimation of the decline in temperature can be expected for the Central Paratethys from the published data (e.g. Mai 1995) – MAT 16(—?10) ºC, that is lowering by about 3 ºC in comparison with the Karpatian, and adequate lowering of the January mean, which may have been even stronger, because of decrease of climatic equability. The sum of Mean Annual Precipitation (MAP) remained high enough for humid conditions in any case, also thanks to the colder climate. Such warm temperate conditions predominated during the Late Badenian and the Middle Pannonian. In the Pannonian in northern and easterly parts of the area studied, particularly near the mountains, the Deciduous Broad-leaved Forests indicate still more severe deterioration of climatic conditions. These temperate forests dominated by deciduous oaks and beech and intermixed with various Pinaceae withstood decrease of CMMT up to —10 °C, particularly on higher altitudinal habitats. The impact of such severe winters was certainly milder due to heavy snows, as is the case today in East Asia, particularly in Japan. Equally high precipitation throughout the year also prevented expansion of herbaceous steppe vegetation, although patches of it can be noticed in the pollen record within deciduous broad-leaved forests in the Middle Pannonian. Due to high humidity of climate, extensive lignite deposits originated over most of the Paratethys area and its north and west periphery. Conclusions After having compiled the presented Miocene geobotanical maps according to the methodology applied above, the following conclusions can be drawn for the future research in other areas and time slices of the Cenozoic. Contrary to various models of ancient Cenozoic vegetation that rely on the physiognomy and composition (diversity) as well as abundance of elements (e.g. Wolfe 1979; Mai 1995), the presented system of vegetation units is much more simplified. It surely suffers from various deficiencies. It neglects abundance. But this parameter is, in our opinion, not objectively derivable from frequencies of fossils in a given site or core level. Another weak point of the system employed above is that individual elements with a broader ecological span can enter more units or they are transitional and their foliar physiognomy (evergreen vs. deciduous) cannot be precisely identified (e.g. Symplocos, Engelhardia). The defined vegetation formations were certainly not profoundly clear-cut in ancient landscapes and transitions between them existed. Still the diversity percentages are most objective characteristics for a given assemblage and can be verified any time, the assignment into the system of the defined vegetation formations as characterized above (see also Kovar-Eder et al. submitted) is easy and mostly unequivocal. According to our experience, it is advisable to use paleogeographical and geobotanical maps of narrow time slices, because they reveal better consistent patterns of vegetation and its dynamics in spite of fewer reference localities. When a longer time interval has been considered, local differences between the sites sometimes expressed trends in time rather than climatic gradients in space (see Fig. 3 for the Early-Middle Pannonian). Megafossil and spore/pollen plant records were combined, whenever feasible, to gain better understanding of taxonomy and ecology of elements composing assemblages. Of course, great problems exist, concerning how to transfer spore/pollen diagrams with various enigmatic plant elements into a formation with known physiognomy. In the fututre, it would be desirable to unify views on the taxonomy of those elements of uncertain affinities both in megafossil and spore/pollen records. Older data of paleobotanical and palynological research have not been neglected but revised and transferred to a common nomenclature, when the documentation (illustra- 307MIOCENE EVOLUTION OF LANDSCAPE AND VEGETATION IN THE CENTRAL PARATETHYS tions, preparations) was available and re-studied. In many cases, such assemblages and their elements were wrongly interpreted, or wrongly assigned to the natural system. Yet the current progress in knowledge of whole fossil plants is improving these inconsistencies. Actuopalynological studies of Recent vegetation (e.g. Stuchlik & Kvavadze 1987; Kvavadze & Stuchlik 1990, 1993) offered important clues for converting spore/pollen spectra into various types of real vegetation. It would be worth attempting to apply for the same sets of fossil data the new methodology presented in this account, which is based on proportions of components and diversity, along with that currently employed by palynologists, which uses abundance percentages of elements. Acknowledgments: We appreciate discussion, data and exchange of views with our colleagues L. Stuchlik, Kraków, V. Mosbrugger and A. Bruch, Frankfurt am Main and I. Magyar, Budapest. L. Stuchlik, L. Hably and D. Ivanov as the reviewers and P. Bosák as the editor who suggested useful improvements to the first version of the text. This research has been sponsored by the European Science Foundation (Project EEDEN), by the Czech Grant Agency GAČR (Project No. 205/04/0099), Slovak Grant Agency VEGA (Projects No. 2/5016/05, 1/2035/05, 1/0080/03), project of the Slovak Research and Development Support Agency APVV-51-011305 and the Slovak Ministry of Education (Project No. AV/808/2002). References Baráth I., Kováč M., Soták J. & Lankreijer A. 1997: Tertiary collision, metamorphism and basin forming processes in the Eastern Slovakia (central Western Carpathians). In: Grecula et al. (Eds.): Geological evolution of the Western Carpathians. Mineralia Slovaca – Monograph, Bratislava, 65—79. Bernor R.L., Kordos L., Rook L., Agusti J., Andrews P., ArmourChelu M., Begun D., Cameron W.D., Damuth J., Daxner-Höck G., de Bonis L., Fejfar O., Fessaha N., Fortelius M., Franzen J., Gasparik M., Gentry L., Heissig K., Hernyak G., Kaiser T., Koufos G., Krolopp E., Janossy D., Llenas M., Meszaros L., Müller P., Renne P., Roček Z., Sen S., Scott R., Szyndlar Z., Topal Gy., Ungar P.S., Utescher T., van Dam J.A., Werdelin L. & Ziegler R. 2003: Recent advances on multidisciplinary research at Rudabánya, Late Miocene (MN9), Hungary: a compendium. Palaeontogr. Italica 89, 3—36. Bezák V., Kováč M., Lexa J. & Plašienka D. 2002: Polystage tectonic evolution of the Western Carpathian crust. Krystalinikum 28, 189—196. Bielik M., Šefara J., Kováč M., Bezák V. & Plašienka D. 2004: The Western Carpathians – interaction of Hercynian and Alpine processes. Tectonophysics 393, 63—86. Böhme M. 2003: The Miocene climatic optimum: evidence from exothermic vertebrates of Central Europe. Palaeogeogr. Palaeoclimatol. Palaeoecol. 31, 1—13. Cieszkowski M. 1992: Marine Miocene deposits near Nowy Targ, Magura nappe, Flysch Carpathians (South Poland). Geol. Carpathica 43, 339—346. Cicha I., Seneš J. & Tejkal J. 1967: Chronostratigraphie und Neostratotypen. Miozän der Zentralen Paratethys I. M3 Karpatian. Vydavate stvo SAV, Bratislava, 1—312. Csontos L. 1995: Tertiary tectonic evolution of the intra-Carpathian area: a review. Acta Vulcanol. 7, 1—13. Csontos L., Nagymarosy A., Horváth F. & Kováč M. 1992: Tertiary tectonic evolution of the Intra Carpathian area – a model. Tectonophysics 208, 1, 3, 221—241. Czaja A. 2003: Paläokarpologische Untersuchungen von Taphozönosen des Unter- und Mittelmiozäns aus dem Braunkohlentagebau Berzdorf/Oberlausitz (Sachsen). Palaeontographica, Abt. B 265, 1—148. Danišík M., Dunkl I., Putiš M., Frisch W. & Krá J. 2004: Tertiary burial and exhumation history of basement highs along the NW margin of the Pannonian Basin – an apatite fission track study. Aust. J. Earth Sci. 95, 96, 60—70. Doláková N. & Slamková M. 2003: Palynological characteristics of the Karpatian sediments. In: Brzobohatý R., Cicha I., Kováč M. & Rögl F. (Eds.): The Karpatian – an Early Miocene stage of the Central Paratethys. Masaryk University, Brno, 325—345. Dunkl I. 1992: Final episodes of the cooling history of eastern termination of the Alps. In: Neubauer F. (Ed.): ALCAPA field guide – The Eastern Central Alps of Austria. Graz, 137—140. Dunkl I. & Demény A. 1997: Exhumation of the Rechnitz Window at the border of the Eastern Alps and Pannonian Basin during neogene extension. Tectonophysics 272, 197—211. Dyjor S., Kvaček Z., Łancucka-Środoniowa M., Zastawniak E., Pyszyński W. & Sadowska A. 1992: The younger Tertiary deposits in the Gozdnica region (SW Poland) in the light of recent palaeobotanical research. Polish Bot. Stud. 3, 1—129. Dyjor S., Sadowska A., Hummel A., Baranowska-Zarzycka Z. & Zastawniak E. 1998: Geological position and flora of the younger neogene deposits in Lower Silesia In: Sadowska A. & Szynkiewicz A. (Eds.): Tertiary-Quaternary (Pleistocene) floras of Belchatów (Middle Poland) and several localtities in south-western Poland, Field Guide. The 5th European Palaeobotanical and Palynological Conference, Cracow. W. Szafer Institute of Botany, Cracow, 37—54. Ferguson D.K., Pingen M., Zetter R. & Hofmann C.-C. 1998: Advances in our knowledge of the Miocene plant assemblage from Kreuzau, Germany. Rev. Palaeobot. Palynol. 101, 147—177. Fodor L. 1995: From transpression to transtension: Oligocene-Miocene structural evolution of the Vienna Basin and the East Alpine-Western Carpathian junction. Tectonophysics 242, 151—182. Givulescu R. 1992: Les forets marécageuses du Miocene supérieur de Roumanie: unpaléobiotope d’exception et sa végétation dans le Miocene supérieur de l’ouest de la Roumanie. In: Kovar-Eder J. (Ed.): Paleovegetational development in Europe and regions relevant to its paleofloristic evolution. Natur. Hist. Mus., Vienna, 147—151. Hably L. 2002: The Middle Miocene flora of Magyaregregy – as shown by a study of recent collections. Abstracts, 6th European Paleobotany-Palynology Conference, Athens, 91—92. Hably L. 2003: Late Neogene vegetation and climate reconstruction in Hungary. Acta Univ. Carol. Geol. 46, 4, 85—90. Haq B.U., Hardenbol J. & Vail P.R. 1988: Mesozoic and Cenozoic chronostratigraphy and cycles of sea level changes. In: Wilgus C.K. et al. (Eds.): Sea-level changes – an integrated approach. SEPM Spec. Publ. 42, 71—108. Hardenbol J., Thierry J., Farley M.B., Jacquin T., Graciansky P.C. & Vail P.R. 1998: Mesozoic and Cenozoic sequence chronostratigraphic framework of European Basins. In: Graciansky P.Ch., Hardenbol J., Jacquin T. & Vail P. (Eds.): Mesozoic and Cenozoic sequence stratigraphy of European Basins. SEPM Spec. Publ. 60, 1—786. Horváth F. 1993: Towards a mechanical model for the formation of the Pannonian basin. Tectonophysics 226, 333—357. 308 KVAČEK et al. Horváth F. 1995: Phases of compression during the evolution of the Pannonian basin and its bearing on hydrocarbon exploration. Mar. Petrol. Geol. 12, 837—844. Horváth F. & Cloetingh S. 1996: Stress-induced late-state subsidence anomalies in the Pannonian Basin. Tectonophysics 266, 287—300. Horváth F., Dövényi P., Szalay S. & Royden L.H. 1988: Subsidence, thermal and maturation history of the Great Hungarian Plain. In: Royden L.H. & Horváth F. (Eds.): The Pannonian Basin. AAPG Memoir 45, 355—372. Hurai V., Kihle J., Kotulová J., Marko F. & Świerrczewska A. 2002: Origin of methane in quartz crystals from the Tertiary accetionary wedge and fore-arc basin of the Western Carpathians. Appl. Geochem. 17, 1259—2171. Hurai V., Širáňová V., Marko F. & Soták J. 1995: Hydrocarbons in fluid inclusions from quartz-calcite veins hosted in Paleogene flysch sediments of the Central Western Carpathians. Miner. Slovaca 27, 383—396. Jiříček R. 1979: Tectogenetic development of the Carpathian arc in the Oligocene and Neogene. In: Mahe M. (Ed.): Tectonic profiles of the West Carpathians. Konf. Symp. Sem., GÚDŠ, Bratislava, 205—214. Jiříček R. 1983: Redefinition of the Oligocene and Neogene Ostracod Zonation of the Paratethys. Knihovnička ZPN 4, 195—236. Klotz G. 1990: Hochgebirge der Erde und ihre Pflanzen- und Tierwelt. Urania-Verlag, Leipzig, Jena, Berlin, 1—355. Knobloch E. 1969: Tertiäre Floren von Mähren. Mor. Muz., Brno, 1—201. Knobloch E. & Kvaček Z. 1996: Miozäne Floren der südböhmischen Becken. Sbor. Geol. Věd, Paleont. 33, 39—77. Konečný V., Kováč M., Lexa J. & Šefara J. 2002: Neogene evolution of the Carpatho-Pannonian region: an interplay of subduction and back-arc diapiric uprise in the mantle. EGS Stephan Mueller Spec. Publ. Ser. 1, 105—123. Kováč M. 2000: Geodynamic, paleogeographical and structural development of the Carpatho-Pannonian region during Miocene: New view on the Neogene basins in Slovakia. VEDA, Bratislava, 5—203. Kováč M., Andreyeva-Grigorovich A., Brzobohatý R., Fodor L., Harzhauser M., Oszczypko N., Pavelic D., Rögl F., Saftic B., Sliva . & Stráník L. 2003: Karpatian paleogeography, tectonics and eustatic changes. In: Brzobohatý R., Cicha I., Kováč M. & Roegl F. (Eds.): Karpatian – a Lower Miocene stage of the Central Paratethys. Masaryk University, Brno, 49—72 Kováč M., Bielik M., Lexa J., Pereszlényi M., Šefara J., Túniy I. & Vass D. 1997: The Western Carpathian intramountain basins. In: Grecula et al. (Eds.): Geological evolution of the Western Carpathians. Minerali Slovaca – Monograph, Bratislava, 43—65. Kováč M., Cicha I., Krystek I., Slaczka A., Stráník Z., Oszczypko N. & Vass D. 1989: Palinspastic maps of the Western Carpathian Neogene. Scale 1:1,000,000 maps. Ústř. Úst. Geol., Praha, 6 1—31. Kováč M., Kováč P., Marko M., Károli S. & Janočko J. 1995: The East Slovakian Basin – A complex back-arc basin. Tectonophysics 252, 453—466. Kováč M., Král J., Márton E., Plašienka D. & Uher P. 1994: Alpine uplift history of the central Western Carpathians: geochronological, paleomagnetic, sedimentary and structural data. Geol. Carpathica 45, 2, 83—97. Kováč M., Lexa J., Konečný V. & Šefara J. 2002: Geodynamic evolution of the Carpathian Pannonian region during the Neogene. Geol. Carpathica, Spec. Issue 53, 1—2. Kováč M., Nagymarosy A., Holcová K., Hudáčková N. & Zlínska A. 2001: Paleogeography, paleoecology and eustacy: Miocene 3rd order cycles of relative sea-level changes in the Western Carpathian – North Pannonian basins. Acta Geol. Hung. 44, 1, 1—45. Kováč M., Nagymarosy A., Oszczypko N., Slaczka A., Csontos L., Marunteanu M., Matenco L. & Márton M. 1998: Palinspastic reconstruction of the Carpathian-Pannonian region during the Miocene. In: Rakús M. (Ed.): Geodynamic development of the Western Carpathians. Geol. Surv. Slov. Rep., Bratislava, 189—217. Kováč M., Nagymarosy A., Soták J. & Šutovská K. 1993: Late Tertiary paleogeographic evolution of the West Carpathians. Tectonophysics 226, 1—4, 401—416. Kovar-Eder J. 2004: Die obermiozäne Flora von Mataschen bei Fehring, Steiermark—Blattvergesellschaftungen. Joannea Geol. Paläont. 5, 163—175. Kovar-Eder J. & Kvaček Z. 2003: Towards vegetation mapping on the fossil plant record. Acta Univ. Carol., Geol. 46, 4, 7—13. Kovar-Eder J., Kvaček Z. & Ströbitzer-Hermann M. 2004: The Miocene flora of Parschlug (Styria, Austria) – Revision and synthesis. Ann. Naturhist. Mus. Wien 105A, 45—159. Kovar-Eder J., Jechorek H., Kvaček Z. & Parashiv V. submitted: The integrated plant record to reconstruct Neogene zonal vegetation in Europe. Palaios. Kovar-Eder J., Givulescu R., Hably L., Kvaček Z., Mihajlović D., Teslenko Y., Walther H. & Zastawniak E. 1994: Floristic changes in the areas surrounding the Paratethys during Neogene time. In: Boulter M.C. & Fisher H.C. (Eds.): Cenozoic plants and climates of the arctic, NATO-ASI Ser. I: Global environmental change. Springer, Heidelberg, 27, 347—369. Krenn H. 1998: Die obermiozäne (pannone) Flora von Paldau, Steiermark. Österr. Mitt. Geol. Paläont. Landesmus. Joanneum 56, 165—271. Krutzsch W. 2000: Stratigraphische Tabelle Oberoligozän und Neogen (marin—kontinental). Berliner Geowiss. Abh., E 34, 153—165. Kvaček Z., Manchester R.S., Zetter R. & Pingen M. 2002: Fruits and seeds of Craigia bronnii (Malvaceae—Tilioideae) and associated flower buds from the late Miocene Inden Formation, Lower Rhine Basin, Germany. Rev. Palaeobot. Palynol. 119, 311—324. Kvavadze E.V. & Stuchlik L. 1990: Subrecent spore-pollen spectra and their relation to Recent vegetation belts in Abkhazia (northwestern Georgia, USSR). Acta Palaeobot. 30, 227—257. Kvavadze E.V. & Stuchlik L. 1993: Subfossil pollen spectra of the steppe regions of east Georgia. Acta Palaeobot. 33, 365—376. Lankreijer A., Kováč M., Cloetingh S., Pitoňák P., Hlôška M. & Biermann C. 1995: Quantitative subsidence analysis and forward modelling of the Vienna and Danube Basins. Tectonophysics 252, 433—451. Łancucka-Środoniowa M. & Zastawniak E. 1997: The Middle-Miocene flora of Wieliczka, revision of Jan Zabłocki’s collection. Acta Palaeobot. 37, 17—49. Liu Yu-Sheng, Zetter R., Mohr B.A.R. & Ferguson D.K. 2001: The flowers of an extinct legume from the Miocene of southern Germany. Palaeontographica Abt. B, 256, 159—174. Magyar I., Geary D.H. & Müller P. 1999: Paleogeographic evolution of the Late Miocene Lake Pannon in Central Europe. Palaeogeogr. Palaeoclimatol. Palaeoecol. 47, 151—167. Mai D.H. 1964: Die Mastixioideen-Floren im Tertiär der Oberlausitz. Paläont. Abh. B (Berlin), 2, 1, 1—192. Mai D.H. 1995: Tertiäre Vegetationsgeschichte Europas. Gustav Fischer Verlag, Jena, Stuttgart, New York, 1—691. Mai D.H. 2001: Die mittelmiozänen und obermiozänen Floren aus der Meuroer und Raunoer Folge in der Lausitz. III. Fundstellen und Paläobiologie. Palaeontographica Abt. B 258, 1—85. Meulenkamp J.E., Kováč M. & Cicha I. 1996: On Late Oligocene to Pliocene depocenter migrations and the evolution of the Carpathian-Pannonian system. Tectonophysics 266, 301—317. Nagy E. 1992: A comprehensive study of Neogene sporomorphs in 309MIOCENE EVOLUTION OF LANDSCAPE AND VEGETATION IN THE CENTRAL PARATETHYS Hungary. Geol. Hung., Ser. Palaeont. 53, 1—379. Nagy A. & Planderová E. 1985: Palynologische Auswertung der Floren des Pannoniens. In: Papp A., Jámbor A. & Steiniger F.F. (Eds.): Chronostratigraphie und Neostratotypen Miozän der Zentralen Paratethys. Akadémiai Kiadó, Budapest, 7, 586—615. Navrotskaya I.L., Syabryaj S.V., Bezusko L.G., Stuchlik L. & Tasenkevich L.A. 1991: The Ugolsky massif – a refuge of thermophilic flora in the Ukrainian Carpathians. Acta Palaeobot. 31, 261—272. Nemčok M. & Lexa J. 1990: Evolution of the basin and range structure around Žiar mountain range. Geol. Zborn. Geol. Carpath. 41, 229—258. In: Brzobohatý R., Cicha I., Kováč M. & Rögl F. (Eds.): 2003: Karpatian – a Lower Miocene Stage of the Central Paratethys. Masaryk University, Brno, 93—96. Němejc F. 1951: On the mutual relations of the fossil floras of the coal basin of Handlová and of several sediments of the ryolithic mountain region S of Kremnica (Slovakia). Sbor. Ústř. Úst. Geol., Odd. Paleont. 18, 197—207 (in Czech). Němejc F. 1967: Palaefloristical studies in the Neogene of Slovakia. Acta Mus. Nat. Pragae B 23, 1—32 (in Czech). Oszczypko N. 2003: The Polish Outer Carpathians and their Foredeep in the Karpatian. In: Brzobohatý R., Cicha I., Kováč M. & Rögl F. (Eds.): Karpatian – a Lower Miocene Stage of the Central Paratethys. Masaryk University, Brno, 49—72. Pantić N. & Dulić I. 1993: Pontian palynomorphs in Serbia. In: Planderová E. et al. (Eds.): Paleoflor. Paleoclim. Chang. Cret. Tert. Geol. Úst. D. Štúra, Bratislava, 181—186. Papp A. 1951: Das Pannon des Wiener Beckens. Mitt. Geol. Gesell. Wien (1946—1948), 39—41, 99—193. Pavelić D. 2001: Tectonostratigraphic model for the North Croatian and North Bosnian sector of the Miocene Pannonian Basin System. Basin Res. 13, 359—376. Planderová E. 1990: Miocene microflora of Slovak Central Paratethys and its biostratigraphical significance. Dionýz Štúr Inst. Geol., Bratislava, 1—144. Plašienka D. & Kováč M. 1999: How to loop Carpathians – an attempt to reconstruct Meso-Cenozoic palinspastic history of the carpathian orocline. Geol. Carpath., Spec. Issue 50, 63—165. Plašienka D., Grecula M., Putiš M., Kováč M. & Hovorka D. 1997: Evolution and structure of the Western Carpathians: an overview. In: Grecula et al. (Eds.): Geological evolution of the Western Carpathians. Mineralia Slovaca – Monograph, Bratislava, 1—25. Popov S.V., Rögl F., Rozanov A.Y., Steininger F.F., Shcherba I.G. & Kováč M. 2004: Lithological-paleogeographic maps of Paratethys. Cour. Forsch.-Inst. Senckenberg 250, 1—46, 10 maps (Late Eocene to Pliocene). Royden L.H. 1993a: The tectonic expression of slab pull at continental convergent boundaries. Tectonics 12, 2, 303—325. Royden L.H. 1993b: Evolution of retreating subduction boundaries formed during continental collision. Tectonics 12, 629—638. Rögl F. 1998: Paleogeographic consideration for Mediterranean and Paratethys Seaways (Oligocene to Miocene). Ann. Naturhist. Mus. Wien 99A, 279—310. Rögl F., Spezzaferri S. & Corić S. 2002: Micropaleontology and biostratigraphy of the Karpatian-Badenian transition (Early-Middle Miocene transition) in Austria (Central Paratethys). Cour. Forsch.-Inst. Senckenberg 237, 47—67. Rudinec R. 1989: New view on the paleogeographic development of the Transcarpathian depression during the Neogene. Miner. Slovaca 21, 27—42. Rudinec R. 1990: Vertical distribution of Neogene sediments in the Transcarpathian depression. Miner. Slovaca 22, 393—398. Rylova T., Yakubovskaya T. & Khursevich G. 1999: Palaeobotanical evidence for correlating the stratigraphy of the Neogene deposits of Belarus. Acta Palaeobot. Suppl. 2, 359—363. Shvareva N.Ya. 1965: Correlation of the Lower Sarmatian and Upper Tortonian fossil flora from the Lvov and Fore-Carpathian areas. Dokl. AN SSSR, 163, 4, 952—955 (in Russian). Sitár V. 1967: Tertiärflora aus der Umgebung von Levice. Acta Geol. Geogr. Univ. Comen., Geol. 12, 155—162. Sitár V. 1982: Tertiäre Flora des SW-Teiles des Turiec-Beckens (Westkarpaten). Acta Geol. Geogr. Univ. Comen., Geol. 38, 191—206. Sitár V. & Kováčová-Slamková M. 1999: Palaeobotanical and palynological study of the Upper Badenian sediments from the NE part of the Vienna Basin (locality Devínska Nová Ves). Acta Palaeobot. Suppl. 2, 373—389. Slamková M. 2004: Paleovegetion and climatic trends during the Middle and Upper Miocene in Vienna Basin. Manuscript. Dissertation, Dept. of Geology and Paleontology – Comenius University, Bratislava, 1—87 (in Slovak). Soták J. & Kováč M. 2002: Paleogeographic changes of the West Carpathian Paleogene basins in time of Paratethys separation. Geol. Carpathica, Spec. Issue 53, 7—8. Ströbitzer-Hermann M. 2002: Systematik, Variabilität, regionale und stratigraphische Verbreitung sowie Ökologie der Gattung Acer L. in Mitteleruopa vom Oligozän bis ins Pliozän. Manuscript, Diss. Thesis, Formal. Naturwiss. Fakultät, Universtiät, Wien, 1—253. Ströbitzer-Hermann M. & Kovar-Eder J. 2003: Acer L.: Some stratigraphically relevant species and their importance as potential indicators of vegetation conditions. Acta Univ. Carol., Geol. 46, 4, 101—106. Stuchlik L. 1994: Neogene pollen flora of Central Europe. Part 1. Acta Palaeobot. Suppl. 1, 3—56. Stuchlik L. & Kvavadze E.V. 1987: Subrecent sporo-pollen spectra and their relation to Recent forest vegetation of Colchis (western Georgia, USSR). Palaeontographica, Abt. B 207, 133—151. Syabryaj S.V. 1992: Vegetation and volcanism in the Neogene of the Transcarpathians. In: Kovar-Eder J. (Ed.): Palaeovegetational development in Europe and regions relevant to its palaeofloristic evolution. Natur. Hist. Mus., Vienna, 231—234. Syabryaj S.V. 1999: Palaeolandscapes of the Late Sarmatian Hiparion Fauna Stage of the Ukraine (using palynological data). Acta Palaeobot. Suppl. 2, 399—401. Syabryaj S.V. 2003: Vegetation and climate of the Ukraine in the Neogene. Acta Univ. Carol. Geol. 46, 4, 49—55. Syabryaj S.V. & Stuchlik L. 1994: Development of flora and vegetation of the Ukrainian Estern Carpathians and Polish Western Carpathians. Acta Palaeobot. 34, 165—194. Syabryaj S.V. & Stuchlik L. 2004: Palaeofloristic and palaeoclimatic reconstruction on the territories of Ukraine and Poland during the Badenian-Sarmatian. Acta Palaeobot. 44, 55—68. Tari G., Horváth F. & Rumpler J. 1992: Styles of extension in the Pannonian Basin. Tectonophysics 208, 203—219. Ticleanu N. 1984: Contributions to the study of the Upper Badenian flora from Romania. D. S. Inst. Geol. Geofiz. Paleont. 68, 135—150. Tomek Č. & Hall J. 1993: Subducted continental margin imaged in the Carpathians of Czechoslovakia. Geology 21, 535—538. Yakubovskaya (Jakubovskaya) Z. 1993: Evolution of flora and climate in the Miocene of Belarus. In: Planderová E. et al. (Eds.): Paleoflor. Paleoclim. Chang. Cret. Tert. Geol. Úst. D. Štúra, Bratislava, 153—158. Vass D., Hók J., Kováč P. & Elečko M. 1993: The Paleogene and Neogene tectonic events of the Southern Slovakia depressions in the light of the stress-field analyses. Miner. Slovaca 25, 2, 79—92. Vass D., Kováč M., Konečný V. & Lexa J. 1988: Molasse basins and 310 KVAČEK et al. volcanic activity in Western Carpathian Neogene – its evolution and geodynamic chracter. Geol. Zbor. Geol. Carpath. 39, 5, 539—561. Walther H. & Zastawniak E. 2005: Sapindaceae (Aceroideae) from the late Miocene flora of Sośnica near Wrocław, a revision of Goeppert’s original materials and a study of more recent collections. Acta Palaeobot. 45, 85—106. Walther H. & Zetter R. 1993: Zur Entwicklung der paläogenen Fagaceae Mitteleuropas. Palaeontographica, Abt. B 230, 183—194. Wernike G. 1985: Uniform sense simple shear of continental lithosphere. Canad. J. Earth Sci. 22, 108—125. Wolfe J.A. 1979: Temperature parameters of humid and mesic forests of Eastern Asia and relation to forests of other regions of the Northern Hemisphere and Australasia. U. S. Geol. Surv. Prof. Pap. 1106, 1—37. Zetter R. 1998: Palynological investigation in the opencast mine Oberdorf, N Voitsberg, Styria, Austria. Jb. Geol. Bundesanst. 140, 4, 461—468. The Holocene 2016, Vol. 26(9) 1345­–1354 © The Author(s) 2016 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav DOI: 10.1177/0959683616640051 hol.sagepub.com Introduction The period of the so-called Last Glacial Maximum (LGM), which is part of the Late Pleniglacial (e.g. Magyari et al., 2014a, 2014b), is defined on the basis of the regression of sea level (Yokoyama et al., 2000) or the related maximum extent of glacier ice (Clark et al., 2009; Ehlers et al., 2013), which occurred between 26.5 and 20/19.0 kyr cal. BP. At the same time, the LGM period is generally considered to be climatically extreme, conditions in which the hitherto known Palaeolithic settlements retreat from exposed areas into preferential (more sheltered) refuges. In Germany, for instance, this period is usually described as the time of resettlement of the original occupied areas that became re-colonised only with the onset of the Magdalenian permeating from France (Terberger, 2013; Terberger and Street, 2002). Similarly, the reduction in the number of significant sites has also been noted in Moravia in the past (Oliva, 2005; Svoboda et al., 2002; Valoch, 1996, 2010). The climatic conditions considerably influenced Central, Western and Northern Europe during the highest phase of the Weichsel glaciation. The palaeoclimate in the Middle Danube region during the LGM is reconstructed as mean summer temperature of about 11°C with mild September (ca. 7°C). Winter began in November (−5°C), and in January and February, the temperature dropped down to −11°C to 12°C. The proposed mean annual precipitation peaked in July and August (3 mm/day), then it fell to its annual minimum of 1 mm/day in October, staying at an average 1–2 mm/day through winter (Davies et al., 2003). The Czech Republic and the adjacent territories were part of a relatively narrow (about 400 km wide) zone delimited by the front of the continental glacier in the north and by the Alps in the south (extent of glaciation, e.g. Ehlers et al., 2013). The reconstruction of Late Pleniglacial vegetation has traditionally been based on interpreting pollen data. Many pollen records of the period of the Last Glacial in Central Europe show a shift in pollen from dry steppe/shrub tundra to a birch/juniper woodland followed by a birch/pine forest (e.g. Amann et al., 2013; Jankovská and Pokorný, 2008; Magyari et al. 2014a, 2014b; New information augmenting the picture of local environment at the LGM/LGT in the context of the Middle Danube region Zdeňka Nerudová,1 Nela Doláková2 and Jan Novák3 Abstract Records of occupation by humans in the period following shortly after the Last Glacial Maximum (LGM; 21 ± 2 kyr cal. BP) are still very rare in Central Europe, since it is inferred that the extreme climatic conditions caused the decolonisation of previously settled areas. Our study focuses on the reconstruction of environmental conditions in the surroundings of the open-air Palaeolithic site, Brno-Štýřice III, which falls within this period. The research concentrated on the study of malacological, pollen and anthracological samples to reconstruct the climate shortly after the LGM. 14C dating places the chronostratigraphic position of the site more precisely at the end of the LGM, more specifically into Last Glacial Termination (LGT); analysis of chipped stone industry identifies the occupation with the Epigravettian settlement. The site represents a significant example of the recurrent habitation of a microclimatically favourable microregion near a watercourse in order to utilise available sources of livelihood. The results of the pollen, anthracological and malacological analyses documented a more or less treeless character of surrounding landscape. The vegetation was mostly formed by a mixture of shrub tundra and grassy loess steppe vegetation. Open woodland with birch, willow and bird cherry occurred in relatively moist river banks and the lower slopes of hills with more favourable microclimatic conditions. Malacological collection highlights the presence of cool temperate species (Pupilla loessica, Vallonia excentrica and Helicopsis striata). In the surroundings of the studied site, the pollen analysis provided a reconstruction of parkland forest-steppe vegetation (with lack of temperate deciduous trees) typical for a cold and dry climate. Development of both dry and moist stands near the watercourse was recorded. Anthracological analysis is in support of similar outcomes, reconstructing the presence of open woodland with dominating birch and willow in the nearby surroundings. Keywords Anthracology, LGM/LGT, malacology, Middle Danube region, Palaeolithic settlement, palynology Received 12 November 2015; revised manuscript accepted 22 February 2016 1Moravian Museum, Historical Museum, Centre for Cultural Anthropology, Czech Republic 2Institute of Geological Sciences, Faculty of Science, Masaryk University, Czech Republic 3Laboratory of Archaeobotany and Palaeoecology, Faculty of Science, University of South Bohemia, Czech Republic Corresponding author: Zdeňka Nerudová, Moravian Museum, Historical Museum, Centre for Cultural Anthropology, Zelný trh 6, Brno, CZ-65937, Czech Republic. Email: znerudova@mzm.cz 640051HOL0010.1177/0959683616640051The HoloceneNerudová et al. research-article2016 Research paper 1346 The Holocene 26(9) Willis et al., 2000). Nevertheless, palaeobotanical data from LGM sites in eastern-central Europe generally confirm the existence of not only parkland landscapes with coniferous trees (such as Pinus sylvestris, Pinus cembra, Larix, Picea and Juniperus) but also more demanding tree taxa (Abies, Corylus, Quercus, Fagus, Fraxinus, Ulmus, Taxus or Carpinus; see Jankovská and Pokorný, 2008; Willis and Van Andel, 2004). Taking into account new palaeobotanical and molluscs data, the local conditions in the whole area of the Czech Republic were more favourable (for more discussion, see Horsák et al., 2010; Jankovská and Pokorný, 2008; Juřičková et al., 2014; Ložek, 2001, 2009). The aim of this study is to present the new information about the local climatic conditions during the LGM/LGT period based on the results of excavation of a Palaeolithic site. Archaeological background From the archaeological point of view, the LGM period in Central Europe is characterised by the end of Gravettian in the so-called Kostenki-Willendorf phase (around 24–25 kyr cal. BP) and the onset of Magdalenian colonisation, which proceeded from Western Europe through the north German lowlands as far as Moravia, where it arrived in around 17–18 kyr cal. BP (Neruda, 2010; Neruda et al., 2009). Despite the generally adopted awareness of the decolonisation of the climatically exposed regions of Central Europe in the LGM and the following period that preceded the Magdalenian colonisation, in recent years, we applied ourselves to the study of an archaeological site, the occupation of which falls within the period, when the LGM petered out, and the LGT that followed, on the grounds of 14C dating (Nerudová and Neruda, 2015). The evidence of the local more favourable conditions can be documented not only by palaeorecords in vegetation but also by archaeological evidence. On the basis of the cultural classification or geomorphological position we can associate with the short period between the end of the Gravettian and before the onset of the Magdalenian in Moravia almost 49 sites. Contrary to the previous Gravettian, the re-analyses of the settlement dynamics revealed significant changes. On the basis of reconstruction of settlement strategy of the Epigravettian sites we can conclude that the majority of localities are situated within the interval of 200– 250 m a.s.l.; the sites are mostly oriented towards the east through to north-east and are usually much closer to (mostly) small river in protected areas (Nerudová and Neruda, 2015). Regional setting, site characteristics and stratigraphy The excavation site Brno-Štýřice III (global positioning system (GPS): World Geodetic System 1984 (WGS-84): 49°11′2.5505″N, 16°35′41.6602″E; S-JTSK: 1161873.78, 599243.33 – the centre of the locality) is located in the south-western part of Brno, approximately 300 m to the south of the current bank of the Svratka River (Figure 1). Here, at an elevation of 210 m a.s.l. (10 m above the river level) is a step in the lower terrain which on the west side rises up into a low but steep cliff of Lower Devonian conglomerates known as Červený kopec (Red Hill) with a maximum height of 311.42 m a.s.l. The Quaternary cover of the region is formed by an accumulation of aeolian (loess) and colluvial sediments deposited on a terrace consisting of gravels with clay matrix and sandy gravels of Quaternary age, which were detected at a depth of 6–8 m. A coring revealed that the sequence of Pleistocene sediments at the locality is up to 10 m thick in places and is not divided by any distinct fossil soils. Towards the superposed layers, the sequence of loess and loess sediments is covered by an orange silty sediment C (weakly developed soil followed by Holocene stratigraphy brown earth; see Nerudová et al., 2012: Figure 2). Within the whole area under investigation, Holocene soil inclusive of the A- and B-horizons is only preserved in higher parts (i.e. at the W and SW edge of the excavated surface). In the central part of the slope, only a relic of the B-horizon is preserved, and in the NE and E parts of the investigated area (i.e. in the lowest parts), the B-horizon is not preserved at all. This being the reason why the A-horizon settled immediately on the Pleistocene sediments. The site of Brno-Štýřice III was first investigated by K Valoch; in 1972, he conducted small-scale rescue excavations there; nevertheless, the excavations yielded a representative collection of chipped stone industry as well as the remains of animal bones and blobs of ochre (Valoch, 1975). The assemblage was dated later on (Valoch, 1980, 1996; Verpoorte, 2004: 262); for more discussion, see Nerudová and Neruda (2014). The next large-scale rescue excavations were carried out in 2009 and 2011–2014. They revealed the extent of settlement, a new site (in 2009 – Štýřice IIIa), and yielded a large amount of lithics and osteological material. Archaeological finds of the Palaeolithic age were found in the uppermost part of the Late Weichselian loess cover, which formed a 25-cm-thick (approximately) layer of orange-brown loess-like sediment (weakly developed soil). This layer was almost continuously present over the entire investigated area as it followed the inclination of the terrain, which was quite steep in certain places. There was a relatively sharp border between the horizon with archaeological finds and the underlying sediments. Although the lithic artefacts and bones were deposited in loess-like sediment, the base of the superposed chernozem horizon A sporadically intruded (e.g. the upper part of a mammoth jawbone; Nerudová et al., 2012). The first radiocarbon date was obtained from a charred bone of reindeer (Valoch, 1980, 1996), the next dating (performed by A Verpoorte in 2001 from the same sample; see Nerudová and Neruda, 2014: Table 4), yielded a date very similar to the previous one (Verpoorte, 2004). The evidence of human activities falling the site within the Epigravettian period (Nerudová, 2015; Valoch, 1975). Sampling during the last seasons of excavations provides us to perform the palaeobotanical analysis. Materials and methods The collection of samples The collection of samples was carried out within the archaeological research of the site in 2009 and 2011–2014 (Figure 2; e.g. Nerudová and Neruda, 2014). We took samples of varying volumes: individual bigger charcoals (0.5–2 cm) macroscopically distinguishable in the course of preparation of the archaeological layer (all bigger samples taken during excavation were determined as fragments of burnt bones; Roblíčková et al., 2015) and target sediment samples of 5–10 L from the places with dispersed pieces of charcoal or bones. For the pollen analysis, we took samples of 0.5–1 L volume. The extractions of the charcoal, molluscs and bones from the sediment samples were subjected to the standard flotation procedure using staggered sieves with a mesh size of 0.25 mm. Radiocarbon dating New radiocarbon dating was performed using the accelerator mass spectrometry (AMS) method in the laboratory in Oxford, where samples underwent standard laboratory procedure (Bronk Ramsey et al., 2004b). Animal bones (mammoth molars and mandible) coming from a distinct archaeological context served for the dating because of the volume required, since no other suitable material was available (the abundance and size of charcoals was very low, at the limit of the method; see Bronk Ramsey et al., 2004a). Before dating, the bones were not cleaned using chemical methods; they were only determined. The standard process in Oxlab is measurement of bone collagen by ultrafiltration Nerudová et al. 1347 method (Bronk Ramsey et al., 2004b). Isotopic fractionation has been corrected for using the measured 13C values measured on the AMS, the quoted 13C values are measured independently on a stable isotope mass spectrometer (see Bronk Ramsey et al., 2004a, 2004b). Laboratory preparations and analysis of fossil samples Palynological samples were picked from squares 83 and 95 (two samples from each of them). An accumulation of charred bones and overburnt sediment was detected in square 95, consequently a sediment was taken for palynological analysis; unfortunately, the pollen record from square 95 was very poor (see Table 2). Palynological samples were treated with HCl (20%), HF, KOH and HCl (10%) and heavy liquid ZnCl2 (density = 2 g/cm3) for standard maceration. The omission of acetolyse enabled clearer identification of contemporary pollen contamination. The final residue was diluted with glycerol. A Nikon Alphaphot 2 light microscope with 400× and 1000× magnifications was used for palynological observations. Taxa identification was mainly done according to Reille (1995) and Beug (2004). The pollen diagram was created using the POLPAL programme (Walanus and Nalepka, 1999). Figure 1.  (a) Moravia region with LGM/LGT sites mentioned in the text and (b) microregion of the Brno-Štýřice with Palaeolithic finds. 1: Štýřice III; 2: Štýřice IIIa; 3: Kamenná St; 4: Hospital; 5: Polní St; 6:Vídeňská St no. 15; squares: isolated or sporadic finds; circles: extent sites. Source: Digitalisation – Z. Nerudová. 1348 The Holocene 26(9) The charcoal analysis was performed only on fragments from the largest fraction (>1 mm). The charcoals were identified using an episcopic interference microscope (Nikon Eclipse 80i) with 200–500 magnification and the reference collection. The additional standard identification keys were also used (Heiss, 2000; Schweingruber, 1990). The species abundance was expressed in the number of charcoal fragments (e.g. proposed by Delhon, 2006) and charcoal anthracomass (e.g. Carcaillet and Thinon, 1996). The individual taxa were weighted with an accuracy of 0.001 g. The sediment anthracomass (milligram of charcoal per kilogram of sediment; Talon et al., 1998) was derived from the charcoals larger than 1 mm. Mollusc shells for malacological studies were derived from individual sediment samples taken with the bone samples for laboratory processing. Results Radiocarbon dating Most recent radiocarbon dating was done on samples taken during the excavations in 2009 and 2011. Only a single date from a mammoth molar was obtained because of the low collagen content of the other samples. Dating of other samples from the 2012 excavation was successful. From a total of four samples, only two dates were obtained, and these dates were similar to the previous ones (Table 1). Sample of burnt bone (OxA-28114) gave a good yield of carbon on combustion, and a CN ratio of 7, which indicates that there is some pyrolysed collagen remaining. In addition, the stable isotope ratio (d13C) was −22.2, which is acceptable for a large mammal. For this reason, the sample was OxA’ed. Dating of the next two samples of charred bones taken from the excavation in 2014 unfortunately failed because of very low yield. Pollen analysis A very interesting pollen spectrum was found in samples from square 83. Predictably about one-fifth of the total number of the determined pollen grains and spores consisted of palynomorphs redeposited from the older Tertiary sediments. Woody plants were relatively amply represented by pollen grains of pine with a slight prevalence of common Pinus sylvestris over Pinus cembra. Other species that were determined include Betula – finding of three grains in a clump testifies to a short transport, less commonly Alnus and sporadically Corylus (Figure 3). From the pollen grain ratios of woody species (arboreal pollen (AP)) 52% Figure 2.  Detail plan of the Brno-Štýřice III site (excavations 2009–2014) and positions of taken samples for analyses. Black dot: pollen sample; asterisk: molluscs; square: charcoals. Source: Digitalisation – Z. Nerudová. Table 2.  List and abundances of pollen grains. Square 83 Square 95 Arboreal pollen (AP)  Alnus 2    Betula 6    Corylus 1    Ephedra 1     Pinus sylvestris 35     Pinus cembra 24     Rosaceae type Rubus 1 1 Nonarboreal pollen (NAP)  Artemisia 1     Asteraceae, Cichorioideae 4     Asteraceae,Asteroideae 5 2   Brassicaceae type Cardamine 1 1  Chenopodiaceae 6 1  Chrysosplenium 6    Cyperaceae 2    Daucaceae 1    Ericaceae 1    Helianthemum 1    Persicaria 1    Plantago 1    Poaceae 10 1  Glyceria type 2    Ranunculaceae 3     Caltha 2     Delphinium 4    Thalictrum/Illecebrum 5    Veronica 3   Sporophyta  Botrychium 1    Lycopodium 1     Polypodiaceae smooth 1    Sphagnum 1    Bryophyta 2   Algae   Botryococcus braunii 16 1  Pediastrum 1    Circulisporis 6   Fungi xx x  Glomus 3   Tertiary redepositions undetermined 21   Table 1.  14C data from Brno-Štýřice III. OxA-26961: 15,625 ± 75 BP (excavation 2009; molar, Mammuthus primigenius) OxA-28298: 15,215 ± 70 BP (excavation 2012; molar, Mammuthus primigenius) OxA-28114: 14,870 ± 90 BP (excavation 2012; charred bone, Mammuthus primigenius) Nerudová et al. 1349 and herbs (nonarboreal pollen (NAP)) 48%, the character of vegetation appears to be a moderately forested landscape to parkland (Table 2). However, the proportion of woody plants (in which pollen of Pinus markedly prevails) can be greatly overvalued because of prodigious pollen production and the great flying range of pine pollen grains. The herbal constituent of the spectrum included the representatives of both drier and waterlogged habitats; for example, grasses Poaceae, floscular Asteraceae, Artemisia, or Chenopodiaceae occurred in drier areas, ascertained were Delphinium or Veronica. Bushes such as Ephedra, Rubus type or Helianthemum and Ericaceae were also represented. Elements characteristic for damp, waterlogged habitats or watersides such as Cyperaceae, Glyceria, Caltha, Chrysosplenium or scarce spores of Sphagnum were also found. Colonies of aquatic Botryococcus braunii were relatively abundant; those of the Pediastrum were sporadic. A paucity of thermophilic woody species together with taxa typical for cold periods of the Quaternary such as Helianthemum, Thalictrum and Ephedra determines the character of the climate. Anthracological analysis A total of 89 charcoal fragments and 6 charcoal species from 13 samples were identified. Anthracological samples were distinguished by the low presence of small pieces of charcoals (the most common charcoal size was 2–3 mm). The anthracomass of analysed samples was very low. A significant feature of the entire assemblage of samples was a considerable prevalence of carbonised bone fragments over wood charcoals. In the charcoal samples obtained from the Epigravettian layer, the dominant tree was Betula (34.8%), followed by abundant charcoal of Salix (27.0%) and Padus (21.3%). The presence of Picea/Larix (11.2%) was relatively common. Only scarce occurrences of Hippophae (4.5%) and Ericaceae (1.1 %) were recorded (Figure 4). Malacological analysis The first representatives of malacofauna that were found are Pupilla loessica (9 pcs), Vallonia excentrica (1 pc) and Helicopsis striata (1 pc) coming from the hearth area (square 9/Q, excavation 2009; determination by L. Juřičková; Nerudová et al., 2012). Other individuals of the Pupilla loessica species (determination by M. Horsák) were found during the next season of excavation (i.e. 2012): square 35 (6 pcs), square 48 (2 pcs), square 49 (1 pc), square 26 (1 pc) and square 22 (1 pc). Figure 3.  Photographs of the main pollen types (square 83), magnification 1000×. 1: Pinus cembra type; 2: Betula – three grains; 3: Helianthemum; 4: Rosaceae type Rubus; 5: Ephedra; 6: Glyceria type; 7: Thalictrum; 8: Caltha. Source: Photograph – N. Doláková. Figure 4.  Number of charcoals in the study samples. 1350 The Holocene 26(9) Discussion Proxy data serving for the reconstruction of palaeoclimate could not be obtained through systematic sampling, because neither the state of preservation and the character of the Pleistocene sediments nor the character of rescue archaeological excavations allowed it. Despite several pollen samples taken, only one was positive for determination, and in this single case, it was taken close below the archaeological layer level (at its base). Relatively numerous shells of bivalves were found solely in relation to laboratory processing of large fragments, especially mammoth bones; at the same time, it has to be stressed that microfauna was not ascertained at all. In view of the soil chemistry influenced by post-deposition processes, the shells were always preserved only in the sediment and close to scarce bigger bone fragments or hearths; contrary to the surrounding area, such environment is always more calciferous, which facilitated their preservation (Nerudová et al., 2012; environmental requirement in general, for example, in Juřičková et al. (2014)). Determination of the osteological material was greatly impeded by its fragmentary character and severe surface deterioration, even in bones of large mammals with thick compact bones (Roblíčková et al., 2015). However, although we took all of the macroscopically apparent charcoals, and also the entire sediment from the places of hearths, the numerous tiny burnt fragments turned out to be animal bones, not woody species. Nevertheless, both archaeological and palaeobotanical analyses brought interesting, mutually complementary and corresponding results that are in harmony with the radiocarbon dating of the site. Pollen analysis indicates scarcity of temperate woody species at the site and the presence of taxa typical for cold periods of the Quaternary determining the character of the climate as cold and dry. Parkland vegetation with the development of both drier and waterlogged habitats near water streams was reconstructed. According to the determination of malacozoological analysis, the ascertained individuals belong to the typical representatives of loess steppe, since in the late glacial Pupilla loessica fades away (Horáčková et al., 2015; Horsák et al., 2010; Ložek, 1990, 2001, 2006). Anthracological analysis recorded a dominance of Betula, common presence of Salix, Padus, Picea/Larix and only scarce occurrence of Hippophae and Ericaceae in study samples. These results indicate a cold, dry climate which is consistent with results and reconstructions. The matrix of landscape was probably more or less treeless. Open woodland with Betula, Salix, Padus and Picea/Larix was restricted to relatively moist banks of the river and protected valley. We can find the recent vegetation analogy in the river banks in southern Siberia (Magyari et al., 2014a) or northern Mongolia. The mixture of Salix, Padus, Betula (e.g. Betula fusca), Picea obovata and Hippophae rhamnoides formed typical vegetation composition in the vicinity of rivers or streams. The cold and dry climate at the site is also indicated by the representatives of mammoth steppe fauna (of which most plentiful was exactly the Mammuthus primigenius, with Equus germanicus, Rangifer tarandus or Coleodonta antiquitatis as accessory species) and the results of analyses of carbon and nitrogen isotopes. Numerous fragments of animal bones could have resulted from deliberate human activity, substituting bones for shortage of wood in a period of shortage during the glacial maximum. Similar practices were ascertained, for instance, in Předmostí I-06 (Beresford-Jones et al., 2010), Dolní Věstonice II (Beresford-Jones et al., 2010; Svoboda, 1991a) or GrubKranawetberg (Bosch et al., 2012), and researches show the use of bones as fuel was a ‘common behavioural pattern during the Middle and Upper Palaeolithic in Northern Europe’. The use of bones as fuel was described in detail in the contribution by Bosch et al. (2012) since a more detailed analysis of this phenomenon is not a subject of this study. This is where the results of radiocarbon dating and other scientific analyses diverge to some degree. After calibration (CalPal: Weninger and Jöris, 2008, and IntCal2014: Reimer et al., 2013), all of the data acquired from the site of Brno-Štýřice III so far form two peaks with an interval of roughly 1000 years GrN 9350: 17,620 ± 120 cal. BP and OxA 26961: 18,880 ± 90 cal. BP, that is, just after the stated interval of LGM (21 ± 2 kyr cal. BP). All new 14C dates were obtained from the mammoth bones and mandibles, representing the only material found at the site from which it was possible to at least partly obtain any dates; these bones were found in close proximity to stone artefacts and within the same archaeological layer. Tools were also found in the sediment within the mandibles. We consider this close contextual association to be strong presumptive evidence for the contemporaneity of the lithic industry and mammoth bones, and considering the homogeneity of the dates, it is very possible that the site’s occupants gathered the remains of mammoth carcasses. However, the results of the pollen, anthracological and osteological analyses documented a similar character of surrounding habitats. The landscape was more or less treeless. The vegetation was mostly formed by shrub tundra vegetation with grassy loess steppe. Open woodland with birch and willow occurred in relatively moist river banks (of the nearest Svratka River) and foot of a hill (the Červený kopec Hill) with more favourable microclimatic conditions (Ložek, 2001, 2009). V. Ložek (2010) states, loess provides most evidence on the glacial environments in dry warm areas of Central Europe, which – in contrast to the conditions in north-western Europe – … never had the character of northern tundra, but of cold continental steppes and barren lands of InnerAsia instead.Aclear testimony brings the loess fossil fauna, primarily the almost ubiquitous snails, the communities of which were preserved in the loess in secondarily undisturbed original appearance, enabling a critical comparison with similar recent snail assemblages of Inner Asia. Nevertheless, on the grounds of our environmental analyses, manifestations of a slight warming in this period were not corroborated. Considering that the improvement of climatic conditions in the period shortly after the LGM (LGT) was only moderate, the changes in vegetation and fauna were probably relatively small; the microclimatic factor that enables surviving of typical zoocenoses (e.g. snails) in microclimatically suitable conditions in the face of the generally prevailing climate has to be considered as well (e.g. Horsák et al., 2015; Juřičková et al., 2014; Ložek, 1990, 2001, 2006). Regretfully at present, we do not have larger quantity of data regarding the LGT environment in archaeological context available for the studied region. Therefore, we have to rely on information characterising the previous last cold oscillation instead. If we take into account published isotopic data for mammoth in Europe and results of analyses of carbon and nitrogen isotopes in Brno-Štýřice III (Roblíčková et al., 2015), the results fit well together and generally confirm a cool steppe environment with low precipitation (Kovács et al., 2012; Pryor et al., 2013). The isotopic values from Brno-Štýřice III correspond to the Late Gravettian environment, especially in Moravia region (Roblíčková et al., 2015). For the Middle Danube region in the LGM period, the landscape is characterised as a combination of cold loess steppe and mosaic parkland (Feurdean et al., 2014; Heiri et al., 2014). In central and eastern part of Europe, the major vegetation type of megabioms of the type cold deciduous trees is represented by Alnus, Betula, Salix and Populus. Picea, Pinus, Abies, Larix and Juniperus represent coniferous trees. Grass and shrubs are represented by Nerudová et al. 1351 Ericaceae, Calluna, Hippophae, Poaceae, Cyperaceae and other NAPs. Artemisia and Chenopodiaceae/Amaranthaceae represent xerophytic herbs (Feurdean et al., 2014; Heiri et al., 2014). We have to consider the station at Stránská skála IV the nearest analogous and at the same time archaeological site. The Epigravettian site, dated at 18,220 ± 120 and 17,740 uncal. yr BP, yielded evidence of hunting of Equus, which prevailed, Rangifer tarandus, Bos, Mammuthus and Coleodonta antiquitatis. The mollusc successions acquired is indicative of a major biological rearrangement of the sediment since together with Pupilla loessica, also a striatic fauna was found, if it were a homogeneous successions (Svoboda, 1991b). Herb assemblage was also acquired from this site, and stratigraphy made its assessment complicated (the Epigravettian industry was situated in the uppermost part of the Weichselian loess also in this area; thus, it became secondarily turned into soil by the superposed Holocene horizon). Together with less climatically demanding woody species (Betula, Salix, Pinus, Corylus and Alnus), the sample also contained herbs (Cyperaceae, Poaceae, Artemisia, Asteraceae-Tubiflorae, Ericaceae, Lythrum, Chenopodiaceae and Silenaceae), ferns (Polypodiaceae) and moss (Sphagnum; Svoboda, 1991b). In the South Moravian region, the profiles in Dolní Věstonice II or in Bulhary can be considered the closest regional and temporal analogous situation. Pollen analyses indicate that towards the end of the Weichselian interpleniglacial, coniferous trees (pine and spruce) were prevalent in Dolní Věstonice II, although more demanding woody species such as oak and beech also appear sporadically. Pollen grains of these more demanding species were also ascertained in the filling of the calva from triple burial at this site. According to H. Svobodová (2002), the herb spectrum points to forest–steppe character of the environment (Svobodová, 1991). Water and peat environment in the surroundings is indicated by Myriophyllum, Sparganium, Potamogeton, Trapa natans and algae (Svobodová, 1991). Anthracological analysis supports the presence of Larix, Picea/Larix, Pinus sylvestris, Pinus cembra, Betula, Hippophae and Juniperus at this site (Svoboda et al., 2015). Anthracological analyses from the nearby Dolní Věstonice I confirmed the occurrence of pine, spruce and larch; further analyses testify to fir, perhaps also poplar (see Beresford-Jones et al., 2010; Svobodová, 2002). In the pollen spectrum, obtained from the core situated near the Bulhary Village and reaching down to about 10 m of aeolic loess layers and some 40–50 cm in thickness of compressed organogenic sediments (the moss peat and algal gyttja; 25,675 + 2.750–2.045 BP; Hv 10,855), coniferous species prevailed, birch, juniper, but also scattered temperate deciduous trees (Ulmus, Acer, Quercus and Tilia) were found, and these could grow at favourable sites in relation to relief. Unfortunately, the result of pollen analysis from this locality reconstructed vegetation closely before LGM. In the assemblages, over 200 types of palynomorphs (pollen, spores, etc.) have been found, which indicates a very rich flora and vegetation growing in at least six different biotopes of the Pálava Hills region (Rybníčková and Rybníček, 2014). The spectrum indicates grass and herb plant steppe community. The vegetation also comprised aquatic and swamp plants and ferns (Rybníčková and Rybníček, 1991, 2014; Svoboda et al. 2002). Not only anthracological or pollen results but also various malacological analyses corroborate that the sporadic but several times observed findings of temperate deciduous trees could indicate the existence of refugia, which were preserved in more favourable enclaves – on southerly oriented slopes of the Pálava Hills – after the climatic deterioration (Juřičková et al., 2014; Ložek, 2006, 2009). According to Musil (1999, 2003), we can presume that such refuge areas facilitating growth of woody species requiring higher temperatures could have persisted since the previous interglacial; for the area of Moravia, Ložek (2009) or Horáčková et al. (2015) and Juřičková et al. (2014) argue for their existence on the grounds of malacozoological studies. We know of pollen spectra capturing the LGM period from several sites in the Moravian Karst, for example, the Kůlna (layer 6; see Svobodová, 1988) or Barová (Seitl et al., 1986) and the Balcarka Caves (Doláková, 2010). At Balcarka Cave, prevailing herbs were found together with pollen of Betula in the sediment dated at 28,360 uncal. BP, captured inside the cave (Doláková, 2010). Within layers 11 and 12 in the Barová Cave (Seitl et al., 1986), the share of woody species increased and decreased several times (amounting up to 56% in the central part) – with prevalent Pinus, present Betula, Alnus, Picea and Corylus. In the herb spectrum, Poaceae and Asteraceae prevailed; Helianthemum, Selaginella, and Ephedra were present. Broadleaved trees requiring higher temperatures were not captured at the site. Nevertheless, alder, spruce and hazel do not represent typical tundra vegetation, either. Watercourses and the rugged relief (compare Lisá et al., 2013) probably made the climate more moderate in these areas. The presence of macrofossil and charcoal records from the period shortly after LGM is still very rare in Central Europe. In addition to the presented site of Brno-Štýřice III, another significant site in the broader regional context is Mohelno-Plevovce (Škrdla et al., 2015); upon the anthracological analysis, it reconstructs the vegetation shortly (19,690 ± 120 cal. BP) after the LGM. The results of anthracological analysis indicate cold and dry shrub tundra vegetation, patches of open woodland with Salix, Betula and Juniperus and grassy loess steppe (Škrdla et al., 2015). Similar climatic and vegetation conditions, closely compared with the Central Europe LGM climate, were described in detail from Altai region in southern Siberia. This region is recently regarded as the best known modern analogue of the last Pleniglacial of central Europe (Horsák et al., 2010). The results of studied spectrum of snail taxa indicates, that the full-glacial landscapes of Central European lowlands were not completely dominated only by open and dry loess steppe, but they contained a significant component of shrubby vegetation, patches of wet habitats and probably also areas of woodland at sites with a more favourable climate (Horsák et al., 2010). Conclusion At Brno-Štýřice III, evidence of human occupation in the end of the last (Weichselian) glacial was situated in the uppermost part of the Last Weichselian loess affected by intense Holocene processes of turning into soil. As a typical aeolian calcareous sediment, loess facilitates preservation of a certain type of material, especially terrestrial snails. Despite unfavourable deposition conditions, we managed to ascertain new information augmenting the picture of local environment of the LGM/LGT in the context of the Middle Danube region. Although this information confirms the contemporaneous incidence of plant assemblages favouring lower temperatures, at the same time, it is evident that humans chose suitable temperate refuges close to water resources for their settlement, where they were adequately suggest more favourable microclimatic conditions protected from extremes of the climate. The ascertained species composition of anthracological samples differs from the collections from other Central European LGM sites (e.g. Dolní Věstonice IIa; Svoboda et al., 2015); this may be influenced by the position and character of settlement. Abundant presence of charcoals of Salix and Padus corresponds to microclimatically more favourable situation of the site near a watercourse. Scanty representation of woody species charcoals against very abundant presence of charcoals from bones is indirect evidence of scarcely represented woody species in the vicinity of the studied site, whereas it has to be mentioned that low 1352 The Holocene 26(9) abundance of charcoal was probably recorded also at other archaeological sites dated back to the LGM period (Předmostí). The charcoal analysis reconstructed the presence of sparse birch groves in the vicinity. These groves were probably tied to microclimatically favourable conditions (e.g. damper northern slopes) within the prevailing cold steppe or steppe–tundra. Recently, it is possible to come across analogous types of vegetation in Siberia (Horsák et al., 2010, 2015; Magyari et al., 2014a) or Mongolia. These habitats are characterised by both low temperatures during winter season and cold dry winds and very low rainfall, which impose large limitations on the presence of dense coniferous forests (dark tajga forests). Numerous fragments of animal bones could have resulted from deliberate human activity. We would like to point out the importance of the results, especially in the context of the still poor known archaeological background, which is based mainly on the nonstratified sites. At Brno-Štýřice III, occupation by humans and species composition of vegetation was apparently influenced by the mentioned vicinity of a large waterway. Keeping to the outcomes of radiocarbon dating together with other analyses, we draw a temporal link of the settlement in Brno-Štýřice III more probably with the LGT period. The site is an exemplification of a microclimatically favourable refuge area serving for humans towards the end of Upper Palaeolithic, the period for which absence of archaeological evidence in a considerable part of Europe corroborates the decolonisation of vast areas prior to the onset of the Magdalenian settlement. We hope that the results will be helpful in the discussion concerning the climatic conditions and LGM/LGT central European occupation. Acknowledgements We are very grateful to Michal Horsák and Lucie Juřičková for determination of mollusc fauna and Martina Roblíčková for many valuable comments on the faunal composition. We would like to mention the anonymous reviewers for their valuable comments on this manuscript. Funding The research reported here was financially supported by the Ministry of Culture of the Czech Republic by institutional financing of long-term conceptual development of the research institution (the Moravian Museum, MK000094862; Z. Nerudová), institutional support of Institute of Geological Sciences, Masaryk University – 312222 (N. Doláková) and GAČR 13-11193S (J. Novák). References Amann M, Klimont Z and Wagner F (2013) Regional and global emissions of air pollutants: Recent trends and future scenarios. Annual Review of Environment and Resources 38(3): 1–55. Beresford-Jones DG, Johnson K, Pullen AG et al. (2010) Burning wood or burning bone? A reconsideration of flotation evidence from Upper Palaeolithic (Gravettian) sites in the Moravian Corridor. Journal of Archaeological Science 37(11): 2799–2811. Beug HJ (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. München: Verlag Dr. Friedrich Pfeil. Bosch MD, Nigst PR, Fladerer FA et al. (2012) Humans, bones and fire: Zooarchaeological, taphonomic, and spatial analyses of a Gravettian mammoth bone accumulation at GrubKranawetberg (Austria). Quaternary International 252: 109–121. Bronk Ramsey C, Higham T and Leach P (2004a) Towards highprecision AMS: Progress and limitations. Radiocarbon 46: 17–24. Bronk Ramsey C, Higham T, Bowles A et al. (2004b) Improvements to the pretreatment of bone at Oxford. Radiocarbon 46: 155–163. Carcaillet C and Thinon M (1996) Pedoanthracological contribution to the evolution of the upper treeline in the Maurienne Valley (North French Alps): Methodology and preliminary data. Review of Palaeobotany and Palynology 91(1–4): 399– 416. Clark PU, Dyke AS, Shakun JD et al. (2009) The Last Glacial Maximum. Science 325: 710–714. Davies W, Valdes P, Ross C et al. (2003) The human presence in Europe during the Last Glacial Period III: Site clusters, regional climates and resource attractions. In: Van Andel TH and Davies SW (eds) Neanderthals and Modern Humans in the European Landscape during the Last Glaciation: Archaeological Results of the Stage 3 Project (McDonald Institute for Archaeological Research Monographs). Cambridge: McDonald Institute for Archaeological Research, pp. 191–220. Delhon C (2006) Palaeo-ecological reliability of pedo-anthracological assemblages. In: Dufraisse A (ed.) Charcoal Analysis: New Analytical Tools and Method for Archaeology (BAR International Series no. 1483). Oxford: British Archaeological Reports, pp. 9–24. Doláková N (2010) Palynologické výsledky studia sedimentů jeskyně Balcarka (2007). In: Nerudová Z (ed.) Jeskyně Balcarka v Moravském krasu. Interdisciplinární studie. Anthropos Vol. 31 (N. S. 23). Brno: Moravské zemské muzeum, pp. 51–54. Ehlers J, Astakhov V, Gibbard PL et al. (2013) GLACIATIONS Late Pleistocene in Eurasia. In: Elias SA (ed.) Encyclopedia of Quaternary Science. 2nd Edition. Amsterdam: Elsevier, pp. 224–235. Feurdean A, Perşoiu A, Tanţău I et al. (2014) Climate variability and associated vegetation response throughout Central and Eastern Europe (CEE) between 60 and 8 ka. Quaternary Science Reviews 106: 206–224. Heiri O, Brooks SJ, Renssen H et al. (2014) Validation of climate model-inferred regional temperature change for late-glacial Europe. Nature Communications 5: 4914. Heiss AG (2000) Anatomy of European and North American woods – An interactive identification key. Available at: http:// www.holzanatomie.at/ (accessed 22 August 2006). Horáčková J, Ložek V and Juřičková L (2015) List of malacologically treated Holocene sites with brief review of palaeomalacological research in the Czech and Slovak Republics. Quaternary International 357: 207–211. Horsák M, Chytrý M, Hájková P et al. (2015) European glacial relict snails and plants: Environmental context of their modern refugial occurrence in southern Siberia. Boreas 44: 638–657. Horsák M, Chytrý M, Pokryszko BM et al. (2010) Habitats of relict terrestrial snails in southern Siberia: Lessons for the reconstruction of palaeoenvironments of full-glacial Europe. Journal of Biogeography 37: 1450–1462. Jankovská V and Pokorný P (2008) Forest vegetation of the last full-glacial period in the Western Carpathians (Slovakia and Czech Republic). Preslia 80: 307–324. Juřičková L, Horáčková J and Ložek V (2014) Direct evidence of central European forest refugia during the last glacial period based on mollusc fossils. Quaternary Research 82: 222–228. Kovács J, Moravcová M, Újvári G et al. (2012) Reconstructing the paleoenvironment of East Central Europe in the Late Pleistocene using the oxygen and carbon isotopic signal of tooth in large mammal remains. Quaternary International 276–277: 145–154. Lisá L, Škrdla P, Havlín ND et al. (2013) The role of abiotic factors in ecological strategies of Gravettian hunter–gatherers Nerudová et al. 1353 within Moravia, Czech Republic. Quaternary International 294: 71–81. Ložek V (1990) Molluscs in loess, their paleoecological significance and role in geochronology – Principles and methods. Quaternary International 7–8: 71–79. Ložek V (2001) Molluscan fauna from the loess series of Bohemia and Moravia. Quaternary International 76–77: 141–156. Ložek V (2006) Last Glacial paleoenvironments of the West Carpathians in the light of fossil malacofauna. Anthropozoikum 26: 73–84. Ložek V (2009) Refugia, migrace a brány II. Ve světle dnešních poznatků. Živa 5: 194–198. Ložek V (2010) Spraš a sprašová step – přehlížený biom ledových dob I. Spraš – zemina dvou tváří. Živa 3: 98–101. Magyari EK, Kuneš P, Jakab G et al. (2014a) Late Pleniglacial vegetation in eastern-central Europe: are there modern analogues in Siberia? Quaternary Science Reviews 95: 60–79. Magyari EK, Veres D, Wennrich V et al. (2014b) Vegetation and environmental responses to climate forcing during the Last Glacial Maximum and deglaciation in the East Carpathians: Attenuated response to maximum cooling and increased biomass burning. Quaternary Science Reviews 106: 278–298. Musil R (1999) Životní prostředí v posledním glaciálu na území Moravy. Acta Musei Moraviae – Scientiae geologicae 84: 161–186. Musil R (2003) The Middle and Upper Palaeolithic game suite in central and southeastern Europe. In: Van Andel TH and Davies SW (eds) Neanderthals and Modern Humans in the European Landscape during the Last Glaciation: Archaeological Results of the Stage 3 Project (McDonald Institute for Archaeological Research Monographs). Cambridge: McDonald Institute for Archaeological Research, pp. 167–190. Neruda P (2010) Chronologická pozice paleolitického osídlení jeskyně Balcarky ve středoevropském kontextu. In: Nerudová Z (ed.) Jeskyně Balcarka v Moravském krasu. Interdisciplinární studie. Anthropos Vol. 31 (N. S. 23). Brno: Moravské zemské muzeum, pp. 83–95. Neruda P, Nerudová Z and Čulíková V (2009) Loštice I – Kozí vrch. Magdalénienská stanice v Horním Pomoraví. Acta Musei Moraviae – Scientiae sociales 94: 39–64. Nerudová Z (2015) On site settlement activities: The example of the Epigravettian Site of Brno-Štýřice III (Czech Republic). Anthropologie (Brno) 53: 245–256. Nerudová Z and Neruda P (2014) Štýřice III (Koněvova St. or Vídeňská St.) – An Epigravettian Site in Brno (Czech Republic). Interdisciplinaria Archaeologica Natural Sciences in Archaeology V: 7–18. Nerudová Z and Neruda P (2015) Moravia between Gravettian and Magdalenian. In: Sázelová S, Novák M and Mizerová A (eds) Forgotten Times and Spaces: New Perspectives in Paleoanthropological, Paleoetnological and Archeological Studies. Brno: Institute of Archaeology of the CAS, Masaryk University, pp. 378–394, 549–598. Nerudová Z, Neruda P, Lisá L et al. (2012) Záchranný výzkum mladopaleolitických lokalit v Brně-Štýřicích v kontextu osídlení Brněnska. Archeologické rozhledy 64: 591–627. Oliva M (2005) Palaeolithic and Mesolithic Moravia. Brno: Moravské zemské muzeum. Pryor A, O’Connell TC, Wojtal P et al. (2013) Investigating climate at the Upper Palaeolithic site of Kraków Spadzista Street (B), Poland, using oxygen isotopes. Quaternary International 294: 108–119. Reille M (1995) Pollen et Spores d’Europe et d’Afrique du nord. Marseille: Laboratoire de Botanique Historique et Palynologie. Reimer PJ, Bard E, Bayliss A et al. (2013) IntCal13 and MARINE13 radiocarbon age calibration curves 0–50 000 years cal BP. Radiocarbon 55: 1869–1887. Roblíčková M, Nerudová Z and Nývltová Fišáková M (2015) Analýza zvířecích kostí epigravettienské lokality BrnoŠtýřice III z výzkumných sezón 2012–2014. Archeologické rozhledy 68: 627–653. Rybníčková E and Rybníček K (1991) The environment of the Pavlovian – Palaeoecological results from Bulhary, south Moravia. In: Eder-Kovar J (ed.) Palaeovegetational Development in Europe and Regions relevant to its Paleofloristic Evolution (Proceedings of the Pan – European Palaeobotanical Conference, Vienna, 19–23 September 1991). Vienna: Museum of Natural History, pp. 73–79. Rybníčková E and Rybníček V (2014) Palaeovegetation in the Pavlovské vrchy hills region (South Moravia, Czech Republic) around 25,000 BP: The Bulhary core. Vegetation History and Archeobotany 23: 719–728. Schweingruber FH (1990) Microscopic Wood Anatomy. Birmensdorf: Swiss Federal Institute of Forestry Research. Seitl L, Svoboda J, Ložek V et al. (1986) Das Spätglazial in der Barová-Höhle im Mährischen Karst. Archäologisches Korrespondenzblatt 16: 393–398. Svoboda J (1991a) Dolní Věstonice II – Western Slope. ERAUL 54. Liège: Service de Préhistoire, Université de Liège. Svoboda J (1991b) Stránská skála. Výsledky výzkumu v letech 1985–1987. Památky archeologické 82: 5–47. Svoboda JA, Havlíček P, Ložek V et al. (2002) Paleolit Moravy a Slezska (Dolnověstonické studie, Vol. 8). Brno: Archeologický ústav AVČR. Svoboda J, Hladilová Š, Horáček I et al. (2015) Dolní Věstonice IIa: Gravettian microstratigraphy, environment, and the origin of baked clay production in Moravia. Quaternary International 359–360: 195–210. Svobodová H (1988) Pollenanalytische Untersuchung des Schichtkomplexes 6–1 vor der Kůlna- Höhle. In: Valoch K (ed.) Die Erforschung der Kůlna Höhle 1961–1976. Anthropos Vol. 24 (N. S. 16). Brno: Moravské zemské muzeum, pp. 205–210. Svobodová H (1991) Pollen analysis of the Upper Paleolithic triple burial at Dolní Věstonice. Archeologické rozhledy 43: 505–510. Svobodová H (2002) Vývoj vegetace. In: Svoboda JA, Havlíček P, Ložek V et al. Paleolit Moravy a Slezska (Dolnověstonické studie, Vol. 8). Brno: Archeologický ústav AVČR, pp. 48–51. Škrdla P, Nejman L, Bartík J et al. (2015) Mohelno – A terminal Last Glacial Maximum industry with microlithic tools made on carenoidal blanks. Quaternary International. Epub ahead of print 19 June. DOI: 10.1016/j.quaint.2015.05.055. Talon B, Carcaillet Ch and Thinon M (1998) Études pedoanthracologiques des variations de la limité supérieure des arbres au cours de l’Holocéne dans les Alpes Francaises. Géographie physique et Quarternaire 52: 1–14. Terberger T (2013) Le Dernier Maximum glaciaire entre Rhine et le Danube un réexamen critique. In: Bodu P, Chehmana L, Klaric L et al. (eds) Le Paléolithique supérieur ancien de l’Europe du Nord-Ouest Réflexions et synthèses à partir d’un projet collectif de recherche sur le centre et le sud du Bassin parisien. Actes du colloque de Sens (15–18 avril 2009). Paris: Bulletin de la Société Préhistorique Francaise, Memoire no. 56, pp. 415–443. Terberger T and Street M (2002) Hiatus or continuity? New results for the question of pleniglacial settlement in Central Europe. Antiquity 76: 691–698. Valoch K (1975) Paleolitická stanice v Koněvově ulici v Brně. Archeologické rozhledy 27: 3–17. Valoch K (1980) La fin des temps glaciaires en Moravie (Tchécoslovaquie). L’Anthropologie 84: 380–390. Valoch K (1996) Le Paléolithique en Tchéquie et en Slovaquie. Grenoble: Jérôme Millon. 1354 The Holocene 26(9) Valoch K (2010) Europäische Beziehungen des mährischen Magdalénien. In: Połtowicz-Bobak M and Bobak D (eds) The Magdalenian in Central Europe: New Finds and Concepts. Rzeszów: Mitel, pp. 9–21. Verpoorte A (2004) Eastern Central Europe during the Pleniglacial. Antiquity 78: 257–266. Walanus A and Nalepka D (1999) POLPAL – Program for counting pollen grains, diagrams plotting and numerical analysis. Acta Paleobotanica 2: 659–661. Weninger B and Jöris O (2008) A 14C age calibration curve for the last 60 ka: The Greenland-Hulu U/Th timescale and its impact on understanding the Middle to Upper Paleolithic transition in Western Eurasia. Journal of Human Evolution 55: 772–781. Willis KJ and Van Andel TH (2004) Trees or no trees? The environments of central and eastern Europe during the Last Glaciation. Quaternary Science Reviews 23: 2369–2387. Willis KJ, Rudner E and Sümegi P (2000) The full-glacial forests of Central and Southeastern Europe. Quaternary Research 53: 203–213. Yokoyama Y, Lambeck K, De Deckker P et al. (2000) Timing of the Last Glacial Maximum from observed sea-level minima. Nature 406: 713–716.