
}w��������
��
������������� !"#$%&'()+,-./012345<yA| Faculty of Informatics
Masaryk University

Czech Republic

From Infinite-State Systems to
Translation of LTL to Automata

Habilitation Thesis
(Collection of Articles)

Jan Strejček

April 2012

Abstract

As computer systems are becoming ubiquitous and their importance and complexity
are constantly increasing, the importance of verification tools applicable on these sys-
tems grows as well. Development of verification tools is usually preceded by studying
decidability and complexity of various verification problems for suitable models of
computer systems. While some computer systems or their parts can be appropriately
modeled by finite-state models, the other systems need to be described by infinite-
state models. Formalisms for description of infinite-state models can be divided into
two basic categories: formalisms with Turing power and weaker formalisms. The for-
malisms of the first category have enough expressive power, but nearly all important
verification problems are undecidable for them. Weaker formalisms can provide a
good compromise between expressiveness and decidability of interesting problems.
Many classical formalisms from the second category, e.g. Petri nets or pushdown sys-
tems, are covered by the formalism of Process Rewrite Systems (PRS).

This thesis maps a part of author’s research in the area of infinite-state systems and
verification in general. We deal mainly with classes of infinite-state systems subsumed
in the PRS formalism and its extensions. We study expressive power of these classes
and decidability of reachability problem, model checking problem, and equivalence
checking problem for these classes. The thesis contain also several results from related
areas. In particular, we present decidability of a bounded reachability problem for
a Turing-powerful formalism called Asynchronous Dynamic Pushdown Networks. Our
results on model checking of PRS systems against formulae of Linear Temporal Logic
(LTL) lead to interesting observations about a certain LTL fragment. These observa-
tions allow us to significantly improve translation of LTL to Büchi automata, which is a
standard part of many LTL model checking algorithms for both finite and infinite-state
systems.

The thesis has the form of a collection of articles accompanied by a commentary.
The collection contains four journal papers and seven papers published in the pro-
ceedings of international conferences or workshops. One paper was written solely by
the author of the thesis. In case of all other papers, the contribution is at least propor-
tional to the number of co-authors. The author contributed to these papers in various
ways: often by suggesting the topic, partly by bringing the ideas of solution, almost
always by discussing and improving solutions and writing down significant parts of
texts.

iii

Abstrakt

Jak se počı́tačové systémy stávajı́ všudypřı́tomnými a jak roste jejich význam
i složitost, roste i význam nástrojů schopných tyto systémy verifikovat. Vývoji verifi-
kačnı́ho nástroje zpravidla předcházı́ výzkum rozhodnutelnosti a složitosti různých
verifikačnı́ch problémů na vhodných modelech počı́tačových systémů. Zatı́mco
některé systémy lze adekvátně modelovat pomocı́ konečně stavových modelů,
jiné systémy je třeba modelovat jako nekonečně stavové. Formalismy pro popis
nekonečně stavových modelů lze rozdělit do dvou základnı́ch kategoriı́: formalismy
s Turingovskou silou a slabšı́ formalismy. Formalismy prvnı́ kategorie majı́ velkou
popisnou sı́lu, ale téměř všechny důležité verifikačnı́ problémy jsou pro ně nerozhod-
nutelné. Slabšı́ formalismy mohou nabı́dnout dobrý kompromis mezi vyjadřovacı́
sı́lou a rozhodnutelnostı́ zajı́mavých problémů. Mnoho běžných formalismů z druhé
kategorie (jako Petriho sı́tě nebo zásobnı́kové systémy) je zastřešeno formalismem pro-
cesových přepisovacı́ch systémů (PRS).

Tato habilitačnı́ práce mapuje část autorova výzkumu v oblasti nekonečně sta-
vových systémů a verifikace obecně. Zabýváme se předevšı́m třı́dami nekonečně
stavových systémů pokrytých formalismem PRS a jeho rozšı́řenı́mi. Zkoumáme
vyjadřovacı́ sı́lu těchto třı́d a rozhodnutelnost problému dosažitelnosti, problému
ověřovánı́ modelu a problému ověřenı́ ekvivalence pro tyto třı́dy. Habilitačnı́ práce
dále obsahuje několik výsledků ze souvisejı́cı́ch oblastı́. Zejména prezentujeme roz-
hodnutelnost omezené dosažitelnosti pro formalismus asynchronnı́ch sı́tı́ dynamických
zásobnı́kových systémů, který má Turingovskou sı́lu. Naše výsledky o ověřovánı́ mo-
delu pro PRS systémy a formule lineárnı́ temporálnı́ logiky (LTL) vedly k zajı́mavým
poznatkům o jistém fragmentu LTL. Tyto poznatky nám dovolujı́ významně zlepšit
překlad LTL na Büchiho automaty, který je standardnı́ součástı́ mnoha algoritmů pro
ověřovánı́ modelu LTL vlastnostı́ pro konečně i nekonečně stavové systémy.

Tato habilitačnı́ práce je koncipována jako soubor uveřejněných vědeckých pracı́
doplněný komentářem (§72 odst. 3 pı́smena b zákona č. 111/1998 Sb., o vysokých
školách). Soubor obsahuje čtyři časopisecké články a sedm článků ze sbornı́ků
mezinárodnı́ch konferencı́ a seminářů. U jednoho článku je uchazeč jediným autorem.
U ostatnı́ch článků je jeho autorský podı́l přinejmenšı́m úměrný počtu autorů. Ucha-
zeč se podı́lel na vzniku těchto článků různými způsoby: často navrhl téma, někdy
přišel s myšlenkami vedoucı́mi k řešenı́, témeř vždy diskutoval a vylepšoval řešenı́
a napsal podstatné části textů.

v

Acknowledgments

First of all, I would like to thank Mojmı́r Křetı́nský and Vojtěch Řehák for fruitful and
long-lasting collaboration and wide-ranging discussions. I thank Mojmı́r Křetı́nský
also for reading a draft of this thesis.

Many thanks go to other co-authors of papers included in this collection, namely
to Tomáš Babiak, Ahmed Bouajjani, Laura Bozzelli, Javier Esparza, Stefan Schwoon,
and Tayssir Touili.

Last but not least, I thank my wife Adriana and our children Zorka and Andy for
their constant support, infinite patience, and love.

vii

Contents

I Commentary 1

1 Introduction 3
1.1 Motivation . 3
1.2 Focus . 5

2 State of the Art 7
2.1 Process Rewrite Systems . 7

2.1.1 Reachability Problem . 9
2.1.2 Model Checking Problem . 9
2.1.3 Equivalence Checking Problem . 10

2.2 Translation of LTL to Büchi Automata . 11

3 Thesis Contribution 13
3.1 Process Rewrite Systems . 13

3.1.1 Reachability Problem . 13
3.1.2 Model Checking Problem . 15
3.1.3 Equivalence Checking Problem . 17

3.2 Translation of LTL to Büchi Automata . 17

4 Papers in Collection 21
4.1 Journal Papers . 21
4.2 Proceedings Papers . 22

5 Bibliography 23

ix

Part I

Commentary

1

Chapter 1

Introduction

1.1 Motivation

The significance of computer systems for our society is constantly increasing. A failure
of these systems can have an enormous negative impact on an individual, a company,
or even a country. Hence, there is a great demand for methods and technologies to in-
crease reliability of computer systems. The traditional techniques like simulation, test-
ing, and error-preventing methodologies for system design are clearly not sufficient.
In particular, these methods aim to eliminate errors, but they do not demonstrate an
absence of errors, i.e. they do not prove correctness of the systems.

Proving correctness of computer systems is the original motivation for develop-
ment of formal methods, which started in the late sixties. The area of formal methods
now subsume formalisms for specification and modeling of systems as well as tech-
niques and algorithms for analysis and verification of systems or their models.

The modeling formalisms can be roughly divided into the following three cate-
gories according to their expressive power.

Formalisms describing finite-state systems
This category contains formalism which can describe only systems with a fi-
nite number of states. The category contains some low-level formalisms as finite
labeled transition systems or finite Kripke structures as well as many high-level for-
malisms. High-level formalisms are typically designed for compact description
of large finite-state systems. Finite-state systems are also called finite systems.

Formalisms with Turing power
This category contains formalisms that can accurately model all Turing ma-
chines. As a Turing machine can in one computation successively enter
infinitely-many different states, the formalism can model systems with an in-
finite number of states.

Formalisms describing infinite-state systems without Turing power
This category contains formalisms that can describe systems with an infinite
number of states, but they cannot accurately model all Turing machines.

3

Formalisms of each category have some benefits and drawbacks. Finite sys-
tems can faithfully model all hardware systems and thus also all self-contained soft-
ware/hardware systems. Moreover, all verification problems are decidable for finite
systems. Unfortunately, finite-state models of real systems are often extremely large
even if their description in a suitable formalism can be relatively small. Thus, they can-
not be effectively analyzed by standard algorithms designed for finite-state systems.
It may therefore be more convenient to model them in formalisms for description of
infinite-state systems and analyze them by the corresponding algorithms.

Modeling extremely large finite systems is not the only motivation for formalisms
describing infinite-state systems. For example, if we want to analyze algorithms rather
then programs, we also need to model them as infinite-state systems. The reason is
that algorithms typically work with unbounded data domains, while all data domains
in real programs are finite.

Formalisms with Turing power have an obvious drawback: even the very basic
verification problems like reachability of a given state are not decidable. In practice,
models in these formalisms are analyzed using algorithms with some imprecision.
For example, there are bounded analysis approaches examining only a part of a state
space.

Formalisms describing infinite-state systems without Turing power represent a
compromise between expressive power and decidability of verification problems.

Formal methods cover several verification problems. The following three are the
most traditional and the most prominent.

Reachability problem is the problem to decide whether a given state of a given sys-
tem is reachable from the initial state or not. A typical application of reachability
problem is verification of a basic safety property: a system is considered to be safe
if a given error state is not reachable.

Model checking problem is the problem to decide whether each run of a given sys-
tem satisfies a given specification. The specification is usually described by a
formula of some temporal logic.

Equivalence checking problem is the problem to decide whether two given systems,
typically a specification and its implementation, are equivalent with respect to a
given behavioral equivalence.

All the mentioned problems are decidable for finite systems regardless the temporal
logic used for specification in the case of model checking or behavioral equivalence
in case of equivalence checking. On the contrary, none of the problems is decidable
for formalisms with Turing power (unless we consider some trivial temporal logic or
behavioral equivalence). The decidability of these problems for formalisms describing
infinite-state systems without Turing power depends on concrete formalism or, in case
of model checking or equivalence checking, on a combination of a concrete formalism
and temporal logic or behavioral equivalence.

4

1.2 Focus

In this thesis, we focus mainly on the expressiveness and decidability issues of for-
malisms covered by Process Rewrite Systems (PRS) [69, 71]. PRS is a term rewriting
formalism. Its popularity stems from two facts. First, many classical and well-studied
formalisms for description of infinite-state systems can be uniformly obtained from
PRS by imposing simple restrictions on syntax of rewrite rules. For example, Petri nets
or pushdown systems can be seen as syntactical subclasses of PRS. Second, PRS has not
Turing power and some interesting instances of verification problems are decidable for
PRS. In the following chapter, we recapitulate basic decidability results for the men-
tioned verification problems and formalisms subsumed in PRS. In the model checking
problem, we focus our attention to action-based semantics only. For the equivalence
checking problem, out of dozens studied equivalences surveyed in [96], we consider
only two most prominent equivalences, namely strong and weak bisimulation equiva-
lences [73, 79, 74].

The second topic of this thesis is a translation of Linear Temporal Logic (LTL) [81] to
Büchi automata (BA). LTL is probably the most frequently used formalism for specifica-
tion of system properties for model checking purposes. A translation of LTL to BA is
the first step of many LTL model checking algorithms for both finite and infinite-state
systems.

The relation between the two topics is seemingly feeble. However, our results in
LTL to automata translation are directly motivated by our previous research of LTL
model checking problem for PRS classes. Moreover, the results on LTL to automata
translation have again direct consequences to decidability of LTL model checking for
various classes of infinite-state systems (not only subclasses of PRS). This relationship
is explained in Section 3.2.

5

6

Chapter 2

State of the Art

2.1 Process Rewrite Systems

The term rewriting formalism called Process Rewrite Systems (PRS) is introduced
in [69]. PRS combines both sequential and parallel operators. Hence, it can be seen as
an extension of a similar, but purely sequential formalism studied in [20] and a purely
sequential and purely parallel formalisms studied in [76].

By imposing various restrictions on syntax of PRS rewrite rules we get several
standard classes of infinite-state systems, namely Basic Process Algebras (BPA) [4], Basic
Parallel Processes (BPP) [21], Process Algebras (PA) [4], Pushdown Processes (PDA), and
Petri Nets (PN). Another syntax restrictions of PRS define the class of all Finite Systems
(FS) and classes called PAD [69] (common generalization of PA and PDA) and PAN [68]
(common generalization of PA and PN).

PRS

nnnnnnnnnnnnnn

PPPPPPPPPPPPPP

PAD

PPPPPPPPPPPPPPP PAN

nnnnnnnnnnnnnnn

PDA PA

nnnnnnnnnnnnnnn

PPPPPPPPPPPPPPP PN

BPA

PPPPPPPPPPPPPPPP BPP

nnnnnnnnnnnnnnnn

FS

Figure 2.1: The PRS-hierarchy

The mentioned classes form so-called PRS-hierarchy depicted in Figure 2.1. The
hierarchy is in fact a Hasse diagram where the classes are partially ordered according
to their expressive power as follows: each class represents the set of corresponding la-
beled transition systems and the partial order compares these sets according to the set

7

sePRS

sePAD PRS

oooooooooooooo

OOOOOOOOOOOOOO sePAN

PAD

PPPPPPPPPPPPPP sePA

oooooooooooooo

PPPPPPPPPPPPP PAN

ooooooooooooooo

sePDA=PDA=seBPA PA

qqqqqqqqqqqqqqq

MMMMMMMMMMMMMMM sePN=PN

seBPP=MSA

BPA

PPPPPPPPPPPPPP BPP

oooooooooooooo

seFS=FS

Figure 2.2: The state-extended PRS-hierarchy. The dotted lines represent the fact, that
strict increase of expressive power is only conjectured.

inclusion modulo strong bisimulation equivalence [79, 74]. The shape of the hierarchy
copies relations between syntactical restrictions defining the classes. Strictness of the
hierarchy follows from [18, 76, 69].

A disadvantage of PRS is its limited expressive power. As PRS subsumes push-
down processes, it can accurately model sequential programs with unlimited recur-
sion and both local and global variables over finite domains. As PRS contains Petri
nets, it can model also synchronously communicating parallel systems with dynamic
creation of new processes, but the processes cannot have unbounded recursion. PRS
cannot model even two asynchronous sequential programs with unbounded recur-
sion where one program sends one message to the other program. The connection
between PRS classes programming features is nicely explained in [33].

The modeling power can be improved by enriching PRS with an additional finite-
state control unit. The resulting formalism is called state-extended PRS (sePRS) [51, 44].
Using the syntactic restriction applied to PRS, we get analogous subclasses of sePRS,
denoted by se- prefix. Addition of the finite control unit does not change expres-
sive power of classes FS, PDA, and PN. The expressive power of other PRS sub-
classes strictly increases: seBPA class has the same expressive power as PDA [20],
while seBPP coincides with a previously studied class called Parallel Pushdown Pro-
cesses (PPDA) [76] or Multiset Automata (MSA) [77]. The strict increase of power is
proven also for sePA, sePAD, and sePAN. In fact, we conjecture that the classes sePA,
sePAD, sePAN, and sePRS form fresh classes of infinite-state systems. Figure 2.2 de-
picts the original hierarchy extended with the state-extended classes. The figure also

8

marks relations that are not rigorously proven, but only conjectured. The shape of the
hierarchy follows from the definition of sePRS, shape of the PRS hierarchy, results of
[20, 71, 44], and our result of [55, 59]. The mentioned conjectures are discussed in [97].

2.1.1 Reachability Problem

The reachability problem, i.e. the problem to decide whether a given state is reachable
from a given initial state, is decidable for PRS [71]. The proof employs the previously
known results on decidability of reachability for Petri nets [67] and for pushdown
processes [6].

Four out of the five new classes obtained by state-extension have Turing power.
Indeed, sePA and its superclasses sePAD, sePAN, and sePRS can encode any Minsky
2-counter machine [75] and thus also any Turing machine. As a result, the reachability
problem is undecidable for these classes [5]. The remaining class seBPP is a subclass
of Petri nets and hence the reachability problem is also decidable for seBPP.

Other versions of reachability are studied as well. For example, reachable property
problem, i.e. the problem to decide whether there exists a reachable state where all ac-
tions of one set are enabled and all actions of another set are disabled. The decidability
of reachable property problem is the same as for the original reachability problem: it
is decidable for PRS [71] and undecidable for sePA [5].

A lot of attention has been also devoted to symbolic reachability on various PRS
subclasses, where the goal is to compute a finite representations of the set (or its under-
or over-approximation) of all states reachable (or backward reachable) from a given set
of states. The main results in this area can be found in [64, 36, 34, 11, 8, 12].

2.1.2 Model Checking Problem

For the model checking problem, we consider branching-time logics of Figure 2.3 and
linear-time logic LTL.

The decidability boundary of the model checking problem heavily depends on the
considered logic.

The logic EG and all stronger logics For the logic EG, the problem is decidable for
PDA and its subclasses [78, 20]. The same result holds for all stronger log-
ics, as the problem is decidable for PDA even for specification formulated in
µ-calculus [19, 98].

On the contrary, the problem is undecidable for the logic EG (and thus also for
all stronger logics) and all classes subsuming BPP [35]. In fact, an inspection
of this undecidability proof exposes that the undecidability result for BPP holds
already for a fragment of EG containing only formulae of the form EGϕ, where
ϕ is a Hennessy-Milner formula.

The logic EF For the logic EF, the problem is decidable for PAD due to [70], while it
is undecidable for PN [31]. The undecidability proof for PN actually works also
for seBPP, as we mention in [57].

9

modal µ-calculus

alternation-free modal µ-calculus

CTL

UB

mmmmmmmmmmmmm

QQQQQQQQQQQQQ

EF

PPPPPPPPPPP EG

nnnnnnnnnnn

Hennessy-Milner logic

Figure 2.3: Hierarchy of branching-time logics

Formulae EFϕ, where ϕ is a Hennessy-Milner formula These formulae form a frag-
ment of the logic EF. The model checking problem for such formulae is also
called reachability Hennessy-Milner property and its relevance is advocated in [51,
54]. In contrast to model checking problem for the full logic EF, this problem is
decidable for both PAD [70, 51] and PN [52], and undecidable for sePA [5]. We
show that the problem is decidable also for PAN and PRS [57].

The Hennessy-Milner logic A Hennessy-Milner formula describes only the first n
steps of system behaviors, where n depends on the formula. Hence, the logic
in clearly decidable for all classes of PRS and their state-extended versions.

The logic LTL The LTL model checking problem is decidable for PDA [6] and PN [31].
The problem is undecidable for all classes subsuming PA [9, 70]. If we ignore
finite runs of PRS systems, then the model checking problem is decidable for PA
and the logic called simple PLTL� [9], and also for all PRS classes and fairness
properties [13].

For detailed information on decidability and complexity of the model checking prob-
lem for PRS classes we refer to exhaustive surveys [70, 17].

2.1.3 Equivalence Checking Problem

Strong bisimulation equivalence is decidable for PDA [86] and for BPP [22]. The prob-
lem is undecidable for seBPP [76, 49]. Decidability for PA and PAD is an open ques-
tion.

Strong bisimulation equivalence is usually considered to be too fine for practical
purposes. Weak bisimulation equivalence seem to be more convenient. Unfortunately,
there is no positive decidability result for weak bisimulation equivalence on any class
of infinite-state systems mentioned so far. However, there are some positive results

10

for strict subclasses of BPP [43, 32, 91]. The equivalence is clearly decidable for finite
systems. It is undecidable for PDA [88], PA [89], and seBPP [76]. The decidability is
conjectured for BPA [72] and for BPP [50].

For detailed information on decidability and complexity of the equivalence check-
ing problem for PRS classes we refer to surveys [17, 53, 90].

2.2 Translation of LTL to Büchi Automata

For a long time, researchers aimed to find fast translations producing Büchi automata
with a small number of states. This goal has led to development of several translation
algorithms and many heuristics and optimizations including input formula reductions
and optimizations of produced Büchi automata, see e.g. [41, 24, 25, 37, 87, 40, 42, 39,
28, 30].

As the time goes, the translation objectives and their importance are changing. For
example, [85] demonstrates that for higher performance of the subsequent steps of the
model checking process, it is more important to minimize the number of states with a
nondeterministic choice than the number of all states in resulting automata. Note that
there are LTL formulae for which no equivalent deterministic Büchi automaton exists.
This new objective has led to development of algorithms focusing on determinism
of produced automata. For example, [26] presents an effective algorithm translating
LTL formulae of the fragment called obligation (see [66]) into weak deterministic Büchi
automata (WDBA). Moreover, WDBA can be minimized by the algorithm of [62].

There are also many tools translating LTL to Büchi automata. Intensive experi-
ments [83] show that two of them, LTL2BA [40] and SPOT [28], notably outperform
the others. While SPOT is under the gradual development following the current trends
(see [27] for improvements made in the last four years), LTL2BA underwent only one
minor update in 2007 since its start in 2001. As a result, SPOT usually produces more
deterministic and smaller automata than LTL2BA, while LTL2BA is often a bit faster.

11

12

Chapter 3

Thesis Contribution

3.1 Process Rewrite Systems

We present two new extensions of PRS: PRS with finite constraint system (fcPRS) [92]
and weakly extended PRS (wPRS) [56]. The latter extension is very similar to the ex-
tension with finite control unit called sePRS. The only difference is that a state of the
added control unit can be changed only in accordance with a given partial order. We
sometimes talk about weak finite control unit. Hence, wPRS can be seen as sePRS with
a simple restriction. The extension with finite constrained system is inspired by con-
current constraint programming [84] and can be seen as a restricted version of wPRS.
Both extensions increase expressive power of all the classes of the PRS-hierarchy ex-
cept FS, PDA, and PN, but the extended classes still do not possess Turing power and
some interesting verification problems remain decidable for them. Let us note that the
increase of expressive power is again only conjectured for PRS.

All considered subclasses of PRS, fcPRS, wPRS, and sePRS can be ordered accord-
ing to their expressive power (up to strong bisimulation) to the hierarchy depicted on
Figure 3.1. Shape of the hierarchy directly follows from the definitions of considered
formalisms except two cases: the equality between PDA and seBPA follows from [20]
and the inclusion of PN in sePA follows from [55, 59], where we prove that each PN
can be translated into a strongly bisimilar sePA. Strictness of the hierarchy is proven
in [92, 56]. Conjectures are discussed in [97].

3.1.1 Reachability Problem

In [55, 61] we prove that reachability problem remains decidable for all classes of
wPRS. The papers also present several applications of the result. In particular, the
weak finite state unit of wPRS allow us to reduce two interesting problems to reach-
ability. First, we show that model checking of certain simple safety properties is de-
cidable for wPRS. The second studied problem is decidability of weak trace equivalence
mentioned, for instance, in [45]. We prove semi-decidability of the weak trace non-
equivalence for wPRS. Let us note that semi-decidability of this problem has been pre-
viously known only for PN [48], PDA [16], and PA [64]. Decidability of reachability
for wPRS has also other applications, for example, in analysis of some cryptographic

13

sePRS

wPRS

qqqqqqqqqqqqqqqqqqqqqqqqqqqq

JJJJJJJJJJJJJJJJJJJJJJJJJ

fcPRS

qqqqqqqqqqqqqqqqqqqqqqqqqqqq

JJJJJJJJJJJJJJJJJJJJJJJJJ

PRS

qqqqqqqqqqqqqqqqqqqqqqqqqqqq

KKKKKKKKKKKKKKKKKKKKKKKKK

sePAD sePAN

wPAD

MMMMMMMMMMMMMMMMMMMMMMMMMMMM wPAN

ttttttttttttttttttttttttt

fcPAD

MMMMMMMMMMMMMMMMMMMMMMMMMMMM fcPAN

sssssssssssssssssssssssss

PAD

MMMMMMMMMMMMMMMMMMMMMMMMMMMMM PAN

tttttttttttttttttttttttttt

sePA

mmmmmmmmmmmmmmmmmmmmmmmm

OOOOOOOOOOOOOOOOOOOOO

wPA

rrrrrrrrrrrrrrrrrrrrrrrrrrrr

JJJJJJJJJJJJJJJJJJJJJJJJJJ

fcPA

rrrrrrrrrrrrrrrrrrrrrrrrrrrr

JJJJJJJJJJJJJJJJJJJJJJJJJ

{se,w,fc}PDA=PDA=seBPA PA

qqqqqqqqqqqqqqqqqqqqqqqqqqqqq

JJJJJJJJJJJJJJJJJJJJJJJJJJ {se,w,fc}PN=PN

seBPP=MSA

wBPA wBPP

fcBPA fcBPP

BPA

UUUUUUUUUUUUUUUUUUUUUU BPP

kkkkkkkkkkkkkkkkkkk

{se,w,fc}FS=FS

Figure 3.1: The hierarchy of PRS classes and their extended versions. The dotted lines
represent the fact, that strict increase of expressive power is only conjectured.

protocols [46, 47].

In [10] we extend the result on symbolic reachability analysis for PAD presented
in [12]. More precisely, [12] shows that, given a PAD in a certain normal form and
a set of PAD states represented by a commutative-hedge automaton (CH-automaton), one
can compute another CH-automaton representing the set of all states that are (forward
or backward) reachable from states of the original set. In [10] we prove the same for
arbitrary wPAD system. The result has some consequences for decidability of the
model checking problem for the logic EF and wPAD (see the following subsection).

In [7] we study a formalism called Asynchronous Dynamic Pushdown Network
(ADPN), which is similar to wPAD. In contrast to wPAD, ADPN can dynamically cre-
ate new independent processes and global control unit of ADPN is not weak. Hence,
ADPN are well suited to model multithreaded software with asynchronous communi-
cation. Unfortunately, the formalism has Turing power and the reachability problem

14

is thus undecidable. Therefore, we study k-bounded reachability problem [82], i.e. we
consider only reachability in k contexts, where a context is a transition sequence dur-
ing which the global control unit of ADPN interacts with one process only. In [7] we
generalize and improve the algorithm for k-bounded reachability analysis introduced
in [82].

3.1.2 Model Checking Problem

We have studied decidability of model checking for the new subclasses of fcPRS and
wPRS. In several cases we also refine decidability borders by considering finer frag-
ments of temporal logics.

The logic EG and all stronger logics The decidability borderline of the model check-
ing problem for the logic EG and all stronger logics is fully determined by the
results mentioned in Subsection 2.1.2. However, we have strengthened the un-
decidability result for BPP: while [35] shows undecidability of the model check-
ing problem for BPP and the logic EG, we show that the problem is undecidable
even for the fragment of EG containing formulae of the form EGϕ, where ϕ is
a Hennessy-Milner formula without nesting of temporal operators 〈·〉 [57].

The logic EF In [10] we prove decidability of the model checking problem for wPAD
and the EF logic. In fact, the result works with a more general logic than EF and
a more general problem called global model checking. While the ordinary model
checking decides validity of a given formula in a given state of the system, the
global model checking computes the set of all states of the system satisfying the
formula. In our case, the set is represented by a CH-automaton.

Formulae EFϕ, where ϕ is a Hennessy-Milner formula We study the reachability
Hennessy-Milner property problem in [57]. We prove that the problem is de-
cidable for the whole class of wPRS. This result answers open questions on de-
cidability of the problem for classes PAN and PRS.

It is known that decidability of the reachability Hennessy-Milner property prob-
lem for a class C implies decidability of strong bisimilarity between systems of
C and finite-state systems [51]. As a corollary we get that strong bisimulation
equivalence between wPRS and FS is decidable, which answers the correspond-
ing open problems formulated for PAN and PRS.

The Hennessy-Milner logic As discussed in Subsection 2.1.2, this model checking
problem is decidable for sePRS all its subclasses.

The logic LTL Again, the situation for the LTL model checking problem is fully de-
termined by the results mentioned in Subsection 2.1.2. In particular, LTL model
checking is undecidable for all classes subsuming PA. However, in [14, 60, 15]
we present some positive results for the whole wPRS class and some fragments
of LTL. We have studied the problem for fragments of LTL formulae defined by
a restricted set of temporal operators. For example, the fragment LTL(F,G) con-
tains all LTL formulae build with temporal operators eventually (F) and always

15

LTL(U,X)

vvvvvvvvvvvvvvvvvvvvvvvvvvv

SSSSSSSSSSSSSSSSSSSS

LTL(U,Fs,S,Ps)

ssssssssssssssssssssssss

LTL(F,X,P,Y)

UUUUUUUUUUUUUUUUU LTL(U ,Fs)

ssssssssssssssssssssssss

LTL(F,X)

TTTTTTTTTTTTTTTT

}
y

u
p l h c _ [V R N

J
E

A

LTL(Fs,Ps) ≡ FO2[<]

UUUUUUUUUUUUUUUU

�������������������������������
LTL(U)
V

R
N

J

_ _ _ _ _ _

LTL(
∞
F ,X)

UUU
LTL(Fs,Gs)

UUUUUUUUUUUUUUUU
LTL(F,P)

_________ m s
z

�
�

�
�

�

LTL(F,G)

LTL(X)

MMMMMMMMMMMMMMMMMMMMMM LTL(
∞
F)

ppppppppppppppppppppp

LTL()

Figure 3.2: The hierarchy of LTL fragments with respect to their expressive power.
The dashed line shows the decidability boundary of the model checking problem for
wPRS: the problem is decidable for all the fragments below the line, while it is unde-
cidable for all the fragments above the line (even if we consider PA systems only).

(G) only. The hierarchy of considered LTL fragments reflecting their expressive
power is given on Figure 3.2. Note that LTL(U,X) corresponds to the full LTL
while LTL() denotes the fragment without any temporal operators. All the men-
tioned fragments put no restrictions on negation and other boolean connectives.
For definitions of temporal operators and for justification of the hierarchy we
refer to an exhaustive survey [93].

In [14] we show that the model checking problem is decidable for wPRS and the
fragment LTL(Fs,Gs) containing formulae with temporal operators strict even-
tually (Fs) and strict always (Gs). This fragment can express many properties of
verification practice. The proof employs our previous results on reachability
for wPRS and decidability of the model checking problem for PRS and fairness
properties [13]. Further, in [14] we also prove that the model checking problem

is undecidable for PA and fragments LTL(
∞
F ,X) or LTL(U).

16

In [60] we extend the positive decidability result for wPRS and LTL(Fs,Gs) to a
strictly stronger fragment LTL(Fs,Ps) build with temporal operators strict eventu-
ally (Fs) and its past counterpart eventually in the strict past (Ps). The fragment is
expressively equivalent to the fragment FO2[<] of first-order monadic logic of order
containing formulae with at most 2 variables and no successor predicate. For
effective translation between LTL(Fs,Ps) and FO2[<] we refer to [38].

Finally, in [60] we show that the model checking problem is decidable for wPRS
and the LTL fragment LTLdet also known as the common fragment of CTL and
LTL [65], where CTL refers to Computation Tree Logic [23].

3.1.3 Equivalence Checking Problem

Besides the results on (semi)decidability of weak trace non-equivalence and strong
equivalence with finite systems mentioned above, we add also one undecidability
results regarding weak bisimilarity. In [58] we prove that the equivalence checking
problem is undecidable for weak bisimulation equivalence even for classes fcBPA and
fcBPP. Actually, we demonstrate that the undecidability holds for normed fcBPA and
normed fcBPP, which are strict subclasses of fcBPA and fcBPP respectively. The decid-
ability of equivalence checking for weak bisimilarity and BPA or BPP remains open.

3.2 Translation of LTL to Büchi Automata

Our decidability results of the model checking problem for wPRS and fragments
LTL(Fs,Gs), LTL(Fs,Ps), and LTLdet are all based on one auxiliary result: we introduce
an LTL fragment A and we show that the existential model checking problem, i.e. the
problem whether a given system has a run satisfying a given formula, is decidable for
wPRS and formulae of A. To prove decidability of the model checking problem for
LTL(Fs,Gs), LTL(Fs,Ps), and LTLdet, we show that each formula ϕ of these fragments
can be translated to a formula of A that is equivalent to ¬ϕ.

The fragment A is strictly more expressible than negations of formulae in
LTL(Fs,Gs), LTL(Fs,Ps), and LTLdet. Further, the fragmentA is not suitable for practical
purposes as it has very restricted syntax. Thanks to their specific structure, formulae
ofA straightforwardly correspond to Büchi automata that are linear (i.e. the only cycles
are self-loops) with a possible exception of terminal strongly connected components.
Each terminal strongly connected component accepts infinite words over a set of let-
ters, where some selected letters appear infinitely often. In [2], we define the class of
these Büchi automata called Almost Linear Büchi Automata (ALBA). Further, we intro-
duce an LTL fragment called LIO, which is expressively equivalent to ALBA and thus
also to A. In contrast to A, LIO is a syntactically rich fragment subsuming LTL(F,G).
To show that LIO and ALBA can describe the same class of languages, we present
translations between the two formalisms.

An improved version of the LIO to ALBA translation is described in [3], where we
also provide complexity analysis of the translation. While general LTL to BA trans-
lations produce automata that are at most exponential in the size of input formulae,

17

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25

T
im

e
 i
n
 S

e
c
o
n
d
s

Parameter value

Spot 0.7.1
LTL2BA
LTL3BA

LIO2ALBA

θn = ¬((GFp1 ∧ . . . ∧ GFpn)→ G(q → Fr))

Figure 3.3: Time consumption of translation of parametric formula θn. The vertical
axis is logarithmic and represents time in seconds. The horizontal axis represents the
parameter n. All translators produce the same automata.

our LIO to ALBA translation produces automata of at most doubly exponential size.
To analyze significance of LIO and applicability of the LIO to ALBA translation to
specification formulae used in practice, we have implemented the translation and we
study its usability on 75 LTL specification formulae from two public sources: Spec Pat-
terns [29] and BEEM [80]. In fact, we consider negations of these formulae as model
checking algorithms typically need Büchi automata for negated specification formu-
lae. After some simple syntactic transformations, 50 out of the 75 negated formulae
are syntactically in LIO. We have translated them by our LIO2ALBA translator and
the general LTL2BA translator [40]. We have obtained automata of fully comparable
sizes. Hence, many real-world specification formulae can be translated to automata of
the specific shape without any substantial increase of size.

The specific shape of ALBA has already found an application in [95, 94]. The pa-
pers formulate a sufficient condition on a formalism for description of infinite-state
systems that implies decidability of the existential model checking problem for the
formalism and specifications in the form of ALBA automata. In connection with a
translation of an LTL fragment to ALBA, the condition implies decidability of the
model checking problem for negations of the LTL fragment. Using this technique,
[95, 94] derive decidability of the model checking problem for LTL(Fs,Gs) and all for-
malisms satisfying the condition. Let us note that the condition is quite general: it
is satisfied by all subclasses of wPA and by many other formalisms, e.g. concurrent
pushdown systems [82] and ground-tree rewrite systems [63].

18

Experiments with the LIO2ALBA translator expose the fact that the translation is
extremely efficient on specific kinds of formulae comparing the two leading LTL to BA
translators LTL2BA [40] and SPOT [28]. One such a case is illustrated on Figure 3.2.

Hence, we adopt some ideas of LIO to ALBA translation to improve the LTL to
BA translation algorithm of [40]. Further, we suggest some techniques reducing non-
determinism of the produced automata. The improved translation is described in [1]
and implemented in the tool called LTL3BA. Experimental results show that LTL3BA
usually outperforms LTL2BA in all aspects and it competes with SPOT. However, Fig-
ure 3.2 demonstrates that LIO2ALBA can be massively faster than LTL3BA, at least in
some cases. Hence, there is still some space for improvements of LTL to BA transla-
tions.

19

20

Chapter 4

Papers in Collection

4.1 Journal Papers

[59] Mojmı́r Křetı́nský, Vojtěch Řehák, and Jan Strejček. Petri nets are less expressive
than state-extended PA. Theoretical Computer Science, 394(1–2):134–140, 2008.

– The result has been originally published on CONCUR 2004 [55].

– Author’s contribution: 33%, participating on all phases

[15] Laura Bozzelli, Mojmı́r Křetı́nský, Vojtěch Řehák, and Jan Strejček. On decidabil-
ity of LTL model checking for process rewrite systems. Acta Informatica, 46(1):1–
28, 2009.

– The result has been originally published on FSTTCS 2006 [14].

– Author’s contribution: 25%, bringing the topic, participating on all phases,
significant part of writing

[61] Mojmı́r Křetı́nský, Vojtěch Řehák, and Jan Strejček. Reachability is decidable
for weakly extended process rewrite systems. Information and Computation,
207(6):671–680, 2009.

– The result has been originally published on CONCUR 2004 [55].

– Author’s contribution: 33%, participating on all phases

[3] Tomáš Babiak, Vojtěch Řehák, and Jan Strejček. Almost linear Büchi automata.
Mathematical Structures in Computer Science, 22(02):203–235, 2012.

– The result has been originally published on EXPRESS 2009 [2].

– Author’s contribution: 33%, bringing the topic, participating on all phases
except implementation and measurements, significant part of writing

21

4.2 Proceedings Papers

[92] Jan Strejček. Rewrite systems with constraints. In Proceedings of EXPRESS 2001,
volume 52 of Electronic Notes in Theoretical Computer Science. Elsevier Science
Publishers, 2002.

– Author’s contribution: 100%

[56] Mojmı́r Křetı́nský, Vojtěch Řehák, and Jan Strejček. On extensions of process
rewrite systems: Rewrite systems with weak finite-state unit. In Proceedings of IN-
FINITY 2003, volume 98 of Electronic Notes in Theoretical Computer Science, pages
75–88. Elsevier Science Publishers, 2004.

– Author’s contribution: 33%, participating on all phases

[57] Mojmı́r Křetı́nský, Vojtěch Řehák, and Jan Strejček. Reachability of Hennessy-
Milner properties for weakly extended PRS. In Proceedings of FSTTCS 2005, vol-
ume 3821 of Lecture Notes in Computer Science, pages 213–224. Springer, 2005.

– Author’s contribution: 33%, participating on all phases

[7] Ahmed Bouajjani, Javier Esparza, Stefan Schwoon, and Jan Strejček. Reachability
analysis of multithreaded software with asynchronous communication. In Pro-
ceedings of FSTTCS 2005, volume 3821 of Lecture Notes in Computer Science, pages
348–359. Springer, 2005.

– Author’s contribution: 25%, substantial part of ideas, substantial part of
technical writing

[58] Mojmı́r Křetı́nský, Vojtěch Řehák, and Jan Strejček. Refining the undecidabil-
ity border of weak bisimilarity. In Proceedings of INFINITY 2005, volume 149
of Electronic Notes in Theoretical Computer Science, pages 17–36. Elsevier Science
Publishers, 2006.

– Author’s contribution: 33%, participating on all phases

[10] Ahmed Bouajjani, Jan Strejček, and Tayssir Touili. On symbolic verification of
weakly extended PAD. In Proceedings of EXPRESS 2006, volume 175(3) of Elec-
tronic Notes in Theoretical Computer Science, pages 47–64. Elsevier Science Publish-
ers, 2007.

– Author’s contribution: 33%, bringing the topic, participating on all phases

[1] Tomáš Babiak, Mojmı́r Křetı́nský, Vojtěch Řehák, and Jan Strejček. LTL to Büchi
automata translation: Fast and more deterministic. In Proceedings of TACAS 2012,
volume 7214 of Lecture Notes in Computer Science, pages 95–109. Springer, 2012.

– Author’s contribution: 25%, bringing the topic and substantial part of
ideas, significant part of writing

22

Bibliography

[1] Tomáš Babiak, Mojmı́r Křetı́nský, Vojtěch Řehák, and Jan Strejček. LTL to Büchi
automata translation: Fast and more deterministic. In Proceedings of TACAS 2012,
volume 7214 of Lecture Notes in Computer Science, pages 95–109. Springer, 2012.

[2] Tomáš Babiak, Vojtěch Řehák, and Jan Strejček. Almost linear Büchi automata.
In Proceedings of EXPRESS 2009, volume 8 of Electronic Proceedings in Theoretical
Computer Science, pages 16–25, 2009.

[3] Tomáš Babiak, Vojtěch Řehák, and Jan Strejček. Almost linear Büchi automata.
Mathematical Structures in Computer Science, 22(02):203–235, 2012.

[4] Jan A. Bergstra and Jan Willem Klop. Algebra of communicating processes with
abstraction. Theoretical Computer Science, 37:77–121, 1985.

[5] Ahmed Bouajjani, Rachid Echahed, and Peter Habermehl. On the verification
problem of nonregular properties for nonregular processes. In Proceedings of
LICS’95. IEEE Computer Society Press, 1995.

[6] Ahmed Bouajjani, Javier Esparza, and Oded Maler. Reachability Analysis of
Pushdown Automata: Application to Model-Checking. In Proceedings of CON-
CUR’97, volume 1243 of Lectute Notes in Computer Science, pages 135–150, 1997.

[7] Ahmed Bouajjani, Javier Esparza, Stefan Schwoon, and Jan Strejček. Reachability
analysis of multithreaded software with asynchronous communication. In Pro-
ceedings of FSTTCS 2005, volume 3821 of Lecture Notes in Computer Science, pages
348–359. Springer, 2005.

[8] Ahmed Bouajjani, Javier Esparza, and Tayssir Touili. Reachability analysis of
synchronized PA systems. In Proceedings of INFINITY 2004, volume 138 (3) of
Electronic Notes in Theoretical Computer Science, pages 153–178, 2005.

[9] Ahmed Bouajjani and Peter Habermehl. Constrained Properties, Semilinear Sys-
tems, and Petri Nets. In Proceedings of CONCUR’96, volume 1119 of Lectute Notes
in Computer Science, pages 481–497. Springer, 1996.

[10] Ahmed Bouajjani, Jan Strejček, and Tayssir Touili. On symbolic verification of
weakly extended PAD. In Proceedings of EXPRESS 2006, volume 175(3) of Elec-
tronic Notes in Theoretical Computer Science, pages 47–64. Elsevier Science Publish-
ers, 2007.

23

[11] Ahmed Bouajjani and Tayssir Touili. Reachability Analysis of Process Rewrite
Systems. In Proceedings of FSTTCS 2003, volume 2914 of Lectute Notes in Computer
Science, pages 74–87. Springer, 2003.

[12] Ahmed Bouajjani and Tayssir Touili. On computing reachability sets of process
rewrite systems. In Proceedings of RTA 2005, volume 3467 of Lectute Notes in Com-
puter Science, pages 484–499. Springer, 2005.

[13] Laura Bozzelli. Model checking for process rewrite systems and a class of action-
based regular properties. In Proceedings of VMCAI’05, volume 3385 of Lectute
Notes in Computer Science, pages 282–297. Springer, 2005.

[14] Laura Bozzelli, Mojmı́r Křetı́nský, Vojtěch Řehák, and Jan Strejček. On decid-
ability of LTL model checking for process rewrite systems. In Proceedings of
FSTTCS 2006, volume 4337 of Lecture Notes in Computer Science, pages 248–259.
Springer, 2006.

[15] Laura Bozzelli, Mojmı́r Křetı́nský, Vojtěch Řehák, and Jan Strejček. On decidabil-
ity of LTL model checking for process rewrite systems. Acta Informatica, 46(1):1–
28, 2009.

[16] Julius Richard Büchi. Regular canonical systems. Archiv für Mathematische Logik
und Grundlagenforschung, 6:91–111, 1964.

[17] Olaf Burkart, Didier Caucal, Faron Moller, and Bernhard Steffen. Verification on
infinite structures. In Handbook of Process Algebra, pages 545–623. Elsevier, 2001.

[18] Olaf Burkart, Didier Caucal, and Bernhard Steffen. Bisimulation collapse and the
process taxonomy. In Proceedings of CONCUR’96, volume 1119 of Lectute Notes in
Computer Science, pages 247–262. Springer, 1996.

[19] Olaf Burkart and Bernhard Steffen. Model checking the full modal mu-calculus
for infinite sequential processes. Theoretical Computer Science, 221(1-2):251–270,
1999.

[20] Didier Caucal. On the regular structure of prefix rewriting. Theoretical Computer
Science, 106:61–86, 1992.

[21] Søren Christensen. Decidability and Decomposition in Process Algebras. PhD thesis,
Department of Computer Science, University of Edinburgh, 1993.

[22] Søren Christensen, Yoram Hirshfeld, and Faron Moller. Bisimulation is decid-
able for all basic parallel processes. In Proceedings of CONCUR’93, volume 715 of
Lectute Notes in Computer Science, pages 143–157. Springer, 1993.

[23] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchroniza-
tion skeletons using branching time temporal logic. In Proceedings of IBM Work-
shop on Logic of Programs, volume 131 of Lectute Notes in Computer Science, pages
52–71. Springer, 1981.

24

[24] Jean-Michel Couvreur. On-the-fly verification of temporal logic. In Proceedings of
FM’99, volume 1708 of Lectute Notes in Computer Science, pages 253–271. Springer,
1999.

[25] Marco Daniele, Fausto Giunchiglia, and Moshe Y. Vardi. Improved automata
generation for linear temporal logic. In Proceedings of CAV’99, volume 1633 of
Lectute Notes in Computer Science, pages 249–260. Springer, 1999.

[26] Christian Dax, Jochen Eisinger, and Felix Klaedtke. Mechanizing the powerset
construction for restricted classes of ω-automata. In Proceedings of ATVA 2007,
volume 4762 of Lectute Notes in Computer Science, pages 223–236. Springer, 2007.

[27] Alexandre Duret-Lutz. LTL translation improvements in Spot. In Proceedings
of VECoS 2011, Electronic Workshops in Computing. British Computer Society,
2011.

[28] Alexandre Duret-Lutz and Denis Poitrenaud. SPOT: An extensible model check-
ing library using transition-based generalized Büchi automata. In Proceedings of
MASCOTS 2004, pages 76–83. IEEE Computer Society Press, 2004.

[29] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Property specifi-
cation patterns for finite-state verification. In Proceedings of FMSP-98, pages 7–15,
New York, 1998. ACM Press.

[30] Rüdiger Ehlers and Bernd Finkbeiner. On the virtue of patience: Minimizing
Büchi automata. In Proceedings of SPIN 2010, volume 6349 of Lectute Notes in
Computer Science, pages 129–145. Springer, 2010.

[31] Javier Esparza. On the Decidability of Model Checking for Several mu-calculi
and Petri Nets. In Proceedings of CAAP’94, volume 787 of Lectute Notes in Computer
Science, pages 115–129. Springer, 1994.

[32] Javier Esparza. Petri nets, commutative context-free grammars, and basic parallel
processes. Fundamenta Informaticae, 31(1):13–25, 1997.

[33] Javier Esparza. Grammars as Processes. In Formal and Natural Computing, volume
2300 of Lectute Notes in Computer Science, pages 277–297. Springer, 2002.

[34] Javier Esparza, David Hansel, Peter Rossmanith, and Stefan Schwoon. Efficient
algorithms for model checking pushdown systems. In Proceedings of CAV 2000,
volume 1855 of Lectute Notes in Computer Science, pages 232–247, 2000.

[35] Javier Esparza and Astrid Kiehn. On the model checking problem for branching
time logics and basic parallel processes. In Proceedings of CAV’95, volume 939 of
Lectute Notes in Computer Science, pages 353–366. Springer, 1995.

[36] Javier Esparza and Andreas Podelski. Efficient algorithms for pre∗ and post∗ on
interprocedural parallel flow graphs. In Proceedings of POLP 2000, pages 1–11.
ACM Press, 2000.

25

[37] Kousha Etessami and Gerard J. Holzmann. Optimizing Büchi Automata. In
Catuscia Palamidessi, editor, Proceedings of CONCUR 2000, volume 1877 of Lectute
Notes in Computer Science, pages 153–167. Springer, 2000.

[38] Kousha Etessami, Moshe Y. Vardi, and Thomas Wilke. First-order logic with two
variables and unary temporal logic. Information and Computation, 179(2):279–295,
2002.

[39] Carsten Fritz. Constructing Büchi automata from linear temporal logic using
simulation relations for alternating Büchi automata. In Proceedings of CIAA 2003,
volume 2759 of Lectute Notes in Computer Science, pages 35–48. Springer, 2003.

[40] Paul Gastin and Denis Oddoux. Fast LTL to Büchi Automata Translation. In
Proceedings of CAV 2001, volume 2102 of Lectute Notes in Computer Science, pages
53–65. Springer, 2001.

[41] Rob Gerth, Doron Peled, Moshe Y. Vardi, and Pierre Wolper. Simple on-the-fly
automatic verification of linear temporal logic. In Protocol Specification Testing
and Verification, volume 38 of IFIP Conference Proceedings, pages 3–18. Chapman &
Hall, 1995.

[42] Dimitra Giannakopoulou and Flavio Lerda. From states to transitions: Improv-
ing translation of ltl formulae to Büchi automata. In Doron Peled and Moshe
Vardi, editors, Proceedings of FORTE 2002, volume 2529 of Lectute Notes in Com-
puter Science, pages 308–326. Springer, 2002.

[43] Yoram Hirshfeld. Bisimulation trees and the decidability of weak bisimulations.
Electronic Notes in Theoretical Computer Science, 5:2–13, 1996.

[44] Yoram Hirshfeld and Faron Moller. Pushdown automata, multiset automata, and
Petri nets. Theoretical Computer Science, 256(1-2):3–21, 2001.

[45] Charles Antony Richard Hoare. Communicating Sequential Processes. In On the
construction of programs – an advanced course, pages 229–254. Cambrigde Univer-
sity Press, 1980.

[46] Hans Hüttel and Jiřı́ Srba. Recursion vs. replication in simple cryptographic pro-
tocols. In Proceedings of SOFSEM 2005: Theory and Practice of Computer Science,
volume 3381 of Lectute Notes in Computer Science, pages 178–187. Springer, 2005.

[47] Hans Hüttel and Jiřı́ Srba. Decidability issues for extended ping-pong protocols.
Journal of Automated Reasoning, 36(1–2):125–147, 2006.

[48] Petr Jančar. High Undecidability of Weak Bisimilarity for Petri Nets. In Pro-
ceedings of TAPSOFT’95, volume 915 of Lectute Notes in Computer Science, pages
349–363. Springer, 1995.

[49] Petr Jančar. Undecidability of bisimilarity for Petri nets and some related prob-
lems. Theoretical Computer Science, 148(2):281–301, 1995.

26

[50] Petr Jančar. Strong bisimilarity on basic parallel processes is PSPACE-complete.
In Proceedings of LICS 2003, pages 218–227. IEEE Computer Society, 2003.

[51] Petr Jančar, Antonı́n Kučera, and Richard Mayr. Deciding bisimulation-like
equivalences with finite-state processes. Theoretical Computer Science, 258:409–
433, 2001.

[52] Petr Jančar and Faron Moller. Checking regular properties of Petri nets. In Pro-
ceedings of CONCUR’95, volume 962 of Lectute Notes in Computer Science, pages
348–362. Springer, 1995.

[53] Antonı́n Kučera and Petr Jančar. Equivalence-checking on infinite-state systems:
Techniques and results. Theory and Practice of Logic Programming, 6(3):227–264,
2006.

[54] Antonı́n Kučera and Philippe Schnoebelen. A general approach to comparing
infinite-state systems with their finite-state specifications. Theoretical Computer
Science, 358(2-3):315–333, 2006.

[55] Mojmı́r Křetı́nský, Vojtěch Řehák, and Jan Strejček. Extended process rewrite sys-
tems: Expressiveness and reachability. In Proceedings of CONCUR 2004, volume
3170 of Lecture Notes in Computer Science, pages 355–370. Springer, 2004.

[56] Mojmı́r Křetı́nský, Vojtěch Řehák, and Jan Strejček. On extensions of process
rewrite systems: Rewrite systems with weak finite-state unit. In Proceedings of IN-
FINITY 2003, volume 98 of Electronic Notes in Theoretical Computer Science, pages
75–88. Elsevier Science Publishers, 2004.

[57] Mojmı́r Křetı́nský, Vojtěch Řehák, and Jan Strejček. Reachability of Hennessy-
Milner properties for weakly extended PRS. In Proceedings of FSTTCS 2005, vol-
ume 3821 of Lecture Notes in Computer Science, pages 213–224. Springer, 2005.

[58] Mojmı́r Křetı́nský, Vojtěch Řehák, and Jan Strejček. Refining the undecidabil-
ity border of weak bisimilarity. In Proceedings of INFINITY 2005, volume 149 of
Electronic Notes in Theoretical Computer Science, pages 17–36. Elsevier Science Pub-
lishers, 2006.

[59] Mojmı́r Křetı́nský, Vojtěch Řehák, and Jan Strejček. Petri nets are less expressive
than state-extended PA. Theoretical Computer Science, 394(1–2):134–140, 2008.

[60] Mojmı́r Křetı́nský, Vojtěch Řehák, and Jan Strejček. On decidability of LTL+past
model checking for process rewrite systems. In Joint Proceedings of INFINITY 2006,
2007, 2008, volume 239 of Electronic Notes in Theoretical Computer Science, pages
105–117. Elsevier Science Publishers, 2009.

[61] Mojmı́r Křetı́nský, Vojtěch Řehák, and Jan Strejček. Reachability is decidable
for weakly extended process rewrite systems. Information and Computation,
207(6):671–680, 2009.

27

[62] Christof Löding. Efficient minimization of deterministic weak omega-automata.
Information Processing Letters, 79(3):105–109, 2001.

[63] Christof Löding. Infinite Graphs Generated by Tree Rewriting. PhD thesis, RWTH
Aachen, 2003.

[64] Denis Lugiez and Philippe Schnoebelen. The regular viewpoint on PA-processes.
In Proceedings of CONCUR’98, volume 1466 of Lectute Notes in Computer Science,
pages 50–66. Springer, 1998.

[65] Monika Maidl. The common fragment of CTL and LTL. In Proceedings of
FOCS 2000, pages 643–652. IEEE Computer Society, 2000.

[66] Zohar Manna and Amir Pnueli. A hierarchy of temporal properties. In Proceed-
ings of PODC’90, pages 377–410. ACM press, 1990.

[67] Ernst W. Mayr. An algorithm for the general Petri net reachability problem. SIAM
Journal on Computing, 13(3):441–460, 1984.

[68] Richard Mayr. Combining Petri nets and PA-processes. In Proceedings of TACS ’97,
volume 1281 of Lectute Notes in Computer Science, pages 547–561. Springer, 1997.

[69] Richard Mayr. Process rewrite systems. In Proceedings of EXPRESS’97, volume 7
of Electronic Notes in Theoretical Computer Science, pages 185–205, 1997.

[70] Richard Mayr. Decidability and Complexity of Model Checking Problems for Infinite-
State Systems. PhD thesis, Technische Universität München, 1998.

[71] Richard Mayr. Process rewrite systems. Information and Computation, 156(1):264–
286, 2000.

[72] Richard Mayr. Weak bisimilarity and regularity of context-free processes is
EXPTIME-hard. Theoretical Computer Science, 330(3):553–575, 2005.

[73] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lectute Notes in
Computer Science. Springer, 1980.

[74] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

[75] Marvin L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, 1967.

[76] Faron Moller. Infinite results. In Proceedings of CONCUR’96, volume 1119 of
Lectute Notes in Computer Science, pages 195–216. Springer, 1996.

[77] Faron Moller. Pushdown Automata, Multiset Automata and Petri Nets. In Pro-
ceedings of MFCS Workshop on concurrency, volume 18, 1998.

[78] David E. Muller and Paul E. Schupp. The theory of ends, pushdown automata,
and second-order logic. Theoretical Computer Science, 37:51–75, 1985.

28

[79] David Michael Ritchie Park. Concurrency and automata on infinite sequences. In
Peter Deussen, editor, Theoretical Computer Science: 5th GI-Conference, volume 104
of Lectute Notes in Computer Science, pages 167–183. Springer, 1981.

[80] Radek Pelánek. BEEM: Benchmarks for explicit model checkers. In Proceedings
of SPIN 2007, volume 4595 of Lectute Notes in Computer Science, pages 263–267.
Springer, 2007.

[81] Amir Pnueli. The Temporal Logic of Programs. In Proceedings of FOCS’77, pages
46–57. IEEE Computer Society, 1977.

[82] Shaz Qadeer and Jakob Rehof. Context-bounded model checking of concurrent
software. In Proceedings of TACAS 2005, LNCS 3440, pages 93–107, 2005.

[83] Kristin Y. Rozier and Moshe Y. Vardi. LTL Satisfiability Checking. In Proceedings
of SPIN 2007, volume 4595 of Lectute Notes in Computer Science, pages 149–167.
Springer, 2007.

[84] Vijay A. Saraswat. Concurrent constraint programming. MIT Press, 1993.

[85] Roberto Sebastiani and Stefano Tonetta. ”More Deterministic” vs. ”Smaller”
Büchi Automata for Efficient LTL Model Checking. In Proceedings of
CHARME 2003, volume 2860 of Lectute Notes in Computer Science, pages 126–140.
Springer, 2003.

[86] Géraud Sénizergues. Decidability of bisimulation equivalence for equational
graphs of finite out-degree. In Proceedings of FOCS’98, pages 120–129. IEEE Com-
puter Society, 1998.

[87] Fabio Somenzi and Roderick Bloem. Efficient Büchi Automata from LTL Formu-
lae. In Proceedings of CAV 2000, volume 1855 of Lectute Notes in Computer Science,
pages 248–263. Springer, 2000.

[88] Jiřı́ Srba. Undecidability of weak bisimilarity for pushdown processes. In Pro-
ceedings of CONCUR 2002, volume 2421 of Lectute Notes in Computer Science, pages
579–593. Springer, 2002.

[89] Jiřı́ Srba. Undecidability of weak bisimilarity for PA-processes. In Proceedings
of DLT 2002, volume 2450 of Lectute Notes in Computer Science, pages 197–208.
Springer, 2003.

[90] Jiřı́ Srba. Roadmap of infinite results. Online version avaiable at
http://cs.au.dk/˜srba/roadmap/, 2006.

[91] Colin Stirling. Decidability of weak bisimilarity for a subset of basic parallel pro-
cesses. In Proceedings of FoSSaCS 2001, volume 2030 of Lectute Notes in Computer
Science, pages 379–393. Springer, 2001.

[92] Jan Strejček. Rewrite systems with constraints. In Proceedings of EXPRESS 2001,
volume 52 of Electronic Notes in Theoretical Computer Science. Elsevier Science Pub-
lishers, 2002.

29

[93] Jan Strejček. Linear Temporal Logic: Expressiveness and Model Checking. PhD thesis,
Faculty of Informatics, Masaryk University, 2004.

[94] Anthony Widjaja To. Model Checking Infinite-State Systems: Generic and Specific
Approaches. PhD thesis, School of Informatics, University of Edinburgh, 2010.

[95] Anthony Widjaja To and Leonid Libkin. Algorithmic metatheorems for decidable
ltl model checking over infinite systems. In Proceedings of FOSSACS 2010, volume
6014 of Lectute Notes in Computer Science, pages 221–236. Springer, 2010.

[96] Rob J. van Glabbeek. The Linear time – Branching Time Spectrum II. In Proceed-
ings of CONCUR’93, volume 715 of Lectute Notes in Computer Science, pages 66–81.
Springer, 1993.

[97] Vojtěch Řehák. On Extensions of Process Rewrite Systems. PhD thesis, Faculty of
Informatics, Masaryk University Brno, 2007.

[98] Igor Walukiewicz. Pushdown processes: Games and model-checking. Information
and Computation, 164(2):234–263, 2001.

30

