
Image Processing in Fluorescence
Microscopy and its Utilization in Cell

Biology Experiments

Habilitation thesis
(Collection of articles)

Pavel Matula
Centre for Biomedical Image Analysis

Faculty of informatics, Masaryk university

Brno April 12, 2012





Abstract

Digital image processing is an indispensable part of modern microscopic
methods. The microscope image is recorded and computer-processed. Com-
puters are used not only for control of data acquisition, but also for visual-
ization and information retrieval from image data. Many tasks demand the
automation of the whole process and the processing of large amount of data.

This work is devoted to digital image processing in fluorescence mi-
croscopy and its use in cell biological experiments. The work is conceived
as a collection of 26 scientific articles divided into four groups according to
areas that they contribute to (1) automation of image acqusition and image
analysis, (2) image segmentation, (3) object tracking and (4) applications in
the cell nucleus research. All these areas are challenging and raise unsolved
problems.

In the field of automation of image acqusition and image analysis, the
thesis summarizes several improvements to high-resolution cytometry tech-
nique, which was originally developed in our laboratory. Later, our software,
named Acquiarium, is introduced. The software is capable of automated
image acqusition and analysis of a large number of 3D images of cells.

Modern approaches to image segmentation are formulated as a minimiza-
tion problem. The first subsection presents several segmentation methods
based on deformation of simplex meshes. The next two subsections summa-
rize our contribution to segmentation using level-set methods and graph cuts.
In particular, we present three different methods for Chan-Vese functional
minimization, interphase chromosomes segmentation using fast marching al-
gorithm, graph-cut segmentation of touching cells and fast algorithm which
guarantees topology preservation. Finally, we discuss segmentation using
graph cuts in fluorescence microscopy, where we work with large anisotropic
2D and 3D images.

The object tracking section presents a point-based method for cell align-
ment in live-cell imaging, a method for object tracking based on fast level
set methods, a study of the applicability of variational optical flow methods,
and finally a nuclear proteins tracking procedure is described.

The last part describes how we solved four practical image processing
problems of cell nucleus research. They include: the method of gene local-
ization in the chromatin, the definition of normalized distance map for flat
nuclei, the study of HP1 protein association with nucleolei and chromocen-
ters in the cell nucleus and evaluation of spatial distribution of Polycomb
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bodies in the cell nucleus.
My contribution to the presented results ranges from 10 % to 100 %. The

estimate of my contribution to the particular result is given in the thesis. The
average contribution computed over all papers is around 1/3.
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Abstrakt

Zpracováńı digitálńıho obrazu je nepostradatelnou součást́ı moderńıch
mikroskopických metod. Obraz z mikroskopu je zaznamenán a poč́ıtačově
zpracováván. Poč́ıtače slouž́ı nejen k ř́ızeńı procesu pořizováńı dat, ale i
k vizualizaci a źıskáváńı informaćı z obrazových dat. V mnoha úlohách je
kladen d̊uraz na automatizaci postupu a zpracováńı velkého množstv́ı dat.

Tato práce se věnuje zpracováńı obrazu ve fluorescenčńı mikroskopii a
jeho využit́ı v buněčně biologických experimentech. Práce je koncipována
jako kolekce 26 vědeckých článk̊u rozdělených do čtyř skupin podle oblasti,
ke které přisṕıvaj́ı (1) automatizace sńımáńı a analýzy obrazu, (2) segmentace
obrazu, (3) sledováńı objekt̊u a (4) aplikace v oblasti výzkumu buněčného
jádra. Všechny uvedené oblasti jsou náročnými a dosud nevyřešenými
problémy.

V oblasti automatizace sńımáńı a analýzy obrazu práce shrnuje několik
vylepšeńı techniky cytometrie s vysokým rozlǐseńım, která byla p̊uvodně vyv-
inuta v naš́ı laboratoři. Poté je představen náš software Acquiarium na au-
tomatizované sńımáńı a analýzu velkého množstv́ı 3D obraz̊u buněk.

Moderńı př́ıstupy k segmentaci obrazu jsou formulovány jako mini-
malizačńı úloha. Práce prezentuje nejprve několik segmentačńıch metod
založených na deformaćıch simplexových śıt́ı. Daľśı dvě podkapitoly shrnuj́ı
naše výsledky v oblasti segmentace pomoćı level-set metod a grafových
řez̊u. Zejména jsou představeny tři r̊uzné metody minimalizace Chan-Vese
funkcionálu, segmentace interfázńıch chromosomů, segmentace shluk̊u buněk
a rychlý algoritmus garantuj́ıćı zachováńı topologie modelu. Podrobně se
věnujeme segmentaci pomoćı grafových řez̊u v podmı́nkách fluorescenčńı
mikroskopie, tj. jak uchopit velké 2D a 3D anizotropńı obrazy.

V oblasti sledováńı objekt̊u je představena metoda založená na bodech na
odstraněńı globálńıho pohybu buněk, metoda na sledováńı objekt̊u na bázi
rychlých level set metod, studie použitelnosti metod variačńıho optického
toku a nakonec je popsána kompletńı procedura sledováńı jaderných pro-
tein̊u.

Posledńı část popisuje řešeńı čtyř praktických problémů z oblasti výzkumu
buněčného jádra. Je zařazena metoda lokalizace gen̊u v chromatinu buněčného
jádra, definice normalizované distančńı mapy pro plochá jádra, studie ro-
zložeńı HP1 proteinu v buněčném jádře a jeho asociace s chromocentry
a jadérky a nakonec hodnoceńı prostorového rozložeńı polyComb těĺısek v
buněčném jádře.
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Můj pod́ıl na zařazených výsledćıch se pohybuje od 10% do 100%. Odhad
mého pod́ılu na výsledćıch je uveden u každého článku zvlášť v textu práce.
Pr̊uměrný pod́ıl přes všechny práce vycháźı kolem 1/3.
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Chapter 1

Introduction

Fluorescence microscopy is one of the key techniques in biomedical research
and clinical applications. It is a kind of optical microscopy permitting the
observation of cellular components of interest via specific labeling with fluo-
rescence molecules. One can use multiple labels in a specimen, e.g., one label
for cell nuclei and another for a specific protein (or proteins) or particular
sequences of nucleic acids (sequences of DNA or RNA including individual
genes) and study their mutual interactions or investigate the dynamics of
complex mechanisms that occur in the cell. Fluorescence microscopy is suit-
able for observation of fixed as well as living cells.

Optical microscopy is capable of optical sectioning of specimens, which
offers a noninvasive, minimally destructive option for obtaining spatial and
volumetric information about the structure and function of cells and tis-
sues. The most popular approach to 3-D microscopy is confocal microscopy,
which uses point illunination and a pinhole to eliminate the out-of-focus light.
Spinning-disk (Nipkow-disk) confocal microscopes use a series of moving pin-
holes arranged on a spinning disk to shorten the scanning time.

Contemporary fluorescent microscopes consist of controllable motorized
parts that together with autofocus capabilities allow for long-term unsuper-
vised acquisitions of the specimen. This results in huge amounts of data
produced in the biological experiments making manual analysis of the data
sets cumbersome or even impossible. Automation of data processing is there-
fore necessary.

The usual procedure in fluorescence microscopy experiments consists of
the following steps:

Image acquisition: it is the process of capturing an image and digitizing
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it into a pixel representation. While the dimension of light detectors
ranges from 0 (PMT) to 2 (cameras), the dimensionality of image data
ranges from 2 (2D gray-scale image) to 5 (if wavelength and time are
considered in addition to spatial dimensions). The difference between
these two values must be compensated by scanning.

Image correction: instrument- and sample-based aberrations are always
present in fluorescence microscopy. The most common are background
inhomogenity, dark current, autofluorescence, photobleaching, chro-
matic aberration and intensity attenuation with depth. It is critical
these problems are identified and appropriately corrected.

Image segmentation: the goal of this step is to identify the objects of in-
terest in images. Precise localization of objects is important for furher
analysis and measurements. There is no universal method to accom-
plish this task.

Measurements: knowing the shape and location of objects in the image one
can study their mutual relations (e.g., distances, collocalization, asso-
ciation, radial distribution) or their topological and geometrical prop-
erties (e.g., volume, area, surface, shape parameters, intensity, number
of cells, number of protein sites).

Classification: in some experiments the classification of objects based on
the measured parameters is demanded (e.g, determination of positive
or negative cases, cell phase, cell phenotype).

Statistical evaluation: different specimens (e.g., healthy vs. pathological
and/or treated vs. non-treated) are usually captured. In order to draw
statistically significant conclusions about the studied phenomenon a
large number of cells (images) is needed to be processed.

This thesis contains the collection of 26 articles that address four chal-
lenges of this usual procedure and describes our contribution in the particular
area. Firstly, we will deal with automation of image acqusition and image
processing in Chapter 2. Then, we will discuss image segmentation problem
and present our results in this field, see Chapter 3. The next Chapter 4
concerns object tracking and finally the Chapter 5 presents the solution to
specific problems we faced recently in four studies of nuclear architecture in
cell nuclei.
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Chapter 2

Automation of Image
Acquisition And Image
Processing In Fluorescence
Microscopy

Motorized microscope components and accessories enable the investigator to
automate image acquisition. Interconnection of the image acquisition with
image analysis leads to powerfull measurement instruments. It should be
noted that assembling a fully automated and optimized multi-dimensional
imaging system is an extremely complex task. A variety of commercial sys-
tems are available at very high cost. Alternatively, costs can be reduced by at
least 50 percent by assembling a system from scratch, but this effort requires
sufficient expertise and experience in optical microscopy and programming.
The primary problem in automatic microscope configuration is the integra-
tion of hardware and software components purchased from different sources
into a well-coordinated and efficient system.

Michal Kozubek, et.al. [16] developed a completely automated, high-
resolution system (high-resolution cytometer, HRCM) capable of analyzing
microscope slides with FISH-stained interphase nuclei in two dimensions as
well as in three dimensions using a fully motorized epi-fluorescence micro-
scope and a cooled digital CCD camera fully controlled by a high-performance
computer which performs both acquisition and related on-line image analysis.

Several improvements to HRCM technique are presented in [15], which is
included in the collection. The main contribution is the combination of con-
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focal and wide-field modes. The paper discusses also hardware improvements
and new image analysis options.

In [18], we compare possible approaches to image acquisition and pro-
cessing in confocal in vivo microscopy and suggest new alternatives to the
previously published methods. Special attention is paid to spinning disk sys-
tems. This study shows how to optimize image acquisition process in live
cell studies using camera binning feature and how to perform object tracking
using a new fast image registration method based on the graph theory.

We have implemented free software [21] for carrying out the common
pipeline of many spatial cell studies using fluorescence microscopy. It ad-
dresses image capture on spinning disk microscopes, image correction, image
segmentation, the quantification and spatial arrangement of segmented ob-
jects, volume rendering, and statistical evaluation. The software is designed
for the easy processing of a collection of many 3D images.

[15] M Kozubek, S Kozubek, E Lukášová, E Bártová, M Skalńıková, Pavel Matula, Petr
Matula, P Jirsová, A Cafourková, and I Koutná. Combined confocal and wide-field
high-resolution cytometry of fluorescent in situ hybridization-stained cells. Cytom-
etry, 45(1):1–12, sep 2001

I participated on the development of the system and contributed to
writing the paper. Especially, I worked on image analysis part. (10%)

[18] M Kozubek, Petr Matula, Pavel Matula, and S Kozubek. Automated acquisition
and processing of multidimensional image data in confocal in vivo microscopy. Mi-
croscopy Research and Technique, 64:164–175, 2004

I participated on the development of the image analysis as well as im-
age acquisition part of the system. I contributed to writing the paper.
(20%)

[21] Pavel Matula, M Maška, O Daněk, Petr Matula, and M Kozubek. Acquiarium:

Free software for the acquisition and analysis of 3D images of cells in fluorescence

microscopy. In IEEE International Symposium on Biomedical Imaging, pages 1138–

1141, 2009

I designed the software and led its development. I wrote the paper.
(50%)
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Chapter 3

Image Segmentation

Image segmentation is a task of fundamental importance in digital image
processing. It is commonly defined as a partitioning of the input image into
multiple disjoint regions or segments, each of which typically corresponds to
one object. Many approaches to image segmentation exist [38, 31, 10]. The
classical methods are thresholding, region growing, split-and-merge, water-
shed algorithm, and edge-based algorithms. The methods are based on the
idea that (1) the segments have similar image properties (region-based) or
that (2) the segments are separated by pixels with different image properties
(boundary-based).

Powerful and vigorously researched approaches, called active contours or
deformable models, are based on energy minimization, where the value of
image segmentation is mathematically defined and the segmentation of the
lowest energy is searched. The energy usually involves data term (taking
region and/or boundary information into account) and smothness term in-
corporating the information about the shape of regions. The term contour
indicates a curve in 2D or a surface in 3D separating the segments.

There are two views on active contour segmentation (1) a contour of
minimal energy is searched directly or (2) the contour evolves under the
external (data) and internal (smoothness) forces that push the contour in
a minimum energy state. There is often a close mathematical connection
between these two views, but not all deformational rules imply reasonable and
understandable energy minimization problem and some energy minimization
problems are practically unsolveable.

One of the best suited segmentation models to fluorescence microscopy
is Chan-Vese model [2], originally called active contours without edges. The
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two-phase Chan-Vese model aims for partitioning the input image into two
regions with a smooth boundary and low intra-region intensity variance. The
model has the following continuous formulation. Let Ω ⊂ Rn specify the
image domain and let u : Ω → R be a given image function. Further, let
Ω1 ⊂ Ω and Ω2 ⊂ Ω define a partitioning of the image domain into two
possibly disconnected regions with C = ∂Ω1 being the separating boundary.
The Chan-Vese functional is defined as:

ECV (C, c1, c2) = λ1

∫
Ω1

(u(x)− c1)2dx+ λ2

∫
Ω2

(u(x)− c2)2dx+ µ|C|, (3.1)

where c1 and c2 are unknowns representing the average intensity inside Ω1

and Ω2, respectively, |C| denotes the length or surface of C in 2D or 3D, re-
spectively, and λ1, λ2 and µ are fixed positive weights. The optimal segmen-
tation (C, c1, c2) corresponds to the minimum of (3.1) with the background
and foreground regions being given by Ω1 and Ω2, respectively.

Our results in the field of energy based segmentation of fluorescence im-
ages are divided into three groups:

Simplex meshes The contour is represented by a discrete set of linked
points and a deformational rule involving internal and external forces
is defined. The main advantage of these approaches is relatively fast
computation.

Level set methods The contour is represented implicitly as a zero set of
a higher dimensional function. The main advantage is the easy imple-
mentation for 3D images.

Graph cuts The energy minimization is formulated as the problem of find-
ing the minimal cut in a graph, which can be solved efficiently by
polynomial algorithms. Graph cut framework is popular not only for
its computational efficiency but also its numerical robustness, ability to
integrate visual cues and contextual information, global optimality of
solutions, unrestricted topological properties and applicability to N-D
problems.

3.1 Simplex Meshes

The surface of an object can be represented using a simplex mesh [9, 8].
Simplex mesh is a structure consisting of vertices and edges. The vertices
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Figure 3.1: Example of simplex meshes

are points in 3D space. Every edge connects two distinct vertices. Each
vertex has exactly three neighbouring vertices connected via edges (see Fig.
3.1). A simplex mesh is called star-shaped (has the shape of a star) if a point
exists inside the mesh such that any ray going from the point intersects the
mesh only once.

Thanks to the property of three neighbours, the following definitions can
be provided. Tangent plane at a vertex is given by its three neighbours.
Normal vector at a vertex is equal to the normal vector of the tangent plane.
Local shape of the simplex mesh can be controlled by means of a simplex
angle. The simplex angle at a vertex is related to the local mean curvature
of the surface at this vertex and is invariant to translation, rotation and scale
transformations [8].

All vertices of a simplex mesh are considered as a physical mass submitted
to a Newtonian law of motion including internal and external forces. The
low of motion is described by the following discrete formula [9]:

P t+1
i = P t

i + (1− γ)(P t
i − P t−1

i ) + αFint + βFext , (3.2)

where P t
i is a position of i-th vertex in time t. Internal force Fint and external

force Fext are computed at time t and have to be properly defined. Real
parameter γ is the damping factor. Real parameters α and β must belong
to a given interval to guarantee a stable scheme and their ratio expresses
the trade-off between influence of internal and external forces, i.e. between
required local shape of the mesh and the closeness of fit.

All forces deforming a star-shaped simplex mesh are acting only along rays
called deformational rays. In this way the star-shaped quality is preserved
during the deformation process. The general and star-shaped methods differ
in the definition of the internal and external force.

9



We proposed a reconstruction algorithm on the basis of simplex meshes,
which is suitable for spherical object reconstruction [22, 19, 23].

[19] Pavel Matula. Effectivity of spherical object reconstruction using star-shaped sim-
plex meshes. In Proceedings. First International Symposium on 3D Data Processing
Visualization and Transmission, pages 794–799. IEEE Comput. Soc, 2002

I’m the only author of the paper (100%)

[22] Pavel Matula and D Svoboda. Spherical object reconstruction using star-shaped
simplex meshes. In Energy Minimization Methods in Computer Vision, pages 608–
620, 2001

I invented and co-implemented the method and wrote the paper. (80%)

[23] Pavel Matula and D Svoboda. Spherical object reconstruction using simplex meshes

from sparse data. In Discrete Geometry for Computer Imagery, pages 524–533, 2003

I invented and implemented the method and wrote the paper. (90%)

3.2 Level Sets Methods

Level set methods [30] are very useful numerical technique for tracking in-
terfaces and shapes. The contour C(t) in time t is represented implic-
itly as a zero level set of a scalar, higher-dimensional function u(x, y), i.e.
C = {(x, y) : u(x, y) = 0}, see Fig. 3.2. This representation has several
advantages over the parametric approaches. In particular, it avoids param-
eterization problems, the topology of the contour is handled inherently, and
the extension to higher dimensions is easy and straightforward.

The contour evolution is usually governed by a partial differential equa-
tion in the following general form:

ut + F |∇u| = 0, (3.3)

where F is a speed function determining the motion of the contour. There
are three basic types of motion in level set methods: (1) motion in the ex-
ternal velocity field, (2) motion in normal direction, and (3) mean curvature
motion, see Fig. 3.3. Each of them needs to have been appropriately imple-
mented. If one is interested in the zero level set only, there is often no need
to recompute the function u in the whole image domain during the iterative
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Figure 3.2: The contour (red) is represented as a zero level set of a function
u(x, y) (blue) in level set methods.

contour evolution. It is sufficient to update points in a narrow band around
the contour or even to track the zero points only.

Moreover, if we consider just unidirectional contour evolution, i.e. F > 0
for all points in space and time, then each point in a space is visited by the
contour only once. Let T (x, y) be the time at which the contour crosses a
given point (x, y) (arrival time). Then (3.3) can be rewritten as

1 = F |∇T (x, y)|,
T (x0, y0) = 0, (x0, y0) ∈ C(0).

(3.4)

Figure 3.3: Three basic types of motion in level set methods (motion in
the external velocity field, motion in normal direction, and mean curvature
motion).
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The main advantage of this formulation is that a highly effective algorithm
exists to solve (3.4). The algorithm is called the fast marching algorithm.

We developed a new method on the basis of fast marching algorithm for
interphase chromosome reconstruction [20, 13]. We worked also on fast level
set based algorithms. We published fast algorithm for approximate solution
of Chan-Vese segmentation model in [26]. Another fast algorithm for solution
the same segmentation model is described in [12]. We proposed topology-
preserving extension of fast Nilsson and Heyden algorithm in [25]. Finally,
more topology-flexible variant of the algorithm [25] is described in [27] and
its properties are demonstrated on simultaneous tracking of multiple objects.

[12] J Hubený and Pavel Matula. Fast and robust segmentation of low contrast biomed-
ical images. In Visualization, Imaging, and Image Processing, 2006

I co-invented the method and editted the paper. (15%)

[13] J Hubený, Pavel Matula, Petr Matula, and M Kozubek. Improved 3d reconstruc-
tion of interphase chromosomes based on nonlinear diffusion filtering. In Proceed-
ings of PDE-Based Image Processing and Related Inverse Problems, pages 163–173.
Springer-Verlag Berlin, 2006

I co-invented the method, editted the paper and presented it. (30%)

[20] Pavel Matula, J Hubený, and M Kozubek. Fast marching 3D reconstruction of
interphase chromosomes. In Computer Vision and Mathematical Methods in Medical
and Biomedical Image Analysis, pages 385–394, 2004

I co-invented the method and wrote the paper. (70%)

[25] M Maška and Pavel Matula. A fast level set-like algorithm with topology preserving
constraint. In 13th International Conference on Computer Analysis of Images and
Patterns, pages 930–938, 2009

I co-invented the method and editted the paper. (40%)

[26] M Maška, Pavel Matula, O Daněk, and M Kozubek. A fast level set-like algorithm

for region-based active contours. In 6th International Symposium on Visual Com-

puting, pages 387–396, 2010

I co-invented the method and editted the paper. (25%)
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Figure 3.4: A simple example of graph-cut segmentation for a 3 × 3 image.

3.3 Graph Cuts

”Graph cuts have been used for many computer vision problems including
image segmentation. An undirected graph G = (V,E) is defined as a set
of nodes (vertices V ) and a set of undirected edges (E) that connect these
nodes. An example of a graph is shown in Fig. 3.4. Each edge e ∈ E in the
graph is assigned a nonnegative weight (cost) we. There are also two special
nodes called terminals (s and t). A cut is a subset of edges C ⊂ E such that
the terminals become separated on the induced graph G(C) = (V,E \ C).
Each cut has a cost which is defined as the sum of the costs of the edges that
it severs

|C| =
∑
e∈C

we. (3.5)

A globally minimum cut on a graph with two terminals can be computed
efficiently in low-order polynomial time via standard max-flow or push-relable
algorithms from combinatorial optimization.” [1].

”Graph cut formalism is well suited for segmentation of images. In fact, it
is completely appropriate for n-dimensional volumes. The nodes of the graph
can represent pixels (or voxels) and the edges can represent any neighborhood
relationship between the pixels. A cut partitions the nodes in the graph. As
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illustrated in Figure 3.4, this partitioning corresponds to a segmentation of an
underlying image or volume. A minimum cost cut generates a segmentation
that is optimal in terms of properties that are built into the edge weights.”
[1].

We studied how to set the edge weights while processing fluorescence
microscopy images that are inherently anisotropic (worse axial resolution in
confocal microscopy or unit disagreement in spatial-temporal images). We
improved method for Euclidean and Riemannian metric approximation that
is embedded in the graph [3, 4]. Our solution is besides being applicable
to anisotropic grids also invariant under horizontal and vertical mirroring,
has a straightforward generalization from 2D to 3D and has a smaller er-
ror compared to the existing approaches. Recently, we have suggested two-
stage approach for minimization of Chan-Vese functional that yields smooth
boundaries without increasing the computational demands significantly [6].

Graph cut based model for segmentation of touching cell nuclei in fluo-
rescence microscopy images is presented in [7].

[3] O Daněk and Pavel Matula. Graph Cuts and Approximation of the Euclidean
Metric on Anisotropic Grids. In VISAPP International Conference on Computer
Vision Theory and Applications, 2010

I co-invented the method, editted the paper. (40%)

[4] O Daněk and Pavel Matula. An Improved Riemannian Metric Approximation for
Graph Cuts. In Discrete Geometry for Computer Imagery, pages 71–82. Springer,
2011

I co-invented the method and editted the paper. (30%)

[6] O Daněk, Pavel Matula, M Maška, and M Kozubek. Smooth Chan-Vese Segmen-
tation via Graph Cuts. Pattern Recognition Letters, Accepted, 2012

I co-invented the method and editted the paper. (30%)

[7] O Daněk, Pavel Matula, C Ortiz de Solórzano, A Muñoz Barrutia, M Maška,

and M Kozubek. Segmentation of Touching Cell Nuclei Using a Two-Stage Graph

Cut Model. In Proceedings of Scandinavian Conference on Image Analysis (SCIA),

volume 5575, pages 410–419, 2009

I co-invented the method and editted the paper. (10%)
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Chapter 4

Tracking in Cell Biology

”The past decade has seen an unprecedented data explosion in biology. It has
become evident that in order to take full advantage of the potential wealth
of information hidden in the data produced by even a single experiment,
visual inspection and manual analysis are no longer adequate. To ensure
efficiency, consistency, and completeness in data processing and analysis,
computational tools are essential. Of particular importance to many modern
live-cell imaging experiments is the ability to automatically track and analyze
the motion of objects in time-lapse microscopy images.” [28].

”Roughly speaking, time-lapse imaging studies consist of four successive
steps: 1) planning of the experiment and acquisition of the image data, 2)
preprocessing of the data to correct for systemic as well as random errors
and to enhance relevant features, 3) analysis of the data by detecting and
tracking the objects relevant to the biological questions underlying the study,
and 4) analysis of the resulting trajectories to test predefined hypotheses or
detect new phenomena.” [29], see Fig. 4.1.

”A frequently studied parameter, especially in particle tracking experi-
ments, is the mean square displacement (MSD). It is a convenient measure to
study the diffusion characteristics of the motion of individual particles and
also allows to assess the viscoelastic properties of the media in which they
move. By definition, the MSD is a function of time lag, and the shape of the
MSD-time curve for a given trajectory is indicative of the mode of motion of
the corresponding particle.” [29].

We developed fast point-based method for the alignment of cells in live cell
imaging [24]. This method is the basic building block of tracking procedure
described in [34]. The paper [34] addresses all steps defined above. The
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Figure 4.1: Different modes of motion according to MSD curve.

Figure 4.2: Example of average MSD curves for tracking of nuclear protein
under three different conditions.

example of MSD curves computed using the procedure is shown in Fig. 4.2.
We also studied variational optical flow methods for motion tracking of

fluorescently labeled targets in living cells [14] and developed a fast level
set-like algorithm for simultaneous tracking of multiple objects [27].

[14] J Hubený, V Ulman, and Pavel Matula. Estimating large local motion in live-cell
imaging using variational optical flow. In VISAPP International Conference on
Computer Vision Theory and Applications, pages 542–548, 2007

I collaborated on experiment design. (10%)

[24] Petr Matula, Pavel Matula, M Kozubek, and V Dvořák. Fast point-based 3-D
alignment of live cells. IEEE transactions on image processing, 15(8):2388–96, aug
2006

I collaborated on the method design, editted the paper and worked on
evaluation. (20%)

[27] M Maška, Pavel Matula, and M Kozubek. Simultaneous Tracking of Multiple
Objects Using Fast Level Set-Like Algorithm. In Sixth Doctoral Workshop on Math.
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and Eng. Methods in Computer Science (MEMICS10) Selected Papers, pages 69–
76, 2010

I co-invented the method and editted the paper. (15%)

[34] L Stixová, E Bártová, Pavel Matula, O Daněk, S Legartová, and S Kozubek.

Heterogeneity in the kinetics of nuclear proteins and trajectories of substructures

associated with heterochromatin. Epigenetics & chromatin, 4(1):5, jan 2011

I designed and performed object tracking algorithm, computed trajec-
tories and MSD graphs, wrote relevant parts of the article. (25%)
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Chapter 5

Nuclear Architecture and
Chromatin Structure Studies

This chapter comments on four papers, which study the cell nucleus, but
they contain significant image processing part. The first paper [33] studies
chromatin condensation during granulopoiesis using immunoFISH staining.
Image analysis and image acquisition were carried out using Acquiarium soft-
ware [21]. Segmentation of the nuclei was accomplished using our algorithm
[12] minimizing Chan-Vese energy. DNA signals were segmented using mor-
phological EMAX transformation (Extended Maxima) [32]. We developed
novel method how to study the location of DNA signal in the cell nucleus
with respect to the RNAP II immunofluorescence in regions of the nucleus.
RNAP II image channel was the marker of chromatin condensation.

Paper [11] studies association of HP1 protein in cell nucleus with chro-
mocenters and nucleoli. We had to develop image segmentation of nucleus,
chromocenters and nucleoli and evaluate the content of HP1 protein (green)
in different regions, see Fig. 5.1.

We defined new normalised distance map (called FLR measure) in the
paper [36]. The measure is well suited for evaluation of radial distribution
of sites in flat nuclei. The difference between standard and our new FLR
measure is visualized in Fig. 5.2.

[11] A Harničarová Horáková, E Bártová, G Galiová, R Uhĺı̌rová, Pavel Matula, and
S Kozubek. SUV39h-independent association of HP1 beta with fibrillarin-positive
nucleolar regions. Chromosoma, 119(3):227–41, jun 2010

Invention, development and running of image analysis procedure. I
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Figure 5.1: Example of segmentation of nucleus, chromocenters and nucleoli
in the study of HP1 protein association.
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Figure 5.2: Comparison of standard local radius measure vs. our flat local
radius measure.
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wrote the image analysis part and contributed to the image acquisition
part of materials and methods of the paper. (20%)

[33] S Stejskal, I Koutná, Pavel Matula, Z Ručka, O Daněk, M Maška, and M Kozubek.
The role of chromatin condensation during granulopoiesis in the regulation of gene
cluster expression. Epigenetics, 5(8):758–66, 2010

Co-invention and co-development of image analysis procedure. I wrote
image acquisition and analysis part of the paper. (20%)

[36] R Uhĺı̌rová, A Harničarová Horáková, G Galiová, S Legartová, Pavel Matula,

M Fojtová, M Vařecha, J Amrichová, J Vondráček, S Kozubek, and E Bártová.

SUV39h- and A-type lamin-dependent telomere nuclear rearrangement. Journal of

cellular biochemistry, 109(5):915–26, apr 2010

(10%) Invention of normalized distance map. I wrote relevant parts of
the paper.

21



22



Bibliography

[1] Y Boykov and V Kolmogorov. Computing Geodesics and Minimal Sur-
faces via Graph Cuts. In International Conference on Computer Vision
(ICCV), number November, pages 26–33, 2003.

[2] T F Chan and L A Vese. Active contours without edges. IEEE Trans-
actions on image processing, 10(2):266–277, January 2001.
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[25] M Maška and Pavel Matula. A fast level set-like algorithm with topology
preserving constraint. In 13th International Conference on Computer
Analysis of Images and Patterns, pages 930–938, 2009.
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Part II

Collection of Articles
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This part contains copies of journal and conference papers which I co-
authored and are related to the thesis. The context of all papers and a
description of the main results are provided in the previous part.
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Pavel Matula, J Hubený, and M Kozubek. Fast marching 3D reconstruction
of interphase chromosomes. In Computer Vision and Mathematical Methods
in Medical and Biomedical Image Analysis, pages 385–394, 2004

100



pdfs/2004_Matula_CVAMIA_Fast.pdf



pdfs/2004_Matula_CVAMIA_Fast.pdf



pdfs/2004_Matula_CVAMIA_Fast.pdf



pdfs/2004_Matula_CVAMIA_Fast.pdf



pdfs/2004_Matula_CVAMIA_Fast.pdf



pdfs/2004_Matula_CVAMIA_Fast.pdf



pdfs/2004_Matula_CVAMIA_Fast.pdf



pdfs/2004_Matula_CVAMIA_Fast.pdf



pdfs/2004_Matula_CVAMIA_Fast.pdf



pdfs/2004_Matula_CVAMIA_Fast.pdf



Conference paper [13]
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