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Abstract

This thesis surveys the author’s contributions to the area of models for stochastic real-
time systems. Two fundamental concepts meet in this models — probability and real-
time. The probabilistic behavior is here deeply connected with time in (continuous)
probability distributions on the waiting times spent in the states of the models. More-
over, we study not only the analysis of such models but also the synthesis of some
unspecified parameters. Hence, we extend the models with the third concept — non-
determinism. In other words, instead of checking whether the model is correct (i.e.,
satisfies a given specification), we are computing particular model parameters such
that the final model with these parameters is (nearly) optimal. Some of the results are
delivered for game extensions, where part of the nondeterminism is solved by synthe-
sis, and the remaining part is considered to be driven by an antagonistic opponent.

The thesis is structured as a collection of ten conference papers and one work-
shop paper, and an accompanying commentary. The commentary aims to highlight
the most important results and to explain the “research flow” with the significant con-
nections between the results. The contribution of the thesis author to the particular
papers in the collection is expressed in the list of the included papers at the end of the
commentary part.
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Abstrakt

Habilitačnı́ práce přehledně popisuje autorův vědecký přı́nos v oblasti modelů
pravděpodobnostnı́ch systémů se spojitým časem. V těchto modelech se setkávajı́
dva základnı́ modelovacı́ koncepty — pravděpodobnost a spojitý čas. V našem
přı́padě jsou tyto dva koncepty velmi úzce propojeny, protože uvažujeme systémy,
kde pravděpodobnost je definována na časech setrvánı́ v jednotlivých stavech mod-
elu. Navı́c tyto modely pouze neanalyzujeme, ale našı́m cı́lem je i syntetizovat
parametry, které nejsou přesně určeny. Tı́m se v modelech vyskytuje i třetı́ koncept
— nedeterminismus. Jinými slovy, namı́sto kontroly, zda je model správný (tj. splňuje
danou specifikaci), vypočı́táváme konkrétnı́ hodnoty pro neurčené parametry mod-
elu tak, aby výsledný model byl optimálnı́. Některé výsledky přinášı́me pro hernı́
rozšı́řenı́, kde část neurčených parametrů je řešena syntézou optimálnı́ch hodnot a
zbývajı́cı́ část je mimo naši kontrolu. V takovém přı́padě se tradičně uvažuje nejhoršı́
možný přı́pad; představujeme si tedy, že zbývajı́cı́ parametry nastavuje nepřı́tel, který
se nám snažı́ uškodit.

Práce je strukturována jako soubor deseti konferenčnı́ch článků a jednoho
seminárnı́ho článku doplněný o komentář. Cı́lem komentáře je zdůraznit
nejdůležitějšı́ výsledky a vysvětlit postup výzkumných pracı́ s přı́padnými vazbami
mezi jednotlivými výsledky. Přı́nos autora habilitačnı́ práce k dosaženı́ prezento-
vaných výsledků je vyjádřen v seznamu přiložených článků na konci komentáře.
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Chapter 1

Introduction

For successful application of up-to-date mathematical techniques to a real-life prob-
lem, we usually need to build a mathematical model of the reality. On this model, the
mathematical computation is proceeded, and the obtained results are consequently
interpreted back in the original setting of the real-life problem. To acquire reasonable
outcomes, we need to work with mathematical models that reflect the crucial parame-
ters of the modeled reality. Here, we are facing the essential problem of modeling. On
the one hand, the more accurate (closer to reality) mathematical model we are using,
the more relevant results we obtain. On the other hand, the more accurate models we
produce, the more demanding computations we need to apply. Hence, the goal is to
balance between the traps lurking in the extremes — the too imprecise models that
lead to easily achievable results with low practical relevance, and the too complex
models that yield precise but hardly computable results.

In this thesis, we focus on stochastic real-time models. The probabilistic modeling
is useful when we have some quantified uncertainty about the modeled system. Usu-
ally, the probabilistic models are used as a compact representation of a large system,
the assigned probabilities correspond to expected frequencies of particular types of
behavior. E.g., instead of modeling millions of customers with individual requests,
we build one probabilistic request generator. Lots of systems also operate in real-time
and thus have to work properly under various time constrains. E.g., industrial manu-
facturing robots works in an uncertain environment (possible delays in the preceding
processes) with a varying time of its own processes (due to changes in the temperature
or the material quality) but still they have to satisfy certain conditions required by the
subsequent product line robots. Typical models for such systems studied in the com-
puter science are timed automata extended with a stochastic behavior, or stochastic
processes supplemented with real-time constraints. In some models, the probabilis-
tic and real-time aspects are structurally separated, e.g., the probabilities are assigned
to transitions leading to subsequent states but the time aspect of the behavior in the
particular states of the model is fully deterministic (i.e., non-stochastic). We consider
systems where the timing is stochastic. In more detail, there are probability distribu-
tions on the waiting times in the model states. We are especially interested in models
where both discrete and continuous distributions on waiting times occur.

Another feature that is often present in real-word examples is nondeterminism, i.e.,

3



uncertainty without any statistical information. Nondeterminism also naturally oc-
cures when we aim to synthesize an efficient controller of a system. Nondeterminism
in stochastic systems is studied in Markov decision processes or in stochastic games.
Stochastic real-time systems with nondeterminism are modeled in stochastic games on
timed automata or continuous-time stochastic games with timed-automata objectives.

1.1 Motivation Example

Even if it is not usual, let us start with my personal experience that truly motivated
my research in this field of stochastic real-time systems. A few years ago, one of my
colleagues (working on a research position in a multinational company) brought up a
simple task to be solved.

Example 1.1.1 Let us have an unreliable communication between an air traffic control center
and an aircraft. A request message is sent to the aircraft, and the air traffic control center waits
for its response. As the communication is unreliable, there has to be a timeout after which the
message is considered to be lost, and subsequent action has to be taken by the air traffic control
authority. The crucial task for a communication protocol designer is to find the best delay
time for the timeout when taking into account all technical parameters of the communication,
namely a probability distribution on the response time.

One would expect that this problem can be more or less easily solved for a given
particular instance when all the system parameters are known and given. Unfortu-
nately, the company did not want to disclose their data and other details of the model.
They were interested in a tool solving all such questions. Therefore, we reformulated
this specific example into a more general computer scientific problem:

Example 1.1.2 Let us have a finite-state event-driven system where the events arise after ran-
domly distributed delays. In the system, we allow using both continuous and discrete probabil-
ity distributions on delays. First, we are interested in the system analyses. Later we would like
to algorithmically synthesize (near-)optimal parameters for selected probability distributions
concerning a given objective.

We realized that this had been an interesting open problem that is fairly challeng-
ing. We spent around eight years solving it, and this thesis summarizes all the already
achieved results during the research.

1.2 Outline

The remaining part of the commentary is divided into four chapters. In the first chap-
ter, all the modeling formalisms used in the collected papers are presented in a unified
way. To improve understanding of the relevant results, equivalent or closely relevant
formalisms are demonstrated in Chapter 3. In Chapter 4, all the results of the collected
papers are readily overviewed. The last chapter lists all the papers of the collection.
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Chapter 2

Preliminaries

The systems we are interested in can be naturally described by modeling formalisms of
a large class of event-driven systems. An event-driven system passively waits in one
of its states and reacts to events that are emitted by an environment. The first emitted
event changes the state of the system, what can retroactively lead to a change of the
environment, e.g., when entering the new state, some events of the environment could
be enabled or disabled. In our case, we consider the stochastic behavior of events, i.e.,
for each event, there is a probability distribution specifying the time it needs to be
enabled before it is emitted. In what follows, we consider discrete-state event-driven
systems (DES) that have finitely many states and evolve in stochastic time [CL08]. DES
can be described in a large number of formalisms. First, we introduce the formalisms
in a context of (Markov) processes that we are using in most of our papers. In the
next chapter, we explain how these classes correspond to other related formalisms
modeling DES.

2.1 Generalized Semi-Markov Processes and Their Subclasses

The most general concept of (Markov) processes is a generalized semi-Markov process
(GSMP) [Mat62] that very precisely corresponds to DES. In GSMP, we have a set of
states and a set of events. To each state, there is assigned a subset of events that are
enabled in the state. Each event has an event-time distribution specifying the probability
on time the event needs to be enabled before it occurs. The time evolves in a state until
the first event occurs. Note that several events may occur at the same time.1 Once a set
of events E occurs in a state s, the process traverses a transition to a subsequent state.
The subsequent state is chosen randomly according to a transition distribution specify-
ing the probability on the subsequent states. The transition distribution depends only
on s and E. Hence, the transition can be drawn as a hyperedge that starts from s, is
labeled with E, and leads to all states with positive probability in the corresponding
transition distribution.

The dynamics of GSMP starts in an initial state s0 (that is either explicitly specified
or given by an initial distribution on states). Immediately, an occurrence time is as-

1This happens with zero probability if the event-time distributions are continuous.
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signed to each of the events enabled in s0 according to its event-time distribution. Let
t be the minimal time assigned, and E be the set of all events to which the time t was
assigned. The process stays in the initial state for time t, i.e., until the occurrence of
the first event(s). Then the process moves to a state s′ that is chosen according to the
transition distribution for s0 and E. In s′, the occurrence times of events are updated
in the following way:

• for the old events — that were enabled in s but they are not enabled in s′ — the
times are discarded,

• the inherited events — that are enabled in both s and s′ (excluding those of E) —
remain scheduled to the same time point, i.e., the times to their occurrences are
subtracted by t,

• the new events — the remaining events enabled in s′ — are newly scheduled,
i.e., their times to occurrences are freshly chosen according to their event-time
distributions.

Now again, the minimal occurrence time and the set of minimal events are selected,
and the process goes similarly ahead. We call a configuration the state of GSMP sup-
plemented by the times to occurrences assigned to all the enabled events.

To deal with GSMP rigorously, one has to impose some restrictions on the event-
time distributions. In what follows, two special types of events are often used —
exponential and fixed-delay. Fixed-delay events have constant event-time distributions,
i.e., they occur after a given constant time with probability one, and so they come
in useful when modeling timeouts. Exponential events have exponential event-time
distributions, hence, due to the memoryless property of exponential distribution, they
can be newly scheduled after each move (even if they are inherited) without any effect
on the model behavior [Nor98]. Now, we can define that a configuration is regenerative
if and only if the occurrence times for all enabled non-exponential events are newly
scheduled, i.e., there is no “truly-inherited” event.

In the following, we define some useful subclasses of GSMP.

Markov regenerative processes (MRP) are GSMP where from each reachable con-
figuration a regenerative configuration is reached with probability one [Smi55].

Semi-Markov processes (SMP) are GSMP with regenerative configurations only,
i.e., all occurrence times of enabled events are newly scheduled according to the event-
time distributions after each move between states [Mat62, LHK01].

Continuous-time Markov chains (CTMC) are GSMP where all event-time distribu-
tions are exponential distributions. Note that due to Markov property of exponential
distributions, all configurations of a CTMC are regenerative [Nor98].

fixed-delay CTMC (fdCTMC) are GSMP with exponential or fixed-delay events
only [KKŘ14].
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Figure 2.1: Hierarchy of GSMP subclasses with respect to their expressive power.

CTMC with alarms (ACTMC) are GSMP where at most one event with a non-
exponential event-time distribution is assigned to each state [BDK+17a].

one-fixed-delay CTMC (1-fdCTMC) are fdCTMC where at most one fixed-delay
event is assigned to each state [BKK+15]. Note that this is the common part of fd-
CTMC and ACTMC.

Discrete-time Markov chains (DTMC) are GSMP where all events are fixed-delay
events with the same delay time (and each event is enabled in at most one state).
Note that any GSMP with only discrete event-time distributions can be equivalently
expressed as a DTMC [Nor98].

Hierarchy of the above-mentioned subclasses with respect to their expressive
power is depicted in Figure 2.1. For more details see, e.g., [Kor17].

2.2 Performance Measures and Rewards

This section comes up with a short overview of basic properties and measures that we
are studying on stochastic systems. For more complex properties, we refer to model-
checking results for continuous stochastic logic (CSL) [ASSB00, BHHK03].

There are two types of analysis: transient and long-run. The basic properties of
transient analysis are reachability property expressing the probability that a given tar-
get state is reached and time-bounded reachability expressing the probability that it is
reached in a given amount of time. In the long-run analysis, the focus is concentrated
on the infinite behavior of the analyzed system, and the results refer to frequencies
of visits to particular states. In particular, for each state s, we can define the discrete
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frequency of visits ds and the timed frequency of visits cs by

ds = lim
n→∞

No. of visits to s in first n steps
n

cs = lim
t→∞

time spent in s up to t
t

.

For CTMC these limits are known to be almost-surely well-defined. We show that for
some fdCTMC models these frequencies are almost-surely undefined. Such models
are called unstable and it has no sense to compute such frequencies in there. More
details are explained in Section 4.1.

To obtain a single-number characterization, we use the concept of rewards (also
called costs when the reward values should be negative). Rewards are values assigned
to particular transitions and states. The transition reward is counted whenever the
transition is traversed. The state reward is understood as a reward for a time unit;
hence, when being counted, they are multiplied by the time spent in the visited state.
The transient analysis usually computes the average reward accumulated before a target
state is reached. Typical measure studied in the long-run analysis is the expected reward
obtained per time unit on an infinite run.

2.3 Decision Processes and Games

It may also happen that some transition distributions or some event-time distributions
are not known. E.g., the events can model reactions with an environment that is out
of our control, or the model design is not completed and the remaining distributions
are the subject of further construction. In the latter case, the goal is to synthesize the
unknown distributions such that they will maximize our profit (depending on what
transient or long-run property we are interested in). Contrary, if the unknown part of
the model is completely out of our control, we are assuming adversarial control and
compute the profit of the worst case scenario. Both of these systems are traditionally
called decision processes (or one-player games). When some unspecified parts are
under our control and some of them are considered to be adversarial, we apply the
game theoretical approach and look for game equilibria.

This context allows for a unified view of the wide range of game modifications of
the DES modeling formalisms.

2.3.1 Unspecified Transition Distributions (“where”)

Let us have a model where some for some states the transition distributions are un-
known. We call such states decision states. Note that it would be too powerful to be
able to assign an arbitrary transition distribution to a decision state (this will, for ex-
ample, allow for immediate skip to an arbitrary state of the model). Hence, the transi-
tion distributions are not completely unknown in the decision states. The are actions —
candidate transition distributions. Hence, what is unspecified in a decision state is just
which of the actions will be chosen. In the game terminology, we are looking for strate-
gies — functions that choose a particular action in each decision state. Strategies could
be pure (when we are choosing one action each time) or mixed (when a probabilistic
choice on actions is allowed). Strategies could also be memoryless (if it is a function of
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the current state only) or history-dependent (if it can depend on all the history of the
current execution). Note that strategies depend just on states (not on configurations
where the timing of future events is stored) [HHK16].

Now, we can define a Markov decision process (MDP) [Kal97, Put94] as a DTMC with
decision states. Note that if we commit to some (memoryless) strategy in an MDP, all
the transition distributions are specified, and we obtain a DTMC. Our contribution to
the synthesis of optimal MDP strategies is described in Section 4.5.

Similarly, we can introduce decision states to CTMC. In a decision state, there are
actions instead of events and transition distributions. Whenever a decision state is
visited, an action has to be chosen according to a strategy. The chosen action then
determines to what state the run goes on. Note that in the decision states there is no
time-flow and so the decision is considered to be taken immediately when the decision
state is visited. By this we obtain continuous-time Markov decision process (CTMDP)
[Put94, GHL09]2.

When the decision states of CTMDP are divided between two players, we obtain
a continuous-time stochastic game (CTG) [Bel57, FV96, BFK+13]. Finally, we define gen-
eralized semi-Markov game (GSMG) [BKK+10] as a GSMP extended with decision states
of two players. Our contribution to solving GSMG is explained in Section 4.2.

2.3.2 Unspecified Event-Time Distributions (“when”)

Note that in all above-mentioned approaches the strategies decide in zero time be-
tween finitely many options where to go next. Now we would like to discuss situa-
tions where the event-time distributions are the subject of the decision. An easy ex-
ample of such a decision process is the delay time synthesis task from our motivation
examples of Section 1.1, i.e., in our GSMP there are some fixed-delay events whose
delay times would be synthesized. Our results solving this problem are discussed in
Section 4.4.

A bit more complicated exemplification of unspecified event-time distributions is
based on a compositional approach that is natively present in labeled transition sys-
tems with synchronization. The unspecified event can be understood as a transition
synchronized with an environment. Labeled transition systems are combined with
CTMC in interactive Markov chains (IMC) [HK09]. Therefore, IMC is a CTMC where
some event-time distributions are not specified, and such events represent labeled
transitions waiting for synchronization with an external IMC component running in
parallel. Hence, the strategy resolving the unspecified delay-time distributions is the
newly constructed external IMC component. We report on our contribution to this
field in Section 4.3.

To sum up, in this chapter, we have introduced GSMP, GSMG, IMC, fdCTMC,
aCTMC, and MDP, that are all the modeling formalisms we are studying in the col-
lected paper.

2An alternative definition of CTMDP is that the actions are events and the player chooses what events
are active in the decision state. Here, the actions are stochastic transitions to subsequent states, where
the events are again active.
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Chapter 3

Related Modeling Formalisms

The area of results related to the studied topic is very wide due to a long time of
interest and various approaches to modeling and analyzes of probabilistic systems. To
show a clear overview of the known results, we introduce other modeling formalisms
that are in several contexts used to model DES. We also note how the formalisms relate
to the subclasses of GSMP introduced in the previous chapter.

3.1 Queues

The simplest model of the event-driven systems is the classical model of queues. The
goal of this model is to manage randomly arriving tasks that are supposed to be pro-
cessed by one or more servers dedicated to the queue. The tasks are arriving according
to an exactly specified probability distribution. When a task arrives, it is stored in
the queue and waits to a free server to be assigned to. When assigned, the task is
processed by the server. The processing takes a random time. The basic parameters
of a queue are specified by Kendall notation [Ken53] A/S/n/B/K where the particular
parameters are:

A – inter-arrival time distribution (D - deterministic, M - exponential, G - general);

S – service time distribution (D - deterministic, M - exponential, G - general);

n – number of servers (1, 2, . . . ,∞ );

B – buffer size (1, 2, . . . ,∞), the default value is∞; and

K – population size (1, 2, . . . ,∞), the default value is∞.

For example, D/M/1/5 identifies a queue with a constant inter-arrival time, say 15
seconds, exponentially distributed service time, say with a rate λ = 0.1, one server,
and five slots for the managed tasks. Hence, every 15 seconds a new task comes. If
there is a free space, the task is placed in the queue. If all five slots are occupied, the
new-coming task is ignored. The very first task in the queue is being processed by the
server what takes a random exponentially-distributed time (the expected service time
is 10 seconds, if λ = 0.1). When the task is done, it is taken out of the queue, and all
the tasks waiting in the queue are shifted forward.
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Queues can be connected and form a gueueing network (QN) where done tasks of
a queue can be sent as an input to some subsequent queue(s). Bounded queues are
expressible in GSMP with finitely many states, while the unbounded queues require
countably many states in GSMP. Depending on the used distribution types (D, M, or
G), the queueing networks are expressible in particular subclasses of GSMP allowing
fixed-delay events, exponential events, or general events, respectively.

Thanks to the massive application of QN in practice, even very specific results are
of great interest. The most important analysis of queues (as well as QN) are focused
on long-run properties like the expected queue length, the utilization factor (portion
of the server working time vs. idle time), expected waiting time of a task in the queue,
and the probability of ignoring a task (when a bounded queue is full). For more results
we refer, e.g., to [GSTH08, BGdMT06, CY01].

3.2 Stochastic Variants of Petri Nets

Petri net is a well established formalism [Pet62] with a long lasting history and a large
number of applications. Formally, Petri net is a bipartite directed multigraph with
two type of nodes — places and transitions1. Places represent sources and are usually
depicted by circles. Transitions represent operations and are depicted by bars. Each
edge connects a place and a transition. Places from where there are edges to a partic-
ular transition are called input places of the transition. Similarly, each transition has
its output places. The dynamics of a Petri net is modeled by tokens that are assigned
to the places and moved according to the transitions. The assignments of tokens to
places are called markings. A Petri net starts in an explicitly defined initial marking. A
transition, say t, is called enabled if each of its input places has at least as many tokes
as the number of edges leading from them to t. If a transition is enabled, it can be
fired what removes tokens from the input places and puts them to the output places
(multiplicity of edges corresponds to the number of effected tokens).

Petri nets are native models of concurrency. When there are more transitions en-
abled in a marking, the fired one is chosen nondeterministically. In our context of
stochastic-time behavior, the nondeterminism is solved by stochastic times assigned to
transition. Each enabled transition spends a random heating time before it is fired. If all
the heating times are assigned according to continues distributions, the nondetermin-
ism is solved with probability one. Depending on the types of assigned heating-time
distributions, we obtain different variants of Petri nets.

Stochastic Petri nets (SPN) were independently introduced in [Mol82, Nat80,
Sym80] as timed Petri nets where all the heating times are exponentially distributed. It
is not surprising that this formalism is Markovian and so equivalent2 to CTMC. Later,
Generalized stochastic Petri nets (GSPN) [MCB84] were defined as SPN extended with
immediate transitions that are practical when writing a readable model. On the other

1Note that the transitions are not edges but special nodes here.
2Note that in Petri nets, the set of reachable markings could be easily infinite. Hence, to be precise,

we need to restrict ourselves to bounded Petri nets (those with finitely many reachable markings). The
same holds for the following discussed PN classes and their relations to the corresponding subclasses of
finite-state GSMP.
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hand, immediate transitions do not increase the expressive power of SPN, as GSPN
was shown to remain equivalent to CTMC [MCB84]. Deterministic and stochastic Petri
nets (DSPN) [MC86] are SPN extended with transitions of fixed-delay heating times,
hence, they correspond to the fdCTMC class. Omitting all restrictions yields to ex-
tended stochastic Petri nets (ESPN) [DTGN84] where distributions of arbitrary types are
allowed for firing times. ESPN is the counterpart to GSMP. As this class is too general
for any reasonable analysis, Markov regenerative SPN (MRSPN) [DTGN84] are imme-
diately defined as a counterpart to MRP. To complete the list, there are also Generalized
Timed Petri Nets (GTPN) [Mol85, HV85] where only fixed firing times are allowed.
GTPN correspond to GSMP with fixed-delay events only; hence, they closely relate to
DTMC.

For more details concerning stochastic Petri net models and their correspondence
to Markov processes, we refer to [Mol81, Mar88, Haa02, Krč14, Kor17]. For an up-to-
date overview of model-checking results for the class of MRSPN, see [PHV16].

3.3 Stochastic Timed Automata

Another approach to modeling DES is to take the classical timed automata (TA) [AD94]
and extend them with a stochastic behavior.

Timed automata are finite-state automata extended with special variables called
clocks. Clocks evolve continuously and synchronously in time. A run of a timed au-
tomaton starts in a given initial state and all clocks are set to 0. The states are changed
by transitions3 that can be, on the one hand, constrained to particular clock values and,
on the other hand, they can cause reset of some clocks. In more detail, each transition
(with a source state, a label, and a target state) is assigned a clock guard and a set of
clocks R. The clock guards are conjunctions of lower or upper bounds on the clock
values, and the transition can be proceed only when its clock guards are fulfilled. If
the transition is proceeded, all clocks of the assigned set R are reset. Reset of a clock is
an assignment that sets the clock value to 0. Note that there are two sources of nonde-
terminism — delays and transition choices, i.e., for how long time the automaton will
stay in a state and what transition it will proceed.

Stochastic timed automata (STA) are TA where both delays and transition choices
are made randomly [KNSS00, BBB+07, BBB+14]. Intuitively, for a state, we will first
randomly choose a delay among all possible delays, then we will randomly choose
a transition among those which are enabled after the delay. There are some natural
(but very technical) restrictions on the delay distributions, e.g., they have to be posi-
tive (only) on times when there is some outgoing transition enabled. The distribution
among enabled transitions is resolved by assigned weights; the probability then re-
spects the weights assigned to the enabled transitions.

The class of STA roughly corresponds to GSMP. The relation is not as straightfor-
ward as in the case of GTPN. Note that in STA a clock can constrain many subsequent
transitions without any reset. Contrary, when an event occurs in a GSMP (and initiates
a transition), it is rescheduled or reset in the subsequent state. Moreover, the transition

3Here, the transitions are again labeled edges in the graph representation of the automaton.
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(b) Three states of GSMP with events efd1, efd4, and e

that mimic the state of Figure 3.1a. The bold numbers
are transition probabilities.

Figure 3.1: GSMP states representing an STA state.

distribution in STA is defined by the weights of the enabled transitions after the delay
time, i.e., it does not depend on the winning event, but on the delay time. Hence, to
mimic a clock of an STA in a GSMP, we sometimes need more states and more events.
Let us demonstrate that on the example of Figure 3.1 where, for one STA state with a
clock c, we need three states and three events in the corresponding GSMP. Note that
in the STA the transition going down is enabled only for c ≤ 1, the transition going
right is enabled only for c > 5, and the self-loop is always enabled. In the GSMP coun-
terpart, we need three states representing separately the behavior in the time intervals
(0, 1), (1, 5), and (5,∞). The transitions between the three states are triggered be fixed-
delay events efd1 and efd4 that are set to delays 1 and 4, respectively4. The event-time
distribution function of the event e equals the delay distribution of the STA state.

Similarly to unstable GSMP, also STA have some unintended behavior. First, there
are Zeno runs that were considered already on (non-stochastic) TA [GB07]. A Zeno run
proceeds infinitely many transitions in a finite period of time. Intuitively, this hap-
pens when the delay times get shorter and shorter such that their infinite sum is finite.
Zeno runs are also in STA, but they have probability 0 (unless the underlying timed
automaton is inherently Zeno) [BBB+14]. Other intended property of runs is fairness.
A run is fair if every transition which is enabled infinitely often is taken infinitely of-
ten. STA with unfair runs of positive probability are studied in [BBB+08]. The relation
between fairness in STA and decisiveness in Markov chains is shown in [BBBC18].

Various restrictions of STA are assumed to obtain subclasses where the runs are
almost-surely fair. For example, one-clock STA [BBBM08, BBB+08] with only one clock
variable, or reactive STA [BBJM12] that can have arbitrary many clocks but the distribu-
tions on delays have positive density on all non-negative real values. One player and
two player games on reactive STA with exponentially distributed delays are studied
in [BF09, BS12]. Up-to-date results concerning model checking of various STA sub-
classes are summarized in a unified notation in [BBB+14, BBBC18]. The compositional
design based on STA was recently studied in [BBCM16].

Concerning other stochastic extensions of TA, there are also probabilistic timed au-

4In this example, we assume that the delay distribution function in the STA state is continues. Other-
wise, we need to discuss the cases when c = 1 and c = 5.
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tomata [KNSS99, KNSS02] where discrete probability distributions are assigned to the
transitions leaving particular states. Such distributions effect which of the enabled
transitions is proceeded. Contrary to STA, the time-respective behavior remains non-
deterministic and is considered to be controlled by an adversarial player. Up-to-
date results for synthesis and games on probabilistic timed automata can be found
in [FKNT16, JKNP17].

3.4 Process Algebraic Approach

Many other modeling formalisms arise as a stochastic extension of process algebras
(PA) [BPS01] such as Milner’s CCS [Mil89] or Hoare’s CSP [Hoa85]. The key fea-
ture of the PA approach is compositionality, hence, it is natural that IMC (discussed
in Section 2.3.2) belong to this family of formalisms defined on the algebraic base.
The most used formalism of this family is performance evaluation PA (PEPA) [CGHT07]
that has exponentially distributed action delays. Each PEPA model can be trans-
lated to an equivalent CTMC, hence, all algorithms for CTMC can be successfully
applied on PEPA. General distribution delays are discussed in generalized semi-
Markov process algebra [BBG98], calculus for interactive GSMP [BG02], prioritized
stochastic automata [BD04], stochastic process algebra [DK05b], stochastic automata
[DK05a, DGHS18], and the modeling and description language for stochastic timed
systems MoDeST [BDHK06]. To sum up, the stochastic process algebras can be viewed
as high-level specification formalisms corresponding to CTMC, GSMP, and their non-
deterministic extensions.
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Chapter 4

Thesis contribution

In the collection, the papers are ordered chronologically from [P1] published in 2010
to [P11] published in 2017. Here, we explain the results rearranged to five logical
blocks. In the first one, we comment the results published in [P2], [P3], and [P5],
that relates to GSMP analysis and discuss stability of the GSMP models. This is the
only block with fully stochastic models, in all the others we study decision processes
or games. Section 4.2 is devoted to GSMG with objectives specified by deterministic
timed automata [P1]. Then we focus on compositional approach and study games on
interactive Markov chains published in [P4]. In Section 4.4, we demonstrate our results
on parameter synthesis in CTMC extended with some non-Markovian events. Such
contributions were presented in [P6], [P7], [P8], [P9], and [P10]. Finally, we comment
construction of so-called resilient strategies for MDP models introduced in [P11].

4.1 Analysis of Generalized Semi-Markov Processes

In this section, we focus on the analysis of GSMP, i.e., the most general class. In
[P3], we show fundamental instability that can occur in GSMP models. It was a sur-
prise that allowing only two fixed-delay events and one variable-delay event may
cause an unstable behavior of a GSMP. In particular, in an unstable GSMP there
are states for which both ds and cs frequencies may not be defined for almost all
runs. Note that there had been already presented approximation algorithms com-
puting these quantities on GSMP [ACD91, ACD92] or some approximation tech-
niques were proposed to analyze GSMP without questioning existence of a result,
e.g., [DTGN84, Lin93, GL94, LS96, LRT99, HTT00, ZFGH00, ZFH01, SDP03, CGV09].
In more detail, we realized that the traditional region-graph representation of reach-
able configurations of the unstable GSMP models fails in two fundamental principles:

• It’s no longer true that with probability one each run ends in one of the bottom
strongly connected components of the region-graph.

• It’s no longer true that with probability one each run will visit all nodes of such
a bottom strongly connected component infinitely often.

We demonstrate this on two simple examples, and so we disprove the correctness of
the verification algorithms presented in [ACD91, ACD92].
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The problem of non-stable GSMP models lies in fixed-delay events that can im-
mediately schedule themselves whenever they occur; such an event can occur period-
ically like ticking of clocks. Hence, we define a syntactically restricted GSMP class,
called one-ticking GSMP. Roughly speaking, in one-ticking GSMP we allow to have at
most one periodically ticking sequence of fixed-delay events. In the context of the hi-
erarchy depicted in Figure 2.1, we can note that all MRP models are one-ticking GSMP,
but a one-ticking GSMP model is not necessarily regenerative.

We show that all one-ticking GSMP models are stable, i.e., the frequencies ds and
cs are always well defined for all of their states. We also show that the frequencies
can be computed not only for the one-ticking GSMP states but also for states of a
deterministic TA “observer” of the one-ticking GSMP. Finally, we provide algorithms
for approximation of these frequencies.

The above-mentioned results were published in [P3]. The positive results were
previously published in a weaker variant for SMP in [P2]. We also reformulated the
negative result for the community working with Petri nets and published it as a short
paper in [P5]. Our stability results are also closely relevant to almost-sure fairness in STA
(every edge which is enabled infinitely often is taken infinitely often almost surely)
[BBB+08] and to decisive Markov chains [AHM07]. Concerning up-to-date results, we
refer to [BBBC18] where, among others, the positive results of [P3] are presented in
context of stochastic transition systems that represents a unified view on STA, GSMP,
and GTPN. Finally, it is worth to note that deciding whether a GSMP is stable (or STA
is almost-surely fair) is still an open problem.

4.2 Generalized Semi-Markov Games

Our first contribution to this field is the definition of the generalized semi-Markov
game (GSMG) [P1], the two-player game extension of GSMP. It was introduced as a
generalization of continuous-time stochastic games [BFK+13, RS10], whose event-time
distributions are only exponentially distributed.

Here, we describe GSMG in more detail as a GSMP that after each event-driven
transition goes to a game state, called control, belonging to one of the two players. In
each control, the particular player chooses one of the available actions that randomly
lead to subsequent GSMP states. The controls and the actions are considered to be
performed instantly, i.e., the time passes in the GSMP states only. We also assume that
all event-time distributions are continuous with positive density on one interval of
time values. As the fixed-delayed events are not allowed in here, we are not afflicted
with the instability discussed in the previous section.

On GSMG, we study game objectives specified by a deterministic timed automaton
(DTA) [ACD92]. Intuitively, a timed automaton “observes” a play of a given GSMG
and checks whether certain timing constraints are satisfied, or not. Player I wins all
plays that are accepted by the timed automaton, and player II wins the others.

Namely, we show that in this setting player I does not need to have an optimal
strategy. However, if player I has some almost-sure winning strategy, then she also
has an almost-sure winning strategy which can be encoded by a deterministic timed
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automaton A. The automaton A reads the history of a play, and the decisions depend
only on the regions of the resulting configuration entered by A. Further, we provide
an exponential algorithm that decides the existence of such a strategy and constructs
it if it exists.

Our constructions and proofs are combinations of standard techniques (used for
timed automata and finite-state games) and some new non-trivial observations that
are specific to the considered model. We also adapt some ideas presented in [ACD92]
(in particular, we use the concept of δ-separation). Although the results of [P1] con-
sider only reachability acceptance of the DTA observer, they were easily extended to
DTA with a Büchi acceptance condition in the PhD thesis of Jan Krčál [Krč14].

4.3 Interactive Markov Chains

Let us recall (see Section 2.3.2) that Interactive Markov chains (IMC) are composi-
tional behavioral models extending both labeled transition systems and continuous-
time Markov chains. In fact, they are CTMC where some event-time distributions are
not specified, and such events are rather seen as labels ready for synchronization with
an environment. The compositional approach assumes that the labels are synchro-
nized with the corresponding labels in some components running in parallel. IMC
have a well-understood compositional theory, rooted in the process algebra [BPS01],
and are in use as semantic backbones for dynamic fault trees [BCS10], architectural de-
scription languages [BCH+08, BCK+11], generalized stochastic Petri nets [HKNZ10]
and Statemate [BHH+09] extensions, and are applied in a large spectrum of practical
applications, ranging from networked hardware on chips [CHLS09] to water treat-
ment facilities [HKR+10] and ultra-modern satellite designs [EKN+12].

The main advantage of IMC is the compositionality, which allows for comfortable
hierarchical design and analysis of systems. When a label is considered only for syn-
chronization among internal subcomponents of an IMC, it can be hidden for external
synchronization using a hiding operator. An IMC where all labels are hidden is called
closed. Let us call internal interactions all the transitions representing synchronization
based on hidden labels. External interactions will stand for communication with other
components. Based on this, we can introduce the maximal-progress assumption gov-
erning the interplay of event delays and labeled interactions of an IMC component:
Internal interactions are assumed to happen instantaneously and therefore take prece-
dence over delay transitions. This does not hold for the external interactions that
stand for synchronization with other components; hence, they could be delayed. Note
that a closed IMC is not necessarily fully stochastic, there still could be more internal
transitions leading from a state, what we call the internal nondeterminism. The non-
determinism caused by an external interaction is called external nondeterminism.

In [P4] we analyze open IMC, i.e., those that are not necessarily closed. In par-
ticular, we introduce the problem of synthesizing optimal control for time-bounded
reachability in an IMC interacting with an unknown environment, provided no state
has both internal and external interaction. In our game based analysis of an open IMC
C, we assume that the internal non-determinism of C is resolved by Player I, who
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controls C. The Player II constructs an IMC E representing the environment (syn-
chronized by common non-hidden labels with C) and resolves the non-determinism
caused by external interactions. We solve the problem of finding ε-optimal schedulers
for Player I using the established method of discretization, give bounds on the size of
the game to be solved for a given ε, and thus construct an upper complexity bound
for the problem.

To the best of our knowledge, in [P4] we present the first analysis that is focused on
open IMC. The games we consider exploit special cases of the games studied in [BF09]
and in [P1]. However, both papers prove decidability only for qualitative reachability
problems and do not discuss compositionality issues. Further, while systems of [RS11,
BFK+09] are very similar to ours, the structure of the environment is fixed there and
the verification is thus not compositional. The same holds for [Spr11, HNP+11], where
time is under the control of the components.

Follow-up results were published in [HKK13], where the IMC component repre-
senting the environment is restricted by a modal continuous time automaton. This
allows to omit our constraint forbidding common internal and external interactions,
and thus it enables the first truly compositional verification. The results were also
applied in dynamic fault tree analysis [KK15, BBH+16]. Our result uses the approxi-
mation scheme of [NZ10] that was subsequently improved by [HH15]. A distributed
synthesis for more IMC components running in parallel was studied in [HKV16]. Up-
to-date research on compositional stochastic real-time systems is currently also de-
veloped in the SBIP (Stochastic real-time Behavior, Interaction, Priority) framework
[NBB+15, MNB+18]. Based on our results for open IMC, the compositional design of
stochastic systems was also studied on stochastic timed automata [BBCM16].

4.4 Synthesis of Delays in fdCTMC

In this section we concentrate on CTMC extended with fixed-delay events (fdCTMC).
First, we study whether it makes sense to do this research whenever there is a

phase-type fitting technique [Neu81] that is able to approximate generally distributed
events by CTMC models. In [P6], we focused on distributions that are known to re-
quire an excessive number of states to reach a reasonably precise approximation by the
phase-type technique. Typical examples of such distributions are uniform, discrete,
and shifted distributions. The shifted distribution is, for example, a packet-delivery
time — there is some physical bound on the delivery time; hence, the packet is deliv-
ered earlier than this bound with zero probability. Note that the hardly approximated
distributions can be characterized by intervals of zero density. Addressing this class
of distributions, we suggest an alternative approximation. Contrary to phase-type fit-
ting, we also allow the use of fixed-delay events, i.e., we are approximating the models
by fdCTMC instead of CTMC. Using fixed-delay events, we split the density function
into multiple intervals and, within each interval, we then approximate the density
with standard phase-type fitting. We call this technique interval phase-type (IPH) ap-
proximation. We provide experimental evidence that our IPH method requires only a
moderate number of states to approximate distributions with regions of zero density.
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The usage of IPH approximation is supported by some techniques for fdCTMC analy-
sis (e.g., the subordinated Markov chain method originally published for the equiva-
lent DSPN class [Lin93]). Let us recall that some fdCTMC models can be unstable (see
Section 4.1) and so the analysis techniques are usually applicable only to subclasses
such as MRP, ACTMC, or 1-fdCTMC. Note that using IPH approximation for ACTMC
models leads to 1-fdCTMC models. Thus, our results promise an efficient approach to
the analysis of a class of non-Markovian models and support further research on MRP
or 1-fdCTMC.

In the subsequent research, we concentrate on parameter synthesis in 1-fdCTMC.
In more detail, we consider the parametric version of 1-fdCTMC where the delay times
of fixed-delay events are specified by parameters, rather than concrete values. Our
goal is to synthesize the values of these parameters that optimize the specified objec-
tive. As an objective, we first deal with expected reward accumulated before reaching
a given target, then we study long-run average reward optimization.

4.4.1 Delay Synthesis for Expected Accumulated Reward Objective

In [P7] we published an algorithm solving this problem by reduction to a finite MDP
whose actions correspond to discretized (i.e., rounded to a finite mesh) delay times in
the individual states. On such an MDP we apply standard polynomial time algorithm
for the synthesis of the optimal delays. The most non-trivial part is to prove that the
delays may be discretized, i.e., for each ε > 0, we can compute a sufficiently small
discretization step which guarantees that the optimal solution of the finite MDP is an
ε-optimal solution for the original fdCTMC. We show that naive rounding of a near-
optimal delay may cause arbitrarily high absolute error. Our solution, based on rather
non-trivial insights into the structure of 1-fdCTMC models, avoids this obstacle by
identifying “safe” delays that may be rounded with an error bounded (exponentially)
in the size of the system. This leads to an exponential time algorithm for solving the
optimization problem.

We experimentally implemented the proposed technique in our repository branch
of the PRISM model checker [KNP11] and evaluated it on some examples. The re-
sults were published in [P8]. During the experiments, we realized that most of the
computation time was spent by the construction of the discretized MDP, and even for
some very small examples, the discretized MDP exceeded our 448 GiB RAM memory.
The problem was not in the number of states of the MDP but in the huge number of
actions that correspond to suitably discretized values of the delays. Hence, we de-
signed a symbolic synthesis algorithm which avoids the explicit construction of the
large action spaces. Instead, the algorithm computes small sets of “promising” can-
didate actions on demand. The candidate actions are selected by minimizing a cer-
tain objective function. Technically, this is done by computing its symbolic derivative
and extracting a univariate polynomial whose roots are precisely the points where
the derivative takes zero value. Since roots of high degree univariate polynomials
can be isolated very efficiently using modern mathematical software (such as Maple
[B+12]), we achieve not only drastic memory savings but also speedup by three orders
of magnitude compared to the previous method. We demonstrated that our algorithm
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(experimentally implemented in PRISM with an external us of Maple) can synthesize
delays for non-trivial models of large size (with more than 20000 states). This signifi-
cant improvement was published in [P9].

4.4.2 Delay Synthesis for Long-Run Average Reward Objective

Here we concentrate on long-run average reward optimization. Finally, our successful
approach is also based on a reduction to the problem of finding optimal strategies in
a symbolically represented decision process, but it is not a straightforward extension.
We need to use semi-Markov Decision Processes instead of MDP, and the discretiza-
tion bounds for the expected accumulated reward cannot be directly employed here,
as the long-run average objectives relay on fractions of expected accumulated rewards
and timings. More details are published in [P10] where we, moreover, present the re-
sult not for 1-fdCTMC, but for (more general) ACTMC models. It is worth mentioning
that our experimental evaluation shows the applicability of the method on a case study
where the goal is to minimize the power consumption of a disk drive [P10].

4.4.3 Follow-up Work

An extended version of [P10] has been recently accepted for publication in ACM
Transactions on Modeling and Computer Simulation. In the journal version, we pro-
long the list of supported non-exponential alarm distributions in ACTMC and also
discuss solutions for ACTMC with non-localized alarms. Alarms are non-localized
whenever we want to synthesize the same delay-time distribution for an event no
matter in what state it is scheduled. This approach requires to use partially observ-
able semi-MDP and appropriate methods to find optimal strategies for them. The
non-localized delays in the context of expected accumulated rewards are also briefly
discussed in [P7]. For more details, we refer to [Kor17] where all the results of this
section are presented for ACTMC with both localized and non-localized alarms.

4.5 MDP with Resilient Control

The last contribution [P11] is devoted to models of repair mechanisms in resilient sys-
tems represented by MDP. Repair mechanisms in resilient systems have to maintain
the system in an operational state after an error occurred. Usually, constraints on the
repair mechanisms are imposed, e.g., concerning the time or resources required (such
as energy consumption or other kinds of costs). For systems modeled by MDP, we
introduce the concept of resilient schedulers, which represent control strategies guar-
anteeing that these constraints are always met within some given probability. Techni-
cally, for a given resource bound R and a probability threshold p, we call a scheduler
resilient if the scheduler ensures for every error a recovery within at R resources with
probability at least p. Assigning rewards to the operational states of the system, we
then aim towards resilient schedulers which maximize the long-run average reward,
i.e., the expected mean payoff. We present a pseudo-polynomial (polynomial when R
is encoded in unary) algorithm that decides whether a resilient scheduler exists and
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if so, yields an optimal resilient scheduler. We also show that already the decision
problem asking whether there exists a resilient scheduler is PSPACE-hard.

The key technical ingredients of our results are non-trivial observations about
the structure of resilient schedulers, which connect the studied problems to the
existing works on MDPs with multiple objectives and optimal strategy synthesis
[Kal97, EKVY08, BBC+14]. The PSPACE-hardness result is obtained by a simple re-
duction of the cost-bounded reachability problem in acyclic MDPs [HK15].

23



24



Chapter 5

Papers in Collection

[P1] T. Brázdil, J. Krčál, J. Křetı́nský, A. Kučera, and V. Řehák. Stochastic real-time
games with qualitative timed automata objectives. In CONCUR 2010 : 21nd In-
ternational Conference on Concurrency Theory, volume 6269 of Lecture Notes in Com-
puter Science, pages 207–221. Springer, 2010. [BKK+10]

• Author’s contribution: participating mainly on discussions concerning the
problem formulation and possible solutions.

[P2] T. Brázdil, J. Krčál, J. Křetı́nský, A. Kučera, and V. Řehák. Measuring perfor-
mance of continuous-time stochastic processes using timed automata. In HSCC
2011 : International Conference on Hybrid Systems: Computation and Control, pages
33–42. ACM, 2011. [BKK+11]

• Author’s contribution: participating mainly on discussions concerning the
problem formulation and possible solutions.

[P3] T. Brázdil, J. Krčál, J. Křetı́nský, and V. Řehák. Fixed-delay events in general-
ized semi-Markov processes revisited. In CONCUR 2011 : 22nd International Con-
ference on Concurrency Theory, volume 6901 of Lecture Notes in Computer Science,
pages 140–155, Heidelberg, Germany, 2011. Springer. [BKKŘ11]

• Author’s contribution: participating on discussions, bringing the unstable
models for Theorem 1 and Theorem 2, participating on writing.

[P4] T. Brázdil, H. Hermanns, J. Krčál, J. Křetı́nský, and V. Řehák. Verification of
open interactive Markov chains. In IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS 2012), volume 18 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 474–485, Dagstuhl,
Germany, 2012. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. [BHK+12]

• Author’s contribution: bringing the topic, discussion with Holger Her-
manns, participating on problem formulation and partially also on all other
phases.
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[P5] T. Brázdil, L’. Korenčiak, J. Krčál, J. Křetı́nský, and V. Řehák. On time-average
limits in deterministic and stochastic Petri nets. In ACM/SPEC International Con-
ference on Performance Engineering, ICPE’13, pages 421–422. ACM, 2013. (Poster
paper.) [BKK+13]

• Author’s contribution: participating on all phases including poster presen-
tation.

[P6] L’. Korenčiak, J. Krčál, and V. Řehák. Dealing with zero density using piecewise
phase-type approximation. In EPEW 2014: Computer Performance Engineering,
volume 8721 of Lecture Notes in Computer Science, pages 119–134. Springer, 2014.
[KKŘ14]

• Author’s contribution: supervising the research, significant contribution to
the experimental evaluation.

[P7] T. Brázdil, L’. Korenčiak, J. Krčál, P. Novotný, and V. Řehák. Optimizing perfor-
mance of continuous-time stochastic systems using timeout synthesis. In Quanti-
tative Evaluation of Systems, 12th International Conference, QEST 2015, volume 9259
of Lecture Notes in Computer Science, pages 141–159. Springer, 2015. [BKK+15]

• Author’s contribution: bringing the topic, participating on all phases.

[P8] L’. Korenčiak, V. Řehák, and A. Farmadin. Extension of PRISM by synthesis of
optimal timeouts in fixed-delay CTMC. In Integrated Formal Methods - 12th Inter-
national Conference, IFM 2016, volume 9681 of Lecture Notes in Computer Science,
pages 130–138. Springer, 2016. [KŘF16]

• Author’s contribution: supervising the research, significant participation
on all phases.

[P9] L’. Korenčiak, A. Kučera, and V. Řehák. Efficient timeout synthesis in fixed-delay
CTMC using policy iteration. In 24th IEEE International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems, MASCOTS
2016, pages 367–372. IEEE, 2016. [KKŘ16]

• Author’s contribution: supervising the research, significant participation
on all phases.

[P10] C. Baier, C. Dubslaff, L’. Korenčiak, A. Kučera, and V. Řehák. Mean-payoff
optimization in continuous-time Markov chains with parametric alarms. In
Quantitative Evaluation of Systems - 14th International Conference, QEST 2017, vol-
ume 10503 of Lecture Notes in Computer Science, pages 190–206. Springer, 2017.
[BDK+17a]

• Author’s contribution: supervising the research, significant participation
on all phases, writing some technical proofs.
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[P11] C. Baier, C. Dubslaff, L’. Korenčiak, A. Kučera, and V. Řehák. Synthesis of optimal
resilient control strategies. In Automated Technology for Verification and Analysis -
15th International Symposium, ATVA 2017, volume 10482 of Lecture Notes in Com-
puter Science, pages 417–434. Springer, 2017. [BDK+17b]

• Author’s contribution: proportional participation on all phases.
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and topological semantics for timed automata. In FSTTCS 2007: Founda-
tions of Software Technology and Theoretical Computer Science, 27th Interna-
tional Conference, New Delhi, India, December 12-14, 2007, Proceedings, vol-
ume 4855 of Lecture Notes in Computer Science, pages 179–191. Springer,
2007.

[BBB+08] C. Baier, N. Bertrand, P. Bouyer, T. Brihaye, and M. Größer. Almost-sure
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real-time games with qualitative timed automata objectives. In CONCUR
2010 : 21nd International Conference on Concurrency Theory, volume 6269 of
Lecture Notes in Computer Science, pages 207–221. Springer, 2010.
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[GB07] R. Gómez and H. Bowman. Efficient detection of zeno runs in timed au-
tomata. In Formal Modeling and Analysis of Timed Systems, 5th International
Conference, FORMATS 2007, Salzburg, Austria, October 3-5, 2007, Proceed-
ings, volume 4763 of Lecture Notes in Computer Science, pages 195–210.
Springer, 2007.

[GHL09] X. Guo and O. Hernández-Lerma. Continuous-Time Markov Decision Pro-
cesses, volume 62 of Stochastic Modelling and Applied Probability. Springer,
Berlin, Heidelberg, 2009.

[GL94] R. German and C. Lindemann. Analysis of stochastic Petri nets by the
method of supplementary variables. Perform. Eval., 20(1-3):317–335, 1994.

[GSTH08] D. Gross, J.F. Shortle, J.M. Thompson, and C.M. Harris. Fundaments of
Queueing Theory. Wiley, Hoboken, New Jersey, USA, 4th edition, 2008.

[Haa02] P.J. Haas. Stochastic Petri Nets: Modelling, Stability, Simulation. Springer,
New York, NY, USA, 2002.

[HH15] H. Hatefi and H. Hermanns. Improving time bounded reachability com-
putations in interactive Markov chains. Sci. Comput. Program., 112:58–74,
2015.

[HHK16] A. Hartmanns, H. Hermanns, and J. Krčál. Schedulers are no prophets.
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ing piecewise phase-type approximation. In EPEW 2014: Computer Per-
formance Engineering, volume 8721 of Lecture Notes in Computer Science,
pages 119–134. Springer, 2014.
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