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Abstract

In this habilitation thesis, we discuss a set of novel formal methods for
computer-aided analysis of mathematical and computational models of bi-
ological systems. The presented techniques target two problems that have
recently appeared in the field of computational systems biology — namely,
the problem of parameter synthesis and the problem of robustness analysis.
The techniques described in the thesis target both of the problems. Besides
systems biology, the techniques presented in the thesis are applicable in the
emerging domains of cyber-physical and cyber-biological systems.

The shared attribute of all techniques presented in the thesis is the fact
they are based on rigorous formal methods, namely, on model checking
algorithms developed for formal verification of computer systems. This
attribute signifies the uniqueness of the techniques and positions them pri-
marily in the state-of-the-art in silico toolchains of synthetic biology work-
flows where engineering and design of synthetically re-programmed living
cells are performed.

Both discussed problems address the challenging need for efficient
global analysis of computational models frequently used in systems and
synthetic biology. Model classes targeted by the techniques described in
the thesis represent the majority of models that can be encoded in SBML
level 3, the community standard for model-based systems biology. In
particular, we address methods for deterministic continuous-time mod-
els based on differential equations that for historical reasons still represent
the most frequently used formalism. Next, we discuss methods working
with continuous-time stochastic models that are used to describe biolog-
ical systems and molecular mechanisms observed at the detailed level of
individual discrete events of molecular interactions. Finally, we discuss
methods working with abstract discrete models (Boolean or Thomas” Net-
works) representing the logic of positive and negative influences among
molecules. These formalisms are used to describe biological systems at a
high level of abstraction and they make an important tool for inference of
new hypotheses and design of targeted wet-lab experiments. Most of the
discussed methods are demonstrated in several case studies.

The thesis is based on extended versions of multiple conference and
journal papers joint into a unified framework and accompanied with a sig-
nificantly extended overview of other existing approaches.
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Chapter 1

Introduction

All biological systems, from single pathways to multicellular organisms,
can be seen as complex systems of interacting components. Biological sys-
tems can also be seen as reactive systems, as they continuously interact
with their environment. Systems biology thus studies complex interactions
in biological systems, with the aim to understand better the processes that
happen in such a system, as well as to grasp the emergent properties of
such a system as a whole [241].

The paradigm of systems biology is based on the model-based approach
to study the complex phenomena. The model approximately represents
a certain phenomenon under given biological and physical assumptions.
While the biological knowledge is always uncertain and incomplete, mod-
els represent rigorous structures that can be analysed by computational
methods. The emphasis on computational methods and models refines the
general paradigm of systems biology to a more concrete scheme of compu-
tational systems biology [240].

Computational systems biology can, by drawing upon mathematical
approaches developed in the context of computer science and engineer-
ing [173, 309], contribute to the creation of powerful simulation, analysis
and reasoning tools for working biologists. These tools can be used in de-
signing and devising new experiments and ultimately, for understanding
functional properties of a genome, proteome, cells, and organisms.

In last years we are continuously experiencing growing collaboration
between biologists and computer scientists in many areas of systems and
synthetic biology. This is because it has turned out that formal mathemati-
cal approaches to modelling and analysis that have been developed for par-
allel and distributed computer systems and are referred to as formal meth-
ods are applicable to biological systems as well as both kinds of systems
have a lot in common. In particular, techniques developed in computer sci-
ence for automated formal verification have the potential to be exploited
in computational systems biology. Of special interest is model checking
that gives a feasible methodology to verify/refute interesting biological hy-
potheses [84].



1.1 Motivation

The computational analysis of the precise dynamics of biochemical sys-
tems involves the construction of appropriate computational models. Build-
ing suitable sound dynamic models can be seen as a key step toward the
development of predictive models for cells or whole organisms. While the
structure of such models is usually available, some of the quantitative fea-
tures of models cannot be easily determined. These quantitative attributes,
which significantly affect the system dynamics, are usually reflected in the
model as parameters.

In order to obtain reliable models, parameters, such as reaction rates
or concentration values, need to be specified exactly. For a typical model,
some of the parameters values can be determined from the literature or ex-
perimental data, many parameters values are uncertain or unknown. The
reason is that measurement of many parameters in vitro or even in vivo is
hardly possible. In particular, the level of detail at which parameter values
can be measured is insufficient in comparison to the level of detail needed
for a precise model. An example is measuring protein production rates,
which vary with different regulation modes arising during protein tran-
scription. Another problem is that the models have to be specified at a
certain level of abstraction approximately representing the modelled phe-
nomenon. This means that a parameter in a model can abstractly repre-
sent a value that is composed in a non-trivial way from several physical
parameters describing detailed physical or biophysical characteristics of a
modelled phenomenon.

The algorithmic analysis of dynamics generated by models with un-
known parameter values is one of the main challenges in computational
systems biology [284, 293]. The problem is addressed from several per-
spectives. On the one end, there exist data-oriented approaches of pa-
rameter estimation based on finding parameter values that optimally fit the
given time-series data [288] typically employing randomised algorithms
and techniques of artificial intelligence and machine learning. In systems
control theory, the problem is known as parameter identification that includes
the rigorous problem of systems identification from data [189] or the prob-
lem augmenting parameter estimation with the inference of statistical guar-
antees [314]. On the other end, there are behaviour-oriented and property-
oriented approaches that target the global problem of finding the parameter
values exhibiting a specified behaviour. This problem is targeted by meth-
ods of parameter synthesis or parameter scanning [147, 38] based on finding
parameter values reproducing a given temporal phenomenon, or methods
of bifurcation analysis [104, 58, 230], focused on finding parameter values
that significantly change the behaviour of the system.

A related problem to parameter synthesis has been raised by Kitano
in [242]. It addresses the so-called robustness analysis taking into account



the fact that various biological systems can display a certain phenomenon
for parameter values sets of significantly different cardinality. Intuitively,
the larger is the set of parameter values exhibiting a given feature the more
robust the feature is. The metrics provided to measure robustness thus give
an instrument that allows us to compare models with respect to a given
property and a given range of parameter uncertainty. Since the notion is
relatively novel, there are not yet efficient techniques providing a fully au-
tomatised algorithmic support for robustness analysis.

1.2 Lessons Learned in Systems Biology Projects

In the application-oriented part of our research, we have found a strong
evidence for the significance of the problems mentioned above. In the fol-
lowing we describe our insights taken from the research projects in which
we have been involved.

The project EC-MOAN! targeted several gaps in understanding inter-
actions between the metabolic and genetic layer of Escherichia Coli. The
formal methods were utilised to help biologists to find rigorous explana-
tion of several considered hypotheses. Model checking techniques have
been pioneered to be used for analysis of biological models by employing
methods known from control theory. Gaps between biologists and mathe-
maticians/computer scientists were narrowed but not yet sufficiently. The
need for methods working under parameter uncertainty has been formu-
lated and pioneered by two groups involved in the project [51, 38].

In the project CyanoTeam /CyanoNetwork? we targeted new challenges
of systems biology of cyanobacteria and photosynthesis. Owing to the fact
cyanobacteria is not that well studied as E. coli, several new challenges have
appeared. In particular, we have formulated a general framework for mod-
elling and analysis of biological processes making the logical back-end for
the comprehensive modelling web tools targeting photosynthesis [361] and
cyanobacteria [245]. The platforms utilise well-established analysis tech-
niques based on simulation. An important challenge is to bring techniques
working with uncertain parameters to these platforms. A necessary step is
to develop techniques that can be in future deployed to the platforms in the
form of a push-button technology.

Lessons that are continuously being learned from ongoing national col-
laborations® with local laboratories show the crucial importance of model-
based workflow in systems and synthetic biology. Especially, development
of methods targeting parameter synthesis with formal guarantees can sig-

'http:/ /www.ec-moan.org, 6th Framework Programme FP6-2005-NEST-PATH-COM

*http:/ /www.cyanoteam.org, EC OP project Reg. No. CZ.1.07/2.3.00/20.0256

3h’c’cp: / /c4sys.cz, The national infrastructure C4SYS - Centre for Systems Biology, MEYS
project No. LM2015055



nificantly reduce the efforts needed to design synthetically modified cells
(e.g., the research reported in [139] and described in Section 7.2).

1.3 Focus of the Thesis

The research goal targeted in this thesis is the development of efficient
computer-scientific techniques that allow automatised analysis of models
of biochemical systems under parameter uncertainty. Our main contribu-
tion is in narrowing the existing gaps in the current state-of-the-art tech-
nology. In particular, this is realised by introducing new original methods
and techniques that utilise model checking as the central method allow-
ing to analyse and explore models with unknown parameters with respect
to a given global property (hypothesis). In particular, we target the prob-
lems of parameter synthesis and robustness analysis from the perspective of
formal methods based on model checking. The results computed by these
methods are parameter values that evaluate the global property with some
formal guarantees.

We formulate a concrete framework supporting a specific set of model
classes frequently used in systems biology. Our study is then focused to
these classes. Existing state-of-the-art techniques targeting the research
goal are briefly described. Under this setting, we identify existing criti-
cal gaps. Next, we formulate the problems to be investigated and solved
formally and we describe technical solutions to these problems. The so-
lutions described in the thesis are based on approaches that represent our
own contribution to the field. The impact of the contributed methods is
demonstrated on several biological problems with various levels of com-
plexity.

Owing to the fact that the individual approaches have been published
in separate research articles, we give their comprehensive overview unified
in an abstract framework. The description of our methods is accompanied
with a significantly extended overview of related approaches that are dis-
cussed and compared with our methods.

It is worth noting that this thesis focuses primarily on the problems of
parameter synthesis and robustness analysis. Methods practically used in a
wider context of inverse problems [160] for fitting the models to experimen-
tal data are not discussed here. A comprehensive review of those methods
is provided, e.g., in [314]. A critical aspect of those methods is that the
models are typically over-parameterised resulting in situations when pa-
rameters are poorly constrained by experimental data [207] thus making a
good estimation of a single reliable parameter valuation impossible. Our
approach avoids such situations by reformulating the inverse problem in
an abstract way. In particular, parameter synthesis is a method that a priori
returns a set of parameter valuations satisfying a general property instead
of searching for a single optimal value fitting a given measurement.

4



1.4 Thesis Structure

The structure of the thesis is the following. Chapter 2 fixes the mod-
elling framework and discusses state-of-the-art techniques available for
this framework. Additionally, a family of temporal properties used to cap-
ture biological phenomena is discussed with a special emphasis on logics
used in our methods. Chapter 3 states formally the problems considered in
the remaining part of the thesis. Most important relations to related work
directly applicable to the stated problems are discussed here. Additionally,
our contribution to the stated problems is briefly summarised. Chapters 4-
6 are devoted to a detailed description of the techniques used to solve the
problems given in Chapter 3. Finally, case studies performed on several
biological problems are described in detail in Chapter 7.



Chapter 2

Background

2.1 Computational Systems Biology

Systems biology can be characterised as an approach to the understanding
of life through the study of how the properties of biological systems arise
through interactions between the system components [283]. In 2002, the
specialised field of computational systems biology has been introduced by
Kitano [240]. In general, it is a scientific paradigm that addresses questions
fundamental to our understanding of life by means of rigorous methods.
Progress in this field has direct impact to practical innovations in medicine,
drug discovery and engineering. An important attribute is that processes
in living matter are studied as dynamical systems and systems engineering
methodology is applied. The methodology is based on mathematical mod-
els used to rigorously represent biological phenomena in abstract forms.

2.1.1 Biological Systems

Biological systems are complex systems of interacting biological compo-
nents, which may be molecules, cells, organisms or entire species, that
change their properties with time in response to external and internal stim-
uli. Studying the dynamic behaviour of these systems is the basis for under-
standing of cellular functions or disease mechanisms.

The formalism used to model a biological system is essential, since it
not only dictates the possible behaviour that may or may not be captured,
but also determines the computational means of detecting and analysing
that. Fisher and Henzinger [173] distinguish two kinds of models relevant
for computational systems biology: executable versus denotational (or, as
they phrase it, computational versus mathematical).



2.1.2 Mathematical Approach

Mathematical models in systems biology are typically represented by
means of ordinary differential equations (ODEs) that have a long tradition
in chemistry since 1864 [206, 285]. They are used to approximate the be-
haviour of well-mixed (bio)chemical masses deterministically by continu-
ous functions of time. They are frequently used by biophysicists and there-
fore make the main formal language of computational systems biology. To
share this type of models, the format SBML [228] has been developed. It is
derived from XML and provides a way to prepare the models for compu-
tational processing. Commonly known repositories support this approach,
probably the best known of these is Biomodels.org [265].

The most common method for analysis of mathematical models of dy-
namical systems is the numerical simulation. There are several tools devel-
oped especially for systems biology, e.g., Copasi [224], CellDesigner [182],
CellML [271], etc. They support simulation and other numerical tasks.
These tasks require detailed knowledge of the biological system, i.e., quan-
titative parameters identifying the physical aspects of system interactions
(e.g., kinetic coefficients of chemical reactions). Therefore, of special in-
terest is parameter estimation [288], a method that combines simulation with
optimisation to find values of unknown parameters with respect to experi-
mental data. It is a key issue in systems biology, as it represents the crucial
step to obtaining better models of biological systems that give more precise
predictions. In biological models, the control parameters used to define
the behaviour of models are kinetic or rate parameters. Some of these pa-
rameters usually cannot be experimentally determined which leads to the
need to estimate these parameters by computational methods. Due to the
non-linear character of mathematical models in biology, these methods are
criticised by mathematicians because of inexactness and ill-formed settings
lacking precise discussions of identifiability. Some of these drawbacks can
be avoided by using advanced statistical methods [314].

2.1.3 Computational Approach

Computational models form the new promising basis for studying various
biological phenomena by drawing upon formal approaches developed in
the context of computer science and engineering [173, 309, 229, 172, 362].
This is because it has turned out that formal approaches to modelling and
analysis, referred to as formal methods, are applicable to biological systems
as well, as both kinds of systems have a lot in common, especially, discrete
event dynamics, concurrency and reactiveness. Moreover, in both kinds
of systems the interaction of components is a source of various emergent
system properties that are not explicitly encoded in individual system parts.

There are two main properties of computational models that cannot



be, in general, easily obtained in mathematical models. First, operational
concurrent discrete-event semantics of computational models gives an ad-
equate description of reactive events occurring among molecules and other
particles. Moreover, operational view allows to study how the complex
behaviour emerges from individual interactions. Second, computational
models can represent the system at arbitrary level of abstraction (from de-
tailed reactive event view to higher-level events abstractly representing
complex processes). Moreover, models can be written in modular and com-
positional form that allows possibility to integrate modules at different level
of abstraction. Integration of partial models is one of the crucial tasks of
modern systems biology that aims to explain the behaviour in the global
context. This is difficult to be achieved with mathematical models.

In last years, many techniques and tools employing computational
models and formal methods have been developed resulting with strong
case studies. Examples of widely used formalisms are Boolean net-
works [349, 106, 244], Petri Nets [215, 70, 105, 307], timed automata [53,
333, 199], compact process algebraic representations such as BioPEPA [114],
Kappa [130], BNGL [161] or suitable adaptations of m-calculus [304, 316].
Overview of methods is given, e.g., in [45, 174].

2.2 Biological Networks

The theory and practise of systems biology are inherently based on the
concept of studying biological systems as networks of interacting species.
Biological knowledge is reconstructed and organised in the form of bio-
logical networks. Biological networks are built from biological knowledge
databases, experimental data and biophysical principles employing many
simplifying assumptions. There are two fundamental types of biological
networks — reaction networks and influence networks. Recent complex net-
work reconstructions typically mix the two, we call such kinds of biological
networks as reaction-influence networks.

Example 2.1 An example of a general biological network is given in Figure 2.1.
The network is described in the standard visual notation SBGN (Systems Biology
Graphical Notation) [264] in terms of a so-called process diagram. The network
describes a simplified case of transcription of a gene (geneX) controlled by a partic-
ular protein TF (a so-called transcription factor). The outcome of the transcription
process is a molecule of messenger mRNA (rnaX).

The auxiliary species denoted & represents the general matter out of the border
of the modelled system.

In [99] the two kinds of networks (reaction and influence networks) are
studied and compared by using the utility of graph morphisms. It is shown
that under given fixed assumptions the reaction networks make a more
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Figure 2.1: An example of a biological network having the form of a
reaction-influence network. The example is shown in the standard graphi-
cal format SBGN.

concrete forms (implementations) of influence networks. In particular, in-
fluence networks can be, from the graph-theoretic perspective, understood
as abstractions of reaction networks. The abstraction relation is formalised
by means of morphisms between networks. These morphisms reflect (and
preserve) the kinetic interpretation of biological systems described by the
networks.

The information encoded in biological networks can be used to study
relations between individual networks topologies existing in nature. E.g.,
in [191, 190] a fully structural approach was proposed to measure the dis-
tance of biological networks obtained by changing the graph structure. The
natural development of biological networks structure is hypothesised to
follow several optimisation goals set with respect to the environment in
which the living cell resides in long-time horizon [235].

2.2.1 Chemical Reaction Networks

Chemical reaction networks (reaction networks for short) provide a de-
tailed mechanistic view of biochemical systems — nodes are (bio)chemical
species and stoichiometry-labelled (multi-)edges represent elementary
(bio)chemical reactions. Chemical reaction networks are used as the basic
formalism in chemistry. On the theoretical side, they were studied mainly
from algebraic or graph-theoretic perspectives [169, 354, 3, 233, 121, 321]
allowing to infer properties of network dynamics from network structure.

For the purpose of using reaction networks in this thesis, we modify
and extend the notation and definition introduced in [100]. In general,



chemical reaction networks make the basic formalism for describing bio-
logical systems at the elementary mechanistic level. They also form the
basis of SBGN process diagrams.

Notation 2.2 Denote £ the universe of all chemical species. We assume £ to be
lexicographically ordered.

Definition 2.3 Chemical reaction network (CRN) (or reaction network for
short) is a pair (A, R) where A C L is a finite set of species and R is a finite set of

reactions such that o € R is a pair 0 = (r,, p,) Where ry, € NloM is the reactant

complex and p, € N'OM is the product complex representing the stoichiometry
of reactants and products, respectively. In both cases, we assume the components
of a complex follow the lexicographical order.

For any | € A, notation r,(l) is used to denote the stoichiometry coefficient
corresponding to | in the reactant complex component r,,.

Example 2.4 An example of a simple reaction network with interesting non-
linear behaviour is a so-called Schloegel’s reaction system representing a set of
ordinary reactions acting on a single chemical species [326]:

01: 2A — 3A 02: 3A — 2A 03: D — A 04: A— O

Encoding in terms of Definition 2.3 is the following (since the complexes include
at most a single component the respective brackets are omitted):

({44,{(2,3),(3,2),(0,1),(1,0)})
——

Example 2.5 The following network is a simple example of a reversible catalytic
reaction system where Ey represents an enzyme catalysing the forward reaction,
Ey is an enzyme catalysing the backward reaction, S is a substrate, and P a final
product.

Q1:S+Ef—>SEf QQISEf—>S+Ef Qg:SEf—>P+Ef
04: P+ E, — PE} o5 : PEy, - P+ FE o6: PEy, — S+ Ej

Encoding reflecting Definition 2.3 is the following (the set of species is considered
to follow the displayed lexicographic order):

Q1 02
({Ev, Ey,S,SEy¢, P, PEy},{((0,1,1,0,0,0), (0,0,0,1,0,0)), ((0,0,0,1,0,0), (0,1,1,0,0,0))
((0,0,0,1,0,0),(0,1,0,0,1,0)),((1,0,0,0,1,0),(0,0,0,0,0,1)), ((9,0,0,0,0,1),(1,0,0,0,1,0)),
@3 Q4 o5

(¢0,0,0,0,0,1),(1,0,1,0,0,0))})

26
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Figure 2.2: (left) The influence graph abstractly representing the biological
network from Figure 2.1. (right) A two-node influence network represent-
ing a variant of a genetic switch.

E2F1

2.2.2 Influence Networks

Influence networks describe systems at a higher level of abstraction than
CRNs by focusing on influences among individual system components —
nodes are biochemical species or abstract biological objects and edges rep-
resent positive or negative influences. Gene regulatory networks [134] or
signalling pathways [239] make typical examples used in systems biology.
Influence networks are frequently used in systems biology to describe pro-
cesses without giving mechanistic details on the individual (bio)chemical
interactions. They make also a part of the graphical format SBGN in the
form of so-called activity flow diagrams. We present the following com-
pact definition of influence networks that we have introduced in [248].

Definition 2.6 Influence network (IN) is a pair (A,I'y) where A C L is a finite
set of species and Iy is a finite set of species influences such that 'y C A x A.
For each | € A we denote the set of its influencers as n™ (1) = {z € A | (z,1) €
Tat.

Example 2.7 A simple example of an influence network is depicted in Figure 2.2
(left). It represents an influence abstraction of the biological network shown in
Figure 2.1. It is presented in the SBGN format. The presence of protein TF and
gene X has a positive influence on the presence of the respective mRNA molecule
encoding a protein X. Note that in our framework of INs we do not capture the
information about the type of the influence, only the topology is represented.

It is worth noting that we have decided to omit specification of the in-
fluence type at the level of INs because there are many different types of
individual influences that have various semantics which is typically not
clearly fixed (i.e., the specification of SBGN gives a pallet of arrows repre-
senting an influence at a very abstract level without specifying the respec-
tive mechanistic function underlying the influence). Detailed specification
of influence functions is moved to the level of semantics.
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Example 2.8 Another influence network is depicted in Figure 2.2 (right). The
network consists of two protein species found in human cells. These proteins are
mutually influencing each other in a negative and positive way indirectly through
controlling the transcription of the influenced (requlated) protein. Each of the
proteins additionally self-requlates transcription of its own. This is caused by a
negative (pRB) and a positive (E2F1) feedback. This genetic circuit (called a genetic
switch) is important in controlling the irreversible decision of a cell to proceed with
initiating the doubling procedure [345]. In Section 7.3 we provide a detailed study
of this circuit.

2.2.3 Reaction-Influence Networks

CRNs and INs introduced in previous sections make a basis for formal
specification of biological systems. CRNs provide a framework for de-
tailed mechanistic description of biochemistry underlying biological pro-
cesses whereas INs allow describing complex processes at an abstract level
avoiding mechanistic details. As it has been discussed in Example 2.1, a
mixture of both kinds of networks is typically used in practice. In typical
modelling scenarios, not all modelled processes can be decomposed down
to the mechanistic level. The reasons are the enormous complexity and
interconnection of biological processes and the large extent of uncertainty
in biological knowledge. A feasible solution is to use influences in cases
where simplifying descriptions are needed (or sufficient) and to combine
them with reactions to describe well-known parts of modelled processes.
To that end, reaction-influence networks (RINs) are formally established in
the following definition.

Definition 2.9 Let (A, R) be a reaction network. We define a reaction-influence
network as a triple (A, R,I'r ) where I'r C A xR is a set of reaction influences.
For each ¢ € R we define a set of its influencers as n™ (p) = {x € A | (z,0) €
I'r }. Additionally, we denote the set of influenced reactions R~ = {p € R |
n~ (o) # 0} and the set of uninfluenced reactions RY = R\ R~.

Remark 2.10 Definition 2.9 is compatible with the notion of biological model
structure as understood in the standard format Systems Biology Markup Lan-
guage (SBML) level 2 [228]. In SBML, the set of species is represented as a list of
species and the set of reactions as a list of reactions. Reactions influencers are
called modifiers.

Example 2.11 An example of a biological network that can be represented in
terms of a RIN is given in Figure 2.1. The network has four species, A =
{geneX, geneX-TF,rnaX,TF}. The basic CRN has the following two ordinary
chemical reactions displayed with a respective encoding reflecting the lexicographic
order of A:

01: geneX + TF — geneX-TF ((1,0,0,1),(
02 & — rnaX ((0,0,0,0), (
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First, there is a second-order reaction o that describes a complexation process (as-
sociation). A molecule of the transcription factor (T'F) binds to the particular
segment of DNA (the gene X ). Second reaction oo, describes formation of an RNA
molecule. This first-order reaction is described in a very abstract form without
chemical details (i.e., small molecules such as ATP or transcription enhancers in-
volved in the process are not specified). All elements making the matter from which
RNA is built are set outside of the system.

There is a single influence in the network, I'r = {(geneX-TF, p2)}, repre-
senting a positive effect of the complex gene X-T'F on the occurrence of the second
reaction. The influence abstracts from many elementary reactions describing the
details of chemical interactions among all involved molecules.

2.3 Models of Biological Networks

One of the main aims of computational systems biology is to study the
dynamics of biological networks, in particular, how a population of com-
ponents affected by network interactions evolves in time. To that end, a
biological network is extended to a biological model that associates the net-
work structure with a suitable semantics reflecting the dynamics of net-
work components understood at a particular level of abstraction. The se-
mantics fulfils the following tasks:

e Network components (species) are given a mathematical interpreta-
tion as variables (numbers of molecules, molar concentrations, or a
suitable abstract interpretation of these quantities),

e Network interactions (reactions or influences) are given a mathemat-
ical interpretation as rules describing the dynamics — changes in af-
fected variables occurring in discrete or continuous time.

Discrete-value semantics can capture either quantitative (microscopic or
mesoscopic [317]) interpretation of chemical/biological entities (e.g., num-
ber of particles, atoms, molecules) or abstract qualitative interpretations
of selected qualities of modelled components (e.g., absence/presence
of a molecule, several levels/intervals abstracting quantitative values).
Continuous-value semantics represents a so-called macroscopic view [231]
where the modelled components are expected to appear in large quantities
provided that it is inconvenient to distinguish small differences (e.g., the
molar concentration of a species in a cell or in a certain organelle).

Rules are distinguished at several levels. The most basic form of a rule
is a chemical reaction. It makes the central organisation-building element
in reaction networks (Definition 2.3). Elementary reactions representing
mass transfer (A — B), dissociation (AB — A + B), and compound for-
mation (A + B — AB) represent the atomic rules of chemistry/biology.
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However, modelling of biological processes at that level requires very de-
tailed knowledge that is often not completely known (e.g. detailed schemes
of enzymatic reactions or reactions in gene regulation). Moreover, such
processes suffer from a large extent of combinatorial explosion due to the
fact the molecules and compounds can exist in many different concurrent
states (e.g., phosporylation, methylation, etc.). To that end, rules in mod-
els are used with suitable levels of abstraction and compactness. One of
such abstractions, in the form of general chemical reactions, has been al-
ready considered in Definition 2.3 (non-trivial stoichiometry coefficients
allowed in reactant and product complexes). Another level of abstraction
that avoids combinatorial explosion by context-free partial specification of
reactants and products forms, is provided in rule-based [161, 130, 223, 302]
and to some extent also in process-algebraic languages [310, 64].

Quantities that can be associated with rules are time and probability.
Since each interaction occurs in time with a specific rate, the respective rule
is executed with this rate implying the inherent time aspect of the system
dynamics. Naturally, time is considered as continuous, dense quantity.
When the information on rate is unknown or abstracted out due to sim-
plifications, discrete-time semantics is employed. It deals with the shortest
(discrete) time step which can represent an arbitrary finite time horizon.
Discrete-time abstraction allows to treat computational models as untimed,
i.e., the exact duration of a single time step is left unspecified. It is worth
noting that in the most of cases the occurrence of any rule is modelled as
instantaneous and it occurs immediately after the conditions for occurrence
are satisfied. There exist models that refine these aspects of semantics (e.g.,
delayed interactions [97] or non-instantaneous interactions [29, 108]).

With respect to the execution of interactions, rules can be either deter-
ministic or stochastic. Deterministic rules represent interaction events that
occur each time all preconditions are satisfied (i.e., if the given system state
contains at least the required amount of all reactants, the reaction is enabled
and occurs). There is no noise affecting the interaction. Interaction events
can occur concurrently — concurrency is an inherent feature of biological
and biochemical systems. There are several ways of modelling concurrent
events in computer science and most of them are applicable to biological
models. In the case of instantaneous events, the so-called synchronous
or asynchronous updating scheme is frequently used [106]. The former
scheme results in purely deterministic behaviour in which in every step all
events occurring concurrently are synchronised as occurring in the same
time instant. It is apparent that some behaviour can be lost in such settings.
On the contrary, the asynchronous updating scheme employs the so-called
interleaving of concurrent events. In particular, the model includes all pos-
sible sequences of concurrent events. They can be selected from a given
state by means of a non-deterministic choice.
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Deterministic rules absolutely neglect the presence of noise that causes
the occurrence of events to be a random phenomenon. A well-known phys-
ical model of molecule interactions reflecting stochasticity has been ad-
dressed by Gillespie in [195, 196]. To that end, stochastic rules are consid-
ered in modelling languages based on this physical model. In the stochastic
settings, the exact time between individual events reflecting occurrence of
a given reaction is a random variable depending on a particular state of the
system and on physical aspects of the reactant molecules.

In general, the choice of time representation, event atomicity and the
way of dealing with concurrency significantly affect the expressive power
of the model. For example, in the very recent work [108] it is shown that
in case of discrete-time discrete-value models of influence networks a more
expressive semantics not previously addressed in computer science is re-
quired to capture the biological influences correctly. It is also worth noting
that a large variety of semantics addressing the issues of concurrency in
the ways acceptable for biological networks is comprehensively captured
in the formalism of Petri Nets [70, 105, 321, 307].

Summary of individual model types with respect to the semantics of
species and rules is given in Figure 2.3. The left half-space shows mod-
els that work with discrete (or qualitative) semantics of species. The right
half-space shows models employing continuous semantics of species. The
vertical categorisation shows models with discrete (or untimed) semantics
of rule dynamics in the top half-space. In the bottom half-space, mod-
els describing continuous-time dynamics are displayed. In the following
subsections, we describe classes of models that are supported by meth-
ods developed in our research and over-viewed in the next chapters. First,
we consider the most commonly used continuous-time continuous-value
models for all kinds of considered biological networks — cCRNMs (contin-
uous models of CRNSs), cINMs (continuous models of INs) and cRINMs
(continuous models of RINs). Second, in the stochastic case, we limit
ourselves to the most commonly used stochastic models well-defined for
chemical reaction networks — sCRNMs (stochastic models of CRNs). Al-
though there exist scenarios under which Gillespie’s theory can be applied
to Hill kinetics of influence networks [159] and Michaelis-Menten kinetics
of metabolic networks [322] making a subclass of RINs, they cannot be em-
ployed universally but only in cases when several additional criteria are
satisfied. Finally, we consider discrete-time discrete-value models of influ-
ence networks — dINMs (discrete models of INs). These models (known as
Boolean networks or Thomas’ networks [348, 347]) are becoming popular
for qualitative modelling of gene regulatory networks where the detailed
knowledge is very complex to be modelled mechanistically. Moreover, ge-
netic regulatory mechanisms are not yet fully explored. It is worth not-
ing that discrete-time discrete-value semantics has been also used in case
of CRNs [93]. However, we do not consider these models in our frame-
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Figure 2.3: Model types categorised with respect to different level of details
captured in their semantics. The model types covered in this thesis are
typeset in bold and placed to the appropriate quadrants of the scheme.

work due to the fact it is not clear what kind of (non-structural) parame-
ters would make good sense for parameterisation of qualitative models of
CRNs.

For the purpose of this thesis, we do not consider discrete-time math-
ematical models that make the top right quadrant of the scheme in Fig-
ure 2.3. It is worth noting that those models are relevant for mathematical
biology [123] as they are used for modelling of some abstract processes at
the population level, e.g., logistic growth.

2.3.1 Continuous Models

The following definition declares the most frequently used type of mathe-
matical models that is used with CRNs. The model considers variables to
evolve deterministically in continuous time in large concentrations (macro-
scopic view). Therefore every model variable captures a particular species
concentration as a function of time. In every continuous time instant, reac-
tions are quantified in terms of an instant flux describing the actual amount
of transferred mass. To this end, the fundamental law of mass-action [206]
is employed to represent kinetic rate function that characterises quantita-
tively the speed of mass transfer from reactants to products. In our case,
we compile several notions into a single definition and modify the notation
to avoid overlaps with other notions used throughout the thesis.

Definition 2.12 (Continuous CRN Model - cCRNM)
Let N' = (A, R) be a CRN. Continuous chemical reaction network model of
N, denoted cCCRNM(N), is defined as a tuple (N, vegrn, X, xo) where
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e U.rN @ R = R is a (deterministic) kinetic rate coefficients map,

o X, = R|>A(‘) is a (continuous) model state space with x(t) € X denoting a
(continuous) state in time t € R>,

e 1 € X is an initial state.

Instead of x(t) we write x when a concrete value of time t is irrelevant in the re-
spective context. Further, we assume the components of x follow the lexicographi-
cal order of A. For any | € A, the notation x; is used to denote the state component
relative to [, the so-called model variable.

Additionally, every o € R is assigned a mass-action kinetic function «, :
X¢ = R in the following form:

ko(@) = vern (o) - [[ 2"
leA

Dynamics of a cCRNM is defined as a continuous function z : R>¢g — X
satisfying x(0) = xo and the following system of differential equations (given in
vector form):

dz
a f(z) = Z(p@ — T)ko()

0€ER

Example 2.13 The CRN from Example 2.4 can be assigned a continuous model
defined on the state space X; = R>( by the following differential equation:

dx

i vern(01)2% — vern (02)2® + vern(03) — vern(04)2

where x represents the one-dimensional model variable describing the development
of species A. The kinetic rate coefficients vern(01), ..., Vern (04) are supposed to
be fixed to some concrete positive real values.

To describe the continuous semantics of influence networks, we fol-
low the ideas presented in [135, 54]. In particular, every component is
expected to have associated some degradation dynamics and every com-
ponent with a non-empty set of influencers is assigned a production dy-
namics that mathematically reflects all the affecting influencers in terms of
a set of so-called regulation functions that are expected to be monotonous.

Definition 2.14 (Continuous IN Model — cINM)

Let N = (A,T'p) be an influence network. Continuous influence network
model of N, denoted cINM(N), is defined as a tuple (N, (vern,., vern_), X¢, o)
where

o N, : A x N = Rxq is a production rate coefficients map and v y_ :
A — R>q is a degradation rate coefficients map,
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o X, = Rle(‘) is a (continuous) model state space with x(t) € X; denoting a

(continuous) state in time t € R>,
e 1o € X is an initial state.

Additionally, every | € A is assigned a (possibly empty) set of regulation
functions {o}, ..., 0} such that k; > 0 and each o} : X; — R is a continuous
and (non-strictly) monotonous function of x; satisfying | € A; where A; € n= (1),
A; # 0, is a subset of influencers of | such that for all i,j € {1,....,k},i #
J-Ai N A = 0and Ucqy gy A = 1™ (1). Moreover, vern, is required to be
defined for all (1,1) such that | € A;.

Dynamics of a cINM is defined as a continuous function x : R>o — X
satisfying x(0) = x and the following system of differential equations (containing
an equation for every | € A):

ky
dz N
dftl = fi(z) = ;Vclm(lﬂ)az () = vern_ (1)

Example 2.15 The influence network from Example 2.7 can be associated with
a continuous model under the condition that the semantics of both influences of
mRNA_X molecule is given including their mutual (joint) effect. Assuming that
TF regulates transcription of mRNA_X positively, it is apparent that it has the
key role in controlling the transcription process. Since the molecule geneX has
only the qualitative effect (transcription cannot be performed without a particular
gene), we focus only on the subnetwork of the components TF and mRNA_X. A
model of this subnetwork may have the following form:

PatNAX = vy, (MRNA X, 1)l pya x(#) = verv_ (mMRNA _X)mrNa x

e = —yon_ (TF)zre

where the state space has two dimensions corresponding to variables mRNA _X and
xTF, the coefficient very, (nRNA_X, 1) is set to a concrete value reflecting (the-
oretically) maximal rate of mRNA production, vy (RNAX) and vy (TF)
are replaced with some concrete values representing degradation coefficients, and
ol ona x () is a requlation function of xrr defined by employing Hill kinetics in
the following way:
4
_ _TTF

1
TmRrNA X (T) = P Y
TF

This regulation function is a monotonous (increasing) S-shape function ranging
in the domain [0, 1) and satisfying o} pxa x(z) = 0.5 for x such that zrp = 3.

The requirement on the monotonicity of regulation functions is pre-
sented due to practical reasons to simplify the semantics of regulations to
either increasing or decreasing functions of the (combined) influencers.
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Finally, we close the collection of continuous models by describing the
most general class considered in this thesis — the class of reaction-influence
models. The concept is the following: non-regulated reactions follow the
law of mass action whereas regulated reactions have the kinetics defined
by a custom monotonous function projecting the system state (including
the state of influencers) into the regulated reaction rate.

Definition 2.16 (Continuous RIN Model — cRINM)
Let N = (A, R,T'r) be a RIN. Continuous reaction-influence network model
of N, denoted cRINM(N), is defined as a tuple (N, verin, X¢, xo) where

® U.riN : R = R isa (deterministic) kinetic function coefficients map,

o X, = Rleo‘ is a (continuous) model state space with x(t) € X; denoting a

(continuous) state in time t € R>,
e 1 € X, is an initial state.

Additionally, every o € R is assigned a mass-action kinetic function «, :
X¢ = R in the following form:

’{g(l') = VcRIN(Q) : szﬂg(l)
leA

Every o € R~ is assigned a regulated kinetic function «}, : X¢ — Rx in
the following form:
H;(w) = Ug(% VCRIN(Q))

where o, is an arbitrary continuous monotonous function of all variables x; such
that | € n™ (o) which is parameterised by verin (o).

Dynamics of a cRINM is defined as a continuous function x : R>o — X
satisfying x(0) = x and the following system of differential equations (given in
vector form):

% = f(x) = Z (P — 7o) Ro(x) + Z (Po — Tg)’ilg(:n)

0ER? 0ER~

Example 2.17 The network from Example 2.11 can be assigned the following con-
tinuous model:

dxgjf < = —VRIN (01)TgeneXTTF
dxgetc‘lﬁ - VR[N(Ql>mgeneXxTF
dxé%x = omax (T, VrRIN(02))
dng = —VRIN(01)TgeneXTTF

where the state space is determined by the four-dimensional domain of non-
negative reals capturing the concentration of the four components, the semantics
of the uninfluenced reaction g is described in terms of mass action kinetics and the
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influenced reaction o3 is assigned a monotonous regulation function of the compo-
nent Tgenex-Tr that may be specified by employing Hill kinetics in the following
form:

VRIN(02) * Tgenex-TF

g xr,V =
rnaX( > RIN(QZ)) xgeneX_TF+34

where vrin(02) represents some concrete value that sets the maximal possible
transcription rate of the RNA molecule that is controlled (by scalling) employing
the same S-shaped regulation function that has been used in the previous example.

The remaining value of vrrn(01) has to be set to reflect the physical properties
of the TE-DNA complexation reaction.

An important aspect that can be seen in cRINMs is the possibility of
a very general use of a kinetic rate coefficient anywhere in the regulation
function (in the case of assigning the dynamics to influenced reactions).
From the mathematical perspective, the class of non-linear models rep-
resented by cRINMs is not restricted at the place or regulation functions.
The regular form is only dictated in case of non-influenced reactions where
mass-action kinetics is employed.

Notation 2.18 We will use the notation cBNM to refer to any kind of continuous
model defined above ((CCRNM, cINM or cRINM).

The vector function f : X¢ — X defining the dynamics of a cBNM is called a
vector field.

Note that our framework provides the most frequently used expres-
sions describing biological networks in terms of ODEs. There exist differ-
ent forms taking into account various physical aspects of the reaction (e.g.,
cooperative binding [337], general mass action [225], S-systems [208], etc.)

All types of continuous-time models mentioned in this section describe
the dynamics by means of a continuous function of time. Owing to the fact
that these systems are non-linear, it is not in general possible to obtain the
analytical solution. In particular, numerical simulation methods are used
to obtain approximations of the dynamics in a finite time horizon.

The general notion that formally captures the (exact or approximated)
dynamics of a continuous-time dynamical system is called a continuous sig-
nal (a signal for short), defined in the following way.

Definition 2.19 (Signal) Let n € N and T' = [0, 7| where T € R>o. Then
t: T — RY, is a bounded-time continuous signal and T its time domain. If

T = [0, 00) we speak about a unbounded-time continuous signal.

For a given cBNM M of a biological network N, we refer the signal
representing a behaviour of M as a signal generated by M. More precisely,
it is either an exact signal representing an exact (analytical) solution, or an
approximate signal constructed with a selected numerical method with some
€error.
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The semantics of any cBNM is defined either as the exact signal that rep-
resents the unbounded-time dynamics from the initial state or an approx-
imate signal that gives a bounded-time numerical approximated prefix of
the exact signal.

Definition 2.20 (cCBNMs semantics) Let M be a cBNM with initial state x.
Exact semantics of M, denoted [M].gnwm, is defined as a unbounded-time con-
tinuous signal ¢ given by the continuous function x(t) representing the solution
of the respective system of differential equations satisfying Vt € R>¢.r(t) = x(t)
and ¢(0) = xo.

Approximate semantics of M, denoted [M] g\ IS defined as a piece-wise
constant signal € : [0,7] — R, (an approximate signal) constructed with a
selected numerical method with some error € and a given time bound T satisfying
Vit € [0, 7].x(t) = t°(t) + €(t) and (0) = =o.

The semantics defined above employs the “local” view (fixed by a given
initial state) typically used by systems biologists. This design decision is
considered to emphasise the contrast between the common usage of ¢B-
NMs (simulation) and other model classes for which a “global” view of the
state space and global analysis are usually employed.

2.3.2 Stochastic Models

Stochastic computational models allow to incorporate noise which causes
fluctuations in microscopic or mesoscopic component quantities and that
way affects the biological system dynamics [159, 239]. In physics, chem-
istry and related fields, the probabilistic time-evolution of a system with
discrete component quantities is described by so-called master equations.
In the case of biological phenomena, the chemical master equation (CME)
provides an exact mathematical model for stochastic dynamics [196]. It is
formalised as a set of differential equations, providing a denotational rep-
resentation of component quantities distribution in continuous-time. Gille-
spie [195, 197] has made an important breakthrough in stochastic mod-
elling by introducing techniques for exact simulation of CME. From the
computer scientific viewpoint, the CME can be equivalently represented by
continuous-time Markov chains (CTMC) [299] which provide operational
semantics and allow us to consider continuous-time stochastic models as
computational (executable) models [142].

The following definition fixes the syntax and semantics of the stochas-
tic model as used in the thesis. The central notion is the hazard function
describing the expected rate of a state transition. It is defined by stochastic
interpretation of the law of mass action. It differs from the deterministic
version by taking into account the combinatorics of selecting the set of par-
ticular molecules making the reactant complex from the current solution
(state).
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Definition 2.21 (Stochastic CRN Model - sCRNM)
Let N = (A, R) be a CRN. Stochastic chemical reaction model of A, denoted
SCRNM(N), is defined as a tuple (N, vsgpn, X, Xo) where

o XC Ng“ is a finite set of admissible states of the model, the so-called model
state space,

o X € Xis an initial state,
e and vsrn : R — R is a stochastic rate coefficients map.

Additionally, every o € R is assigned a stochastic rate function (also called a
hazard function) h, : X — R in the following form:

ho(X) = vern(0) - [[ (X(l)b(l)>

leA ro(l)

where (1) = 1,1f r,(1) > 0, or (1) = 0, otherwise.
Forareaction p = (r,,p,) and a state X € X we define the state change from
X to X' € X induced by g, denoted X % X', and satisfying X' = X — 7, +p,.
Semantics of a SCRNM M, denoted [M]scrnm, is defined as a CTMC
[Mlscrnm = (X, Xo, Q) representing a continuous-time discrete-state Markov
process { X ()|t € Rso} where Q € RIXIXIX| s the transition matrix defined as:

VX, X; €X, X £ X QX X)) = > hy(Xi)
0€Q(X;,X;)

where Q(X;.X;) = {0 € R|X; % X;}, and additionally,

VX € XQ(Xi, Xi) =~ Y Q(Xi, X).
X;#Xi

Individual state components X are called (random) model variables.
For a given state X € X the set of all paths in the state transition system
underlying [M]scrnm and starting at X is denoted PathIMlscrn (X),

In contrast to cCRNMs, the semantics of a sSCRNM is defined as an
entire structure representing all possible behaviours of a system — the so-
called global view of systems dynamics. The selection of an initial state X
can be understood as an additional information used by specific analysis
tasks employing the local view on systems dynamics (e.g., simulation or
local model checking).

The probability of a transition from state X; to X; occurring within ¢
time units is 1 — e~ QXX)® if such a transition cannot occur then
Q(X;,X;) = 0. The time before any transition from X; occurs is expo-
nentially distributed with an overall exit rate E(X;) defined as E(X;) =

ijex Q(Xia Xj)-
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A path 7 of a CTMC is a non-empty sequence m = XotoX1t1 ... where
Vi,j > 0. Q(X;,X;) > 0and t; € Rsg is the amount of time spent
in the state X; for all ¢ > 0. There exists the unique probability mea-
sure on PathlMlscryu (X) defined, e.g., in [260]. Intuitively, any subset
of PathlMlscrvvi(X) has a unique probability that can be effectively com-
puted. For the CTMC C the transient state distribution is denoted 7¢*t.
It gives for all states X’ € X the transient probability 7¢:%*(X") defined as
the probability, of being in state X' at the finite time ¢, having started in the
state X.

From the modelling perspective specific to stochastic models, there is
yet another notion of a quantity that can enhance the model semantics. In
particular, interactions and even variable values can be assigned quantita-
tive costs and rewards, e.g., time spent in particular concentration levels,
energy consumed by particular reactions, etc. By adding this kind of in-
formation (if available), models can be adjusted to provide interesting and
detailed quantitative predictions resulting from complex dynamics. The
notion of rewards is formally introduced in Section 2.5.5.

2.3.3 Discrete Models

Computational models are inherently discrete provided that the dynamics
(execution) occurs in terms of a series of discrete events. In the untimed set-
ting, non-determinism allows capturing all possible “timings” (orderings)
of concurrent events.

For the purpose of this thesis, we consider a class of discrete-time
discrete-value models frequently used for modelling of influence net-
works. These models are known as Boolean networks [348] or multi-valued
Thomas” networks [347, 62]. We use a general definition that has been
stated in our work [248].

Definition 2.22 (Discrete Influence Network Model — dINM)
Let N' = (A,T'y) be an influence network. Discrete influence network model
of N, denoted dAINM(N), is defined as a tuple (N, vqrn, X, Xo, m) where

e m € N is g vector of maximal values,
o XZ 11,10, ..., m;} is the model state space,
e Xy C Xisa set of initial states,

o and vgry : 2 — {0,...,m;} is an influencing configurations mapping
where Q ﬁ Uiea ({1} x ) is the set of all influencing configurations
with O £ [Tuen-{0, ..., my} denoting the set of contexts affecting the
state component X;. A context is assumed to reflect the lexicographic order
of A. The meaning of vqrn(l,w) = k (for some k € {0,...,m;}) is the
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intention of setting the state component X, to the target value k if X meets
the context w.

Semantics of a AINM M, denoted [M]qinm, is defined as a state-transition
system [M]amnm = (X, T, Xo) where T C X x X is a transition relation generated
by the AINM in the following way:

X—-XeT iﬁ’either Vd]N(l,wl(X)) > X A (Xl <my A X' = X[l»—}Xl—i-l])
or varn (L wi (X)) < Xy A(Xp > 0N X' = Xy x,—1))

where w; : X — O with w)(X) £ [Tuen-@{Xu} is the projection of the state X
to the context affecting the component X reflecting the lexicographic order of A
and X,y denotes X with an updated component X; such that X; = k.

Similarly to the case of SRNMs, the semantics of dINMs is represented
globally by means of a state-transition system. Moreover, the notion of ini-
tial states is generalised to an arbitrary subset of the model state space. This
is a model design decision reflecting the typical usage of dINMs for global
analysis of systems dynamics, e.g., finding states from which certain attrac-
tors (strongly connected components of the state-transition graph) can be
reached.

Example 2.23 The influence network from Example 2.7 can be associated with
a dINM under the condition that the semantics of both influences of mRNA_X
molecule is given including their mutual (joint) effect. The gene geneX has a
direct positive effect on the production of mRNA_X. Assuming that TF requlates
transcription of mRNA _X positively, we have both influences affecting mRNA X
positive. The logic of the mutual effect of both influences has the form of the logical
AND. The reason is that the presence of both the gene and the transcription factor
in the cell is required to perform the transcription of mRNA_X. Assuming the
lexicographically ordered set of species A = {geneX, mRNA_X, TF}, a model that
considers boolean variables (m; = 1 for all species | € A) can have the following
form:

VdIN(mRNAfxa (07 O)) =0
X = {(21, 20, 23) | 21,22, 25 € {0,1}} varn(mRNAX,(0,1)) =0
VdIN(mRNAfxa (17 O)) =0
Xo =X vary(mRNA X, (1,1)) = 1

2.3.4 Parameterised Models

We are interested in models with uncertain or unknown parameters. To
that end, we extend models to become functions over parameter values
that are assigned to model parameters. Parameters may take values from a
given parameter domain IP. In the case of cBNMs and sCRNMs, such domain
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is the set of positive reals, P = R>¢. In the case of dINMs, the parameter
domain is a set of natural numbers, P = Ny. An element p € P is called a
parameter value.

In this section we provide a general concept of model parameterisation
that has been, to the best of our knowledge, not done yet. The intuition
behind our concept is the following. In the context of quantitative models,
the parameterisation reflects the typical scenario in systems biology where
quantities represented by kinetic rate coefficients are considered as param-
eters. In the case of discrete models, the parameters are qualitative and re-
flect the settings of the logic driving the model dynamics. More specifically,
the parameterisations we consider here target the kinetic coefficients map-
PINgS VeRN, VsRN, VeIN, > VeIN_» VerIN (in case of cBNMs and sRNMs) and
vgrn (in case of dAINMs). The domain of these mappings is extended with
a new symbol L representing an undefined parameter value. In particular,
Ve : R — RZO U {J_} fore c {CRN, cRIN, SRN}, VeIN, AxN— RZO U {J_},
Vern. i A — RZQ U {J_}, and vy : Q — No U {J_}

A concrete parameterisation of a particular model is given by the set
of objects for which the respective mapping is set to L. In case of cRNMs,
sRNMs and cRINMs the parameterised objects are reactions. In the case of
cINMs and dINMs the situation is more complicated since the parameters
we consider are set more deeply in the structures representing the model
semantics. In dINMs, the parameterised object are the selected influencing
configurations. In cINMs, the parameterisation comprises species with un-
known degradation coefficients and production rate coefficients assigned
to individual regulation functions. The formal definition of parameterised
variants of the considered model classes is given in Definition 2.24.

Definition 2.24 (Parameterised Models) Let P be a parameter domain. Let N
be a reaction-influence network N' = (A, R, '), a reaction network N' = (A, R),
or an influence network N' = (A,T'y) associated with a corresponding model
(cRINM, cCRNM/sCRNM, or cINM/dINM, respectively).

For an arbitrary model M we define its parameterisation xq (the set of
unknown objects that are parameterised — represented by appropriate parameters),
the respective parameter valuations assigning each model parameter a particular
parameter value from P, producing the parameter space P, (the set of all
parameter valuations):

e If M isa cCRNM, M = (N,vern,X¢, x0), then xa is defined as a set
of reactions for which the kinetic rate coefficient is considerex undefined,

xm L {0 € R | vern(0) = L}. The undefined values v.rn (o) such that
0 € XM make the model parameters.

o If M is a cRINM or sCRNM then all the notions are defined analogously
to the previous case (the only formal difference is in considering the kinetic
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function coefficients map v.grrn or the stochastic kinetic coefficients map
vsrN instead of vern, respectively).

o If MisacINM, M = (N, (vern,, VeInN_), X¢, Xo), then x aq is defined as
Xt X Uy where x by £ {(1,3) € Ax N | vern, (i) = LAG < Ky}
and X L {1 € A | vy_(I) = L} are arbitrary sets of respective coefficients
considered undefined. The undefined values v.rn, (l,1) such that (I,i) €
Xy and vern_ (1) such that | € X, make the model parameters.

o If MisadINM, M = (N,vaqrn, X, Xo, m), then the parameterisation x am
is defined as a set of influencing configurations with undefined target value,
v L {(w) € Q| van(l,w) = LY. The undefined values vgry (1, w)
such that (I,w) € x s make the model parameters.

The parameter space of M is defined as P, , L PxM, A mapping p € Py,
i xm — P, is called a parameter valuation.

Intuitively, the parameter space P, ,, is given by a set of valuations of
model parameters. The parameterisation x ¢ targets the interactions (or
reactions) for which the corresponding quantities assigned in the respective
coefficients map are considered unknown.

The following notation sets the notion of concretisation of a parame-
terised model by replacing a given coefficients map with the selected pa-
rameter valuation.
