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Abstract

In this habilitation thesis, we discuss a set of novel formal methods for
computer-aided analysis of mathematical and computational models of bi-
ological systems. The presented techniques target two problems that have
recently appeared in the field of computational systems biology — namely,
the problem of parameter synthesis and the problem of robustness analysis.
The techniques described in the thesis target both of the problems. Besides
systems biology, the techniques presented in the thesis are applicable in the
emerging domains of cyber-physical and cyber-biological systems.

The shared attribute of all techniques presented in the thesis is the fact
they are based on rigorous formal methods, namely, on model checking
algorithms developed for formal verification of computer systems. This
attribute signifies the uniqueness of the techniques and positions them pri-
marily in the state-of-the-art in silico toolchains of synthetic biology work-
flows where engineering and design of synthetically re-programmed living
cells are performed.

Both discussed problems address the challenging need for efficient
global analysis of computational models frequently used in systems and
synthetic biology. Model classes targeted by the techniques described in
the thesis represent the majority of models that can be encoded in SBML
level 3, the community standard for model-based systems biology. In
particular, we address methods for deterministic continuous-time mod-
els based on differential equations that for historical reasons still represent
the most frequently used formalism. Next, we discuss methods working
with continuous-time stochastic models that are used to describe biolog-
ical systems and molecular mechanisms observed at the detailed level of
individual discrete events of molecular interactions. Finally, we discuss
methods working with abstract discrete models (Boolean or Thomas’ Net-
works) representing the logic of positive and negative influences among
molecules. These formalisms are used to describe biological systems at a
high level of abstraction and they make an important tool for inference of
new hypotheses and design of targeted wet-lab experiments. Most of the
discussed methods are demonstrated in several case studies.

The thesis is based on extended versions of multiple conference and
journal papers joint into a unified framework and accompanied with a sig-
nificantly extended overview of other existing approaches.
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Jiřı́ Damborský, Pavel Krejčı́, the colleagues from Free University Berlin –
Hannes Klarner and Heike Siebert, and the colleagues from Cachan and
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search), Jan Červený (CzechGlobe), and Ralf Steuer (Humboldt University
Berlin). I would like to thank Oded Maler (who unfortunately passed away
in September 2018) for great discussions forming my motivation and ap-
proach to interdisciplinary research.

Finally, I am deeply indebted to my family for their great moral support
and patience without which I would have never finished this thesis.

The work presented in this thesis has been supported by a number of grant
projects — in particular, European 6th Framework STREP NEST project EC-
MOAN Reg. No. 043235, the Czech Grant Agency projects GA15-11089S
and GA18-00178S, the EU OP project CyanoTeam (Reg. No. CZ.1.07/2.3.00
/20.0256), and the MEYS project of the National infrastructure C4SYS - Centre
for Systems Biology (Reg. No. LM2015055).





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Lessons Learned in Systems Biology Projects . . . . . . . . . 3
1.3 Focus of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 6
2.1 Computational Systems Biology . . . . . . . . . . . . . . . . 6

2.1.1 Biological Systems . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Mathematical Approach . . . . . . . . . . . . . . . . . 7
2.1.3 Computational Approach . . . . . . . . . . . . . . . . 7

2.2 Biological Networks . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Chemical Reaction Networks . . . . . . . . . . . . . . 9
2.2.2 Influence Networks . . . . . . . . . . . . . . . . . . . 11
2.2.3 Reaction-Influence Networks . . . . . . . . . . . . . . 12

2.3 Models of Biological Networks . . . . . . . . . . . . . . . . . 13
2.3.1 Continuous Models . . . . . . . . . . . . . . . . . . . 16
2.3.2 Stochastic Models . . . . . . . . . . . . . . . . . . . . . 21
2.3.3 Discrete Models . . . . . . . . . . . . . . . . . . . . . . 23
2.3.4 Parameterised Models . . . . . . . . . . . . . . . . . . 24
2.3.5 Relations Among Models . . . . . . . . . . . . . . . . 27
2.3.6 Other Types of Models . . . . . . . . . . . . . . . . . . 29

2.4 Model Encoding and Abstraction . . . . . . . . . . . . . . . . 32
2.4.1 Model Variables . . . . . . . . . . . . . . . . . . . . . . 32
2.4.2 Model Parameters . . . . . . . . . . . . . . . . . . . . 33
2.4.3 Parameter Perturbations . . . . . . . . . . . . . . . . . 33
2.4.4 Parameterised Kripke Structure . . . . . . . . . . . . . 34
2.4.5 Parameterised CTMC . . . . . . . . . . . . . . . . . . 35
2.4.6 Discrete Abstraction of Continuous Models . . . . . . 35

2.5 Temporal Logics for Biological Systems . . . . . . . . . . . . 43
2.5.1 Linear Time Temporal Logic – LTL . . . . . . . . . . . 45
2.5.2 Computation Tree Temporal Logic – CTL . . . . . . . 46
2.5.3 Signal Temporal Logic – STL . . . . . . . . . . . . . . 47

i



2.5.4 Value-Freezing Signal Temporal Logic – STL* . . . . . 49
2.5.5 Continuous Stochastic Logic – CSL . . . . . . . . . . . 52
2.5.6 Interpretation on Biological Network Models . . . . . 53

2.6 Model Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.6.1 Restriction to Bounded Time . . . . . . . . . . . . . . 57
2.6.2 Reachability Analysis . . . . . . . . . . . . . . . . . . 58
2.6.3 Model Checking . . . . . . . . . . . . . . . . . . . . . 61
2.6.4 Software for Model Checking of Biological Models . 64
2.6.5 Simulation and Monitoring . . . . . . . . . . . . . . . 66
2.6.6 Parameter Synthesis . . . . . . . . . . . . . . . . . . . 68
2.6.7 Robustness Degree . . . . . . . . . . . . . . . . . . . . 70

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3 Solved Problems 73
3.1 Parameter Synthesis . . . . . . . . . . . . . . . . . . . . . . . 73

3.1.1 Problem Formulation . . . . . . . . . . . . . . . . . . 73
3.1.2 Significance . . . . . . . . . . . . . . . . . . . . . . . . 73
3.1.3 Existing Solutions . . . . . . . . . . . . . . . . . . . . . 74
3.1.4 Our Contribution . . . . . . . . . . . . . . . . . . . . . 75

3.2 Parameter Exploration . . . . . . . . . . . . . . . . . . . . . . 75
3.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . 75
3.2.2 Significance . . . . . . . . . . . . . . . . . . . . . . . . 76
3.2.3 Existing Solutions . . . . . . . . . . . . . . . . . . . . . 76
3.2.4 Our Contribution . . . . . . . . . . . . . . . . . . . . . 77

3.3 Robustness Analysis . . . . . . . . . . . . . . . . . . . . . . . 77
3.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . 77
3.3.2 Significance . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3.3 Existing Solutions . . . . . . . . . . . . . . . . . . . . . 79
3.3.4 Our Contribution . . . . . . . . . . . . . . . . . . . . . 79

4 Coloured Model Checking 81
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2 Coloured LTL Model Checking . . . . . . . . . . . . . . . . . 82

4.2.1 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2.2 Interpretation of Parameter Synthesis Results . . . . . 84
4.2.3 Performance Evaluation . . . . . . . . . . . . . . . . . 86
4.2.4 Publications Summary . . . . . . . . . . . . . . . . . . 87

4.3 Coloured CTL Model Checking . . . . . . . . . . . . . . . . . 88
4.3.1 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 88
4.3.2 Interpretation of Parameter Synthesis Results . . . . . 93
4.3.3 Performance Evaluation . . . . . . . . . . . . . . . . . 93
4.3.4 Publications Summary . . . . . . . . . . . . . . . . . . 94

4.4 Software Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96



4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.7 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5 Parameterised Uniformisation 99
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2 Method Principles . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2.1 Local Transient Analysis . . . . . . . . . . . . . . . . . 102
5.2.2 Global Transient Analysis . . . . . . . . . . . . . . . . 102
5.2.3 Model Checking . . . . . . . . . . . . . . . . . . . . . 102
5.2.4 Numerical Errors of Parameterised Uniformisation . 103
5.2.5 Parameter Space Decomposition . . . . . . . . . . . . 104

5.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 105
5.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.5 Publications Summary . . . . . . . . . . . . . . . . . . . . . . 106
5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.7 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Robustness Analysis 109
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.2 Deterministic Robustness for STL* . . . . . . . . . . . . . . . 110

6.2.1 Method Principles . . . . . . . . . . . . . . . . . . . . 111
6.2.2 Performance Evaluation . . . . . . . . . . . . . . . . . 113
6.2.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . 114
6.2.4 Publications Summary . . . . . . . . . . . . . . . . . . 114
6.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2.6 Future Work . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3 Probabilistic Robustness for CSL . . . . . . . . . . . . . . . . 116
6.3.1 Method Principles . . . . . . . . . . . . . . . . . . . . 117
6.3.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . 119
6.3.3 Performance Evaluation . . . . . . . . . . . . . . . . . 120
6.3.4 Publications Summary . . . . . . . . . . . . . . . . . . 121
6.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.3.6 Future Work . . . . . . . . . . . . . . . . . . . . . . . . 122

6.4 Software Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7 Case Studies 124
7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.2 Biodegradation of 1,2,3-trichloropropane in E. coli . . . . . . 125

7.2.1 Problem Description . . . . . . . . . . . . . . . . . . . 125
7.2.2 Model Encoding . . . . . . . . . . . . . . . . . . . . . 126
7.2.3 Analysis Procedure and Results . . . . . . . . . . . . 126
7.2.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . 129

7.3 Regulation of G1/S cell cycle transition . . . . . . . . . . . . 131
7.3.1 Problem Description . . . . . . . . . . . . . . . . . . . 131



7.3.2 Model Encoding . . . . . . . . . . . . . . . . . . . . . 131
7.3.3 CTL-based Analysis . . . . . . . . . . . . . . . . . . . 132
7.3.4 CSL-based Analysis . . . . . . . . . . . . . . . . . . . 135

7.4 Sustained vs Transient Modes of Cell Signalling . . . . . . . 139
7.4.1 Problem Description . . . . . . . . . . . . . . . . . . . 139
7.4.2 Model Encoding . . . . . . . . . . . . . . . . . . . . . 139
7.4.3 Analysis Procedure and Results . . . . . . . . . . . . 140

7.5 Robustness of Elemental Signalling Pathways . . . . . . . . . 144
7.5.1 Model Reconstruction . . . . . . . . . . . . . . . . . . 144
7.5.2 Problem Description . . . . . . . . . . . . . . . . . . . 145
7.5.3 Post-Processing Functions . . . . . . . . . . . . . . . . 147
7.5.4 Analysis Procedure and Results . . . . . . . . . . . . 147
7.5.5 Performance . . . . . . . . . . . . . . . . . . . . . . . . 151

7.6 Robustness of Population Dynamics . . . . . . . . . . . . . . 154
7.6.1 SIR Model . . . . . . . . . . . . . . . . . . . . . . . . . 154
7.6.2 Predator-Prey Model . . . . . . . . . . . . . . . . . . . 155
7.6.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . 157

7.7 Publications Summary . . . . . . . . . . . . . . . . . . . . . . 159
7.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Conclusion 162
7.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
7.10 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

iv



Chapter 1

Introduction

All biological systems, from single pathways to multicellular organisms,
can be seen as complex systems of interacting components. Biological sys-
tems can also be seen as reactive systems, as they continuously interact
with their environment. Systems biology thus studies complex interactions
in biological systems, with the aim to understand better the processes that
happen in such a system, as well as to grasp the emergent properties of
such a system as a whole [241].

The paradigm of systems biology is based on the model-based approach
to study the complex phenomena. The model approximately represents
a certain phenomenon under given biological and physical assumptions.
While the biological knowledge is always uncertain and incomplete, mod-
els represent rigorous structures that can be analysed by computational
methods. The emphasis on computational methods and models refines the
general paradigm of systems biology to a more concrete scheme of compu-
tational systems biology [240].

Computational systems biology can, by drawing upon mathematical
approaches developed in the context of computer science and engineer-
ing [173, 309], contribute to the creation of powerful simulation, analysis
and reasoning tools for working biologists. These tools can be used in de-
signing and devising new experiments and ultimately, for understanding
functional properties of a genome, proteome, cells, and organisms.

In last years we are continuously experiencing growing collaboration
between biologists and computer scientists in many areas of systems and
synthetic biology. This is because it has turned out that formal mathemati-
cal approaches to modelling and analysis that have been developed for par-
allel and distributed computer systems and are referred to as formal meth-
ods are applicable to biological systems as well as both kinds of systems
have a lot in common. In particular, techniques developed in computer sci-
ence for automated formal verification have the potential to be exploited
in computational systems biology. Of special interest is model checking
that gives a feasible methodology to verify/refute interesting biological hy-
potheses [84].
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1.1 Motivation

The computational analysis of the precise dynamics of biochemical sys-
tems involves the construction of appropriate computational models. Build-
ing suitable sound dynamic models can be seen as a key step toward the
development of predictive models for cells or whole organisms. While the
structure of such models is usually available, some of the quantitative fea-
tures of models cannot be easily determined. These quantitative attributes,
which significantly affect the system dynamics, are usually reflected in the
model as parameters.

In order to obtain reliable models, parameters, such as reaction rates
or concentration values, need to be specified exactly. For a typical model,
some of the parameters values can be determined from the literature or ex-
perimental data, many parameters values are uncertain or unknown. The
reason is that measurement of many parameters in vitro or even in vivo is
hardly possible. In particular, the level of detail at which parameter values
can be measured is insufficient in comparison to the level of detail needed
for a precise model. An example is measuring protein production rates,
which vary with different regulation modes arising during protein tran-
scription. Another problem is that the models have to be specified at a
certain level of abstraction approximately representing the modelled phe-
nomenon. This means that a parameter in a model can abstractly repre-
sent a value that is composed in a non-trivial way from several physical
parameters describing detailed physical or biophysical characteristics of a
modelled phenomenon.

The algorithmic analysis of dynamics generated by models with un-
known parameter values is one of the main challenges in computational
systems biology [284, 293]. The problem is addressed from several per-
spectives. On the one end, there exist data-oriented approaches of pa-
rameter estimation based on finding parameter values that optimally fit the
given time-series data [288] typically employing randomised algorithms
and techniques of artificial intelligence and machine learning. In systems
control theory, the problem is known as parameter identification that includes
the rigorous problem of systems identification from data [189] or the prob-
lem augmenting parameter estimation with the inference of statistical guar-
antees [314]. On the other end, there are behaviour-oriented and property-
oriented approaches that target the global problem of finding the parameter
values exhibiting a specified behaviour. This problem is targeted by meth-
ods of parameter synthesis or parameter scanning [147, 38] based on finding
parameter values reproducing a given temporal phenomenon, or methods
of bifurcation analysis [104, 58, 230], focused on finding parameter values
that significantly change the behaviour of the system.

A related problem to parameter synthesis has been raised by Kitano
in [242]. It addresses the so-called robustness analysis taking into account
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the fact that various biological systems can display a certain phenomenon
for parameter values sets of significantly different cardinality. Intuitively,
the larger is the set of parameter values exhibiting a given feature the more
robust the feature is. The metrics provided to measure robustness thus give
an instrument that allows us to compare models with respect to a given
property and a given range of parameter uncertainty. Since the notion is
relatively novel, there are not yet efficient techniques providing a fully au-
tomatised algorithmic support for robustness analysis.

1.2 Lessons Learned in Systems Biology Projects

In the application-oriented part of our research, we have found a strong
evidence for the significance of the problems mentioned above. In the fol-
lowing we describe our insights taken from the research projects in which
we have been involved.

The project EC-MOAN1 targeted several gaps in understanding inter-
actions between the metabolic and genetic layer of Escherichia Coli. The
formal methods were utilised to help biologists to find rigorous explana-
tion of several considered hypotheses. Model checking techniques have
been pioneered to be used for analysis of biological models by employing
methods known from control theory. Gaps between biologists and mathe-
maticians/computer scientists were narrowed but not yet sufficiently. The
need for methods working under parameter uncertainty has been formu-
lated and pioneered by two groups involved in the project [51, 38].

In the project CyanoTeam/CyanoNetwork2 we targeted new challenges
of systems biology of cyanobacteria and photosynthesis. Owing to the fact
cyanobacteria is not that well studied as E. coli, several new challenges have
appeared. In particular, we have formulated a general framework for mod-
elling and analysis of biological processes making the logical back-end for
the comprehensive modelling web tools targeting photosynthesis [361] and
cyanobacteria [245]. The platforms utilise well-established analysis tech-
niques based on simulation. An important challenge is to bring techniques
working with uncertain parameters to these platforms. A necessary step is
to develop techniques that can be in future deployed to the platforms in the
form of a push-button technology.

Lessons that are continuously being learned from ongoing national col-
laborations3 with local laboratories show the crucial importance of model-
based workflow in systems and synthetic biology. Especially, development
of methods targeting parameter synthesis with formal guarantees can sig-

1http://www.ec-moan.org, 6th Framework Programme FP6-2005-NEST-PATH-COM
2http://www.cyanoteam.org, EC OP project Reg. No. CZ.1.07/2.3.00/20.0256
3http://c4sys.cz, The national infrastructure C4SYS - Centre for Systems Biology, MEYS

project No. LM2015055
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nificantly reduce the efforts needed to design synthetically modified cells
(e.g., the research reported in [139] and described in Section 7.2).

1.3 Focus of the Thesis

The research goal targeted in this thesis is the development of efficient
computer-scientific techniques that allow automatised analysis of models
of biochemical systems under parameter uncertainty. Our main contribu-
tion is in narrowing the existing gaps in the current state-of-the-art tech-
nology. In particular, this is realised by introducing new original methods
and techniques that utilise model checking as the central method allow-
ing to analyse and explore models with unknown parameters with respect
to a given global property (hypothesis). In particular, we target the prob-
lems of parameter synthesis and robustness analysis from the perspective of
formal methods based on model checking. The results computed by these
methods are parameter values that evaluate the global property with some
formal guarantees.

We formulate a concrete framework supporting a specific set of model
classes frequently used in systems biology. Our study is then focused to
these classes. Existing state-of-the-art techniques targeting the research
goal are briefly described. Under this setting, we identify existing criti-
cal gaps. Next, we formulate the problems to be investigated and solved
formally and we describe technical solutions to these problems. The so-
lutions described in the thesis are based on approaches that represent our
own contribution to the field. The impact of the contributed methods is
demonstrated on several biological problems with various levels of com-
plexity.

Owing to the fact that the individual approaches have been published
in separate research articles, we give their comprehensive overview unified
in an abstract framework. The description of our methods is accompanied
with a significantly extended overview of related approaches that are dis-
cussed and compared with our methods.

It is worth noting that this thesis focuses primarily on the problems of
parameter synthesis and robustness analysis. Methods practically used in a
wider context of inverse problems [160] for fitting the models to experimen-
tal data are not discussed here. A comprehensive review of those methods
is provided, e.g., in [314]. A critical aspect of those methods is that the
models are typically over-parameterised resulting in situations when pa-
rameters are poorly constrained by experimental data [207] thus making a
good estimation of a single reliable parameter valuation impossible. Our
approach avoids such situations by reformulating the inverse problem in
an abstract way. In particular, parameter synthesis is a method that a priori
returns a set of parameter valuations satisfying a general property instead
of searching for a single optimal value fitting a given measurement.
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1.4 Thesis Structure

The structure of the thesis is the following. Chapter 2 fixes the mod-
elling framework and discusses state-of-the-art techniques available for
this framework. Additionally, a family of temporal properties used to cap-
ture biological phenomena is discussed with a special emphasis on logics
used in our methods. Chapter 3 states formally the problems considered in
the remaining part of the thesis. Most important relations to related work
directly applicable to the stated problems are discussed here. Additionally,
our contribution to the stated problems is briefly summarised. Chapters 4-
6 are devoted to a detailed description of the techniques used to solve the
problems given in Chapter 3. Finally, case studies performed on several
biological problems are described in detail in Chapter 7.
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Chapter 2

Background

2.1 Computational Systems Biology

Systems biology can be characterised as an approach to the understanding
of life through the study of how the properties of biological systems arise
through interactions between the system components [283]. In 2002, the
specialised field of computational systems biology has been introduced by
Kitano [240]. In general, it is a scientific paradigm that addresses questions
fundamental to our understanding of life by means of rigorous methods.
Progress in this field has direct impact to practical innovations in medicine,
drug discovery and engineering. An important attribute is that processes
in living matter are studied as dynamical systems and systems engineering
methodology is applied. The methodology is based on mathematical mod-
els used to rigorously represent biological phenomena in abstract forms.

2.1.1 Biological Systems

Biological systems are complex systems of interacting biological compo-
nents, which may be molecules, cells, organisms or entire species, that
change their properties with time in response to external and internal stim-
uli. Studying the dynamic behaviour of these systems is the basis for under-
standing of cellular functions or disease mechanisms.

The formalism used to model a biological system is essential, since it
not only dictates the possible behaviour that may or may not be captured,
but also determines the computational means of detecting and analysing
that. Fisher and Henzinger [173] distinguish two kinds of models relevant
for computational systems biology: executable versus denotational (or, as
they phrase it, computational versus mathematical).
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2.1.2 Mathematical Approach

Mathematical models in systems biology are typically represented by
means of ordinary differential equations (ODEs) that have a long tradition
in chemistry since 1864 [206, 285]. They are used to approximate the be-
haviour of well-mixed (bio)chemical masses deterministically by continu-
ous functions of time. They are frequently used by biophysicists and there-
fore make the main formal language of computational systems biology. To
share this type of models, the format SBML [228] has been developed. It is
derived from XML and provides a way to prepare the models for compu-
tational processing. Commonly known repositories support this approach,
probably the best known of these is Biomodels.org [265].

The most common method for analysis of mathematical models of dy-
namical systems is the numerical simulation. There are several tools devel-
oped especially for systems biology, e.g., Copasi [224], CellDesigner [182],
CellML [271], etc. They support simulation and other numerical tasks.
These tasks require detailed knowledge of the biological system, i.e., quan-
titative parameters identifying the physical aspects of system interactions
(e.g., kinetic coefficients of chemical reactions). Therefore, of special in-
terest is parameter estimation [288], a method that combines simulation with
optimisation to find values of unknown parameters with respect to experi-
mental data. It is a key issue in systems biology, as it represents the crucial
step to obtaining better models of biological systems that give more precise
predictions. In biological models, the control parameters used to define
the behaviour of models are kinetic or rate parameters. Some of these pa-
rameters usually cannot be experimentally determined which leads to the
need to estimate these parameters by computational methods. Due to the
non-linear character of mathematical models in biology, these methods are
criticised by mathematicians because of inexactness and ill-formed settings
lacking precise discussions of identifiability. Some of these drawbacks can
be avoided by using advanced statistical methods [314].

2.1.3 Computational Approach

Computational models form the new promising basis for studying various
biological phenomena by drawing upon formal approaches developed in
the context of computer science and engineering [173, 309, 229, 172, 362].
This is because it has turned out that formal approaches to modelling and
analysis, referred to as formal methods, are applicable to biological systems
as well, as both kinds of systems have a lot in common, especially, discrete
event dynamics, concurrency and reactiveness. Moreover, in both kinds
of systems the interaction of components is a source of various emergent
system properties that are not explicitly encoded in individual system parts.

There are two main properties of computational models that cannot
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be, in general, easily obtained in mathematical models. First, operational
concurrent discrete-event semantics of computational models gives an ad-
equate description of reactive events occurring among molecules and other
particles. Moreover, operational view allows to study how the complex
behaviour emerges from individual interactions. Second, computational
models can represent the system at arbitrary level of abstraction (from de-
tailed reactive event view to higher-level events abstractly representing
complex processes). Moreover, models can be written in modular and com-
positional form that allows possibility to integrate modules at different level
of abstraction. Integration of partial models is one of the crucial tasks of
modern systems biology that aims to explain the behaviour in the global
context. This is difficult to be achieved with mathematical models.

In last years, many techniques and tools employing computational
models and formal methods have been developed resulting with strong
case studies. Examples of widely used formalisms are Boolean net-
works [349, 106, 244], Petri Nets [215, 70, 105, 307], timed automata [53,
333, 199], compact process algebraic representations such as BioPEPA [114],
Kappa [130], BNGL [161] or suitable adaptations of π-calculus [304, 316].
Overview of methods is given, e.g., in [45, 174].

2.2 Biological Networks

The theory and practise of systems biology are inherently based on the
concept of studying biological systems as networks of interacting species.
Biological knowledge is reconstructed and organised in the form of bio-
logical networks. Biological networks are built from biological knowledge
databases, experimental data and biophysical principles employing many
simplifying assumptions. There are two fundamental types of biological
networks – reaction networks and influence networks. Recent complex net-
work reconstructions typically mix the two, we call such kinds of biological
networks as reaction-influence networks.

Example 2.1 An example of a general biological network is given in Figure 2.1.
The network is described in the standard visual notation SBGN (Systems Biology
Graphical Notation) [264] in terms of a so-called process diagram. The network
describes a simplified case of transcription of a gene (geneX) controlled by a partic-
ular protein TF (a so-called transcription factor). The outcome of the transcription
process is a molecule of messenger mRNA (rnaX).

The auxiliary species denoted∅ represents the general matter out of the border
of the modelled system.

In [99] the two kinds of networks (reaction and influence networks) are
studied and compared by using the utility of graph morphisms. It is shown
that under given fixed assumptions the reaction networks make a more
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Figure 2.1: An example of a biological network having the form of a
reaction-influence network. The example is shown in the standard graphi-
cal format SBGN.

concrete forms (implementations) of influence networks. In particular, in-
fluence networks can be, from the graph-theoretic perspective, understood
as abstractions of reaction networks. The abstraction relation is formalised
by means of morphisms between networks. These morphisms reflect (and
preserve) the kinetic interpretation of biological systems described by the
networks.

The information encoded in biological networks can be used to study
relations between individual networks topologies existing in nature. E.g.,
in [191, 190] a fully structural approach was proposed to measure the dis-
tance of biological networks obtained by changing the graph structure. The
natural development of biological networks structure is hypothesised to
follow several optimisation goals set with respect to the environment in
which the living cell resides in long-time horizon [235].

2.2.1 Chemical Reaction Networks

Chemical reaction networks (reaction networks for short) provide a de-
tailed mechanistic view of biochemical systems – nodes are (bio)chemical
species and stoichiometry-labelled (multi-)edges represent elementary
(bio)chemical reactions. Chemical reaction networks are used as the basic
formalism in chemistry. On the theoretical side, they were studied mainly
from algebraic or graph-theoretic perspectives [169, 354, 3, 233, 121, 321]
allowing to infer properties of network dynamics from network structure.

For the purpose of using reaction networks in this thesis, we modify
and extend the notation and definition introduced in [100]. In general,
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chemical reaction networks make the basic formalism for describing bio-
logical systems at the elementary mechanistic level. They also form the
basis of SBGN process diagrams.

Notation 2.2 Denote L the universe of all chemical species. We assume L to be
lexicographically ordered.

Definition 2.3 Chemical reaction network (CRN) (or reaction network for
short) is a pair (Λ,R) where Λ ⊂ L is a finite set of species andR is a finite set of
reactions such that % ∈ R is a pair % = (r%, p%) where r% ∈ N|Λ|0 is the reactant
complex and p% ∈ N|Λ|0 is the product complex representing the stoichiometry
of reactants and products, respectively. In both cases, we assume the components
of a complex follow the lexicographical order.

For any l ∈ Λ, notation r%(l) is used to denote the stoichiometry coefficient
corresponding to l in the reactant complex component r%.

Example 2.4 An example of a simple reaction network with interesting non-
linear behaviour is a so-called Schloegel’s reaction system representing a set of
ordinary reactions acting on a single chemical species [326]:

%1 : 2A→ 3A %2 : 3A→ 2A %3 : ∅→ A %4 : A→ ∅

Encoding in terms of Definition 2.3 is the following (since the complexes include
at most a single component the respective brackets are omitted):

({A}, {(2, 3)︸ ︷︷ ︸
%1

, (3, 2)︸ ︷︷ ︸
%2

, (0, 1)︸ ︷︷ ︸
%3

, (1, 0)︸ ︷︷ ︸
%4

})

Example 2.5 The following network is a simple example of a reversible catalytic
reaction system where Ef represents an enzyme catalysing the forward reaction,
Eb is an enzyme catalysing the backward reaction, S is a substrate, and P a final
product.

%1 : S + Ef → SEf %2 : SEf → S + Ef %3 : SEf → P + Ef
%4 : P + Eb → PEb %5 : PEb → P + Eb %6 : PEb → S + Eb

Encoding reflecting Definition 2.3 is the following (the set of species is considered
to follow the displayed lexicographic order):

({Eb, Ef , S, SEf , P, PEb}, {

%1︷ ︸︸ ︷
((0, 1, 1, 0, 0, 0), (0, 0, 0, 1, 0, 0)),

%2︷ ︸︸ ︷
((0, 0, 0, 1, 0, 0), (0, 1, 1, 0, 0, 0)),

((0, 0, 0, 1, 0, 0), (0, 1, 0, 0, 1, 0))︸ ︷︷ ︸
%3

, ((1, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 1))︸ ︷︷ ︸
%4

, ((0, 0, 0, 0, 0, 1), (1, 0, 0, 0, 1, 0))︸ ︷︷ ︸
%5

,

((0, 0, 0, 0, 0, 1), (1, 0, 1, 0, 0, 0))︸ ︷︷ ︸
%6

})
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Figure 2.2: (left) The influence graph abstractly representing the biological
network from Figure 2.1. (right) A two-node influence network represent-
ing a variant of a genetic switch.

2.2.2 Influence Networks

Influence networks describe systems at a higher level of abstraction than
CRNs by focusing on influences among individual system components –
nodes are biochemical species or abstract biological objects and edges rep-
resent positive or negative influences. Gene regulatory networks [134] or
signalling pathways [239] make typical examples used in systems biology.
Influence networks are frequently used in systems biology to describe pro-
cesses without giving mechanistic details on the individual (bio)chemical
interactions. They make also a part of the graphical format SBGN in the
form of so-called activity flow diagrams. We present the following com-
pact definition of influence networks that we have introduced in [248].

Definition 2.6 Influence network (IN) is a pair (Λ,ΓΛ) where Λ ⊂ L is a finite
set of species and ΓΛ is a finite set of species influences such that ΓΛ ⊆ Λ×Λ.
For each l ∈ Λ we denote the set of its influencers as n−(l) = {x ∈ Λ | (x, l) ∈
ΓΛ}.

Example 2.7 A simple example of an influence network is depicted in Figure 2.2
(left). It represents an influence abstraction of the biological network shown in
Figure 2.1. It is presented in the SBGN format. The presence of protein TF and
gene X has a positive influence on the presence of the respective mRNA molecule
encoding a protein X. Note that in our framework of INs we do not capture the
information about the type of the influence, only the topology is represented.

It is worth noting that we have decided to omit specification of the in-
fluence type at the level of INs because there are many different types of
individual influences that have various semantics which is typically not
clearly fixed (i.e., the specification of SBGN gives a pallet of arrows repre-
senting an influence at a very abstract level without specifying the respec-
tive mechanistic function underlying the influence). Detailed specification
of influence functions is moved to the level of semantics.
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Example 2.8 Another influence network is depicted in Figure 2.2 (right). The
network consists of two protein species found in human cells. These proteins are
mutually influencing each other in a negative and positive way indirectly through
controlling the transcription of the influenced (regulated) protein. Each of the
proteins additionally self-regulates transcription of its own. This is caused by a
negative (pRB) and a positive (E2F1) feedback. This genetic circuit (called a genetic
switch) is important in controlling the irreversible decision of a cell to proceed with
initiating the doubling procedure [345]. In Section 7.3 we provide a detailed study
of this circuit.

2.2.3 Reaction-Influence Networks

CRNs and INs introduced in previous sections make a basis for formal
specification of biological systems. CRNs provide a framework for de-
tailed mechanistic description of biochemistry underlying biological pro-
cesses whereas INs allow describing complex processes at an abstract level
avoiding mechanistic details. As it has been discussed in Example 2.1, a
mixture of both kinds of networks is typically used in practice. In typical
modelling scenarios, not all modelled processes can be decomposed down
to the mechanistic level. The reasons are the enormous complexity and
interconnection of biological processes and the large extent of uncertainty
in biological knowledge. A feasible solution is to use influences in cases
where simplifying descriptions are needed (or sufficient) and to combine
them with reactions to describe well-known parts of modelled processes.
To that end, reaction-influence networks (RINs) are formally established in
the following definition.

Definition 2.9 Let (Λ,R) be a reaction network. We define a reaction-influence
network as a triple (Λ,R,ΓR) where ΓR ⊆ Λ×R is a set of reaction influences.
For each % ∈ R we define a set of its influencers as n−(%) = {x ∈ Λ | (x, %) ∈
ΓR}. Additionally, we denote the set of influenced reactions R− = {% ∈ R |
n−(%) 6= ∅} and the set of uninfluenced reactionsR∅ = R \R−.

Remark 2.10 Definition 2.9 is compatible with the notion of biological model
structure as understood in the standard format Systems Biology Markup Lan-
guage (SBML) level 2 [228]. In SBML, the set of species is represented as a list of
species and the set of reactions as a list of reactions. Reactions influencers are
called modifiers.

Example 2.11 An example of a biological network that can be represented in
terms of a RIN is given in Figure 2.1. The network has four species, Λ =
{geneX, geneX-TF, rnaX, TF}. The basic CRN has the following two ordinary
chemical reactions displayed with a respective encoding reflecting the lexicographic
order of Λ:

%1 : geneX + TF → geneX-TF ((1, 0, 0, 1), (0, 1, 0, 0)) ∈ R
%2 : ∅→ rnaX ((0, 0, 0, 0), (0, 0, 1, 0)) ∈ R

12



First, there is a second-order reaction %1 that describes a complexation process (as-
sociation). A molecule of the transcription factor (TF ) binds to the particular
segment of DNA (the geneX). Second reaction %2, describes formation of an RNA
molecule. This first-order reaction is described in a very abstract form without
chemical details (i.e., small molecules such as ATP or transcription enhancers in-
volved in the process are not specified). All elements making the matter from which
RNA is built are set outside of the system.

There is a single influence in the network, ΓR = {(geneX-TF, %2)}, repre-
senting a positive effect of the complex geneX-TF on the occurrence of the second
reaction. The influence abstracts from many elementary reactions describing the
details of chemical interactions among all involved molecules.

2.3 Models of Biological Networks

One of the main aims of computational systems biology is to study the
dynamics of biological networks, in particular, how a population of com-
ponents affected by network interactions evolves in time. To that end, a
biological network is extended to a biological model that associates the net-
work structure with a suitable semantics reflecting the dynamics of net-
work components understood at a particular level of abstraction. The se-
mantics fulfils the following tasks:

• Network components (species) are given a mathematical interpreta-
tion as variables (numbers of molecules, molar concentrations, or a
suitable abstract interpretation of these quantities),

• Network interactions (reactions or influences) are given a mathemat-
ical interpretation as rules describing the dynamics – changes in af-
fected variables occurring in discrete or continuous time.

Discrete-value semantics can capture either quantitative (microscopic or
mesoscopic [317]) interpretation of chemical/biological entities (e.g., num-
ber of particles, atoms, molecules) or abstract qualitative interpretations
of selected qualities of modelled components (e.g., absence/presence
of a molecule, several levels/intervals abstracting quantitative values).
Continuous-value semantics represents a so-called macroscopic view [231]
where the modelled components are expected to appear in large quantities
provided that it is inconvenient to distinguish small differences (e.g., the
molar concentration of a species in a cell or in a certain organelle).

Rules are distinguished at several levels. The most basic form of a rule
is a chemical reaction. It makes the central organisation-building element
in reaction networks (Definition 2.3). Elementary reactions representing
mass transfer (A → B), dissociation (AB → A + B), and compound for-
mation (A + B → AB) represent the atomic rules of chemistry/biology.
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However, modelling of biological processes at that level requires very de-
tailed knowledge that is often not completely known (e.g. detailed schemes
of enzymatic reactions or reactions in gene regulation). Moreover, such
processes suffer from a large extent of combinatorial explosion due to the
fact the molecules and compounds can exist in many different concurrent
states (e.g., phosporylation, methylation, etc.). To that end, rules in mod-
els are used with suitable levels of abstraction and compactness. One of
such abstractions, in the form of general chemical reactions, has been al-
ready considered in Definition 2.3 (non-trivial stoichiometry coefficients
allowed in reactant and product complexes). Another level of abstraction
that avoids combinatorial explosion by context-free partial specification of
reactants and products forms, is provided in rule-based [161, 130, 223, 302]
and to some extent also in process-algebraic languages [310, 64].

Quantities that can be associated with rules are time and probability.
Since each interaction occurs in time with a specific rate, the respective rule
is executed with this rate implying the inherent time aspect of the system
dynamics. Naturally, time is considered as continuous, dense quantity.
When the information on rate is unknown or abstracted out due to sim-
plifications, discrete-time semantics is employed. It deals with the shortest
(discrete) time step which can represent an arbitrary finite time horizon.
Discrete-time abstraction allows to treat computational models as untimed,
i.e., the exact duration of a single time step is left unspecified. It is worth
noting that in the most of cases the occurrence of any rule is modelled as
instantaneous and it occurs immediately after the conditions for occurrence
are satisfied. There exist models that refine these aspects of semantics (e.g.,
delayed interactions [97] or non-instantaneous interactions [29, 108]).

With respect to the execution of interactions, rules can be either deter-
ministic or stochastic. Deterministic rules represent interaction events that
occur each time all preconditions are satisfied (i.e., if the given system state
contains at least the required amount of all reactants, the reaction is enabled
and occurs). There is no noise affecting the interaction. Interaction events
can occur concurrently – concurrency is an inherent feature of biological
and biochemical systems. There are several ways of modelling concurrent
events in computer science and most of them are applicable to biological
models. In the case of instantaneous events, the so-called synchronous
or asynchronous updating scheme is frequently used [106]. The former
scheme results in purely deterministic behaviour in which in every step all
events occurring concurrently are synchronised as occurring in the same
time instant. It is apparent that some behaviour can be lost in such settings.
On the contrary, the asynchronous updating scheme employs the so-called
interleaving of concurrent events. In particular, the model includes all pos-
sible sequences of concurrent events. They can be selected from a given
state by means of a non-deterministic choice.
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Deterministic rules absolutely neglect the presence of noise that causes
the occurrence of events to be a random phenomenon. A well-known phys-
ical model of molecule interactions reflecting stochasticity has been ad-
dressed by Gillespie in [195, 196]. To that end, stochastic rules are consid-
ered in modelling languages based on this physical model. In the stochastic
settings, the exact time between individual events reflecting occurrence of
a given reaction is a random variable depending on a particular state of the
system and on physical aspects of the reactant molecules.

In general, the choice of time representation, event atomicity and the
way of dealing with concurrency significantly affect the expressive power
of the model. For example, in the very recent work [108] it is shown that
in case of discrete-time discrete-value models of influence networks a more
expressive semantics not previously addressed in computer science is re-
quired to capture the biological influences correctly. It is also worth noting
that a large variety of semantics addressing the issues of concurrency in
the ways acceptable for biological networks is comprehensively captured
in the formalism of Petri Nets [70, 105, 321, 307].

Summary of individual model types with respect to the semantics of
species and rules is given in Figure 2.3. The left half-space shows mod-
els that work with discrete (or qualitative) semantics of species. The right
half-space shows models employing continuous semantics of species. The
vertical categorisation shows models with discrete (or untimed) semantics
of rule dynamics in the top half-space. In the bottom half-space, mod-
els describing continuous-time dynamics are displayed. In the following
subsections, we describe classes of models that are supported by meth-
ods developed in our research and over-viewed in the next chapters. First,
we consider the most commonly used continuous-time continuous-value
models for all kinds of considered biological networks – cCRNMs (contin-
uous models of CRNs), cINMs (continuous models of INs) and cRINMs
(continuous models of RINs). Second, in the stochastic case, we limit
ourselves to the most commonly used stochastic models well-defined for
chemical reaction networks – sCRNMs (stochastic models of CRNs). Al-
though there exist scenarios under which Gillespie’s theory can be applied
to Hill kinetics of influence networks [159] and Michaelis-Menten kinetics
of metabolic networks [322] making a subclass of RINs, they cannot be em-
ployed universally but only in cases when several additional criteria are
satisfied. Finally, we consider discrete-time discrete-value models of influ-
ence networks – dINMs (discrete models of INs). These models (known as
Boolean networks or Thomas’ networks [348, 347]) are becoming popular
for qualitative modelling of gene regulatory networks where the detailed
knowledge is very complex to be modelled mechanistically. Moreover, ge-
netic regulatory mechanisms are not yet fully explored. It is worth not-
ing that discrete-time discrete-value semantics has been also used in case
of CRNs [93]. However, we do not consider these models in our frame-
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Figure 2.3: Model types categorised with respect to different level of details
captured in their semantics. The model types covered in this thesis are
typeset in bold and placed to the appropriate quadrants of the scheme.

work due to the fact it is not clear what kind of (non-structural) parame-
ters would make good sense for parameterisation of qualitative models of
CRNs.

For the purpose of this thesis, we do not consider discrete-time math-
ematical models that make the top right quadrant of the scheme in Fig-
ure 2.3. It is worth noting that those models are relevant for mathematical
biology [123] as they are used for modelling of some abstract processes at
the population level, e.g., logistic growth.

2.3.1 Continuous Models

The following definition declares the most frequently used type of mathe-
matical models that is used with CRNs. The model considers variables to
evolve deterministically in continuous time in large concentrations (macro-
scopic view). Therefore every model variable captures a particular species
concentration as a function of time. In every continuous time instant, reac-
tions are quantified in terms of an instant flux describing the actual amount
of transferred mass. To this end, the fundamental law of mass-action [206]
is employed to represent kinetic rate function that characterises quantita-
tively the speed of mass transfer from reactants to products. In our case,
we compile several notions into a single definition and modify the notation
to avoid overlaps with other notions used throughout the thesis.

Definition 2.12 (Continuous CRN Model – cCRNM)
Let N = (Λ,R) be a CRN. Continuous chemical reaction network model of
N , denoted cCRNM(N ), is defined as a tuple (N , νcRN ,Xc, x0) where
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• νcRN : R → R≥0 is a (deterministic) kinetic rate coefficients map,

• Xc = R|Λ|≥0 is a (continuous) model state space with x(t) ∈ Xc denoting a
(continuous) state in time t ∈ R≥0,

• x0 ∈ Xc is an initial state.

Instead of x(t) we write x when a concrete value of time t is irrelevant in the re-
spective context. Further, we assume the components of x follow the lexicographi-
cal order of Λ. For any l ∈ Λ, the notation xl is used to denote the state component
relative to l, the so-called model variable.

Additionally, every % ∈ R is assigned a mass-action kinetic function κ% :
Xc → R≥0 in the following form:

κ%(x) = νcRN (%) ·
∏
l∈Λ

x
r%(l)
l

Dynamics of a cCRNM is defined as a continuous function x : R≥0 → Xc
satisfying x(0) = x0 and the following system of differential equations (given in
vector form):

dx

dt
= f(x) =

∑
%∈R

(p% − r%)κ%(x)

Example 2.13 The CRN from Example 2.4 can be assigned a continuous model
defined on the state space Xc = R≥0 by the following differential equation:

dx

dt
= νcRN (%1)x2 − νcRN (%2)x3 + νcRN (%3)− νcRN (%4)x

where x represents the one-dimensional model variable describing the development
of species A. The kinetic rate coefficients νcRN (%1), ..., νcRN (%4) are supposed to
be fixed to some concrete positive real values.

To describe the continuous semantics of influence networks, we fol-
low the ideas presented in [135, 54]. In particular, every component is
expected to have associated some degradation dynamics and every com-
ponent with a non-empty set of influencers is assigned a production dy-
namics that mathematically reflects all the affecting influencers in terms of
a set of so-called regulation functions that are expected to be monotonous.

Definition 2.14 (Continuous IN Model – cINM)
Let N = (Λ,ΓΛ) be an influence network. Continuous influence network
model ofN , denoted cINM(N ), is defined as a tuple (N , 〈νcIN+ , νcIN−〉,Xc, x0)
where

• νcIN+ : Λ×N→ R≥0 is a production rate coefficients map and νcIN− :
Λ→ R≥0 is a degradation rate coefficients map,
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• Xc = R|Λ|≥0 is a (continuous) model state space with x(t) ∈ Xc denoting a
(continuous) state in time t ∈ R≥0,

• x0 ∈ Xc is an initial state.

Additionally, every l ∈ Λ is assigned a (possibly empty) set of regulation
functions {σ1

l , ..., σ
kl
l } such that kl ≥ 0 and each σil : Xc → R≥0 is a continuous

and (non-strictly) monotonous function of xl satisfying l ∈ Λi where Λi ⊆ n−(l),
Λi 6= ∅, is a subset of influencers of l such that for all i, j ∈ {1, ..., kl}, i 6=
j.Λi ∩ Λj = ∅ and

⋃
i∈{1,...,kl} Λi = n−(l). Moreover, νcIN+ is required to be

defined for all (l, i) such that l ∈ Λi.
Dynamics of a cINM is defined as a continuous function x : R≥0 → Xc

satisfying x(0) = x0 and the following system of differential equations (containing
an equation for every l ∈ Λ):

dxl
dt

= fl(x) =

kl∑
i=1

νcIN+(l, i)σil(x)− νcIN−(l)xl

Example 2.15 The influence network from Example 2.7 can be associated with
a continuous model under the condition that the semantics of both influences of
mRNA X molecule is given including their mutual (joint) effect. Assuming that
TF regulates transcription of mRNA X positively, it is apparent that it has the
key role in controlling the transcription process. Since the molecule geneX has
only the qualitative effect (transcription cannot be performed without a particular
gene), we focus only on the subnetwork of the components TF and mRNA X. A
model of this subnetwork may have the following form:

dxmRNA X
dt = νcIN+(mRNA X, 1)σ1

mRNA X(x)− νcIN−(mRNA X)xmRNA X

dxTF
dt = −νcIN−(TF)xTF

where the state space has two dimensions corresponding to variables mRNA X and
xTF, the coefficient νcIN+(mRNA X, 1) is set to a concrete value reflecting (the-
oretically) maximal rate of mRNA production, νcIN−(RNA X) and νcIN−(TF)
are replaced with some concrete values representing degradation coefficients, and
σ1

mRNA X(x) is a regulation function of xTF defined by employing Hill kinetics in
the following way:

σ1
mRNA X(x) =

x4
TF

x4
TF + 34

This regulation function is a monotonous (increasing) S-shape function ranging
in the domain [0, 1) and satisfying σ1

mRNA X(x) = 0.5 for x such that xTF = 3.

The requirement on the monotonicity of regulation functions is pre-
sented due to practical reasons to simplify the semantics of regulations to
either increasing or decreasing functions of the (combined) influencers.

18



Finally, we close the collection of continuous models by describing the
most general class considered in this thesis – the class of reaction-influence
models. The concept is the following: non-regulated reactions follow the
law of mass action whereas regulated reactions have the kinetics defined
by a custom monotonous function projecting the system state (including
the state of influencers) into the regulated reaction rate.

Definition 2.16 (Continuous RIN Model – cRINM)
LetN = (Λ,R,ΓR) be a RIN. Continuous reaction-influence network model
of N , denoted cRINM(N ), is defined as a tuple (N , νcRIN ,Xc, x0) where

• νcRIN : R → R≥0 is a (deterministic) kinetic function coefficients map,

• Xc = R|Λ|≥0 is a (continuous) model state space with x(t) ∈ Xc denoting a
(continuous) state in time t ∈ R≥0,

• x0 ∈ Xc is an initial state.

Additionally, every % ∈ R∅ is assigned a mass-action kinetic function κ% :
Xc → R≥0 in the following form:

κ%(x) = νcRIN (%) ·
∏
l∈Λ

x
r%(l)
l

Every % ∈ R− is assigned a regulated kinetic function κ′% : Xc → R≥0 in
the following form:

κ′%(x) = σ%(x, νcRIN (%))

where σ% is an arbitrary continuous monotonous function of all variables xl such
that l ∈ n−(%) which is parameterised by νcRIN (%).

Dynamics of a cRINM is defined as a continuous function x : R≥0 → Xc
satisfying x(0) = x0 and the following system of differential equations (given in
vector form):

dx

dt
= f(x) =

∑
%∈R∅

(p% − r%)κ%(x) +
∑
%∈R−

(p% − r%)κ′%(x)

Example 2.17 The network from Example 2.11 can be assigned the following con-
tinuous model:

dxgeneX
dt = −νRIN (%1)xgeneXxTF

dxgeneX-TF

dt = νRIN (%1)xgeneXxTF
dxrnaX
dt = σrnaX(x, νRIN (%2))

dxTF
dt = −νRIN (%1)xgeneXxTF

where the state space is determined by the four-dimensional domain of non-
negative reals capturing the concentration of the four components, the semantics
of the uninfluenced reaction %1 is described in terms of mass action kinetics and the
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influenced reaction %2 is assigned a monotonous regulation function of the compo-
nent xgeneX-TF that may be specified by employing Hill kinetics in the following
form:

σrnaX(x, νRIN (%2)) =
νRIN (%2) · x4

geneX-TF

x4
geneX-TF + 34

where νRIN (%2) represents some concrete value that sets the maximal possible
transcription rate of the RNA molecule that is controlled (by scalling) employing
the same S-shaped regulation function that has been used in the previous example.

The remaining value of νRIN (%1) has to be set to reflect the physical properties
of the TF-DNA complexation reaction.

An important aspect that can be seen in cRINMs is the possibility of
a very general use of a kinetic rate coefficient anywhere in the regulation
function (in the case of assigning the dynamics to influenced reactions).
From the mathematical perspective, the class of non-linear models rep-
resented by cRINMs is not restricted at the place or regulation functions.
The regular form is only dictated in case of non-influenced reactions where
mass-action kinetics is employed.

Notation 2.18 We will use the notation cBNM to refer to any kind of continuous
model defined above (cCRNM, cINM or cRINM).

The vector function f : Xc → Xc defining the dynamics of a cBNM is called a
vector field.

Note that our framework provides the most frequently used expres-
sions describing biological networks in terms of ODEs. There exist differ-
ent forms taking into account various physical aspects of the reaction (e.g.,
cooperative binding [337], general mass action [225], S-systems [208], etc.)

All types of continuous-time models mentioned in this section describe
the dynamics by means of a continuous function of time. Owing to the fact
that these systems are non-linear, it is not in general possible to obtain the
analytical solution. In particular, numerical simulation methods are used
to obtain approximations of the dynamics in a finite time horizon.

The general notion that formally captures the (exact or approximated)
dynamics of a continuous-time dynamical system is called a continuous sig-
nal (a signal for short), defined in the following way.

Definition 2.19 (Signal) Let n ∈ N and T = [0, τ ] where τ ∈ R≥0. Then
x : T → Rn≥0 is a bounded-time continuous signal and T its time domain. If
T = [0,∞) we speak about a unbounded-time continuous signal.

For a given cBNM M of a biological network N , we refer the signal
representing a behaviour ofM as a signal generated byM. More precisely,
it is either an exact signal representing an exact (analytical) solution, or an
approximate signal constructed with a selected numerical method with some
error.
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The semantics of any cBNM is defined either as the exact signal that rep-
resents the unbounded-time dynamics from the initial state or an approx-
imate signal that gives a bounded-time numerical approximated prefix of
the exact signal.

Definition 2.20 (cCBNMs semantics) LetM be a cBNM with initial state x0.
Exact semantics ofM, denoted JMKcBNM, is defined as a unbounded-time con-
tinuous signal x given by the continuous function x(t) representing the solution
of the respective system of differential equations satisfying ∀t ∈ R≥0.x(t) = x(t)
and x(0) = x0.

Approximate semantics ofM, denoted JMKεcBNM, is defined as a piece-wise
constant signal xε : [0, τ ] → Rn≥0 (an approximate signal) constructed with a
selected numerical method with some error ε and a given time bound τ satisfying
∀t ∈ [0, τ ].x(t) = xε(t) + ε(t) and xε(0) = x0.

The semantics defined above employs the “local” view (fixed by a given
initial state) typically used by systems biologists. This design decision is
considered to emphasise the contrast between the common usage of cB-
NMs (simulation) and other model classes for which a “global” view of the
state space and global analysis are usually employed.

2.3.2 Stochastic Models

Stochastic computational models allow to incorporate noise which causes
fluctuations in microscopic or mesoscopic component quantities and that
way affects the biological system dynamics [159, 239]. In physics, chem-
istry and related fields, the probabilistic time-evolution of a system with
discrete component quantities is described by so-called master equations.
In the case of biological phenomena, the chemical master equation (CME)
provides an exact mathematical model for stochastic dynamics [196]. It is
formalised as a set of differential equations, providing a denotational rep-
resentation of component quantities distribution in continuous-time. Gille-
spie [195, 197] has made an important breakthrough in stochastic mod-
elling by introducing techniques for exact simulation of CME. From the
computer scientific viewpoint, the CME can be equivalently represented by
continuous-time Markov chains (CTMC) [299] which provide operational
semantics and allow us to consider continuous-time stochastic models as
computational (executable) models [142].

The following definition fixes the syntax and semantics of the stochas-
tic model as used in the thesis. The central notion is the hazard function
describing the expected rate of a state transition. It is defined by stochastic
interpretation of the law of mass action. It differs from the deterministic
version by taking into account the combinatorics of selecting the set of par-
ticular molecules making the reactant complex from the current solution
(state).
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Definition 2.21 (Stochastic CRN Model – sCRNM)
Let N = (Λ,R) be a CRN. Stochastic chemical reaction model of N , denoted
sCRNM(N ), is defined as a tuple (N , νsRN ,X, X0) where

• X ⊂ N|Λ|0 is a finite set of admissible states of the model, the so-called model
state space,

• X0 ∈ X is an initial state,

• and νsRN : R → R≥0 is a stochastic rate coefficients map.

Additionally, every % ∈ R is assigned a stochastic rate function (also called a
hazard function) h% : X→ R≥0 in the following form:

h%(X) = νsRN (%) ·
∏
l∈Λ

(
X(l)ι(l)

r%(l)

)
where ι(l) = 1, if r%(l) > 0, or ι(l) = 0, otherwise.

For a reaction % = (r%, p%) and a stateX ∈ Xwe define the state change from
X to X ′ ∈ X induced by %, denoted X %→ X ′, and satisfying X ′ = X − r% + p%.

Semantics of a sCRNM M, denoted JMKsCRNM, is defined as a CTMC
JMKsCRNM = (X, X0,Q) representing a continuous-time discrete-state Markov
process {X(t)|t ∈ R≥0} where Q ∈ R|X|×|X| is the transition matrix defined as:

∀Xi, Xj ∈ X, Xi 6= Xj .Q(Xi, Xj) =
∑

%∈Q(Xi,Xj)

h%(Xi)

where Q(Xi.Xj) = {% ∈ R|Xi
%→ Xj}, and additionally,

∀Xi ∈ X.Q(Xi, Xi) = −
∑

Xj 6=Xi

Q(Xi, Xj).

Individual state components Xl are called (random) model variables.
For a given state X ∈ X the set of all paths in the state transition system

underlying JMKsCRNM and starting at X is denoted PathJMKsCRNM(X).

In contrast to cCRNMs, the semantics of a sCRNM is defined as an
entire structure representing all possible behaviours of a system – the so-
called global view of systems dynamics. The selection of an initial state X0

can be understood as an additional information used by specific analysis
tasks employing the local view on systems dynamics (e.g., simulation or
local model checking).

The probability of a transition from state Xi to Xj occurring within t
time units is 1 − e−Q(Xi,Xj)·t, if such a transition cannot occur then
Q(Xi, Xj) = 0. The time before any transition from Xi occurs is expo-
nentially distributed with an overall exit rate E(Xi) defined as E(Xi) =∑

Xj∈XQ(Xi, Xj).
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A path π of a CTMC is a non-empty sequence π = X0t0X1t1 . . . where
∀i, j ≥ 0. Q(Xi, Xj) > 0 and ti ∈ R≥0 is the amount of time spent
in the state Xi for all i ≥ 0. There exists the unique probability mea-
sure on PathJMKsCRNM(X) defined, e.g., in [260]. Intuitively, any subset
of PathJMKsCRNM(X) has a unique probability that can be effectively com-
puted. For the CTMC C the transient state distribution is denoted πC,X,t.
It gives for all states X ′ ∈ X the transient probability πC,X,t(X ′) defined as
the probability, of being in state X ′ at the finite time t, having started in the
state X .

From the modelling perspective specific to stochastic models, there is
yet another notion of a quantity that can enhance the model semantics. In
particular, interactions and even variable values can be assigned quantita-
tive costs and rewards, e.g., time spent in particular concentration levels,
energy consumed by particular reactions, etc. By adding this kind of in-
formation (if available), models can be adjusted to provide interesting and
detailed quantitative predictions resulting from complex dynamics. The
notion of rewards is formally introduced in Section 2.5.5.

2.3.3 Discrete Models

Computational models are inherently discrete provided that the dynamics
(execution) occurs in terms of a series of discrete events. In the untimed set-
ting, non-determinism allows capturing all possible “timings” (orderings)
of concurrent events.

For the purpose of this thesis, we consider a class of discrete-time
discrete-value models frequently used for modelling of influence net-
works. These models are known as Boolean networks [348] or multi-valued
Thomas’ networks [347, 62]. We use a general definition that has been
stated in our work [248].

Definition 2.22 (Discrete Influence Network Model – dINM)
Let N = (Λ,ΓΛ) be an influence network. Discrete influence network model
of N , denoted dINM(N ), is defined as a tuple (N , νdIN ,X, X0,m) where

• m ∈ N|Λ| is a vector of maximal values,

• X df
=
∏
l∈Λ{0, ...,ml} is the model state space,

• X0 ⊆ X is a set of initial states,

• and νdIN : Ω → {0, . . . ,ml} is an influencing configurations mapping
where Ω

df
=
⋃
l∈Λ ({l} × Ωl) is the set of all influencing configurations

with Ωl
df
=
∏
u∈n−(l){0, . . . ,mu} denoting the set of contexts affecting the

state component Xl. A context is assumed to reflect the lexicographic order
of Λ. The meaning of νdIN (l, ω) = k (for some k ∈ {0, ...,ml}) is the
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intention of setting the state component Xl to the target value k if X meets
the context ω.

Semantics of a dINMM, denoted JMKdINM, is defined as a state-transition
system JMKdINM = (X, T,X0) where T ⊆ X×X is a transition relation generated
by the dINM in the following way:

X → X ′ ∈ T iff either νdIN (l, ωl(X)) > Xl ∧ (Xl <ml ∧X ′ = X[l 7→Xl+1])

or νdIN (l, ωl(X)) < Xl ∧ (Xl > 0 ∧X ′ = X[l 7→Xl−1])

where ωl : X → Ωl with ωl(X)
df
=
∏
u∈n−(l){Xu} is the projection of the state X

to the context affecting the component Xl reflecting the lexicographic order of Λ
and X[l 7→k] denotes X with an updated component Xl such that Xl = k.

Similarly to the case of sRNMs, the semantics of dINMs is represented
globally by means of a state-transition system. Moreover, the notion of ini-
tial states is generalised to an arbitrary subset of the model state space. This
is a model design decision reflecting the typical usage of dINMs for global
analysis of systems dynamics, e.g., finding states from which certain attrac-
tors (strongly connected components of the state-transition graph) can be
reached.

Example 2.23 The influence network from Example 2.7 can be associated with
a dINM under the condition that the semantics of both influences of mRNA X
molecule is given including their mutual (joint) effect. The gene geneX has a
direct positive effect on the production of mRNA X. Assuming that TF regulates
transcription of mRNA X positively, we have both influences affecting mRNA X
positive. The logic of the mutual effect of both influences has the form of the logical
AND. The reason is that the presence of both the gene and the transcription factor
in the cell is required to perform the transcription of mRNA X. Assuming the
lexicographically ordered set of species Λ = {geneX,mRNA X,TF}, a model that
considers boolean variables (ml = 1 for all species l ∈ Λ) can have the following
form:

X = {(x1, x2, x3) | x1, x2, x3 ∈ {0, 1}}

X0 = X

νdIN (mRNA X, (0, 0)) = 0
νdIN (mRNA X, (0, 1)) = 0
νdIN (mRNA X, (1, 0)) = 0
νdIN (mRNA X, (1, 1)) = 1

2.3.4 Parameterised Models

We are interested in models with uncertain or unknown parameters. To
that end, we extend models to become functions over parameter values
that are assigned to model parameters. Parameters may take values from a
given parameter domain P. In the case of cBNMs and sCRNMs, such domain
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is the set of positive reals, P = R≥0. In the case of dINMs, the parameter
domain is a set of natural numbers, P = N0. An element p ∈ P is called a
parameter value.

In this section we provide a general concept of model parameterisation
that has been, to the best of our knowledge, not done yet. The intuition
behind our concept is the following. In the context of quantitative models,
the parameterisation reflects the typical scenario in systems biology where
quantities represented by kinetic rate coefficients are considered as param-
eters. In the case of discrete models, the parameters are qualitative and re-
flect the settings of the logic driving the model dynamics. More specifically,
the parameterisations we consider here target the kinetic coefficients map-
pings νcRN , νsRN , νcIN+ , νcIN− , νcRIN (in case of cBNMs and sRNMs) and
νdIN (in case of dINMs). The domain of these mappings is extended with
a new symbol ⊥ representing an undefined parameter value. In particular,
ν• : R → R≥0 ∪ {⊥} for • ∈ {cRN, cRIN, sRN}, νcIN+ : Λ×N→ R≥0 ∪ {⊥},
νcIN− : Λ→ R≥0 ∪ {⊥}, and νdIN : Ω→ N0 ∪ {⊥}.

A concrete parameterisation of a particular model is given by the set
of objects for which the respective mapping is set to ⊥. In case of cRNMs,
sRNMs and cRINMs the parameterised objects are reactions. In the case of
cINMs and dINMs the situation is more complicated since the parameters
we consider are set more deeply in the structures representing the model
semantics. In dINMs, the parameterised object are the selected influencing
configurations. In cINMs, the parameterisation comprises species with un-
known degradation coefficients and production rate coefficients assigned
to individual regulation functions. The formal definition of parameterised
variants of the considered model classes is given in Definition 2.24.

Definition 2.24 (Parameterised Models) Let P be a parameter domain. Let N
be a reaction-influence networkN = (Λ,R,ΓR), a reaction networkN = (Λ,R),
or an influence network N = (Λ,ΓΛ) associated with a corresponding model
(cRINM, cCRNM/sCRNM, or cINM/dINM, respectively).

For an arbitrary model M we define its parameterisation χM (the set of
unknown objects that are parameterised – represented by appropriate parameters),
the respective parameter valuations assigning each model parameter a particular
parameter value from P, producing the parameter space PχM (the set of all
parameter valuations):

• If M is a cCRNM, M = (N , νcRN ,Xc, x0), then χM is defined as a set
of reactions for which the kinetic rate coefficient is considerex undefined,
χM

df
= {% ∈ R | νcRN (%) = ⊥}. The undefined values νcRN (%) such that

% ∈ χM make the model parameters.

• If M is a cRINM or sCRNM then all the notions are defined analogously
to the previous case (the only formal difference is in considering the kinetic
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function coefficients map νcRIN or the stochastic kinetic coefficients map
νsRN instead of νcRN , respectively).

• IfM is a cINM,M = (N , 〈νcIN+ , νcIN−〉,Xc, x0), then χM is defined as
χM

df
= χ+

M ∪χ
−
M where χ+

M
df
= {(l, i) ∈ Λ×N | νcIN+(l, i) = ⊥∧ i ≤ kl}

and χ−M
df
= {l ∈ Λ | νI−(l) = ⊥} are arbitrary sets of respective coefficients

considered undefined. The undefined values νcIN+(l, i) such that (l, i) ∈
χ+
M and νcIN−(l) such that l ∈ χ−M make the model parameters.

• IfM is a dINM,M = (N , νdIN ,X, X0,m), then the parameterisation χM
is defined as a set of influencing configurations with undefined target value,
χM

df
= {(l, ω) ∈ Ω | νdIN (l, ω) = ⊥}. The undefined values νdIN (l, ω)

such that (l, ω) ∈ χM make the model parameters.

The parameter space ofM is defined as PχM
df
= PχM . A mapping µ ∈ PχM ,

µ : χM → P, is called a parameter valuation.

Intuitively, the parameter space PχM is given by a set of valuations of
model parameters. The parameterisation χM targets the interactions (or
reactions) for which the corresponding quantities assigned in the respective
coefficients map are considered unknown.

The following notation sets the notion of concretisation of a parame-
terised model by replacing a given coefficients map with the selected pa-
rameter valuation.

Notation 2.25 For a modelM of arbitrary type and a parameter space PχM con-
sidered for a given parameterisation χM we denoteMPχ a corresponding param-
eterised model.

For a given parameter valuation µ ∈ PχM we denote MPχ(µ) the concrete
model in which the parameters are set with respect to µ.

In particular, if MPχ is a cCRNM then MPχ(µ) is a variant of M where
νcRN (%) = µ(%) for every model parameter νcRN (%), % ∈ χM. Parameter valua-
tions of cRINMs and sCRNMs are treated analogously.

IfMPχ is a cINM thenMPχ(µ) is a variant ofM where νcIN+(l, i) = µ(l, i)
for every model parameter νcIN+(l, i) such that (l, i) ∈ χ+

M and νcIN−(l) = µ(l)
for every model parameter νcIN−(l) such that l ∈ χ−M.

IfMPχ is a dINM thenMPχ(µ) is a variant ofMwhere νdIN (l, ω) = µ(l, ω)
for every model parameter νdIN (l, ω) such that (l, ω) ∈ χM.

Finally, we lift the notion of model semantics to the semantics of pa-
rameterised models. In the case of infinite sets of parameter values (this
is inherent for continuous parameters considered in cases of cBNMs and
sRNMs), the lifted notion of semantics can result in infinite sets of struc-
tures.
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Notation 2.26 The semantics of a parameterised modelMPχ is denoted JMPχK•
where • ∈ {cRNM, cRINM, cINM, sCRNM, dINM}. It represents the set
of structures representing semantics of individual unparameterised models:
JMPχK•

df
= {JMPχ(µ)K• | µ ∈ PχM}.

The parameterisation framework presented in this section is universal
in terms of the possibility to extend the basic parameterisation to more com-
plex parameterisations of mathematical functions representing the model
semantics. A way how this can be done is demonstrated in the case of
cINMs. A similar scenario may be relevant in the case of cRINMs when
more parameters can be necessary to be considered per a single regulated
kinetic function. In our simplified case, we have fixed a single parameter
per a regulated kinetic function.

In some cases, the concept of model parameterisation can be extended
to include the choice of initial conditions as a parameter. This is often em-
ployed in cBNMs or sRNMs in order to globalise the view on systems dy-
namics. In this thesis, we do not consider this kind of parameterisation al-
though it has been targeted in our work on cBNMs [86] and sRNMs [359].
In particular, in this thesis we clearly separate the global analysis wrt gen-
eralisation of initial conditions from the globalisation performed by param-
eterising the models. Mixing of both forms of abstraction in a single notion
would be counter-intuitive.

Bounded Parameters

It is worth noting that the parameter domains considered in Definition 2.24
are considered to be unbounded in general. However, in the case of dINMs
it follows from the semantics (Definition 2.22) that the domains of indi-
vidual influences settings mappings are always bounded by the maximal
value that closes the range of the affected variable. In the case of cBNMs
and sCRNMs the domain of parameters is, in general, an unbounded set
of positive real numbers. In practical scenarios, the parameters are always
considered bounded by (bio)physical limits (e.g., maximal physically pos-
sible rate of complexation given by the structural properties of a related
enzyme, maximal physically possible rate of degradation of a species in a
given physical environment, etc.) These limits can be found in biological
databases (e.g., Brenda [327] or BioNumbers [287]).

2.3.5 Relations Among Models

From the computational point of view, there exist many well developed
and efficient techniques for exhaustive analysis of models appearing in the
top left quadrant of the scheme in Figure 2.3. In the case when boundedness
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assumptions are applied, the models have a finite number of states. How-
ever, models in other quadrants incorporate continuous or dense quantities
which significantly complicate or even disallow the exact analysis. Model
reduction techniques are often employed to translate models into a sim-
plified form in which analysis can be made more efficient, decidable or
semi-decidable depending on the character of the model and the respective
analysis problem.

In the non-stochastic part of the bottom left quadrant, the reduction
of timed automata into untimed finite automata [7] enables exhaustive
analysis for a certain class of continuous-time discrete-value models. In
the stochastic part, there is a reduction procedure allowing to reduce a
continuous-time stochastic model by a continuous-time Markov chain to
a discrete-time Markov chain and a Poisson process (or a birth process) by
uniformization techniques [339, 142]. All reductions at this level are exact,
provided that no information is lost.

Concerning the bottom right quadrant, there are techniques to ab-
stract (or approximate) continuous-value models by discrete-value mod-
els. Formal abstractions allow specific properties to be preserved by
means of over-approximation (resp. under-approximation) of model be-
haviour. Over-approximating abstractions are conservative in the sense
that each behaviour of the original model is also present in the abstract
model but there can appear a new behaviour, not present in the origi-
nal model. Under-approximating abstractions ensure that no execution is
added to the abstract model but some can be lost. For certain classes of
ordinary differential equations, there exist formal abstraction techniques
providing a discrete-time discrete-value over-approximation in terms of
non-deterministic finite automata [135, 55, 209, 120] or a continuous-time
discrete-value over-approximation in terms of timed automata [276]. In the
former case, the extent of falsely added executions is usually large whereas
the latter case prevents the addition of any executions with non-realistic
timing and therefore the number of false executions can be reduced.

Besides formal abstraction, there are approximations that distort the
original behaviour. Such approximations do not guarantee the preserva-
tion of dynamics but the deviation of behaviour is ensured not to exceed
a certain (specified) approximation error. In the case of continuous-time
deterministic models, typically non-linear, the most widely used approxi-
mation is provided by numerical simulation (integration) methods.

Some classes of continuous-time stochastic models can be approx-
imated by deterministic continuous-time models (ODEs) by means of
fluid-approximation techniques [131]. Based on these techniques, more
sophisticated analysis methods for stochastic models, combining fluid-
approximation with CTMC analysis have recently been proposed [74]. The
advantage of these techniques is that they avoid the state-explosion prob-
lem. Another approximation technique for stochastic models is called lin-
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ear noise approximation [71]. It is based on approximating the discrete-
value stochastic semantics of a sCRNM in terms of a continuous-value
Gaussian process.

2.3.6 Other Types of Models

Rule-Based Models

Models defined in previous sections have dealt with fixed (and finite) net-
work structures. Such a setting is adequate for high-level modelling, but
it can be limiting when a more detailed level of modelling is required. For
example, let us consider a phosphorylation reaction that affects a structure
of a certain protein P by attaching a phosphate group to one of its amino
acid sites. In terms of reaction networks, we have to consider a new species
P ′ that represents the protein under that particular modification. However,
there might be many other sites that can be phoshorylated in a similar way.
In particular, protein P can exist in several states that combine the pres-
ence of phosphorylated sites arbitrarily. When using reaction or influence
networks, we have to model all those states explicitly as individual forms
of P . The central feature of rule-based models is to avoid the combinato-
rial explosion by lifting a concrete species to a species type that assigns the
species with a set of allowed modifications (states). Reactions are lifted to
rules that act over species types instead of concrete species. Such an ap-
proach allows powerful compaction of model descriptions.

Rule-based languages that form a fundamental basis of the rule-based
paradigm are κ-calculus [130, 78] and BNGL [161, 63]. In addition to
expressing species states the language has constructs to describe bonds
among the species structures. In full κ-calculus, rates are assigned to rules
allowing to turn the model state space into a continuous-time stochastic
model driven by a CTMC in a way similar to Definition 2.21 under the as-
sumption that the set of solutions generated by the rules is finite. There
are also ways to deal with unbounded models in terms of simulation [336].
Owing to the complex forms of rules targeting structural changes of bio-
logical objects, achieving a correct stochastic semantics is a non-trivial goal
and there are several recent papers targeting those issues in [96, 170].

The principle of rule-based modelling has been employed also in the
tool BioCham addressing a comprehensive set of analysis methods [167,
94, 166]. In our research, we have developed an abstract rule-based lan-
guage BCS allowing compact human-readable description of chemical re-
action networks [136]. In [88] we have demonstrated on existing models of
photosynthesis that rule-based description can significantly reduce the size
of the model by compactly capturing its unambiguous core part.

Based on the idea of rule-based languages, there has been recently de-
veloped a new typed multi-scale language Chromar allowing to express
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very general attributes of biological objects [223] while being based on rig-
orous structural operational semantics. The language makes an important
contribution for application of rule-based methods in modelling of biolog-
ical structures and processes at the multi-cellular level.

Process Algebraic Models

Process algebraic models provide an expressive framework that allows for-
mal specification and modular (compositional) analysis of concurrent pro-
cesses [310]. The processes are described in a compact form without any
ambiguity about the interactions, communications, and synchronisations
between a collection of concurrent processes (also called agents). Under
this framework, biological species can be modelled as processes interacting
with each other. The compositionality is an important aspect of process al-
gebraic approaches, it offers the possibility of defining the whole (possibly
multi-scale) system hierarchically, starting from the specification of its sub-
components. Examples of process algebraic approaches in computational
systems biology are Beta-Binders/BlenX [138], SPiM [304], BioSPI [316],
Bio-PEPA [114], sCCP [76], and BioShape [42]. Enhancing the process al-
gebraic description with typed structures allows description of high-level
processes such as translocation or movement between cellular parts [138].
Several approaches specifically focus on inter-cellular interaction [315, 98].

The relation of process algebraic and rule-based description and the
framework of biological models used in the thesis is the following. Speci-
fications encoded in process algebraic or rule-based languages are usually
employed as intermediate models that are then translated in basic compu-
tational models using different semantics: deterministic (ODEs), stochas-
tic (Continuous Time Markov Chains), or qualitative (transitions systems).
That way, the rule-based and process-algebraic framework can be consid-
ered as a pre-processor for biological models defined in Section 2.3. Prac-
tically, the translation can be done under the assumption that the resulting
models have a finite number of state components.

Petri Nets

The modelling framework of Petri nets was introduced by Carl Adam Petri
in 1962 with the purpose of describing chemical processes [303]. Petri nets
have been exploited by computational systems biologists as a formalism
suitable for the description of biochemical reaction systems, where the to-
kens are interpreted as single molecules of the species involved. The Petri
net formalism provides a natural framework in which both qualitative
(given by the static structural topology of the Petri nets) and quantitative
(given by the time evolution of the token distribution) analysis are tightly
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integrated [215]. Important tools for Petri nets used in computational biol-
ogy are Snoopy [216], MARCIE [328], GreatSPN [21], and MIRACH [246].

Advantages of Petri nets related to their application to biological mod-
els are two-fold. First, high-level extensions of Petri nets such as coloured
Petri nets [194], Time or Hybrid Petri nets [307, 281, 144] allow describing
processes at an abstract and even multi-scale level. Second, Petri nets pro-
vide a basis for specific analysis methods that are performed at the level of
the formalism, e.g., [214, 321, 69, 107, 202].

Discrete Time Stochastic Models

Discrete computational models employ non-determinism to model concur-
rency. To quantitatively differentiate among all possible executions in a
particular state, rules can be assigned probabilities, resulting in discrete
stochastic models [77, 367] most typically represented by discrete-time
Markov chains (DTMC).

Hybrid Models

In addition to the basic model paradigms mentioned in previous sections,
it is worth mentioning that there is a class of models that allows to com-
bine the discrete and continuous semantics. Such models are called hy-
brid models. They are most typically represented by means of hybrid au-
tomata [217] or process algebraic techniques [185, 75]. Hybrid models al-
low to mix discrete-value components with continuous-value components
and discrete-time dynamics with continuous-time dynamics. Such a com-
plicated semantics limits the model analysis [219, 95]. Hybrid models can
be satisfactorily used for modelling and simulation [144] and, when sim-
plifying assumptions are employed (e.g., considering linear dynamics of
continuous components), also for a more advanced analysis of biological
processes [128, 181]. A hybrid model represented in terms of a hybrid au-
tomaton with uncertain parameters is employed in [28] targeting design of
robust cardiac pacemakers. The work exploits the design problem of esti-
mating optimal parameters of pacemakers.

To incorporate noise, stochastic hybrid models [335] (i.e., stochastic hy-
brid automata) allow both discrete-time and continuous-time dynamics
to evolve randomly. Coupling of both kinds of dynamics while keeping
their stochasticity complicates analysis even more. To this end, simulation-
based (statistical) [133] or fluid-flow approximation techniques [75, 122]
have been developed.
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2.4 Model Encoding and Abstraction

In Section 2.3 we have presented several kinds of mathematical and com-
putational models used in systems biology. The main focus in this thesis
is to cBNMs, sCRNMs, and dINMs that cover the commonly used types of
models. In this section, we address the problem of translating these models
into low-level formalisms that enable us to perform computer-aided anal-
ysis of the models.

In particular, we start with discussing the issue of bounded model vari-
able and parameter domains that make an important precursor of decid-
ability of most of the analysis methods. Next, we present extended variants
of several formal methods structures. Finally, methods that allow translat-
ing the models into these formalisms.

2.4.1 Model Variables

Firstly, it is important to discuss the number of variables that might appear
in a model. Since this number gives the dimension of the underlying dy-
namical systems, for many methods it is crucial to have a finite number of
dimensions. In the case of all network models, we consider in this thesis,
the number of species is always assumed to be finite. However, in biolog-
ical reality (e.g., from the perspective of evolutionary biology) the number
of distinct species can be undetermined. The only computational models
that are capable of dealing with this issue (e.g., expressing polymerisation)
are provided by rule-based or process-algebraic formalisms. However, in
the case of unbounded network models, the analysis tasks are limited to
static analysis and simulation [336].

Secondly, it is important to note that component quantities in biological
models most typically do not evolve unlimitedly under normal conditions.
In particular, concentration (or a number of molecules) is always limited by
physical degradation processes. However, it might not be easy to identify
the exact bounds without a deeper analysis of the model. In any case, some
physical assumptions on maximal (extreme) bounds on component quan-
tities can be always considered. In our encoding of models, we always
consider bounded variable domains.

Considering dINMs, bounds on variables are inherently included in the
model. In particular, every species has a finite domain of discrete “concen-
tration levels” provided that the maximal level can be understood as an
“arbitrary value above any number from the lower level”. The problem of
mapping experimentally measured data into such a finite domain has been
extensively studied and algorithms are available [332].

In the case of the continuous and stochastic models, no bounds are
given and the dynamics of the model can theoretically evolve unbound-
edly. Introducing any bounds without the risk of losing some important
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information on systems dynamics requires detailed analysis of the systems
dynamics that can be very hard or even intractable in general (e.g., equilib-
ria and their asymptotic properties). In practical cases, reasonable physical
bounds are used together with assumption-based principles applied to rea-
son about the dynamics at the system’s boundary. In any case, the variable
domains remain uncountable and must be treated accordingly in a com-
puter.

2.4.2 Model Parameters

The parameter domains we consider are R≥0 and N0, for quantitative mod-
els and discrete models, respectively. Apparently, these domains reflect all
theoretically possible settings (valuations) of parameter values and are thus
unbounded in general. In the case of dINMs, the set of parameter values is
typically finite since the parameters representing unknown influences take
values from some finite domain (combinations of values from the finite do-
main of variable values). In the case of quantitative models, the range of
admissible parameter values is typically bounded by physical limitations
of the particular reactions or processes (corresponding maximal numbers
are usually publicly available). Nevertheless, the range remains infinite
since the parameters domain in these models is uncountable.

2.4.3 Parameter Perturbations

In many practical cases it is useful to study the system dynamics in a
smaller range of parameter values around a certain reference value. In
that case, a lower bound and an upper bound are considered for model
parameters. In other words, the meaning of ⊥ covering all admissible
values is changed to cover only values from a given interval. The (multi-
dimensional) range of parameter valuations is called a perturbation space.

LetM be a cCRNM, a cRINM or a sCRNM with a parameterisation χM.
We assign each % ∈ χM a so-called perturbation interval [min%,max%] ⊆ P
where min%, max% ∈ P are the minimal and maximal allowed rate coef-
ficients of the reaction %. The parameter space PχM can be set to exactly
cover a given perturbation space, in particular, every parameter valuation
µ ∈ PχM then satisfies µ(%) ∈ [min%,max%] for every % ∈ χM. In general,
the set of parameter valuations restricted to the product of perturbation in-
tervals is called a perturbation space, denoted P, P ⊆ PχM , defined in the
following way:

P
df
= {µ | µ(%) ∈ [min%,max%], % ∈ χM, µ ∈ PχM}.

Every parameter valuation having such a restricted form is called a per-
turbation. The concept of perturbation space is analogously extended to
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remaining types of models (dINMs and cINMs). In general, every parame-
terised object is assigned a min-max interval instead of ⊥.

2.4.4 Parameterised Kripke Structure

For non-stochastic models, we use the notion of Kripke structure as the un-
derlying low-level formalism to encode the model semantics. The reason is
that most of our methodology is based on model checking methods which
require to associate state-transition semantics with temporal logic. Kripke
structure [115] is a state-transition system extended with atomic proposi-
tions associated to states and thus allowing to reason over its states and
paths with temporal logics. In particular, we extend the standard notion
of Kripke structure to allow encoding of parameterised models. To that
end, the notion of parameterised Kripke structure is defined in the following
definition.

Definition 2.27 Let AP be a set of atomic propositions. A parameterised
Kripke structure (PKS) over AP is a tuple K = (P, S, S0,→, L) where P is
a set of parameter values (a so-called parameter space of K), S is a finite set of
states, S0 ⊆ S is the set of initial states, L : S → 2AP is a labelling of the states
and→ ⊆ S×P ×S is a transition relation labelled with the parameter valuations.
We write s p→ t instead of (s, p, t) ∈ →. We assume that the PKS is total, i.e., for
all s, p there exists at least one t such that s p→ t.

Notation 2.28 We use the notation P(s, t) = {p ∈ P | s p→ t} to denote the
transition-enabling set of all parameter values under which the transition from s
to t is allowed.

Remark 2.29 For the specific analysis task based on LTL model checking we
also use a slightly extended definition of (fair) PKS described by a tuple K =
(P, S, S0, F,→, L) where the set of fair states F ⊆ S is added.

Fixing a concrete parameter value p ∈ P reduces a parameterised
Kripke structureK to a standard Kripke structureKp = (S, S0,

p→, L). A pa-
rameterised Kripke structure can be seen as a Kripke structure with labelled
transitions, where the transition labels are the sets P(s, t).

Definition 2.30 Let K = (P, S, S0,→, L) be a PKS. Define a p-path in the PKS
K, denoted πp, as a (possibly infinite) sequence of states πp = s0s1 · · · such that
s0 ∈ S0, si

p→ si+1 for all i ≥ 0. To denote the ith state of πp we use the notation
πp(i), πp(i) = si.

For a PKS K = (P, S, S0, F,→, L) with fair states F , a p-path πp in K
is defined as a fair infinite-length p-path, i.e., a p-path such that there is a state
γ ∈ F which appears in the sequence infinitely often.
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It is worth noting that a notion similar to parameterised Kripke struc-
ture we employ here has been also mentioned in the context of hard-
ware verification, in particular, to capture delay parameters in logical cir-
cuits [301, 211]. Our notion is conceptually different since we define pa-
rameterised Kripke structure as a general structure that encapsulates the
family of Kripke structures for each possible valuation of the parameters.
In our case, the parameterised object is the entire transition relation.

As depicted in Figure 2.4 and described in Section 2.4.6, any cBNM can
be approximated and abstracted by means of a PKS. The relevant proce-
dures are described in Section 2.4.6.

It is also worth noting that the notion of parameter space of a PKS does
not necessarily coincide with the notion of parameter space PχM of a given
modelM. In particular, this applies in cases of cINMs and cRINMs. Again,
more on that is discussed in Section 2.4.6.

2.4.5 Parameterised CTMC

In the case of sCRNMs, we set the parameterised models semantics in
terms of parameterised CTMCs. In particular, we assume an sCRNM
M = (N , νsRN ,X, X0) with a parameterisation χM where every % ∈ χM
is assigned a perturbation interval of parameter valuation νsRN (%) ∈
[min%,max%] ⊆ R≥0 forming the perturbation space P ⊆ PχM as defined in
Section 2.4.3. For every µ ∈ P, the dynamics ofMPχ(µ) is represented by
a CTMC Cµ = (X, X0,Qµ) according to Definition 2.21. The parameterised
sCRNMM is therefore represented by a family of CTMCs induced by the
parameter perturbation space P, C = {Cµ | µ ∈ P}. The individual CTMCs
in C differ only in the transition matrix that is affected by changing the
parameter values.

2.4.6 Discrete Abstraction of Continuous Models

In order to enable the application of automatised global analysis methods
to cBNMs, a model is approximated and abstracted in terms of a state-
transition system that represents a finite quotient of the continuous model.
The workflow of model approximation and abstraction is shown schemat-
ically in Figure 2.4 (left).

A cBNM is approximated by an intermediate model also represented
in the semantics domain of ODEs but having a more regular structure
that is suitable for rigorous abstraction [10]. In the general case, a piece-
wise multi-affine ODE (PWMA) is employed for the intermediate model.
PWMA reflects a finite partition of the vector field provided that on every
region of the partition the vector field is defined by a multi-affine function.
For such kind of systems, rigorous abstraction methods have been devel-
oped, e.g., [135, 55, 49, 276, 120], allowing to formally over-approximate
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Figure 2.4: General workflow of encoding a parameterised models em-
ployed in the thesis.
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Figure 2.5: A vector field of an approximated ODE system (left) and dis-
cretisation of the emphasised region (middle). Thresholds determining the
rectangles were obtained by the algorithm in [205]. States and transitions
of the Kripke structure corresponding to the discretisation (right).

the continuous system by a finite state-transition system. In this thesis we
employ rectangular abstraction methods introduced in [55, 49, 120], previ-
ously implemented in software tools RoVerGeNe [49] and BioDiVinE [35],
and applied e.g. in [205, 46]. The abstraction is presented by using an en-
coding of the resulting parameterised state-transition relation in terms of
SMT formulae. This allows us a compact description of the abstract param-
eterised model that copes with continuous parameter space. This encoding
has been first proposed in our work [56].

Model Approximation

Semantics of a cBNMM of any type as defined in Section 2.3 has the gen-
eral form of a continuous dynamical system ẋ = f(x, p) where x : R≥0 →
Rn≥0 where n ∈ N is the dimension of the system (determined by the cardi-

36



Figure 2.6: Optimal approximation of sigmoid functions by piece-wise
affine functions according to [205].

nality of the set of species of the respective biological network) and p ∈ Rm
is a parameter vector where m ∈ N is the number of parameters (deter-
mined by the cardinality of the parameterisation χM). The shape of the
vector field f depends on the particular model type:

• IfM is a cCRNM representing a network where all stoichiometry co-
efficients are 1 then for all i ≤ n, fi is multi-affine in x and affine in p.
In case there is a stoichiometry coefficient higher than 1, the affected
fi is a polynomial of degree equal to the maximal stoichiometry coef-
ficient. Affinity in p is preserved.

• If M is a cINM or cRINM then for all i ≤ n, fi is in general a non-
linear function typically having the form of a rational function of x
which is affine in p. Nevertheless, there can be components of x in
which some fi might be polynomial or even affine (e.g., a species in
a reaction-influence network which does not take part in a complex
affected by any influenced reaction).

The approximation is needed if the criterion that every fi is multi-affine
in x is violated. Apparently, this applies in cases of cCRNMs with a stoi-
chiometry coefficient higher than 1 and in case of any cINM or cRINM that
contains a non-linear regulation function (or a reaction with a reactant with
stoichiometry greater than 1 in case of cRINMs). To achieve that we employ
the approach defined in [205]. In particular, each regulation function occur-
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ring in fi is approximated with an optimal piece-wise multi-affine function
as shown in Figure 2.6 (in case of a one-dimensional regulation function the
approximate function is piece-wise affine). In this procedure, a finite num-
ber of segments is introduced for every component of x. Segments partition
the vector field orthogonally into a finite set of (hypher)rectangular regions.
Analogous procedure is applied to polynomial functions representing ki-
netics of reactions with the stoichiometry of reactants greater than 1.

Model Abstraction

We assume that we are given a set of thresholds {θi1, . . . , θini} ⊂ R≥0 for
each variable xi such that θi1 < θi2 < · · · < θini . In case of a cINM or
cRINM, the thresholds are given by exactly the points that separate in-
dividual segments of an approximated regulation function. However, in
case of a cCRNM with stoichiometry coefficient at most 1 the selection of
thresholds can be arbitrary. Further, we assume that the dynamical system
satisfies for all i ≤ n, fi is multi-affine on every n-dimensional rectangle
[θ1
j1
, θ1
j1+1]×· · ·× [θnjn , θ

n
jn+1]. Each rectangle is uniquely identified via an n-

tuple of numbers: R(j1, . . . , jn) = [θ1
j1
, θ1
j1+1] × · · · × [θnjn , θ

n
jn+1], where the

range of each ji is {1, . . . , ni − 1}. We also define VR(j1, . . . , jn) to be the
set of all vertices of R(j1, . . . , jn).

Boundary Condition In order to establish a finite rectangular abstraction
of the intermediate PWMA model, special care has to be given to boundary
rectangles. A boundary rectangle is any rectangle R(j1, ..., jn) where for
some i either ji = 1 or ji = ni−1. Any dimension i satisfying that condition
is called a boundary dimension of R(j1, ..., jn). We restrict ourselves to
models where the dynamics is bounded in the range specified by lower and
upper thresholds – trajectories cannot exit that range (note that this could
occur only in boundary rectangles). Formally, all trajectories determined by
the PWMA model are required to keep xi ∈ [θi1, θ

i
ni ]. We restrict ourselves

to parameter spaces where this requirement is satisfied for all parameter
values. More precisely, we assume the so-called boundary condition to be
satisfied: for every boundary rectangle R(j1, ..., jn) we assume that for all
p ∈ P, i ∈ {1, ..., n}, x ∈ R(j1, ..., jn) it holds that (ji = 1 ∧ xi = θi1) ⇒
fi(x, p) > 0 and (ji = ni − 1 ∧ xi = θini)⇒ fi(x, p) < 0.

Abstraction-Encoding PKS There are two basic questions solved by the
abstraction procedure. First, for a given rectangle we need to identify to
which neighbouring rectangle the dynamics flows. Second, we need to
check if there is a possibility to remain in the given rectangle for infinite
time.
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Technically, the rectangular abstraction results in an (abstraction-
encoding) parameterised Kripke structure Kabst = (PχM , S, S0,→, L) with
S = {(j1, . . . , jn) | ∀i : 1 ≤ ji ≤ ni} where each α ∈ S represents the
rectangle R(α) and S0 = {α0} such that x0 ∈ R(α0) (a rectangle corre-
sponding to the initial condition x0). The atomic propositions representing
concentration inequalities are assigned to adequate states by means of the
labelling L. In particular, L : S → 2AP where AP = {xi � θij | 1 ≤ i ≤
n, 1 ≤ j ≤ ni},� ∈ {≤,≥}}. The parameter space of Kabst is directly given
by the parameter space of the abstracted model.

The parameterised transition relation → is defined between any two
states representing neighbouring rectangles. Each transition is associated
with a subset P(α, α′) of parameter values under which it is enabled. In
particular, the set P(α, α′) is encoded symbolically by a formula Φα,α′ ,
P(α, α′) = {p ∈ P | p |= Φα,α′}, that expresses the condition that conserva-
tively characterises continuous flows from R(α) to R(α′) by investigating
the vertices of the facet R(α) ∩R(α′).

Formally, Let α = (j1, . . . , jn) ∈ S, 1 ≤ i ≤ n and d ∈ {−1,+1}. We
denote αi,d = (j1, . . . , ji+d, . . . , jn) (if ji+d is in the valid range). Thus αi,d

describes all the neighbouring rectangles of α. We further denote vi,+1(α) =
VR(α)∩{(..., ji+1, ...)} and vi,−1(α) = VR(α)∩{(..., ji, ...)}. For every pair
of states α, αi,d ∈ S, 1 ≤ i ≤ n, d ∈ {−1, 1} the formula Φα,αi,d encoding the
set of parameter values P(α, αi,d) is defined in the following way:

Φα,αi,d :=
∨

v∈vi,d(α)

d · fi(v, p) > 0

Additionally, the rectangular abstraction approximates the potential ex-
istence of a fixed point in any rectangle α ∈ S. This is achieved by means
of introducing a self-transition α → α. In particular, a self-transition is
enabled in a state α ∈ S for all parameter valuations p ∈ P satisfying
0 ∈ hull{f(v, p) | v ∈ VR(α)} (the zero vector included in the convex
hull of the rectangle vertices). This is symbolically encoded by the formula
Φα,α defined in the following way:

Φα,α := ∃c1, . . . , ck :

(
k∧
i=1

ci ≥ 0

)
∧

(
k∑
i=1

ci = 1

)
∧

(
k∑
i=1

ci · f(vi, p) = 0

)
(2.1)

where k = |VR(α)| is the number of vertices of the rectangle α.
The formula Φα,α can be simplified with a coarser characterisation

given by the following formula:

Φ′α,α := ¬
∨

1≤i≤n
(
(Φαi,−1,α ∧ Φα,αi,+1 ∧ ¬Φα,αi,−1 ∧ ¬Φαi,+1,α)
∨ (¬Φαi,−1,α ∧ ¬Φα,αi,+1 ∧ Φα,αi,−1 ∧ Φαi,+1,α)

)
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The formula Φ′α,α′ is true just if there is either a pair of transitions αi,−1 →
α → αi,+1 or a pair of transitions αi,+1 → α → αi,−1 provided that the
respective two transitions are the only transitions allowed in ith dimension
through the rectangle α. According to [49], this situation implies that the
zero vector is not included in the convex hull of the vectors in rectangle ver-
tices. That makes a necessary condition for non-existence of a fixed point
inside the rectangle. In particular, Φ′α,α ⇒ ¬Φα,α.

Interval-Based Encoding of Parameter Value Sets

In case every fi(x, p) depends on at most a single component in p (for ev-
ery i ≤ 0 there is at most one unknown parameter occurring in fi, we call the
parameters to be mutually independent), encoding of parameter values can
be significantly simplified. In such case the set P(α, α′) can be represented
as a Cartesian product of closed intervals describing ranges of individual
parameters values that enable the transition α→ α′. In a bounded parame-
ter space these sets form (hypher)rectangular regions. In consequence, the
representation of parameter sets, as well as the overall parameter synthesis
procedure, can be significantly simplified.

Relation between a cBNM and its Discrete Abstraction

In [49, 55] it is shown that for a given multi-affine or even piece-wise multi-
affine continuous system, the rectangular abstraction mentioned above
conservatively abstracts almost all signals of the continuous system. A
comprehensive overview of the conservativeness results for piece-wise
affine and multi-affine systems is given in [120].

Formally, we consider a piece-wise multi-affine system (PWMA) ẋ =
f(x, p) defined on the bounded state space X =

∏n
i=1[θi1, θ

i
ni ] ⊂ R≥0 where

n is the dimension of the system, θi1 and θnni is the lower and upper bound
of variable xi, and the parameter p ranges in a parameter space P ⊂ Rm≥0

wherem is the dimension of the parameter space. We consider we have ob-
tained a PKSKabst representing a rectangular abstraction of the PWMA sys-
tem. We assume Kabst satisfies the boundary condition and is constructed
using the steps mentioned above. Before we characterise the relation be-
tween Kabst and the abstracted PWMA system, we state the definition of
signal-path correspondence.

Definition 2.31 Let Kabst = (PχM , S, S0,→, L) be a parameterised Kripke
structure encoding a rectangular abstraction of a PWMA system ẋ = f(x, p)
satisfying the boundary condition. We say a continuous signal x : T → Rn≥0

corresponds to a p-path πp = α0, α1, ... of Kabst iff all the following conditions
are satisfied:

1. x satisfies x(0) ∈ R(α0),
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2. for any t ∈ T there is i ∈ N0 such that x(t) ∈ R(αi),

3. x passes subsequently through the states of πp.

The relation between the semantics of the PWMA system and Kabst is
characterised by the condition of global sufficiency [120] stated formally in
the following claim.

Claim 2.32 For any initial condition x0 ∈ X and the respective continuous (ex-
act) signal x generated by a PWMA system ẋ = f(x, p), x(0) = x0, there exists a
p-path πp in Kabst such that x corresponds to πp.

Remark 2.33 The dual condition called global necessity has been also discussed
in [55, 120]. It requires for any path π in Kabst there exist an initial condition
x0 and a corresponding signal x in the PWMA system such that x(0) = x0 and x
corresponds to π. However, it is shown that even for piece-wise affine systems the
condition is not satisfied by the rectangular abstraction.

The conservativeness of the abstraction guarantees the resulting Kripke
structure provides an over-approximation of the original PWMA system.
In particular, no behaviour is lost by the abstraction but false behaviour
can be introduced.

Next, the relation between the original cBNM and the abstraction has
to be discussed. Due to the fact the approximation step affects the shape
of the signals, we cannot directly transfer the global sufficiency condition
to the cBNM. Precise characterisation of the error produced by the approx-
imation step is not yet available. However, it has been shown in [205] and
also in our own work the vector field of the original cBNM and the ap-
proximated PWMA system can agree well if sufficient precision is used for
local piece-wise linearisation of the regulation functions. The more signif-
icant problem is the extent of over-approximation – the number of false
(so-called spurious) paths introduced in the abstraction is usually high.
To that end, we have provided a variant of the procedure that combines
the abstraction procedure with local numerical simulation [87]. However,
the method is computationally demanding. Recently we have developed a
method employing δ-decision SMT over formulae with reals [79] that em-
beds the δ-decision-based solver of ODEs [187] within the concept of rect-
angular abstraction.

Finally, we can summarise the overall procedure – a given parame-
terised cBNMMPχ with an initial condition x0 and a parameterisation χM
is first approximated by a PWMA model and then abstracted in terms of
a parameterised Kripke structure constructed as mentioned above and de-
notedKabstε(MPχ). The first step (approximation) means that for any given
µ ∈ PχM the semantics JMPχ(µ)KcBNM represented by an exact signal xµ
is approximated with some (unspecified) numerical error ε by a signal xεµ
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generated by a PWMA model. In the second step (abstraction), the sig-
nal xεµ is over-approximated by a set of all paths π in Kabstε(MPχ)µ such
that π(0) = α0 and x0 ∈ R(α0). The resulting semantics ofMPχ obtained
after the approximation and abstraction steps is denoted JMPχKabst

ε

cBNM and
defined:

JMPχKabst
ε

cBNM
df
= Kabstε(MPχ).

Other Approaches

The main characteristics of the abstraction presented above are represented
by two properties: (i) the abstract structure represents the behaviour of the
dynamical system globally (it covers any initial condition of the original
continuous system), (ii) the abstract structure captures parameter uncer-
tainty by encoding the parameter values in terms of first-order formulae
(it covers any parameter value in the considered domain of uncertainty).
An alternative way to represent global behaviour together with parame-
ter uncertainty is using polytopes as implemented in RoVerGeNe [49] and
further refined in SpaceRover [67] (the tools are performing on cINMs but
can be easily extended to work with general cRINMs). The approach intro-
duced in [51] targets qualitative abstractions that are specific for cINMs. It
relies on representing the regulatory function by means of discontinuous
step functions resulting in piece-wise affine dynamics defined on a par-
tition that is given symbolically by qualitative (numerically unspecified)
thresholds. The method is implemented in the GNA tool [135].

A universal global approach to the finite representation of dynamical
(and even hybrid) systems under parameter uncertainty is to encode the
models entirely in terms of first-order formulae over real numbers and
solve them using a δ-decision SMT solver [156, 187, 252]. This provides
an implicit (relational) abstraction of the continuous dynamics flow [323].
Such a relation gives a unique symbolic representation of the system dy-
namics in the given bounded domain. However, in the case of global anal-
ysis (e.g., large and complex initial sets and the need to explore the entire
bounded domain of systems dynamics), these techniques quickly become
computationally demanding. We believe that techniques that will combine
discrete abstractions with symbolic approaches have high potential.

Abstractions of nonlinear systems based on interval analysis have been
introduced in [344, 313]. Although they are guaranteed to give over-
approximations to the discrete dynamics of the continuous system (suffi-
ciency), the quality of the approximation can be (and typically is) rather
poor.

A technique close to the approach employed here is presented in [65].
Rather than using a fixed polyhedral subdivision, a simplicial subdivision
is computed based on the system itself, and the resulting flow induced
multi-valued map provides a good abstraction of the continuous system.

42



However, a good polyhedral subdivision itself is extremely difficult to com-
pute, and the method is likely to be useful only in low dimensions.

There is a group of approaches based on qualitative reasoning (theo-
rem proving) with predicates over the reals [305, 350]. In that case, the
construction is not fully automatised and it is challenging to find suitable
abstraction predicates for non-linear systems.

Several techniques allowing hybridisation of the continuous dynam-
ics have been introduced, e.g., [18, 129]. These techniques follow the dy-
namics with a significantly less extent of false behaviour but they are re-
stricted to bounded-time reachability problems. In [66] the authors em-
ploy conic abstraction restricted to affine systems that allows unbounded
reachability analysis. For multi-affine systems, conic abstractions have
been combined with rectangular partitioning to reduce the extent of over-
approximation [60].

The techniques presented in [101, 276, 364] employ timed automata in
various forms for the abstraction. An abstraction method allowing to cap-
ture unbounded-time behaviour is addressed in [101].

For certain problems, polynomial boundaries (barrier certificates [308]
or multivariate polynomial partitioning [250]) can be employed. Such
methods give definitely more precise results than polyhedral partitioning
but are computationally demanding and not yet applicable to models with
uncertain parameters.

2.5 Temporal Logics for Biological Systems

In this subsection we give an overview of temporal logics that are consid-
ered relevant for expressing properties of biological systems. The men-
tioned set of properties is not complete but it rather focuses on the types of
logics used in our research. Logics used in following chapters are described
formally.

Qualitative Logics

With respect to the level of abstraction employed, there are two classes
of temporal properties. Qualitative properties abstract away from any
quantitative information like time aspects or energy costs of systems dy-
namics. Qualitative properties are in general interpretable on all types
of models, especially on untimed discrete-value models (dINMs and dis-
crete abstractions of cBNMs). Two basic logical formalisms allowing to
express qualitative properties of systems dynamics are the linear-time tem-
poral logic (LTL) [306], interpreted on individual model executions (paths),
and computation tree logic (CTL) [117], interpreted on trees of (non-
deterministically) branching model executions.
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Quantitative properties are usually expressed in formalisms based on
the aforementioned temporal logics. They can be roughly divided into
deterministic (applicable to cRINMs, cCRNMs and cINMs) and stochas-
tic logics (applicable to sCRNMs). Deterministic logics are mostly focusing
on a quantitative notion of time. The time extension of CTL called Timed
Computational Tree Logic (TCTL) has been introduced in [7].

Quantitative Logics

Metric Temporal Logic (MTL) [254] is general quantitative temporal logic
that allows to quantify modalities with the time frame represented by a
closed time interval. MTL possesses both discrete and continuous seman-
tics, as it can be interpreted on infinite timed state sequences as well as
continuous signals. The possibility of singular values occurring as time-
quantifiers of the modalities causes the problem of formula satisfiability
to be undecidable for MTL. To that end, Metric Interval Logic (MITL) has
been introduced in [8] as a practical restriction of MTL that allows only
non-singular intervals to quantify the modalities. Another time extension
of LTL called Timed Propositional Temporal Logic (TPTL) [9] is based on
freeze-quantification where extra clocks are used to specify temporal con-
straints. Motivated by the application of verification and monitoring tech-
niques to continuous-value and hybrid systems, Signal Temporal Logic
(STL) has been introduced [277]. It combines the dense time modalities
of MITL with the numerical predicates over real numbers. Technically, the
logic is interpreted over piece-wise linear continuous-time signals on which
a qualitative and a quantitative semantics [151] is defined including an ef-
ficient algorithm [149].

A version of LTL with constraints over the reals, called LTL(R), has been
proposed in [15] to express temporal properties of molecular concentra-
tions and their derivatives. A quantifier-free fragment of the first-order
extension of LTL(R), called QFLTL(R), has been considered in [163]. It al-
lows to use free variables in the atomic propositions and, thus, it enables to
analyse robustness of numerical data time series with temporal logic and
to automatically compute LTL(R) specifications from experimental traces.

Stochastic logics express the probability and performance measures on
Markov chains. To formalise properties of CTMCs, Continuous Stochastic
Logic (CSL) [20] has been introduced. It is a probabilistic extension of CTL
with continuous-time semantics. To further broaden the scope of possibly
expressible behaviour, CSL have been extended to allow the specification
over reward-based stochastic models, i.e., Markov chains with real-valued
rewards/costs attached to states and transitions [260]. The extension en-
ables to express properties such as the expected time a system spends in a
specified set of states over a time interval or the expected number of times
that a particular reaction occurs.
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Extended Logics

Expressing biological phenomena can require extensions of existing log-
ics. Biologically relevant temporal logic extensions target precise quantita-
tive description of oscillations [143, 43] or qualitative properties combining
linear-time properties with branching-time [280]. In our work we have in-
troduced two extensions of temporal logics. In the domain of linear-time
logics we have addressed an extension of STL by means of introducing a
value-freezing operator that allows to store a signal value at the time point
where the operator is evaluated. The stored value can be then referred in
predicates placed in the scope of the value-freezing operator. This allows
STL* to specify and distinguish various dynamic aspects which occur in
biological systems, in addition to the phenomena mentioned above, these
can be, e.g., damped oscillations or local extremes in species concentration.

In the domain of branching-time logics, we have combined two known
extensions of CTL – an extension HCTL adding hybrid operators including
past operators and allowing to use of state variables that can be fixed in
certain parts of the formula as well as quantified [16], and an extension
UCTL adding event predicates over single-step system evolutions [346].
The resulting logic called HUCTL [58] allows to efficiently express global
and local properties of phase spaces of dynamical systems that cannot be
expressed in LTL/CTL, e.g., the presence of a given number of mutually
exclusive stable attractors. The need for hybrid branching-time logics in
the domain of biological systems has been also addressed in [17].

In the remaining part of this section, we describe in more detail the
logics that are selected to be used in following chapters of the thesis.

2.5.1 Linear Time Temporal Logic – LTL

LTL captures the temporal properties of paths in discrete state-transition
systems. In particular, LTL formulae are interpreted on infinite paths gen-
erated by a Kripke structure.

LTL formulae are defined by the following abstract syntax:

ϕ ::= Q | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | ϕ1Uϕ2

where Q ranges over atomic propositions taken from a set AP . We use
the standard abbreviations like Fϕ which stands for trueUϕ or Gϕ which
stands for ¬F¬ϕ.

The semantics of an LTL formula ϕ is interpreted on infinite paths of
a Kripke structure K = (S, S0,→, L). For an infinite path π = s0s1... and
some i ∈ N0 we use the notation πi to denote the infinite path πi = sisi+1...
and the notation π(i) to denote the state si.

π |=K Q iff Q ∈ L(π(0))
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π |=K ¬ϕ iff π 6|=K ϕ
π |=K ϕ1 ∧ ϕ2 iff π |=K ϕ1 and π |=K ϕ2

π |=K X ϕ iff π1 |=K ϕ
π |=K ϕ1Uϕ2 iff ∃i ∈ N0 such that πi |= ϕ2 and ∀j < i.πj |= ϕ1

We say a Kripke structure K satisfies ϕ, written K |= ϕ, iff for all s ∈ S0

it holds that every path π in K such that π(0) = s satisfies π |=K ϕ. This is
called a universal interpretation of LTL.

Examples of some typical LTL formulae used for biological systems
are [165]:

• F[ϕ] expresses a reachability of a state where the condition ϕ holds,

• G[ϕ] expresses a stabilisation with ϕ being continually true,

• [ϕ1 ⇒ Fϕ2] ∧ [ϕ2 ⇒ Fϕ1] expresses permanent oscillation between
ϕ1 and ϕ2.

2.5.2 Computation Tree Temporal Logic – CTL

The key characteristics of CTL is it captures the branching behaviour of dis-
crete state-transition systems. More precisely, CTL formulae are interpreted
on states of a Kripke structure.

CTL formulae are defined by the following abstract syntax:

ϕ ::= Q | ¬ϕ | ϕ1 ∧ ϕ2 | AXϕ | EXϕ | AU | EU

where Q ranges over atomic propositions taken from a set AP . We denote
by cl(ϕ) the set of all subformulae of ϕ. We use the standard abbreviations
like EFϕ which stands for E(trueUϕ) or AGϕ which stands for ¬EF¬ϕ.

The semantics of a CTL formula ϕ is interpreted on states of a Kripke
structure K = (S, S0,→, L). For every state s ∈ S and a particular form of
the formula the semantics is given in the following way:

s |=K Q iff Q ∈ L(s)
s |=K ¬ϕ iff s 6|=K ϕ
s |=K ϕ1 ∧ ϕ2 iff s |=K ϕ1 and s |=K ϕ2

s |=K AX ϕ iff for all π in K such that π(0) = s it holds that π(1) |=K ϕ
s |=K EX ϕ iff there exists π in K such that π(0) = s and π(1) |=K ϕ
s |=K A(ϕ1 Uϕ2) iff for every π in K such that π(0) = s there exists

i ∈ N0 such that π(i) |= ϕ2 and ∀j < i.π(j) |= ϕ1

s |=K E(ϕ1 Uϕ2) iff there exists π in K such that π(0) = s and
∃i ∈ N0 such that π(i) |= ϕ2 and ∀j < i.π(j) |= ϕ1
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We say a Kripke structure K satisfies ϕ, written K |= ϕ, iff for all s ∈ S0,
s |=K ϕ.

Examples of some typical CTL formulae used for biological systems
are [165]:

• EF[ϕ] expresses a reachability of a state where the condition ϕ holds,

• AG[ϕ] expresses a stabilisation with ϕ being continually true,

• EF[AG[ϕ1]] ∧ EF[AG[ϕ2]] expresses a bistable switch (two different
stable situations ϕ1, ϕ2 can be reached).

Most frequent types of temporal properties investigated for biochemical
models have been collected in [291]. There are two important fragments of
CTL relevant for biological models. A formula is said to be positive if it does
not contain any negations. We say that a formula is existential (or in ECTL)
if it is positive and only contains existential temporal operators. We say
that a formula is universal (or in ACTL) if it is positive and only contains
universal temporal operators.

2.5.3 Signal Temporal Logic – STL

STL is interpreted on continuous signals. It has been introduced in [277] to
address the needs to specify the temporal properties of real-valued signals.
Due to the deterministic nature of signals, STL is entirely based in the linear
time framework. It is worth noting that LTL cannot be directly employed
for continuous structures as it inherently targets discrete paths (e.g., there
is no direct meaning of the operator X (next) in the continuous settings). To
that end, STL employs principles of linear temporal logics quantitatively
addressing time (MTL [254] and MITL [8]) and refines them with predi-
cates evaluated over real values. Technically, STL is based on MITL where
the time quantification is restricted to non-singular closed intervals due to
decidability reasons. The notion specific for STL is a predicate defined in the
following way.

Definition 2.34 Let x ∈ (Rn≥0)T be a signal for some n ∈ N and τ ∈ T a given
time point. A predicate p is defined as a generic constraint applied to a signal
value in the time point τ :

p(x, τ) > 0

It can be interpreted as a subset of the signal value domainRn≥0 satisfying the given
constraint.

The syntax of STL is the following:

Definition 2.35 Syntax of STL is defined by the following grammar:

ϕ ::= p | true | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1UIϕ2
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where p is a predicate as of Definition 2.34 and I ⊆ R≥0 a closed non-singular
interval.

The time-quantified versions of operators F and G are defined in the
standard way: FIϕ = trueUIϕ, GIϕ = ¬FI¬ϕ.

Qualitative semantics is defined with respect to the structure of the for-
mula as follows.

Definition 2.36 Let x ∈ (Rn≥0)T be a signal for some n ∈ N and τ ∈ T a time
point. Qualitative satisfaction of an STL formula ϕ is defined inductively:

(x, t) |= true
(x, t) |= p ⇐⇒ x(t) ∈ p
(x, t) |= ¬ϕ ⇐⇒ (x, t) 6|= ϕ
(x, t) |= ϕ1 ∨ ϕ2 ⇐⇒ (x, t) |= ϕ1 ∨ (x, t) |= ϕ2

(x, t) |= ϕ1UIϕ2 ⇐⇒ ∃ t′ ∈ t⊕ I : (x, t′) |= ϕ2 ∧
∀ t′′ ∈ [t, t′] : (x, t′′) |= ϕ1

where t⊕ I stands for {t+ u | u ∈ I}.
Further we say x satisfies ϕ, written x |= ϕ, iff (x, 0) |= ϕ.

Boolean answer provided by the qualitative semantics is not fully com-
patible with quantitative entities in the continuous domain where real-
valued distance functions play an important role. To that end, the quan-
titative semantics of STL has been introduced in [151]. It is based on mea-
suring the distance between the signal value satisfying a formula and the
closest value violating the formula. In the case of a predicate, such distance
is given directly by the value of the predicate evaluated at a particular time
point. For a general STL formula, the quantitative semantics is defined in
the following way:

Definition 2.37 Let x ∈ (Rn≥0)T be a signal for some n ∈ N and τ ∈ T a time
point. Quantitative satisfaction of an STL formula ϕ is defined inductively:

ρ(true, x, t) = +∞
ρ(p, x, t) = p(x(t), t)
ρ(¬ϕ, x, t) = −ρ(ϕ, x, t)
ρ(ϕ1 ∨ ϕ2, x, t) = max (ρ(ϕ1, x, t), ρ(ϕ2, x, t))

ρ(ϕ1UIϕ2, x, t) = max
t′∈t⊕I

min

(
ρ(ϕ2, x, t

′), min
t′′∈[t,t′]

ρ(ϕ1, x, t
′′)

)
where t⊕ I stands for {t+ u | u ∈ I}.

Further we define quantitative satisfaction of ϕ on a signal x, written
ρ(ϕ, x), as ρ(ϕ, x)

df
= ρ(ϕ, x, 0).
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The notion of quantitative semantics mentioned above addresses the so-
called space robustness as the measure is defined on signal values (a change
in quantitative semantics value is sensitive to shifting the signal in the value
domain). In [151] the authors also consider the notion of time robustness
where the measure is defined on the time points (a change in quantitative
semantics value is sensitive to shifting the signal in the time domain). The
results in this thesis address the space-based view of robustness as it seems
to be a more relevant issue in biological systems in general.

Examples of STL formulae relevant for biological models are the follow-
ing:

• G[0,300][(x1 > 0.7) ⇒ F[3,5](x2 > 0.7)] expresses that for each time
point t ∈ [0, 300] it holds that if the value of x1 in t is greater than 0.7
then there exists time t′ ∈ [t+ 3, t+ 5] such that the value of x2 in t′ is
also greater than 0.7,

• G[0,τ ][((x ≥ maxx) ⇒ F[p1,p2](x ≤ minx)) ∧ ((x ≤ minx) ⇒
F[p1,p2](x ≥ maxx))] expresses a periodical oscillation of x in the time
horizon τ such that the minimal value minx and the maximal value
maxx are interchangeably being reached with a period fluctuating in
the interval [p1, p2].

2.5.4 Value-Freezing Signal Temporal Logic – STL*

In STL it is not possible to express (and distinguish) the classes of signal os-
cillations such as damped oscillations or oscillations with increasing ampli-
tude. The reason is the impossibility of globally referencing (and relatively
comparing) concrete signal values occurring in time points in which some
local property is satisfied. STL does not provide any constructs allowing to
omit references to concrete values in predicates. E.g., the damped oscilla-
tion in Figure 2.7c can be expressed in STL as a sequence exactly reaching
the 15 local extremes in the given order. In general, there can appear any
number of local extremes in the observed time interval. Such a general
property cannot be expressed in STL. To that end, we have introduced the
logic STL* that allows referring signal values reached in the past.

As in the case of STL, a formula of STL* expresses a temporal property
of finite-time continuous signals. The crucial phenomenon introduced in
STL* is the concept of value-freezing. Signal value freezing is facilitated
by the notion of frozen time vector defined in the following definition. The
structure is used to store time values at various time points which then can
be referred in predicates.

Definition 2.38 Let I be a freezing operators index set. Frozen time vector t∗

is a function:
t∗ : I → R≥0
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Figure 2.7: Various types of oscillations: (a) a permanent oscillation with
constant amplitude, (b) oscillation with increasing amplitude, (c) damping
oscillation.

The symbol t∗i = t∗(i) is referred to as i-th frozen time.
Predicates comprise Boolean expressions over values of a signal x at

time t and each frozen time ti∗, where xj denotes the j-th component of the
signal at time t, i.e. x(t) = (x1, . . . , xj , . . . , xn), and x∗ij the j-th component
at time t∗i . When |I| = 1, we usually write x∗i instead of x∗1i .

In STL* only predicates given by linear inequalities are considered. This
is an important assumption employed in Section 6.2 (analytical expressions
of robustness can be efficiently computed for linear predicates). This re-
striction is sufficient in the majority of practical cases.

Definition 2.39 Let n ∈ N, b ∈ R and aij ∈ Rwhere i ∈ {0}∪I, j ∈ {1, . . . , n}
and not all aij are zero. A predicate is defined as a subset of Rn × (Rn)I such
that:

n∑
j=1

a0jxj +

|I|∑
i=1

n∑
j=1

aijx
∗i
j + b ≥ 0

Freeze operator is used to store the time point into frozen time vector,
thus facilitating signal value freezing. The following definition introduces
an auxiliary concept of storing the current time t as the ith component of
the frozen time vector.

Definition 2.40 Let t∗ be a frozen time vector, i, j ∈ I and t ∈ R≥0. Freezing
ith component of t∗ in t is denoted as t∗[i← t] and defined:

t∗[i← t](j) =

{
t i = j

t∗j i 6= j

Definition 2.41 Let I denote a freezing-operators index set. Syntax of STL* is
defined by the following grammar:

ϕ ::= p | true | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1UIϕ2 | ∗i ϕ
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where i ∈ I, true denotes the true constant, p is a predicate as of Definition 2.39
and I ⊆ R≥0 a closed non-singular interval.

Note that all Boolean connectives and temporal operators F and G can be
defined using the basic operators defined above in the same way as is done
in STL. Similarly to predicates, when |I| = 1, we usually omit the index of
freeze operator, as in ∗GI(x > x∗) = ∗1 GI(x > x∗1).

Definition 2.42 Let x ∈
(
Rn≥0

)T be a signal, t ∈ T a time point and t∗ ∈ T I

a frozen time vector. Formula satisfaction is defined inductively:

(x, t, t∗) |= true
(x, t, t∗) |= p ⇐⇒ (x(t), x ◦ t∗) ∈ p
(x, t, t∗) |= ¬ϕ ⇐⇒ (x, t, t∗) 6|= ϕ
(x, t, t∗) |= ϕ1 ∨ ϕ2 ⇐⇒ (x, t, t∗) |= ϕ1 ∨ (x, t, t∗) |= ϕ2

(x, t, t∗) |= ϕ1UIϕ2 ⇐⇒ ∃ t′ ∈ t⊕ I : (x, t′, t∗) |= ϕ2 ∧
∀ t′′ ∈ [t, t′] : (x, t′′, t∗) |= ϕ1

(x, t, t∗) |= ∗i ϕ ⇐⇒ (x, t, t∗[i← t]) |= ϕ

Operator ◦ is used to denote function composition, i.e. (x ◦ t∗) ∈
(
Rn≥0

)I and
(x ◦ t∗)(i) = x(t∗i ) and t⊕ I stands for {t+ u | u ∈ I}.

We say a a signal x satisfies a formula ϕ, written x |= ϕ, iff (x, 0,0) |= ϕ

where 0 denotes the zero frozen time vector, i.e., 0 df
= I × {0}.

Intuitively, interpretation of ∗i ϕ is the following: freeze operator stores
signal values at the time of ∗i ϕ evaluation, which can then be referred to
using index i in predicates of ϕ. An example property, “in the next five time
units, x increases by 8” can be specified as:

∗F[0,5](x ≥ x∗ + 8)

where x∗ refers to value of x at time 0.
Quantitative semantics of STL* is described in detail in Chapter 6 as a

part of a mechanism for robustness analysis of cBNMs.
Representative examples of STL* formulae are the following:

• G[0,80−(4+δ)]∗ [G[4−δ,4+δ](y
∗ = x)], for some small δ > 0, is an example

of delayed correlation of two signals — the signal x copies the values
of the signal y with a delay of 4 seconds,

• G[0,60][F[0,10] ∗ [G[1,10](x
∗ ≥ x + c)] ∧ F[0,10] ∗ [G[1,10](x

∗ ≤ x − c)]
expresses a damping oscillation (such as depicted in Figure 2.7c) —
there is always a time instant in near future which is a local maximum for
some future interval and there is also another time instant in near future
which is a local minimum for some future interval (the constant c sets the
strength of damping).
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2.5.5 Continuous Stochastic Logic – CSL

Let C = (X, X0,Q, L) be a CTMC extended with a labelling function L
which assigns to each state X ∈ X the set L(X) of atomic propositions
that are valid in state X . We consider a bounded time fragment of CSL
with rewards.

The syntax of CSL is defined in the following way. A state formula ϕ is
given as

ϕ ::= true | q | ¬ϕ | ϕ ∧ ϕ | P∼p[φ] | R∼r[C≤t] | R∼r[I=t]

where φ is a path formula given as φ ::= Xϕ | ϕUI ϕ, q is an atomic propo-
sition, ∼∈ {<,≤,≥, >}, p ∈ [0, 1] is a probability, r ∈ R≥0 is an expected
reward and I = [a, b] is a bounded time interval such that a, b ∈ R≥0∧a ≤ b.
Path operators G (always) and F (eventually) are derived in the standard
way using the operator U. In order to specify properties containing re-
wards (R∼r[C≤t] is the cumulative reward acquired up to time t, R∼r[I=t] is
the instantaneous reward in time t) the CTMC C is enhanced with reward
(cost) structures. Two types of reward structures are used. A state reward
rew(X) defines the rate with which a reward is acquired in state X ∈ X.
A reward of t · rew(X) is acquired if a CTMC remains in state X for t time
units. A transition reward trew(Xi, Xj) defines the reward acquired each
time the transition Xi → Xj occurs.

The formal semantics of the bounded fragment of CSL with rewards is
defined similarly as the semantics of full CSL [20]. The key part of the se-
mantics is given by the definition of the satisfaction relation |=. It specifies
when a stateX satisfies the state formula ϕ (denoted asX |= ϕ) and when a
path π satisfies the path formula φ (denoted as π |= φ). Let us recall the no-
tation PathC(X) denoting the set of all paths starting atX (Definition 2.21).
The informal definition of |= is as follows:

• X |= P∼p[φ] iff the probability of all paths π ∈ PathC(X) that satisfy
the path formula φ (denoted as ProbC(X,φ)) satisfies ∼ p, where

– π satisfies X ϕ iff the second state on π satisfies ϕ

– π satisfies ϕUI Ψ iff there exists a time instant t ∈ I such that the
state on π occupied at t satisfies Ψ and all states on π occupied
before t′ ∈ [0, t) satisfy ϕ

• X |= R∼r[C
≤t] iff the sum of expected rewards over PathC(X) cum-

mulated until t time units (denoted as ExpC(X,XC≤t)) satisfies ∼ r

• X |= R∼r[I
=t] iff the sum of expected rewards over all paths π ∈

PathC(X) at time t (denoted as ExpC(X,XI=t)) satisfies ∼r.

A set SatC(ϕ) = {X ∈ X | X |= ϕ} denotes the set of states that satisfy ϕ.
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The syntax and semantics can be easily extended with “quantitative”
formulae in the form ϕ ::= P=?[φ] | R=?[C≤t] | R=?[I=t], i.e., the topmost
operator of the formula ϕ returns a quantitative result, as used, e.g., in
PRISM [261]. In this case the result of a decision procedure is not in the form
of a Boolean yes/no answer but is the actual numerical value of the proba-
bility ProbC(X,φ) or the expected reward ExpC(X,X) for X ∈ {XI=t ,XC≤t}.
The computation of a numerical value is of the same complexity class as
the computation of a result to be compared leading to a Boolean answer,
although in some cases the comparison may be carried out on less precise
or preliminary results.

Examples of CSL formulae of the considered fragment are the follow-
ing:

• P≥0.9[F[1,2](A = 30)] expresses that the probability that the species A
will be represented by 30 molecules between 1 and 2 time units is at
least 0.9,

• P=?[G[500,1000](A < 30)] expresses the probability that the number
of molecules of species A keeps below 30 within the time window
between 500 and 1000 time units,

• R=?[C≤1000](A > 20) expresses the fraction of time the system ex-
hibits more than 20 molecules of A within the time horizon 1000 time
units.

2.5.6 Interpretation on Biological Network Models

In this subsection, we relate semantics of temporal logics presented above
with the model classes considered in Section 2.3. For each model class, we
define the basic notion of formula satisfaction in a given model and we re-
fine the notion to the settings of the parameterised variant of the particular
model class.

dINM

Considering the logics described in detail in previous subsections, only ba-
sic temporal logics LTL and CTL can be directly interpreted on dINMs. Let
us consider a dINMM = (N , νdIN ,X, X0,m) and an LTL or CTL formula
ϕ. The transition system JMKdINM = (X, T,X0) is turned into a Kripke
structure K(M) = (S, S0,→, L) in the following way:

• S := X,

• S0 := {X0},
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• → is obtained by totalising the transition relation T — every state
X ∈ X with no outgoing transition in T is assigned a self-transition
X → X ,

• L is defined in such a way that atomic propositions AP = {Xi < θ |
0 ≤ θ ≤ mi} ∪ {Xi = θ | 0 ≤ θ ≤ mi} are assigned to corresponding
states.

We sayM satisfies ϕ, writtenM |= ϕ, iff K(M) |= ϕ.

Parameterised dINM

The representation of a dINM in terms of a KS can be directly extended to
parameterised models. This is done by encoding the semantics of a param-
eterised model in terms of a PKS. In particular, the explicit representation
by means of a set of transition systems is turned into a compact form of a
single PKS.

Formally, let MPχ = (N , νdIN ,X, X0,m) be a parameterised dINM
with a parameterisation χM. The semantics ofMPχ , JMPχKdINM, is turned
into a PKS K(MPχ) = (PχM , S, S0,→, L) where

• S, S0 and L are assigned in the same way as in the non-parameterised
case described above,

• for any µ ∈ PχM , s
µ→ s′ is included in the transition rela-

tion of K(MPχ) iff (s, s′) ∈ T where T is the transition relation
of JMPχ(µ)KdINM.

Note that the set of parameter valuations PχM makes directly the pa-
rameter values set of K(MPχ).

Finally, we say that a parameterised modelMPχ satisfies ϕ wrt a set of
parameter valuations P ⊆ PχM iff ∀µ ∈ P.K(MPχ)µ |= ϕ. The situation
can be also rephrased in the following way:MPχ satisfies ϕ robustly wrt P.

cBNM

For all kinds of cBNMs, there is natural interpretation of STL and STL*. In
particular, we say that a cBNMM satisfies an STL or STL* formula ϕ, written
M |= ϕ, iff the signal x = JMKcBNM satisfies x |= ϕ (we can write directly
JMKcBNM |= ϕ). The satisfaction can be understood also approximately,
e.g., for signals obtained by numerical simulation: a cBNMM approximately
satisfies an STL or STL* formula ϕ, written M |=ε ϕ, iff an approximate
signal xε = JMKεcBNM satisfies xε |= ϕ (we can write directly JMKεcBNM |= ϕ).

LTL and CTL cannot be interpreted on cBNMs directly but only on dis-
crete abstractions of cBNMs. The relation can be specific for particular frag-
ments of the logics and the particular form of differential equations un-
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derlying the abstracted cBNM. The rectangular abstraction defined in Sec-
tion 2.4.6 is conservative resulting with the following characterisation.

First, we need to clarify the approximate interpretation of LTL over
signals. We say that M approximately satisfies an LTL formula ϕ, written
JMKcBNM |=ε ϕ, iff the approximate signal given by JMKεcBNM satisfies ϕ.
Note that we have not defined the semantics of LTL over discrete bounded-
time approximations of continuous signals. However, as long as approxi-
mate signals are finite timed sequences of real values, an extension of LTL
employing constraints over reals (employed at the place of atomic propo-
sitions) can be used [162, 163]. An analogous solution has been introduced
for CTL with constraints over reals [164]. These approaches allow to “prac-
tically” interpret LTL and CTL over such approximate signals. In the char-
acterisation below we assume the relation x |=ε ϕ is interpreted in the way
“we can construct a sufficiently precise approximation of x such that it cor-
rectly reflects the semantics of ϕ and thus it sufficiently characterises the
satisfaction of ϕ”.

Finally, we can proceed in characterising satisfaction of LTL and CTL
by using approximate/abstract models.

• Let ϕ be a universally interpreted LTL formula and M a cBNM. By
reflecting Claim 2.32, the clarification of existence of a sufficiently pre-
cise approximate signal mentioned above, and the universal interpre-
tation of LTL, the following holds:

JMKabst
ε

cBNM |= ϕ⇒ JMKcBNM |=ε ϕ

• Let ϕ be an ACTL formula and M a cBNM with a parameterisa-
tion χM. By reflecting Claim 2.32 and the clarification of existence
of a sufficiently precise approximate signal, the following holds:

JMKabst
ε

cBNM |= ϕ⇒ JMKcBNM |=ε ϕ

Remark 2.43 If ϕ is of the ECTL fragment of CTL or it is an existentially inter-
preted LTL formula, we naturally get the following characterisation:

JMKcBNM |=ε ϕ⇒ JMKabst
ε

cBNM |= ϕ

Parameterised cBNM

In the case of a parameterised cBNMMPχ the satisfaction of a formula ϕ
can be considered at the level of the abstract/approximated semantics
JMPχKabst

ε

cBNM. We declare that JMPχKabst
ε

cBNM satisfies ϕ wrt some set of pa-
rameter valuations P ⊆ PχM , iff JMPχ(µ)Kabst

ε

cBNM |= ϕ for all µ ∈ P. This
can be equivalently written as Kabstε(MPχ)µ |= ϕ for all µ ∈ P.
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Figure 2.8: A two-dimensional set of parameter valuations (theoretically)
satisfying a parameterised cBNMMPχ is marked by the solid oval. The set
of parameter valuations (theoretically) satisfying ϕ on the corresponding
PWMA model are depicted by the dashed oval. The set of parameter val-
uations satisfying a formula ϕ on JMPχKabst

ε
is depicted by the polygonal

region.

Owing to the fact Kabstε makes an over-approximation of the interme-
diate PWMA model, every µ ∈ PχM such that JMPχ(µ)Kabst

ε

cBNM |= ϕ implies
that an LTL or ACTL formula ϕ is (theoretically) satisfied also in the cor-
responding PWMA model. However, there might be µ ∈ PχM such that
JMPχ(µ)Kabst

ε

cBNM 6|= ϕ but the formula is (theoretically) satisfied in the corre-
sponding PWMA model.

Finally, sinceM comes through the approximation procedure, we can-
not tell anything exact about satisfaction ofϕ in the original cBNMMPχ(µ).
Thus we can speak about “approximate” satisfaction as discussed above: if
JMPχ(µ)Kabst

ε

cBNM |= ϕ then MPχ(µ) |=ε ϕ (|=ε is understood up-to the dis-
tance between the signal JMPχ(µ)KcBNM and its approximated counterpart
generated by the PWMA approximation of MPχ(µ)). The situation for a
set of parameter valuations P wrt to an interpretation of an LTL or ACTL
formula ϕ on the original cBNM, its approximate PWMA and the corre-
sponding abstract Kripke structure is depicted schematically in Figure 2.8.

sCRNM

The semantics of a sCRNM modelM is given as a CTMC (X, X0,Q). To en-
able interpretation of temporal logic over CTMC, the structure is extended
with a labelling function L : X → 2AP that assigns atomic propositions to
states. Since the matrix Q represents a (transition) relation among states,
the CTMC extended with L induces a Kripke structure (the transition rela-
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tion has to be totalised in a similar way as mentioned above). Qualitative
interpretation of LTL and CTL neglecting the stochasticity can be then re-
alised in the same way as in the case of dINMs.

The logic naturally interpreted on sCRNMs is CSL. We sayM satisfies
a formula ϕ of the form P∼p[φ], R∼r[C≤t], or R∼r[I

=t], written M |= ϕ, iff
X0 ∈ SatJMKsCRNM

(ϕ).

Parameterised sCRNM

For a parameterised sCRNMMPχ the semantics JMPχKsCRNM is given by
the (continuous) set of individual CTMCs representing the semantics of
MPχ(µ) for particular µ ∈ PχM .

We say a CSL formula ϕ satisfiesMPχ wrt a given set P ⊆ PχM iff for
all µ ∈ P it holds thatMPχ(µ) |= ϕ. This is a theoretical notion that cannot
be in general case decided exactly. In Chapter 5 we provide an approximate
solution.

2.6 Model Analysis

In this section we describe a group of formal methods that makes a basis for
advanced techniques employed for analysis of biological models. We start
with elemental methods of general formal verification and finally describe
methods relevant for biological models.

2.6.1 Restriction to Bounded Time

From the context of an observed phenomenon and the time-scale of rele-
vant model behaviour, it can be possible to identify the time-horizon (or
the number of steps in the untimed case) for which it is guaranteed that
the phenomenon occurs. Even periodically repeating phenomena, e.g., cir-
cadian clock, can be approximately detected and analysed in finite time
in the order of an appropriately selected time-scale. However, a non-trivial
analysis has to be performed in some cases to estimate or over-approximate
correctly the time horizon.

In the case of dINMs, the model dynamics is fully untimed. We consider
the asynchronous semantics of concurrent updates that is conservative –
no information on possible timing (ordering) of events is lost. Cycles in
the dynamics correspond to possible equilibria (or attractors). However, it
cannot be decided from the model what is the time horizon or periodicity
of the real dynamics corresponding to a cycle.

In the case of continuous models, simulation-based method need to
deal with correct reflecting of the time horizon. The techniques based on
qualitative abstraction abstract the time-aspects conservatively in the lines
similar to dINMs.
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Stochastic models are based on CTMCs where the ergodicity allows to
analyse the behaviour in infinite time horizon (steady-state analysis can
be used to explore the long-time behaviour in ergodic models). How-
ever, when the transient analysis is performed, the considered time-horizon
might be critical and needs to be treated with special care.

2.6.2 Reachability Analysis

One of the most basic problems of analysis of dynamical systems is the
reachability analysis, a general problem well-studied in graph theory. The
problem is to decide whether a given state (or a given set of states) can be
reached in finite time from an initial state. The problem has been addressed
in formal verification of concurrent systems. In the case of discrete models,
many efficient algorithms that does not require explicit generation of the
state space exist taking the advantage of a particular encoding of a specific
class of models (see for example [69, 171, 356, 112] for untimed systems or
[263, 125, 370] for timed systems).

dINM

In the case of dINMs, many of the general algorithms can be employed
that perform either on the explicit or implicit representation of the respec-
tive Kripke structure. Especially, techniques employing symbolic represen-
tation of the state-transition relation in terms of BDDs have proved to be
efficient in this case [62, 106]. However, reachability analysis of parame-
terised dINMs is still challenging. Several techniques exploring static anal-
ysis to characterise parameter valuations solving a given reachability prob-
lem have been recently addressed in [248].

cBNM

In the case of cBNMs the reachability analysis is undecidable and must be
targeted approximately by employing symbolic δ-decision procedures [187,
252], numeric over-approximation methods [156], or by using finite ab-
stractions (or hybridisations) of continuous dynamics. The global ab-
straction methods as discussed in Section 2.4.6 can be used for reacha-
bility analysis provided that the results have to be carefully interpreted
with respect to the fact the abstraction is typically an over-approximation
(in such case the property of not-reaching a certain state is guaranteed
through the abstraction). Approaches that directly target reachability con-
struct local abstractions of the flow of the dynamics by employing so-
called flow-pipes [25, 109, 251] that over-approximate the signals or use var-
ious sophisticated forms of geometric or symbolic representation of system
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states sets [6, 178, 313]. In some work, zonotopal representations are em-
ployed [5, 198]. Local methods address the flow of the dynamics quite well.
Several methods target unbounded-time analysis in some form [25, 119].
The work presented in [110] combines local and global approaches by tar-
geting abstractions of linear thresholds-driven hybrid systems. The au-
thors use local flow-pipe construction to construct a quotient transition
system that models the reachability from one cell to another. The tool Pro-
bReach [331] (based on δ-decision procedures) addresses statistical sam-
pling of initial conditions and is suitable for the global analysis where the
initial condition is uncertain.

sCRNM

sCRNMs are modelled by means of CTMCs. The transitions between the
states in CTMC are governed by the transition rate matrix. It assigns a
rate r to each pair of states in the CTMC, which are used as parameters
of the exponential distribution, i.e., the probability of the transition being
triggered within t time-units equals 1 − e−r·t. The reachability analysis
problem is solved by exact techniques based on so-called transient anal-
ysis of the Markov process [23, 260] or by approximate techniques based
on statistical sampling [232, 27] of simulations [195], employing moment-
closures [73, 22, 13], or by methods employing correct deterministic ap-
proximation of the transient distribution [71, 334].

Transient analysis is based on the computation of transient probability
– having started in state X , the probability of being in state X ′ at time in-
stant t. Formally, given an initial distribution πC,X0,0 (i.e. πC,X0,0(X) = 1 if
X0 = X , and 0, otherwise) at time 0 of a CTMC C = (X, X0,Q) what will
the transient state distribution πC,X0,t look like in some future yet finite time
t ∈ R≥0.

A standard technique for computing transient probabilities is based on
uniformization. The key idea is for a given CTMC to construct the uni-
formised DTMC where all exponential delays in the CTMC are normalised
with respect to the fastest transition rate q. Then each step of the uni-
formised DTMC corresponds to a single exponentially distributed delay
with the parameter q. The ith matrix power of the uniformised DTMC
gives the probability of jumping between each pair of states in the DTMC
in i steps. The transient probability in time t is computed as the sum of the
matrix powers weighted by Poisson probabilities giving the probability of
i such steps occurring in time t.

Formally, for the rate q satisfying q ≥ max{E(X) | X ∈ X} (E(X) is
the exit rate of stateX as described in Section 2.3.2) the uniformised DTMC
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unif(C) is defined as unif(C) =
(
X, X0,Q

unif(C))where

Qunif(C)(X,X ′) =

{
Q(X,X′)

q if X 6= X ′

1−
∑

X′′ 6=X
Q(X,X′′)

q otherwise.

and the ith Poisson probability in time t is given as γi,q·t = e−q·t · (q·t)i
i! . The

transient probability can be computed as follows:

πC,X0,t =
∞∑
i=0

γi,q·t · πC,X0,0 · (Qunif(C))i ≈
ubε∑
i=lbε

γi,q·t · πC,X0,0 · (Qunif(C))i.

Although the sum is in general infinite, for a given precision ε the lower
and upper bounds lbε, ubε can be estimated by using techniques such as of
Fox and Glynn [176] which also allow for efficient solutions of the Poisson
process. In order to make the computation of uniformization feasible the
matrix-matrix multiplication is reduced to a vector-matrix multiplication
as follows:

πC,X0,0 · (Qunif(C))i = (πC,X0,0 · (Qunif(C))i−1) ·Qunif(C).

Standard uniformisation can be intractable when the system under
study is too complex, i.e., contains more than in order of 107 states and
the upper estimate ubε, denoting the number of vector-matrix multiplica-
tions as iterations, is high (more than in order of 106). Therefore, many
approximation techniques have been studied in order to reduce the state
space and to lower the number of iterations ubε. State space reductions
are based on the observation that in many cases (especially in biochemi-
cal systems) a significant amount of the probability mass in a given time
is localised in a manageable set of states. Thus neglecting states with in-
significant probability can dramatically reduce the state space while the
resulting approximation of the transient probability is still sufficient. Meth-
ods allowing efficiently state-space reduction are based on finite projection
techniques [292, 220] and dynamic state space truncation [142].

Since the number of iterations ubε inherently depends on the uniformi-
sation rate q that has to be greater than the maximal exit rate of all the
states of the system, a variant of standard uniformisation, so-called adap-
tive uniformisation [357], has been proposed. It uses a uniformisation rate
that adapts depending on the set of states the system can occupy at a given
time, i.e, after a particular number of reactions. In many cases, a signifi-
cantly smaller rate q can be used and thus the number of iterations ubε can
be significantly reduced during some parts of the computation. Moreover,
adaptive uniformisation can be successfully combined with reduction tech-
niques mentioned above [142]. The downside of adaptive uniformisation
is that the Poisson process has to be replaced with a general birth process
which is more expensive to solve. See, e.g [357], for more details.
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2.6.3 Model Checking

Model checking is an exhaustive technique of checking whether all sig-
nals/paths generated by a given modelM, satisfy the inspected property
described as the formula ϕ. In order to generate all signals or paths, the
whole state-space has to be stored and evaluated. Owing to this need,
model checking generally suffers from the state-space explosion problem.
There exist several approaches to reduce this problem, e.g., efficient sym-
bolic representation, state-space reductions or iterative abstraction refine-
ment. Model checking algorithms differ depending on the temporal logic
employed. An extensive review of model checking methods is given in [24].
In this section we restrict ourselves only methods relevant for the thesis.

LTL Model Checking

There are several approaches to model checking a finite state Kripke struc-
ture K against an LTL formula ϕ [24]. The goal is to check K |= ϕ, in partic-
ular, whether for every s0 ∈ S0 every path π in K starting at s0 satisfies π.
In this thesis we use the automata-based approach based on the following
ideas:

1. construct a Büchi automaton over 2AP such that it accepts all words
satisfying ¬ϕ,

2. convert K to a Büchi automaton which accepts words of the form
L(s0)L(s1) · · · for each run s0s1 · · · in K,

3. compute the synchronous product of the two automata, and

4. decide whether the resulting automaton accepts an empty language.

Definition 2.44 A (non-deterministic) Büchi automaton is a tuple B =
(Σ, S, s0, δ, F ), where Σ is the input alphabet, S is a finite non-empty set of states,
s0 ∈ S is a distinguished initial state, δ ⊆ S ×Σ× S is a transition relation, and
F ⊆ S is the set of accepting states.

The automaton B accepts the infinite wordw ∈ Σω, if there is a sequence
of states s0s1 . . . such that (si, wi, si+1) ∈ δ and there is a state f ∈ F , which
appears in the sequence infinitely often.

There are well-known sequential and parallel algorithms performing
automata-based model checking of LTL (e.g., [358, 32, 81, 80]). These
algorithms are implemented in several tools [222, 36, 34, 37]. In our
work [35, 37], we have focused on transferring the LTL model checking
to biological systems (cBNMs) by employing discrete abstractions.
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CTL Model Checking

There are several approaches to model checking a finite state Kripke struc-
ture K against a CTL formula ϕ. The goal is to check K |= ϕ, in particular,
whether for every s0 ∈ S0, s0 |=K ϕ. In this thesis we use the enumera-
tive fixed point approach [117, 311]. The basic procedure for CTL model
checking is the following:

• the set of all states satisfying ϕ, denoted Sat(ϕ), is computed recur-
sively, and

• K |= ϕ if and only if S0 ⊆ Sat(ϕ).

In fact, the procedure of CTL model checking checks s |=K ϕ for every
state s ∈ S. Therefore it provides a global model checking technique.

The recursive computation of Sat(ϕ) is performed by a bottom-up
traversal of the parse tree of the formula ϕ. The individual nodes in the
parse tree represent subformulae of ϕ. At an intermediate node of the parse
tree, representing a subformula ψ, the results of the computations of its
children are used and combined to establish the states of its associated sub-
formula. The type of computation at a particular node (the so-called node
algorithm) depends on the logical operator at the top level of the subformula
ψ. The children of the node stand for the maximal genuine subformulae of
the formula ψ. In case ψ has the form of EU or EG (respectively AU or
AG) operator, the satisfaction set Sat(ψ) is obtained iteratively by comput-
ing a fixed point (backward traversal of the transition relation is employed
in case of EU and EG, for details see [24], page 349).

Termination of the entire model checking procedure is ensured due to
the fact the Kripke structure is required to be finite. For large-scale Kripke
structures, a distributed variant of the fixed point algorithm has been intro-
duced in [91].

Examples of tools employing the above mentioned approach are
EMC [117], CESAR [311], and CADP [188].

CSL Model Checking

The aim of the global CSL model checking technique is to efficiently com-
pute for any CSL formula ϕ and any state X ∈ X of the given labelled
CTMC C = (X, X0,Q, L) the probability of satisfying s |= ϕ. To formally
capture the satisfaction probability for every state, an auxiliary function
Eval(C, ϕ) is defined in the following way:

Eval(C, ϕ) =


ProbC(X0, φ) if ϕ ≡ P?[φ]

ExpC(X0,XC≤t) if ϕ ≡ R?[C
≤t]

ExpC(X0,XI=t) if ϕ ≡ R?[I
=t]

(2.2)

where ? ∈ {=?,∼r}.
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The goal of local model checking technique is to compute EvalCϕ(X)
for a single state X ∈ X. The crucial advantage of the global approach
is the fact that it has the same asymptotic and also practical complexity
as the local approach. Therefore, the global model checking technique is
much more suitable for robustness analysis over perturbations of initial
conditions that are encoded as the initial state of the corresponding CTMC.

Global model checking returns the vector of size |X| such that the ith
position contains the model checking result provided that Xi is the initial
state. Now let C = (X,Q, L) be a labelled CTMC where the initial state
is not specified. The crucial part of this method is to compute the vector
of probabilities ProbC,φ for any path formula φ and the vector of expected
rewards ExpC,X for X ∈ {XI=t ,XC≤t} such that for all X ∈ X the following
holds:

Prob
C,φ

(X) = ProbC(X,φ) ∧ ExpC,X(X) = ExpC(X,X)

In local model checking the computation of ProbC(X,φ) and
ExpC(X,X) is reduced to the computation of the transient probability dis-
tribution πC,X,t, see [23, 260] for more details. Thus, for different initial
states X ∈ X we have to compute the corresponding transient probability
distributions separately. The key idea of the global model checking method
is to use backward transient analysis. The result of backward transient anal-
ysis is the vector πC,A,t such that for arbitrary set of states A ⊆ X, the value
πC,A,t(X) is the probability that A is reached from X at the time t. With-
out going into details the vector πC,A,t can be computed in a very similar
way using the uniformised DTMC unif(C) as in the case of vector πC,X,t.
Only vector-matrix multiplication is replaced by matrix-transposed-vector
multiplication and πC,A,0(X) = 1 if X ∈ A, and 0, otherwise.

The vector ProbC,φ is computed using backward transient analysis.
Since the definition of next operator X ϕ does not rely on any real time
aspects of CTMCs, its evaluation stems from the probability of the next
event that can be easily obtained from the transition matrix Q. The eval-
uation of the until operator ϕ1U

Iϕ2 depends on the form of the interval I
and is separately solved for the cases of I = [0, t1] and I = [t1, t2] where
t1, t2 ∈ R≥0. It is based on a modification of the uniformised infinitesimal
generator matrix Qunif where certain states are made absorbing. This means
that all outgoing transitions are ignored in dependence on the validity of
ϕ1 and ϕ2 in these states.

For any CSL formula ϕ, let C[ϕ] = (X, X0,Q[ϕ], L), where
Q[ϕ](X,X ′) = Q(X,X ′), if X |= ϕ, and 0, otherwise. The formula
φ = ϕ1 U[0,t] ϕ2 can be evaluated using the vector πC,A,t in the following
way:

Prob
C,φ

= πC[¬ϕ1∧ϕ2],A,t where X ∈ A iff X |= ϕ2.

63



For the formula φ = ϕ1 U
[t1,t2] ϕ2 the evaluation is split into two parts: stay-

ing in states satisfying ϕ1 until time t1 and reaching a state satisfying ϕ2,
while remaining in states satisfying ϕ1, within time t2 − t1. The formula
φ can be evaluated using the vector πC,v,t that takes a vector v instead of a
set A (i.e., πC,v,0 = v) in the following way:

Prob
C,φ

= πC[¬ϕ1],v,t1 where v = πC[¬ϕ1∧ϕ2],A,t2−t1 and X ∈ A iff X |= ϕ2.

The backward transient analysis can be also used in the case of reward
computation. Since operator R∼p[I

=t] expresses the expected reward at
time t, the vector ExpC,XI=t can be computed as ExpC,XI=t = πC,v,t where v
encodes the given state reward structure.

For evaluation of the operator R∼p[C
≤t] we have to use mixed Poisson

probabilities (see, e.g., [259, 260]) in the backward transient analysis. It
means that during the uniformisation the Poisson probabilities γi,q·t are re-
placed by the mixed Poisson probabilities γ̄i,q·t that can be computed as:

γ̄i,q·t =
1

q
·

1−
i∑

j=1

γj,q·t

 .

Using the given state reward structure we can compute the vector
Exp

C,X
C≤t as ExpC,XC≤t = πC,v,t where v encodes the state reward structure

and the mixed Poisson probabilities γ̄i,q·t are used.
To review the overall method of stochastic model checking of CTMCs

over CSL formulae we summarise the procedures from an abstract per-
spective. The evaluation of a structured formula ϕ proceeds by bottom-up
evaluation of a set of atomic propositions, probabilistic or expected reward
inequalities and their Boolean combinations. This evaluation gives us a dis-
crete set of states that are further used in the following computation. The
process continues up the formula until the root is reached. The final verdict
is reported either in the form of a Boolean yes/no answer or as the actual
numerical value of the probability or the expected reward.

The robust implementation of the technique is available in the widely
used tool PRISM [261] and recently also in the tool STORM [137].

2.6.4 Software for Model Checking of Biological Models

The main tools that allow to apply model checking methods to biological
models interface the encoding specific for biological models to an internal
language of some basic model checking tool.

cBNM

One of the first tools that has supported model checking of cCRNMs is
BIOCHAM [93], it is a general framework for formal analysis of biological
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networks and it has been continuously developed until now [166]. It has in-
troduced verification of CTL properties on qualitative models of cCRNMs
employing a unique asynchronous Boolean semantics working well with
the standard symbolic model checker NuSMV [111]. A feature that is orig-
inal to BIOCHAM is model checking of both LTL and CTL over finite dis-
crete approximations of signals generated by cBNMs [162, 163, 164].

In [290], the authors identify CTL-based patterns of formulae relevant
for cINMs. The tool GNA [135] adopts NuSMV and CADP model check-
ers [50, 52] for piece-wise affine abstractions of cINMs [162, 163, 164]. In [49]
the authors introduce an approach employing the abstraction method de-
scribed in 2.4.6. It is used with LTL model checking to address liveness
properties of cINMs, the method has been incorporated in a Matlab-based
tool RoVerGeNe [54]. In our work [57], the technique has been transferred
to general biological systems (cBNMs) [82]. Although in both cases there is
a more complex technical framework working with parameterised models,
the techniques can be directly used for models with fixed parameters.

dINM

Considering dINMs, CTL model checking has been widely employed tar-
geting analysis of gene regulatory networks [62, 282, 352] and signalling
networks [325, 158, 203]. The tool GINsim [106] is continuously developed
to address modelling and analysis of dINMs, it passes the models to the
standard symbolic model checker NuSMV [111]. The tool Antelope [17]
goes beyond CTL by introducing hybrid operators. The dedicated model
checker is capable of verifying properties such as presence of an attractor
in the system without the previous knowledge on its location. Extensions
of CTL for biological models have been also targeted in [280].

LTL model checking of dINMs has been addressed in dINMs [341, 184,
342] with a prototype tool support. The tool TREMPPI [340] provides
a comprehensive collection of methods based in LTL model checking of
dINMs. An interface PyBoolNet targeting analysis and visualisation of
dINMs has been presented in [243]. A framework aimed at addressing
biologists as direct users of dINMs is provided within the BMA tool [59]
including a module for LTL model checking [2]. The recent valuable work
has been invested in development of a Python-based interface utilising
Jupyter Notebooks for interoperability of tools working with dINMs [294].
An overview of some tools dedicated to model checking of dINMs is given
in [289].

sCRNM

The general tools existing for model checking CSL properties over CTMCs
can be directly used for analysis of sCRNMs. Several versions of the tool
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PRISM [261] have been successfully applied to analysis of sCRNMs, e.g.,
[258, 253, 255, 268]. The main advantage of the tool is it incorporates a large
set of different techniques ranging from exact to approximate techniques
and using symbolic and explicit representations or their combinations. The
tool is also integrated within higher level frameworks. In [113] the PRISM
is used as a model checker for models specified in BioPEPA process alge-
braic modelling framework for biological models. In [320] a web service
for biological models analysis integrating several tools including PRISM is
presented. Another probabilistic CSL model checker addressing biological
models is MARCIE [328] based on its own symbolic techniques. In future
we can also expect the usage and adaptation of the STORM [137] model
checker that also supports CSL model checking.

Probabilistic model checking has also been employed to the analysis
of stochastic models of influence networks where an automatised transla-
tion of models into a CTMC, based on quasi-steady-state approximation
(QSSA), has been proposed [274, 363]. The related tool iBioSim gives a
powerful technology for analysis of stochastic models of genetic networks.

As an alternative to exact probabilistic model checking which can be
computationally inefficient for large models, statistical approaches can be
employed for properties making a fragment of CSL. The recently devel-
oped tool U-Check [72] implements smooth model checking based on
Gaussian noise approximation and is very promising for statistical analysis
of cCRNMs. The tools developed in the past are [329, 270].

In [92], the authors consider signal transduction in the RKIP-inhibited
ERK pathway. They overcome the state-space explosion problem of proba-
bilistic model checking by rescaling model component quantities to lower
numbers of population levels. The main problem with statistical model
checking is caused by rare events, i.e., temporal formulae whose satisfac-
tion probability is very small. When estimating the probability of such
formulae, the number of simulations needed to ensure a good estimate
becomes unfeasible. In [116], the authors show that the importance sam-
pling, a variance-reduction technique for the Monte Carlo method, and
the cross-entropy method, a general Monte Carlo approach to combinato-
rial and continuous multi-extremal optimisation and importance sampling,
can efficiently address this problem. They use Bounded Linear Temporal
Logic, a variant of LTL where the temporal operators are equipped with
time bounds, to reason about biochemical reactions in systems biology.

2.6.5 Simulation and Monitoring

Monitoring techniques are based on the satisfaction test of a formula over
an individual simulation trace (signal). The responsibility for exhaustive
coverage is delegated to the procedure that generates the traces. The key
observation behind efficiency of monitoring performed over simulations is
that for large and complex systems, the simulation is generally easier and
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faster than building a concise representation of global transition systems
required for the exhaustive model checking approach. However, since a
single simulation generates a single trajectory out of all the possible exe-
cutions of a system, usually the average values among several simulations
need to be considered to achieve the necessary level of confidence in the
results obtained. Owing to the fact that the individual monitoring problem
targets a single path, linear temporal logics are employed (they are typi-
cally extended with quantitative operators evaluating the time-aspects of
the trace such as MTL, MITL or STL as discussed in Section 2.5).

A possible way to improve the accuracy of monitoring techniques is to
employ the statistical model checking [116] that addresses general stochas-
tic systems in terms of statistical inference. It samples the behaviours (sim-
ulations) of a model, verifies their conformance with respect to a temporal
formula (i.e. performs the membership test), and finally applies a statistical
estimation technique to compute an approximate value for the probability
that the formula is satisfied. The accuracy of statistical model checking is
affected by the accuracy of stochastic simulations techniques that are em-
ployed and also by the structure of the model or more precisely by the level
of details (initial conditions, parameters, etc.) we have about the system
under study.

A comprehensive survey of monitoring techniques is given in [44]. The
techniques are divided to two main groups: offline monitoring (working
on a generated trace) or online monitoring (working in real time). In the
basic setting, the method computes Boolean satisfaction of a formula (e.g.,
computing the qualitative semantics of STL or STL* over a signal as stated
in Sections 2.5.3 and 2.5.4). Additionally, the quantitative semantics (e.g., as
of Definition 2.37) can be evaluated. In such a case, we speak about robust
monitoring.

On the practical side, there exist several tools targeting monitoring,
one of the first tools were Temporal Rover [154] (qualitative satisfaction
of LTL/MTL) and JavaPath Explorer [213] (qualitative satisfaction of tem-
poral properties over Java byte-code executions). The tool AMT [298, 297]
provides algorithms for the qualitative satisfaction of STL. Several tools
have been developed regarding robust monitoring with quantitative se-
mantics: Breach [145] (Matlab-based, piece-wise constant signals wrt STL),
S-TaLiRo [14] (Matlab-based, finite timed sequences wrt MTL), and U-
check [72] (standalone, monitors simulations of CTMCs wrt STL). Our own
contribution implemented in the tool Parasim (standalone) is described in
Section 6.2. The tool BIOCHAM [166] mentioned in Section 2.6.3 also pro-
vides offline monitoring algorithms for finite timed sequences wrt LTL and
even CTL. All of these tools with the exception of U-check are directly ap-
plicable to cBNMs as they work with the differential semantics of mod-
els. U-check is directly applicable to sCRNMs. There exist several in-
teresting applications to biological problems conducted with Breach and
BIOCHAM [148, 351, 279].
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Figure 2.9: A general scheme of parameter synthesis methods based on
system properties formalised in a temporal logic.

It is worth noting that the monitoring procedure can be also applied to
experimentally measured time-series data. Monitoring then enables meth-
ods of automatised inference of a logical specification of real-world systems
dynamics from experimental data [295].

2.6.6 Parameter Synthesis

The problem of parameter synthesis is for a given parameterised model to
identify parameter valuations that guarantee the system satisfies the given
global property formalised in some temporal logic. The technique provides
an alternative way to more traditional method of fitting model parameters
to experimental data (also called parametric systems identification [314] or
parameter estimation [288]). In contrast to the traditional approaches to
tackle the inverse problem (e.g., [179, 183, 193, 314, 288]) parameter syn-
thesis methods typically focus on identifying reliable subsets of parameter
space instead of finding singular parameter values.

The overall settings of property-driven parameter synthesis are de-
picted in Figure 2.9. Hypotheses mined from biological literature as well
as time-series experiments from wet-labs can be considered as temporal
properties restricting the admissible set of parameter valuations.

dINM

In the case of discrete models, usage of model checking for guiding synthe-
sis of admissible parameters has been originally targeted for CTL in [62]
supported with the tool SMBioNet [237] (employing NuSMV). The ap-
proach uses the naı̈ve algorithm of separate model checking tasks run for
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every parameter valuation of the model. Decisions over parameter space
of models with synchronous semantics can be done very efficiently using
SAT, SMT [192] or answer-set programming [175, 300]. The problem be-
comes more challenging for semantics with asynchronous updates as is
considered in our case for dINMs. Parameters can be synthesised itera-
tively by using a model checker with an appropriate symbolic encoding of
parameters as is done in [51] by employing NuSMV.

Parameter synthesis for LTL has been first addressed in our work pre-
sented in Section 4.2 where also a detailed discussion of related work is
given.

cBNM

Several techniques have been developed for parameter synthesis of conti-
nuous-time models. In the case of linear-time TL, the dominating approach
is based on monitoring simulated trajectories of the system [37, 86, 148, 312,
319]. These techniques rely on numerical solvers which are well-developed
for systems with fixed parameters or small parameter spaces (perturba-
tions). An advantage of these techniques is that they consider the function
defining the systems dynamics as a black box provided that there is ba-
sically no limitation on the form of parameterisation of the system. The
algorithm implemented in Breach [145] utilises robust monitoring of STL.
It is based on a hybrid approach built on sensitivity analysis [126]. The
parameter space is traversed with respect to sensitivity of the quantitative
semantics of STL wrt changes in parameters. The tool BIOCHAM [166]
supports exploration of parameters with respect to LTL formulae with con-
straints over reals. It brings the methods known from traditional param-
eter estimation to the settings based on temporal logics. Parameter space
is searched with a covariance matrix evolutionary strategy that attempts
to identify a gradient in quantitative formula satisfaction wrt changes in
parameters.

The main drawback of the simulation-based methods is the need to
sample the parameter space and initial states while losing robust guaran-
tees for the results. This drawback can be overcome by replacing numeri-
cal solvers with Satisfiability Modulo Theories (SMT) solvers that can cope
with non-linear functions and real domains up to required precision [187].
However, these techniques are limited to reachability analysis (e.g., the tool
BioPsy [275]) and their extension to work with general TL specifications is
a non-trivial task yet to be explored.

Techniques based on finite abstractions of cBNMs employ an exact
(symbolic) representation of the maximal set of parameterisations satis-
fying a given TL property. These techniques are based on model check-
ing performed directly on a qualitative finite quotient or hybridisation of
systems dynamics (e.g., [49, 51, 67] and our approaches [33, 82] described
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in Chapter 4). Several approaches encode parameter sets symbolically in
terms of polytopes [49, 205]. Another solution is to encode parameterisa-
tion sets by means of predicate formulae with non-linear arithmetics over
real numbers and use SMT to reason on them.

sCRNM

In the case of sCRNMs, parameter synthesis methods are based on prob-
abilistic model checking or variants of statistical model checking. Most
statistical approaches to parameter synthesis [318, 12, 124] rely on approxi-
mating the maximum likelihood wrt to a given set of data. The advantage
is the possibility to analyse infinite state spaces [12] (employing dynamic
state space truncation with numerically computed likelihood) or even mod-
els with no prior knowledge of parameter ranges [124] (using Monte-Carlo
optimisation for computing the likelihood). The state-of-the-art moment
closure approaches are able to cope with multi-modal distributions occur-
ring in multi-stable systems [12, 273, 22]. The technique implemented in
the tool U-check uses so-called smoothed model checking [73] that brings
an improved Bayesian statistical algorithm which performs model check-
ing over paths simultaneously for all values of the model parameters from
observations of truth values of the formula over individual paths of the
model obtained for isolated parameter valuations.

Approaches based on Markov Chain Monte-Carlo sampling and
Bayesian inference [200, 232, 247] can be extended to sample-based approx-
imation of parameter values, but at the price of undesired inaccuracy and
high computational demands [61, 27].

2.6.7 Robustness Degree

The concept of robustness addresses aspect of the functional evaluation of
a dynamical system by considering a weighted average of every behaviour
across a space of perturbations affecting the model parameters (hence its
behaviour) and in a particular way, having a certain probability of occur-
rence. The general definition of robustness [242] gives us robustness de-
gree that quantitatively characterises to what extent is the evaluated system
functionality preserved under considered perturbations:

rdMA,P
def
=

∫
P
ψ(µ)DMA (µ)dµ

where M is the system (represented by an appropriate model), A is the
function under scrutiny, P is the set of perturbations, P ⊆ PχM , ψ(µ) is the
probability of the perturbation µ ∈ P and DMA (µ) is an evaluation function
stating how much the function A is preserved under a perturbation µ.
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Kitano proposed that the evaluation functionDMA (µ), stating how much
the functionality A is preserved in perturbation µ, should be defined us-
ing a subspace B of all perturbations, where the system’s function is com-
pletely missing and the remaining P \ B where the function’s viability is
somehow altered. Formally, the definition is the following:

DMA (µ) =

{
0 µ ∈ B ⊂ P

fA(µ)/fA(0) µ ∈ P \B

For perturbations µ ∈ P \ B where the system maintains its func-
tion at least partially, Kitano proposes to express the evaluation function
DMA (µ) = fA(µ)/fA(0) relatively to the ground (unperturbed) state fA(0).
This is meaningful, e.g., for naturally living systems where the ground state
is measurable and is considered as an optimal performance state. Such a
definition enables the comparison of some common property of different
species. On the other hand, in cases when no ground state is given, the
absolute value can provide more adequate measure of robustness.

On the technical side, the concept of robustness has been widely studied
in the deterministic modelling framework based on ordinary differential
equations (ODEs). There exist several well-established analytic techniques
based on static analysis as well as dynamic numerical methods for effective
robustness analysis of ODE models.

Several studies have brought formal methods into this concept. The
idea is to formalise the analysed property in terms of temporal logic for-
mulae and to employ quantitative satisfiability to measure the robustness
of formula satisfaction. The first such framework has been implemented on
the top of the BIOCHAM tool [162, 165] employing LTL extended with con-
straints (predicates) over reals to express properties of timed traces of real-
valued states. The approach is “property-oriented” provided that the ro-
bustness is understood as a measure indicating how much the predicates in
the formula can be altered in order to affect the validity of the formula wrt
the given trace. The approach introduced in [168] and implemented in the
TaLiRo tool [14] brings “behaviour-oriented” robustness degree measured
against MTL formulae interpreted over discrete-time and continuous-time
traces and discrete state space. The quantitative semantics of MTL for a
given trace (signal) x is defined as a distance of x from the set of signals
violating the formula. The approach using STL [151] extends the concept
of behaviour-oriented quantitative reasoning to work with real-valued sig-
nals and to consider a perturbation of traces in time (time robustness), state
space (space robustness), and the mix of both. The methods are imple-
mented in the tool Breach [145]. All of these methods are applicable to
cCRNMs, cINMs and cRINMs.

In the case of stochastic models (sCRNMs), the concept of robustness is
not yet as established as in the case of ODE models. Komorowski etal. [249]
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introduce the notion of robustness in the context of linear noise approxi-
mation of stochastic kinetics. To the best of our knowledge, our approach
discussed in Chapter 6 is the first work addressing robustness in stochas-
tic systems from the perspective of temporal properties (CSL). Alternative
techniques employ statistical approaches and simulation working with STL
specifications [40, 72].

2.7 Summary

In this chapter, we have set a unifying framework targeting the model
classes most frequently used in computational systems biology. The frame-
work can be easily extended to include other models used in biology (e.g.,
more complicated kinetics models of INs or RINs, discrete models of CRNs,
etc.) Additionally, we have introduced the background on the semantics of
the models with respect to a set of selected basic temporal logics and their
extensions that have been already successfully used in systems biology.

Finally, we have given a brief overview of model analysis techniques
based on formal methods. The selection is focused on the analysis of mod-
els under parameter uncertainty by means of formal methods based on
model checking and monitoring procedures. These methods have been
described in more detail as they are discussed in next chapters from the
perspective of our original methods.
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Chapter 3

Solved Problems

In this chapter we formulate three key problems that address the analy-
sis of models included in the framework discussed in Chapter 2. These
methods target analysis of parameterised models. In particular, we revisit
the following problems from the perspective of formal methods: param-
eter synthesis and robustness analysis. Moreover, we introduce a novel
problem of so-called parameter exploration that adapts the framework of
parameter synthesis to the settings of stochastic models.

3.1 Parameter Synthesis

3.1.1 Problem Formulation

In general, the problem is, for a given parameterised biological network
model and a given temporal property, to find all parameter values satisfy-
ing the given property. For non-stochastic models, the problem is precised
as parameter synthesis problem formally stated in the following definition. In
our case we target an instance of the problem that is stated from the per-
spective of the basic temporal logics.

Definition 3.1 (Parameter Synthesis Problem) Let MPχ be a parameterised
cCBNM or dINM. Let ϕ be a formula of LTL or CTL.

The parameter synthesis problem forMPχ is to find the maximal set P ⊆
PχM of parameter valuations such thatMPχ(µ) |= ϕ for all µ ∈ P.

3.1.2 Significance

The problem is highly relevant for systems biology because the models
are usually built from (bio)physical first-principles that are mathematically
represented by means of parameterised kinetic functions. Parameters typi-
cally reflect thermodynamics conditions in a particular cell and are very dif-
ficult to be obtained in vivo. Parameter synthesis gives the unique opportu-
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nity to analyse the model globally with unknown parameters. In particular,
by parameter synthesis it can be decided if a given parameterised model
can or cannot display behaviour described by a given temporal property.
In positive case, all satisfying parameter values settings are returned. If
stochastic dynamics is considered, the parameter synthesis procedure gives
all parameter values that satisfy the property with a probability greater or
equal than a given probability threshold.

3.1.3 Existing Solutions

The naı̈ve solution to the problem is to enumerate the individual parame-
ter valuations of the given parameters domain by running a separate model
checking task for every parameter valuation. Such approach requires the
set of admissible parameter valuations to be finite. This is obviously en-
sured in case of dINMs [62]. However, it is worth noting that in that case
the number of admissible parameter valuations can grow combinatorially
with respect to the number of influences affecting a certain species (in-
degree of the influence network nodes).

In the case of cBNMs and sCRNMs, the parameter domain is uncount-
able. Apparently, the naı̈ve approach suffers from fundamental problems
in such cases. In order to achieve exact approximation of the results with
formal guarantees, a suitable finite partitioning of the parameter space is
inevitable.

The very first algorithm for parameter synthesis of cBNMs employing
model checking over discrete abstractions has been introduced by Batt et
al. in [49, 368]. The algorithm in [49] (implemented in the RoVerGeNe tool)
is sequential and relies on execution of two model checking procedures
per each class of valuations. In the average case, the number of analysed
parameter classes can be reduced by a suitable BDD representation of the
parameter space. In [51] the authors target the piece-wise affine frame-
work [135] adapted to regulatory networks. The notion of uncertainty is
lifted to a higher level of abstraction provided that qualitative (symbolic)
valuation is considered. That allows to efficiently employ the symbolic
NuSMV model checker [112] for the parameter synthesis procedure. How-
ever, the problem of such solution is that it does not construct the satisfying
parameter valuations set. In particular, for a given model with a symboli-
cally encoded parameter perturbation it either answers true provided that
the perturbation entirely satisfies the formula, or false, provided that a
single counter-example is returned by the model checker. The latter case
first requires to check if the counter-example is not a false-positive path
introduced by the abstraction. If the false-positiveness (spuriousness) is
falsified, the procedure is further iterated with a new parameter pertur-
bation excluding the non-satisfying parameter valuation inferred from the
counter-example. As the counter-examples gives just a single such param-
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eter valuation, the approach can be very close to the naı̈ve solution.
Alternatively, parameter synthesis for cBNMs can be done approxi-

mately by using sampling of the parameter space joint with numerical sim-
ulation of the individual (approximate) signals as is done in [166, 145]. Such
approach does not give formal guarantees but rather a result interpreted
up-to some numerical error (the finite sampling of the parameter space
gives an approximate under-approximation of the synthesised parameter
valuations sets as the individual signals are simulated with the numerical
error of the solver, as used, e.g., in the BIOCHAM tool [166]). To avoid the
exhaustive (and unnecessary) sampling of the parameter space, sensitiv-
ity analysis of quantitative semantics of a temporal formula wrt changes in
model parameters offers an efficient systematic way [150] (the approach is
employed in the tool Breach [145]).

The problem of parameter synthesis has been also addressed in the set-
tings of discrete time dynamical systems that are significantly different
to models considered in this thesis. An example is technique based on
the Bernstein polynomial representation that targets polynomial dynami-
cal systems [127]. It is implemented in the tool SAPO [152].

3.1.4 Our Contribution

In our work, we have targeted the parameter synthesis problem with a
fully automatised procedure working on common parameterised biolog-
ical models. Firstly, we have developed coloured model checking – a method
that adapts parallel model checking algorithms for several temporal logics
and works with dINMs (directly) and cBNMs (by utilising the discrete ab-
straction procedures of ODEs). The method and its mapping to the prob-
lem formulated in Definition 3.1 is described in Chapter 4. The method
expects encoding of the models by means of PKS and introduces symbolic
representation of parameter values that overcomes the problems of large
(or infinite) parameter spaces.

3.2 Parameter Exploration

3.2.1 Problem Formulation

In the case of stochastic models, the presence of a specified property in a
given (parameter-uncertain) model is evaluated quantitatively with a given
probability measure. To that end, the problem of parameter synthesis is re-
formulated in the quantitative context provided that the goal is to compute
all parameter values that satisfy the property with probability greater or
equal than the given threshold. Since it is necessary in this context to quan-
titatively evaluate parameter valuations with respect to a given formula,
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we speak about a more fundamental problem of parameter exploration. This
problem is formally stated in the following definition.

Definition 3.2 (Parameter Exploration Problem) LetMPχ be a sCRNM pa-
rameterised with a parameterisation χM. Let ϕ be a formula of the bounded time
fragment of CSL with rewards.

The parameter exploration problem for a parameterised sCRNM MPχ is
to compute for each state X ∈ X of the parameterised CTMC JMPχKsCRNM the

landscape function λ
ϕ,PχM
X : PχM → R≥0 that for each parameter valuation

µ ∈ PχM returns the numerical value of the probability or the expected reward for
the formula ϕ.

3.2.2 Significance

From the same reasons as mentioned in Section 3.1.2, the problem of pa-
rameter exploration of stochastic models is highly relevant for systems bi-
ology. Parameters reflect thermodynamics and physical conditions that
control the amount of noise that makes the modelled reactive events uncer-
tain. Since these parameters target the very detailed mechanistic aspects of
chemical reactions occurring in vivo, it is even more difficult to obtain their
values than in the deterministic case. Parameter exploration enables anal-
ysis of stochastic model dynamics without requiring precise knowledge of
the parameter values.

3.2.3 Existing Solutions

The parameter synthesis problem for a parameterised CTMC and a
bounded reachability specification was introduced in [212]. The authors
reduce the problem to the analysis of the polynomial function describing
how the reachability probability depends on the parameter values. The
degree of the polynomials is determined by the number of uniformisation
steps which is typically very high. Therefore only an approximate solu-
tion is obtained through the discretisation of the parameter space. An al-
ternative solution is provided by statistical approaches based on assum-
ing simplifying restrictions on the stochasticity of systems dynamics. In
that case, statistical guarantees are obtained instead of exact guarantees.
Approaches based on Markov Chain Monte-Carlo sampling and Bayesian
inference [200, 232, 247] can be extended to sample-based approximation
of the evaluation function, but at the price of undesired inaccuracy and
high computational demands [27, 61]. A promising approach working with
STL is proposed in [73] where it is shown that satisfaction probability is
a smooth function of model parameters. A Bayesian statistical algorithm
is employed to perform model checking for all isolated parameter values
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simultaneously. This is done by exploiting the smoothness of the quanti-
tative satisfaction function. Correlations are modelled explicitly through a
prior distribution over a space of smooth functions (a Gaussian Process).
Observations at individual parameter values are collected to construct an
analytical approximation of the satisfaction function itself. The method is
implemented in the tool U-Check [72]. It is considerably faster than tradi-
tional approaches to statistical model checking [232, 116].

3.2.4 Our Contribution

We have given first steps towards exact (precise) probabilistic model check-
ing of sCRNMs under parameter uncertainty by introducing parameterised
uniformisation method that enables quantitative model checking of CTMCs
with uncertain parameters against formulae specified in bounded-time
fragment of CSL with rewards. The method computes an approximation
of the landscape function and it is unique in giving formal guarantees for
the errors caused by the approximation. The methods and its mapping to
the problem formulated in Definition 3.2 is described in Chapter 5.

3.3 Robustness Analysis

3.3.1 Problem Formulation

Assuming the concept of robustness as declared by Kitano, the goal of ro-
bustness analysis is to evaluate a certain functionality of systems dynamics
with respect to perturbation in systems parameters. The approach employ-
ing formal methods understands such functionality as an arbitrary (quali-
tative or quantitative) temporal property.

It is worth noting that in following definitions, the robustness degree is
simplified by excluding the probability of perturbation occurrence. How-
ever, a uniform distribution of perturbations can be considered without
any limitations when computing the robustness degree. In cases when the
distribution of perturbations is not uniform, computation of the robustness
degree needs to be revised accordingly. In all cases studies we have con-
ducted in our research, independent perturbations or a uniform distribu-
tion of perturbation is used.

Owing to the fact the robustness degree is inherently a quantitative
measure, the problem of evaluating robustness of a given temporal prop-
erty requires to introduce a computable evaluation function that can quan-
titatively characterise the amount of work that is needed to perturb the
system in such a way that the property becomes violated. Such a function
has to reflect whether the systems behaviour is deterministic or stochastic.

In the case of deterministic systems, every behaviour (represented as a
signal) has a unique set of parameter values under which it is present in the
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system. Cardinality of such set then intuitively reflects the robustness of the
considered behaviour. We target the notion of space robustness introduced
in [151] from the perspective of the expressive variant of the value-freezing
signal temporal logic STL* interpreted over continuous-time signals. The
problem is formally defined as follows.

Definition 3.3 (Deterministic Robustness for STL*) LetMPχ be a parame-
terised cBNM and let P ⊆ PχM be a bounded set of perturbations. Let ϕ be a
formula of STL*. The robustness problem forMPχ wrt ϕ and P consists of the
following parts:

1. to define and approximately compute the evaluation function DMϕ : P →
R such that for any µ ∈ P, DMϕ (µ) evaluates quantitative semantics of ϕ
on the signal JMPχ(µ)KcBNM,

2. to approximately compute the robustness degree of ϕ inMPχ wrt P de-
fined as:

rdMϕ,P
def
=

∫
P
DMϕ (µ)dµ

In the case of stochastic systems, the situation is more difficult. Since
every behaviour is distorted with noise and randomness of relevant events
occurring in time, we have to deal with the shape of probabilistic distri-
butions of system states and its development in time (transient analysis)
or its shape in the steady state (steady state analysis). In our setting, we
assume the behaviour is described by means of a probabilistic temporal
property. The evaluation function reflects the probability of the property
being satisfied under the given perturbation. The robustness is inversely
proportional to the amount of noise that causes potential violation of the
formula. In contrast to the deterministic case, in this case the robustness is
understood as an inherent property of the systems stochasticity.

Definition 3.4 (Probabilistic Robustness for CSL) Let MPχ be a parame-
terised sCRNM. Let ϕ be a formula of CSL with rewards. The robustness prob-
lem forMPχ wrt ϕ and P is to approximately compute the robustness degree

rdMϕ,P
def
=
∫
PD

M
ϕ (µ)dµ where the evaluation function DMϕ : P→ R is defined

in a way that for every µ ∈ P, DMϕ (µ) reflects the quantitative semantics of ϕ in
a suitable manner.

3.3.2 Significance

The problem of evaluating robustness is important to obtain deeper un-
derstanding of the role of parameters on the presence of the specified be-
haviour [343]. Robustness degree provides a tool that significantly helps
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to compare several models presenting the same behaviour [48]. There are
many examples in systems biology literature that have used robustness
analysis to get mechanistic insights into a certain phenomenon. For exam-
ple, in [4, 30] the concept of robustness is used to correctly reconstruct the
mechanism of bacteria chemotaxis control. The analysis conducted in [338]
provides a study of the organisation of a two-component signalling path-
way in E. coli from the perspective of global concentration robustness of
individual components in the pathway.

The robustness degree also provides a computable measure allowing
targeted optimisation of cellular processes by means of tuning of known
parameters [148, 319]. This is an inevitable precursor of successful design
and engineering of synthetic cellular circuits [238, 132].

3.3.3 Existing Solutions

In the context of deterministic models, robustness analysis with respect to
functionality specified in terms of temporal formulae has been recently in-
troduced [168, 319]. There exist two major approaches of defining and
analysing robustness. If only the parameters of the model are perturbed,
we speak of a behaviour-oriented approach to robustness. This approach has
been explored by Fainekos and Pappas [168], further extended by A. Donzé
et al. [151] and implemented in the toolbox Breach [145]. Another way to
look at perturbations is from the perspective of property uncertainty. If the
system is considered fixed and all parameters exactly known, the uncer-
tainty then lies in the property of interest. For a specific property it can
be explored how much would have the atomic constraints in the formula
to be altered in order to affect the property’s validity in the given model.
This approach has been adopted by Fages et al. [319] and implemented in
the tool BIOCHAM [167]. When only the parameters of the property are
perturbed, it is the case of a property-oriented approach to robustness.

The work presented in [40] is based on the idea of directly adapting the
concept of behaviour-oriented robustness to stochastic models. Individual
simulated trajectories of the CTMC are locally analysed with respect to an
STL formula. For each simulated trajectory, the so-called satisfaction de-
gree representing the distance from being (un)satisfied is computed, thus
resulting into a randomly sampled distribution of the satisfaction degree.
This distribution thus gives another source of information in addition to
the probability of formula satisfaction (the fraction of valid trajectories in
the sampled set).

3.3.4 Our Contribution

Our contribution to robustness analysis with formal methods is two fold.
Firstly, we have extended the set of techniques used to analyse robustness
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on timed traces (signals) generated from continuous-time models (cRINMs,
cINMs and cCRNMs). In particular, we have defined an extension of sig-
nal temporal logic called STL* that allows to express freezing of values re-
ferred within temporal operators. The extension is important especially
to express several aspects of signals that cannot be expressed in plain STL
(e.g., presence of local extremes and their mutual relationships). In con-
sequence, we have defined quantitative semantics of STL* that fits well in
the existing robustness analysis framework developed for plain STL. The
algorithm for computing the quantitative semantics is implemented within
the PARASIM tool. The method and its mapping to the problem formu-
lated in Definition 3.3 is described in Chapter 6. Our result makes a fun-
damental step towards fully automatised analysis of complex properties
over timed sequences and is universally applicable in the wide domain of
(cyber-)physical and (cyber-)biological systems. It is already received well
by the community [44, 102, 296].

Secondly, we have introduced one of the first property-based formu-
lations of robustness degree in the context of continuous-time stochastic
processes. To that end, we have adopted the concept of parameterised uni-
formisation as the underlying computational machinery and have used the
landscape function as the main tool for inferring robustness of stochastic
dynamics. The method and its mapping to the problem formulated in Def-
inition 3.4 is described in Chapter 6. In the community, our result is con-
sidered as one of the fundamental approaches to the problem [373].
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Chapter 4

Coloured Model Checking

As described in Chapter 3, to solve the parameter synthesis problem, we
have developed a method called coloured model checking (CMC) that is
based on enumerative model checking. In this chapter, we summarise our
results regarding the development, implementation, and evaluation of the
CMC method. In particular, we give definitions of the variants of the CMC
problem targeting different temporal logics (LTL and CTL).

4.1 Overview

In Figure 4.1, the general scheme of the coloured model checking is shown.
The method assumes the model to be encoded as a parameterised Kripke
structure. The method is used to solve the parameter synthesis problem I
(see Definition 3.1). It works for cBNMs and dINMs (encoding of cBNMs
and dINMs in terms of PKSs is described in Chapter 2).

As a general method, coloured model checking works on any parame-
terised Kripke structure for which the local parameterisation problem can
be decided for every pair of states. The individual variants of the method
differ in the temporal logic employed. The chosen logic significantly affects
the algorithmics as well as the interpretation of the results. We employ enu-
merative algorithms for both kinds of logics. CTL characterises the tempo-
ral properties in individual states and that way allows to capture global
properties of systems dynamics. Validity of a given formula is typically
evaluated in all states of the system. On the other hand, LTL focuses on
properties of paths and the analysis is typically localised into a given initial
state (or a set of initial states) from where all the reachable paths are ex-
plored. In the context of the parameter synthesis problem, such difference
affects the interpretation of the obtained results for the original biological
network model.

Since the parameter space cardinality increases exponentially with the
number of unknown parameters, our primary goal is to reduce the com-
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Figure 4.1: General workflow of parameter synthesis by coloured model
checking.

plexity for the expected case. To this end, the method is appropriate for
models satisfying the following requirements:

1. The transition-enabling parameter values sets P(s, s′) can be com-
puted efficiently from the knowledge of the model and the state s.
In particular, we suppose there exists an implicit representation of
these sets.

2. A small change in the value of a single parameter causes only a local
change in the transition relation. This implies that sets P(s, s′) repre-
sent significant portions of the parameter space (transition relations
of respective non-parameterised Kripke structures are, to a large ex-
tent, similar).

Note that cBNMs and dINMs exhibit such properties. The primary goal
of CMC is to provide an algorithm which in practice performs parameter
synthesis on suitable models reasonably fast and which is effectively par-
allelisable.

4.2 Coloured LTL Model Checking

The problem of coloured LTL model checking for a given PKS and a given
formula is to explore every path starting in some initial state and to find an
exact set of parameter values for which the formula is satisfied on the path.
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Formally, the problem is formulated using the automata-based LTL model
checking theory. In the standard way, the given LTL formula is translated to
a Büchi automaton (a so-called never-claim) that accepts the language cov-
ering exactly the Kripke structure paths not satisfied by the formula. The
intuition behind the LTL CMC is given in Figure 4.2. The notion of Kripke
structure extended with the set of accepting states F is considered here.
The following definition provides a formal description of the problem.

we decide on all parameterizations at once

check if the product accepts an empty language
normally for each parameterization separately 

YES NO

is the maximal set of valid parameters  
inverse of P in entire parameter space

property is robust return set P of parameter values
violating the property

never claim Buchi automaton

GF ([A]>2.5 | [B]>2.5)

FG ([A]<=2.5 & [B]<=2.5)

parameterized Kripke structure of the model

Figure 4.2: Intuition behind the coloured LTL model checking method.

Definition 4.1 Let K = (P, S, S0, F,→, L) be a parameterised Kripke structure
over AP. Let further ϕ be an LTL formula over AP. We define the coloured
LTL model checking problem as a problem of finding maximal set of parameter
values P ⊆ P such that for all p ∈ P , all s0 ∈ S0 and every fair infinite path
πp(s0) in K, πp |= ϕ holds.

4.2.1 Algorithms

The basic step is to construct the synchronous product K × B of the PKS K
and the never-claim automaton B¬ϕ. We have presented the details of the
construction in [38] where it is shown the product is a Büchi automaton
that contains exactly those infinite paths of K on which the automaton B
accepts. Hence every πp in K × B¬ϕ makes a path in K that violates the
formula ϕ. As a result, the problem of finding the maximal P ⊆ P such
that for all p ∈ P every πp in K satisfies ϕ can be efficiently reduced to the
problem of finding the maximal set P ⊆ P such that for every p ∈ P , there
exists no πp in the product K × B¬ϕ.

A path πp is in PKS K if and only if there exist states s0 ∈ S0, s ∈ F such
that s0

p→* s
p→+ s. The problem is decomposed into two subtasks:
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1. For each s ∈ F compute the maximal set of parameter values P ⊆ P
such that for all p ∈ P there is an initial state s0 ∈ S0 such that s0

p→* s.

2. For each s ∈ F and the corresponding parameter value set P ⊆ P ,
determine if there is p ∈ P and a path πp that cycles on s.

We need to compute sets of parameter values (subsets of P , each intu-
itively represented as a distinct colour) under which an accepting execution
trace is enabled. To this end, colours are accumulated in states provided
that each state is assigned all colours under which it is reached. We de-
fine colouring – a mapping of parameter value sets to states – as a function
Col : S → 2P . To detect a path cycling on a state s ∈ F , we compute the set
of colourings Succ(s, P ) which is a function Succ(s, P ) : S → 2P assigning
to each state s′ ∈ S the maximal set of parameter values P ′ ⊆ P such that
s
p→+ s′ for all p ∈ P ′.

Algorithm 1 performs the computation in the manner described above.
The algorithm iteratively accumulates the parameter value set P and can
terminate as soon as P = P , which allows for a fast discovery of paths
violating a given property.

Algorithm 1 Coloured LTL Model Checking over the product BA K × B
Require: K × B
Ensure: p ∈ P iff s0

p→* s
p→+ s for some s0 ∈ S0 and s ∈ F

1: P ← ∅
2: compute Succ(s0,P)
3: assign each state s ∈ S a colouring Col(s)← Succ(s0,P)(s)
4: for all s ∈ F , Col(s) \ P 6= ∅ do
5: P ← P ∪ Succ(s, Col(s) \ P )(s)

Algorithm 2 computes Succ(s, P ). It starts with an empty colouring and
incrementally updates it. An update is a tuple (s, P ), meaning that the set
of parameter values P ⊆ P should be added to the colouring for the state
s ∈ S. The set of pending updates is stored in Q. The algorithm terminates
as soon as there are no more pending updates.

By Q(s) =
⋃
{P ⊆ P | (s, P ) ∈ Q} we denote the set of parameter val-

ues that are currently scheduled for addition to Col(s). To prevent Q from
containing multiple updates for the same state, we use the merge operation
Q⊕Q′ defined as Q⊕Q′ = {(s, P ) | P = Q(s) ∪Q′(s) ∧ P 6= ∅} to update
Q (line 11).

4.2.2 Interpretation of Parameter Synthesis Results

Coloured LTL MC provides a solution to the parameter synthesis problem
stated in Definition 3.1 and can be thus applied to dINMs and cBNMs. In
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Algorithm 2 Compute Succ(s0, P ) over the product BA K × B
Require: K × B;P ⊆ P; s0 ∈ S (s0 can be an arbitrary state)
Ensure: ∀s ∈ S : Col(s) = Succ(s0, P )(s)

1: for all s ∈ S do
2: Col(s)← ∅
3: Qnew ← (s0, P )
4: while Qnew 6= ∅ do
5: Qold ← Qnew
6: Qnew ← ∅
7: while Qold 6= ∅ do
8: remove (s, P ) from the head of Qold
9: if P 6⊆ Col(s) then

10: Col(s)← Col(s) ∪ P
11: Qnew ← Qnew ⊕ {(s′, P ∩ P(s, s′)) | s→ s′, s′ ∈ S}

both cases, it is important to comment on how to correctly interpret the re-
sults. In particular, we consider a universally interpreted LTL (the formula
holds in a given initial state of a Kripke structure if it holds for all infinite
paths starting in that state). This affects the results interpretation. In gen-
eral, the result of the procedure is a set of all parameter values violating
the formula. Its complement in the entire parameter space is the set of all
parameter values that satisfy the formula.

It is important to note that the product automatonK×B compactly rep-
resents the (infinite) set of paths that covers exactly witnesses of violation
of the formula (so-called counterexamples). This witnesses can be used for
further processing of the results.

In any case, when interpreting the results for the individual types of
models as depicted in Figure 4.1, we also need to reflect the particular en-
coding of the models in PKS.

dINM

In the case of a dINMs M = (N , νdIN ,X, X0,m) with a parameterisa-
tion χM the parameterised Kripke structure encodes the model semantics
(JMPχKdINM). In consequence, the results of parameter synthesis using LTL
CMC can be directly interpreted on parameterised dINMs.

In [244] we explore the enumeration of finite (lasso-shaped) witnesses
for every satisfying parameterisation. In particular, we propose several cri-
teria allowing to classify parameterisations based on sets of finite witnesses
associated to them.
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cBNM

In the case of cBNMs, the parameterised Kripke structure does not reflect
the model dynamics directly due to the approximation and abstraction
steps employed on a given cBNM. Especially, the uncountable parame-
ter space of the cBNM is partitioned into a finite number of equivalence
classes with respect to a particular settings of approximation/abstraction
procedures. There are several issues to be discussed in such case in order
to correctly interpret the results of CMC for the original model.

First, the approximation step affects the vector field of the original dy-
namical system that determines a given cBNM when turning it into the
PWMA system. In particular, the trajectories of the original system are
distorted. To the best of our knowledge, no techniques have yet been
developed to characterise qualitatively or quantitatively such distortion.
In [205], there is introduced an algorithm for optimal approximation that
associates every approximated vector field function with an approximation
error. However, it is not known how to project the computed error onto the
trajectories.

Second, the abstraction technique produces a Kripke structure that
makes an over-approximation of the PWMA system. In consequence, some
of counterexamples found by model checking can be false-positive paths.
The reasons are discussed in Sections 2.4.6 and 2.5.6. Therefore for uni-
versally interpreted LTL and ACTL the resulting parameter values in the
unsatisfying set computed by LTL CMC performed on a PKS Kabst ob-
tained by abstracting a cBNM M make an over-approximated set of pa-
rameter values that really satisfy the formula in the intermediate PWMA.
Analogously, the resulting parameter values in the satisfying set are under-
approximated with respect to the abstraction (see the solid polygon in Fig-
ure 2.8). In conclusion, the CMC method can be safely applied to PWMAs
of cBNMs while carefully considering the over/under-approximation is-
sues. However, the result of CMC cannot be exactly interpreted at the level
of the original cBNM.

4.2.3 Performance Evaluation

On the theoretical side, the worst case time complexity of the overall Algo-
rithm 1 for a given product K × B = (P, S, S0,→, L, F ) automaton belongs
to O(|F ||S|2ζ(|P|)) as discussed in detail in [33]. The linear dependence
on the number of accepting states (affected by the given formula) comes
from lines 4-5 in Algorithm 1. Note that the LTL formula is expected to
be already translated into the Büchi automaton (LTL model checking is ex-
ponential in the size of the formula and so is LTL CMC). The quadratic
dependence on the state space size comes from line 11 in Algorithm 2. The
dependence on the size of the parameter spaceP is included in the function
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ζ. It depends on the model type and complexity of the colouring mainte-
nance (the union and intersection on lines 10-11 in Algorithm 2). In the case
of cBNMs with mathematically independent parameters, these operations
on parameter sets can be performed in constant time due to representation
of parameter values as continuous intervals of reals. In the case of dINMs,
we have considered explicit representation of the parameter sets encoded
by means of bit vectors. Implementation of these operations is reduced in
this case to operations on bit vectors.

From the practical point of view, we have performed several experi-
ments by employing two independent prototype multi-core implementa-
tions working on cBNMs and dINMs respectively. In the case of cBNMs, we
were able to compute models up-to 200 thsd states (7-dimensional model)
with up to 3 parameters unknown (3-dimensional parameter space) in 30
minutes on a common hardware (details in [38]). In the case of dINMs, we
have employed enumerative computation of the intersection/union oper-
ations by using binary encoding of the parameter values. This has allowed
us to compute large parameter spaces having up-to 100 thousand billions
of parameter values on models with thousands of states in several sec-
onds [244]. The low numbers of states are typical for this kind of models.

4.2.4 Publications Summary

First results introducing this method have been published in [38] primar-
ily focused on cBNMs. The paper also provides complexity analysis of
the problem and discusses a mechanism for reducing the extent of over-
approximation by means of fairness. Consequently, in [33] the method has
been generalised for both cBNMs and dINMs and applied to several bi-
ological case studies. Please note that for purpose of this thesis we have
simplified and changed some of the notation.

The work has been realised in collaboration with my colleagues Luboš
Brim, Jiřı́ Barnat with whom I have developed the method. Bringing the
method on a paper and in a code has been realised with a significant help of
master students Martin Vejnár, Tomáš Vejpustek, Adam Streck and Adam
Krejčı́. My contribution is in setting up the problem for biological networks,
guiding and partially realising the first formalisation of the method includ-
ing the formal analysis of its correctness. In the case study part, I have
made a selection of models useful for fine-tuning and demonstrating of the
method to systems biologists. Finally, I have built up a scenario followed
in experimentation procedures realised with all these models.

The work on LTL CMC for dINMs has been realised with the help of my
master’s students Adam Streck and Juraj Kolčák. The first implementation
has made a part of the Esther web-based tool [341]. Based on this result,
we have started a collaboration with Hannes Klarner and Heike Siebert
(FU Berlin) resulting with a paper [244] that gives a new view on using

87



CMC for dINMs by means of introducing quantitative measures allowing
to rank the synthesised parameter values concerning their fitness with a
given set of experimental data. My contribution to that work was in taking
a significant part in designing and setting up the problem and adapting the
LTL CMC for the new problem.

4.3 Coloured CTL Model Checking

The problem of coloured CTL model checking for a given PKS and a given
formula is in our case to obtain a table where every system state is associ-
ated with an exact set of parameter values for which the formula is satisfied.
Formally, such table is formalised using a function F , formally defined in
the following definition.

Definition 4.2 Let K = (P, S, S0,→, L) be a parameterised Kripke structure
over AP. Let further ϕ be a CTL formula over AP. The coloured CTL model
checking problem is, given K and ϕ, to find the function F described as follows:

F(s) = {p ∈ P | s |=Kp ϕ}. (4.1)

4.3.1 Algorithms

To efficiently compute the problem, we developed the distributed-memory
semi-symbolic CMC algorithm that solves the problem of finding the func-
tion F . The algorithm for computing F is a modification of the (ex-
plicit) labelling CTL model checking algorithm [117]. It labels states with
“coloured” subformulae of ϕ that are satisfied in the state of the Kripke
structure Kp for the “colour” p ∈ P .

Algorithm 3 Compute ϕ-satisfying Colouring
Require: parameterised KS K and CTL formula ϕ
Ensure: F

for all i ≤ |ϕ| do . compute the sets ColSat(ϕ) = {(p, s) ∈ P × S | s |=K(p ϕ}
for all ψ ∈ cl(ϕ) with |ψ| = i do

compute ColSat(ψ) from ColSat(ψ′) . for maximal genuine ψ′ ∈ cl(ψ)

return {(p, s) ∈ P × S | (p, s) ∈ ColSat(ϕ)}

State Colouring

Similarly to the LTL case, the notion of the colouring is employed to rep-
resent the assignment of parameter values to states. In contrast to the LTL
case where the LTL formula is encoded implicitly in the product automa-
ton, here the Colouring is defined as a function over formulae. One of the
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reasons is that the labelling algorithm computes satisfaction for all subfor-
mulae of the given formula. To that end, for a given CTL formula ϕ the no-
tion of Colouring is lifted to a relation called ϕ-satisfying colouring, denoted
ColSat(ϕ), defined as ColSat(ϕ) = {(p, s) ∈ P × S | s |=Kp ϕ}. Intuitively,
it assigns the formula with a set of pairs containing a parameter value p and
a state s such that the formula is satisfied in s under the parameter value
p. The algorithm for computing the function F operates recursively on the
structure of ϕ starting from atomic propositions and iteratively computing
ColSat(ϕ). The computation is done in standard way using the labelling
algorithm [117]. Its basic idea is described in Algorithm 3. The computa-
tion of ColSat(ψ) from the results obtained for subformulae of ψ (having
the size smaller by one wrt ψ) reflects the particular temporal operator ap-
plied to the subformulae. Since here we focus on parallel algorithms that
require further extensions to the standard labelling-based model checking
algorithm, description of the labelling procedure extended to the parame-
terised settings is included as a part of the following steps.

Parallelisation with Assumption-Based Semantics

To parallelise the procedure, we adapt the assumption-based distributed
CTL model checking algorithm [91]. By following that approach, the al-
gorithm is run on a cluster of n computational nodes (workstations). Each
workstation owns a part of the original PKS as defined by a partition func-
tion. This part is extended with the so-called border states. Intuitively, bor-
der states are states that in fact belong to another computational node and
represent the missing parts of the state space. They serve as a proxy be-
tween two parts.

More precisely, the fundamental notion is a PKS fragment Ki which
makes a substructure of the PKS K satisfying the property that every state
in Ki has either no successor in Ki or it has exactly the same successors as
in K. The states without any successors in Ki are called the border states
of Ki. A partition of the PKS K is a finite set of PKS fragments K1, . . . ,Kn
such that every state of K is present in exactly one Ki as a non-border state;
it may be present in several other Kj as a border state. In fact, every border
state is stored several times: as original one on the node that owns it and as
duplicates on nodes that own its predecessors.

The information in border states is considered with the notion of the
truth under assumption. For a given formula ϕ, this is captured by the
so-called assumption function, A : P × S × cl(ϕ)→ Bool that for a given pa-
rameter value, state and a subformula of ϕ returns the assumption on satis-
faction of the subformula in the given state and under the given parameter
value. An important fact is that the value returned by A can be considered
undefined. The intuition is the following: A(p, s, ϕ) = tt if we can assume
that ϕ holds in the state s under parameter value p, A(p, s, ϕ) = ff if we
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Algorithm 4 Main Idea of the Parallel Algorithm
Require: parameterised KS K, CTL formula ϕ, partitioning function
Ensure: F

Partition K into K1, . . . ,Kn

for all Ki where i ∈ {1, . . . , n} do in parallel
Take the initial assumption function
repeat

Update the assumption function using the node algorithm;
Exchange relevant information with other nodes;
Modify assumption function;

until all processes reach fixpoint

can assume that ϕ does not hold in the state s under parameter value p, and
A(p, s, ϕ) =⊥ if we cannot assume anything.

The coloured model checking problem is then revisited with the as-
sumption function in the following way:

ColSat(ϕ) = {(p, s) ∈ P × S | A(p, s, ϕ)= tt}

In general, computation of the assumption function adopts the labelling
algorithm. It starts from setting its values for all states to ⊥ and updating
the results iteratively in individual fragments. Results depending on the
bordering states are completed once all the necessary information is col-
lected. Finally, the assumption function is completely defined and must
return either true or false for every state.

In more detail, the main idea of the entire parallel computation, sum-
marised in Algorithm 4, is the following. Each fragment Ki is managed by
a separate process (node) Proci. These processes are running in parallel
(simultaneously on each node). Each process Proci initialises the assump-
tion function Ai to the undefined assumption function A⊥. After initialisa-
tion, it computes the new assumption function from the initial assumption
function using the so-called node algorithms described below. The node
algorithms extend the standard labelling algorithms defined for individual
temporal operators to the assumption-based and parameterised setting.

Once the algorithm has finished computing the assumptions, the node
exchanges information about border states with other nodes. It sends to
each other node the information it has about that node’s border states and
receives similar information from other nodes. After this exchange is com-
pleted, the computation is restarted. These steps are repeated until the
whole network reaches a fixpoint, i.e., until no update is received by any
node.
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Assumption Function Computation

The main operation of the parallel algorithm is the iterative computation
of the assumption functions starting from the simplest subformulae of (the
atomic propositions) and moving towards ϕ by structural induction. The
algorithm takes into account the assumptions of border states, initially set
to ⊥. Since the algorithm traverses the formula by means of structural
induction, the central role in the algorithm play the so-called node algo-
rithms that compute the assumption function for a subformula of a par-
ticular shape (determined by a specific temporal operator). Each of these
algorithms assumes that all possible assumptions for all subformulae have
been already computed (given the current assumptions on border states).

Algorithm 5 Compute explicit assumptions for EXψ

Require: PKS fragmentKi, CTL formula ϕ = EXψ, initial assumptionsAin
Ensure: new assumptions A

1: A := Ain
2: set A(p, s, ϕ) := ff for all non-border states s and all p ∈ P
3: init := {(s, P ) | P = {p ∈ P | Ain(p, s, ψ) = tt}}
4: for (s, P ) in init do
5: for (s′, P ′) such that P ′ = P ∩ P(s′, s) 6= ∅ do
6: for all p ∈ P ′ do
7: A(p, s′, ϕ) := tt

To give an intuition on the role of a node algorithm, we show two vari-
ants for temporal subformulae of the form EXψ (existential next) presented
in Algorithm 5 and Algorithm 6. The variants differ in encoding of the
parameter values sets. In general, the assumption function is initiated to
“false for all parameter values”. Then, the algorithms iteratively collect as-
sumptions about ψ and propagate the information into predecessor states.
This propagation extends the set of parameters for which the assumption
is true and reduces the set of parameters for which the assumption is false.
This ensures that if a state under a given parameter value has at least one
successor that satisfies ψ (under the same parameter value), this value is
going to be included in the true assumption formula for that state. More-
over, if all successors of a state under a given parameter value refute ψ,
that value is going to be included in the false assumption formula for that
state. Finally, if a state under given parameter value has no successors that
satisfy ψ and at least one successor whose satisfaction of ψ is undefined in
the current assumption, this parameter value is not going to be included in
either the true or false assumption function.

In the case of interval-based parameter encoding, the assumption func-
tion is represented explicitly. In particular, the explicit assumption func-
tion requires the evaluation of the formula for a given parameter value.

91



Operations over the parameter space that are typically performed in node
algorithms are union and intersection of parameter value sets. More specif-
ically, both operations can be demonstrated on an example of the node al-
gorithm presented for formula of the shape EXψ (Algorithm 5). In that
case, all parameter values satisfying ψ in a state s are intersected with the
set of parameter values enabling a transition from s′, a predecessor of s, to
s (line 5). That way the satisfying parameter values are back-propagated to
predecessors of s and the assumption function is updated for the formula
EXψ.

Algorithm 6 Compute symbolic assumptions for EXψ

Require: PKS fragmentKi, CTL formula ϕ = EXψ, initial assumptions Ãin
Ensure: new assumptions Ã

1: Ã := Ãin
2: set Ã(s, ϕ) := (ff,tt) for all non-border states s
3: init := {(s,Φt,Φf ) | Ãin(s, ψ) = (Φt,Φf )}
4: for (s,Φt,Φf ) in init do
5: for s′ ∈ Si such that Φs′,s is satisfiable do
6: Ãt(s′, ϕ) := Ãt(s′, ϕ) ∨ (Φt ∧ Φs′,s)

7: Ãf (s′, ϕ) := Ãf (s′, ϕ) ∧ (Φf ∨ ¬Φs′,s))

In the case of SMT-based parameters encoding, the assumption func-
tion is represented symbolically. The symbolic assumption function Ã is
a function that assigns to each pair (s, ϕ) a pair of SMT formulae (Φt,Φf )
such that for all p ∈ P : p |= Φt iff A(p, s, ϕ) = tt and p |= Φf iff
A(p, s, ϕ) = ff. Each such function thus divides the set of all parame-
ter values into three sets: those parameters that ensure the satisfaction of
ϕ (Φt), those that ensure that ϕ is not satisfied (Φf ), and finally those pa-
rameter values under which the satisfaction of ϕ is undefined (¬Φt ∧¬Φf ).
Algorithm 6 shows how the symbolic assumption function is updated in
the case of EXψ formula. The algorithm deals with the two parts (true and
false) of the symbolic assumption function separately by using the notation
(Ãt(s, ϕ), Ãf (s, ϕ)) = Ã(s, ϕ). To that end, the lines 2 and 3 are updated ac-
cordingly with respect to the explicit case. Lines 6-7 show the advantage of
symbolic encoding. The formula Φs′,s encodes the set of parameter values
P(s′, s) enabling the transition from s′ to s. Finally, union and intersection
operations on parameter sets are replaced with disjunction and conjuction,
respectively. Instead of enumerating the parameter value sets the compu-
tation is reduced to manipulating with the formulae and performing satis-
fiability checks. All these steps are delegated to calls of an SMT solver.

It remains to note that node algorithms for other temporal operators are
constructed in similar way with the exception of the operator AU where
the computation can end up with the assumption function left undefined
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for some states as discussed in the case of distributed labelling algorithm
in [91]. Therefore additional computation is needed in that case.

4.3.2 Interpretation of Parameter Synthesis Results

The employment of the labelling approach implies exhaustiveness in two
aspects. First, the satisfying parameters are synthesised for all subformu-
lae of the given formula. Second, the resulting parameter values reflecting
all subformulae are obtained for all states of the Kripke structure. In par-
ticular, for a given PKS and a given formula, the method gives for every
subformula a table where every state is associated with a set of satisfying
parameter values.

It is important to discuss how the CMC results can be interpreted when
applied for parameter synthesis of dINMs and cBNMs. In the former case,
there is no limitation and the results in the form of a satisfying/unsatisfying
parameter values sets for every state and formula are directly interpretable.
However, in the case of cBNMs the approximation and abstraction steps
affect the interpretation. For same reasons as in the LTL case, the effect
of approximation of cBNMs by means of a PWMA system cannot be char-
acterised. It is therefore necessary to evaluate the results at the level of
PWMA system. The over-approximating abstraction affects CTL model
checking results in the following way:

• For a formula in the universal fragment of CTL (ACTL), the abstrac-
tion causes satisfying parameter values synthesised by model check-
ing to be under-approximated wrt the entire set of parameter values
for which the formula is exactly valid in the PWMA system. Unsatis-
fying parameter values are over-approximated.

• For the existential fragment (ECTL), we obtain over-approximation of
the exact set of satisfying parameter values. Unsatisfying parameter
values are under-approximated in this case.

4.3.3 Performance Evaluation

On the theoretical side, the worst case time complexity of the overall CTL
CMC algorithm for a given formula ϕ and the PKS K does not critically
affect the complexity of the common labelling algorithm which is linear in
the size of ϕ and the size of K. However, the size of the PKS is significantly
extended wrt the size of unparameterised KS. In particular, the added as-
pect is the size of the parameter space P . Regarding its role in the most of
the node algorithms, this is critical in the explicit assumption function case
(e.g., the intersection at line 5 of Algorithm 5). In the case of cBNMs where
the parameters are represented as continuous closed intervals of reals, the
intersection of two such intervals can be done in constant time as well as
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their union. This cannot be done easily in case of dINMs where the pa-
rameters do not represent numbers but different settings of the regulatory
logic. In the worst case, the parameter space size can affect the time com-
plexity quadratically. In case of symbolic encoding, the enumeration of P
is avoided but replaced with calls to the SMT solver. In the worst case, the
overall computation depends on the number of SMT solver calls linearly.

On the practical side, we have performed several experiments on dif-
ferent parallel platforms to evaluate scalability of the algorithms. The pro-
totype implementation has been provided for cBNMs, we have not yet
explored the performance of CTL CMC on dINMs. The results we have
obtained show that both multi-core and distributed implementation scale
with the number of states and the size of the parameter space almost lin-
early. In general, despite the compactness of the parameter space in PKS
representations, the challenging issue is the size of the parameter space
that can be very large in practise. On a common hardware, considering
the explicit assumptions, we were able to tackle cBNMs up-to three mil-
lions states (6-dimensional models) with up-to 6 unknown parameters in
times less than 15 minutes (see [82]). Considering the symbolic assump-
tions, the performance has been reduced due to a large number of SMT
solver calls (running in parallel). In particular, we have used Microsoft Z3
with common settings (see [56]). The profiling has shown the majority of
computation is performed in SMT solver calls.

4.3.4 Publications Summary

Results overviewed in this section have been first published in [82] where
the algorithm with the explicit assumption function is introduced and anal-
ysed. The symbolic assumption function and the respective algorithm is
published in [56]. A set of biological case studies providing a deeper view
into performance of CTL CMC using both assumption functions is pro-
vided in [139]. Please note that for the purpose of this thesis we have sim-
plified and changed some of the notation.

The presented work is a joint work with my colleagues Nikola Beneš
and Luboš Brim. The implementation of the work, the performance exper-
iments and biological case studies have been realised with significant help
of students Samuel Pastva and Martin Demko. My contribution has been in
revising the problem of CMC in the context of cBNMs and CTL and guiding
the work on several steps leading to a functional prototype of the method.
I have also contributed in setting up the experiments and interpreting the
achieved results.
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4.4 Software Tools

Several prototype software tools implementing coloured model checking
have been developed. They focus on efficient computation on common
models and support scalable execution in terms of parallel implementation.

To address the LTL-based parameter synthesis for discrete abstractions
of cBNMs (Section 4.2), the prototype tool PEPMC [38] has been developed.
It is implemented to support multi-core parallelisation of Algorithm 1. The
tool has been merged with BioDiVinE [35] (a previously developed tool
supporting distributed LTL model checking of finite abstractions of cB-
NMs, implemented at the top of the DiVinE model checker [36]). The re-
sulting NewBioDiVinE1 supports the procedures of plain model checking
and parameter synthesis wrt LTL specifications. The parameter synthesis
module utilises multi-core parallelisation whereas the plain model check-
ing module employs distributed state space exploration. The implementa-
tion is entirely done in C++.

CTL-based parameter synthesis supporting discrete abstractions of cB-
NMs has been first addressed by the prototype tool BioDiVinECTL2 imple-
mented in Java and supporting the distributed algorithm as described in
Section 4.3. This version supports the interval-based encoding of param-
eter sets and is therefore limited to cBNMs with independent parameters.
The tool has been further extended with hybrid CTL enhanced with action-
labels operators and utilising the SMT-based encoding allowing to analyse
models with interdependent parameters. The resulting stable release called
Pithya3 embedded with a web GUI4 has been approved by the artefact eval-
uation procedure of the CAV conference [57]. The tool is publicly available
as an online service5.

We have also targeted the parameter synthesis procedure for dINMs
wrt LTL. The prototype tool Parsybone6 has been developed to provide an
efficient implementation of the algorithms presented in Section 4.2 work-
ing directly on parameterised dINMs. Parsybone is entirely developed in
C++. It has been embedded within a web GUI Esther [341]. The imple-
mentation has been further improved in collaboration with Adams Streck
and the group of Heike Siebert at Free University Berlin. The resulting web
service TREMPPI7 is publicly available.

1https://github.com/sybila/NewBioDiVinE
2https://github.com/sybila/biodivineCTL
3https://github.com/sybila/pithya-core
4https://github.com/sybila/pithya-gui
5https://pithya.ics.muni.cz
6https://github.com/sybila/Parsybone
7http://tremppi.fi.muni.cz
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4.5 Applications

The coloured model checking technique has been successfully applied to
several biological case studies ranging from small models describing ba-
sic biological mechanisms (enzyme kinetics, cell-cycle control, λ-phage) to
large-scale models providing analysis of several complex biological sys-
tems.

In [33] a cBNM model of ammonium transport system in E. coli is anal-
ysed using the LTL-based approach. In Chapter 7 we describe a couple
of case studies performed with CMC techniques and published in [139] –
synthesis of a synthetic TCP-degradation pathway in E. coli (Section 7.2)
and analysis of the well-known bistable switch present in a cell cycle of
mammalian cells (Section 7.3.3). Additionally, in [210] we have provided
a preliminary analysis of signalling pathways of FGFR3 fibro-blast grow-
factor in rat cells that also employs CMC. This case study is overviewed in
Section 7.4.

4.6 Discussion

To compare the approach presented in Sections 4.2 and 4.3 with the clos-
est previously existing work, it is worth noting that the algorithm in [49] is
sequential and relies on execution of two model checking procedures per
each class of valuations. In the average case, the number of analysed pa-
rameter classes can be reduced by a suitable BDD representation of the pa-
rameter space. On the contrary, our approach is supposed to be based on
a principally different idea. Enumerative LTL model checking procedure
(reduced to detection of accepting cycles in the model-property product
automaton) is employed directly on a graph that compactly represents the
dynamics of all valuations. The computational effort can be significantly
reduced in the average case due to small variations in subgraphs corre-
sponding to different valuations. Moreover, we take the advantage of the
choice of enumerative model checking and provide a parallel algorithm
that accelerates the computation with the increasing number of CPUs.

The parameter synthesis approaches based on finite abstraction have
been studied also in the field of hybrid systems. Owing to the non-linear
character, these methods (including the abstraction procedure considered
in this thesis) are usually applicable only to certain subclasses of biological
models. The approach of [146] supports arbitrary non-linear ODE mod-
els. It is based on a hybrid approach built on sensitivity analysis. Ap-
proaches [218, 177, 368] inherently rely on reachability analysis in hybrid
systems and are sufficiently applicable only to piece-wise affine or multi-
affine systems. These algorithms technically rely on computing reachabil-
ity for parameterised systems by means of polyhedral operations. This re-
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stricts the parameter synthesis procedure to safety properties only. Live-
ness properties, e.g. oscillations, for which any contradicting counterex-
ample is an infinite path requiring monotonous time progress, can be con-
sidered only with a specific care [49]. This problem is also related to our
method for cBNMs, in particular, the extent of over-approximation of the
possibility of non-exiting a rectangle in finite time as discussed in Sec-
tion 2.4.6 significantly affects the practical application of the rectangular
abstraction to liveness analysis of non-linear systems. An improvement
targeting this problem is proposed in [67] by lifting the rectangular abstrac-
tion to the framework of multi-affine hybrid automata. Besides a general
increase in precision, this extension enables the universal handling of time-
dependent properties. However, the price is the higher time complexity of
the parameter synthesis algorithm and worse scalability.

Another approach to parameter synthesis for cBNMs is given in [269]
where δ-complete decision procedures [186] for first-order logic (FOL) for-
mulae are employed to overcome undecidability issues. In this setting, a
FOL formula describes the states reachable with a finite number of steps.
The parameter identification problem is reduced to finding a satisfying val-
uation of the parameters for this formula. The approach requires enumerat-
ing all the discrete paths of a particular length, which leads to performance
degradation for large models.

4.7 Future Work

In the case of cBNMs the critical place for improvement is the approxima-
tion/abstraction procedure. First, an important aspect is to have a tool that
will allow to characterise or predict the distance between a signal generated
by a cBNM and a signal generated by its PWMA approximation. It will en-
able to take the approximation method closer to the concept of numerical
error known from predictor-corrector algorithms used for numerical sim-
ulation of ODEs. Second, the abstraction makes a significant bottleneck of
the entire procedure due to the large extent of over-approximation intro-
duced by the rectangular discretisation. Some of the methods discussed in
Section 2.4.6 partially solve the problem. However, they are not yet pre-
pared to be employed for models with uncertain parameters.

The technique of CTL CMC has not been yet brought to the framework
of dINMs. The reason for that is mainly that symbolic model checking
works well with those kinds of models including parameterised versions.
However, as shown in [17], it is definitely useful to bring hybrid exten-
sions of CTL to the framework of parameterised dINMs. The reason for
that is the necessity of abstract reasoning about various attractors in sys-
tems dynamics that might coexist in the system under certain settings of
parameters. The case study in Section 7.3 makes an important example of
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such a system. To that purpose, it seems very relevant to adapt the tech-
niques we have introduced in [58] (bifurcation analysis) and [31] (detection
and counting of terminal strongly connected components in parameterised
Kripke structures).
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Chapter 5

Parameterised Uniformisation

To solve the parameter exploration problem for stochastic models de-
scribed in Chapter 3, we have developed a method called parameterised uni-
formisation. The method is built upon the probabilistic model checking of
quantitative properties of the continuous-time systems dynamics occurring
in finite time horizon – the so-called transient analysis. The fundamen-
tal uniformisation technique is extended to the parameterised setting and
works on properties belonging to an appropriate (bounded time) fragment
of CSL with rewards.

5.1 Overview

The general workflow of parameter exploration of a sCRNM employing the
parameterised uniformisation procedure is depicted in Figure 5.1. We as-
sume that for a given sCRNMM parameterised by a parameterisation χM
within a perturbation space P ⊆ PχM , the semantics ofM is represented
by a parameterised CTMC C = {Cµ | µ ∈ P}. As declared in Chapter 3,
the problem of parameter exploration is as follows: for each state X ∈ X
compute the landscape function λϕ,PX : P→ R≥0 that for each parameter val-
uation µ ∈ P returns the numerical value of the probability or the expected
reward for the formula ϕ. It means that we consider “quantitative” formu-
lae in the form ϕ ::= P=?[ϕ] | R=?[C≤t] | R=?[I=t], i.e., the topmost operator
of the formula ϕ returns a quantitative result, as used, e.g., in PRISM [261].
In general, the formula ϕ can contain nested probabilistic and reward op-
erators whose evaluations define discrete sets of states further used in the
computation of the resulting numerical value. In consequence, the corre-
sponding landscape function is not in general continuous but only piece-
wise continuous. An example of a simple landscape function describing a
bimodal transient distribution in a given time varying with a parameter is
shown in Figure 5.2. The distribution describes a snapshot of behaviour of
the model described in Example 2.4. The bimodal distribution is typical for
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Figure 5.1: General workflow of parameter exploration by parameterised
uniformisation.

reaction networks with positive feedback. The model is parameterised in
such a way that k1 denotes the parameter νsRN (%1). The corresponding for-
mula CSL that exactly specifies the states distribution in time t is P=?[F≤t].

To solve the parameter exploration problem we extend global quantita-
tive model checking techniques described in Section 2.6.3. The most crucial
part of the problem is given by the fact that the perturbation space P is
continuous and thus the family C is infinite. Especially, to compute the
problem we cannot run the global quantitative model checking techniques
for each CTMC Cµ ∈ C individually.

Our solution to the problem is based on a technique called min-max ap-
proximation. The key idea is to approximate the landscape function λϕ,PX
using a lower bound min

ϕ,P
X = min{λϕ,PX (µ) | µ ∈ P} and an upper

bound maxϕ,PX = max{λϕ,PX (µ) | µ ∈ P}. Since the computation of the
exact bounds is computationally infeasible, we further approximate these
bounds, i.e., we compute approximations minϕ,PX and maxϕ,PX such that
minϕ,PX ≤ min

ϕ,P
X and maxϕ,PX ≥ maxϕ,PX . Although the proposed min-

max approximation provides the lower and upper bounds of the landscape
function, it introduces a numerical error with respect to parameter explo-
ration, i.e., such approximation can be insufficient for the inspected per-
turbation space P and the given formula ϕ. Formally, the inaccuracy for a
state X is given as the difference maxϕ,PX −minϕ,PX . In Figure 5.3 there are
shown two approximation variants of a landscape function from the exam-
ple depicted in Figure 5.2. It can be seen that the approximation error can
significantly affect the result.

An advantage of the min-max approximation is that it allows us to it-
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Figure 5.2: Example of a landscape function describing a snapshot of tran-
sient distribution of states in a parameterised CTMC varying with a partic-
ular perturbation of a single parameter k1.
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Figure 5.3: Min-max approximation of states distribution at a certain time
of transient analysis of a parameterised CTMC varying with a particular
perturbation of a single parameter k1. The two presented cases differ in
absolute error bound: (left) 0.01, (right) 0.001.

eratively reduce the error to a required bound. The key idea is based on
iterative parameter space decomposition where the perturbation space P is di-
vided into subspaces that are processed independently. The result of such
computation is an approximation of the lower bound minϕ,PiX and the up-
per bound maxϕ,PiX for each subspace Pi. Such decomposition provides
more precise approximation of the landscape function λϕ,PX and enables to
reach the required accuracy bound.

To effectively compute the min-max approximation for the given for-
mula the method called parameterised uniformization is developed. In gen-
eral, it allows to efficiently approximate the transient probabilities for the
parameterised CTMCs. The key idea is a modification of standard uni-
formization [201] so that an approximation of the minimal and maximal
transient probability with respect to the family C can be computed.

101



5.2 Method Principles

5.2.1 Local Transient Analysis

The parameterised uniformisation is a modification of the standard uni-
formisation [260], a widely used technique for transient analysis of CTMCs.
For the given parameterised CTMCs C, the initial state X0 ∈ X and time
t ∈ R≥0, the parameterised uniformisation returns vectors πC,X0,t

> and
πC,X0,t
⊥ , such that for each state X ′ ∈ X the following holds:

πC,X0,t
> (X ′) ≥ max{πCµ,X0,t(X ′) | Cµ ∈ C}
∧ πC,X0,t
⊥ (X ′) ≤ min{πCµ,X0,t(X ′) | Cµ ∈ C}

where πCµ,X0,t denotes the transient state distribution of CTMC Cµ in the
time t. The key idea is to compute for each state X ′ the local maximum
(resp. minimum) of πCµ,X,t(X ′) over all Cµ ∈ C with respect to the current
computation step of πCµ,X,t. It means that only the maximal (resp. mini-
mal) values of predecessors of X ′ from the preceding step are considered.
To obtain the local maximum (resp. minimum) of πCµ,X,t(X ′) we define
a function returning for the parameter valuation µ ∈ P the difference of
probability mass inflow and outflow to/from state s.

Remark 5.1 In [89] we have shown that if all reactions are described by mass
action kinetics the function is monotonous with respect to any single perturbed
stochastic rate parameter included in the parameterisation χM. This allows us to
efficiently identify µ ∈ P that maximises (minimises) the value πCµ,X,t(X ′) and
thus to obtain the vectors πC,X0,t

> and πC,X0,t
⊥ .

5.2.2 Global Transient Analysis

The aforementioned parameterised uniformisation can be employed also
for backward transient analysis that is used for the global model checking
procedure discussed in Section 2.6.3. For the given set of states A ⊆ X and
time t we can efficiently compute the vectors πC,A,t> and πC,A,t⊥ such that for
each state X ∈ X the following holds:

πC,A,t
> (X) ≥ max{πCµ,A,t(X) | Cµ ∈ C}
∧ πC,A,t⊥ (X) ≤ min{πCµ,A,t(X) | Cµ ∈ C}

where πCµ,A,t(X) denotes the probability that the set A is reached from X
at time t in the CTMC Cµ.

5.2.3 Model Checking

The min-max approximation employs the results of the parameterised uni-
formisation (i.e., the vectors πC,X0,t

> , πC,X0,t
⊥

πC,A,t
> and πC,A,t

⊥ ) to approxi-
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mate the largest set of states satisfying ϕ, and the smallest set of states satisfy-
ing ϕ with respect to the perturbation space P. It computes the approxima-
tion Sat>C(ϕ) and Sat⊥C(ϕ) such that

Sat>C(ϕ) ⊇
⋃
Cµ∈C

SatCµ(ϕ) ∧ Sat⊥C(ϕ) ⊆
⋂
Cµ∈C

SatCµ(ϕ),

where X ∈ SatCµ(ϕ) iff X satisfies the formula ϕ in CTMC Cµ. To ob-
tain such approximations we extended the standard satisfaction relation for
CSL logic [89]. For more details about the min-max approximation see [89].

5.2.4 Numerical Errors of Parameterised Uniformisation

It is worth noting that the parameterised uniformization for the parame-
terised CTMC C in general does not correspond to standard uniformiza-
tion for any individual CTMC Cµ ∈ C. The reason is that we consider a
behaviour of a parameterised CTMC that has no equivalent counterpart
in any particular Cµ. First, the parameters (minimising/maximising the
inspected value) are determined locally and thus independently for each
state. Second, the parameters are determined independently for each com-
putational step.

In a given stateX , the inaccuracy of the min-max approximation related
to the computation of parametrised uniformization, called unification error,
denoted as uniErrϕ,PX , and defined:

uniErrϕ,PX
df
= (maxϕ,PX − maxϕ,PX ) + (min

ϕ,P
X − minϕ,PX )

Apart from the unification error the min-max approximation introduces
an inaccuracy related to approximation of the landscape function λϕ,PX ,
called approximation error, denoted as appErrϕ,PX , and defined:

appErrϕ,PX
df
= maxϕ,PX −minϕ,PX

Finally, the overall error of the min-max approximation, denoted as
Errϕ,PX , is defined as a sum of both errors:

Errϕ,PX
df
= uniErrϕ,PX + appErrϕ,PX = maxϕ,PX −minϕ,PX

It is important to note that we are not able to effectively distinguish the
proportion of the approximation error and the unification error nor to re-
duce the unification error as such. Therefore, we have developed a method
that provides parameter space decomposition. That way the overall error
of the min-max approximation can be effectively reduced to a user speci-
fied absolute error bound, denoted as ERR.
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Figure 5.4: Illustration of the min-max approximation computation of the
landscape function λϕ,PX for an initial state X0, property ϕ and the pertur-
bation space P assigning a single parameter a value from the range [0, 0.4].
Left graph shows the decomposition of P into 5 subspaces for absolute er-
ror bound ERR = 0.32. Right graph shows a more refined decomposition
for ERR = 0.16 resulting in 10 subspaces. This decomposition reduces both
types of errors in each refined subspaces. The exact shape of λϕ,PX is visu-
alised as the black curve.

5.2.5 Parameter Space Decomposition

In order to ensure that the min-max approximation meets the given abso-
lute error bound ERR, we iteratively decompose the perturbation space P
into finitely many subspaces such that P = P1 ∪ . . . ∪ Pn and each partial
result satisfies the overall error bound, formally written:

∀X ∈ X : maxϕ,PiX −minϕ,PiX ≤ ERR

In consequence, the overall error for each state X ∈ X satisfies the fol-
lowing equation:

Errϕ,PX =
n∑
i=1

|Pi|
|P|

(
maxϕ,PiX −minϕ,PiX

)
≤

n∑
i=1

|Pi|
|P|

ERR = ERR

Figure 5.4 illustrates an example of a parameter space decomposition and
demonstrates convergence of Errϕ,PiX to 0 provided that the function λϕ,PiX

is continuous.
An optimal decomposition with respect to the perturbation space P has

minimal number of subspaces m such that P = P1 ∪ . . . ∪Pm and for each
subspace Pj where 1 ≤ j ≤ m holds that Errϕ,PjX ≤ ERR. The existence
of such decomposition is guaranteed only if the landscape function λϕ,PX is
continuous. If the landscape function is continuous there can exist more
than one minimal decomposition. To search for an optimal decomposition
we have considered and implemented several heuristics allowing to itera-
tively compute a decomposition satisfying the following: (1) it ensures the
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required error bound whenever λϕ,PX is continuous, (2) it guarantees the re-
finement termination in the situation where λϕ,PX is not continuous and the
discontinuity causes that ERR can not be achieved. To ensure the termina-
tion, an additional parameter has to be introduced as a lower bound on the
subspace size. Hence this parameter provides a supplementary termina-
tion criterion.

5.3 Performance Evaluation

On the theoretical side, the asymptotic time complexity of standard uni-
formization is not increased by the parameterised extension. An important
fact is that we have restricted the admissible specification to bounded-time
CSL formulae only. In particular, there always exists a maximal bound on
the number of uniformisation iterations that is linear in the uniformisation
rate multiplied by the time bound occurring in the formula [176]. Addi-
tionally, every single iteration is quadratic in |X| (the size of the state space
of the parameterised CTMC). It is worth noting that the number of states is
exponential in the number of species. In consequence, storing of the state
space or the generating matrix can have high demands on the computer
memory.

On the practical side, we have implemented the prototype of pa-
rameterised uniformisation at the top of numerical algorithms in PRISM
4.0 [261]. Evaluation on several models has shown that the computation be-
comes demanding with increasing the requirements on the precision. E.g.,
in case of simple models (two-dimensional state space, up to eight reac-
tions, two perturbed parameters) the computations took several hours on
a single common hardware computer.

The conducted experiments have shown that for a given sCRNM, the
critical complexity factor is the number of uniformisation iterations that de-
pends on the time scale of the reaction rates. If the rates in individual states
significantly differ in the order, the fast rates dictate the number of the iter-
ations that must be performed within the given time horizon. Since the ac-
tual rate for a given state depends on the value (number of molecules) kept
in the state, the fastest rates appear in states representing high numbers of
molecules that form reactants of reactions with fast dynamics. Regarding
the states space, when considering models where stochasticity is crucial
(e.g., protein molecules or RNA/DNA) the numbers of molecules are typ-
ically small and models focusing on a certain phenomena requiring only a
limited number of species are tractable. However, complex models includ-
ing species of different scales (e.g., proteins interacting with metabolites)
and acting on different time scales (e.g., transcription mixed with enzyme
kinetics) typically require further elaborations in terms of model reduction
and simplification to allow tractability of parameterised uniformisation.
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5.4 Applications

The method has been successfully applied to parameter exploration of
signalling pathways in prokaryotic bacteria [359] (overviewed in Sec-
tion 7.5) and cell cycleG1/S1-phase transition genetic switch in mammalian
cells [89, 359] (overviewed in Section 7.3.4). Both studies have shown new
insights on the dynamics of the cell mechanisms.

In the case of the bacterial signalling pathways, it has been revealed
that the synthetic two-component signalling pathway analysed in [338] is
more robust wrt to the internal noise than the natural pathway only under
a particular settings of the input signal level.

The analysis of the G1/S genetic switch has demonstrated the impor-
tance of stochastic modelling of genetic regulatory mechanisms for which
the intrinsic noise in protein/DNA molecules dynamics significantly af-
fects the behaviour of the system and hence the decisions in cells. The anal-
ysis under parameter uncertainty gives new understanding on how the
parameters affect the molecule distributions and their stabilisation. Such
detailed analysis is not possible with commonly used techniques limited to
deterministic models [345].

5.5 Publications Summary

The publication [89] contains the first results introducing the parameterised
uniformisation, the parameter space decomposition and the related heuris-
tics. Evaluation is done on several smaller but biologically relevant stochas-
tic models. My contribution is in first formulation of the problem, setting
the work in the context of related research, collaboration on development
of the technique with Milan Češka and preparation of the biological mod-
els for the evaluation including formulation of the individual analysis tasks
and interpretation of the results. Detailed technical work and implemen-
tation has been realised by Milan Češka and Sven Dražan under my co-
supervision.

The publication [359] is partially also devoted to the technique. It con-
tains extended results that enable analysis of models with more complex
dynamics than is covered by sCRNMs. Moreover, a simpler reformulated
description of the technique is presented in the supporting material avail-
able with the paper. The main focus is robustness analysis (discussed in
Chapter 6).

5.6 Discussion

Although our stochastic dynamics model is restricted to reaction net-
works, it is worth mentioning that there exist circumstances under which

106



more complicated kinetics or even regulatory influences can be modelled
stochastically in terms of CTMCs [322, 159]. In our framework, we can
consider generalisation of sCRNMs to more complex kinetic models often
used with cBNMs. In such cases, the corresponding stochastic kinetic func-
tion does not have to be in general monotonous in the parameter for all
states of the CTMC. E.g., such phenomenon appears in Michaelis-Menten
functions of enzyme kinetics [322] or in Hill kinetics used to described reg-
ulatory influences [159] (see Definition 2.14). In such cases, there are pa-
rameters for which the corresponding kinetic function is not monotonous,
e.g., Michaelis constant in enzyme kinetics or steepness coefficient in Hill
functions). This makes the computation of local extremes more intricate,
though still tractable. To that end, the kinetic function needs to be decom-
posed to partitions of the parameter values on which it is monotonous as
shown in [359] (and also used in the case study in Section 7.5).

It is worth noting that the landscape function can be alternatively com-
puted by using standard uniformization to obtain precise values in grid
points which could be afterwards interpolated linearly or polynomially.
Using adaptive grid refinement such an approach can also provide an arbi-
trary degree of precision with computation complexity of the same asymp-
totic class as our method. However, the grid-based approach cannot pro-
vide the strict minimal and maximal upper bounds. On the contrary, our
min-max approximation guarantees upper and lower estimates without ne-
glecting any singularities caused by possible discontinuities in the land-
scape function.

Alternative approaches to analysis of sCRNMs under parameter uncer-
tainty are thoroughly based on statistical methods performed on param-
eterised CTMCs [73] or on correct approximations of stochastic dynamics
(mean-field approximation, general moment closures or linear noise ap-
proximation). In cases where the landscape function is supposed to be
smooth and the properties analysed do not require global transient anal-
ysis, those techniques can perform practically very well and can be embar-
rassingly parallelised. However, in general cases only statistical guaran-
tees are given with the results. On the contrary, our technique gives exact
guarantees and can basically cope with arbitrary shapes of the landscape
function at the price of higher computational demands and non-trivial par-
allelisation.

To conclude the discussion, we believe the technique of parameterised
uniformisation provides a significant fundamental result that fills the gap
in global bounded-time transient analysis of models represented by means
of parameter-uncertain continuous-time Markov chains.

In the follow-up work the method has been further extended by Milan
Češka and the research group of prof. Marta Kwiatkowska. The general
idea of that work has been to focus on the critical parameter decomposi-
tion step by combining the min-max approximation with sampling of the
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evaluation function allowing to avoid unnecessary computation. This idea
has been presented in [234, 86] including some other improvements: an ex-
tension to support rate functions with multi-affine dependency on the pa-
rameters, convergence analysis of the approximation error, and definition
of the problems set directly on the top of the parameterised uniformisation
– threshold synthesis and max synthesis. The threshold synthesis com-
putes for a given CSL formula with a probability threshold the parameter
valuations which meet the threshold. The max synthesis computes param-
eter valuations maximising the satisfaction probability of a given formula.
A prototype parallel implementation on GPU has been implemented [103]
and embedded in the GUI of the PRISM 4.0 tool.

5.7 Future Work

For future work, there is a place namely in optimising the method for par-
ticular classes of CSL properties (e.g., to identify commonly used patterns
of CSL formulae with rewards relevant for sCRNMs) and models (e.g., in-
fluence networks based on enzyme or Hill kinetics). Additionally, an open
non-trivial problem is to transfer the technique to the domain of hybrid
approaches that allow to mix discrete and continuous variables [262] and
combine the technique with moment-based methods. It is apparent that
techniques based on moment closures [13, 273, 180] are capable of targeting
several classes of models with a precision sufficient for biological studies.
Important directions of works that fit into the overall workflow consider
approximate reductions of models by means of variables lumping [204].

An important point for future work is to fine-tune the method im-
plementation in terms of clarifying restrictions to CSL specifications and
the CTMC and deploy it to the next stable version of the PRISM model
checker [261].
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Chapter 6

Robustness Analysis

In Chapter 3 we have stated the problem of property-based robustness
analysis. The open problem for cBNMs was to develop a method capable
of quantitative characterisation of expressive formulae encoded in STL*. To
that end, we have defined quantitative semantics of STL* interpreted over
approximate signals generated by a given cBNM model.

Another open problem was to bring the concept of property-based ro-
bustness analysis to stochastic models of biological systems. To that end,
we have addressed sCRNMs analysed wrt CSL formulae. Our novel con-
cept of robustness is based on the parameterisation uniformisation method
described in Chapter 5.

In this chapter, we summarise our results regarding the development,
implementation, and evaluation of both methods for robustness analysis.

6.1 Overview

The general workflow of robustness analysis based on a temporal speci-
fication is depicted in Figure 6.1. The input is a given temporal specifi-
cation expressed in a suitable logic (in our case we will consider STL* or
CSL), a model of a biological network (we consider any type of cBNMs or a
sCRNM), and a parameter perturbation that specifies the range of parame-
ter uncertainty for which the robustness has to be analysed. The robustness
analysis algorithm depends on what kind of model we use. For continu-
ous models (cBNMs) we target the robustness by means of a measure that
characterises how a given signal is far from violating a formula and we
compute a so-called deterministic robustness. For stochastic models (repre-
sented in terms of sCRNMs) we address the robustness with respect to the
probability of a formula to be satisfied and therefore we speak about a prob-
abilistic robustness.
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Figure 6.1: General workflow of robustness analysis realised with respect
to a temporal specification.

6.2 Deterministic Robustness for STL*

For any kind of continuous-time deterministic models including cCRNM,
cINM and cRINM (all generating continuous-time signals) we address
space robustness analysis with respect to formulae of the value-freezing
temporal logic STL* presented in Section 2.5.4. Formally, we target the
problem stated in Definition 3.3. In particular, the first goal is to define
a robustness measure for approximate signals generated by a model with
respect to a given STL* formula and to support it with a suitable algorithm.
Second goal is to approximately compute the (global) robustness degree by
employing the (local) robustness measure defined for signals.

To solve the first problem, we have extended the continuous and dis-
crete measure defined for MTL by Fainekos et al. [168] to establish the
quantitative semantics of STL* formulae over signals. Space robustness of
a given signal with respect to an STL* formula delineates the robust neigh-
bourhood of the signal (the maximal “tube” around the signal where the
formula is satisfied). The robustness measure is defined inductively wrt
the formula structure and is based on a distance metrics employed on the
signal domain extended with (multiple) dimensions representing the time
points of value freezing. On the practical side, the theoretical framework is
computationally supported with an algorithm based on solving the optimi-
sation problem provided that the logic is restricted to linear predicates and
the signals are considered approximate (discretely sampled by means of fi-
nite timed traces that can also be considered as finite piece-wise constant
signals with finite number of changes of signal values).
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The second problem (computation of the robustness degree) is in our
case realised approximately with a simple sampling method. Owing to the
fact there exist more sophisticated methods that can be directly used with
our framework (e.g., [145]), we have primarily focused on the first problem.

6.2.1 Method Principles

Quantitative semantics of a formula ϕ interpreted on a signal x is given
for each time point t ∈ T and a frozen time vector t∗, denoted ρ(ϕ, x, t, t∗).
Further we denote ρ(ϕ, x) = ρ(ϕ, x, 0, 0) the robustness of the entire signal x
starting at the point x(0) measured with respect to formula ϕ. The value
ρ(ϕ, x) under-approximates the distance of x from the set of signals where ϕ
has different truth value. The evaluation function DMϕ is defined directly

as the quantitative semantics of ϕ, in particular, we set DMϕ (µ)
df
= ρ(ϕ, xµ).

Quantitative Semantics of STL*

To express the notion of signal robustness formally, we first need to define
certain basic concepts adopted from [168] (where S is a set of signals):

• Distance of signals is given by their maximum point-wise distance:
d(x, x′) = maxt∈R≥0

d(x(t), x′(t))

• Set distance is given by minimum distance to the set: dist(x,S) =
min{d(x, x′) | x′ ∈ S}

• Set depth is given by set distance to the complement: depth(x,S) =
dist

(
x,S
)

• Signed distance is given: Dist(x,S) =

{
−dist(x,S) x /∈ S
depth(x,S) x ∈ S

The value ρ(ϕ, x) under-approximates the signed distance of x from the
set of all signals satisfyingϕ, denoted asL(ϕ), i.e. |ρ(ϕ, x)| ≤ |Dist(x,L(ϕ))|
holds while their signs are identical. The absolute value of ρ(ϕ, x) thus de-
lineates an equidistant tube where all signals satisfy ϕ if and only if x does
– the robust neighbourhood of x (see Figure 6.2).

The quantitative semantics of STL* is defined inductively with respect
to formula structure. Boolean functions ∧ and ∨ are quantitatively enu-
merated by real functions min and max, respectively. Quantifiers in the
semantics of operator U can then be expressed by infinite disjunction or
conjunction. The quantitative semantics of a predicate p is defined as
Dist(x,Lt,t∗(p)). The quantitative semantics of the freeze operator is de-
fined in the following way:

Lt,t∗(∗i ϕ) = {x | (x, t, t∗) |= ∗i ϕ} = {x | (x, t, t∗[i← t]) |= ϕ} = Lt,t∗[i←t](ϕ)
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Figure 6.2: Signal x (blue, thick) and borders of its robust neighbourhood
(blue, dashed) with an example of a signal (red) contained in the robust
neighbourhood (adapted from [168]).

In consequence, the robustness of a formula with a freeze operator can be
defined in the following manner:

ρ(∗i ϕ, x, t, t∗) = ρ(ϕ, x, t, t∗[i← t])

ρ(true, x, t, t∗) = +∞
ρ(¬ϕ, x, t, t∗) = −ρ(ϕ, x, t, t∗)
ρ(ϕ1 ∨ ϕ2, x, t, t

∗) = max (ρ(ϕ1, x, t, t
∗), ρ(ϕ2, x, t, t

∗))

ρ(ϕ1UIϕ2, x, t, t
∗) = max

t′∈t⊕I
min

(
ρ(ϕ2, x, t

′, t∗), min
t′′∈[t,t′]

ρ(ϕ1, x, t
′′, t∗)

)
ρ(∗i ϕ, x, t, t∗) = ρ(ϕ, x, t, t∗[i← t])

Figure 6.3: Robustness of STL* logical connectives.

Predicates are restricted to be linear. This allows solving the robustness
of predicates by convex programming. For predicate p with coefficients
aij , b, the problem of finding Dist(x,Lt,t∗(p)) can be reduced to optimisation
of f(d) = maxi

∑
j d

2
ij (where i ∈ I and j ∈ {1, . . . , n}) under the constraint∑

i

∑
j aijdij+ε = 0 for some positive ε. This is a non-trivial problem, since

f is not differentiable at point d where f(d) =
∑

j d
2
kj =

∑
j d

2
lj for some

k 6= l. A, generalised method of Lagrange multipliers from [118] is used to
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solve this problem, resulting in the following definition of the robustness
ρ:

Definition 6.1 Let p be a predicate with coefficients aij , b. Then

ρ(p, x, t, t∗) =

∑
j a0jxj(t) +

∑
i

∑
j aijxj (t∗i ) + b∑

i

√∑
j a

2
ij

for arbitrary x, t, t∗, i ranging over I, j ranging over {1, . . . , n}. The notation x
denotes the jth component of the vector signal.

The numerator corresponds to the left-hand side value of the predicate.

The algorithm for computing the robustness for a given bounded time
signal x(t) expects the signal to be sampled into a discrete-time series of
values. Numerical simulations have exactly such shape (they can be con-
sidered as piece-wise constant signals where the value changes only finitely
many times). The algorithm traverses the formula starting from predicates
and following the inductive definition of robustness. For every subfor-
mula, the signal is processed by analysing all the sampled points.

Robustness Degree

The quantitative semantics provides a robustness measure of a signal wrt
a given formula. In particular, it can be understood as a “local” robustness
of systems behaviour. On the other end, the robustness degree is given by
the integral of the evaluation function over the given perturbation space.
It provides a “global” measure of robustness that can be used to compare
perturbation spaces or even different models.

In our setting, the integral is approximated by summing finite samples
of the evaluation function for signals generated for parameter valuations
chosen uniformly from the perturbation space. Such a method gives no
guarantees whether the result is under- or over-approximation of the ac-
tual robustness degree value. Methods reflecting sensitivity of the evalua-
tion function with respect to changes in parameter values [150, 151] can be
employed to improve the precision of robustness degree approximation.

6.2.2 Performance Evaluation

The complexity of robustness computation for STL* is in O
(
|ϕ| · n2|I|)

where n is the size of input timed state sequence (the number of points
where the piece-wise constant signal is changed). Space complexity can be
bounded by the same function.

The parameter most adversely affecting the algorithm complexity is the
number of value-freezing points |I| required by the formula. In general, |I|
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reflects the number of freezing operators appearing in the used formula.
In particular, the critical task is to design the formula in an optimal way
in order to avoid causing the computation to become unnecessarily hard.
In [90] we have proposed several ways of rewriting a formula in such a way
that it preserves the quantitative semantics while minimising the number
of different freeze operators.

6.2.3 Applications

The quantitative semantics has been applied to robustness analysis of a
well-known population model (SIR [236]) predicting an outbreak of an in-
fectious disease in the population. Additionally, we have used the robust-
ness analysis to investigate the well-known model of Lotka-Volterra [272]
simulating the predator-prey population behaviour. Results of both appli-
cations are described in [90].

To conclude, the method has been applied to known models from sys-
tems biology and population dynamics. The purpose of the studies was
mainly to demonstrate its unique features and advantages. Applications to
currently challenging problems in systems biology are the goal of our fu-
ture work on this topic. Currently there is an ongoing work in transferring
the method to existing software tools for offline monitoring of dynamical
systems.

6.2.4 Publications Summary

In paper [143], we have introduced the logic STL* as a novel formalism for
expressing advanced characteristics of continuous-time signals. The logic
is defined with the Boolean semantics. It is supported with a monitoring al-
gorithm technically based on polyhedra operations. We have implemented
a prototype in Matlab employing the MPT toolbox [257]. The work has
been done in collaboration with my master student Petr Dluhoš whom I
have guided in his master’s thesis. He has helped with the formalisation of
the semantics and he has provided the prototype implementation.

The paper [86] is an extended version of the previous paper. It contains
a refined motivation for STL*, detailed definition of the Boolean semantics
and several case studies that support the practicability of the method.

Finally, in paper [90] the quantitative semantics of STL* is formally de-
fined and the algorithm for its computation is given. Several case studies
are included to demonstrate the practicability of the method. Most of the
work has been done with collaboration with my master’s student Tomáš
Vejpustek with whom we have jointly formulated the formal fundamentals
of the quantitative semantics and the algorithm. The prototype implemen-
tation has been realised by Tomáš Vejpustek and Jan Papoušek as a part of
a student research project I have managed.
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6.2.5 Discussion

It is worth noting that the robustness computation algorithm performs
more efficiently than the monitoring algorithm with Boolean seman-
tics [86]. This is due to the fact that operations on polygons are completely
avoided. However, the quantitative semantics only approximates the exact
true/false answer of the monitoring procedure. However, the exponential
complexity wrt the number of freezing operators persists.

Our method of robustness analysis for STL* is in general well-accepted
in the community of monitoring and run-time verification and makes an
important theoretical base for further research. This is supported by the
fact that the method is cited (and explained) in several reviews on run-time
verification methods [44, 296] and in relevant doctoral theses [153, 267].

The method has inspired several follow-up works that target the ne-
cessity of specification of temporal phenomena that goes beyond expres-
siveness of the plain STL. The semantics as defined in STL* is specific in
including the “memory” of value-freezing time points into the satisfaction
relation. Such an approach has been also used in the work on timed reg-
ular expressions [355] that provide an alternative approach to capturing
(and analysing) complex behaviour of signals and streams in general. The
concept of timed regular expressions has been combined with STL includ-
ing efficient qualitative monitoring algorithms that are implemented in the
AMT tool [297]. In [1] the authors target the limitations of STL* when ap-
plied to the analysis of continuously occurring peaks in a signal coming to
cardioverter defibrillators. Despite the logic is capable of a very compact
expressing of the specification of peaks in a signal, it is not that suitable for
cases when there is a need to distinguish among many different shapes of
peaks all occurring in a single signal in a certain pattern. To that end, the
authors adapt the framework of Quantitative Regular Expressions [11]. Ro-
bustness evaluation of regular expressions over signals is addressed in [26].

6.2.6 Future Work

There are several directions for future work. On the practical side, the
scalability aspects of robustness analysis with respect to the formula com-
plexity need to be improved. Especially, the inevitable exponential com-
putation time with respect to the number of freezing operators needs to be
minimised by automatised translation of a formula to an equivalent for-
mula with a minimal number of freezing operators. In general, in lines
of [290, 351], identification of computationally-efficient fragments (or in-
dividual formulae) of STL* is a necessary step for making the method
practicable. A related problem that is needed to be overcome is to make
the specification of STL* formulae more accessible to users not famil-
iar with advanced temporal logics. The possible solution is to provide
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a tool for visual specification of temporal patterns. Several steps have
been done in those directions but all are limited to temporal logics with-
out value-freezing [227]. A GUI for plain textual specification of STL
formulae extended with timed regular expressions is a part of the AMT
tool [297]. Another interesting direction is learning of formulae from
data [19, 41, 68, 226, 295, 372]. Yet none of the existing approaches reflects
the expressive power of STL*.

To support the usage of STL* in the field of systems biology, the logic
has to be embedded within the well-known tools for parameter synthesis
and monitoring of biological models [145, 165]. Our tool Parasim is not
yet equipped with an adequate support for efficient parameter synthesis as
is done e.g. in Breach [145] by employing parameter sensitivity analysis.
Another step is to embed STL* in existing tools [14, 297] that are able to
work with Simulink models used in systems engineering. An interesting
direction is embedding of STL* within existing frameworks for analysis of
stochastic systems [74, 73, 71]. The work mentioned in this thesis addresses
quantitative monitoring performed on signals generated offline. An im-
portant problem is to develop algorithms for quantitative online monitor-
ing. In the domain of real-value signals and STL the problem has been
recently addressed with both qualitative [278, 221] and quantitative seman-
tics [140, 141]. However, it remains open for STL*.

On the theoretical side, it remains to be formally proved for selected
classes of signals how is the expressive power of STL* related with expres-
siveness of the plain STL and xSTL [297] (the STL extended with timed reg-
ular expressions). In general, the clarification of the expressive power has
to be set with respect to the availability of first- and higher-order deriva-
tives of the signal. Finally, a non-trivial open problem is to transfer the
notion of time robustness known in the context of STL [151] into the setting
of STL*.

6.3 Probabilistic Robustness for CSL

For stochastic models represented by means of sCRNMs we address ro-
bustness analysis from the perspective of the bounded-time fragment of
Continuous Stochastic Logic (CSL) with rewards (Section 2.5.5). Formally,
we target the problem stated in Definition 3.4. In particular, the goal is to
compute the robustness degree for a given CSL formula, given parame-
terised sCRNM, and a perturbation space of interest. In our approach, the
robustness analysis is based on an evaluation function that characterises
the probability of satisfaction of a given formula under the given parame-
ter valuation.

To solve the problem, we have adopted the concept of parameterised
uniformisation described in Chapter 5. The landscape function provided
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by parameterised uniformisation is considered as the evaluation function
for which several notions of robustness degree are introduced. The robust-
ness degree induced by the landscape function can be understood as the
property of the systems stochasticity. The probability of a specified formula
to be satisfied for a given parameter valuation gives us a measure charac-
terising how robust the specified behaviour is while reflecting the noise in
the dynamics (occurrence of random events in continuous time). The no-
tion of robustness degree directly relativises this concept with respect to a
given perturbation space.

6.3.1 Method Principles

Consider a reaction networkN and an sCRNMM = (N , νsRN ,X, X0) with
a parameterisation χM employing valuations from a perturbation space
P ⊆ PχM as defined in Section 2.4.3. As mentioned in Section 2.4.5, the
dynamics of the parameterised model MPχ of N is represented by a pa-
rameterised CTMC C = {Cµ | µ ∈ P}.

Robustness Degree Variants

To characterise the robustness, we need to define a suitable evaluation func-
tion that fits in the robustness degree definition stated in Section 2.6.7. To
that end, we consider an auxiliary function Eval(Cµ, ϕ) that returns the nu-
merical value representing the quantitative model-checking result for the
CTMC Cµ and the formula ϕ. In particular, the possible probability thresh-
old ∼ r (where ∼∈ {≥, >,≤, >}) in the top-most operator of ϕ is ignored
(i.e., it is treated as =?). Given these settings the evaluation function DC

ϕ can
be set in several different ways:

DC
ϕ (µ) =

{
0 µ ∈ B ⊂ P ∨ Eval(Cµ, ϕ) � r

1 µ ∈ P \B ∧ Eval(Cµ, ϕ) ∼ r
(6.1a)

DC
ϕ (µ) =


0 µ ∈ B ⊂ P

Eval(Cµ,ϕ)
r µ ∈ P \B ∧ ∼∈ {≥, >}
r

Eval(Cµ,ϕ) µ ∈ P \B ∧ ∼∈ {≤, <}
(6.1b)

DC
ϕ (µ) =

{
0 µ ∈ B ⊂ P

Eval(Cµ, ϕ) µ ∈ P \B
(6.1c)

DC
ϕ (µ) =

{
0 µ ∈ B ⊂ P

|Eval(Cµ, ϕ)−X|2 µ ∈ P \B
(6.1d)

where X = agr{Eval(Cµ, ϕ) | Cµ ∈ P}, agr ∈ {min,max, avg} and B is
a subspace of all perturbations, where the system’s function is completely
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missing. The degree of robustness, denoted as rdC
ϕ,P, is defined as the inte-

gral of the evaluation function DC
ϕ over the perturbation space P:

rdC
ϕ,P

df
=

∫
P
DC
ϕ (µ)dµ.

Definitions (6.1a) and (6.1b) are possible for specifications where the
topmost operator of the formula ϕ includes the threshold r. In the first
definition (6.1a) the evaluation function DC

ϕ (µ) returns a qualitative result,
therefore the robustness degree rdC

ϕ,P specifies the measure of all perturba-
tions in P for which the property holds in a strictly Boolean sense – it is
the fraction of P where the property is valid. This definition can be used,
e.g., with the CSL property ϕ = P≥0.8[F[0,5](X > 300)], which specifies that
in 80% of cases the population X increases above 300 within 5 seconds.
For this property and a model with a parameter k ∈ [0, 10] the robustness
gives us the fraction of the parametric interval [0, 10] for which the model
satisfies ϕ.

In the second definition (6.1b) the evaluation function DC
ϕ (µ) returns

the quantitative value that is relative to threshold r. Therefore, robustness
can be interpreted as the average relative validity of the property over P.
If r corresponds to the validity of ϕ in conditions considered natural for
the inspected parameterised CTMC C (i.e., to the unperturbed state) then
this interpretation complies with the original definition of Kitano. Let us
consider the same property ϕA and the same parametric space k ∈ [0, 10].
If for all values of k the model has a 60% change that its behaviour will lead
to a population of X larger than 300 within 5 seconds than its robustness is
0.6/0.8 = 0.75. If the probability is different in each k then robustness gives
us the average value with which our expectations will be met.

The third definition (6.1c) is possible for specifications using the quan-
titative semantics of formula ϕ. Here robustness gives the mean validity
over all P, regardless of any probability threshold r. This interpretation
is convenient when there are no a priori assumptions about the system’s
expected behaviour.

Finally, to express the fact that the system behaviour remains the same
(with respect to the evaluation function) across the space of perturbations,
we introduce the fourth definition (6.1d). It uses an aggregation function
to compute a mean value and expresses the variance from the mean. This
definition enables us to compare models which have the same numerical
values of robustness in the sense of definition (6.1c) but which achieve the
average value with very different landscapes of evaluation function.

While the last three definitions require precise computation of the prob-
ability value in every p ∈ P, the first definition is amenable to approximate
solutions. In this case it suffices to ensure that the probability is larger or
smaller than r. In many cases it can be achieved without computing the
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precise value and thus statistical model checking techniques can be used
efficiently.

Robustness Analysis Procedure

Having the definition of the evaluation function DC
ϕ we can describe an

effective method for computation of the robustness degree rdC
ϕ,P. Let us

first consider the case where the perturbation space P does not contain
different initial states.

The evaluation of DC
ϕ (µ) includes the computation of Eval(Cµ, ϕ), i.e.,

the solution of standard CSL model checking problem. Since the problem
can be rather complex even for a single perturbation point p, an explicit
computation of the integral over the whole space of perturbations is infea-
sible. Therefore, we consider an approximation of the evaluation function
DC
ϕ using the upper bound DC

ϕ,P,> and the lower bound DC
ϕ,P,⊥ with re-

spect to P defined as:

DC
ϕ,P,> ≥ max

{
DC
ϕ (µ) | µ ∈ P

}
DC
ϕ,P,⊥ ≤ min

{
DC
ϕ (µ) | µ ∈ P

} (6.2)

This approximation is in most cases too course and thus we use a finite
decomposition of the perturbation space P into perturbation subspaces
P = P1 ∪ . . . ∪ Pn. This approach allows to effectively compute the up-
per bound rdC

ϕ,P,> and lower bound rdC
ϕ,P,⊥ of the robustness degree rdC

ϕ,P

in the following way:

rdC
ϕ,P,> =

n∑
i=1

|Pi|
|P|
·DC

ϕ,Pi,> rdC
ϕ,P,⊥ =

n∑
i=1

|Pi|
|P|
·DC

ϕ,Pi,⊥

rdC
ϕ,P '

1

2

(
rdC
ϕ,P,> + rdC

ϕ,P,⊥
)
± ERRC

ϕ,P ERRC
ϕ,P =

1

2

(
rdC
ϕ,P,> − rdC

ϕ,P,⊥
)

As we can see, the key step in our approach is computation of the values
DC
ϕ,P,> and DC

ϕ,P,⊥ for the given CTMC C, the formula ϕ and the pertur-
bation space P. In particular, the method of parameterised uniformisation
described in Chapter 5 is adapted to effectively approximate the evalua-
tion function DC

ϕ (µ). Intuitively, for a formula ϕ the algorithm computes
the upper and lower bounds of the function Eval(Cµ, ϕ) with respect to all
perturbation points µ ∈ P. In consequence, these bounds are used to obtain
the values DC

ϕ,P,> and DC
ϕ,P,⊥ such that Equation 6.2 is satisfied.

6.3.2 Applications

We have conducted two extensive case studies that have proved the
method gives valuable insights into biological systems modelled in terms
of sCRNMs. The results are published in [359].
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First, the method has been applied to a known model of gene regu-
lation of the mammalian cell cycle [345] that explains the transition from
G1-phase to S-phase. In particular, at this point, an irreversible decision
is made causing the cell either proceeding with the cell division or ceas-
ing the division. The problem incorporates a so-called biological switch
that is in computational systems biology analysed by methods of bifurca-
tion analysis. Since the system is based on interactions among proteins and
genes, stochasticity plays a crucial role and therefore it is important to get
insights into the robustness of the switch under randomness of individual
molecular interactions. After rewriting the original deterministic model (a
cINM) into a sCRNM we employed probabilistic robustness analysis of the
model. The results have brought new insights into robust stabilisation of
the switch in either of the two decisions.

Second, we have applied our technique to provide comparison of two
different models (sCRNMs) of a two-component signalling pathway in Es-
cherichia Coli with respect to robustness of a signal transfer under random-
ness of involved molecular interactions and fluctuations of molecule num-
bers. The analysis gives insights into how robustness of signal transfer
can be increased by synthetically modifying the respective reaction net-
work. The systems have been previously analysed in [338] analytically by
means of deterministic models confirming higher robustness in a syntheti-
cally modified pathway. Our analysis has brought new insights that could
not be obtained with the deterministic framework. In particular, we have
shown that in the stochastic setting the synthetic pathway gives higher ro-
bustness of signal transfer only for low signals whereas in case of strong
signals the natural pathway performs significantly better. Thus case study
is overviewed in Section 7.5.

6.3.3 Performance Evaluation

The time complexity of our framework in practice depends mainly on the
size of the state space, the number of reaction steps that have to be con-
sidered, and the number of perturbation sets that have to be analysed to
provide the desired precision. The size of the state space is given by the
number of species and their populations. The framework is suitable for
low populations and is relevant especially in the case of gene regulation. In
the first case study we have considered only a single molecule of DNA and
thus the state space of resulting CTMC was manageable. In the second case
study, we have abstracted the feedback loop mechanism using a sigmoid
production function to reduce the state space and to make the analysis fea-
sible. If such an abstraction cannot be used, our framework can be effec-
tively combined with general state space reduction methods for CTMCs,
e.g., finite projection techniques [292, 220], dynamic state space trunca-
tion [142], and aggregation methods [371]. The number of reaction steps
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can be reduced using separation of fast and slow reactions as demonstrated
in the second case study or using adaptive uniformisation [357, 142].

In the first case study, several hundreds of perturbation subsets had to
be analysed and the overall robustness analysis took a few hours. How-
ever, in the second case study several thousands of perturbation subsets
where required to achieve reasonable precision making the computation
demanding.

6.3.4 Publications Summary

The work mentioned in this chapter has been entirely published in the pa-
per [359]. The paper includes a supplementary material including formal
details related to the method. The main text of the paper is primarily de-
voted to the biological case studies as they are of main interest to the com-
munity. Additionally, the technical aspects of the method are comprehen-
sively provided in the technical report [83].

This research has been done in collaboration with Luboš Brim, Milan
Češka, and Sven Dražan. My contribution was in setting the notion of ro-
bustness for the framework of stochastic models and temporal formulae. I
have contributed to development of the method and formalisation of the
elementary steps. Significant part of my contribution is in the case studies
where I have guided the procedure and helped with interpretation of the
results (Section 7.5).

6.3.5 Discussion

Our framework for robustness analysis of stochastic biochemical systems is
entirely based on the parameterised uniformisation discussed in Chapter 5.
It allows us to quantify and analyse how the validity of a hypothesis for-
mulated as a temporal property depends on the perturbations of stochastic
kinetic parameters. The framework extends the quantitative model check-
ing techniques and numerical methods for CTMCs and adapts them to the
needs of stochastic modelling in biology. Therefore, in contrast to statis-
tical techniques such as Monte Carlo simulation, parameter sampling and
adaptive grid refinement [40]), our framework is customisable with respect
to the required precision of computation. This is obtained by providing the
lower and upper bounds of the results that allow us to rigorously focus on a
considered perturbation space of interest and to provide a detailed analysis
of the evaluation function.

It is worth noting that the evaluation function can be discontinuous or
may change its value rapidly on a very small perturbation interval in situ-
ations when the given CSL formula contains nested probability operators.
In particular, this leads inevitably to the formulation of a hypothesis re-
quiring a detailed temporal program [369] of the biological system (e.g.,
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temporal ordering of events). This makes another reason why there is a
need to guarantee the approximated shape of the evaluation function.

Both applications have demonstrated that the framework can be suc-
cessfully applied to the robustness analysis of nontrivial sCRNMs. They
have shown how to use CSL to specify properties targeting transient be-
haviour under fluctuations in a finite time horizon. The lesson learned
from the applications is that there exist properties that cannot be directly
formulated using CSL with rewards. To that end, we have introduced a
concept of further processing the evaluation function to express and study
the mean quadratic deviation of the molecule population distribution of
the signal response regulator protein. This is described within the particu-
lar case study in Section 7.5.

6.3.6 Future Work

The crucial points for future work are similar to those stated in Chapter 5.
Having robustness analysis techniques deployed on the top of hybrid (com-
bined deterministic and stochastic) dynamics will allow to bring in better
scalability necessary for analysis of larger scale models.

Additionally, an ongoing work is to focus on combining the param-
eterised uniformisation framework with statistical techniques. This ex-
tension has the potential to efficiently scan multidimensional parameter
spaces and to identify interesting subspaces that can be analysed in detail
using the framework. Several steps have been already done in these direc-
tions (see Section 5.6).

A standalone task is to implement a software tool that supports robust-
ness analysis with a suitable GUI allowing visualisation of the results.

6.4 Software Tools

The algorithm for deterministic robustness with STL* is implemented on
the top of the tool Parasim [86]. The tool is developed as a modular en-
vironment for monitoring and robustness analysis of continuous-time de-
terministic models. It reads a specification in the form of STL and STL*
formulae in an XML format and a model in the SBML level 2 format. The
main functionality reflects the scheme in Figure 6.1 employed for cCRNM,
cINM or cRINM models represented in SBML. Robustness analysis of the
model is performed with respect to a given specified perturbation of model
parameters which is sampled upto a given minimal distance among sam-
pled points of the perturbation space. To evaluate the robustness, the quan-
titative semantics of STL and STL* is computed for each sampled param-
eter valuation. The tool is open source. It is written in Java and available
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on GitHub1. The tool has been developed in several phases supported by
student projects and theses supervised by myself. The students that have
significantly contributed to the tool development are Jan Papoušek, Tomáš
Vejpustek, Samuel Pastva, Vojtěch Brůža, and Aleš Pejznoch.

The algorithm for probabilistic robustness analysis with CSL has been
implemented by Milan Češka as a prototype using the procedures of the
PRISM 4.0 model checker [261]. An experimental implementation employ-
ing parallelisation on GPU that has been implemented as a follow-up work
by Petr Pilař can be also used as a back-end for robustness analysis. How-
ever, a tool that would implement the specific support for robustness anal-
ysis is still missing.

1https://github.com/sybila/parasim
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Chapter 7

Case Studies

In this chapter, we present a selection of case studies applying the meth-
ods presented in previous chapters to several models used in systems bi-
ology. Most of the case studies cover a large part of the workflow scheme
presented in Figure 2.9 and in most of the cases include reconstruction (or
reformulation) of the models. Some of the presented case studies (i.e., Sec-
tion 7.2 and Section 7.5) present several new insights into the studied bio-
logical problem.

7.1 Overview

The presented case studies cover most of the model classes defined in
Chapter 2. In particular, biodegradation of 1,2,3-trichloropropane (Sec-
tion 7.2), regulation of G1/S cell cycle transition (Section 7.3), mammalian
cells signalling pathways (Section 7.4), and population models (Section 7.6)
employ the framework of cCRNMs, cRINMs, or cINMs. The study of reg-
ulation of G1/S cell cycle transition also includes a version realised in the
framework of sCRNMs. Two-component signalling pathway study (Sec-
tion 7.5) is done entirely in the framework of sCRNMs.

The case studies in Section 7.2, Section 7.3, and Section 7.4 address the
problem of parameter synthesis. Parameter exploration problem is con-
sidered in Section 7.3 and robustness analysis is tackled in Section 7.5 and
Section 7.6.
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7.2 Biodegradation of 1,2,3-trichloropropane in E. coli

In this case study, we target a real problem solved in synthetic biology
of metabolic pathways. The work has been realised in collaboration with
Loschmidt laboratories of the Faculty of Science. The results demonstrate
the applicability of the methodology provided in Chapter 4 in systems and
synthetic biology workflows. The tool Pythia described in Section 4.4 is
employed to perform the analysis presented in this section.

7.2.1 Problem Description

A synthetic pathway for conversion of the highly toxic 1,2,3-
trichloropropane (TCP) to glycerol (GLY) in Escherichia coli was assembled
as described in [256]. TCP is an emerging toxic groundwater pollutant
and suspected carcinogen which spreads to the environment mainly
due to improper waste management. According to [256] no naturally
occurring bacterial pathway is capable of degradation of TCP. A synthetic
reaction network consisting of five intermediates with glycerol as a final
product and utilising enzymes from other bacterial species was assembled
(Figure 7.1). The individual reactions in this pathway are positively
influenced (catalysed) by enzymes which we consider as parameters of
the respective model (they are considered constant as they reflect the
energetical environment for the pathway).

The employed enzymes are haloalkane dehalogenase (DhaA) from
Rhodococcus rhodochrous and haloalcohol dehalogenase (HheC), epoxide hy-
drolase (EchA) from Agrobacterium radiobacter. They have a major role in
this pathway. In order to achieve an efficient implementation of the path-
way it is important to quantitatively characterise mutual interplay and op-
timal concentration levels of these enzymes. In general, the higher is the
enzyme concentration the higher is the flux rate. Especially, if a substrate
and its intermediates are more or less toxic to a host cell such a requirement
becomes critical.

Unfortunately, the solution is not straightforward because each of the
enzymes has a distinct rate and some of the intermediate products are
much more toxic than the others. Additionally, since these enzymes are not
natural proteins in E. coli, they have to be produced at the expense of other
substances. This is called a metabolic burden. In other words, there must be a
balance in concentrations of these enzymes in order to degrade TCP as fast
as possible while not killing the host by enervation. Therefore, we employ
the workflow of parameter synthesis to give preliminary results targeting
the complex problem of fine-tuning optimal enzyme concentration levels.
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TCP DCP ECH CPD GDL GLY
DhaA HheC EchA HheC EchA

d[TCP ]
dt =−k1·DhaA·[TCP ]

Km,1+[TCP ]

d[DCP ]
dt = k1·DhaA··[TCP ]

Km,1+[TCP ] −
k2·HheC·[DCP ]
Km,2+[DCP ]

d[ECH]
dt = k2·HheC·[DCP ]

Km,2+[DCP ] −
k3·EchA·[ECH]
Km,3+[ECH]

d[CPD]
dt = k3·EchA·[ECH]

Km,3+[ECH] −
k4·HheC·[CPD]
Km,4+[CPD]

d[GDL]
dt = k4·HheC·[CPD]

Km,4+[CPD] −
k5·HheC·[GDL]
Km,5+[GDL]

d[GLY ]
dt = k5·HheC·[GDL]

Km,5+[GDL]

k1 = 1.05, k2 = 0.751, k3 = 14.37, k4 = 2.38, k5 = 3.96,

Km,1 = 1.79, Km,2 = 1.00, Km,3 = 0.09, Km,4 = 0.86, Km,5 = 3.54

Figure 7.1: (top) An abstract scheme of the original system. Note that
enzymes HheC and EchA are employed twice on the pathway. The re-
verse mass flow is considered negligible and abstracted away. (bottom)
The mathematical model. Enzyme concentrations are considered as con-
stant (and unknown) parameters. Units: kx(s−1), Km,x(mM).

7.2.2 Model Encoding

First we denote the individual reactions in the pathway respectively
%1, ..., %5. Every catalytic reaction is modelled by using Michaelis-Menten
kinetics [286] at the place of the respective regulated kinetic function:

κ′%i(x) = νcRIN (%) · ki · x
Km,i + x

where ki,Km,i are fixed as shown in Figure 7.1. For each %i the kinetic
function coefficient νcRIN (%i) represents the (constant) concentration of the
particular enzyme: νcRIN (%1) representsDhaA; νcRIN (%2) = νcRIN (%4) rep-
resentHheC, and νcRIN (%3) = νcRIN (%5) representEchA. There is a shared
parameter for the sets of reactions {%2, %4} and {%3, %5} and therefore three
parameters are considered uncertain in total.

7.2.3 Analysis Procedure and Results

The original model taken from [155] was reduced in order to minimise the
dimensionality of the system. Redundant reactions are eliminated based on
their rates and catalytic efficiency (defined as kx

Km,x
, see Table 7.1). In gen-

eral, greater catalytic efficiency means a faster reaction flux towards gener-
ation of the product. Since we need to preserve the number of unknown
parameters, the very first reaction cannot be omitted. Reaction towards
CPD is undeniably the fastest reaction of the model not just due to the best
catalytic efficiency but also because of the highest affinity which is an al-
ternative interpretation of the reciprocal Michaelis constant. Therefore this
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Table 7.1: Model reactions including enzymes, reaction constants and ad-
ditional information about catalytic efficiency.

reaction enzyme rate (k) Michaelis const. (Km) cat. efficiency ( k
Km

)
TCP→DCP DhaA 1.050 1.79 0.587
DCP→ECH HheC 0.751 1.00 0.751
ECH→CPD EchA 14.370 0.09 159.670
CPD→GDL HheC 2.380 0.86 2.767
GDL→GLY EchA 3.960 3.54 1.119

reaction can be omitted in our model. The reaction towards GDL has the
second fastest flux and since it is much faster than the last reaction it can be
omitted as well. Finally, we have reduced the model to only three reactions
which significantly helps to reduce the model state space while making the
investigation of the three uncertain parameters tractable.

The desired property is defined verbally as “complete degradation of TCP
as fast as possible with the least accumulated toxicity”. The notion of toxicity is
based on the inhibitory concentration of particular molecules. Our frame-
work is designed for manipulation with differential expressions rather than
with numerical assignments. Hence we are not able to directly observe the
actual amount of toxicity. But the toxicity has a direct connection to the
concentrations of intermediates. To this end, we translate the desired prop-
erty as “TCP completely degrades and the concentration of intermediates does not
exceed given bounds”. The bounds are based on experimental data of the
original model (Figure 7.2) with the default setting of parameters (DhaA
= 0.003, HheC = 0.0036, EchA = 0.0029 (mM)) and initial concentrations
([TCP ] = 2 mM , [other species] = 0 mM ). Constants are shown in Fig-
ure 7.1. The presented data reveal that the considered boundary is reason-
able for the concentration 0.5 mM or less. In consequence, we proceed by
testing various combinations of bounds for GDL and DCP in the interval
[0, 0.5] of mM .

It has been mentioned that the concentration of enzymes cannot be un-
limited due to the metabolic burden (which is not the object of investiga-
tion in this paper). According to the default values the initial constraints
for these parameters are therefore set to the interval [0.0, 0.02] of mM . The
parameter synthesis workflow employing the discrete abstraction of the
cRINM as presented in Section 2.4.6 is employed with the CTL CMC proce-
dure (Section 4.3) to find parameter values satisfying the desired property.
The template of CTL formula expressing the property (denoted as ϕ) is a
combination of several smaller subformulae:

ϕ1 = (AG [TCP ] < y), ϕ2 = (A([TCP ] > x)U(AF ϕ1)),

ϕ3 = (AG [GLY ] > x), ϕ4 = (A([GLY ] < y)U(AF ϕ3)),
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Figure 7.2: Experimental data from the original model [256]. We are inter-
ested just in the progress of TCP, DCP, GDL and GLY taken as variables of
our reduced model.

ϕ6 = (AG [DCP ] < v), ϕ7 = (AG [GDL] < w),

ϕ5 = (ϕ2 ∧ ϕ4), ϕ8 = (ϕ5 ∧ ϕ6), ϕ = (ϕ8 ∧ ϕ7),

where x, y, v and w are estimated values making a particular instance of
this property. Here x = 1.9 (according to [256] where authors use the value
2 mM ), y = 0.01 (cannot be zero), v ∈ {0.5, 0.3, 0.1} and w ∈ {0.5, 0.25, 0.1}
(variations based on an observation of the experimental data in Figure 7.2).

The result of parameter synthesis is the set of initial states (satisfying ϕ)
each accompanied with a set of respective values of the parameters (DhaA,
HheC, EchA). Results are encoded as a formula in the SMT-LIB format
2.5 [39]. Consequently, to compare and visualise satisfactory parameter
values in a human-readable form some post-processing is necessary. In this
case, we run a script that systematically samples and visualises the param-
eter space encoded by the formula (by calling the SMT solver iteratively).
The result is the graphical representation of the parameter subspace con-
straint by ϕ and the initial parameter constraints. In Figure 7.3 the results
are shown for a specific initial state.

Note that due to the global nature of our algorithm all states satisfying
the property have been found. The concentration of all variables in this
case study has been restricted to the interval [0.0, 5.0]mM . Our framework
reveals parameter values satisfying ϕ also for initial states beyond the sin-
gular initial concentration of particular species considered in [256]. The
most interesting are the initial states that increase the upper limit of TCP
concentration wrt ϕ (Figure 7.4).
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Figure 7.3: A sample of the resulting parameter space for a particular ini-
tial state: TCP ∈ [1.9, 1.9586], DCP ∈ [0.448898, 0.5], GDL ∈ [0.0, 0.0669138],
GLY ∈ [0.0, 0.01]. Dotted area corresponds to ϕ (v = 0.5, w = 0.25). Upper
left figure the 3D space sampled with 400 points per a layer. Remaining fig-
ures display projections of the 3D plot for every combination of unknown
parameters. All values are shown in mM .

7.2.4 Performance

Owing to the global nature of the enumerative CTL model checking algo-
rithm all the subformulae are investigated during the process. However,
the computation is time and space demanding and the utility of paral-
lel algorithm has to be employed. The computation took more than one
day on a single node while less than 2 hours on twenty nodes (each node
equipped with a common hardware – Intel Xeon quad-core 2GHz and 16
GB of RAM).
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Figure 7.4: (left) Resulting parameter space for a specific initial state:
TCP ∈ [3.84186, 5.0], DCP ∈ [0.0, 0.448898], GDL ∈ [0.0, 0.0669138], GLY
∈ [0.0, 0.01]. The red dot shows the selected point for parameters values:
DhaA = 0.001, HheC = 0.005, EchA = 0.015. (right) Numerical simulation
for the selected point. All values are in mM . Simulation was obtained in
BIOCHAM.
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7.3 Regulation of G1/S cell cycle transition

This case study is focused on demonstrating that the methodologies pre-
sented in Chapter 4 and Chapter 5 can provide a valuable (fully automa-
tised) alternative to existing numerical and analytical techniques used for
exploring how the system reacts to changes in parameters and what are
the critical points in the parameter space that cause significant qualitative
changes in systems behaviour.

d[pRB]
dt = k1

[E2F1]
Km1+[E2F1]

J11
J11+[pRB] − γpRB[pRB]

d[E2F1]
dt = kp + k2

a2+[E2F1]2

K2
m2+[E2F1]2

J12
J12+[pRB] − γE2F1[E2F1]

a = 0.04, k1 = 1, k2 = 1.6, kp = 0.05, γpRB = 0.005
γE2F1 = 0.1, J11 = 0.5, J12 = 5, Km1 = 0.5, Km2 = 4

Figure 7.5: An ODE model of the G1/S transition regulatory network pre-
sented in Figure 2.2 (right).

We address the model describing regulatory interactions controlling a
transition between two phases of a mammalian cell cycle [345]. In particu-
lar, the model explains the core mechanism behind the irreversible decision
for cell division described by a two-gene regulatory network of interactions
between the tumour suppressor protein pRB and the central transcription
factor E2F1. The respective influence network is depicted in Figure 2.2
(right) with the corresponding ODE model shown in Figure 7.5.

7.3.1 Problem Description

For suitable parameter valuations of the two parameters, two distinct sta-
ble attractors may exist (the so-called bistability). The problem is typically
targeted by the so-called bifurcation analysis that is performed by using an-
alytical and numerical methods. In [345] an analytical bifurcation analysis
of E2F1 stable concentration depending on the degradation parameter of
pRB (γpRB) has been provided. Note that traditional methods for bifurca-
tion analysis hardly scale to more than a single model parameter.

7.3.2 Model Encoding

The model does not fit the Definition 2.14 due to the occurence of kp as
a summant in the right-hand side of the second differential equation. It
represents a constant inflow (basal transcription) of the protein E2F1 and
cannot be neglected. To that end, the model is encoded in terms of a
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cRINM considering the following reactions underlying the influence net-
work given in Figure 2.2 (right):

%1 : E2F1
γE2F1−→ %3 : pRB

γpRB−→

%2 :
kp→ E2F1 %4 : → pRB

The regulated kinetic functions are defined for the reactions %2 and %4 in
the following way:

κ′%2(x, y) = kp + νcRIN (%2) · a2 + y2

K2
m2 + y2

· J12

J12 + x

κ′%4(x, y) = νcRIN (%4) · y

Km1 + y
· J11

J11 + x

where x ≡ pRB, y ≡ E2F1 and all other parameters are fixed to the values
shown in Figure 7.5.

The parameterisation of the model is given by the parameterisation set
χ = {%2, %4}where the kinetic function coefficients are given as the param-
eters νcRIN (%2) ≡ k1 and νcRIN (%4) ≡ γpRB .

7.3.3 CTL-based Analysis

In this section we employ the algorithm presented in Section 4.3 to param-
eter synthesis of the above mentioned model. The technique gives an alter-
native way to perform bifurcation analysis typically solved by analytical
methods limited to restricted classes of system dynamics. In particular, we
focus on the synthesis of values of two interdependent parameters.

Problem Settings

The property of bistability expresses that the system is able to settle in two
distinct stable states (i.e., levels of concentration) for specific initial condi-
tions and particular parameter values. It implies existence of a decision-
making point (or area) in the system.

The main outcome of the original analysis is shown in Figure 7.6 (left)
(produced by numerical analysis) displaying the dependency of stable con-
centration of E2F1 on value of γpRB (degradation rate). The most interest-
ing area called unstable (for γpRB ∈ [0.007, 0.027]) determines feasible val-
ues of γpRB wrt the above property. For γpRB < 0.007 the system converges
to a lower-concentration stable equilibrium whereas for γpRB > 0.027 it
converges to a higher-concentration stable equilibrium.

The CTL representation of the property in consideration is ϕ1 =
(EF[AG[low]] ∧ EF[AG[high]]) where low = (0.5 < E2F1 < 2.5) (rep-
resenting safe cell behaviour) and high = (4 < E2F1 < 7.5) (representing
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Figure 7.6: (left) Equilibrium diagram reproducing the results achieved
in [345]. (right) Visualisation of the parameter synthesis results. The high
and low stable regions are represented by the red and blue coloured areas,
respectively. The yellow areas denote the states in which the bistable switch
formula ϕ1 is satisfied.

excessive cell division). During the single run of our algorithm all subfor-
mulae of ϕ1 have been analysed. Let ϕ2 = (AG[low]) and ϕ3 = (AG[high])
as the most interesting.

Analysis Procedure and Results

With respect to the three properties, we have investigated perturbations of
a single parameter γpRB with the initial constraint γpRB ∈ [0.001, 0.025].
According to Section 2.4.6 we have first created the PWMA approximation
of the original cINM (Figure 7.5 (right)) by approximating each non-linear
function in the right-hand side of ODEs with a sum of optimal sequence of
piece-wise affine ramp functions (the precision has been set to 70 automat-
ically generated segments per each non-linear function). For such a setting
the verification process took less than 10 seconds on twenty nodes. The
obtained results are visualised in Figure 7.6 (right). The plot intentionally
depicts the same space as the Figure 7.6 (left) to show obvious similarities of
these results. The blue area stands for stable concentration ofE2F1 (y-axis)
with a particular value of γpRB (x-axis) satisfying the property ϕ2, whereas
the red area satisfies the propertyϕ3. The yellow area (in the middle) stands
for possibility of reaching both stable concentrations. Due to the mixing of
existential and universal quantifiers (see Sec. 4.3.2), the results achieved for
ϕ1 cannot be exactly interpreted. On the contrary, the results for ϕ2 and ϕ3

are guaranteed due to the conservativeness of the abstraction.
Although the algorithm based on interval-based encoding (Sec-

tion 2.4.6) performs fast, it is limited to independent parameters only. To
overcome this limitation, we have employed the SMT-based encoding (Sec-
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Figure 7.7: (top left) The resulting parameter space merged for all initial
concentrations. Each area corresponds to a different property: ϕ1 (yellow),
ϕ2 (blue) and ϕ3 (red). (top right) The same parameter space magnified
and projected to γpRB-axis. The framed region agrees with the original
numerical bifurcation analysis performed in [345] for γpRB . (bottom) Land-
scapes of the parameter space according to the quantitative satisfaction de-
gree computed by BIOCHAM for ϕ2 (left) and ϕ3 (right), respectively.

tion 2.4.6) to explore two uncertain mutually dependent parameters. The
method is computationally more demanding (about one order of magni-
tude for each pair of dependent parameters). The goal of our extended
analysis is to explore the mutual effect of the degradation parameter of pRB
(γpRB) and the production parameter of pRB (k1) on the bistability. Ad-
ditionally, we perform post-processing of achieved results by employing
additional constraints on the parameter space (e.g., imposing a lower and
upper bound on the production/degradation parameter ratio) and show
an alternative way of presenting the results.

In particular, we involve the SMT-based tool Symba [266] to obtain an
approximated interval of the bounds on valid parameter values. Since the
considered parameters are linearly dependent, the resulting intervals can-
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not be simply combined to display the two-dimensional validity area in the
parameter space. To this end, we have employed Symba to explore the ra-
tio of the two parameters. By combining initial parameter constraints with
the bounds on the parameter ratio, a more accurate parameter subspace
is acquired. Such an outcome has been used with the initial constraint
γpRB ∈ [0.001, 0.1] and k1 ∈ [0.001, 10] (Figure 7.7 (top left)). Addition-
ally, we have explored a refined parameter space (γpRB ∈ [0.001, 0.025]
and k1 ∈ [0.001, 2]) where a one-dimensional projection on the γpRB-axis
is highlighted for k1 ≈ 1, the default value of k1 (Figure 7.7 (top right)).

The analysis took 8 minutes on twenty nodes (excluding post-
processing). The obtained results can be used as a base for further analysis.
We employ the feature of BIOCHAM [94] to compute the landscape function
that allows investigation of quantitative satisfaction degree of the proper-
ties explored (Figure 7.7 (down)). LTL reformulation of ϕ2 and ϕ3 has been
used (ϕ1 cannot be expressed in LTL). The lighter is the colour the higher
the satisfaction degree.

7.3.4 CSL-based Analysis

It is important to note that the cINM described in previous section tar-
gets the dynamics from the perspective of the average population view.
However, it is well known [195] that in cases of low molecular numbers
the stochasticity of the dynamics can affect the behaviour of the system
significantly. Especially, in the case of networks addressing interactions
among proteins through the transcription/translation apparatus (the so-
called gene regulation), the stochasticity has to be taken into account due
to the fact that the proteins interact with a single copy of DNA. This fact
means that the chance of a successful transcription-inducing interaction be-
tween a given regulating protein and a given regulated gene to occur in a
certain time is affected by the cellular noise.

Model Reformulation

To address the problem of bistability discussed in the previous section,
we have reconstructed the model in the stochastic framework of sCRNMs.
This is done because we need to fit within the stochastic mass action ki-
netics. In particular, we have reformulated the original CIN as a CRN
that gives an approximate mechanistic view of the mechanism. The re-
sulting CRN is shown in Figure 7.8. The correspondence with the model
presented in the previous section is the following: A denotes the protein
pRB, a stands for a gene encoding pRB,B denotes the proteinE2F1, and b
stands for a gene encoding E2F1. Since the detailed knowledge of elemen-
tary chemical reactions occurring in the process of transcription and trans-
lation is incomplete, we use the simplified form as suggested in [159]. In
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the minimalistic setting, the reformulation requires addition of rate param-
eters describing the transcription factor–gene promoter interaction while
neglecting cooperativeness of transcription factors activity. Our pasteurisa-
tion is based on time-scale orders known for the individual processes [366]
(parameters considered in s−1). Moreover, we assume the numbers of A
and B are bounded by 10 molecules. Upper bounds for A and B are set
with respect to behaviour of an ensemble of stochastic simulations. We con-
sider minimal population number distinguishing the two stable modes. All
other species are bounded by the initial number of DNA molecules (genes
a and b) which is conserved and set to 1. The considered parameterisation
is limited to the degradation coefficients γA, γB assigned to the degrada-
tion reactions of A and B, respectively. In this settings, the corresponding
parameterised CTMC has 1078 states.

Gene a interactions Gene b interactions
a→ a+A 1 b→ b+B 0.05

aB → aB +A 1 bB → bB +B 1

A+ a↔ aA 100; 10 A+ b↔ bA 100; 10
B + a↔ aB 100; 10 B + b↔ bB 100; 10

Protein degradation
A→ γA B → γB

Figure 7.8: Chemical reaction network reformulation of the G1/S regula-
tory circuit – a, b represent genes, aA, aB, bA, bB represent transcription
factor-gene promoter complexes.

Analysis Procedure and Results

We consider three hypotheses: (1) stabilisation in the low mode whereB <
3, (2) stabilisation in the high mode where B > 5, (3) stabilisation in the
high mode where B > 7 ((3) is more focused than (2)). All the hypotheses
are expressed within time horizon 1000 seconds reflecting the time scale of
gene regulation response. We employ two alternative CSL formulations to
express each of the three hypothesis. According to [345], we consider the
parameter space γA ∈ [0.005, 0.5] and γB to be fixed to the default value.

First, we express the property of being inside the given bound during
the time interval I = [500, 1000] using globally operator: (1a) P∼?[GI (B <
3)], (2a) P∼?[GI (B > 5)] and (3a) P∼?[GI (B > 7)]. The interval starts from
500 seconds in order to bridge the initial fluctuation region and let the sys-
tem stabilise. Since the stochastic noise causes molecules to repeatedly es-
cape the requested bound, the resulting probability is significantly lower
than expected. Namely, in cases (2a) and (3a) the resulting probability is
close to 0 for the whole parameter space. Moreover, the selection of an ini-
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tial state has only a negligible impact on the result. Therefore, in Figure 7.9
only the resulting probability for case (1a) and a single selected initial state
is visualised.

State #0 (A=0, B=0, a=0, b=0, aA=0, aB=1, bA=0, bB=1)
State #997 (A=10, B=0, a=1, b=1, aA=0, aB=0, bA=0, bB=0)
State #1004 (A=10, B=1, a=1, b=0, aA=0, aB=0, bA=1, bB=0)
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Figure 7.9: Landscape functions of properties (1a,1b,2b,3b) for γA ∈
[0.005, 0.5] (in s−1) and initial states #0, #997 and #1004. The left Y-axis
scale corresponds to (1a), the right to (1b,2b,3b).

Second, we use a cumulative reward property to capture the fraction
of the time the system has the required number of molecules within the
time interval [0, 1000]: (1b) R∼?[C≤t](B < 3), (2b) R∼?[C≤t](B > 5), (3b)
R∼?[C≤t](B > 7) where t = 1000 and R∼?[C≤t](B ∼ X) denotes that state
reward ρ is defined such that ∀s ∈ S.ρ(s) = 1 iff B ∼ X in s. The result is
visualised for three selected initial states in Figure 7.9.

Figure 7.9 also illustrates inaccuracy of our approach with respect to
the absolute error bound ERR = 0.01 by means of small rectangles depict-
ing approximations of the resulting probabilities and expected rewards.
The analyses predict that the distribution of the low steady mode inter-
feres with the distribution of the high steady mode. It confirms bi-stability
predicted in [345] but in contrast to the deterministic analysis our method
shows how the population of cells distributes around the two stable states.
Results of computations including the number of iterations performed dur-
ing parameterised uniformisation, numbers of resulting subspaces and ex-
ecution times in hours, are presented in Figure 7.10.

Finally, to see how degradation rates of A and B cooperate in affect-
ing property (3b), we explore two-dimensional parameter space (γA, γB) ∈
[0.005, 0.1]× [0.05, 0.1]. The computation also required 4.0 · 106 iterations of
the parameterised uniformisation, the parameter decomposition resulted
in 143 subspaces for ERR = 0.1 and the overall execution took 14 hours.
Figure 7.11 illustrates the computed upper bound of the landscape func-

137



Property # iter. # subsp. time[h]
(1a) 1.2·106 153 9
(2a) 2.0·106 69 5.5
(3a) 2.0·106 66 4.5
(1b) 4.0·106 159 10.5
(2b) 4.0·106 132 8
(3b) 4.0·106 80 5

Figure 7.10: Computation performance results.
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Figure 7.11: Landscape function for property (3b), initial state #0 (A =
0, B = 0, a = 0, b = 0, aA = 0, aB = 1, bA = 0, bB = 1) and two-
dimensional parameter space (γA, γB) ∈ [0.005, 0.1] × [0.05, 0.1] (repre-
sented in s−1 by X and Y axes, respectively). On the left, the upper bound of
the landscape function is illustrated. On the right, the absolute error given
as difference between computed upper and lower bounds is depicted. In
both cases the color scale is used.

tion for initial state #0 and the absolute error. The result predicts antago-
nistic relation between the degradation rates which is in agreement with
the study provided in [345].
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7.4 Sustained vs Transient Modes of Cell Signalling

In this section we employ the CTL-based parameter synthesis methods de-
scribed in Chapter 4 to differentiate models that display or do not display
a particular studied dynamical behaviour expressed in the form of a tem-
poral property. Details on the modelling and analysis provided here have
been published in [210].

7.4.1 Problem Description

Signalling pathways represent one of the most important biochemical
mechanisms studied in current systems biology. In particular, they pro-
vide a complex cellular information processing machinery that evaluates
input stimuli and transfers them into genome by means of regulation of
specific genes expression. A special emphasis is given to distinguishing be-
tween monotonous (sustained) and non-monotonous (transient) time-course
behaviour of signalling pathways [324, 365]. It is believed that transition
between these two modes may cause a significant change of the nominal
cell behaviour leading to serious anomalies of internal cellular processes
control.

7.4.2 Model Encoding

We consider three cBNM models falling to the class of cINMs. These mod-
els describe a general shape of signalling pathways at a high level of ab-
straction. In particular, we focus on three topologies of influence networks
differing in the presence/absence of feedback mechanisms (Figure 7.12).
We use Hill kinetics employing sigmoidal functions to describe the re-
sponse of a signalling component with respect to the input signal (see
equations in Figure 7.12). In particular, our models consist of the species
Λ = {A,R, TP} where R is a receptor, A an adapter, and TP a target
protein. The adapter forms the main dynamical entity of the model. It
is activated by the receptor and inhibited by the target protein. Receptor
concentration is considered constant, hence the positive influence of the
adapter from the side of the receptor is considered as constantly active and
its dynamics is not considered in the model.

We consider three model variants differing in influences of the adapter.
Model 1 reflects the topology with no inhibition (the dashed interaction
is removed and Equation 7.3 is employed). Note that the constant activ-
ity of the receptor influence is reflected by a constant regulation function
(σ1
A(x) = 1). Model 2 describes independent inhibition (the dashed in-

teraction is considered to be superposed with the constant activation of A
by R, reflected in Equation 7.4). In particular, there is a separate regula-
tion function for each of the influences of A. Model 3 describes dependent
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inhibition (the effect of the inhibition is multiplied with the activation by
R, reflected in Equation 7.5) using a regulation function multiplying the
constant activation with the negative influence modelled as a sigmoidal
function (Equation 7.2). In this case, there is a single regulation function
that combines both influences of A. Target protein dynamics is modelled
with a positive regulation function (Equation 7.1) of the adapter in all three
models (Equation 7.6).

joint effect

h(X,KM, n) =
[X]n

KM
n + [X]n

(7.1)

h−(X,KM, n) =
KM

n

KM
n + [X]n

(7.2)

Figure 7.12: Influence networks representing the considered variants of sig-
nalling pathways. Dashed line represents optional inhibition (left). Positive
and negative regulation function employing Hill kinetics (right).

d[A]

dt
= VA − yA[A] (7.3)

d[A]

dt
= VA + VMAX A · h−(TP,KM A, nA)− yA[A] (7.4)

d[A]

dt
= V ′A · h−(TP,KM A, nA)− yA[A] (7.5)

d[TP ]

dt
= VMAX TP · h(A,KM TP , nTP )− yTP [TP ] (7.6)

Parameter V ′A is defined as VA·VMAX A. Default parameters have been set to:
V = V ′A = VMAX A = VMAX TP = 0.001, KM A = KM TP = yA = yTP = 0.1,
nA = nTP = 2. Initial concentrations of all entities have been set to 0:
A(0) = TP (0) = 0.

Parameterisation of the models is set to the production rate coeffi-
cients so that the following coefficients are considered as parameters: VA
in Model 1, VMAX A in Model 2, V

′
A in Model 3 and VMAX TP in all three

models. These parameters are examined in the range [0.0001,10] and other
constants are fixed at default values with the only exception of yA, yTP (set
to 0.5009) and VA in Model 2 (set to 0.001).

7.4.3 Analysis Procedure and Results

In order to prepare the model for model checking analysis, we have per-
formed the steps described in Section 2.4.6. Firstly, the piece-wise affine
approximation (PWMA) of the original non-linear continuous models has
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been constructed by applying the automatised approximation procedure
introduced in [205]. In particular, we have approximated each non-linear
function appearing in the right-hand side of the model equations with a
sum of ten piece-wise affine ramp functions. Secondly, the abstraction pro-
cedure described in Section 2.4.6 has been applied to the PWMA model.
The only extension to the procedure is the addition of a new information
stored with the transitions. In particular, every transition in the abstracted
Kripke structure Kabst is assigned a label representing the index of the
model variable affected by the transition and the corresponding direction
(+,−) in which the change occurs.

Properties are formulated in terms of UCTL formulae (the basic CTL
logic extended with action-label predicates [346]). The usage of branching
time logic is motivated by the fact that the rectangular abstraction produces
a non-deterministic system. Combination of action and state predicates is
necessary to express local patterns of the dynamics (state predicates) and
the character of the transitions (action predicates).

We employ the parameter synthesis based on coloured CTL model
checking extended to deal with UCTL operators. Since we restrict our-
selves to particular operators as needed in the properties of our interest, the
extension is a direct refinement of the algorithm described in Section 4.3.
The UCTL operators employed are the following:

• EX{i−}ϕ requiring existence of at least one state satisfying ϕ to be
reached by a transition that decreases the variable i,

• AX{i+}ϕ, EX{i+}ϕ requiring all states (resp. existence of at least one
state) reached by a transition that increases the variable i to satisfy ϕ,

• AF{¬i−}ϕ, EF{¬i−}ϕ requiring all paths (resp. existence of a path) to
a state satisfying ϕ provided that no transition decreases the value of
variable i — satisfying paths must be non-strictly increasing,

• EF{¬i+}ϕ requiring existence of a path to a state satisfying ϕ on
which the variable i is non-strictly decreasing.

The parameter synthesis procedure gives us a global result saying for
which initial states and respective parameter values the formula is satis-
fied. It is important to note that the over-approximating abstraction affects
interpretation of the parameter synthesis results. On the one hand, satisfac-
tion is guaranteed for universally quantified formulae. On the other hand,
falsification is guaranteed for existentially quantified formulae. Quantifiers
cannot be alternated. In both cases of guaranteed results, the obtained pa-
rameter values are under-approximated.

To express combined characteristics of the two behaviours of TP , we
have employed the following properties in the form of UCTL formulae:
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• ϕ1 = Init ∧AX{TP+}(AF{¬TP−} Stable),

• ϕ2 = Init ∧ EF(EX{TP+}(EF{¬TP−}(EF{¬TP+}(EX{TP−} True)))),

• ϕ3 = Init∧EF(EX{TP+}(EF{¬TP−}(EF{¬TP+}(EX{TP−}NotUp)))),

where Init stands for the set of initial states (with TP constrained in the
range [0.0,0.0001]), NotUp for a state in which the abstracted vector field
forbids an increase in TP concentration, Stable for an equilibrium state
with both species being stable and, finally, True for any state. Intuitively,
property ϕ1 specifies the sustained behaviour and its satisfaction guaran-
tees presence of this behaviour in a given model for given initial states.
Formally, this formula restricts all admissible runs to start in Init and to in-
crease TP concentration in the very next step and not to decrease it before
reaching Stable. The properties ϕ2 and ϕ3 represent necessary conditions
for presence of the transient behaviour (formulae are ordered with respect
to the strength of the particular condition). Both restrict any feasible run to
start in Init and to increase TP concentration at least once on a run before
decreasing it also at least once on a run. The parameterisations violating
these properties guarantee the absence of the transient behaviour. All re-
sults are summarised in Table 7.2.

model type property initial concentration of A V ∗ × VMAX TP

Model 1

ϕ1 [0.22,11.9] [0.11,5.96]×[0.0,6.81]
¬ϕ2 [0.22,12.0] [0.11,10.0]×[7.23,10.0]

¬ϕ3 [0.01,12.0] [0.23,10.0]×[6.26,10.0]
∪[5.96,10.0]×[0.0,10.0]

Model 2

ϕ1 [0.01,11.5] [0.0,5.76]×[0.0,0.01]
¬ϕ2 [0.22,12.0] [2.29,10.0]×[7.23,10.0]

¬ϕ3 [0.0,12.0] [0.09,10.0]×[7.23,10.0]
∪[4.47,10.0]×[0.0,10.0]

Model 3

ϕ1 [0.01,11.5] [0.01,5.76]×[0.0,0.01]
¬ϕ2 [0.22,12.0] [2.31,10.0]×[7.23,10.0]

¬ϕ3 [0.0,12.0] [0.11,10.0]×[7.23,10.0]
∪ [4.49,10.0]×[0.0,10.0]

Table 7.2: The results obtained for given properties in different models.
Initial concentration of A is defined as a union of concentration values in
states where the formula holds for stated parameters. V ∗ is the production
parameter of A that represents VA in Model 1, VMAX A in Model 2, V ′A in
Model 3, respectively. Each parameter interval determines a range of all
satisfying parameter values across all states of the respective model where
the particular property holds.

It is important to note that the abstraction together with UCTL logic al-
low us to exactly characterise the inevitability of the sustained behaviour.
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However, as has been reported in [85], the state predicate Stable is exactly
preserved in the abstraction only if a particular equilibrium that must exist
in the respective state rectangle is hyperbolic. In consequence, we are not
able to fully cover the transient behaviour. More specifically, the transient
behaviour might asymptotically converge to an equilibrium that is asymp-
totically stable. Such a property is not preserved by the abstraction and
therefore we limit ourselves only to refuting absolutely transient behaviour
(transient behaviour without oscillations around the target equilibrium).
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7.5 Robustness of Elemental Signalling Pathways

In this section we present a case study utilising the stochastic robustness
analysis with CSL described in Section 6.3. The study bring new insights
into the mechanism of two-component signalling pathways occuring in
bacteria.

Signalling pathways make the main interface between cells and their
environment. Their main role is to monitor biochemical conditions outside
the cell and to transfer this information into the internal logical circuits
(gene regulation) of the cell. Since signal processing is carried out by sev-
eral dedicated protein complexes (signalling components), it is naturally
amenable to intrinsic noise in these protein populations caused by stochas-
ticity of transcription/translation processes. Robust input-output signal
mapping is crucial for cell functionality. Many models and experimental
studies have been conducted attempting to explain mechanisms of robust
signal processing in prokaryotic cells, e.g., [47, 330].

7.5.1 Model Reconstruction

In order to construct robust signalling circuits in synthetically modified
prokaryotic cells, Steuer et al. [338] has suggested and analysed a modi-
fication of a well-studied two-component signalling pathway that is insen-
sitive to signalling components concentration fluctuations. The study was
conducted using a simplified model consisting of the two signalling com-
ponents each considered in both phosphorylated and unphosphorylated
forms. The first component, the histidine kinase H , is a membrane-bound
receptor phosphorylated by an external signalling ligand S. In its phospho-
rylated form Hp, the histidine kinase transfers the phospho-group onto the
second component – the response regulator R. That way it activates the
response regulator by transforming it into the phosphorylated form Rp,
which is diffusible and functions as the internal signal for the cell. The ba-
sic topology of the pathway is depicted in Figure 7.13A. The modification
suggested by Steuer et al. is depicted in Figure 7.13B. The difference is in
the addition of catalytic activation ofRp dephosphorylation by the unphos-
phorylated histidine kinase H . In [338] it has been rigorously proven that
under the deterministic setting this modification leads to globally robust
steady-state response of the signalling pathway, which is not achievable
with the basic topology.

We reformulate the model in the stochastic setting (in terms of a
sCRNM) and employ the stochastic robustness analysis method described
in Section 6.3 to provide detailed analysis of the input-output signal re-
sponse under fluctuations in population of both signalling components. In
contrast to [338], where the average steady-state population is analysed
with respect to fluctuations in signalling components, our analysis refines
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the steady population in terms of distributions. That way we obtain for a
stable input signal a detailed view of distribution of the output response.
In particular, instead of studying the effect of perturbations on the average
population, we see how perturbations affect the distribution, i.e., the vari-
ance (fluctuation) in the output response. That way the stochastic frame-
work gives a more detailed insight into the input-output signal response
mechanism.

The biochemical model of both topology variants is given in Fig-
ure 7.13C. The input signal S is considered to be fixed and therefore it
makes a constant parameter of the model. The signalling components in
both phosphorylated and unphosphorylated forms make the model vari-
ables H, Hp, R, and Rp.

7.5.2 Problem Description

Depending on which topology is chosen, the original deterministic
model [338] exhibits different relationships between the steady-state con-
centrations of the input signal S and the output signal Rp:

Rp steady-state in model 1 Rp steady-state in model 2

[Rp] =
k1

k31
[S][H] [Rp] =

k1

k32
[S]

In particular, it can be seen that the steady-state concentration of the
output signal [Rp] in model 1 is affected not only by the input signal S but
also by the number of unphosphorylated receptors H , which can be inter-
preted in such a way that the concentration of the signalling components
should be kept stable in order to obtain a robust output. This is, however,
not an issue in model 2 whereRp depends only on S. Since the steady-state
analysis has been carried out under the deterministic setting additionally
imposing assumptions of conserved total amounts of H + Hp and R + Rp, it
is appropriate only for high molecular populations.

The question we want to answer is “Is there a difference in the way the
two models handle noise (fluctuations) for low molecular numbers of signalling
components?” In such conditions, populations of H + Hp and R + Rp cannot
be considered conserved, since the proteins are subject to degradation and
production. Production of proteins from genes, as well as degradation,
is inherently noisy as demonstrated in the previous case study. Different
levels of noise can be affected by, e.g., regulatory feedback loops or varying
numbers of gene copies. Even for a noiseless output signal S these internal
fluctuations of protein concentrations transfer noise to Rp.
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General signal transmission reactions

H + S          Hp + S
k1 k1 = 0.1

Hp + R         H + Rp
k2 k2 = 0.1

Basic topology (model 1) Modified topology (model 2)
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k31 R k31 = 1.0 Rp + H        R + H

k32 k32 = 15.0

Signalling components degradation

H
kd Ø Hp kd = 0.01

R
kd Rp

Signalling components synthesis

R H

Ø

kd Ø
kd Ø kd = 0.01

kp = 0.3kpØ
kpØ

R

HpH

Rp

R

HpH

C

B

A

Rp

Figure 7.13: Model of a two-component signalling pathway. (A) Basic
topology of the two-component signalling pathway. (B) Modified topol-
ogy of the two-component signalling pathway, additionally, histidine ki-
nase H catalyses dephosporylation of the response regulator R. (C) Reac-
tions specifying the biochemical model of the two considered topologies of
the two-component signalling pathway.
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7.5.3 Post-Processing Functions

To analyse the robustness of signal response, we need to characterise the
level of noise (fluctuations) observed on the component Rp in a given time.
This can be achieved by computing the mean quadratic deviation of the dis-
tribution of Rp in time.

Standard reward operators do not allow to additionally process the
result during the transient analysis. For the purpose of computing the
mean quadratic deviation of the distribution of Rp in time, such a proce-
dure is needed. To that end, we extend CSL with an operator of so-called
post-processing functions denoted E=?[It] and defined over probability den-
sity vectors πC,X0,t. For the mean quadratic deviation of noise the post-
processing function is denoted Post(π) and defined as Post(πC,X0,t) =∑

X∈X |#(A)−mean(πC,X0,t, A)|2 · πC,X0,t(X) where #(A) gives the pop-
ulation of species A in state X and mean(πC,X0,t, A) is the mean of the dis-
tribution πC,X0,t defined as mean(πC,X0,t, A) =

∑
X∈X #(A) · πC,X0,t(X).

The formula E=?[It] stands for “The mean quadratic deviation of the distri-
bution of species A at time instant t.”

7.5.4 Analysis Procedure and Results

For the model to have low numbers of molecules exhibiting stochastic fluc-
tuations and to enable responses to varying levels of S, we have chosen
kp = 0.3 molecules·s−1 and kd = 0.01 s−1, which leads to an average to-
tal population of 30 molecules for both H + Hp and R + Rp. To make
the analysis straightforward we assume the same speed of degradation of
phosphorylated and unphosphorylated variants of each protein.

To reduce the size of the state space we have truncated total populations
to 25 ≤ H+Hp ≤ 35 and 25 ≤ R+Rp ≤ 35, which leads to 116281 states in
total. The initial state is considered with populations s0 = (H = 30, Hp =
0, R = 30, Rp = 0).

Modelling Noise in Signalling Components

In order to control fluctuations in protein production we extend our model
with two populations of genes, one for H and one for R, respectively, and
for each of the genes we introduce an autoregulatory negative feedback
loop via binding the proteins to their corresponding genes. That way we
restrict the protein production. By modifying the number of gene copies
in the cell and the rate of protein-gene binding, we are able to regulate the
overall noise in the transcription. This approach, however, significantly
increases the state space size because it introduces new variables repre-
senting genes and protein-gene complexes. To make the analysis feasible,
we abstract from details of the underlying autoregulatory mechanism and
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model it using a sigmoid production function, which mimics the desired
behaviour accordingly. Using numerical analysis, we have verified that
such an approximation can be employed in the stochastic framework. The
function is defined in the following way:

∅ sig(kp,n)−→ X sig(kp, n) =
2

1 +
(
X
30

)n · kp
where n is the so-called Hill coefficient controlling the steepness of the sig-
moid (caused by cooperativity of transcription factors in protein-gene in-
teractions) and kP is the maximal production rate. We use this approach for
modelling the production of both species H and R by sigmoid coefficients
denoted nH and nR, respectively. The sigmoid function regulates the pop-
ulation by enabling production when it is below average and repressing it
when the population is above the average. Larger n is leads to steeper sig-
moid functions, which leads to stronger regulation and lower noise. The
case n = 0 corresponds to an unregulated model and when increased to
n = 20 it corresponds to over 10 copies of each gene in the fully modelled
feedback loop mechanism.

Transient Analysis of Noise in Signalling Components

To see the long-term effects of intrinsic noise we decided to examine the
system in the situation when the output response is stabilised. Since the
min-max approximation method cannot be employed with steady-state
computation, transient analysis in a suitable time horizon has been per-
formed instead. To estimate the closest time t when the system’s behaviour
can be observed as stable, we have computed values of output response
noise for the unregulated variant of the model (n = 0) using standard nu-
merical steady state analysis (we employed the tool PRISM [261]) and com-
pare it to probability distributions obtained by transient analysis in t = 20,
t = 50 and t = 100 seconds. Consequently, we have compared the prob-
ability distribution in the steady state with the probability distribution in
t = 100 seconds. The results clearly show that the difference in distribu-
tions is negligible and the transient distribution can be considered stable
after t = 100.

To further speed up the computation, we have precomputed the dis-
tribution of H and R in the time horizon t = 100 without enabling phos-
phorylation reactions. This has led to a significant reduction to 121 states.
Starting with the achieved probability distribution, we have subsequently
computed the transient analysis with enabled phosphorylation reactions
in the next 5 seconds. The rationale behind is that the protein production
and degradation are two orders of magnitude slower than phosphoryla-
tion. Therefore, the total populations of H and R dictate the time at which
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the system is nearly stable and thus the next 5 seconds are sufficient for the
fast-scale phosphorylation to stabilise the fractions H

Hp and R
Rp .

To compute the noise (variance) in Rp we employ the mean quadratic de-
viation post-processing function for state space distributions. Our goal is to
compare the levels ofRp noise in both models for different levels of the out-
put signal S and for different values of intrinsic noise appearing in protein
production (controlled by sigmoid coefficients nH and nR). After comput-
ing lower and upper bounds of the state space distributions, we have com-
puted the lower and upper bounds of the post-processing function using
the parameterised uniformisation algorithm discussed in Chapter 5. Con-
sequently, we obtain robustness values for the output response Rp over the
respective perturbation subspaces in the form average ± error. Finally, we
define the perturbation space of the interest. In particular, for the signal
we choose the value interval S ∈ [2.0, 20.0] and for sigmoid coefficients
nH , nR ∈ [0.1, 10.0].

Since the full computation over the 3-dimensional perturbation space
has turned out to be intractable, we have to find a way to reduce its di-
mension. To this end, we focus on a subspace S = 15.0, (nH , nR) ∈
[3.0, 4.0] × [3.0, 4.0] where both models have symmetric sensitivity to both
sigmoid production coefficients nH , nR. This symmetry allows us to merge
nH , nR into a single coefficient n. Results of this experiment are visualised
in Figure 7.14, where it can be seen that in Model 1 the influence of nH and
nR is almost perfectly symmetrical with nH being slightly more influential.
In Model 2 the influence is evidently stronger in nR but the response seems
to be symmetrical enough to justify the sigmoid coefficients merging. An
interesting property of the parameterised uniformisation and the perturba-
tion space decomposition algorithm can be seen in Figure 7.14, where the
decomposition of the perturbation spaces around both sigmoid coefficients
set to 3.1 is very dense. This is due to the non-linearity of the sigmoid
production functions, which leads to the non-monotonicity of probability
inflow/outflow differences in states during parameterised uniformisation.
In order to preserve the conservativeness of estimates we have to locally
over/under approximate these inflow/outflow rates thus gaining an in-
crease of error. To obtain the desired level of accuracy, we dynamically
refine all those subspaces where this has occurred.

Response of Noise to Different Signal Levels

Finally, we inspect selected subintervals of the perturbation space given by
five exclusive intervals of the input signal value domain, S ∈ [2, 3]∪ [6, 7]∪
[10, 11]∪ [14, 15]∪ [19, 20], and three distinct levels of production noise rep-
resented by sigmoid coefficient n ∈ {0.1, 4.0, 10.0}. The results of this main
experiment can be seen in Figure 7.15 and Figure 7.16. The trends that can
be seen in Figure 7.15 are that for lower signals up to S = 10. Model 2 has
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Model 1: Rp noise w.r.t nH and nR, S = 15
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Model 2: Rp noise w.r.t nH and nR, S = 15
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Figure 7.14: Influence of genetic regulation on noise in model 1 and 2. In the
upper part, the Rp noise in model 1 is displayed over perturbations of both
sigmoid production constants nH and nR in [3.0, 4.0] × [3.0, 4.0]. The up-
per and lower bounds on noise (mean quadratic deviation of the resulting
probability distribution projected onto populations of Rp) are recomputed
into the form average ± error, the average values are shown on the left and
errors are shown on the right. In the lower part, the Rp noise in model 2 is
displayed.
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Figure 7.15: Comparison of models by Rp noise robustness. Robustness Rp
noise in both models has been computed with respect to perturbations of
signal S over five selected intervals of the input signal.

encountered lower noise inRp than Model 1 but in the higher signal region
it is outperformed by Model 1, which quickly converges to values between
8 and 10. However, Rp noise produced in Model 2 linearly increases with
increasing value of the input signal S. For most of the inspected subspaces
a stronger regulation of H and R production by the sigmoid coefficient n
leads to a reduction of Rp noise. An exception to this observation can be
seen in Model 2 at the signal interval [19.0, 20.0] where this trend is in-
verted. To show that this is an emergent behaviour arising from non-trivial
interaction between phosphorylation and dephosphorylation reactions not
present in the production and degradation of components H and R, their
respective influences are displayed in Figure 7.16. There we can see that
in Model 1 both H and R follow an initial increase of noise with increas-
ing S but then the noise stabilises. This leads us to a hypothesis that the
regulation of noise in signalling components dynamics loses its influence
as signal S increases. This is however due to the fact that more S leads to
faster phosphorylation ofH , which effectively reduces the population ofH
thus also reducing its absolute noise. In the case of Model 2 the situation
is different since we can observe a permanent increase of noise in both H
and R populations.

7.5.5 Performance

The parameter space decomposition procedure has iterated through sev-
eral thousands of perturbation subsets that where required to achieve rea-
sonable precision. In order to speedup the computation we analysed the
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Figure 7.16: Noise in populations or H and R in both models Noise in H
(A) and R (B) in both models is displayed with respect to perturbations of
signal S over five selected intervals and for three distinct levels of inherent
production noise.
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subsets in parallel using a high-performance multi-core workstation were
the analysis took several hours.

To further improve the accuracy of the robustness analysis without
decreasing the performance, piece-wise linear approximation can be em-
ployed. It is computed by linearly interpolating the grid points in which
the upper and lower bounds of the evaluation function may be computed
more precisely as the minimum resp. maximum of the values from all pa-
rameter subintervals sharing boundary grid points. It allows us to obtain
more precise results without increasing the number of perturbation sets,
yet it does not guarantee conservative error bounds.
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7.6 Robustness of Population Dynamics

By employing the Parasim tool discussed in Section 6.4 we have conducted
two case studies on two basic population dynamics models. The experi-
ments have also served us to evaluate the method presented in Section 6.2
(in the setting of the Parasim tool).

7.6.1 SIR Model

First, we demonstrate the robustness analysis on the model simulating an
outbreak of an infectious disease in a population [236]. The simulated pop-
ulation is divided into three categories: susceptible (S), infected (I) and re-
covered (R). A susceptible individual can become infected by contact with
another infected individual and an infected individual may recover. The
considered variant of a SIR model is represented as a CRN in the following
way:

S + I
α→ I

I
β→ R

where α is the contact rate parameter which correlates to probability of dis-
ease transmission, while β, the recovery rate parameter, takes into account
the standard length of recovery. The corresponding parameterised cRNM
is given by means of the following system of differential equations:

dS

dt
= −αSI dI

dt
= αSI − βI dR

dt
= βI

A typical simulation of this model (see Figure 7.17a) includes a rapid in-
crease in infected individuals, which is then followed by their gradual re-
covery.

In this case study, we compare robustness analysis based on a formula
containing value-freezing with respect to a freezing-free formula analysis
exploiting a similar behavioural pattern. In particular, we consider the fol-
lowing formulae:

STL : ϕ1 = F[1,5](I ≥ 50) STL* : ϕ2 = F[1,5]

(
I ≥ 50 ∧ ∗G[0.25,5](I

∗ ≥ I)
)

Both formulae require the number of infected individuals to be greater than
50 at some time in the interval [1, 5], while ϕ2 also requires this number to
be the local maximum (the number of infected individuals is required to
decrease after reaching this maximum).

The robustness with respect to both properties was analysed on per-
turbations of both contact rate and recovery rate. Results are presented in
Figure 7.18.
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Figure 7.17: (a) Typical development of SIR model, showing the num-
ber of susceptible (green), infected (red) and recovered (blue) individuals.
(b) Typical development of populations in predator-prey model, showing
number of prey (green) and predator (red).

While the satisfaction sets of ϕ1 and ϕ2 (delineated by positive robust-
ness) are essentially identical, the actual robustness values show a signifi-
cant difference. Generally, when they are positive, the value of robustness
with respect to ϕ1 at given point is considerably greater than the corre-
sponding value of robustness with respect to ϕ2. In Figure 7.18, this can be
seen as lighter shade of green points in Figure 7.18b. Also, lower robustness
causes the apparent increase in the number of points.

The reason for the rapid change in robustness comes from evaluation of
the subformula ∗G[0.25,5](I

∗ ≥ I) that describes the local extreme. When
evaluated in time t, robustness is proportional to the difference (I[t]− I[t+
0.25]) (by Definition 6.1). In practise, the difference is small provided that
the descent of I is not extremely steep. This causes such formulae to have
typically low robustness values on common signals.

7.6.2 Predator-Prey Model

In the second case study we analyse the predator-prey model [272, 360],
which attains oscillating behaviour for a wide variety of parameters. We
use a variant of the Lotka-Volterra model represented as a CRN in the fol-
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(a) Robustness wrt ϕ1.
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(b) Robustness wrt ϕ2.

Figure 7.18: Robustness of SIR model with respect to ϕ1 and ϕ2 for variable
contact and recovery rates. Robustness was positive in green points and
negative in orange points. Darker colour represents greater absolute value
of robustness.

lowing way:

X
ν→ 2X

X + Y
α→ Y

Y
γ→

The semantics of the respective cCRNM is represented by the following
ordinary differential equations:

dX

dt
= νX − αXY dY

dt
= αXY − γY

The model simulates a situation where a prey species X is hunted by
a predator species Y with the simplifying assumption that predator birth
rate and prey death rate are equal and proportional to the probability of
prey and predator contact, and thus to the product of both species popula-
tions. We use the following coefficients: prey natality (ν), predator mortal-
ity (γ) and predation rate (α). Typical behaviour of this models constitutes
periodic oscillations (see Figure 7.17b).

We consider perturbation of two aforementioned coefficients, ν and α,
and compute robustness with respect to two properties specified by the
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following formulae:

ψ1 = G[0,300] ∗F[0,100] (X ≥ Y ∗)
ψ2 = G[0,300]((X ≥ 1 ∧ Y ≥ 1 ∧ F[0,50] ∗(F[0,75](X

∗ −X ≥ 25)

∧ F[0,75](X −X∗ ≥ 25))))

The property ψ1 requires that for each time point t ∈ [0, 300], there is a sub-
sequent time point t′ ∈ [t, t + 100] such that population of prey in t′ is
greater than population of predators in t. According to Definition 6.1 its
corresponding robustness can be expressed as follows:

ρ(ϕ, x) = min
t∈[0,300]

max
t′∈[t,t+100]

X[t′]− Y [t]

2

where X[t′] and Y [t] denote values of s associated with given species at
given time. The robustness value is maximized with respect to t′ and min-
imized with respect to t, therefore, it uses maximal values of both X and
Y . Consequently, this property can be interpreted as maximum population
of prey being greater then maximum population of predators (restricted to
given intervals).

Formula ψ2 is based on the similar principle. While rejecting aberrant
behaviour where population of one of the species drops below one indi-
vidual, intuitively, it requires that there always is time in the future when
population of prey can increase or decrease by 25 individuals, which is
stated by the following subformula:

F[0,50] ∗
(
F[0,75] (X∗ −X ≥ 25) ∧ F[0,75] (X −X∗ ≥ 25)

)
.

Therefore, ψ is satisfied when the difference between maximal and min-
imal prey population is greater than 50 and the associated robustness is
proportional to this difference. Again, we have avoided use of the extreme
property, which would adversely affect robustness value.

Results of this analysis are presented in Figure 7.19. Here, we should
point out that small prey natality produced behaviour where predator pop-
ulation approached zero and period of oscillations was greatly increased.
For such behaviour, intervals used in ψ1 and ψ2 were shorter than one pe-
riod.

Apparently, satisfaction of ψ1 is not affected by predation rate. More in-
terestingly, when prey natality increases, predator population exceeds that
of prey (see Figure 7.19 (top)). Figure 7.19 (bottom) shows that amplitude of
prey population oscillation is affected by both prey natality and predation
rate.

7.6.3 Performance

Performance of robustness analysis is summarized in Table 7.3. All results
have been obtained by executing the algorithm implementation on a 4 core
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Figure 7.19: Robustness of predator-prey model with respect to ψ1 (up)
and ψ2 (bottom) for variable prey natality and predation rate. Robustness
was positive in green points and negative in orange points. Darker colour
represents greater absolute value of robustness.

2 GHz CPU with 4 GB RAM. Each computation has been arranged into 8
threads. For each analysis we have set an optimal resolution of the trajec-
tories (number of simulated points). The number of simulated trajectories
has been bounded by the number of refinement iterations in the Parasim
parameter space sampling procedure.

It is worth noting that all analysed properties consist only of ∗F and
∗G operators for which the procedure is optimized by employing Lemire
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queues in the same way as proposed in [149]. This is based on an optimal
streaming algorithm for computing maxima (resp. minima) of a numerical
sequence and allows to reduce the quadratic complexity wrt formula size
to linear.

Property (model) formula size # signals # points per a signal time
ϕ1 (SIR) 2 250 500 8.6 s
ϕ2 (SIR) 6 1365 1000 15.2 s

ψ1 (Predator-Prey) 4 831 400 85.4 s
ψ2 (Predator-Prey) 12 1293 423 309.4 s

Table 7.3: Performance of the robustness computation measured on the pro-
totype implementation.

The increase in computation time in the case of ψ1 is caused by longer
time intervals quantifying the temporal operators. Computation of the
property ψ2 has been slowed down due to insufficient memory.

7.7 Publications Summary

The case study presented in Section 7.2 has been published in [139]. The
work has been initiated by Jiřı́ Damborský (Faculty of Science, MU) and it
makes a part of a larger synthetic biology project on which I have worked
with a doctoral student Martin Demko. My contribution to the presented
part of the work is in setting up the problem, formalising the workflow
employing the parameter synthesis technology, adapting the techniques to
the concrete problem, and assisting in individual steps of the underlying in
silico experiments.

The problem studied in Section 7.3 has provided a continuous case
study we have used for calibration of our techniques. The CTL-based re-
sults have been published in [82] (independent parameters) and [56] (de-
pendent parameters). The CSL-based analysis has been published in [89].
My contribution is in setting up the problem, formalising the workflow
employing the parameter synthesis/exploration technology, adapting the
concrete problem to the technical framework, and guiding individual tasks
of the conducted experiments.

The study presented in Section 7.4 has been published in [210]. The
work makes a part of a larger systems biology project lead by Pavel Krejčı́
(Faculty of Medicine, MU) on which I have worked with a doctoral student
Matej Hajnal. My contribution to the presented part of the work is in setting
up the computational modelling problem, adapting the existing workflow
to the settings of UCTL, and assisting in individual steps of the underlying
in silico experiments.
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The robustness analysis case study presented in Section 7.5 has been
motivated by discussions with Ralf Steuer (Humboldt University Berlin)
during the joint work on the CyanoTeam project. The work on the individ-
ual analysis tasks and results visualisation has been realised in collabora-
tion with Milan Češka and Sven Dražan. My contribution is in setting up
the problem, adapting the models to the settings of the used techniques,
guiding individual steps of the underlying experiments, and interpreting
the achieved results.

The analysis of population models described in Section 7.6 has been
published in [90]. The work has been realised in collaboration with my
master-level student Tomáš Vejpustek. My contribution is in setting up the
problem and guiding individual steps of the underlying workflow.

7.8 Discussion

Most of the case studies are focused to application of a single selected tech-
nique targeting the nature of the model employed. However, the case
study of G1/S cell cycle transition (Section 7.3) shows a combination of
techniques. This can be done due to the fact that the model structure is
formulated by means of a CRN and therefore the two different semantics
provided by a cCRNM and a sCRNM can be both used. It can be seen that
the stochastic model analysis gives refined insight into the dynamics that
capture the modelled decision at the level of an individual cell. This fea-
ture is not captured in the deterministic continuous model. However, the
resulting behaviour of the transient distribution is in agreement with the
deterministic settings. Additionally, it can be seen that the computational
demands are much more on the side of the parameterised uniformisation
in spite of the manual reductions performed on the model.

In general, the parameterised uniformisation method is much more de-
manding than the coloured model checking procedure. This is due to the
fact the problem is enormously more complex in the amount of quantita-
tive information that needs to be processed while meeting a required level
of precision.

Both methods – the coloured model checking as well as parameterised
uniformisation – require a non-trivial amount of work provided by the user
manually. This is easily seen namely in the case studies provided on larger
models where several model reduction steps had to be done.

Additionally, the CMC employed for the metabolic network in Sec-
tion 7.2 has shown a disadvantage of not supporting observable external
variables, the so-called assignments, that aggregate the values captured in
a current state. This feature would allow direct modelling of (and reason-
ing about) the metabolic burden. In the case of parameterised uniformi-
sation the power of bounded-time fragment CSL has been extended with
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Case Study Model Logic Problem # param Time
Lotka-Volterra cCRNM STL* robustness 2 8-13 s (m-c)

SIR cCRNM STL* robustness 2 2-5 min (m-c)
Sus/Trans Sig. cINM UCTL synthesis 2 < 5 min (m-c)

G1/S cRINM CTL synthesis 2 < 8 min (m-c)
TCP-biodeg. cRINM ACTL synthesis 3 < 2 hrs (m-c)

G1/S sCRNM CSL exploration 2 4-8 hrs
elem. sig. sCRNM CSL+pp robustness 2 < 10 hrs

Table 7.4: Performance summary of the individual case studies. The times
denoted ’m-c’ were achieved with implementations utilising multi-core
computing. They reflect optimal settings of the parallelisation. CSL+pp
denotes usage of CSL with post-processing functions. The numbers of pa-
rameters show the maximal numbers of unknown parameters considered
in a single experiment.

the utility of post-processing functions. They seem to be very important
for such kind of analysis since they support the possibility of aggregating
and observing the information captured in states that was missing in the
metabolic pathway case study.

The robustness analysis of population models described in Section 7.6
has the purpose of demonstrating the features of the method rather than in-
ferring new insights at the level of population modelling. It can be seen that
a region separating the satisfying parameter valuations from unsatisfying
ones has been identified in both population models. This method did not
require any significant intervention from the side of the user. However, the
models are small in size and they do not incorporate significantly different
time-scales for which numerical simulation might become challenging.

Performance summary where the individual case studies are ordered
by the computation times is shown in Table 7.4. Time intervals cover the
minimal and maximal times achieved during particular experiments with
a given model (e.g., varying the analysed formula).

Finally, it is important to mention that the presented experiments do not
cover usage of LTL-based methods. Several examples using the algorithms
presented in Section 4.2 are described in [244] (for dINMs) and in [33] (for
cRINMs and dINMs). The models considered there are comparable in com-
plexity and size to models presented in this chapter. In particular, in [33]
we have analysed the bistability of G1/S model by using LTL formulae. It
is apparent that the analysis of bistability with CTL as presented in Sec-
tion 7.3 gives more precise results due to the fact that branching-time op-
erators and state-based approach can capture the bistability phenomena
quite well. This cannot be achieved with the path-centric view of LTL. The
computation times achieved with LTL are comparable to the case of CTL.
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Conclusion

A concrete summary and a discussion of possible future work have been
included into every chapter of the previous text. In this section, however,
we briefly summarise the contents of the work once again and we also sum
up and generalise the possible directions for future research.

7.9 Summary

In this thesis, we have addressed the problems of parameter synthesis and
robustness analysis from the perspective of methods based on temporal
logics. The models that have been considered throughout the thesis make
a selection that reflects well the current standards used in systems biology.

First, we have considered several variants of continuous-time determin-
istic models used to model biological phenomena at the macroscopic level
where the average behaviour of the population of species (concentration of
molecules) is considered as representative. Regarding the parameter syn-
thesis, the first group of techniques we have provided for these models
works at the level of a finite discrete abstraction of the continuous dynam-
ics. The quality of the results obtained thus depends on the quality of the
abstraction. At this place, the particular shape of the model can also affect
the extent of spurious results caused by the abstraction. However, regard-
less the quality of abstraction, the method is suitable for global parameter
synthesis as it allows to capture compactly the continuum of parameter
values and to provide guaranteed results for synthesised sets at the level
of piece-wise multi-affine representations of the continuous models. How-
ever, due to the highly over-approximating characteristics of the abstrac-
tion we have not found the abstraction practicable to be used as a based for
robustness analysis.

To address the problem of robustness for cBNMs, we have exploited the
method of analytical evaluation of the robustness measure on finitely sam-
pled bounded signals obtained for example by numerical simulation. Our
method employs the value-freezing extension of signal temporal logic thus
lifting the utility of robustness analysis to complex phenomena that cannot
be formulated in the plain version of the logic. An important example of
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such properties are various forms of oscillation that are very relevant in the
settings of biological models. These results have a significant impact in the
general field of cyber-physical systems and run-time verification.

Second, we have addressed continuous-time stochastic models that pro-
vide a detailed (mesoscopic) view of the molecular dynamics. In fact, the
models at this level of abstraction fit well into the general framework of
time-homogeneous continuous-time Markov processes. Being motivated
by the inverse problem in biology in the context of these models, we have
introduced a novel general method that is applicable to continuous-time
Markov chains with parameterised transition rates. The method works
with a limited fragment of the expressive continuous stochastic logic that
suffices for typical cases of studying a given mechanism in such a detailed
level. The quantitative nature of stochastic models providing probability
as a well-defined measure has lead us to extend the method to robust-
ness analysis of stochastic systems. Our implementation of robustness uses
probability as the measure of systems performance quantifying a given
analysed functionality.

Third, our method of parameter synthesis works well with discrete
models of influence networks. Although in this thesis the main focus has
been put to quantitative models, our work has shown that the technique
of coloured model checking is highly-relevant for Boolean networks and
other models fitting the framework of dINMs. These models are typically
employed to reveal properties of interwoven non-linear interactions at a
large-scale level. The challenge is thus to develop methods scalable for
large models consisting of hundreds or thousands of species (e.g., E. coli
consists of approximately 4500 different genes).

7.10 Future Work

Optimisation of Existing Techniques

An important task for future work is to improve the methods from two
main perspectives. The first aspect is the functionality that has to give
precise results or approximate results supplied with a numerically char-
acterised error. The second aspect is the need to address the challenge of
applicability of the methods in settings of large-scale models.

The first issue targets especially the framework of cBNMs where the
quality of the obtained results strongly depends on settings of the ap-
proximation/abstraction method. The methods work quite well in cases
of untimed analysis of restricted classes of systems that are very close
to piece-wise multi-affine dynamics. However, models with complicated
non-linear dynamics with multidimensional regulation functions can be
highly distorted by using the concept of PWMA approximation. More-
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over, the abstraction method applied to the PWMA does not work well for
liveness properties such as oscillations where the abstracted (and highly-
overapproximated) timing aspects play a crucial role.

The issue of applicability to large-scale problems addresses the entire
spectrum of considered model classes. In the case of cBNMs, the need for
explicit representation of the rectangular abstraction limits the applicabil-
ity to larger models. To that end, techniques combining global abstraction
methods with (relatively scalable) methods over-approximating the local
behaviour (flow-pipes [109, 25]) can be potentially investigated for that
purpose. Moreover, the methods of δ-decision algorithms [187, 157] that
have been significantly improved very recently, have also a good potential
to be combined with global model abstraction techniques.

The method of parameterised uniformisation follows the typical prob-
lems of formal analysis of continuous-time stochastic models regarding
the scalability. This is a serious issue even in the non-parametric case.
Although several improvements to the parameter uniformisation method
have been introduced in the follow-up work [103] including its parallelisa-
tion [234], the method can be practically applied only for CTMCs with rela-
tively low-dimensional spaces of unknown parameters with limited num-
bers of states. Combining the method with hybridisation and moment-
closure methods addressed in Section 5.7 makes a research direction that
has yet to be investigated.

A promising method to address the large-scale challenge for dINMs
is static analysis. An important feature of static analysis is the ability to
characterise behaviour of a complex network model just by looking into
the network structure. We have already exploited several preliminary sce-
narios of static analysis that work well for reachability analysis of parame-
terised dINMs [248]. However, the challenge is to combine static analysis
techniques with (coloured) model checking in order to bring better scalabil-
ity to parameter synthesis methods by using the knowledge obtained from
network structure.

Filling Existing Gaps

Several gaps remain regarding parameter synthesis and robustness analy-
sis of models fitting in the modelling framework considered in this thesis.
First, we have not exploited yet the LTL coloured model checking method
with the SMT-encoded parameter sets. In spite of the fact that the method
scales significantly better with interval-based encoding (as shown in Sec-
tion 7.3.3), it is a valuable exercise to see how the explicit-state/symbolic-
parameters representation method works with LTL. Second, the method of
robustness analysis has not yet been considered in the settings of discrete
abstraction of cBNMs. However, assuming there exists a quantitative mea-
sure of the error introduced during the approximation step, it would be in-
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teresting to incorporate such quantity into the systems states and paths and
allow quantitative interpretation of temporal logics on discrete abstractions
up-to the given error. Third, in spite of the powerful utility of symbolic
model checking, it seems valuable to bring the CTL-based coloured model
checking technique to dINMs. Especially this is promising in combination
with the static analysis methods discussed above.

Another aspect to be considered for future work is an extension of the
entire parameter synthesis framework to the settings of hybrid logics and
algorithms utilising analysis of attractors in terms of strongly connected
components. These techniques seem to be highly relevant for improving
the methods of digital bifurcation analysis already targeted from the per-
spective of CTL-based model checking and discrete abstractions of cBNMs
in [58]. These methods need to be brought into the settings of dINMs and
even cRNMs where they are not yet established at all.

Software Development and Methods Applications

Finally, there is a lot of improvement to be done on the side of prototype
implementations of the discussed techniques. A challenge is to create a
unified framework for all the model classes discussed in this thesis. The
ability to automatically transfer from high-level models such as dINMs to
the quantitative setting of cINMs is an example of model refinement that is
highly relevant in synthetic biology and molecular programming. Methods
allowing that are extensively studied in other research.

A valuable feedback for software development comes from applications
of the techniques in systems biology workflows. A grand challenge is to de-
ploy the developed software to the online comprehensive modelling plat-
form currently developed for cyanobacteria models [245, 353].

From the case studies presented in Chapter 7 it becomes evident that in
most cases the methods and tools could not be performed fully automati-
cally without any intervention from the user. For example, the approxima-
tion/abstraction procedures of cBNMs have to be fine-tuned to allow good
and correct approximation of the original model. Another example can be
seen in Sections 7.3.3 and 7.5 where manual reductions and simplifications
of the models were needed in order to allow tractability of the algorithms.
Development of methods that in some cases will allow to (semi-)automa-
tise such model reduction tasks will contribute to getting back to the basic
philosophy behind model checking – a push-button technology working
without the need of manual tasks requiring detailed knowledge of the un-
derlying technology.
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D. Šafránek, and H. Ma. BioDiVinE: A Framework for Parallel Anal-
ysis of Biological Models. In Computational Models for Cell Processes
(COMPMOD), volume 6 of Electronic Proceedings in Theoretical Com-
puter Science, pages 31–45, 2009.

[36] J. Barnat, L. Brim, I. Černá, P. Moravec, P. Ročkai, and P. Šimeček.
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A parallel tool for parameter synthesis of piecewise multi-affine dy-
namical systems. In Computer Aided Verification (CAV 2017), pages
591–598. Springer, 2017.
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ysis of Stochastic Biochemical Systems by Probabilistic Model Check-
ing. ArXiv e-prints, 2013.

173
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[100] L. Cardelli, M. Češka, M. Fränzle, M. Kwiatkowska, L. Laurenti,
N. Paoletti, and M. Whitby. Syntax-Guided Optimal Synthesis for Chem-
ical Reaction Networks, pages 375–395. Springer, 2017.

[101] R. Carter and E. M. Navarro-López. Dynamically-driven timed au-
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[146] A. Donzé, G. Clermont, and C. Langmead. Parameter synthesis in
nonlinear dynamical systems: Application to systems biology. Jour-
nal of Computational Biology, 17(3):325–336, 2010.
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[359] M. Češka, D. Šafránek, S. Dražan, and L. Brim. Robustness analysis
of stochastic biochemical systems. PLoS ONE, 9(4):1–23, 2014.

[360] V. Volterra. Fluctuations in the abundance of a species considered
mathematically. Nature, 118:558–560, 1926.
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