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Abstract

The thesis begins with a commentary part where I describe the broader context of
the presented work. This is followed by two more parts that illustrate the evolution
of my research in biomedical discovery informatics from text- and ontology-based
solutions to predictive models based on relational machine learning. These latter
parts are a collection of previously published works.

Discovery informatics is a loosely defined area of computer science that pri-
marily aims at providing solutions to the information overload problem. More
specifically, discovery informatics research tries to come up with new, more effi-
cient ways of acquiring, integrating, organising, augmenting and utilising informa-
tion and knowledge from data sets that are typically large, heterogeneous, poorly
structured, fast-evolving, unreliable—or, in other words, realistic. These character-
istics are arguably relevant to virtually any domain of human activity nowadays.
However, they are particularly pertinent to life sciences.

The presented work has been motivated chiefly by the following instances of
the information overload problem in life sciences: 1. The vast and ever-growing
breadth and depth of published articles that can hardly be utilised in a focused and
exhaustive manner. 2. The untapped potential of networked biomedical resources
for making discoveries.

My solutions to the first specific challenge were based on advances in ontology
learning, population and integration. My more recent research motivated by the
second challenge has been about enabling new discoveries by applying relational
machine learning to link prediction in networked biomedical datasets.

The presented works have been internationally recognised, garnering over 70
citations in the Web of Science database (and roughly three times as many in Google
Scholar). Moreover, the research reported in one of the included publications was
awarded the 2nd prize in the Elsevier Grand Challenge in Knowledge Enhancement
in Life Sciences, where we won $15,000 prize money in a tough competition of
over 70 teams from world-renowned institutions like Stanford or Carnegie Mellon
University. Another publication reports predictions of previously unknown protein
interactions in cancer pathways that were then observed in living human cells—
a strong real-world validation of my work. Last but not least, research reported
in the last part of the thesis has been taken up for commercial development by
Fujitsu Laboratories Limited and led to five patents (two pending, three granted
in the USPTO, EPO and/or Japan jurisdictions). That clearly demonstrates also
the industrial relevance of my work.

The core of the thesis are nine previously published works (7 high-impact jour-
nal articles, 2 A-ranked conference papers). I have been the first author of 4 of
them, and senior author of the rest. I have conceptualised and coordinated the
research that has led to all the publications, and substantially contributed to each
of them (either in terms of implementation of the corresponding prototype, devis-
ing validation methodology and pilots, manuscript writing and/or editing, funding
acquisition and overall coordination, or combination thereof).
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Chapter 1

Introduction

Automating discoveries has recently been touted as one of the foremost

upcoming challenges for computer science [10]. However, the challenge is

far from new. Already decades ago, some research communities were trying

hard to come up with computational approaches that could assist people in

the process of turning data to information, and to knowledge [3].

According to later works like [5] or [8], such efforts can be conveniently

grouped under a common label—discovery informatics. In [8], this field is

succinctly defined as a discipline of applied computer science that aims at:

i) formal description of the entire scientific process, amenable to machine

understanding and processing; ii) design, development, and evaluation of

computational artifacts based on such formalisation; iii) application of the

resulting artifacts to advance science, either in a fully automated or machine-

aided manner.

This thesis tracks the evolution of my discovery informatics research

vision over the last 13 years, and can be classified as a coherent collection

of previously published works that explore various applied AI approaches to

specific problems. All these problems are, however, motivated by one of two

high-level information overload challenges in life sciences:

1. The vast and ever-growing breadth and depth of published articles

that can hardly be utilised in a focused and exhaustive manner.

2. The untapped potential of networked biomedical resources for making

discoveries.

My solutions to the first specific challenge were based on advances in ontol-

ogy learning, population and integration [26]. My more recent research mo-

tivated by the second challenge has been about enabling new discoveries by
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applying knowledge graph embeddings [25] to link prediction in networked

biomedical datasets.

The rest of the thesis is organised as follows:

• In the remainder of this commentary part, I first introduce the overall

concept of the presented research and discuss the most essential related

approaches (Section 2). Then I describe my specific contributions

(Section 3) and review the impact of the works included in the thesis

(Section 4).

• Part II presents three of my published works that aim at making life

science literature search more efficient and truly knowledge-based by

means of text mining and ontology learning.

• Part III presents six of my published works that pave the way towards

using knowledge graph embeddings for making discoveries about drugs,

proteins and other biomedical entities of practical interest.
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Chapter 2

Overall Concept and Related

Work

This chapter consists of two sections where I describe the overall concept of

the presented work. This reflects the specific focus of each of the two parts

that list the corresponding detailed publications later on. In each section

here, I also give a brief overview of the most relevant related works (details

are then given in the particular included publications).

2.1 Semantic Literature Search Enabled by Ontol-

ogy Learning

Bringing scientific publishing largely online in the last decades has made

knowledge production and dissemination much more efficient than before.

The publication process is faster, since the essential phases like authoring,

submission, reviewing, and final typesetting are largely computerised. More-

over, the published content is easily disseminated to global audiences via the

Internet. In effect, more and more knowledge is being made available.

However, the big question is whether all this hypothetically available

knowledge is also truly accessible? In our works [19, 17, 16], we claimed

the answer to this question is negative, and we showed how this particu-

lar instance of the information overload problem could be alleviated in the

context of life science publishing.

As of 2009, Medline, a comprehensive source of life sciences and biomed-

ical bibliographic information (available via the PubMed search engine, cf.

https://pubmed.ncbi.nlm.nih.gov/), hosted over 18 million resources. It
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had a growth rate of 0.5 million items per year, which represented around

1,300 new resources per day [23]. Using contemporary publication search

engines, one could explore the vast and ever-growing article repositories us-

ing relevant keywords. But this was very often not enough. Imagine for

instance a junior researcher compiling a survey on various types of leukemia

(example taken from [17]). The researcher wants to state and motivate in

the survey that acute granulocytic leukemia is different from T-cell leukemia.

Although such a statement might be obvious to a life scientist, one should

support it in the survey by a citation of a published paper. Our researcher

may be a bit inexperienced in oncology and may not know the proper ref-

erence straightaway. Using, e.g., the PubMed search service, it is easy to

find articles that contain both leukemia names. Unfortunately, one can find

hundreds of such results. It is tedious or even impossible to go through them

all to discover one that actually supports that acute granulocytic leukemia

is different from T-cell leukemia.

The problem was that asking queries more expressive than (boolean com-

binations of) mere keywords was virtually impossible. My work presented

in [17, 16] addressed this problem by technologies that can operate at an en-

hanced level, using more expressive concepts and their various relationships.

This required collecting, extracting, and interrelating knowledge scattered

across large numbers of available life science publications. For that we used

the groundwork set forth in one of my earlier works on automated ontology

population via text mining [19], and also a distributional semantics frame-

work we introduced in [18].

2.1.1 Overview of Related Work

The first publication [19] included into this thesis deals with biomedical on-

tology population by new knowledge extracted from textual resources. It

defines several practical requirements on an implementation of such type of

knowledge integration (namely the ability to process texts and incorporate

the contents extracted from them automatically, and resolve potential in-

consistencies based on user-defined preferences). While books like [6] or [22]

and other, more focused works offered potentially applicable solutions back

then, none of them satisfied all the requirements defined in the article. This

motivated the development presented there.

The second and third included publication [17, 16] describe two differ-

ent solutions for knowledge-based search in biomedical literature, where the
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queries can express rather complex semantics going beyond key-words and

their Boolean combinations. From the end-user’s point of view, which is

arguably the crucial perspective in this context, these publications were, at

that time, most related to works like FindUR [12], Melisa [1], GoPubMed [4]

or Textpresso [13]. The award-winning CORAAL tool described in [17] ad-

dressed the major limitation and scalability bottleneck of the contemporary

state of the art systems—their dependence on manually provided ontologies

enabling the semantic search—by extracting the ontologies automatically.

The SKIMMR tool [16] then improved CORAAL by using our new distribu-

tional semantics framework [18] as the underlying knowledge representation,

and by general streamlining of the original technology and front-end moti-

vated by the simple, yet powerful metaphor of machine-aided skim reading.

2.2 Automating Discoveries via Knowledge Graph

Embeddings

While letting people search in publications more efficiently can no doubt

facilitate progress in life sciences, it cannot directly lead to new discoveries.

Therefore, in the more recent stage of my research career, I decided to come

up with new approaches that could address this problem.

Complex biological systems can be conveniently modelled as networks

of interconnected biological entities [2]. Such networks can then be con-

verted into so called knowledge graphs [7], which are lightweight representa-

tions of interlinked knowledge that mitigate many disadvantages of the more

traiditional, logics-based ontologies. Owing to their simple design principles,

knowledge graphs are robust, and easy to create and maintain, which makes

them readily available in practical applications. Yet they are also sufficiently

well formalised to support many machine learning and inference tasks, such

as relation extraction, link prediction or knowledge base completion [25].

Until as recently as 2017, however, the potential of knowledge graphs

in the field of biomedical informatics had been largely unexplored. For

instance, our work [14] is arguably the first approach that addresses the

problem of discovering adverse drug reactions using knowledge graphs (a

substantially extended version [15] of this paper is included here).

My recent works included in Part III of this thesis build on the ini-

tial success reported in [14]. More specifically, they show how as diverse

problems as discovering adverse drug reactions, polypharmacy side effects,

protein drug targets or cancer signalling reactions can be solved simply by
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casting them as a link prediction task, and solving that task by means of

knowledge graph embeddings [25]. This essentially consists of learning low-

rank vector representations of the knowledge graph nodes and edges that

preserve the graph’s inherent structure. Efficient prediction of new possible

links in the original graph using the trained model can in turn lead to new

discoveries in the domain the graph represents, as detailed in the particular

works included in the thesis.

2.2.1 Overview of Related Work

Various research communities have been trying to apply advanced machine

learning techniques to biomedical use cases for well over a decade now. For

instance, [28] or [11] came up with state of the art models for predicting

adverse drug reactions using sophisticated applications of supervised ma-

chine learning. Polypharmacy side effect prediction by relational learning

on graph data was investigated in [29]. Competitive machine learning models

for prediction of protein drug targets were recently introduced for instance

in [21] or [24]. And approaches like [9] or [27] dealt with combining biologi-

cal background knowledge and general-purpose machine learning and other

AI methods to discover signalling protein interactions.

The success of most of these methods, however, was dependent on care-

fully crafted datasets, lots of extensive (and expensive) manual feature en-

gineering, limited flexibility of the predictive pipelines and/or impractical

training times. Motivated by these challenges, the research groups I have

been coordinating since 2015 have been coming with an increasingly re-

fined approach based on knowledge graph embeddings. This eventually

allowed for targeting many discovery tasks with essentially one method—

largely automated conversion of relevant datasets into the knowledge graph

form and consequent application of an off-the-shelf relational learning model

to achieve state of the art performance. These results, as well as exhaus-

tive lists of related approaches, are described in detail by a series of works

included in Part III of the thesis.
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Chapter 3

Specific Contributions

This chapter reviews the published works included in the thesis, provid-

ing a brief summary of each in a dedicated section (typically based on the

abstract of the corresponding publication). I also list my specific personal

contributions to each of the works here.

3.1 Semantic Literature Search Enabled by Ontol-

ogy Learning

3.1.1 Ontology Population and Evolution

The first specific contribution of my research I present in this thesis is based

on the following journal article:

• Vı́t Nováček, Loredana Laera, Siegfried Handschuh, and Brian Davis.

Infrastructure for dynamic knowledge integration—automated biome-

dical ontology extension using textual resources. Journal of biomedical

informatics, 41(5):816–828, 2008.

The article is a direct follow-up of my master’s thesis in ontology learn-

ing. It describes the final results of Knowledge Web, an EU Network of

Excellence, in which I coordinated a work package on ontology evolution

during my research internship and, later on, early PhD studies at the DERI

institute of National University of Ireland Galway. More specifically, in the

article we present a novel ontology integration technique that explicitly takes

the dynamics and data-intensiveness of e-health and biomedicine application

domains into account. Changing and growing knowledge, possibly contained

in unstructured natural language resources, is handled by application of
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cutting-edge Semantic Web technologies. In particular, semi-automatic in-

tegration of ontology learning results into a manually developed ontology is

employed. This integration relies on automatic negotiation of agreed align-

ments, inconsistency resolution and natural language generation methods.

Their novel combination alleviates the end-user effort in the incorporation

of new knowledge to large extent. This allows for efficient application in

many practical use cases, as we show in the paper.

I personally contributed to the publication in the following ways:

• I conceptualised the reported research and coordinated the correspond-

ing work.

• I implemented a substantial portion of the presented research proto-

type.

• I designed, performed and interpreted a validation study for the pro-

totype.

• I wrote the manuscript.

3.1.2 Semantic Literature Search

The second specific contribution of my research I present in this thesis is

based on the following journal article:

• Vı́t Nováček, Tudor Groza, Siegfried Handschuh, and Stefan Decker.

Coraal—dive into publications, bathe in the knowledge. Web Se-

mantics: Science, Services and Agents on the World Wide Web, 8(2-

3):176–181, 2010.

The article describes our award-winning prototype Coraal. This research

was motivated by the shortcomings of prevalent search engines used in on-

line scientific publishing that mostly exploit raw publication data (bags of

words) and shallow metadata (authors, key words, citations, etc.). Making

use of the knowledge contained implicitly in published texts is still largely

not utilised. Following our long-term ambition to take advantage of such

knowledge, we have implemented CORAAL (COntent extended by emeR-

gent and Asserted Annotations of Linked publication data), an enhanced-

search prototype and the second-prize winner of the Elsevier Grand Chal-

lenge. CORAAL extracts asserted publication metadata together with the

knowledge implicitly present in the relevant text, integrates the emergent
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content, and displays it using a multiple-perspective search&browse inter-

face. This way we enable semantic querying for individual publications, and

convenient exploration of the knowledge contained within them. In other

words, recalling the metaphor in the article title, we let the users dive into

publications more easily, and allow them to freely bathe in the related un-

locked knowledge.

I personally contributed to the publication in the following ways:

• I conceptualised the reported research and coordinated the correspond-

ing work.

• I implemented a substantial portion of the presented research proto-

type.

• I designed, performed and interpreted a validation study for the pro-

totype.

• I wrote the manuscript.

3.1.3 Distributional Semantics in Semantic Literature Search

The third specific contribution of my research I present in this thesis is based

on the following journal article:

• Vı́t Nováček and Gully APC Burns. Skimmr: Facilitating knowledge

discovery in life sciences by machine-aided skim reading. PeerJ, 2:e483,

2014.

The article describes a prototype facilitating the process of skim-reading

scientific publication via automatically generated, interlinked graphical sum-

maries. This research improved the previous contribution (i.e., the Coraal

prototype) by reworking the internal knowledge representation mechanism

from scratch, using a distributional semantics framework I developed in the

final stage of my PhD research. I also simplified the user interface and user

interaction modes based on extensive feedback from various sample users of

my research prototypes.

Unlike full reading, “skim-reading” involves the process of looking quickly

over information in an attempt to cover more material whilst still being able

to retain a superficial view of the underlying content. Within this work, we

specifically emulate this natural human activity by providing a dynamic
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graph-based view of entities automatically extracted from text. For the ex-

traction, we use shallow parsing, co-occurrence analysis and semantic simi-

larity computation techniques. Our main motivation is to assist biomedical

researchers and clinicians in coping with increasingly large amounts of po-

tentially relevant articles that are being published ongoingly in life sciences.

To construct the high-level network overview of articles, we extract

weighted binary statements from the text. We consider two types of these

statements, co-occurrence and similarity, both organised in the same distri-

butional representation (i.e., in a vector-space model). For the co-occurrence

weights, we use point-wise mutual information that indicates the degree of

non-random association between two co-occurring entities. For computing

the similarity statement weights, we use cosine distance based on the rele-

vant co-occurrence vectors. These statements are used to build fuzzy indices

of terms, statements and provenance article identifiers, which support fuzzy

querying and subsequent result ranking. These indexing and querying pro-

cesses are then used to construct a graph-based interface for searching and

browsing entity networks extracted from articles, as well as articles relevant

to the networks being browsed. Last but not least, we describe a methodol-

ogy for automated experimental evaluation of the presented approach. The

method uses formal comparison of the graphs generated by our tool to rel-

evant gold standards based on manually curated PubMed, TREC challenge

and MeSH data.

We provide a web-based prototype (called “SKIMMR”) that generates

a network of inter-related entities from a set of documents which a user

may explore through our interface. When a particular area of the entity

network looks interesting to a user, the tool displays the documents that

are the most relevant to those entities of interest currently shown in the

network. We present this as a methodology for browsing a collection of

research articles. To illustrate the practical applicability of SKIMMR, we

present examples of its use in the domains of Spinal Muscular Atrophy and

Parkinson’s Disease. Finally, we report on the results of experimental evalu-

ation using the two domains and one additional dataset based on the TREC

challenge. The results show how the presented method for machine-aided

skim reading outperforms tools like PubMed regarding focused browsing and

informativeness of the browsing context.

I personally contributed to the publication in the following ways:

• I conceptualised the reported research and coordinated the correspond-

ing work.
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• I implemented the presented research prototype.

• I designed, performed and interpreted a validation study for the pro-

totype.

• I wrote the manuscript.

3.2 Automating Discoveries via Knowledge Graph

Embeddings

3.2.1 Injecting Axioms into Knowledge Graphs

The fourth specific contribution of my research I present in this thesis is

based on the following conference paper:

• Pasquale Minervini, Luca Costabello, Emir Muñoz, Vı́t Nováček, and

Pierre-Yves Vandenbussche. Regularizing knowledge graph embed-

dings via equivalence and inversion axioms. In Joint European Con-

ference on Machine Learning and Knowledge Discovery in Databases,

pages 668–683. Springer, 2017.

The paper presents a method for augmenting predictive models that

are based on essentially statistical relational machine learning with sym-

bolic knowledge in the form of logics-based axioms. While the application

context and validation of the method presented in the paper is not specifi-

cally targeted at the domain of life sciences, it nevertheless presents a solid

formal groundwork for injecting background knowledge into statistical pre-

dictive models trained purely from relational data. Thus it is an important

stepping stone towards models that can be made more accurate and/or fo-

cused on concrete biological or clinical use cases via selected bits of domain

knowledge provided by experts.

As to the method itself, it explores symbolic augmentation of knowledge

graph embedding models. Learning embeddings of entities and relations into

low-rank continuous vector spaces using neural architectures is an effective

method of performing statistical learning on large-scale relational data, such

as knowledge graphs. In this paper, we consider the problem of regularising

the training of neural knowledge graph embeddings by leveraging external

background knowledge. We propose a principled and scalable method for

leveraging equivalence and inversion axioms during the learning process, by
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imposing a set of model-dependent soft constraints on the predicate embed-

dings. The method has several advantages: (i) the number of introduced

constraints does not depend on the number of entities in the knowledge

base; (ii) regularities in the embedding space effectively reflect available

background knowledge; (iii) it yields more accurate results in link predic-

tion tasks over non-regularized methods; and (iv) it can be adapted to a

variety of models, without affecting their scalability properties. We demon-

strate the effectiveness of the proposed method on several large knowledge

graphs. Our evaluation shows that it consistently improves the predictive

accuracy of several neural knowledge graph embedding models (for instance,

the MRR of TransE on WordNet increases by 11%) without compromising

their scalability properties.

I personally contributed to the publication in the following ways:

• I helped to conceptualise the reported research and coordinated the

corresponding work.

• I performed the formal analysis of specific approaches to injecting the

selected axioms into the three embedding models we chose for validat-

ing the concept.

• I wrote the corresponding draft sections of the manuscript, commented

on the overall structure and contents and edited the final version.

3.2.2 Prediction of Adverse Drug Reactions

The fifth specific contribution of my research I present in this thesis is based

on the following journal article:

• Emir Muñoz, Vı́t Nováček, and Pierre-Yves Vandenbussche. Facilitat-

ing prediction of adverse drug reactions by using knowledge graphs and

multi-label learning models. Briefings in bioinformatics, 20(1):190–202,

2019.

This article is the first major work where we demonstrated the potential

of knowledge graphs for solving practically relevant biomedical discovery

informatics challenges via off-the-shelf, efficient machine learning methods.

More specifically, the article deals with the problem of predicting adverse

drug reactions (ADRs). Timely identification of ADRs is highly impor-

tant in the domains of public health and pharmacology. Early discovery

of potential ADRs can limit their effect on patient lives and also make
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drug development pipelines more robust and efficient. Reliable in silico

prediction of ADRs can be helpful in this context, and thus, it has been

intensely studied. Recent works achieved promising results using machine

learning. The presented work focuses on machine learning methods that

use drug profiles for making predictions and use features from multiple data

sources. We argue that despite promising results, existing works have limi-

tations, especially regarding flexibility in experimenting with different data

sets and/or predictive models. We suggest to address these limitations by

generalisation of the key principles used by the state of the art. Namely,

we explore the effects of: (1) using knowledge graphs—machine-readable in-

terlinked representations of biomedical knowledge—as a convenient uniform

representation of heterogeneous data; and (2) casting ADR prediction as a

multi-label ranking problem. We present a specific way of using knowledge

graphs to generate different feature sets and demonstrate favourable per-

formance of selected off-the-shelf multi-label learning models in comparison

with existing works. Our experiments suggest better suitability of certain

multi-label learning methods for applications where ranking is preferred.

The presented approach can be easily extended to other feature sources or

machine learning methods, making it flexible for experiments tuned toward

specific requirements of end users. Our work also provides a clearly defined

and reproducible baseline for any future related experiments.

I personally contributed to the publication in the following ways:

• I helped to conceptualise the reported research and coordinated the

corresponding work.

• I advised on the selection of training data sets and the process of their

conversion into a knowledge graph form.

• I helped to design the validation study.

• I edited the manuscript.

3.2.3 Integrated Biomedical Knowledge Graph

The sixth specific contribution of my research I present in this thesis is based

on the following conference paper:

• Brian Walsh, Sameh K Mohamed, and Vı́t Nováček. Biokg: A knowl-

edge graph for relational learning on biological data. In Proceedings of

the 29th ACM International Conference on Information & Knowledge

Management, pages 3173–3180, 2020.
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The paper describes a method and a software framework for automated

fetching and integration of a number of widely used biomedical data sets

covering proteins, genes, drugs, chemicals, pathways and their mutual inter-

actions into a common knowledge graph. We also describe various machine

learning benchmark data sets that can be derived from the knowledge graph

and thus support training and validation of manifold models addressing chal-

lenges like drug side effect or protein interaction prediction.

More specific summary of this contribution is as follows. Knowledge

graphs became a popular means for modelling complex biological systems

where they model the interactions between biological entities and their ef-

fects on the biological system. They also provide support for relational

learning models which are known to provide highly scalable and accurate

predictions of associations between biological entities. Despite the success of

the combination of biological knowledge graph and relation learning models

in biological predictive tasks, there is a lack of unified biological knowledge

graph resources. This forced all current efforts and studies for applying a

relational learning model on biological data to compile and build biological

knowledge graphs from open biological databases. This process is often per-

formed inconsistently across such efforts, especially in terms of choosing the

original resources, aligning identifiers of the different databases and assessing

the quality of included data. To make relational learning on biomedical data

more standardised and reproducible, we propose a new biological knowledge

graph which provides a compilation of curated relational data from open

biological databases in a unified format with common, interlinked identi-

fiers. We also provide a new module for mapping identifiers and labels from

different databases which can be used to align our knowledge graph with

biological data from other heterogeneous sources. Finally, to illustrate prac-

tical relevance of our work, we provide a set of benchmarks based on the

presented data that can be used to train and assess the relational learning

models in various tasks related to pathway and drug discovery.

I personally contributed to the publication in the following ways:

• I helped to conceptualise the reported research and coordinated the

corresponding work.

• I advised on the selection of the original biomedical data sets and the

process of their conversion into a knowledge graph form.

• I helped to design the task-specific benchmarks.
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• I edited the manuscript.

3.2.4 Discovering Protein Drug Targets

The seventh specific contribution of my research I present in this thesis is

based on the following journal article:

• Sameh K Mohamed, Vı́t Nováček, and Aayah Nounu. Discovering pro-

tein drug targets using knowledge graph embeddings. Bioinformatics,

36(2):603–610, 2020.

The article shows how state of the art performance in a number of stan-

dard drug target prediction benchmarks can be achieved by a relatively

simple application of a knowledge graph embedding model. More specif-

ically, the article falls under the broad area of computational approaches

for predicting drug–target interactions (DTIs) that can provide valuable

insights into the drug mechanism of action. DTI predictions can help to

quickly identify new promising (on-target) or unintended (off-target) effects

of drugs. However, existing models face several challenges. Many can only

process a limited number of drugs and/or have poor proteome coverage. The

current approaches also often suffer from high false positive prediction rates.

In this work, we propose a novel computational approach for predicting drug

target proteins. The approach is based on formulating the problem as a link

prediction in knowledge graphs (robust, machine-readable representations

of networked knowledge). We use biomedical knowledge bases to create a

knowledge graph of entities connected to both drugs and their potential tar-

gets. We propose a specific knowledge graph embedding model, TriModel,

to learn vector representations (i.e. embeddings) for all drugs and targets in

the created knowledge graph. These representations are consequently used

to infer candidate drug target interactions based on their scores computed by

the trained TriModel model. We have experimentally evaluated our method

using computer simulations and compared it to five existing models. This

has shown that our approach outperforms all previous ones in terms of both

area under ROC and precision–recall curves in standard benchmark tests.

I personally contributed to the publication in the following ways:

• I helped to conceptualise the reported research and coordinated the

corresponding work.

• I advised on the selection of the original biomedical data sets and the

process of their conversion into a knowledge graph form.
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• I helped to design the validation study.

• I edited the manuscript.

3.2.5 Prediction of Kinase-Substrate Networks

The eighth specific contribution of my research I present in this thesis is

based on the following journal article:

• Vı́t Nováček, Gavin McGauran, David Matallanas, Adrián Vallejo

Blanco, Piero Conca, Emir Muñoz, Luca Costabello, Kamalesh Ka-

nakaraj, Zeeshan Nawaz, Brian Walsh, et al. Accurate prediction of

kinase-substrate networks using knowledge graphs. PLoS computa-

tional biology, 16(12):e1007578, 2020.

The article describes a conceptually new computational approach to pre-

diction of signalling protein interactions (phosphorylations). It addresses

the problem from a totally different viewpoint than existing solutions, while

outperforming them in two independent benchmarks, and in laboratory val-

idations. Phosphorylation of specific substrates by protein kinases is a

key control mechanism for vital cell-fate decisions and other cellular pro-

cesses. However, discovering specific kinase-substrate relationships is time-

consuming and often rather serendipitous. Computational predictions al-

leviate these challenges, but the current approaches suffer from limitations

like restricted kinome coverage and inaccuracy. They also typically utilise

only local features without reflecting broader interaction context. To ad-

dress these limitations, we have developed an alternative predictive model.

It uses statistical relational learning on top of phosphorylation networks in-

terpreted as knowledge graphs, a simple yet robust model for representing

networked knowledge. Compared to a representative selection of six existing

systems, our model has the highest kinome coverage and produces biolog-

ically valid high-confidence predictions not possible with the other tools.

Specifically, we have experimentally validated predictions of previously un-

known phosphorylations by the LATS1, AKT1, PKA and MST2 kinases in

human. Thus, our tool is useful for focusing phosphoproteomic experiments,

and facilitates the discovery of new phosphorylation reactions. Our model

can be accessed publicly via an easy-to-use web interface (LinkPhinder).

I personally contributed to the publication in the following ways:

• I conceptualised the reported research and coordinated the correspond-

ing work.
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• I devised and implemented the process of converting site-specific ki-

nase-substrate interaction data into the knowledge graph form and

back.

• I advised on implementing the relational machine learning model for

predicting the signalling reactions.

• I designed, coordinated and interpreted the computational validation

studies for the prototype.

• I wrote the manuscript.

3.2.6 One Method to Rule Them All

The ninth specific contribution of my research I present in this thesis is

based on the following journal article:

• Sameh K Mohamed, Aayah Nounu, and Vı́t Nováček. Biological ap-

plications of knowledge graph embedding models. Briefings in bioin-

formatics, 22(2): 1679–1693, 2021.

The article reviews several of our previous works in a comprehensive

comparison to other related approaches. This is done to present a survey

on solving a broad range of biomedical prediction problems with essentially

one suite of techniques based on knowledge graph embedding models. This

can be done due to the fact that complex biological systems are traditionally

modelled as graphs of interconnected biological entities. These graphs, i.e.

biological knowledge graphs, are then processed using graph exploratory

approaches to perform different types of analytical and predictive tasks.

Despite the high predictive accuracy of these approaches, they have limited

scalability due to their dependency on time-consuming path exploratory

procedures. In recent years, owing to the rapid advances of computational

technologies, new approaches for modelling graphs and mining them with

high accuracy and scalability have emerged. These approaches, i.e. knowl-

edge graph embedding (KGE) models, operate by learning low-rank vector

representations of graph nodes and edges that preserve the graph’s inherent

structure. These approaches were used to analyse knowledge graphs from

different domains where they showed superior performance and accuracy

compared to previous graph exploratory approaches. In this work, we study

this class of models in the context of biological knowledge graphs and their

different applications. We then show how KGE models can be a natural fit
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for representing complex biological knowledge modelled as graphs. We also

discuss their predictive and analytical capabilities in different biology appli-

cations. In this regard, we present two example case studies that demon-

strate the capabilities of KGE models: prediction of drug–target interactions

and polypharmacy side effects. Finally, we analyse different practical con-

siderations for KGEs, and we discuss possible opportunities and challenges

related to adopting them for modelling biological systems.

I personally contributed to the publication in the following ways:

• I helped to conceptualise the reported research and coordinated the

corresponding work.

• I helped to define the scope of the survey and the set of discovery

problems to be covered.

• I edited the manuscript.
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Chapter 4

Impact

This chapter gives a brief overview of the impact of my work in real world,

first in academic and then in industry settings.

4.1 Reception in Academia

The seven articles included in the thesis have been published in interna-

tionally-disseminated peer-reviewed journals with an impact factor ranging

from 1.897 (Web Semantics Journal, Elsevier) to 11.622 (Briefings in Bioin-

formatics, Oxford University Press). The other two works appeared in the

proceedings of ECML-PKDD and CIKM conferences that are both A-ranked

in the CORE conference database.

As of October 2021, the works included in this thesis have been cited by

over 70 other publications according to the Web of Science database. The

number of citations according to the Google Scholar service is roughly three-

times higher. This demonstrates that my research has been acknowledged

by the global scientific community and used in many consequent works that

are pushing the state of the art further.

In terms of other means of academic recognition, I would like to highlight

the following points:

• The work described in [17] has been awarded the 2nd prize in the El-

sevier Grand Challenge in Knowledge Enhancement in Life Sciences,

where we won $15,000 prize money in a tough competition of over

70 teams from world-renowned institutions like Stanford or Carnegie

Mellon University. The competition was judged by world-leading sci-

entists and publishers (such as Eduard H. Hovy, a renowned AI and
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NLP researcher, or Emilie Marcus, then the Editor in Chief of Cell,

one of the most influential journals in the world across any field of

science). The fact that such a prestigious committee considered my

work relevant enough to be awarded the prize was a tremendous vali-

dation of my research vision and the capability to realise it already at

a rather early stage of my career.

• The works described in [17, 16] were used for literature search on a

daily basis by clinicians and by representatives of a large US patient

organisation (Spinal Muscular Atrophy Foundation). Their positive

feedback was another strong signal that I was on the right path in

terms of turning my research into societally relevant services.

• The interdisciplinary character of my research vision has allowed me to

establish a number of fruitful collaborations with biologists, clinicians

and representatives of the pharma industry. Their feedback has been

crucial to motivate my work by actual needs of users who can benefit

from the research outcomes right away. In many cases, these groups

have also provided a strong, realistic validation of my work, which has

been priceless.

• Last but not least, the research reported in this thesis was instrumental

for building a platform I used to successfully acquire funding for my

research groups from various bodies in Europe, USA and Japan. The

total amount of funding directly dedicated to groups I have supervised

corresponds to ca. e1,779,000, or roughly 43.6 million CZK, as of

October 2021. This is yet another confirmation of the international

relevance of the presented research.

4.2 Reception in Industry

I have spent a substantial portion of my post-doctoral career (2012-2019)

coordinating a research group in a large industrial collaboration fully funded

by Fujitsu Laboratories Limited (FLL). FLL has appreciated the relevance

and uniqueness of our research by applying for several patents on our be-

half (6 in total, 5 of which have been related to the research reported in

the publications here, with 3 granted and 2 pending as of October 2021).

More importantly, however, the Fujitsu group’s research scientists, develop-

ers and business units have been taking up our research outcomes. They
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have built dedicated internal teams around our prototypes that have been

commercialising the resulting applications in Japan (for instance, in 2020,

a genomic AI system based on our work was brought to a production stage

by a subsidiary company of the Fujitsu group). This clearly demonstrates a

tangible impact of my research vision not only in academia, but also in the

global corporate world.

More recently, this has been corroborated by my other involvements

within the healthcare, pharma and biotech verticals, such as:

• Serving as an AI consultant in a large oncology hospital (Masaryk

Memorial Cancer Institute).

• A request by the large biotech company QIAGEN to license experi-

mental and prediction data reported in [20] as a part of their pathway

analysis tool.

• An invitation to serve on the Advisory Board of the BioXcel Thera-

peutics, Inc. pharma company.

I expect to be involved in more such dissemination efforts in the future,

which will further help to get my ideas out into the real world.
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a b s t r a c t

We present a novel ontology integration technique that explicitly takes the dynamics and data-intensive-
ness of e-health and biomedicine application domains into account. Changing and growing knowledge,
possibly contained in unstructured natural language resources, is handled by application of cutting-edge
Semantic Web technologies. In particular, semi-automatic integration of ontology learning results into a
manually developed ontology is employed. This integration bases on automatic negotiation of agreed
alignments, inconsistency resolution and natural language generation methods. Their novel combination
alleviates the end-user effort in the incorporation of new knowledge to large extent. This allows for effi-
cient application in many practical use cases, as we show in the paper.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

Ontologies (formal knowledge bases) on the Semantic Web are
often very likely subject to change given the dynamic nature of
domain knowledge. Knowledge changes and evolves over time as
experience accumulates—it is revised and augmented in the light
of deeper understanding; new facts are becoming known while
some of the older ones need to be revised and/or retracted at the
same time. This holds especially for scientific domains, however,
even virtually any industrial domain is dynamic—changes typically
occur in product portfolios, personnel structure or industrial pro-
cesses, which can all be reflected by an ontology in a knowledge
management policy.

The domains of e-health and biomedicine are both scientific
(biomedical research) and industrial (clinical practice, pharmaceu-
tics). The need for ontologies in biomedicine knowledge and data
management has already been recognised by the community.
Ontologies can serve as structured repositories giving a shared
meaning to data and thus making it possible to process and query
them in a more efficient and expressive manner. The shared mean-
ing provided by ontologies also results in facilitation of integration
between different medical data formats once they are bound to an
ontology. Moreover, the state of the art ontology-based techniques

(like alignment or reasoning as described in [39]) can help to
integrate the data even if they adhere to different ontologies.

In the biomedical domain, ontology construction is usually a
result of a collaboration involving ontology engineers and domain
experts, where the knowledge is being extracted and modelled
manually. However, it is not always feasible to process all the rel-
evant data and extract the knowledge manually from domain
resources, since we might not have a sufficiently large committee
of ontology engineers and/or dedicated experts at hand in order
to process new data anytime it arrives. This implies a need for
automation of knowledge extraction and maintenance processes
in dynamic and data-intensive medical environments. If the
knowledge is available in textual resources, ontology learning
(see [33]) can help in this task. Therefore, a lifecycle of an ontology
development process apt for universal application in the medicine
domain should also support appropriate mechanisms for the incor-
poration of dynamically extracted knowledge. In this paper, we
introduce such a lifecycle scenario and a novel solution to the
dynamic knowledge integration task.

Our efforts have several particular motivations. While there has
been a great deal of work on ontology learning for ontology con-
struction, e.g. in [10], as well as on manual or collaborative ontol-
ogy development in [41], relatively little attention has been paid to
the user-friendly integration of both approaches within an ontol-
ogy lifecycle scenario. By user-friendly we mean especially accessi-
ble to users who are not experts in ontology engineering (i.e.
biomedicine researchers or practitioners). In this paper, we
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introduce our framework for practical handling of dynamic and
large data-sets in an ontology lifecycle, focusing particularly on
dynamic integration of learned knowledge into manually main-
tained ontologies. However, the introduced integration mechanism
is not restricted only to learned ontologies—arbitrary ‘‘external”
ontology can be integrated into the primary ontology in question
by the very same process.

The dynamic nature of knowledge is one of the most challeng-
ing problems not only in biomedicine, but in the whole current
Semantic Web research. Here we provide a solution for dealing
with these dynamics on a large scale, based on the properly
developed connection of ontology learning and dynamic manual
development. We do not concentrate on formal specification of
respective ontology integration operators, we focus rather on
implementation of them,
following certain practical requirements:

(1) the ability to process new knowledge (resources) automati-
cally whenever it appears and when it is inappropriate for
human users to incorporate it

(2) the ability to automatically compare the new knowledge
with a ‘‘master” ontology that is manually maintained and
select the new knowledge accordingly

(3) the ability to resolve possible major inconsistencies between
the new and current knowledge, possibly favouring the asser-
tions from presumably more complex and precise master on-
tology against the learned ones

(4) the ability to automatically sort the new knowledge accord-
ing to user-defined preferences and present it to them in a
very simple and accessible way, thus further alleviating hu-
man effort in the task of knowledge integration

On one hand, using the automatic methods, we are able to
deal with large amounts of changing data. On the other hand,
the final incorporation of new knowledge is to be decided by
the expert human users, repairing possible errors and inappropri-
ate findings of the automatic techniques. The key to success and
applicability is to let machines do most of the tedious and time-
consuming work and provide people with concise and simple
suggestions on ontology integration.

The main contribution of the presented work is two-fold:

� proposal and implementation of a generic algorithm for
dynamic integration of knowledge automatically extracted from
various unstructured resources (e.g., natural language articles or
web pages) into manually maintained formal ontologies
(described in Sections 4 and 5)

� presentation of an example application of the implemented
algorithm in a task of biomedical ontology extension by inte-
grating knowledge automatically learned from textual domain
resources, showing usability of the approach in the context of
the presented use cases (Section 6)

The rest of the paper is organized as follows: Section 2 gives
basic overview of the essential notions and background of the
paper, together with respective relevant references. Section 3
discusses the related work. Section 4 gives an overview of our
ontology lifecycle scenario and framework, whereas Section 5
presents the integration of manually designed and automatically
learned ontologies in more detail. In Section 6, we describe an
example practical application of our integration technique, using
real world input data (from the biomedicine research domain).
Preliminary evaluation and its discussion is also provided.
Section 7 outlines relevant real-world settings, challenges and
contributions our framework can bring in these contexts. A

related user feedback analysis is provided in Section 7, too. Sec-
tion 8 summarises the paper and future directions of the pre-
sented research.

2. Key notions

In the following list we give a brief description of the essential
notions that are relevant for the presented content and describe
how they relate to the field of bioinformatics:

� Semantic Web—the Semantic Web initiative is generally about
giving a formal shared meaning to the data present on the nor-
mal world wide web in order to make them fully accessible and
‘‘comprehensible” by machines, not only by humans (see [5]).
However, the technologies that have been developed within
Semantic Web research are applicable to many other fields. In
the case of bioinformatics, biomedical data management and
decision support, we can exploit for instance Semantic Web
methods of intelligent and efficient knowledge representation,
reasoning, data integration or knowledge management.

� ontology—according to a popular definition in [24], ontology is a
representation of shared conceptualisation. As such, ontologies
are used for formal representation of knowledge in particular
domains, i.e. various subfields of biomedicine.

� ontology integration—the process of merging, consolidating and
respective analysis and modification of two or more ontologies
into one (integrated) ontology (see [38]). The process can be
either manual or (semi)automatical.

� ontology learning—acquisition of an ontology from unstructured
or semi-structured natural language text, typically resources rel-
evant for a particular domain (e.g. web pages, articles or other
types of documents). Natural Language Processing and Machine
Learning methods are mostly used as a base for ontology learn-
ing algorithms (see [33]).

� ontology alignment —ontology alignment establishes mappings
between concepts and other entities (e.g. relations or instances)
in two or more ontologies. Either manually designed mappings
(created on the fly or contained in appropriate alignment repos-
itories), or automatically generated ones can be used to align the
ontologies (see [16,18]).

� ontology evolution—development and maintenance of ontologies
in dynamic environments (see [40,36,25]), where the knowledge
needs to be updated on regular basis and changes in the domain
conceptualisation occur often (e.g. science or business domains,
where frequent introduction of new concepts or revision of the
old ones is essential).

� ontology lifecycle—a methodology or scenario, that describes how
the particular phases of the ontology development, maintenance
and possibly also exploitation are mutually connected and
dependent (see [23,34]).

3. Related work

Within the Semantic Web research, several approaches and
methodologies have been defined and implemented in the con-
text of ontology lifecycle and integration. Recent overviews of
the state-of-the-art in ontologies and related methodologies can
be found in [39] and [23]. However, none of them offers a direct
solution to the requirements specified in Section 1.

The Methontology methodology by [19] was developed in the
Esperonto EU project. It defines the process of designing ontologies
and extends it towards evolving ontologies. It is provided with an
ontology lifecycle based on evolving prototypes (see [20]) and
defines stages from specification and knowledge acquisition to
configuration management. The particular stages and their
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requirements are characterised, but rather in a general manner.
The automatic ontology acquisition methods are considered in
Methontology, however, their concrete incorporation into the
whole lifecycle is not covered. The ODESeW and WebODE (see
[9]) projects base on Methontology and provide an infrastructure
and tools for semantic application development/management,
which is in the process of being extended for networked and evolv-
ing ontologies. However, they focus rather on the application
development part of the problem than on the ontology evolution
and dynamic ontology integration parts.

The methods and tools referenced above lack concrete mecha-
nisms that would efficiently deal with the dynamics of realistic
domains (so characteristic for instance for e-health and biomedi-
cine). Moreover, the need for automatic methods of ontology
acquisition in data-intensive environments is acknowledged, but
the role and application of the automatic techniques is usually
not clearly studied and implemented. Our approach described in
[34] offers a complex picture of how to deal with the dynamics
in the general lifecycle scenario. The work we present here
implements the fundamental semi-automatic dynamic integration
component of the scenario.

There are more specific approaches similar to the one presented
by our lifecycle framework. [14] incorporates automatic ontology
extraction from a medical database and its consequent population
by linguistic processing of corpus data. However, the mechanism is
rather task-specific—the ontology is represented in RDF(S) format
(see [6]) that is less expressive than the OWL language (see [4]),
which we use. The extraction is oriented primarily at taxonomies
and does not take the dynamics directly into account. Therefore
the approach can hardly be applied in universal settings, which
is one of our aims.

Protégé (see [22]) and related PROMPT (see [37]) tools are
designed for manual ontology development and semi-automatic
ontology merging, respectively. PROMPT provides heuristic meth-
ods for identification of similarities between ontologies. The simi-
larities are offered to the users for further processing. However, the
direct connection to ontology learning, which we find important
for dynamic and data-intensive domains like e-health and biomed-
icine, is missing.

There are several works addressing directly the topic of ontol-
ogy integration. Alasoud et al. [1] and Calvanese et al. [7] describe
two approaches inspired mainly by database techniques of data
mediation and query rewriting in order to provide integrated (glo-
bal) view on several (local) ontologies. Heflin and Hendler [28]
present web ontology integration method using SHOE, a web-
based knowledge representation language, and semi-automatically
generated alignments. Deen and Ponnamperuma [12] implement a
dynamic and automatic ontology integration technique in multi-
agent environments, based on relatively simple graph ontology
model inclusions and other operations. Again, none of the ap-
proaches tackles the requirements we specify in Section 1. Even
though the methods propose solutions to the integration problem
in general, there is no direct way how to integrate knowledge from
unstructured resources, minimising human intervention. Further-
more, there is no emphasis on accessibility of the ontology integra-
tion to the laymen users. Our approach is distinguished by the fact
that it pays special attention to these features, which we find
essential for the application in e-health and/or bioinformatics.

4. DINO—a dynamic ontology lifecycle scenario

Our integration platform is a part of a broader lifecycle scenario
(see [34]). We refer to both lifecycle and integration platform by
the DINO abbreviation, evoking multiple features of our solution:
it reflects three key elements of the lifecycle scenario—Dynamics,

INtegration and Ontology; however, the first two parts can also be
Data and INtensive; finally, DINO can be read as Dynamic INtegra-
tion of Ontologies, too. All these features express the primary aim
of our efforts—to make the knowledge (integration) efficiently
and reasonably manageable in data-intensive and dynamic
domains.

Fig. 1 depicts the scheme of the proposed dynamic and applica-
tion-oriented ontology lifecycle that deals with the problems men-
tioned as a part of our motivations. Our ontology lifecycle builds on
four basic phases of an ontology lifecycle: creation (comprises both
manual and automatic ontology development and update
approaches), versioning, evaluation and negotiation (comprises
ontology alignment and merging as well as negotiation among dif-
ferent possible alignments). The four main phases are indicated by
the boxes annotated by respective names. Ontologies or their snap-
shots in time are represented by circles, with arrows expressing
the information flow and transitions between them. The boxes
labelled Ai present actors (institutions, companies, research teams
etc.) involved in ontology development, where A1 is zoomed-in in
order to show the lifecycle’s components in detail.

The general dynamics of the lifecycle goes as follows: (1), the
community experts and/or ontology engineers develop a relatively
precise and complex domain ontology (the Community part of the
Creation component); (2), the experts use means for continuous
ontology evaluation and versioning to maintain high quality and
manage changes during the development process, respectively;
(3), if the amount of data suitable for knowledge extraction (e.g.
domain resources in natural language) is too large to be managed
by the community, ontology learning takes its place; (4), the ontol-
ogy learning results are evaluated by human experts and eventually
integrated (using the negotiation component) into the more precise
reference community ontology, if the respective extensions have
been found appropriate.

The integration in the scenario is based on alignment and merg-
ing covered by the negotiation component. Its proposal, implemen-
tation principles and application in selected e-health use case form
the key contribution of this paper (see Sections 5 and 6 for details).
The negotiation component takes its place also when interchanging
or sharing the knowledge with other independent actors in the
field. All the phases support ontologies in the standard OWL for-
mat. In the following we will concentrate on the integration mech-
anism. More information on other parts of the lifecycle can be
found in [34].

5. Dynamic integration of automatically learned knowledge

The key novelty of the presented lifecycle scenario is its support
for incorporation of changing knowledge in data-intensive do-
mains, especially when unstructured data (i.e. natural language)
is involved. This is achieved by implementation of a specific inte-
gration mechanism introduced in this section. The scheme of the
integration process is depicted in Fig. 2.

The integration scheme details the combination of several gen-
eric lifecycle components—mainly the (automatic) creation and
negotiation—in the process of incorporation of learned ontologies
into a collaboratively developed one. The latter ontology serves
as a master, presumably precise model in the process of learned
knowledge integration. The master ontology—OM circle in
Fig. 2—is supposed to be developed within a dedicated external
application such as Protégé1. The DINO integration platform itself
is implemented as a respective API library and GUI interface. Simple
research prototypes of these applications and user documentation
can be downloaded at http://smile.deri.ie/tools/dino.

1 See http://protege.stanford.edu/.
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OM in Fig. 2 presents a reference for integration with the OL

ontology resulting from the learning process. Ontology Alignment
Wrapper produces an alignment ontology OA that encodes map-
pings between OM and OL. All these ontologies are passed to the
Ontology Merging Wrapper that resolves possible inconsistencies
and produces integrated ontology OI . Ontology Diff Wrapper com-
pares OI with the former master ontology OM and passes the
respective additional statements (not present in OM) to the NLG
and Sorted Suggestions Generator component. NLG (Natural Lan-
guage Generator) produces a comprehensive natural language rep-
resentation of all the addition statements. The Sorted Suggestions
Generator component outputs the final product of the integration
process—particular natural language suggestions on the master
ontology extension, sorted according to the user preferences. The
suggestions agreed by human users form a base of a next version
of the OM ontology created after the integration. Note that during

all phases of integration, we use the former OM base namespace
for all the other ontologies involved. The integration phases out-
lined in Fig. 2 are described in detail in the sections below.

5.1. Ontology learning wrapper

In this phase, machine learning and NLP methods are used for the
processing of relevant resources and extracting knowledge from
them (ontology learning). The ontology learning is realised using
the Text2Onto framework (see [8]) that is able to extract an ontology
from an arbitrary set of textual documents. Due to space restrictions,
we cannot properly comment on the methods used for ontology
extraction and post-processing in Text2Onto, however, they are de-
scribed in detail in [32,8]. Note that this component does not tackle
selection of the documents the ontology is to be learned from—this
task needs to be performed manually by the system users.

Fig. 1. Dynamic ontology lifecycle scheme.
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Fig. 2. Dynamic ontology integration scheme.
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In the current implementation, only a restricted subset of possi-
ble OWL (DL) constructs is being extracted: rdfs:subClassOf axi-
oms, class instances, named class assertions, owl:disjointWith
axioms and owl:ObjectProperty assertions with rdfs:domain

and rdfs:range properties specified. owl:equivalentClass

relations can be inferred from mutual rdfs:subClassOf axioms
between particular classes. owl:equivalentClass and owl:sam-

eAs constructs can also be extracted using the Text2Onto concept/
instance similarity determination algorithms, however, their perfor-
mance, precision and coverage was not found to be sufficient en-
ough, therefore they are not included in the current version of the
DINO framework.

We have not performed a rigorous evaluation of the ontology
learning step as such, however, the informal precision rate of
ontology extraction was about 70% for the sample application de-
scribed in Section 6 (given by ratio of meaningful axioms to all
extracted axioms). Note that even an arbitrary external ontology
can be integrated instead of the learned one, however, the integra-
tion results are not necessarily complete in the case of more
complex ontologies (e.g., containing complex restrictions and
anonymous classes). This is due to the fact that the current
implementation is tailored specifically to the rather simple learned
ontologies.

5.2. Ontology alignment wrapper

When the learned ontology OL has been created, it has to be rec-
onciled with master ontology OM since they cover the same do-
main, but might be structured differently. The reconciliation of
these ontologies depends on the ability to reach an agreement on
the semantics of the terms used. The agreement takes the form
of an alignment between the ontologies, that is, a set of correspon-
dences (or mappings) between the concepts, properties, and
relationships in the ontologies. However, the ontologies are devel-
oped in different contexts and under different conditions and thus
they might represent different perspectives over similar knowl-
edge, so the process by which to come to an agreement will
necessarily only come through a negotiation process. The negotia-
tion process is performed using argumentation-based negotiation
that uses preferences over the types of correspondences in order
to choose the mappings that will be used to finally merge the
ontologies (see Section 5.3). The preferences depend on the context
and situation. A major feature of this context is the ontology, and
the structural features thereof, such as the depth of the subclass
hierarchy and branching factor, ratio of properties to concepts,
etc. The analysis of the components of the ontology is aligned with
the approach to ontology evaluation, demonstrated in [13], and can
be formalized in terms of feature metrics. Thus the preferences can
be determined on the characteristics of the ontology. For example,
we can select a preference for terminological mapping if the ontol-
ogy is lacking in structure, or prefer extensional mapping if the
ontology is rich in instances.

Thus, the alignment/negotiation wrapper interfaces two tools—
one for the ontology alignment discovery and one for negotiation
of agreed alignment. We call these tools AKit and NKit, respectively,
within this section. For the former, we use the ontology alignment
API (see [18]) developed by INRIA Rhone-Alpes2. For the negotia-

tion we use the framework described in [30]. Both tools are used
by the wrapper in order to produce OA—an ontology consisting of
axioms3 merging classes, individuals and properties in the OL and
OM ontologies. It is used in consequent factual merging and refine-

ment in the ontology reasoning and management wrapper (see Sec-
tion 5.3 for details).

Algorithm 1. Meta-algorithm of the alignment and negotiation

Require: OL;OM—ontologies in OWL format
Require: AKit;NKit—ontology alignment and alignment negotiation

tools, respectively
Require: ALMSET—a set of the alignment methods to be used
Require: PREFSET—a set of alignment formal preferences

corresponding to the OL;OM ontologies (to be used in N-kit)
1: SA  ;
2: for method 2 ALMSET do
3: SA  SA [ AKit:getAlignmentðOL;OM;methodÞ
4: end for
5: Aagreed  NKit:negotiateAlignmentðSA; PREFSETÞ
6: OA  AKit:produceBridgeAxiomsðAagreedÞ
7:return OA

The wrapper itself works according to the meta-code in Algo-
rithm 1. The ontology alignment API offers several possibilities
of actual alignment methods, which range from trivial lexical
equality detection through more sophisticated string and edit-
distance based algorithms to an iterative structural alignment
by the OLA algorithm (see [17]). The ontology alignment API
has recently been extended by a method for the calculation of
a similarity metric between ontology entities, an adaptation of
the SRMetric used in [44]. We also consider a set of justifica-
tions, that explain why the mappings have been generated. This
information forms the basis for the negotiation framework that
dynamically generates arguments, supplies the reasons for the
mapping choices and negotiates an agreed alignment for both
ontologies OL and OM .

5.3. Ontology merging wrapper

This wrapper is used for merging of the OL and OM ontologies
according to the statements in OA (each of the ontologies techni-
cally represented as a respective Jena ontology model). Moreover,
the wrapper resolves possible inconsistencies caused by the
merging—favouring the assertions in the OM ontology, which are
supposed to be more relevant. The resulting ontology OI is passed
to the ontology diff wrapper to be compared with the former OM

master ontology. The respective addition model forms a basis for
the natural language suggestions that are produced as a final prod-
uct of the integration (see Sections 5.4 and 5.5 for details).

Algorithm 2. Meta-algorithm of the merging and inconsistency
resolution

Require: OL;OM ;OA—ontologies in OWL format
Require: mergeðÞ—a function that merges the axioms from input

ontologies, possibly implementing reasoning routines according
to the ontology model used

Require: C—set of implemented consistency restrictions; each
element r 2 C can execute two functions r:detectðÞ and r:resolveðÞ
that detect (and return) and resolve an inconsistency in the input
ontology, respectively

1: OI  mergeðOM;OL;OAÞ
2: inconsistencies ;
3: for r 2 C do
4: inconsistencies inconsistencies [ r:detectðOIÞ
5: OI  r:resolveðOIÞ
6: end for
7: return OI; inconsistencies

2 See http://alignapi.gforge.inria.fr/ for up-to-date information on the API.
3 Using constructs like owl:equivalentClass, owl:sameAs, owl:equivalentProperty,

rdfs:subClassOf or rdfs:subPropertyOf.
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Algorithm 2 describes the meta-code of the process arranged
by the ontology merging and reasoning wrapper. We currently
employ no reasoning in the mergeðÞ function. However, sub-class
subsumption (as implemented by the Jena framework) is used
when detecting and resolving inconsistencies. The inconsistencies
are constituted by user-defined restrictions. These restrictions are
implemented as extensions of a generic inconsistency detector
and resolver in the ontology merging wrapper. Thus we can
implement either logical (in terms of Description Logics, see [2])
inconsistencies, or custom-defined inconsistencies (i.e. cyclic def-
initions) according to requirements of particular practical
applications.

The automatic inconsistency resolution itself is somewhat
tricky. However, we can apply a sort of ‘‘greedy” heuristic, consid-
ering the assertions in the master OM ontology to be more valid.
Therefore we can discard axioms from OL or OA that are inconsis-
tent with axioms in OM—we call such axioms candidate in the text
below. If there are more such axioms, we discard them one by one
randomly until the inconsistency is resolved4. If all the conflicting
axioms originated in OM , we just report them without resolution.

We currently implement and resolve the following
inconsistencies:

� Sub-class hierarchy cycles: these are resolved by cutting the
cycle, i.e. removing a candidate rdfs:subClassOf statement;

� Disjointness-subsumption conflicts: if classes are said to be dis-
joint and a sub-class relationship holds between them at the
same time, a candidate conflicting assertion is removed;

� Disjointness-superclass conflicts: if a class is said to be a sub-class
of classes that are disjoint, a candidate conflicting assertion is
removed;

� Disjointness-instantiation conflicts (specialisation of the above):
if an individual is said to be an instance of classes that are dis-
joint, a candidate conflicting assertion is removed.

The first one is non-logical inconsistency, whereas the remain-
ing free are examples of logical inconsistencies. More on the types
and nature of logical (DL) inconsistencies can be found for instance
in [21]. Since most logical inconsistencies are introduced by nega-
tive constructs like owl:disjointWith, owl:complementOf or
owl:differentFrom, we can easily adapt the above techniques
related to disjointness in order to support additional inconsistency
types.

A transparent and flexible support of arbitrary non-logical con-
sistency constraints is a part of our future work. We plan to imple-
ment this feature on the top of user-defined rules (expressing facts
like ‘‘if X is a male mammal, then it does not have an ovary”). DINO
will not include the learned statements that are in a conflict with
the respective rule-based constraints into the merged ontology.
Certain more subtle issues related to the ontology design (such
as possibly unwelcome multiple inheritance) cannot, however, be
generally handled even by the rule-based inconsistency resolution,
therefore the more sophisticated refinement of the integrated
ontology is deliberately left for the user.

Note that each element of the set of inconsistencies returned by
Algorithm 2 (besides the integrated ontology itself) is associated
with respective simple natural language description. The descrip-
tions are presented for further examinations by human users in
the DINO user interface.

5.4. Ontology diff wrapper

Possible extension of a master ontology OM by elements
contained in the merged and refined ontology OI naturally cor-
responds to the differences between them. In particular, the
possible extensions are equal to the additions OI brings into
OM . The additions can be computed in several ways. Ontology
diff wrapper in DINO offers a way how to uniformly interface
the particular methods of addition computation. No matter
which underlying method is employed, a respective Jena ontol-
ogy model containing the respective additions is returned. Cur-
rently, the following methods are implemented within the
wrapper:

(1) SemVersion-based diff computation—additions at the RDF
(triple) level computed using the SemVersion library (see [43])
(2) addition model computation by set operations on the under-
lying Jena RDF models
(3) addition model computation by direct iterative querying of
the former master ontology model, integrated model and align-
ment model for reference purposes (see Algorithm 3 for details
on implementation)

For the practical experiments with ontologies, we have used the
third method—mainly due to the fact that it computes the addi-
tions directly at the ontology level and not at the lower triple level
(which means subsequent processing load when getting back to
the ontology model again).

Algorithm 3. Meta-algorithm of the addition model computation
(by direct model querying)

Require: OM;OI;OA—former master, integrated and alignment
ontologies, respectively

Require: copyResourceðÞ—a function that returns a copy of an
ontology resource (e.g. class or property) including all relevant
features that are bound to it (e.g. subclasses, superclasses,
instances for a class or domain and range for a property)

1: Oadded  ;
2: for c 2 OI:getNamedOntologyClassesðÞ do
3: if not OM:containsðcÞ or OA:containsðcÞ then
4: Oadded  copyResourceðcÞ
5: end if
6: end for
7: for p 2 OI:getOntologyPropertiesðÞ do
8: if not OM:containsðpÞ or OA:containsðpÞ then
9: Oadded  copyResourceðpÞ
10: end if
11: end for
12: return Oadded

Note that the algorithm does not compute all differences
between arbitrary ontologies in general. However, this is no
drawback for the current implementation of DINO integration.
We deal with learned ontology extending the master one. The
extensions originating in automatically learned knowledge do
not cover the whole range of possible OWL constructs, thus
we do not need to tackle e.g. anonymous classes and restric-
tions in the addition model computation. Therefore the em-
ployed custom addition computation can be safely applied
without any loss of information. The computed addition ontol-
ogy model is passed to the suggestion sorter then (see Section
5.5 for details).

4 This is the currently implemented way, however, we plan to improve the
selection of candidate axioms according to confidence ranking produced by the
Text2Onto tool—similarly to the technique described in [26]. This is scheduled for the
next version of the DINO integration library.
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5.5. Sorted suggestions generator

The addition ontology passed to this component forms a base for
the eventual extension suggestions for the domain experts. In order
to reduce the effort in the final reviewing of the master ontology
extensions, we create respective simple natural language sugges-
tions that are associated with corresponding facts in the addition
ontology model. The natural language suggestions are then pre-
sented to users—when a suggestion is accepted by the users, the
associated fact is included into the master ontology model. Table
1 shows a scheme of the natural language (NL) suggestion genera-
tion. The r variable represents possible relations between classes
or properties (e.g. rdfs:subClassOf, rdfs:subPropertyOf or
owl:disjointWith), mapped by the function f ðÞ to a respective
natural language representation (e.g. is a sub-class of, is a sub-prop-
erty of or is disjoint with). The x variable represents possible features
of a property (e.g. owl:ObjectProperty or owl:Functional-

Property, mapped by the function gðÞ to a respective natural lan-
guage representation (e.g. object or functional). In general, the
number of suggestions originating from the addition ontology mod-
el can be quite large, so an ordering that takes a relevance measure
of possible suggestions into account is needed. Thus we can for
example eliminate suggestions with low relevance level when pre-
senting the final set to the users (without overwhelming them with
a large number of possibly irrelevant suggestions). As a possible
solution to this task, we have proposed and implemented a method
based on string subsumption and a specific distance measure (see
[31]). These two measures are used within relevance computation
by comparing the lexical labels occurring in a suggestion with re-
spect to two sets Sp; Sn of words, provided by users. The Sp and Sn

sets contain preferred and unwanted words respectively, concern-
ing the lexical level of optimal extensions. The suggestions T are
sorted according to the respective relðT; SpÞ � relðT; SnÞ values,
where relðT; SÞ is a function measuring the relevance of the sugges-
tion triple T with respect to the words in the set S. The higher the
value, the more relevant the suggestion triple is. We develop the rel-
evance function in detail in Algorithm 4.

Algorithm 4. The relevance function

Require: St—a set of (possibly multiword) lexical terms occurring in the suggestion
Require: S—set of words
Require: q 2 ð0;1Þ influences the absolute value of relevance measure
Require: t—integer constant; maximal allowed distance
Require: levDistðs1; s2Þ—Lev. distance implementation
1: for elem 2 St do
2: Relem  0
3: end for
4: for elem 2 St do
5: if elem is a substring of or equals to any word in S or vice versa then

6: Relem  1
7: else
8: d 1
9: for v 2 S
10: if levDistðelem; vÞ < d then
11: d levDistðelem; vÞ
12: end if
13: end for
14: if d 6 t then
15: Relem  ð1� d

tþ1Þ
16: else if elem is a multiword term then
17: L set of single terms in the elem label expression
18: EXP  0
19: for u 2 L do
20: if u is a substring of or equals to any word in S or vice versa then
21: EXP  EXP þ 1
22: else
23: d 1
24: for v 2 S do
25: if levDistðu; vÞ < d then
26: d levDistðu; vÞ
27: end if
28: end for
29: if d 6 t then
30: EXP  EXP þ ð1� d

tþ1Þ
31: end if
32: end if
33: end for
34: if EXP ¼ 0 then
35: Relem  0
36: else
37: Relem  q 1

EXP

38: end if
39: end if
40: end if
41: end for
42: return

P
elem2St

Relem

jSt j

The function naturally measures the ‘‘closeness” of the labels
occurring in the suggestion to the set of terms in S. The value of
1 is achieved when the label is a direct substring of or equal to
any word in S or vice versa. When the Levenshtein distance
between the label and a word in S is lower than or equal to the de-
fined threshold t, the relevance decreases from 1 by a value pro-
portional to the fraction of the distance and t. If this is not the
case (i.e. the label’s distance is greater than t for each word in S),
a similar principle is applied for possible word-parts of the label
and the relevance is further proportionally decreased (the minimal
possible value being 0).

Note that the complexity of the sorting itself mostly contributes
to the overall complexity of the relevance-based sorting of sugges-
tions. As can be found out from Algorithm 4, the complexity is in
Oðcmnl2 þm log mÞ (c—maximal number of terms occurring in a sug-
gestion, thus a constant; m—number of suggestions; n—number of
words in the preference sets; l—maximal length of a word in sugges-
tion terms, basically a constant), which gives Oðmðnþ log mÞÞ. As the
size of the sets of user preferences can be practically treated as con-
stant, we obtain the Oðm log mÞ complexity class with respect to the
number of suggestions, which is feasible.

5.6. Natural language generation (NLG) component

The DINO framework is supposed to be used primarily by users
who are not experts in ontology engineering. Therefore the sugges-
tions are produced in a form of very simple natural language state-
ments, as seen in the previous section. Moreover, we automatically
create a natural language representation of the whole addition
model, interfacing the framework described in [42]. This is meant
to further support laymen users by readable representation of the
whole addition model in order to give them an overall impression
of the changes.

Table 1
Scheme of suggestion generation

Axiom pattern NL suggestion scheme Example

Class c1 is related by
relation r to class c2

The class c1:labelðÞ f ðrÞ
the class c2:labelðÞ.

The class ‘‘difference_c” is
disjoint with the class
‘‘inclusion_c”.

Individual i is a
member of class c

The class c:labelðÞ has
the i:labelðÞ instance.

The class
‘‘the_cytoskeleton_organiser_c”
has the ‘‘centrosome_i”
instance.

Property p1 with
features features x
is related to
property p2 by
relation r

There is a p1:labelðÞ
gðxÞ property. It is f ðrÞ
p2:labelðÞ.

There is a ‘‘contain_r” object
property. Its range is the
‘‘organ_c” class.

Property p1 with
features x has
domain/range class
c

There is a p1:labelðÞ
gðxÞ property. Its
domain/range is the
c:labelðÞ class.

There is a ‘‘contain_r” object
property. It has the
‘‘has_part_r” superproperty.
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The single suggestions are still bound to the underlying state-
ment in the addition ontology model. Therefore a user can very
easily add the appropriate OWL axioms into the new version of
the OM master ontology without actually dealing with the intricate
OWL syntax itself. Concrete examples of both suggestions and con-
tinuous natural language representation of the addition model are
given in Section 6.

6. Example application and results of DINO integration

We applied the integration technique described in Section 5 in
the context of data typical for biomedical research. However, the
way of exploiting the DINO integration technique reported in this
section is rather general, since it aims at cost-efficient extension
or population of a master ontology by knowledge learned from
empirical data. Thus, a similar deployment of the integration can
actually help to tackle needs of many other possible use cases.

Real world data for the master ontology and ontology learning
sources were used. More specifically, we employed resources from
CO-ODE biomedicine ontology fragment repository5 and data from
relevant Wikipedia topics, respectively.

Rigorous evaluation of the whole process of integration is a
complex task involving lot of open problems as its sub-problems
(for instance, there is no standard ontology evaluation process
applicable in general—see [27,13]). Moreover, there is an emphasis
on the human-readable and laymen oriented form of the integra-
tion process results. This dimension forms a primary axis of the
evaluation, however, its realisation involves logistically demanding
participation of a broader (biomedicine) expert community.

Accomplishing the above tasks properly is a part of our future
work. Nonetheless, there are several aspects that can be assessed
and reported even without devising an optimal ontology evalua-
tion method (which may be impossible anyway) and/or getting in-
volved large representative sample of domain experts:

� features of the learned ontology (e.g. size or complexity)
� mappings established by alignment
� basic assessment of the quality and correctness of suggestions

and their sorting according to defined preferences

These factors of integration are analysed and discussed within
an experimental application described in Section 6.1.

The negotiation component has recently been evaluated sepa-
rately as a stand-alone module, using the Ontology Alignment
Evaluation Initiative test suite6 and experiments on the impact that
the argumentation approach has over a set of mappings. A
comparison wrt. current alignment tools is presented in [29]. The
preliminary results of these experiments are promising and suggest
that the argumentation approach can be beneficial and an effective
solution to the problem of dynamically aligning heterogeneous
ontologies. This justifies also the application of the implemented
technique in the ontology integration task.

6.1. Experimental integration of biomedical research knowledge—
extension of (blood) cells ontology fragment

In order to show the basic features of our novel integration
technique in practice, we tested the implementation using knowl-
edge resources from biomedicine domain7. In particular, we com-
bined fragments of GO cellular component description and

eukaryotic cell description8 to form the master ontology. In the
example scenario, we wanted to extend this master ontology using
content of Wikipedia entries on Cells_(biology) and Red_-
blood_cell. These resources were passed to the ontology learning
DINO component and respective ontology was learned. Both master
and learned ontology samples are displayed in Fig. 3 (on the left-
hand and right-hand side, respectively). Note that these master
and learned ontologies correspond to the OM;OL ontologies displayed
in Fig. 2, Section 5. The names in learned ontology have specific suf-
fixes (i.e. ‘‘_c”). This is due to naming conventions of the ontology
learning algorithm we use. We keep the suffixes in suggestions, since
they help to easily discriminate what comes from empirical data and
what from the master ontology. However, we filter them out when
generating the text representing the whole extension model (see be-
low for examples).

Table 2 compares metric properties of the master and learned
ontologies, as computed by the Protégé tool. The particular metrics
are expanded as follows: M1—number of named classes
(all/primitive/defined); M2—number of parents per class (mean/
median/maximum); M3—number of siblings per class (mean/med-
ian/maximum); M4—number of anonymous classes (restrictions);
M5—number of properties (all/object/datatype); M6—Description
Logics expressivity.

The learned ontology has higher ratio of primitive classes,
moreover, it contains no restriction on class definitions. There
are some simple object properties with both domains and ranges
defined. Its DL expressivity allows concept intersection, full uni-
versal and existential quantification, atomic and complex nega-
tion and datatypes. The expressivity of the master ontology
does not involve datatypes, however, it contains numeric restric-
tions. Summing up, the master ontology contains several compli-
cated constructs not present in the learned ontology, however,
the ontology learned only from two simple and relatively small
resources is much larger. When computing the negotiated align-
ment (the OA ontology as given in Fig. 2, Section 5) between mas-
ter and learned ontology, 207 mappings were produced and
among them, 16 were accepted. A sample from the alignment
ontology is displayed in Fig. 4.

Merging of the learned and master ontologies according to the
computed alignments results in several inconsistencies—the report
generated by DINO is displayed in Fig. 5. Two of these three incon-
sistencies are resolved correctly (according to human intuition) by
the algorithm, forming an integrated ontology OI , as displayed in
Fig. 2, Section 5.

After resolving the inconsistencies (three inconsistencies per
an integrated resource were resolved in average within our
experiment) and generating the addition model, natural language

5 See http://www.co-ode.org/ontologies.
6 See http://oaei.ontologymatching.org/.
7 Should the reader be interested, all relevant resources used and/or created during

the described experiment are available at http://smile.deri.ie/resources/2007/08/31/
dino_exp_data.zip

8 Samples downloaded from the CO-ODE repository, see http://www.co-ode.org/
ontologies/bio-tutorial/sources/GO_CELLULAR_COMPONENT_EXTRACT.owl and
http://www.co-ode.org/ontologies/eukariotic/2005/06/01/eukariotic.owl,
respectively.

Fig. 3. Sample from master and learned ontology.
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suggestions (associated with respective OWL axioms) are pro-
duced. Sample suggestions associated with respective relevance
measures are displayed in Fig. 6. A portion of the continuous text
generated by the NLG component that is corresponding to the
addition model is displayed in Fig. 7. Similar ‘‘pretty” texts are
to be presented to users in the extended DINO interface (the cur-
rent interface offers only raw text, however, necessary parsing,
filtering and highlighting of the ontology terms is under construc-
tion). It provides users with additional source of lookup when
deciding which suggestions to accept into the next version of
the master ontology.

The suggestions are the ultimate output of the integration
algorithm. Their main purpose is to facilitate laymen effort in
incorporation of new knowledge from unstructured resources
into an ontology. Therefore we performed basic evaluation of
several parameters that influence actual applicability of the sug-
gestions. We ran the integration algorithm on the same data
with four different suggestion-preference sets, simulating four
generic trends in the preference definition:

� specification of rather small number of preferred terms, no
unwanted terms

� specification of rather small number of preferred and unwanted
terms

� specification of larger number of preferred terms, no unwanted
terms

� specification of larger number of preferred and unwanted terms

Table 3 gives an overview of the four iterations, the particular
preferred and unwanted terms and distribution of suggestions into
relevance classes. The terms were set by a human user arbitrarily,
reflecting general interest in clinical aspects of the experimental
domain knowledge. The terms in preference sets reflect possible
topics to be covered by the automatic extension of the current
ontology. Sþ, S0 and S� are classes of suggestions with relevance
greater, equal and lower than zero, respectively ðS ¼ Sþ [ S0 [ S�Þ.

For each of the relevance classes induced by one iteration, we
randomly selected 20 suggestions and computed two values on
this sample:

� Px; x 2 fþ;0;�g—ratio of suggestions correctly placed by the
sorting algorithm into an order defined by a human user for
the same set (according to the interest defined by the particular
preferences)

� Ax; x 2 fþ;0;�g—ratio of suggestions that are considered appro-
priate by a human user according to his or her knowledge of the
domain (among all the suggestions in the sample)

The results are summed up in Table 4. More details on interpre-
tation of all the experimental findings are given in consequent Sec-
tion 6.2.

6.2. Discussion of the experiment results

The DINO integration library allows users to submit the
resources containing knowledge they would like to reflect in their
current ontology. The only thing that is needed is to specify prefer-
ences on the knowledge to be included using the sets of preferred
and unwanted terms. After this, sorted suggestions on possible
ontology extensions (after resolution or reporting of possible
inconsistencies) can be produced and processed in minutes,
whereas the purely manual development and integration of
respective ontology would take hours even for relatively simple
natural language resources. Moreover, it would require a certain

Fig. 4. Sample alignment.

Fig. 5. Report on inconsistencies.

Table 2
Metrics of master and learned ontologies

Metric/ontology M1 M2 M3 M4 M5 M6

Learned 391/379/12 3/1/5 7/1/16 0 13/13/0 ALCðDÞ
Master 40/36/4 2/1/2 5/1/15 16 (restr.) 1/1/0 ALCN
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experience with knowledge engineering, which is uncommon
among biomedicine domain experts.

In Section 6.1 we described the application of our integration
technique to an extension of biomedical research ontology frag-
ment. The analysed results show that the suggestions produced
are mostly correct (even though rather simple and sometimes obvi-
ous) with respect to the domain in question, ranging from 50% to
85% among the algorithm iterations. The relevance-based sorting
according to preferences is more appropriate in case of irrelevant
(zero relevance) suggestions, ranging from 70% to 100% of correctly
placed suggestions. Its precision in case of suggestions with positive
and negative relevance is lower, ranging from 45% to 70%. More
terms in the preference sets cause better sorting performance

(the ratio of appropriate suggestions being independent on this
fact). Thus, the best discrimination in terms of presenting the most
relevant suggestions first is achieved for larger preference sets.
However, even the discrimination for smaller sets is fair enough
(as seen in Table 3 in the previous section).

The automatically produced natural language suggestions can
be very easily browsed and assessed by users who are not familiar
with ontology engineering at all. Since the respective axioms are
associated to the suggestions, their inclusion into another version
of the master ontology is pretty straightforward once a suggestion
is followed by a user. The DINO integration technique still needs to
be evaluated with a broader domain expert audience involved,
however, even the preliminary results presented here are very
promising in the scope of the requirements specified in Section 1.

7. Notes on realistic DINO deployment

The EU IST 6th Framework project RIDE has identified and
analysed several biomedical use case areas in [15] relevant
concerning deployment of the Semantic Web technologies

Fig. 6. Sample suggestions.

Table 3
Iterations—the preference sets and sizes of the resulting suggestion classes

Iteration Preferred Unwanted j Sþ j j S0 j j S� j j S j

I1 cell; autoimmune disease; transport; drug; gene; DNA ; 310 429 0 739
I2 cell; autoimmune disease; transport; drug; gene; DNA bacteria; prokaryotic; organelle; wall; chromosome;

creation
250 344 145 739

I3 cell; autoimmune disease; transport; drug; gene; DNA
eukaryotic; organ; function; part; protein; disease;
treatment; cell part immunosuppression; production

; 485 254 0 739

I4 cell; autoimmune disease; transport; drug; gene; DNA
eukaryotic; organ; function; part; protein; disease;
treatment; cell part immunosuppression; production

bilayer; bacteria; prokaryotic; additional function;
organelle; macromollecule; archaeon; vessel; wall;
volume; body; cell nucleus; chromosome; erythrocyte;
creation

314 292 133 739

Fig. 7. Sample from the generated continuous text.

Table 4
Evaluation of random suggestion samples per class

Iteration Pþ Aþ P0 A0 P� A�

I1 0.45 0.75 0.90 0.60 — —
I2 0.45 0.75 1.00 0.80 0.60 0.70
I3 0.70 0.80 0.95 0.75 — —
I4 0.55 0.75 0.70 0.85 0.50 0.85
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(i.e., ontologies and related querying, knowledge and data man-
agement tools). The scope of [15] is rather broad, however, we
can track few specific areas with significant needs that can be
covered by the DINO ontology lifecycle and integration frame-
work (Section 7.1). Section 7.2 discusses preliminary feedback
of our potential users and consequently suggests most appropri-
ate modes of the DINO prototype exploitation.

7.1. Selected use case areas

7.1.1. Longitudinal electronic health record
The main topic here is development of standards and plat-

forms supporting creation and management of long-term elec-
tronic health records of particular patients. These records
should be able to integrate various sources of data coming from
different medical institutions a patient may have been treated in
during his whole life. Quite obviously, one needs to integrate dif-
ferent data sources, present very often in unstructured natural
language form. Ontologies extracted from the respective patient
data resources can very naturally support their integration into
longitudinal electronic health records by means of DINO.

7.1.2. Epidemiological registries
Epidemiology analyses diseases, their reasons, statistical ori-

gins and their relation to a selected population sample’s socio-
economic characteristic. Epidemiological registries should be
able to reasonably store and manage data related to population
samples and their medical attributes in order to support efficient
processing of the respective knowledge by the experts. In this
use case area, one has to integrate knowledge from electronic
health records in order to create population-wise repositories.
Once the ontology-enabled electronic health records are created
(DINO can help here as mentioned above), one can integrate
them within another version of an ‘‘epidemiology” ontology
(again, by means of the DINO framework). The resulting model
can be employed in order to perform symbolic analysis (using
ontology-based symbolic querying and logical inference) of the
registry data, complementing the statistical numeric analysis
methods.

7.1.3. Public health surveillance
Public health surveillance presents ongoing collection, analy-

sis, interpretation and dissemination of health-related data in or-
der to facilitate a public health action reducing mortality and/or
improving health. The use case area puts an emphasis on effi-
cient dynamic processing of new data that are mostly in the free
natural language text form, which can be directly facilitated by
the DINO integration of respective learned ontologies. Ontologies
created from and extended by urgent dynamic data can effi-
ciently support expert decisions in risk management tasks. Con-
tinuous integration of less urgent data from various sources
(either texts or ontologies) can support studies on public health
issues in the long term perspective then.

7.1.4. Management of clinical trials
Clinical trials are studies of the effects of newly developed

drugs on real patient samples. They are essential part of ap-
proval of new drugs for normal clinical use and present an
important bridge between medical research and practice. Effi-
cient electronic data representation and querying is crucial here.
However, even if the data are electronically represented, prob-
lems with their heterogeneity and integration occur as there
are typically several different institutions involved in a single
trial. The presented integration method can help in coping with
the data heterogeneity here, especially when some of the data is
present in the natural language form.

7.2. Preliminary user feedback and lessons learned

We presented a DINO demo and/or sample knowledge integra-
tion results to biomedical domain and ontology engineering
experts9. We also discussed a sketch of the DINO application in the
above practical use cases with them. Their preliminary feedback can
be summarised into the following three points: (1) the framework
was considered as a helpful complement to the traditional manual
ontology development environments (such as Protégé); (2) the results
were found promising concerning the scalable ontology extension by
the knowledge in unstructured domain resources, however, certain
refinement by ontology engineers was generally considered as a must
in order to maintain high quality of the respective master biomedical
ontologies; (3) the natural language presentation of the sorted exten-
sion suggestions was found to be very useful for the domain experts
with no ontology engineering background. The last finding has been
further supported by the recent evaluation of the natural language
generation framework we use in DINO (see [11] for details).

Following the discussion with the domain and ontology engi-
neering experts, we can distinguish between two practical and
reliable DINO application modes with different requirements on
the expert user involvement:

� Instance-only integration: ontology learned from the textual
resources is semi-automatically integrated into a master ontol-
ogy, taking only instance-related assertions into account, i.e.,
the upper ontology is populated with new instances of the
present concepts and with relations among the instances. Such
an application does not require any extensive expert involve-
ment of ontology engineers, since the instance-related
suggestions produced by DINO are relatively reasonable accord-
ing to our discussions with domain experts. Severe modelling
errors can only be introduced very rarely, therefore only the
expert knowledge of the domain is generally enough to decide
which DINO suggestions to follow in the master ontology
extension.

� Full-fledged integration: an unrestricted processing of the DINO
suggestions, i.e., taking also the class-related assertions into
account, requires more careful expert involvement in order to
guarantee high quality of the integration results. Ontology
experts are generally still needed when resolving possible mod-
elling bugs (such as multiple class inheritance or redundant
disjointness relations) that might be insufficiently tackled by
the domain experts when processing the natural language DINO
suggestions. State of the art methodologies such as ontology ‘‘re-
engineering” as introduced in [3]can help when applying DINO
this way.

8. Summary and future work

We have presented the basic principles of DINO—a novel lifecycle
scenario and framework for ontology integration and maintenance
in dynamic and data-intensive domains like medicine. As a core con-
tribution of the paper, we have described the mechanism of integra-
tion of automatically learned and manually maintained medical
knowledge. The presented method covers all the requirements spec-
ified in Section 1. The proposed combination of automatic and man-
ual knowledge acquisition principles, integration and inconsistency
resolution ensures more scalable production and extension of ontol-

9 These were namely researchers from the REMEDI institute, see http://www.nui-
galway.ie/remedi/, Prof. Werner Ceusters, M.D. (director of the Ontology Research
Group of the New York State Center of Excellence in Bioinformatics and Life Sciences)
and ontology engineers from the Knowledge Engineering Group at the University of
Economics in Prague.
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ogies in dynamic domains. We presented and analysed results of a
preliminary practical application of the DINO integration technique
in Section 6. Section 7 outlined possible applications in realistic use
case areas that have been recently identified in the biomedicine and
e-health fields. The section also summarised preliminary feedback of
our potential users. Based on the feedback analysis, two practical
DINO application modes were suggested. Note that we have also
delivered prototype implementations of a DINO API library and a
respective GUI interface (research prototypes of the respective soft-
ware can be downloaded at http://smile.deri.ie/tools/dino).

Since the primary funding project has finished, we are in the
process (as of 2008) of securing another funding that could support
further improvements of DINO. These improvements consist
mainly of an extended support for inconsistency resolution, inte-
gration with state of the art ontology editors (primarily Protégé)
and extension of the DINO user interface (e.g., providing explicit
support for the two application modes given in Section 7.2).

Moreover, we have recently started to work on another project
with motivations similar to DINO, however, with much more
ambitious goals. [35] presents a preliminary proposal and results
of a novel empirical knowledge representation and reasoning frame-
work. One of the principal applications of the researched framework
is a complex empirical inference-based integration of arbitrary
emergent knowledge (e.g., learned ontologies) with precise manu-
ally designed knowledge bases. We plan to combine the ontology
integration powered by the reasoning described in [35] with the
results achieved within the DINO implementation in order to allow
for more efficient, scalable, user-friendly and robust dynamic main-
tenance of (partially emergent) ontologies. Last but not least, we are
going to continuously evaluate the resulting framework among
broader biomedicine expert communities and improve it in line with
demands of interested industry partners (possibly, but not only
within the presented real-world application domains).
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a b s t r a c t

Search engines used in contemporary online scientific publishing mostly exploit raw publication data
(bags of words) and shallow metadata (authors, key words, citations, etc.). Exploitation of the knowledge
contained implicitly in published texts is still largely not utilized. Following our long-term ambition to
take advantage of such knowledge, we have implemented CORAAL (COntent extended by emeRgent and
Asserted Annotations of Linked publication data), an enhanced-search prototype and the second-prize win-
ner of the Elsevier Grand Challenge. CORAAL extracts asserted publication metadata together with the
knowledge implicitly present in the relevant text, integrates the emergent content, and displays it using
a multiple-perspective search&browse interface. This way we enable semantic querying for individual
publications, and convenient exploration of the knowledge contained within them. In other words, recall-
ing the metaphor in the article title, we let the users dive into publications more easily, and allow them
to freely bathe in the related unlocked knowledge.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Online scientific publishing makes knowledge production and
dissemination much more efficient than before. The publication
process is faster, since the essential phases like authoring, sub-
mission, reviewing, and final typesetting are largely computerised.
Moreover, the published content is easily disseminated to global
audiences via the Internet. In effect, more and more knowledge is
being made available.

However, is this growing body of knowledge also easily acces-
sible? We believe the answer is negative, since the rapid growth of
the number of available resources is making it harder to identify
any particular desired piece of knowledge using current solutions.
For instance, Medline, a comprehensive source of life sciences and
biomedical bibliographic information (cf. http://medline.cos.com/)
currently hosts over 18 million resources. It has a growth rate
of 0.5 million items per year, which represents around 1300
new resources per day [9]. Using the current publication search
engines,1 one can explore the vast and ever-growing article repos-
itories using relevant keywords. But this is very often not enough.
Imagine for instance a junior researcher compiling a survey on var-

∗ Corresponding author. Tel.: +353 91 495738.
E-mail addresses: vit.novacek@deri.org (V. Nováček), tudor.groza@deri.org

(T. Groza), siegfried.handschuh@deri.org (S. Handschuh), stefan.decker@deri.org
(S. Decker).

1 For example, ScienceDirect, Elsevier’s front-end to their journals
(cf. http://www.sciencedirect.com/), or PubMed, a search service covering biblio-
graphic entries from Medline and many additional life science journals together
with links to article full texts (cf. http://www.ncbi.nlm.nih.gov/pubmed/).

ious types of leukemia. The researcher wants to state and motivate
in the survey that acute granulocytic leukemia is different from T-
cell leukemia. Although such a statement might be obvious for a life
scientist, one should support it in the survey by a citation of a pub-
lished paper. Our researcher may be a bit inexperienced in oncology
and may not know the proper reference straightaway. Using, e.g.,
the PubMed search service, it is easy to find articles that contain
both leukemia names. Unfortunately, there are more than 500 such
results. It is tedious or even impossible to go through them all to
discover one that actually supports that acute granulocytic leukemia
is different from T-cell leukemia.

Given the wealth of knowledge in life science publications and
the limitations of current search engines, it is often necessary to
manually scan a lot of possibly irrelevant content. To overcome
the problem that anything more expressive than (Boolean com-
binations of) mere keywords is virtually impossible today, it is
necessary to develop technologies that can operate at an enhanced
level, using more-expressive concepts and their various relation-
ships. This requires collecting, extracting, and interrelating the
knowledge scattered across the large numbers of available life sci-
ence publications. Unfortunately, manual creation of the necessary
information is not really possible at large scale, and automated
extraction produces noisy and sparse results [2].

We believe that a few essential elements will enable more
knowledge-based search in scientific publications: (i) extrac-
tion of publication annotations asserted by people (e.g., author
names, titles, references or text structure). (ii) Extraction of
knowledge implicitly present in publications (e.g., statements
encoding typed relations between particular concepts, or struc-
tured representations of arguments made by authors in the text).

1570-8268/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.websem.2010.03.008
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Fig. 1. CORAAL architecture.

(iii) Comprehensive integration, augmentation, and refinement of
the extracted content, possibly using extant machine-readable
resources (e.g., life science thesauri or vocabularies). (iv) Interlink-
ing of the processed content (e.g., connecting relevant arguments
across publications, or preserving provenance of statements about
relations between particular concepts). (v) Intuitive access to and
display of the content extracted from publications, so that every-
body can easily search for the extracted knowledge and track its
provenance. (vi) Methods for collaborative curation of the result-
ing content, so that global expert communities can contribute to
further refinement of the extracted publication knowledge.

CORAAL constitutes a particular solution to some of the princi-
pal problems inherent in knowledge-based publication search. We
provide an overview of the system and its implementation in Sec-
tion 2. Then we describe its application and evaluation within the
Elsevier Grand Challenge in Section 3. Summary of related systems
is given in Section 4. Section 5 concludes the paper with a discussion
of a future outlook.

2. CORAAL essentials

In the following we introduce the basic features of the CORAAL
system. Section 2.1 provides an overview of CORAAL, its archi-
tecture, and relevant implementation details. In Section 2.2 we
describe the pipeline in which we extract, process, and display the
knowledge and metadata extracted from publications.

2.1. Overview of the solution

In order to provide comprehensive search capabilities in
CORAAL, we augment standard (full-text) publication search
with novel services that enable knowledge-based search. By
knowledge-based search we mean the ability to query for and
browse statements that capture relations between concepts in the
retrieved source articles.

CORAAL is built on top of two substantial research products of
our group at DERI—the KONNEX [4] and EUREEKA [8] frameworks.
The former is used for storing and querying of full-text publica-
tions and associated metadata. The latter supports exploitation
of the knowledge implicitly contained in the texts by means of
knowledge-based search.

CORAAL itself essentially extracts asserted publication metadata
together with the knowledge implicitly present in the respective
text, integrates the emergent content with existing domain knowl-
edge, and displays it via a multiple-perspective search&browse
interface. This allows fine-grained publication search to be com-
bined with convenient and effortless large-scale exploitation of the
knowledge associated with and implicit within the texts.

2.1.1. Architecture
The architecture of CORAAL is depicted in Fig. 1. The EUREEKA

library caters for knowledge extraction from text and other knowl-
edge resources (e.g., ontologies or machine readable thesauri) via
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the knowledge extraction module. After being processed by the ACE
knowledge refinement and augmentation pipeline (details pro-
vided in Section 2.2), new facts are added into a knowledge base.
There can be multiple knowledge bases if users wish to keep con-
tent from different domains separate. The knowledge bases are
exposed to consumers via a semantic query answering module.
Indices are used to help optimize the retrieval and sorting of state-
ments based upon relevance scores.

Another crucial part of the CORAAL back-end is KONNEX, which
processes the publication text and metadata in order to com-
plement the knowledge-based search supported by EUREEKA by
rather traditional full-text services. KONNEX integrates the texts
and metadata extracted from the input publication corpus in a
triple store, representing all the information as RDF graphs (cf.
http://www.w3.org/TR/rdf-primer/). Operations related to data
incorporation and necessary full-text indices (for the publication
text and particular metadata types) are handled by dedicated man-
ager modules.

2.1.2. Relevant implementation details
Since CORAAL contains several conceptually separate modules,

we utilise an inter-process communication layer implemented
using the D-BUS framework (cf. http://dbus.freedesktop.org/). A set
of proxy helper services rests on top of the core-level EUREEKA
and KONNEX APIs. These manage the user requests and forward
the data returned by the core APIs to the so-called web hub layer,
which is organized as a decoupled set of stateless web services,
each of which handles particular types of search.

The web services produce machine-readable RDF expressions
that represent answers to user queries. The RDF has XSL style sheets
attached, allowing both its rendering for human readability and
machine consumption to be provided simultaneously. The human-
readable form is also enhanced by the Exhibit faceted browsing
web front-end (cf. http://www.simile-widgets.org/exhibit/). A hid-
den advantage of this mechanism is the shifting of the processing of
the data for visualization purposes from the server to the client side,
as the XSL transformation is performed by the client’s browser. Such
a solution results in CORAAL being a pure Semantic Web applica-
tion, as the data flow between the core infrastructure and the other
modules is strictly based on RDF graphs.

2.2. Knowledge acquisition pipeline

The publications’ metadata and full text were stored and
indexed within KONNEX for link processing [4]. After parsing
the input articles (either directly from PDF, or from annotated
text-based files as provided, e.g., by Elsevier), the metadata and
structural annotations were processed by KONNEX. First we elimi-
nated possible duplicate metadata annotations using a string-based
similarity heuristic. Each article was then represented as a com-
prehensive RDF graph consisting of its shallow metadata, such as
title, authors, linear structure with pointers to the actual content
(sections, paragraphs, etc.), and references. The references were
anchored in citation contexts (i.e., paragraphs they occur in), and
represented as individual graphs allowing for incremental enrich-
ment over time. The article’s full-text information was managed
using multiple Lucene indices (cf. http://lucene.apache.org/), while
the graphs were integrated and linked within the KONNEX RDF
repository.

While KONNEX catered for the raw publication text and meta-
data, exploitation of the more structured publication knowledge
was tackled by our novel EUREEKA framework for emergent (e.g.,
automatically extracted) knowledge processing [8]. The frame-
work builds on a simple subject-predicate-object triple model.
We extend the subject-predicate-object triples by adding positive
or negative certainty measures and organised them in so-called

conceptual matrices, concisely representing every positive and
negative relation between an entity and other entities. Metrics
can be easily defined on the conceptual matrices. The metrics then
serve as a natural basis for context-dependent concept similarity
scoring that provides the basic light-weight empirical semantics
in EUREEKA. On top of the similarity-based semantics, we imple-
mented two simple yet practical inference services: (i) retrieval
of knowledge similar to an input concept, and/or its extension by
means of similar stored content; (ii) rule-based materialisation of
relations implied by the explicit knowledge base content, and/or
complex querying (similarity as a basis for finding query vari-
able instances for approximate evaluation of rules). The inference
algorithms have anytime behaviour, meaning that it is possible
to programmatically adjust their completeness/efficiency trade-off
(i.e., one can either have complete, but possibly largely irrelevant
set of solutions in a long time, or incomplete, but rather relevant
set in a relatively short time). Technical details of the solution are
out of scope of this system overview article, but one can find them
in [8].

We applied our EUREEKA prototype to: (i) automate extrac-
tion of machine-readable knowledge from particular life science
article texts; (ii) integrate, refine, and extend the extracted knowl-
edge within one large emergent knowledge base; (iii) expose the
processed knowledge via a query-answering and faceted browsing
interface, tracking the article provenance of statements.

For the initial knowledge extraction, we used a heuris-
tics based on natural language processing (NLP)—stemming
essentially from [5,10]—to process chunk-parsed texts into subject-
predicate-object-score quads.2 The scores were derived from
aggregated absolute and document-level frequencies of sub-
ject/object and predicate terms. The extracted quads encoded
three major types of ontological relations between concepts: (I)
taxonomical—type—relationships; (II) concept difference (i.e., neg-
ative type relationships); (III) “facet” relations derived from verb
frames in the input texts (e.g., has part, involves, or occurs in). Over
27,000 types of facet relations were extracted. We imposed a tax-
onomy on them, considering the head verb of the phrase as a more
generic relation (e.g., involves expression of was assumed to be a type
of involves). Also, several artificial relation types were introduced
to restrict the semantics of some of the most frequent relations: a
(positive) type was considered transitive and anti-symmetric, and
same as was set transitive and symmetric. Similarly, part of was
assumed transitive and being inverse of has part. Note that the
has part relation has rather general semantics within the extracted
knowledge, i.e., its meaning is not strictly physically mereological,
it can refer also to, e.g., conceptual parts or possession of entities.

The quads were processed as follows in the ACE pipeline (details
of the particular steps are described in [8]):

(I) Addition—The extracted quads were incrementally added into
an growing knowledge base K, using a fuzzy aggregation of the
relevant conceptual matrices. To take into account the basic
domain semantics (i.e., synonymy relations and core taxonomy
of K), we used the EMTREE (http://www.embase.com/emtree/)
and NCI (http://nciterms.nci.nih.gov) thesauri.

(II) Closure—After the addition of new facts into K, we computed its
materialisation according to imported RDFS entailment rules
(cf. http://www.w3.org/TR/rdf-schema/).

(III) Extension—the extracted concepts were analogically extended
using similar stored knowledge.

2 Implemented for English only in the current version. However, the EUREEKA
framework itself is language-agnostic—it requires only input entities and their rela-
tions to be represented in an RDF-compatible format. Porting CORAAL to another
language is quite straightforward, given a suitable relation extraction pipeline.
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We display the content of the knowledge base via a query-
answering module. Answers to queries are sorted according to
their relevance scores and similarity to the query [8]. Answers are
provided by an intersection of publication provenance sets corre-
sponding to the respective statements’ subject and object terms.
The module currently supports queries in the following form: t | s :
(NOT )?p : o( AND s : (NOT )?p : o)∗, where NOT and AND stands
for negation and conjunction, respectively (the ? and ∗ wildcards
mean zero or one and zero or more occurrences of the preced-
ing symbols, respectively, | stands for OR). s, o, p may be either a
variable—anything starting with the ? character or even the ? char-
acter alone—or a lexical expression. t may be lexical expressions
only.

3. Elsevier grand challenge deployment

This section describes the deployment of CORAAL for the Else-
vier grand challenge. Section 3.1 describes the data we processed,
while Section 3.2 illustrates the query answering capabilities of
CORAAL using the example outlined in the article’s introduction.
Finally, Sections 3.3 and 3.4 report on the continuous tests with real
users and on the evaluation of the quality of the exposed knowl-
edge.

3.1. Data

Input: As of March 2009, we had processed 11,761 Else-
vier journal articles from the provided XML repositories that
were related to cancer research and treatment. Access to the
articles was provided within the Elsevier Grand Challenge competi-
tion (cf. http://www.elseviergrandchallenge.com). The domain was
selected to conform to the expertise of our sample users and testers
from Masaryk Oncology Institute in Brno, Czech Republic. We pro-
cessed cancer-related articles from a selection of Elsevier journals
focusing on oncology, genetics, pharmacology, biochemistry, gen-
eral biology, cell research and clinical medicine. From the article
repository, we extracted the knowledge and publication metadata
for further processing by CORAAL. Besides the publications them-
selves, we employed extant machine-readable vocabularies for the
refinement and extension of the extracted knowledge (currently,
we use the NCI and EMTREE thesauri).

Output: CORAAL exposes two datasets as an output of the
publication processing: First, we populated a triple store with pub-
lication metadata (citations, their contexts, structural annotations,

Fig. 2. Knowledge-based query construction.

titles, authors and affiliations) and built auxiliary indices for each
metadata type to facilitate full-text querying of the stored content.
The resulting store contained 7,608,532 RDF subject-predicate-
object statements describing the input articles. This included
247,392 publication titles and 374,553 authors (extracted from
both processed articles and their literature reference lists).

Apart from the triple store, we employed a custom EUREEKA
knowledge base [8], containing facts of variable levels of certainty
extracted and inferred from the article texts and the imported life
science thesauri. Over 215,000 concepts were extracted from the
articles. Together with the data from the initial thesauri, the domain
lexicon contained 622,611 terms, referring to 347,613 unique con-
cepts. The size of the emergent knowledge base was 4,715,992
weighed statements (ca. 99 and 334 extracted and inferred state-
ments per publication on average, respectively). The contextual
knowledge related to the statements, namely provenance infor-
mation, amounted to more than 10,000,000 additional statements
(when expressed in RDF triples). Query evaluation on the produced
content typically took fractions of seconds.

3.2. Asking queries, browsing answers

CORAAL can answer classical full-text or knowledge-based
queries using a simple yet powerful query language (details are
given in http://smile.deri.ie/projects/egc/quickstart). Answers in
CORAAL are presented as a list of query-conforming s tatements
(for the knowledge-based search) or resources (publication titles,
paragraphs or author names for the full-text search). The statement
results can be filtered based on their particular elements (e.g., sub-
jects, properties, and objects), associated contextual information
and whether the statement is positive or negative. The resource

Fig. 3. Query answer detail.
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results can be filtered according to the concepts associated with
them (both extracted and inferred) and additional metadata (e.g.,
authors or citations present in the context of the resulting para-
graphs). Using filtering (i.e., faceted browsing), one can quickly
focus on items of interest within the whole result set.

Recalling the example from Section 1, the query for sources
supporting that acute granulocytic leukemia is different from T-cell
leukemia can be conveniently constructed in CORAAL as depicted
in Fig. 2 (guided query building using a form-based interface).

The query builder includes a context-sensitive auto-completion
capability; if one rests the cursor on, e.g., a subject, only relations
(properties) actually associated with that subject in the knowledge
base are displayed.

Fig. 3 shows the highest ranked answer to the query con-
structed in Fig. 2, proving that the two types of leukemia are
not the same. The source article of the statement (displayed as
an inline summary in Fig. 3) is the desired reference supporting
the claim. The particular types of contextual information asso-
ciated with statements (as can be observed in Fig. 3) are: (I)
source provenance—articles relevant to the statement, which can be
expanded into an inline summary (as shown in Fig. 3) or explored
in detail after clicking on the respective publication title; (II) con-
text provenance—domain of life sciences that the statement relates
to (determined according to the main topic of the journal that
contained the articles the statement was extracted from); (III) cer-
tainty —a number describing how certain the system is that the
statement holds and is relevant to the query (values between 0
and 1; derived from the absolute value of the respective state-
ment degree and from the actual similarity of the statement to
the query); (IV) inferred—a Boolean value determining whether
the statement was inferred or not (the latter indicating it was
directly extracted). More information can be seen with CORAAL at
http://coraal.deri.ie:8080/coraal.

3.3. Continuous tests with users

During the development of the CORAAL prototype, we contin-
ually collaborated with several biomedical experts, who formed
a committee of sample users and evaluators. Before the final
stages of the Elsevier Grand Challenge, we prepared five tasks
to be worked out with CORAAL and a baseline application (Sci-
enceDirect or PubMed). Our hypothesis was that users should
perform better with CORAAL than with the baseline, since the
tasks were focused on knowledge rather than on a plain text-based
search.3

Users indicated that the tasks used for evaluating CORAAL were
relevant to their day to day work by giving it a score of 3.9 out of
6 (the scale was from 1 to 6, with 1 indicating no relevance, and 6
indicating high relevance). The success rate of task accomplishment
was 60.7% with CORAAL and 10.7% with the baseline application.
This confirms our above-mentioned hypothesis that users will be
able to accomplish the given tasks better with CORAAL due to its
enhanced querying and search capabilities.

Besides evaluating the users’ performance in sample
knowledge-based search tasks, we interviewed them regard-
ing the overall usability of the CORAAL interface. The most critical
issue was related to the query language—half of the users were not
always able to construct appropriate queries. However, CORAAL
also offers a form-based query builder that assists the user as

3 For instance, the users were asked to find all authors who support the fact that
the acute granulocytic leukemia and T-cell leukemia concepts are disjoint,
or to find which process is used as a complementary method, while being differ-
ent from the polymerase chain reaction, and identify publications that support
their findings.

illustrated in Section 3.2. Using this feature, users performed up
to six times faster and 40% more efficiently than with purely
manually constructed queries.

The expert users also had problems with too general, obvi-
ous, or irrelevant results. These concerns were expressed when
the users were presented with a raw list of answer statements
within the evaluation. After being discussed with the users within
the evaluation interviews, the problems were addressed by the fol-
lowing features in the user interface: (i) relevance-based sorting of
concepts and statements [8]—the most relevant statements were
displayed at the top of the results list; (ii) intuitive faceted browsing
functionality—support for fast and easy reduction of the displayed
results to a subset which reference particular entities (i.e., state-
ments having only certain objects or authors writing about certain
topics). The solutions were considered as mostly sufficient regard-
ing the users’ concerns (an average 4.6̄ score on the 1 − 6 scale going
from least to most sufficient).

3.4. Knowledge quality evaluation

To evaluate the quality of the knowledge served by CORAAL,4 we
generated 200 random queries composed of anything from single
terms to a conjunction of multiple possibly negated statements. To
ensure non-empty answer sets, the queries were generated from
the actual content of the knowledge base. Also, we took into account
only the content extracted from the input articles and not from the
NCI or EMTREE seed thesauri. We let our domain expert committee
vote on the relevance of queries to their day-to-day work and used
the ten most relevant ones to evaluate the answers provided by
CORAAL.

We used the traditional notions of precision, recall, and F-
measure for the evaluation of the quality of the answers. A gold
standard set of statements relevant to the queries used in the eval-
uation was created by the user committee, who employed their
own knowledge combined with the full-text search of the pub-
lications incorporated in CORAAL. For a baseline comparison, we
imported the knowledge extracted by CORAAL from the input arti-
cles and thesauri into a state-of-the art RDF store. The store had
inference and querying support, however, it lacked proper means
for emergent knowledge processing (namely regarding the nega-
tion, uncertainty, inconsistence resolution and approximate query
processing features). The set of queries used for CORAAL evaluation
was executed using the baseline RDF store and the results were
compared. Due to the novel support of the emergent knowledge,
CORAAL quite substantially outperformed the baseline, achieving
F-measures from two- to eight-times better for the various evalu-
ated features.

The absolute CORAAL results may still be considered rather
poor when compared to the gold standard generated by the users
(i.e., F-measures for some queries around 0.2). However, one must
recognise that the answers to the gold standard questions took
almost two working days for an expert committee to generate. In
about the same time, the CORAAL knowledge base was produced
purely automatically for much larger amounts of data (involving
statements about hundreds of thousands of concepts instead of a
few query entities). The queries take seconds to evaluate and one
can find many relevant answers very quickly due to the relevance-
based sorting of the results (the first 10 statements contained more
than 67% of relevant answers on average, while the 200th to 400th
results contained only about 5% correct statements). The evalu-
ation committee unequivocally considered the ability of CORAAL

4 Note that this section provides only an outline of the actual evaluation, sum-
marising the most important points. A full description of the knowledge quality
evaluation and the numeric results achieved is provided in [8].
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to perform purely automatically as an acceptable trade-off for the
detected noise in the results.

4. Related work

Approaches tackling problems related to those addressed by the
core technologies powering CORAAL are analysed in [8,4]. Here, we
offer an overview of systems targeting similar problems to those
tackled by our framework.

State-of-the-art applications like ScienceDirect or PubMed Cen-
tral require almost no effort in order to expose arbitrary life science
publications for search (therefore we used them as a baseline in
the user-centric experiment). However, the benefit they provide is
rather limited when compared to cutting-edge approaches aimed
at utilising also the publication knowledge within the query con-
struction and/or result visualisation. Such innovative solutions may
require much more a priori effort in order to work properly, though.

FindUR [6], Melisa [1] and GoPubMed [3] are ontology-based
interfaces to a traditional publication full-text search. GoPubMed
allows for effective restriction and intelligent visualisation of the
query results. FindUR and Melisa support focusing the queries on
particular topics based on an ontology (FindUR uses a Description
Logic ontology built from scratch, while Melisa employs a cus-
tom ontology based on MeSH, cf. http://www.nlm.nih.gov/mesh/).
GoPubMed dynamically extracts parts of the Gene Ontology (cf.
http://www.geneontology.org/) relevant to the query, which are
then used for restriction and a sophisticated visualisation of the
classical PubMed search results. Nevertheless, none of the tools
mentioned so far offers querying for or browsing of arbitrary publi-
cation knowledge. Terms and relations not present in the systems’
rather static ontologies simply cannot be reflected in the search.
On the other hand, CORAAL works on any domain and extracts
arbitrary knowledge from publications automatically, although the
offered benefits may not be that high due to a possibly higher level
of noise.

Textpresso [7] is quite similar to CORAAL concerning searching
for relations between concepts in particular chunks of text. How-
ever, the underlying ontologies and their instance sets have to be
provided manually, whereas CORAAL can operate with or with-
out any available ontology. Moreover, CORAAL includes far more
full-text publications and concepts.

The biggest challenge of systems with goals similar to CORAAL
is a reliable automation of truly expressive content extraction. In
contrast to CORAAL, none of the related systems addresses this
problem appropriately, which makes them scale poorly, or makes
them difficult to port to new domains. This is why we were not
able to use the related systems for a baseline comparison in our
domain-specific application scenario—we simply could not adapt
them so that they would be able to perform reasonably, both due
to technical difficulties and lack of necessary resources.

5. Conclusions and future work

With CORAAL, we have addressed most of the elements of a
truly knowledge-based scientific publication search as specified in
Section 1. We are able to extract and integrate emergent knowl-
edge and metadata from a large number of publications, as well
as augment and refine the extracted content. CORAAL also allows
for intuitive searching and browsing of the processed knowledge.

Although the primary focus of CORAAL is the knowledge-based
search, the underlying technologies are straightforwardly applica-
ble to many other tasks. These are for instance automated tagging
of articles by the associated general concepts, population of exist-
ing domain-specific vocabularies, or utilisation of CORAAL as a
general-purpose knowledge back-end exposing arbitrary services
(e.g., knowledge-based retrieval of similar articles or profile-based
article recommendation).

However, we still have to tackle several challenges in order
to fully realize the current potential of CORAAL. First, we want
to utilise the wisdom of the crowds by supporting intuitive and
unobtrusive community-based curation of the emergent knowl-
edge, namely by validation or invalidation of existing statements,
introduction of new statements and submission of new rules refin-
ing the domain semantics. Then we intend to make the step from
CORAAL to a CORAAL reef, a distributed peer-to-peer model cover-
ing multiple CORAAL installations autonomously communicating
with each other (e.g., asking for answers when no answer is avail-
able locally or exchanging appropriate rules to improve the local
semantics). After incorporating the capabilities of the prospective
CORAAL reefs into the ecosystem of the current online publish-
ing, we will be able to unlock, connect, augment and retrieve the
knowledge with unprecedented scale and efficiency.
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Vı́t Nováček, vit.novacek@deri.org

Academic editor
Harry Hochheiser

Additional Information and
Declarations can be found on
page 35

DOI 10.7717/peerj.483

Copyright
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ABSTRACT
Background. Unlike full reading, ‘skim-reading’ involves the process of looking
quickly over information in an attempt to cover more material whilst still being
able to retain a superficial view of the underlying content. Within this work, we
specifically emulate this natural human activity by providing a dynamic graph-based
view of entities automatically extracted from text. For the extraction, we use shallow
parsing, co-occurrence analysis and semantic similarity computation techniques.
Our main motivation is to assist biomedical researchers and clinicians in coping with
increasingly large amounts of potentially relevant articles that are being published
ongoingly in life sciences.
Methods. To construct the high-level network overview of articles, we extract
weighted binary statements from the text. We consider two types of these statements,
co-occurrence and similarity, both organised in the same distributional representa-
tion (i.e., in a vector-space model). For the co-occurrence weights, we use point-wise
mutual information that indicates the degree of non-random association between
two co-occurring entities. For computing the similarity statement weights, we use
cosine distance based on the relevant co-occurrence vectors. These statements are
used to build fuzzy indices of terms, statements and provenance article identifiers,
which support fuzzy querying and subsequent result ranking. These indexing and
querying processes are then used to construct a graph-based interface for searching
and browsing entity networks extracted from articles, as well as articles relevant
to the networks being browsed. Last but not least, we describe a methodology for
automated experimental evaluation of the presented approach. The method uses
formal comparison of the graphs generated by our tool to relevant gold standards
based on manually curated PubMed, TREC challenge and MeSH data.
Results. We provide a web-based prototype (called ‘SKIMMR’) that generates a
network of inter-related entities from a set of documents which a user may explore
through our interface. When a particular area of the entity network looks interesting
to a user, the tool displays the documents that are the most relevant to those entities
of interest currently shown in the network. We present this as a methodology for
browsing a collection of research articles. To illustrate the practical applicability of
SKIMMR, we present examples of its use in the domains of Spinal Muscular Atrophy
and Parkinson’s Disease. Finally, we report on the results of experimental evaluation
using the two domains and one additional dataset based on the TREC challenge.
The results show how the presented method for machine-aided skim reading
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outperforms tools like PubMed regarding focused browsing and informativeness
of the browsing context.

Subjects Bioinformatics, Neuroscience, Human–Computer Interaction, Computational Science
Keywords Machine reading, Skim reading, Publication search, Text mining,
Information visualisation

INTRODUCTION
In recent years, knowledge workers in life sciences are increasingly overwhelmed by an

ever-growing quantity of information. PubMed1 contained more than 23 million abstracts

1 The central US repository of published
papers in the life sciences since the
1950s, see http://www.ncbi.nlm.nih.
gov/pubmed.

as of November 2013, with a new entry being added every minute. The current textual

content available online as PubMed abstracts amount to over 2 billion words (based on

estimates derived from a random sample of about 7,000 records). Information retrieval

technology helps researchers pinpoint individual papers of interest within the overall mass

of documents, but how can scientists use that to acquire a sense of the overall organization

of the field? How can users discover new knowledge within the literature when they might

not know what they are looking for ahead of time?

Strategic reading aided by computerised solutions may soon become essential for

scientists (Renear & Palmer, 2009). Our goal is to provide a system that can assist readers to

explore large numbers of documents efficiently. We present ‘machine-aided skim-reading’

as a way to extend the traditional paradigm of searching and browsing a text collection

(in this case, PubMed abstracts) through the use of a search tool. Instead of issuing a

series of queries to reveal lists of ranked documents that may contain elements of interest,

we let the user search and browse a network of entities and relations that are explicitly or

implicitly present in the texts. This provides a simplified and high-level overview of the

domain covered by the text, and allows users to identify and focus on items of interest

without having to read any text directly. Upon discovering an entity of interest, the user

may transition from our ‘skimming’ approach to read the relevant texts as needed.

This article is organised as follows. ‘Methods’ describes methods used in SKIMMR for:

(1) extraction of biomedical entities from data; (2) computation of the co-occurrence and

similarity relationships between the entities; (3) indexing and querying of the resulting

knowledge base; (4) evaluating the knowledge base using automated simulations. Each

of the methods is explained using examples. ‘Results’ presents the SKIMMR prototype

and explains typical usage of the tool in examples based on user interactions. We also

describe evaluation experiments performed with three different instances of the tool. In

‘Discussion’ we discuss the results, give an overview of related work and outline our future

directions. There is also ‘Formulae Definitions’ that provides details on some of the more

complex formulae introduced in the main text.

The main contributions of the presented work are: (1) machine-aided skim-reading

as a new approach to semi-automated knowledge discovery; (2) fuzzy indexing and

querying method for efficient on-demand construction and presentation of the high-level
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graph-based article summaries; (3) detailed examples that explain the applied methods

in a step-by-step fashion even to people with little or no computer science background;

(4) an open-source prototype implementing the described method, readily available for

processing custom data, and also in the form of two pre-computed instances deployed on

Spinal Muscular Atrophy and Parkinson’s Disease data; (5) an evaluation methodology

based on simulations and formally defined measures of semantic coherence, information

content and complexity that can be used not only for evaluating SKIMMR (as we did in the

article), but also for assessment of other tools and data sets utilising graph structures.

METHODS
This section describes how the knowledge base supporting the process of machine-aided

skim reading is generated from the input data (i.e., biomedical articles and data). Firstly

we describe extraction of entities and basic co-occurrence relationships between them

(‘Extracting basic co-occurrence statements from texts’). ‘Computing a knowledge base

from the extracted statements’ is about how we compute more general, corpus-wide

relationships from the basic extracted co-occurrence statements. ‘Indexing and querying

the knowledge base’ explains how the processed content can be indexed and queried in

order to generate the graph-based summaries with links to the original documents. Finally,

‘Evaluation methodology’ introduces a method for a simulation-based evaluation of the

generated content in the context of machine-aided skim reading. For the research reported

in this article, we received an exemption from IRB review by the USC UPIRB, under

approval number UP-12-00414.

Extracting basic co-occurrence statements from texts
We process the abstracts by a biomedical text-mining tool2 in order to extract named

2 A part of the LingPipe suite, see http://
alias-i.com/lingpipe/ for details.

entities (e.g., drugs, genes, diseases or cells) from the text. For each abstract with a PubMed

ID PMID, we produce a set of (ex,ey,cooc((ex,ey),PubMedPMID),PubMedPMID) tuples,

where ex,ey range over all pairs of named entities in the abstract with the PMID identifier,

and cooc((ex,ey),PubMedPMID) is a co-occurrence score of the two entities computed using

the formula (1) detailed in ‘Co-occurrences’. The computation of the score is illustrated in

the following example.

Example 1 Imagine we want to investigate the co-occurrence of the parkinsonism and

DRD (dopamine-responsive dystopia) concepts in a data set of PubMed abstracts concerned

with clinical aspects of Parkinson’s disease.3 There are two articles in the data set where the

3 Which we have processed in one of the
pre-computed instances of SKIMMR,
see ‘Parkinson’s disease’ for details.

corresponding terms co-occur:

• Jeon BS, et al. Dopamine transporter density measured by 123Ibeta-CIT single-photon

emission computed tomography is normal in dopa-responsive dystonia (PubMed ID:

9629849).

• Snow BJ, et al. Positron emission tomographic studies of dopa-responsive dystonia and

early-onset idiopathic parkinsonism (PubMed ID: 8239569).
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The relevant portions of the first abstract (PubMed ID: 9629849) are summarised in the

following table (split into sentences numbered from the beginning of the text):

... ...

12 Therefore, we performed 123Ibeta-CIT single-photon emission computed tomography
(123Ibeta-CIT SPECT) in clinically diagnosed DRD, PD, and JPD, and examined whether
DAT imaging can differentiate DRD from PD and JPD.

... ...

14 Five females (4 from two families, and 1 sporadic) were diagnosed as DRD based on
early-onset foot dystonia and progressive parkinsonism beginning at ages 7–12.

... ...

17 123Ibeta-CIT striatal binding was normal in DRD, whereas it was markedly decreased
in PD and JPD.

... ...

22 A normal striatal DAT in a parkinsonian patient is evidence for a nondegenerative cause
of parkinsonism and differentiates DRD from JPD.

23 Finding a new mutation in one family and failure to demonstrate mutations in the
putative gene in other cases supports the usefulness of DAT imaging in diagnosing DRD.

Based on the sentence numbers in the excerpt, we can compute the co-occurrence score of the

(parkinsonism,DRD) tuple as:

cooc((parkinsonism, DRD),PubMed9629849) =


1 +

1

4
+

1

3
+

1

3


+


1 +

1

2


= 3.416̄.

Similar to the above, the portions relevant to the (parkinsonism,DRD) co-occurrences

according to the second abstract (PubMed ID: 8239569) are as follows:

1 There are two major syndromes presenting in the early decades of life
with dystonia and parkinsonism: dopa-responsive dystonia (DRD) and
early-onset idiopathic parkinsonism (EOIP).

2 DRD presents predominantly in childhood with prominent dystonia and
lesser degrees of parkinsonism.

... ...

5 Some have suggested, however, that DRD is a form of EOIP.

... ...

The co-occurrence score is then:

cooc((parkinsonism,DRD),PubMed8239569) =


1 +

1

2
+ 1 +

1

2


+

1

4
= 3.25.

Therefore the basic co-occurrence tuples produced from the two articles are:

(parkinsonism,DRD,3.416̄,PubMed9629849),

(parkinsonism,DRD,3.25,PubMed8239569).
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Computing a knowledge base from the extracted statements
From the basic co-occurrence statements, we compute a knowledge base, which is a

comprehensive network of interlinked entities. This network supports the process of

navigating a skeletal structure of the knowledge represented by the corpus of the input

PubMed articles (i.e., the actual skim reading). The knowledge base consists of two types of

statements: (1) corpus-wide co-occurrence and (2) similarity. The way to compute the par-

ticular types of statements in the knowledge base is described in the following two sections.

Corpus-wide co-occurrence
The basic co-occurrence tuples extracted from the PubMed abstracts only express the co-

occurrence scores at the level of particular documents. We need to aggregate these scores

to examine co-occurrence across the whole corpus. For that, we use point-wise mutual

information (Manning, Raghavan & Schütze, 2008), which determines how much two

co-occurring terms are associated or disassociated, comparing their joint and individual

distributions over a data set. We multiply the point-wise mutual information value by

the absolute frequency of the co-occurrence in the corpus to prioritise more frequent

phenomena. Finally, we filter and normalise values so that the results contain only scores in

the [0,1] range. The scores are computed using the formulae (2)–(5) in ‘Co-occurrences’.

The aggregated co-occurrence statements that are added to the knowledge base are in

the form of (x,cooc,y,ν(fpmi(x,y),P)) triples, where x,y range through all terms in the

basic co-occurrence statements, the scores are computed across all the documents where

x,y co-occur, and the cooc expression indicates co-occurrence as the actual type of the

relation between x,y. Note that the co-occurrence relation is symmetric, meaning that if

(x,cooc,y,w1) and (y,cooc,x,w2) are in the knowledge base, w1 must be equal to w2.

Example 2 Assuming our corpus consists only of the two articles from Example 1, the point-

wise mutual information score of the (parkinsonism,DRD) tuple can be computed using the

following data:

• p(parkinsonism, DRD)–joint distribution of the (parkinsonism,DRD) tuple within

all the tuples extracted from the PubMed abstracts with IDs 9629849 and 8239569, which

equals 3.416̄ + 3.25 = 6.6̄ (sum across all the (parkinsonism,DRD) basic co-occurrence

tuples);

• p(parkinsonism),p(DRD)–individual distributions of the parkinsonism,DRD argu-

ments within all extracted tuples, which equal 28.987 and 220.354, respectively (sums of

the weights in all basic co-occurrence statements that contain parkinsonism or DRD as

one of the arguments, respectively);

• F(parkinsonism, DRD),|T|–the absolute frequency of the parkinsonism,DRD

co-occurrence and the number of all basic co-occurrence statements extracted from the

abstracts, which equals to 2 and 1,414, respectively;

• P–the percentile for the normalisation, equal to 95, which results in the normalisation

constant 2.061 (a non-normalised score such that only 5% of the scores are higher than

that).
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The whole formula is then:

npmi(parkinsonism, DRD) = ν(fpmi(parkinsonism, DRD),P) =

= ν(F(parkinsonism, DRD) · log2
p(parkinsonism,DRD)

p(parkinsonism)p(DRD)
,95)

.
=

.
=

2 · log2
6.6̄

28.987·220.354

2.061
.
= 0.545.

Thus the aggregated co-occurrence statement that is included in the knowledge base is

(parkinsonism,cooc,DRD,0.545).

Similarity
After having computed the aggregated and filtered co-occurrence statements, we add

one more type of relationship–similarity. Many other authors have suggested ways for

computing semantic similarity (see d’Amato, 2007 for a comprehensive overview). We base

our approach on cosine similarity, which has become one of the most commonly used

approaches in information retrieval applications (Singhal, 2001; Manning, Raghavan &

Schütze, 2008). The similarity and related notions are described in detail in ‘Similarities’,

formulae (6) and (7).

Similarity indicates a higher-level type of relationship between entities that may not

be covered by mere co-occurrence (entities not occurring in the same article may still be

similar). This adds another perspective to the network of connections between entities

extracted from literature, therefore it is useful to make similarity statements also a part

of the SKIMMR knowledge base. To do so, we compute the similarity values between

all combinations of entities x,y and include the statements (x,sim,y,sim(x,y)) into the

knowledge base whenever the similarity value is above a pre-defined threshold (0.25 is used

in the current implementation).4

4 Similar to the co-occurrence statements
described before, the sim expression
refers to the type of the relation between
x,y, i.e., similarity.

A worked example of how to compute similarity between two entities in the sample

knowledge base is given below.

Example 3 Let us use ‘parkinsonisms′, ‘mrpi values′ as sample entities a,b. In a full ver-

sion of Parkinson’s disease knowledge base (that contains the data used in the previous exam-

ples, but also hundreds of thousands of other statements), there are 19 shared entities among

the ones related to a,b (for purposes of brevity, each item is linked to a short identifier to be

used later on): (1) msa− p ∼ t0, (2) clinically unclassifiable parkinsonism ∼ t1,

(3) cup ∼ t2, (4) vertical ocular slowness ∼ t3, (5) baseline clinical

evaluation ∼ t4, (6) mr ∼ t5, (7) parkinsonian disorders ∼ t6,

(8) psp phenotypes ∼ t7, (9) duration ∼ t8, (10) patients ∼ t9,

(11) clinical diagnostic criteria ∼ t10, (12) abnormal mrpi values ∼ t11,

(13) pd ∼ t12, (14) magnetic resonance parkinsonism index ∼ t13,

(15) parkinson disease ∼ t14, (16) mri ∼ t15, (17) parkinson′s disease ∼ t16,

(18) psp ∼ t17, (19) normal mrpi values ∼ t18.
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The co-occurrence complements a,b of the parkinsonisms, mrpi values entities (i.e.,

associated co-occurrence context vectors) are summarised in the following table:

t0 t1 t2 t3 t4 t5 t6 t7 t8 t10 t11 t13 t14 t15 t17 t18

a 0.14 0.39 1.0 0.08 0.26 0.06 0.18 0.4 0.07 0.27 0.09 0.7 0.03 0.14 0.33 0.25

b 0.26 0.57 1.0 0.3 0.82 0.2 0.33 0.26 0.39 0.43 0.36 0.41 0.06 0.34 1.0 1.0

Note that the elements t9,t12,t16 are omitted since their weight in at least one of the

complements is <0.01 and thus does not contribute significantly to the result. The sizes of

the co-occurrence complement vectors are 3.048, 2.491 for parkinsonisms, mrpi values,

respectively, while their dot product is 2.773. Therefore their similarity is equal to
2.773

3.048·2.491
.
= 0.365 and the new statement to be added to the knowledge base is

(parkinsonisms,sim,mrpi values,0.365).

Indexing and querying the knowledge base
The main purpose of SKIMMR is to allow users to efficiently search and navigate in

the SKIMMR knowledge bases, and retrieve articles related to the content discovered

in the high-level entity networks. To support that, we maintain several indices of the

knowledge base contents. The way how the indices are built and used in querying SKIMMR

is described in the following two sections.

Knowledge base indices
In order to expose the SKIMMR knowledge bases, we maintain three main indices: (1)

a term index–a mapping from entity terms to other terms that are associated with them

by a relationship (like co-occurrence or similarity); (2) a statement index–a mapping that

determines which statements the particular terms occur in; (3) a source index–a mapping

from statements to their sources, i.e., the texts from which the statements have been

computed. In addition to the main indices, we use a full-text index that maps spelling

alternatives and synonyms to the terms in the term index.

The main indices are implemented as matrices that reflect the weights in the SKIMMR

knowledge base:

T1 T2 ... Tn

T1 t1,1 t1,2 ... t1,n

T2 t2,1 t2,2 ... t2,n
...

...
...

. . .
...

Tn tn,1 tn,2 ... tn,n

S1 S2 ... Sm

T1 s1,1 s1,2 ... s1,m

T2 s2,1 s2,2 ... s2,m
...

...
...

. . .
...

Tn sn,1 sn,2 ... sn,m

P1 P2 ... Pq

S1 p1,1 p1,2 ... p1,q

S2 p2,1 p2,2 ... p2,q
...

...
...

. . .
...

Sm pm,1 pm,2 ... pm,q

where:

• T1,...,Tn are identifiers of all entity terms in the knowledge base and ti,j ∈ [0,1] is the

maximum weight among the statements of all types existing between entities Ti,Tj in

the knowledge base (0 if there is no such statement);
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• S1,...,Sm are identifiers of all statements present in the knowledge base and si,j ∈ {0,1}

determines whether an entity Ti occurs in a statement Sj or not;

• P1,...,Pq are identifiers of all input textual resources, and pi,j ∈ [0,1] is the weight of the

statement Si if Pj was used in order to compute it, or zero otherwise.

Example 4 To illustrate the notion of the knowledge base indices, let us consider

a simple knowledge base with only two statements from Examples 1 and 3: S1 ∼

(parkinsonism,cooc,DRD,0.545), S2 ∼ (parkinsonisms,sim,mrpi values,0.365).

Furthermore, let us assume that: (i) the statement S1 has been computed from the articles

with PubMed identifiers 9629849, 8239569 (being referred to by the P1,P2 provenance

identifiers respectively); (ii) the statement S2 has been computed from articles with PubMed

identifiers 9629849, 21832222, 22076870 (being referred to by the P1,P3,P4 provenance

identifiers, respectively5). This corresponds to the following indices:

5 In reality, the number of source article
used for computing these statements
in Parkinson’s disease knowledge base
is much larger, but here we take into
account only a few of them to simplify
the example.

term index parkinsonism DRD parkinsonisms mrpi values

parkinsonism 0.0 0.545 0.0 0.0

DRD 0.545 0.0 0.0 0.0

parkinsonisms 0.0 0.0 0.0 0.365

mrpi values 0.0 0.0 0.365 0.0

statement index S1 S2

parkinsonism 1.0 0.0

DRD 1.0 0.0

parkinsonisms 0.0 1.0

mrpi values 0.0 1.0

provenance index P1 P2 P3 P4

S1 0.545 0.545 0.0 0.0

S2 0.0 0.0 0.365 0.365

Querying
The indices are used to efficiently query for the content of SKIMMR knowledge bases.

We currently support atomic queries with one variable, and possibly nested combinations

of atomic queries and propositional operators of conjunction (AND), disjunction (OR)

and negation (NOT). An atomic query is defined as ? ↔ T, where ? refers to the query

variable and T is a full-text query term.6 The intended purpose of the atomic query is

6 One can expand the coverage of their
queries using the advanced full-text
search features like wildcards or boolean
operators for the term look-up. Detailed
syntax of the full-text query language we
use is provided at http://pythonhosted.
org/Whoosh/querylang.html.

to retrieve all entities related by any relation to the expressions corresponding to the

term T. For instance, the ? ↔ parkinsonism query is supposed to retrieve all entities

co-occurring-with or similar-to parkinsonism.

Combinations consisting of multiple atomic queries linked by logical operators are

evaluated using the following algorithm:

1. Parse the query and generate a corresponding ‘query tree’ (where each leaf is an atomic

query and each node is a logical operator; the levels and branches of this tree reflect the

nested structure of the query).
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2. Evaluate the atomic queries in the nodes by a look-up in the term index, fetching the

term index rows that correspond to the query term in the atomic query.

3. The result of each term look-up is a fuzzy set (Hájek, 1998) of terms related to the atomic

query term, with membership degrees given by listed weights. One can then naturally

combine atomic results by applying fuzzy set operations corresponding to the logical

operators in the parsed query tree nodes (where conjunction, disjunction and negation

correspond to fuzzy intersection, union and complement, respectively).

4. The result is a fuzzy set of terms RT = {(T1,wT
1 ),(T2,wT

2 ),...,(Tn,wT
n )}, with their

membership degrees reflecting their relevance as results of the query.

The term result set RT can then be used to generate sets of relevant statements

(RS) and provenances (RP) using look-ups in the corresponding indices as follows:

(a) RS = {(S1,wS
1),(S2,wS

2),...,(Sm,wS
m)}, where wS

i = νs
n

j=1wT
j cj,i, (b) RP =

{(P1,wP
1 ),(P2,wP

2 ),...,(Pq,wP
q )}, where wP

i = νp
m

j=1wS
j wj,i. νs,νp are normalisation

constants for weights. The weight for a statement Si in the result set RS is computed as a

normalised a dot product (i.e., sum of the element-wise products) of the vectors given by:

(a) the membership degrees in the term result set RT , and (b) the column in the statement

index that corresponds to Si. Similarly, the weight for a provenance Pi in the result set RP

is a normalised dot product of the vectors given by the ST membership degrees and the

column in the provenance index corresponding to Pi.

The fuzzy membership degrees in the term, statement and provenance result sets can be

used for ranking and visualisation, prioritising the most important results when presenting

them to the user. The following example outlines how a specific query is evaluated.

Example 5 Let us assume we want to query the full SKIMMR knowledge base about Parkin-
son’s Disease for the following:

? ↔ parkinsonism AND (? ↔ mrpi OR ? ↔ magnetic resonance parkinsonism index)

This aims to find all statements (and corresponding documents) that are related to

parkinsonism and either magnetic resonance parkinsonism index or its mrpi ab-

breviation. First of all, the full-text index is queried, retrieving two different terms conform-

ing to the first atomic part of the query due to its stemming features: parkinsonism and

parkinsonisms. The other two atomic parts of the initial query are resolved as is. After the

look-up in the term index, four fuzzy sets are retrieved: 1. Tparkinsonism (3,714 results), 2.

Tparkinsonisms (151 results), 3. Tmrpi (39 results). 4. Tmagnetic resonance parkinsonism index

(29 results). The set of terms conforming to the query is then computed as

(Tparkinsonism ∪ Tparkinsonisms) ∩ (Tmrpi ∪ Tmagnetic resonance parkinsonism index).

When using maximum and minimum as t-conorm and t-norm for computing the fuzzy

union and intersection (Hájek, 1998), respectively, the resulting set has 29 elements with

non-zero membership degrees. The top five of them are

(1) cup, (2) mrpi, (3) magnetic resonance parkinsonism index, (4)

clinically unclassifiable parkinsonism, (5) clinical evolution
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with membership degrees 1.0,1.0,0.704,0.39,0.34, respectively. According to the statement

index, there are 138 statements corresponding to the top five term results of the initial query,

composed of 136 co-occurrences and 2 similarities. The top five co-occurrence statements and

the two similarity statements are:

Type Entity1 Entity2 Membership
degree

cooc mrpi cup 1.0

cooc mrpi magnetic resonance parkinsonism index 0.852

cooc cup magnetic resonance parkinsonism index 0.852

cooc mrpi clinically unclassifiable parkinsonism 0.695

cooc cup clinically unclassifiable parkinsonism 0.695

sim psp patients magnetic resonance parkinsonism index 0.167

sim parkinsonism clinical evolution 0.069

where the membership degrees are computed from the combination of the term weights

as described before the example, using an arithmetic mean for the aggregation. Finally, a

look-up in the source index for publications corresponding to the top seven result statements

retrieves 8 relevant PubMed identifiers (PMID). The top five of them correspond to the

following list of articles:

PMID Title Authors Weight

21832222 The diagnosis of neurodegenerative disorders based on clinical and
pathological findings using an MRI approach

Watanabe H et al. 1.0

21287599 MRI measurements predict PSP in unclassifiable parkinsonisms:
a cohort study

Morelli M et al. 0.132

22277395 Accuracy of magnetic resonance parkinsonism index for
differentiation of progressive supranuclear palsy from probable or
possible Parkinson disease

Morelli M et al. 0.005

15207208 Utility of dopamine transporter imaging (123-I Ioflupane
SPECT) in the assessment of movement disorders

Garcia Vicente AM et al. 0.003

8397761 Alzheimer’s disease and idiopathic Parkinson’s disease coexistence Rajput AH et al. 0.002

where the weights have been computed by summing up the statement set membership degrees

multiplied by the source index weights and then normalising the values by their maximum.

Evaluation methodology
In addition to proposing specific methods for creating knowledge bases that support

skim reading, we have also come up with a specific methodology for evaluating the

generated knowledge bases. An ideal method for evaluating the proposed approach,

implemented as a SKIMMR tool, would be to record and analyse user feedback and

behaviour via SKIMMR instances used by large numbers of human experts. We do have

such means for evaluating SKIMMR implemented in the user interface.7 However, we

7 See the SMA SKIMMR instance at http:/
/www.skimmr.org:8008/data/html/trial.
tmp for details.

have not yet managed to collect sufficiently large sample of user data due to the early stage

of the prototype deployment. Therefore we implemented an indirect methodology for

automated quantitative evaluation of SKIMMR instances using publicly available manually
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curated data. The methodology is primarily based on simulation of various types of human

behaviour when browsing the entity networks generated by SKIMMR. We formally define

certain properties of the simulations and measure their values in order to determine the

utility of the entity networks for the purposes of skim reading. Details are given in the

following sections.

Overview of the evaluation methods
The proposed methods intend to simulate human behaviour when using the data gener-

ated by SKIMMR. We apply the same simulations also to baseline data that can serve for the

same or similar purpose as SKIMMR (i.e., discovery of new knowledge by navigating entity

networks). Each simulation is associated with specific measures of performance, which can

be used to compare the utility of SKIMMR with respect to the baseline.

The primary evaluation method is based on random walks (Lovász, 1993) in an

undirected entity graph corresponding to the SKIMMR knowledge base. For the baseline,

we use a network of MeSH terms assigned by human curators to the PubMed abstracts

that have been used to create the SKIMMR knowledge base.8 This represents a very similar

8 MeSH (Medical Subject Headings) is a
comprehensive, manually curated and
regularly updated controlled vocabulary
and taxonomy of biomedical terms.
It is frequently used as a standard for
annotation of biomedical resources,
such as PubMed abstracts. See http://
www.ncbi.nlm.nih.gov/mesh for details.

type of content, i.e., entities associated with PubMed articles. It is also based on expert

manual annotations and thus supposed to be a reliable gold standard (or at least a decent

approximation thereof due to some level of transformation necessary to generate the entity

network from the annotations).

Example 6 Returning to the knowledge base statement from Example 2 in ‘Corpus-wide

co-occurrence’: (parkinsonism,cooc,DRD,0.545). In the SKIMMR entity graph, this

corresponds to two nodes (parkinsonism,DRD) and one edge between them with weight

0.545. We do not distinguish between the types of the edges (i.e., co-occurrence or similarity),

since it is not of significant importance for the SKIMMR users according to our experience so

far (they are more interested in navigating the connections between nodes regardless of the

connection type).

A baseline entity graph is generated from the PubMed annotations with MeSH terms.

For all entities X,Y associated with an abstract A, we construct an edge connecting

the nodes X and Y in the entity graph. The weight is implicitly assumed to be 1.0 for

all such edges. To explain this using concrete data, let us consider the two PubMed IDs

from Example 1, 9629849 and 8239569. Selected terms from the corresponding MeSH

annotations are {Parkinson Disease/radionuclide imaging,Male,Child},

{Parkinson Disease/radionuclide imaging,Dystonia/drug therapy}, respec-

tively. The graph induced by these annotations is depicted in Fig. 1.

The secondary evaluation method uses an index of related articles derived from the

entities in the SKIMMR knowledge bases. For the baseline, we use either an index of related

articles produced by a specific service of PubMed (Lin & Wilbur, 2007), or the evaluation

data from the document categorisation task of the TREC’04 genomics track (Cohen

& Hersh, 2006) where applicable. We use the TREC data since they were used also for

evaluation of the actual algorithm used by PubMed to compute related articles.
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Figure 1 Example of an entity graph derived from PubMed.

To generate the index of related articles from the SKIMMR data, we first use the

knowledge base indices (see ‘Extracting basic co-occurrence statements from texts’) to

generate a mapping EP : E → 2P from entities from a set E to a set of corresponding

provenance identifiers (subsets of a set P). In the next step, we traverse the entity graph GE

derived from the statements in the SKIMMR knowledge base and build an index of related

articles according to the following algorithm:

1. Initialise a map MP between all possible (Pi,Pj) provenance identifier pairs and the

weight of an edge between them so that all values are zero.

2. For all pairs of entities E1,En (i.e., nodes in GE), do:

• If there is a path P of edges {(E1,E2),(E2,E3),...,(En−1,En)} in GE:

– compute an aggregate weight of the path as wP = wE1,E2 · wE2,E3 · ... · wEn−1,En (as a

multiplication of all weights along the pathP);

– set the values MP(Pi,Pj) of the map MP to max(MP(Pi,Pj),wP) for every Pi,Pj such

that Pi ∈ EP(E1),Pj ∈ EP(En) (i.e., publications corresponding to the source and

target entities of the path).

3. Interpret the MP map as an adjacency matrix and construct a corresponding weighted

undirected graph GP.

4. For every node P in GP, iteratively construct the index of related articles by associating

the key P with a list L of all neighbours of P in GP sorted by the weights of the

corresponding edges.

Note that in practice, we restrict the maximum length of the paths to three and also remove

edges in GP with weight below 0.1. This is to prevent a combinatorial explosion of the

provenance graph when the entity graph is very densely connected.

The baseline index of related publications according to the PubMed service is simply a

mapping of one PubMed ID to an ordered list of the related PubMed IDs. The index based

on the TREC data is generated from the article categories in the data set. For a PubMed ID

X, the list of related IDs are all IDs belonging to the same category as X, ordered so that the

definitely relevant articles occur before the possibly relevant ones.9

9 The articles in the TREC data set
are annotated by membership in a
number of specific categories. The
membership is gradual, with three
possible values–definitely relevant,
possibly relevant and not relevant.
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Motivation of the evaluation methods
The random walks are meant to simulate user’s behaviour when browsing the SKIMMR

data, starting with an arbitrary entry point, traversing a number of edges linking the

entities and ending up in a target point. Totally random walk corresponds to when a user

browses randomly and tries to learn something interesting along the way. Other types

of user behaviour can be simulated by introducing specific heuristics for selection of the

next entity on the walk (see below for details). To determine how useful a random walk

can be, we measure properties like the amount of information along the walk and in its

neighbourhood, or semantic similarity between the source and target entities (i.e., how

semantically coherent the walk is).

The index of related articles has been chosen as a secondary means for evaluating

SKIMMR. Producing links between publications is not the main purpose of our current

work, however, it is closely related to the notion of skim reading. Furthermore, there are

directly applicable gold standards we can use for automated evaluation of the lists of related

articles generated by SKIMMR, which can provide additional perspective on the utility of

the underlying data even if we do not momentarily expose the publication networks to

users.

Running and measuring the random walks
To evaluate the properties of random walks in a comprehensive manner, we ran them in

batches with different settings of various parameters. These are namely: (1) heuristics for

selecting the next entity (one of the four defined below); (2) length of the walk (2, 5, 10 or

50 edges); (3) radius of the walk’s envelope, i.e., the maximum distance between the nodes

of the path and entities that are considered its neighbourhood (0, 1, 2); (4) number of

repetitions (100-times for each combination of the parameter (1–3) settings).

Before we continue, we have to introduce few notions that are essential for the definition

of the random walk heuristics and measurements. The first of them is a set of top-level

(abstract) clusters associated with an entity in a graph (either from SKIMMR or from

PubMed) according to the MeSH taxonomy. This is defined as a function CA : E → M,

where E,M are the sets of entities and MeSH cluster identifiers, respectively. The second

notion is a set of specific entity cluster identifiers CS, defined on the same domain and

range as CA, i.e., CS : E → M.

The MeSH cluster identifiers are derived from the tree path codes associated with

each term represented in MeSH. The tree path codes have the form L1.L2. ... .Ln−1.Ln

where Li are sub-codes of increasing specificity (i.e., L1 is the most general and Ln most

specific). For the abstract cluster identifiers, we take only the top-level tree path codes into

account as the values of CA, while for CS we consider the complete codes. Note that for the

automatically extracted entity names in SKIMMR, there are often no direct matches in the

MeSH taxonomy that could be used to assign the cluster identifiers. In these situations, we

try to find a match for the terms and their sub-terms using a lemmatised full-text index

implemented on the top of MeSH. This helps to increase the coverage two- to three-fold on

our experimental data sets.
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For some required measures, we will need to consider the number and size of specific

clusters associated with the nodes in random walks and their envelopes. Let us assume a

set of entities Z ⊆ E. The number of clusters associated with the entities from Z, cn(Z),

is then defined as cn(Z) = |


X∈Z C(X)| where C is one of CA,CS (depending on which

type of clusters are we interested in). The size of a cluster Ci ∈ C(X), cs(Ci), is defined as

an absolute frequency of the mentions of Ci among the clusters associated with the entities

in Z. More formally, cs(Ci) = |{X|X ∈ Z ∧ Ci ∈ C(X)}|. Finally, we need a MeSH-based

semantic similarity of entities simM(X,Y), which is defined in detail in the formula (8) in

‘Similarities’.

Example 7 To illustrate the MeSH-based cluster annotations and similarities,

let us consider two entities, supranuclear palsy, progressive, 3 and

secondary parkinson disease. The terms correspond to the MeSH tree code sets

{C10.228.662.700,...,C23.888.592.636.447.690,...,C11.590.472.500,...} and

{C10.228.662.600.700}, respectively, which are also the sets of specific clusters associated

with the terms. The top-level clusters are {C10, C11, C23} and {C10}, respectively. The least

common subsumer of the two terms is C10.228.662 of depth 3 (the only possibility with

anything in common is C10.228.662.700 and C10.228.662.600.700). The depths of the

related cluster annotations are 4 and 5, therefore the semantic similarity is 2·3
4+5 =

2
3 .

We define four heuristics used in our random walk implementations. All the heuristics

select the next node to visit in the entity graph according to the following algorithm:

1. Generate the list L of neighbours of the current node.

2. Sort L according to certain criteria (heuristic-dependent).

3. Initialise a threshold e to ei, a pre-defined number in the (0,1) range (we use 0.9 in our

experiments).

4. For each node u in the sorted list L, do:

• Generate a random number r from the [0,1] range.

• If r ≤ e:

– return u as the next node to visit.

• Else:

– set e to e · ei and continue with the next node in L.

5. If nothing has been selected by now, return a random node from L.

All the heuristics effectively select the nodes closer to the head of the sorted neighbour list

more likely than the ones closer to the tail. The random factor is introduced to emulate the

human way of selecting next nodes to follow, which is often rather fuzzy according to our

observations of sample SKIMMR users.

The distinguishing factor of the heuristics are the criteria for sorting the neighbour

list. We employed the following four criteria in our experiments: (1) giving preference to

the nodes that have not been visited before (H = 1); (2) giving preference to the nodes

connected by edges with higher weight (H = 2); (3) giving preference to the nodes that are
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more similar, using the simM function introduced before (H = 3); (4) giving preference to

the nodes that are less similar (H = 4). The first heuristic simulates a user that browses the

graph more or less randomly, but prefers to visit previously unknown nodes. The second

heuristic models a user that prefers to follow a certain topic (i.e., focused browsing). The

third heuristic represents a user that wants to learn as much as possible about many diverse

topics. Finally, the fourth heuristic emulates a user that prefers to follow more plausible

paths (approximated by the weight of the statements computed by SKIMMR).

Each random walk and its envelope (i.e., the neighbourhood of the corresponding paths

in the entity graphs) can be associated with various information-theoretic measures, graph

structure coefficients, levels of correspondence with external knowledge bases, etc. Out

of the multitude of possibilities, we selected several specific scores we believe to soundly

estimate the value of the underlying data for users in the context of skim reading.

Firstly, we measure semantic coherence of the walks. This is done using the

MeSH-based semantic similarity between the nodes of the walk. In particular, we

measure: (A) coherence between the source S and target T nodes as simM(S,T);

(B) product coherence between all the nodes U1,U2,...,Un of the walk as

Πi∈{1,...,n−1}simM(Ui,Ui+1); (C) average coherence between all the nodes U1,U2,...,Un of

the walk as 1
n


i∈{1,...,n−1}

simM(Ui,Ui+1). This family of measures helps us to assess how

convergent (or divergent) are the walks in terms of focus on a specific topic.

The second measure we used is the information content of the nodes on and along the

walks. For this, we use the entropy of the association of the nodes with clusters defined

either (a) by the MeSH annotations or (b) by the structure of the envelope. By definition,

the higher the entropy of a variable, the more information the variable contains (Shannon,

1948). In our context, a high entropy value associated with a random walk means that there

is a lot of information available for the user to possibly learn when browsing the graph. The

specific entropy measures we use relate to the following sets of nodes: (D) abstract MeSH

clusters, path only; (E) specific MeSH clusters, path only; (F) abstract MeSH clusters,

path and envelope; (G) specific MeSH clusters, path and envelope; (H) clusters defined by

biconnected components (Hopcroft & Tarjan, 1973) in the envelope.10 The entropies of the

10 Biconnected components can be
understood as sets of nodes in a graph
that are locally strongly connected
and therefore provide us with a simple
approximation of clustering in the entity
graphs based purely on their structural
properties.

sets (D–G) are defined by formulae (9) and (10) in ‘Entropies’.

The last family of random walk evaluation measures is based on the graph structure of

the envelopes: (I) envelope size (in nodes); (J) envelope size in biconnected components;

(K) average component size (in nodes); (L) envelope’s clustering coefficient. The first three

measures are rather simple statistics of the envelope graph. The clustering coefficient is

widely used as a convenient scalar representation of the structural complexity of a graph,

especially in the field of social network analysis (Carrington, Scott & Wasserman, 2005).

In our context, we can see it as an indication of how likely it is that the connections in the

entity graph represent non-trivial relationships.

To facilitate the interpretation of the results, we computed also the following auxiliary

measures: (M) number of abstract clusters along the path; (N) average size of the abstract

clusters along the path; (O) number of abstract clusters in the envelope; (P) average size

of the abstract clusters in the envelope; (Q) number of specific clusters along the path;
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(R) average size of the specific clusters along the path; (S) number of specific clusters in the

envelope; (T) average size of the specific clusters in the envelope. Note that all the auxiliary

measures use the MeSH cluster size and number notions, i.e., cs(...) and cn(...) as defined

earlier.

Comparing the indices of related articles
The indices of related articles have quite a simple structure. We can also use the baseline

indices as gold standard, and therefore evaluate the publication networks implied by the

SKIMMR data using classical measures of precision and recall (Manning, Raghavan &

Schütze, 2008). Moreover, we can also compute correlation between the ranking of the

items in the lists of related articles which provides an indication of how well SKIMMR

preserves the ranking imposed by the gold standard.

For the correlation, we use the standard Pearson’s formula (Dowdy, Weardon & Chilko,

2005), taking into account only the ranking of articles occurring in both lists. The measures

of precision and recall are defined using overlaps of the sets of related articles in the

SKIMMR and gold standard indices. The detailed definitions of the specific notions of

precision and recall we use are given in formulae (11) and (12) in ‘Precision and recall’. The

gold standard is selected depending on the experimental data set, as explained in the next

section. In order to cancel out the influence of different average lengths of lists of related

publications between the SKIMMR and gold standard indices, one can take into account

only a limited number of the most relevant (i.e., top) elements in each list.

RESULTS
We have implemented the techniques described in the previous section as a set of software

modules and provided them with a search and browse front-end. This forms a prototype

implementation of SKIMMR, available as an open source software package through the

GitHub repository (see ‘Software packages’ for details). We here describe the architecture

of the SKIMMR software (‘Architecture’) and give examples on the typical use of SKIMMR

in the domains of Spinal Muscular Atrophy and Parkinson’s Disease (‘Using SKIMMR’).

‘Evaluation’ presents an evaluation of the proposed approach to machine-aided skim

reading using SKIMMR running on three domain-specific sets of biomedical articles.

Architecture
The SKIMMR architecture and data flow is depicted in Fig. 2. First of all, SKIMMR

needs a list of PubMed identifiers (unique numeric references to articles indexed on

PubMed) specified by the user of system administrator. Then it automatically downloads

the abstracts of the corresponding articles and stores the texts locally. Alternatively, one

can export results of a manual PubMed search as an XML file (using the ‘send to file’

feature) and then use a SKIMMR script to generate text from that file. From the texts,

a domain-specific SKIMMR knowledge base is created using the methods described in

‘Extracting basic co-occurrence statements from texts’ and ‘Computing a knowledge base

from the extracted statements’. The computed statements and their article provenance

are then indexed as described in ‘Indexing and querying the knowledge base’. This allows

Nováček and Burns (2014), PeerJ, DOI 10.7717/peerj.483 16/38

68



Figure 2 Architecture of the SKIMMR system.

users to search and browse the high-level graph summaries of the interconnected pieces

of knowledge in the input articles. The degrees in the result sets (explained in detail in

‘Indexing and querying the knowledge base’) are used in the user interface to prioritise the

more important nodes in the graphs by making their font and size proportional to the sum

of the degrees of links (i.e., the number of statements) associated with them. Also, only a

selected amount of the top scoring entities and links between them is displayed at a time.

Using SKIMMR
The general process of user interaction with SKIMMR can be schematically described as

follows:

1. Search for an initial term of interest in a simple query text box.

2. A graph corresponding to the results of the search is displayed. The user has two options

then:

(a) Follow a link to another node in the graph, essentially browsing the underlying

knowledge base along the chosen path by displaying the search results correspond-

ing to the selected node and thus going back to step 1 above.

(b) Display most relevant publications that have been used for computing the content of

the result graph, going to step 3 below.

3. Access and study the displayed publications in detail using a re-direct to PubMed.

The following two sections illustrate the process using examples from two live instances of

SKIMMR deployed on articles about Spinal Muscular Atrophy and Parkinson’s Disease.11

11 The live instances are running at
http://www.skimmr.org:8008 and http:
//www.skimmr.org:8090, respectively,
as of June 2014. Canned back-up
versions of them are available at
http://www.skimmr.org/resources/
skimmr/sma.tgz and http://www.
skimmr.org/resources/skimmr/pd.
tgz (SMA and Parkinson’s Disease,
respectively). If the SKIMMR depen-
dencies are met (see https://github.com/
vitnov/SKIMMR), the canned instances
can be used locally on any machine with
Python installed (versions higher than
2.4 and lower than 3.0 are supported,
while 2.6.* and 2.7.* probably work
best). After downloading the archives,
unpack them and switch to the resulting
folder. Run the re-indexing script,
following Section 3.6 in the README
provided in the same folder. To execute
the SKIMMR front-end locally, run the
server as described in Section 3.7 of the
README. The last section of this part of the article gives a brief overview of the open source software

packages of SKIMMR available for developers and users interested in deploying SKIMMR

on their own data.
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Figure 3 Exploring SMA etiology.

Spinal muscular atrophy
Fig. 3 illustrates a typical session with the Spinal Muscular Atrophy12 instance of SKIMMR.

12 A genetic neurological disease caused
by mutation of SMN1 gene that leads to
death of motor neurons and consequent
progressive muscle atrophy. It is the
most common genetic cause of infant
death and there is no cure as of now.
See http://en.wikipedia.org/wiki/Spinal
muscular atrophy for details.

The SMA instance was deployed on a corpus of 1,221 abstracts of articles compiled by SMA

experts from the SMA foundation.13

13 See http://www.smafoundation.org/.

The usage example is based on an actual session with Maryann Martone, a neuroscience

professor from UCSD and a representative of the SMA Foundation who helped us to

assess the potential of the SKIMMR prototype. Following the general template from the

beginning of the section, the SMA session can be divided into three distinct phases:

1. Searching: The user was interested in the SMA etiology (studies on underlying causes of

a disease). The key word etiologywas thus entered into the search box.

2. Skimming: The resulting graph suggests relations between etiology of SMA,

various gene mutations, and the Lix1 gene. Lix1 is responsible for protein ex-

pression in limbs which seems relevant to the SMA manifestation, therefore the

Lix1− associated etiology path was followed in the graph, moving on to a slightly

different area in the underlying knowledge base extracted from the SMA abstracts.

When browsing the graph along that path, one can quickly notice recurring associations

with feline SMA. According to the neuroscience expert we consulted, the cat models

of the SMA disease appear to be quite a specific and interesting fringe area of SMA
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research. Related articles may be relevant and enlightening even for experienced

researchers in the field.

3. Reading: The reading mode of SKIMMR employs an in-line redirect to a specific

PubMed result page. This way one can use the full set of PubMed features for exploring

and reading the articles that are mostly relevant to the focused area of the graph the

user skimmed until now. The sixth publication in the result was most relevant for our

sample user, as it provided more details on the relationships between a particular gene

mutation in a feline SMA model and the Lix1 function for motor neuron survival.

This knowledge, albeit not directly related to SMA etiology in humans, was deemed as

enlightening by the domain expert in the context of the general search for the culprits of

the disease.

The whole session with the neuroscience expert lasted about two minutes and clearly

demonstrated the potential for serendipitous knowledge discovery with our tool.

Parkinson’s disease
Another example of the usage of SKIMMR is based on a corpus of 4,727 abstracts

concerned with the clinical studies of Parkinson’s Disease (PD). A sample session with

the PD instance of SKIMMR is illustrated in Fig. 4. Following the general template from the

beginning of the section, the PD session can be divided into three distinct phases again:

1. Searching: The session starts with typing parkinson′s into the search box, aiming to

explore the articles from a very general entry point.

2. Skimming: After a short interaction with SKIMMR, consisting of few skimming steps

(i.e., following a certain path in the underlying graphs of entities extracted from the PD

articles), an interesting area in the graph has been found. The area is concerned with

Magnetic Resonance Parkinsons Index (MRPI). This is a numeric score calculated

by multiplying two structural ratios: one for the area of the pons relative to that of the

midbrain and the other for the width of the Middle Cerebellar Peduncle relative to the

width of the Superior Cerebellar Peduncle. The score is used to diagnose PD based on

neuroimaging data (Morelli et al., 2011).

3. Reading: When displaying the articles that were used to compute the subgraph

surrounding MRPI, the user reverted to actual reading of the literature concerning

MRPI and related MRI measures used to diagnose Parskinson’s Disease as well a range of

related neurodegenerative disorders.

This example illustrates once again how SKIMMR provides an easy way of navigating

through the conceptual space of a subject that is accessible even to novices, reaching

interesting and well-specified components areas of the space very quickly.

Software packages
In addition to the two live instances described in the previous sections, SKIMMR is

available for local installation and custom deployment either on biomedical article

abstracts from PubMed, or on general English texts. Moreover, one can expose SKIMMR
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Figure 4 Exploring Parkinson’s disease.

via a simple HTTP web service once the back-end has compiled a knowledge base from

selected textual input. The latter is particularly useful for the development of other

applications on the top of the content generated by SKIMMR. Open source development

snapshots (written in the Python programming language) of SKIMMR modules are

available via our GitHub repository14 with accompanying documentation.

14 See https://github.com/vitnov/
SKIMMR. Evaluation

In the following we report on experiments we used for evaluating SKIMMR using

the method explained in ‘Evaluation methodology’. The results of our experiments

empirically demonstrate that the SKIMMR networks allow for more focused browsing
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of the publication content than is possible with tools like PubMed. SKIMMR also has the

potential for offering more information of higher complexity during the browsing process.

The following sections provide details on the data sets used in the experiments and the

results of the evaluation.

Evaluation data
We have evaluated SKIMMR using three corpora of domain-specific biomedical articles.

The first one was SMA: a representative corpus of 1,221 PubMed abstracts dealing with

Spinal Muscular Atrophy (SMA), compiled by experts from SMA Foundation. The second

corpus was PD: a set of 4,727 abstracts that came as results (in February 2013) of a search

for clinical studies on Parkinson’s Disease on PubMed. The last corpus was TREC: a

random sample15 of 2,247 PubMed abstracts from the evaluation corpus of the TREC’04

15 We processed only a subset of the
experimental data available from TREC
so that the experimental knowledge
bases are of a size within similar range of
hundreds of thousands of statements.

genomics track (document categorisation task).

For running the experiment with random walks, we generated two graphs for each of

the corpora (using the methods described in Example 6): (1) network of SKIMMR entities;

(2) network of MeSH terms based on the PubMed annotations of the articles that were

used as sources for the particular SKIMMR instance.

As outlined before in the methods section, we also used some auxiliary data structures

for the evaluation. The first auxiliary resource was the MeSH thesaurus (version from

2013). From the data available on the National Library of Medicine web site, we generated

a mapping from all MeSH terms and their synonyms to the corresponding tree codes

indicating their position in the MeSH hierarchy. We also implemented a lemmatised

full-text index on the MeSH mapping keys to increase the coverage of the tree annotations

when the extracted entity names do not exactly correspond to the MeSH terms.

The second type of auxiliary resource (a gold standard) were indices of related articles

based on the corresponding PubMed service. For the other type of gold standard, we

used the TREC’04 category associations from the genomics track data. This is essentially

a mapping between PubMed IDs, category identifiers and a degree of membership of the

specific IDs in the category (definitely relevant, possibly relevant, not relevant). From that

mapping, we generated the index of related articles as a gold standard for the secondary

evaluation method (the details of the process are described in the previous section).

Note that for the TREC corpus, the index of related articles based on the TREC data is

applicable as a gold standard for the secondary evaluation. However, for the other two data

sets (SMA and PD), we used the gold standard based on the PubMed service for fetching

related articles. This is due to almost zero overlap between the TREC PubMed IDs and the

SMA, PD corpora, respectively.

Data statistics

Corpus and knowledge base statistics. Basic statistics of the particular text corpora are given

in Table 1, with column explanations as follows: (1) |SRC| is the number of the source

documents; (2) |TOK| is the number of tokens (words) in the source documents; (3) |BC|

is the number of base co-occurrence statements extracted from the sources (see ‘Extracting

basic co-occurrence statements from texts’ for details); (4) |LEX| is the vocabulary size
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Table 1 Basic statistics of the SKIMMR instances.

Data set ID |SRC| |TOK| |BC| |LEX| |KBcooc| |KBsim|

SMA 1,221 223,257 333,124 15,288 308,626 23,167

PD 4,727 943,444 1,096,037 43,410 965,753 57,876

TREC 2,247 439,202 757,762 39,431 745,201 65,510

Table 2 Derived statistics of the SKIMMR instances.

Data set ID T/S B/S L/T SM/KB KB/S KB/L

SMA 182.848 272.829 0.068 0.07 271.739 21.703

PD 199.586 231.867 0.046 0.057 216.549 23.58

TREC 195.462 337.233 0.09 0.081 360.797 20.56

(i.e., the number of unique entities occurring in the basic co-occurrence statements);

(5) |KBcooc| is the number of aggregate co-occurrence statements in the corresponding

SKIMMR knowledge base (see ‘Corpus-wide co-occurrence’); (6) |KBsim| is the number of

similarity statements in the corresponding SKIMMR knowledge base (see ‘Similarity’).

Derived statistics on the SKIMMR instances are provided in Table 2, with column

explanations as follows: (1) T/S is an average number of tokens per a source document;

(2) B/S is an average number of basic co-occurrence statements per a source document;

(3) L/T is a ratio of the size of the lexicon with respect to the overall number of tokens in

the input data; (4) SM/KB is a ratio of the similarity statements to the all statements in the

knowledge base; (5) KB/S is an average number of statements in the knowledge base per a

source document; (6) KB/L is an average number of statements in the knowledge base per

a term in the lexicon. The values in the columns are computed from the basic statistics as

follows:

T/S =
|TOK|

|SRC|
, B/S =

|BC|

|SRC|
, L/T =

|LEX|

|TOK|
, SM/KB =

|KBsim|

|KBsim| + |KBcooc|
,

KB/S =
|KBsim| + |KBcooc|

|SRC|
, KB/L =

|KBsim| + |KBcooc|

|LEX|
.

The statistics of the data sets are relatively homogeneous. The TREC data contains more

base co-occurrence statements per article, and has an increased ratio of (unique) lexicon

terms per absolute number of (non-unique) tokens in the documents. TREC knowledge

base also contains more statements per article than the other two, but the ratios of number

of statements in it per lexicon term are more or less balanced. We believe that the statistics

do not imply the need to treat each of the data sets differently when interpreting the results

reported in the next section.

Graph statistics. The statistics of the graph data that are utilised in the random walks

experiment are given in Tables 3 and 4 for PubMed and SKIMMR, respectively. The specific
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Table 3 Statistics of the PubMed graphs for random walks.

Data set ID |V| |E|
|E|

|V|
D d lG |C|

SMA 5,364 78,608 14.655 5.465 · 10−3 5.971 3.029 2

PD 8,622 133,188 15.447 3.584 · 10−3 6 2.899 2

TREC 10,734 161,838 15.077 2.809 · 10−3 7.984 3.146 3

Table 4 Statistics of the SKIMMR graphs for random walks.

Data set ID |V| |E|
|E|

|V|
D d lG |C|

SMA 15,287 305,077 19.957 2.611 · 10−3 5 2.642 1

PD 43,411 952,296 21.937 1.011 · 10−3 5 2.271 2

TREC 37,184 745,078 20.038 1.078 · 10−3 5.991 2.999 12

statistics provided on the graphs are: (1) number of nodes (|V |); (2) number of edges16

16 Note that the number of edges is lower
in the SKIMMR graphs than in the
corresponding SKIMMR knowledge
bases due to the fact that we do not
distinguish between the different
relationships. Therefore, if two nodes are
connected by more than one statements,
there is still only one edge for those
nodes in the graph.

(|E|); (3) average number of edges per a node ( |E|

|V |
); (4) density (D =

2·|E|

|V |(|V |−1)
, i.e., a ratio

of the actual bidirectional connections between nodes relative to the maximum possible

number of connections); (5) diameter (d, computed as an arithmetic mean of the longest

possible paths in the connected components of the graph, weighted by the size of the

components in nodes); (6) average shortest path length (lG, computed similarly to d as

an average weighted mean of the value for each connected component); (7) number of

connected components (|C|).

The statistics demonstrate that the SKIMMR graphs are larger and have higher absolute

number of connections per a node, but are less dense than the PubMed graphs. All the

graphs exhibit the “small-world” property (Watts & Strogatz, 1998), since the graphs have

small diameters and there are also very short paths between the connected nodes despite

the low density and relatively large size of the graphs.

Auxiliary data statistics. The MeSH data contained 719,877 terms and 54,935 tree codes,

with ca. 2.371 tree code annotations per term in average. The statistics of the indices of

related publications for SKIMMR and for gold standards are provided in Table 5. We

provide values for the size of the index in numbers of publications covered (|P|) and an

average number of related publications associated with each key (R̄). The average length

of the lists of related publications is much higher for all three instances of SKIMMR. This

is a result of the small-world property of the SKIMMR networks which makes most of the

publications connected with each other (although the connections mostly have weights

close to zero).

Evaluation results
In the following we report on the results measured using the specific SKIMMR knowledge

bases and corresponding baseline data. Each category of the evaluation measures is covered
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Table 5 Statistics of the indices of related publications.

Gold standard SKIMMR

Data set ID |P| R̄ |P| R̄

SMA 1,221 36.15 1,220 959.628

PD 4,727 28.61 4,724 4327.625

TREC 434 18.032 2,245 1251.424

in a separate section. Note that we mostly provide concise plots and summaries of the

results here in the article, however, full results can be found online (Data Deposition).

Semantic coherence. Figure 5 shows the values of the aggregated semantic coherence

measures (i.e., source-target coherence, product path coherence and average path

coherence) for the PD, SMA and TREC data sets. The values were aggregated by computing

their arithmetic means and are denoted by the y-axis of the plots. The x-axis corresponds to

different combinations of the heuristics and path lengths for the execution of the random

walks (as the coherence does not depend on the envelope size, this parameter is zero all

the time in this case).17 The combinations are grouped by heuristics (random preference,

17 The exact form of labels on the x-axis is
a combination of heuristic (H), envelope
diameter (E) and path length (L) pa-
rameters with their numeric identifiers
(in case of heuristics) or values (for
envelope size and path length). For
instance, H = 2.E = 1.L = 10 stands
for a measurement using the weight
preference heuristic (identifier 2),
envelope of diameter 1 and path of
length 10. weight preference, similarity preference, dissimilarity preference from left to right). The

path length parameter increases from left to right for each heuristic group on the x-axis.

The green line is for the SKIMMR results and the blue line is for the PubMed baseline.

For any combination of the random walk execution parameters, SKIMMR outperforms

the baseline by quite a large relative margin. The most successful heuristic in terms of

coherence is the one that prefers more similar nodes to visit next (third quarter of the

plots), and the coherence is generally lower for longer paths, which are all observations

corresponding to intuitive assumptions.

Information content. Figure 6 shows the values of the arithmetic mean of all types of

information content measures for the particular combinations of the random walk

execution parameters (including also envelope sizes in increasing order for each heuristic).

Although the relative difference is not as significant as in the semantic coherence case,

SKIMMR again performs consistently better than the baseline. There are no significant

differences between the specific heuristics. The information content increases with longer

walks and larger envelopes, which is due to generally larger numbers of clusters occurring

among more nodes involved in the measurement.

Graph Structure. Figure 7 shows the values of the clustering coefficient, again with green

and blue lines for the SKIMMR and PubMed baseline results, respectively. SKIMMR

exhibits larger level of complexity than the baseline in terms of clustering coefficient,

with moderate relative margin in most cases. There are no significant differences between

the particular walk heuristics. The complexity generally increases with the length of the

path, but, interestingly enough, does not so with the size of the envelopes. The highest

complexity is typically achieved for the longest paths without any envelope. We suspect
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Figure 5 Aggregated semantic coherence (blue: PubMed, green: SKIMMR).

this to be related to the small world property of the graphs–adding more nodes from the

envelope may not contribute to the actual complexity due to making the graph much more

“uniformly” dense and therefore less complex.

Auxiliary measures. The number of clusters associated with the nodes on the paths

(measures M and Q) is always higher for SKIMMR than for the PubMed baseline. The

number of clusters associated with the whole envelopes (measures O and S) is almost

always higher for SKIMMR with few exceptions of rather negligible relative differences in
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Figure 6 Aggregated information content (blue: PubMed, green: SKIMMR).

favour of the baseline. The average numbers of nodes per cluster on the path (measures

N and R) are higher for SKIMMR except for the heuristic that prefers similar nodes to

visit next. This can be explained by the increased likelihood of populating already “visited”

clusters with this heuristic when traversing paths with lower numbers of clusters along

them. Finally, the average number of nodes per cluster in the envelope (measures P and T)

is higher for SKIMMR in most cases.

The general patterns observed among the auxiliary measure values indicates higher

topical variability in the SKIMMR graphs, as there are more clusters that have generally

higher cardinality than in the PubMed baselines. This is consistent with the observation of
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Figure 7 Clustering coefficient (blue: PubMed, green: SKIMMR).

the generally higher information content associated with the random walks in SKIMMR

graphs.

Related articles. The results of the evaluation measures based on the lists of related articles

generated by SKIMMR and by related baselines are summarised in Table 6. Note that as

explained in ‘Evaluation data’, we used actual TREC evaluation data for the TREC dataset,

while for PD and SMA, we used the related articles provided by PubMed due to negligible

overlap with the TREC gold standard.

The preavg and recavg columns in Table 6 contain the precision and recall values for each

data set, respectively, and the C ≥ 0.7 contains the ratio of SKIMMR results that have
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Table 6 Results for the related articles.

PD SMA TREC

preavg recavg C ≥ 0.7 preavg recavg C ≥ 0.7 preavg recavg C ≥ 0.7

0.0095 0.0240 0.5576 0.0139 0.0777 0.5405 0.0154 0.0487 0.5862

significant correlation (i.e., at least 0.7) with the corresponding baseline. The absolute

values of the average precision and recall are very poor, in units of percents. The correlation

results are more promising, showing that more than half of the related document rankings

produced by SKIMMR are reasonably aligned with the gold standard. Moreover, the

correlation is highest for the TREC data set based on the only gold standard that is

manually curated.

DISCUSSION
SKIMMR provides a computational instantiation of the concept of ‘skim reading.’ In

the early prototype stage, we generally focussed on delivering as much of the basic

functionality as possible in a lightweight interface. Lacking enough representative data

collected from ongoing user studies, we have designed a series of automated experiments to

simulate several skim reading modes one can engage in with SKIMMR. We evaluated these

experiments using gold standards derived from manually curated biomedical resources.

Here we offer a discussion of the results in relation to the concept of machine-aided skim

reading as realised by the SKIMMR prototype. The discussion is followed by an overview of

related work and an outline of possible future directions.

Interpreting the results
The secondary evaluation using lists of related publications induced by the SKIMMR

knowledge bases did not bring particularly good results in terms of precision and recall.

However, the correlation with the related document ranking provided by baselines was

more satisfactory. This indicates that with better methods for pruning the rather extensive

lists of related publications produced with SKIMMR, we may be able to improve the

precision and recall substantially. Still, this evaluation was indirect since generating lists of

related publications is not the main purpose of SKIMMR. Apart from indirect evaluation,

we were also curious whether the data produced by SKIMMR could not be used also

for a rather different task straightaway. The lesson learned is that this may be possible,

however, some post-processing of the derived publication lists would be required to make

the SKIMMR-based related document retrieval more accurate for practical applications.

Our main goal was to show that our approach to machine-aided skim reading can be

efficient in navigating high-level conceptual structures derived from large numbers of

publications. The results of the primary evaluation experiment—simulations of various

types of skimming behaviour by random walks—demonstrated that our assumption

may indeed be valid. The entity networks computed by SKIMMR are generally more

semantically coherent, more informative and more complex than similar networks based on
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the manually curated PubMed article annotations. This means that users will typically be

able to browse the SKIMMR networks in a more focused way. At the same time, however,

they will learn more interesting related information from the context of the browsing

path, and can also potentially gain additional knowledge from more complex relationships

between the concepts encountered on the way. This is very promising in the context of our

original motivations for the presented research.

Experiments with actual users would have brought many more insights regarding the

practical relevance of the SKIMMR prototype. Still, the simulations we have proposed

cover four distinct classes of possible browsing behaviour, and our results are generally

consistent regardless of the particular heuristic used. This leads us to believe that the

evaluation measures computed on paths selected by human users would not be radically

different from the patterns observed within our simulations.

Related work
The text mining we use is similar to the techniques mentioned in Yan et al. (2009), but we

use a finer-grained notion of co-occurrence. Regarding biomedical text mining, tools like

BioMedLEE (Friedman et al., 2004), MetaMap (Aronson & Lang, 2010) or SemRep (Liu

et al., 2012) are closely related to our approach. The tools mostly focus on annotation of

texts with concepts from standard biomedical vocabularies like UMLS which is very useful

for many practical applications. However, it is relatively difficult to use the corresponding

software modules within our tool due to complex dependencies and lack of simple APIs

and/or batch scripts. The tools also lack the ability to identify concepts not present in

the biomedical vocabularies or ontologies. Therefore we decided to use LingPipe’s batch

entity recogniser in SKIMMR. The tool is based on a relatively outdated GENIA corpus,

but is very easy to integrate, efficient and capable of capturing unknown entities based

on the underlying statistical model, which corresponds well to our goal of delivering a

lightweight, extensible and easily portable tool for skim-reading.

The representation of the relationships between entities in texts is very close to the ap-

proach of Baroni & Lenci (2010), however, we have extended the tensor-based representa-

tion to tackle a broader notion of text and data semantics, as described in detail in Nováček,

Handschuh & Decker (2011). The indexing and querying of the relationships between

entities mentioned in the texts is based on fuzzy index structures, similarly to Zadrozny &

Nowacka (2009). We make use of the underlying distributional semantics representation,

though, which captures more subtle features of the meaning of original texts.

Graph-based representations of natural language data have previously been generated

using dependency parsing (Ramakrishnan et al., 2008; Biemann et al., 2013). Since these

representations are derived directly from the parse structure, they are not necessarily

tailored for the precise task of skim-reading but could provide a valuable intermediate

representation. Another graph-based representation that is derived from the text of

documents are similarity-based approaches derived from ‘topic models’ of document

corpora (Talley et al., 2011). Although these analyses typically provide a visualization of

the organization of documents, not of their contents, the topic modeling methods provide
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statistical representation of the text that can then be leveraged to examine other aspects of

the context of the document, such as its citations (Foulds & Smyth, 2013).

A broad research area of high relevance to the presented work is the field of ‘Machine

Reading’ that can be defined as “the autonomous understanding of text” (Etzioni, Banko

& Cafarella, 2006). It is an ambitious goal that has attracted much interest from NLP

researchers (Mulkar et al., 2007; Strassel et al., 2010; Poon & Domingos, 2010). By framing

the reading task as ‘skimming’ (which provides a little more structure than simply

navigating a set of documents, but much less than a full representation of the semantics

of documents), we hope to leverage machine reading principles into practical tools that can

be used by domain experts straightforwardly.

Our approach shares some similarities with applications of spreading activation in

information retrieval which are summarised for instance in the survey (Crestani, 1997).

These approaches are based on associations between search results computed either

off-line or based on the “live” user interactions. The network data representation used

for the associations is quite close to SKIMMR, however, we do not use the spreading

activation principle to actually retrieve the results. We let the users to navigate the graph by

themselves which allows them to discover even niche and very domain-specific areas in the

graph’s structure that may not be reached using the spreading activation.

Works in literature based discovery using either semantic relationships (Hristovski et

al., 2006) or corresponding graph structures (Wilkowski et al., 2011) are conceptually very

similar to our approach to skim reading. However, the methods are quite specific when

deployed, focusing predominantly on particular types of relationships and providing

pre-defined schema for mining instances of the relationships from the textual data.

We keep the process lightweight and easily portable, and leave the interpretation of the

conceptual networks on the user. We do lose some accuracy by doing so, but the resulting

framework is easily extensible and portable to a new domain within minutes, which

provides for a broader coverage compensating the loss of accuracy.

From the user perspective, SKIMMR is quite closely related to GoPubMed (Dietze et

al., 2008), a knowledge-based search engine for biomedical texts. GoPubMed uses Medical

Subject Headings and Gene Ontology to speed up finding of relevant results by semantic

annotation and classification of the search results. SKIMMR is oriented more on browsing

than on searching, and the browsing is realised via knowledge bases inferred from the

texts automatically in a bottom-up manner. This makes SKIMMR independent on any

pre-defined ontology and lets users to combine their own domain knowledge with the data

present in the article corpus.

Tools like DynaCat (Pratt, 1997) or QueryCat (Pratt & Wasserman, 2000) share the basic

motivations with our work as they target the information overload problem in life sciences.

They focus specifically on automated categorisation of user queries and the query results,

aiming at increasing the precision of document retrieval. Our approach is different in that

it focuses on letting users explore the content of the publications instead of the publications

themselves. This provides an alternative solution to the information overload by leading
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users to interesting information spanning across multiple documents that may not be

grouped together by Pratt (1997) and Pratt & Wasserman (2000).

Another related tool is Exhibit (Huynh, Karger & Miller, 2007), which can be used for

faceted browsing of arbitrary datasets expressed in JSON (Crockford, 2006). Using Exhibit

one can dynamically define the scope from which they want to explore the dataset and

thus quickly focus on particular items of interest. However, Exhibit does not provide any

solution on how to get the structured data to explore from possibly unstructured resources

(such as texts).

Textpresso (Müller, Kenny & Sternberg, 2004) is quite similar to SKIMMR concerning

searching for relations between concepts in particular chunks of text. However, the

underlying ontologies and their instance sets have to be provided manually which

often requires years of work, whereas SKIMMR operates without any such costly input.

Moreover, the system’s scale regarding the number of publications’ full-texts and concepts

covered is generally lower than the instances of SKIMMR that can be set up in minutes.

CORAAL (Nováček et al., 2010) is our previous work for cancer publication search,

which extracts relations between entities from texts, based on the verb frames occurring in

the sentences. The content is then exposed via a multiple-perspective search and browse

interface. SKIMMR brings the following major improvements over CORAAL: (1) more

advanced back-end (built using our distributional data semantics framework introduced

in Nováček, Handschuh & Decker, 2011); (2) simplified modes of interaction with the

data leading to increased usability and better user experience; (3) richer, more robust

fuzzy querying; (4) general streamlining of the underlying technologies and front-ends

motivated by the simple, yet powerful metaphor of machine-aided skim reading.

Future work
Despite the initial promising results, there is still much to do in order to realise the full

potential of SKIMMR as a machine-aided skim reading prototype. First of all, we need

to continue our efforts in recruiting coherent and reliable sample user groups for each of

the experimental SKIMMR instances in order to complement the presented evaluation by

results of actual user studies. Once we get the users’ feedback, we will analyse it and try to

identify significant patterns emerging from the tracked behaviour data in order to correlate

them with the explicit feedback, usability assessments and the results achieved in our

simulation experiments. This will provide us with a sound basis for the next iteration

of the SKIMMR prototype development, which will reflect more representative user

requirements.

Regarding the SKIMMR development itself, the most important things to improve

are as follows. We need to extract more types of relations than just co-occurrence and

rather broadly defined similarity. One example of domain specific complex relation

are associations of potential side effects with drugs. Another, more general example, is

taxonomical relations (super-concept, sub-concept), which may help provide additional

perspective to browsing the entity networks (i.e., starting with high-level overview of

the relations between more abstract concepts and then focusing on the structure of the
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connections between more specific sub-concepts of selected nodes). Other improvements

related to the user interface are: (1) smoother navigation in the entity networks (the nodes

have to be active and shift the focus of the displayed graph upon clicking on them, they

may also display additional metadata, such as summaries of the associated source texts);

(2) support of more expressive (conjunctive, disjunctive, etc.) search queries not only in

the back-end, but also in the front-end, preferably with a dedicated graphical user interface

that allows to formulate the queries easily even for lay users; (3) higher-level visualisation

features such as evolution of selected concepts’ neighbourhoods in time on a sliding scale.

We believe that realisation of all these features will make SKIMMR a truly powerful tool for

facilitating knowledge discovery (not only) in life sciences.
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APPENDIX. FORMULAE DEFINITIONS
In this appendix we give full account on definitions of some of the formal notions used

throughout the main article but not covered in detail there.

Co-occurrences
The basic co-occurrence score cooc((ex,ey),PubMedPMID) for two entities ex,ey in an article

PubMedPMID, introduced in ‘Extracting basic co-occurrence statements from texts’, is

computed as

cooc((ex,ey),PubMedPMID) =


i,j∈S(ex,ey)

1

1 + |i − j|
(1)

where S(ex,ey) is a set of numbers of sentences that contain the entity ex or ey (assuming

the sentences numbered sequentially from the beginning of the text). In practice, one may

impose a limit on the maximum allowed distance of entities to be taken into account in the

co-occurrence score computation (we disregard entities occurring more than 3 sentences

apart from the score sum).

The non-normalised formula for corpus-wide co-occurrence for two outcomes (i.e.,

terms in our specific use case) x,y, using a base-2 logarithm (introduced in ‘Corpus-wide

co-occurrence’), is:

fpmi(x,y) = F(x,y)log2
p(x,y)

p(x)p(y)
(2)

where F(x,y) is the absolute frequency of the x,y co-occurrence and p(x,y),p(x),p(y) are

the joint and individual distributions, respectively. In our case, the distributions are the
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weighted relative frequencies of the entity terms in the basic co-occurrence tuples gener-

ated from the input texts which are computed as follows. Let us assume a set T of tuples

t1 = (e1,x,e1,y,cooc((e1,x,e1,y),PubMedPMID1),PubMedPMID1),

t2 = (e2,x,e2,y,cooc((e2,x,e2,y),PubMedPMID2),PubMedPMID2),

...

tn = (en,x,en,y,cooc((en,x,en,y),PubMedPMIDn),PubMedPMIDn)

as a result of the basic co-occurrence statement extraction described in the previous

section. The joint distribution of terms x,y specific to our case can then be computed as:

p(x,y) =


w∈W(x,y,T)w

|T|
(3)

where W(x,y,T) = {w|∃e1,e2,w,i.(e1,e2,w,i) ∈ T ∧ ((e1 = x ∧ e2 = y)∨ (e1 = y ∧ e2 = x))}

is the set of weights in the basic co-occurrence tuples that contain both x,y as entity

arguments. Finally, the individual distribution of a term z is computed as:

p(z) =


w∈W(z,T)w

|T|
(4)

where W(z,T) = {w|∃e1,e2,w,i.(e1,e2,w,i) ∈ T ∧ (e1 = z ∨ e2 = z)} is the set of weights

in the basic co-occurrence tuples that contain z as any one of the entity arguments. In the

eventual result, all co-occurrence tuples with score lower than zero are omitted, while the

remaining ones are normalised as follows:

npmi(x,y) = ν(fpmi(x,y),P) (5)

where ν is a function that divides the scores by the P-th percentile of all the scores and

truncates the resulting value to 1 if it is higher than that. The motivation for such definition

of the normalisation is that using the percentile, one can flexibly reduce the influence of

possibly disproportional distributions in the scores (i.e., when there are few very high

values, normalisation by the sum of all values or by the maximal value would result in most

of the final scores being very low, whereas the carefully selected percentile can balance that

out, reducing only relatively low number of very high scores to crisp 1).

Similarities
Firstly we define the cosine similarity introduced in ‘Similarity’. For that we need few

auxiliary notions. First of them is a so called ‘co-occurrence complement’ x̄ of an entity x:

x̄ = {(e,w)|∃e,w.(e,cooc,x,w) ∈ KB ∨ (x,cooc,e,w) ∈ KB} (6)

where KB is the knowledge base, i.e., the set of the aggregated co-occurrence statements

computed as shown in ‘Corpus-wide co-occurrence’. Additionally, we define an element-

set projection of an entity’s co-occurrence complement x̄ as x̄1 = {y|∃w.w ≠ 0∧ (y,w) ∈ x̄},
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i.e., set of all the entities in the co-occurrence complement abstracting from the

corresponding co-occurrence weights. Finally, we use a shorthand notation x̄[y] = w

such that (y,w) ∈ x̄ for a quick reference to the weight corresponding to an entity in a

co-occurrence complement. If an entity y is missing in the co-occurrence complement of x,

we define x̄[y] = 0.

Example 8 Assuming that the knowledge base consists only from one co-occurrence tuple

(parkinsonism,cooc,DRD,0.545) from the previous Example 2, we can define two

co-occurrence complements on the entities in it:

parkinsonism = {(DRD,0.545)}, DRD = {(parkinsonism,0.545)}.

The element-set projection of parkinsonism is then a set {DRD}, while

parkinsonism[DRD] equals 0.545.

Now we can define the similarity between two entities a,b in a SKIMMR knowledge base

as:

sim(a,b) =


z∈ā1∩b̄1

ā[z]b̄[z]
x∈ā1

ā[x]2


y∈b̄1
b̄[y]2

(7)

where ā,b̄ are the co-occurrence complements of a,b, and ā1,b̄1 their element-set

projections. It can be easily seen that the formula directly corresponds to the definition

of cosine distance: its top part is the dot product of the co-occurrence context vectors

corresponding to the entities a,b, while the lower part is multiplication of the vectors’ sizes

(Euclidean norms in particular).

The MeSH-based semantic similarity of entities, introduced in ‘Running and measuring

the random walks’, is defined as

simM(X,Y) = max
u∈CS(X),v∈CS(Y)

2 · dpt(lcs(u,v))

dpt(u) + dpt(v)
(8)

where the specific tree codes in the CS(X),CS(Y) are interpreted as nodes in the MeSH

taxonomy, the lcs stands for the least common subsumer of two nodes in the taxonomy

and dpt is the depth of a node in the taxonomy (defined as zero if no node is supplied

as an argument, i.e., if lcs has no result). The formula we use is essentially based on a

frequently used taxonomy-based similarity measure defined in Wu & Palmer (1994). We

only maximise it across all possible cluster annotations of the two input entities to find

the best match. Note that this strategy is safe in case of a resource with as low ambiguity

as MeSH – while there are often more annotations of a term, they do not refer to different

senses but rather to different branches in the taxonomy. Therefore using the maximum

similarity corresponds to finding the most appropriate branch in the MeSH taxonomy

along which the terms can be compared.
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Entropies
‘Running and measuring the random walks’ introduced entropies for expressing

information value of SKIMMR evaluation samples (i.e., random walks and their contexts).

The entropies are defined using the notion of MeSH cluster size (cs(...)) introduced in the

main part of the article. Given a set Z of nodes of interest, the entropy based on MeSH

cluster annotations, HM(Z), is computed as

HM(Z) = −


Ci∈C(Z)

cs(Ci)
Cj∈C(Z)cs(Cj)

· log2
cs(Ci)

Cj∈C(Z)cs(Cj)
(9)

where C is one of CA,CS, depending whether we consider the abstract or the specific nodes.

Similarly, the component-based entropy HC(Z) is defined as

HC(Z) = −


Ci∈B(Z)

|Ci|
Cj∈B(Z) |Cj|

· log2
|Ci|

Cj∈B(Z) |Cj|
(10)

where B(Z) is a function returning a set of biconnected components in the envelope Z,

which is effectively a set of subsets of nodes from Z.

Precision and recall
The indices of related articles are compared using precision and recall measures, as stated

in ‘Comparing the indices of related articles’. Let IS : P → 2P,IG : P → 2P be the SKIMMR

and gold standard indices of related publications, respectively (P being a set of publication

identifiers). Then the precision and recall for a publication p ∈ P are computed as

pre(p) =
|IS(p) ∩ IG(p)|

|IS(p)|
, rec(p) =

|IS(p) ∩ IG(p)|

|IG(p)|
(11)

respectively. To balance the possibly quite different lengths of the lists of related articles,

we limit the computation of the precision and recall up to at most 50 most relevant items

in the lists. The average values of precision and recall for a corpus of articles X ⊆ P are

computed as

preavg(X) =


p∈X pre(p)

|X|
, recavg(X) =


p∈X rec(p)

|X|
(12)

respectively.
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Abstract. Learning embeddings of entities and relations using neural
architectures is an effective method of performing statistical learning
on large-scale relational data, such as knowledge graphs. In this paper,
we consider the problem of regularizing the training of neural knowl-
edge graph embeddings by leveraging external background knowledge.
We propose a principled and scalable method for leveraging equivalence
and inversion axioms during the learning process, by imposing a set
of model-dependent soft constraints on the predicate embeddings. The
method has several advantages: (i) the number of introduced constraints
does not depend on the number of entities in the knowledge base; (ii) reg-
ularities in the embedding space effectively reflect available background
knowledge; (iii) it yields more accurate results in link prediction tasks
over non-regularized methods; and (iv) it can be adapted to a variety of
models, without affecting their scalability properties. We demonstrate
the effectiveness of the proposed method on several large knowledge
graphs. Our evaluation shows that it consistently improves the predic-
tive accuracy of several neural knowledge graph embedding models (for
instance, the MRR of TransE on WordNet increases by 11%) without
compromising their scalability properties.

1 Introduction

Knowledge graphs are graph-structured knowledge bases, where factual knowl-
edge is represented in the form of relationships between entities: they are pow-
erful instruments in search, analytics, recommendations, and data integration.
This justified a broad line of research both from academia and industry, result-
ing in projects such as DBpedia (Auer et al. 2007), Freebase (Bollacker et al.
2007), YAGO (Suchanek et al. 2012), NELL (Carlson et al. 2010), and Google’s
Knowledge Graph and Knowledge Vault projects (Dong et al. 2014).

However, despite their size, knowledge graphs are often very far from being
complete. For instance, 71% of the people described in Freebase have no known
place of birth, 75% have no known nationality, and the coverage for less used
relations can be even lower (Dong et al. 2014). Similarly, in DBpedia, 66% of

c© Springer International Publishing AG 2017
M. Ceci et al. (Eds.): ECML PKDD 2017, Part I, LNAI 10534, pp. 668–683, 2017.
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the persons are also missing a place of birth, while 58% of the scientists are
missing a fact stating what they are known for (Krompaß et al. 2015).

In this work, we focus on the problem of predicting missing links in large
knowledge graphs, so to discover new facts about the world. In the literature, this
problem is referred to as link prediction or knowledge base population: we refer
to Nickel et al. (2016) for a recent survey on machine learning-driven solutions
to this problem.

Recently, neural knowledge graph embedding models (Nickel et al. 2016) –
neural architectures for embedding entities and relations in continuous vector
spaces – have received a growing interest: they achieve state-of-the-art link pre-
diction results, while being able to scale to very large and highly-relational
knowledge graphs. Furthermore, they can be used in a wide range of appli-
cations, including entity disambiguation and resolution (Bordes et al. 2014),
taxonomy extraction (Nickel et al. 2016), and query answering on probabilistic
databases (Krompaß et al. 2014). However, a limitation in such models is that
they only rely on existing facts, without making use of any form of background
knowledge. At the time of this writing, how to efficiently leverage preexisting
knowledge for learning more accurate neural knowledge graph embeddings is
still an open problem (Wang et al. 2015).

Contribution – In this work, we propose a principled and scalable method
for leveraging external background knowledge for regularising neural knowledge
graph embeddings. In particular, we leverage background axioms in the form
p ≡ q and p ≡ q−, where the former denotes that relations p and q are equivalent,
such as in the case of relations partOf and componentOf, while the latter
denotes that the relation p is the inverse of the relation q, such as in the case of
relations partOf and hasPart. Such axioms are used for defining and imposing
a set of model-dependent soft constraints on the relation embeddings during the
learning process. Such constraints can be considered as regularizers, reflecting
available prior knowledge on the distribution of embedding representations of
relations.

The proposed method has several advantages: (i) the number of introduced
constraints is independent on the number of entities, allowing it to scale to
large and Web-scale knowledge graphs with millions of entities; (ii) relation-
ships between relation types in the embedding space effectively reflect available
background schema knowledge; (iii) it yields more accurate results in link pre-
diction tasks than state-of-the-art methods; and (iv) it is a general framework,
applicable to a variety of embedding models. We demonstrate the effectiveness
of the proposed method in several link prediction tasks: we show that it consis-
tently improves the predictive accuracy of the models it is applied to, without
negative impact on their scalability properties.

2 Preliminaries

Knowledge Graphs – A knowledge graph is a graph-structured knowl-
edge base, where factual information is stored in the form of relationships
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between entities. Formally, a knowledge graph G � {〈s, p, o〉} ⊆ E × R × E
is a set of 〈s, p, o〉 triples, each consisting of a subject s, a predicate p and an
object o, and encoding the statement “s has a relationship p with o”. The subject
and object s, o ∈ E are entities, p ∈ R is a relation type, and E ,R respectively
denote the sets of all entities and relation types in the knowledge graph.

Example 1. Consider the following statement: “Ireland is located in Northern
Europe, and shares a border with the United Kingdom.” It can be expressed by
the following triples:

Subject Predicate Object

Ireland locatedIn Northern Europe

Ireland neighborOf United Kingdom

A knowledge graph can be represented as a labelled directed multigraph, in
which each triple is represented as an edge connecting two nodes: the source and
target nodes represent the subject and object of the triple, and the edge label
represents the predicate.

Knowledge graph adhere to the Open World Assumption (Hayes and Patel-
Schneider 2014): a missing triple does not necessarily imply that the corre-
sponding statement holds false, but rather that its truth value is unknown,
i.e. it cannot be observed in the graph. For instance, the fact that the
triple 〈United Kingdom,neighborOf, Ireland〉 is missing from the graph in
Example 1 does not imply that the United Kingdom does not share a border with
Ireland, but rather that we do not know whether this statement is true or not.

Equivalence and Inversion Axioms – Knowledge graphs are usually endowed
with additional background knowledge, describing classes of entities and their
properties and characteristics, such as equivalence and symmetry. In this work,
we focus on two types of logical axioms in the form p ≡ q and p ≡ q−, where
p, q ∈ R are predicates.

A largely popular knowledge representation formalism for expressing schema
axioms is the OWL 2 Web Ontology language (Schneider 2012). According to
the OWL 2 RDF-based semantics, the axiom p ≡ q implies that predicates p
and q share the same property extension, i.e. if 〈s, p, o〉 is true then 〈s, q, o〉 is
also true (and vice-versa). Similarly, the axiom p ≡ q− implies that the predicate
q is the inverse of the predicate p, i.e. if 〈s, p, o〉 is true then 〈o, q, s〉 is also true
(and vice-versa). It is possible to express that a predicate p ∈ R is symmetric
by using the axiom p ≡ p−. Such axioms can be expressed by the OWL 2
owl:equivalentProperty and owl:inverseOf constructs.

Example 2. Consider the following statement: “The relation locatedIn is the
inverse of the relation locationOf, and the relation neighborOf is sym-
metric.” It can be encoded by the axioms locatedIn ≡ locationOf− and
neighborOf ≡ neighborOf−.
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Link Prediction – As mentioned earlier, real world knowledge graphs are often
largely incomplete. Link prediction in knowledge graphs consists in identifying
missing triples (facts) in order to discover new facts about a domain of interest.
This task is also referred to as knowledge base population in literature. We refer
to Nickel et al. (2016) for a recent survey on link prediction methods.

The link prediction task can be cast as a learning to rank problem, where we
associate a prediction score φspo to each triple 〈s, p, o〉 as follows:

φspo � φ(〈s, p, o〉;Θ),

where the score φspo represents the confidence of the model that the statement
encoded by the triple 〈s, p, o〉 holds true, φ(·;Θ) denotes a triple scoring function,
with φ : E ×R×E → R, and Θ represents the parameters of the scoring function
and thus of the link prediction model. Triples associated with a higher score by
the link prediction model have a higher probability of encoding a true statement,
and are thus considered for a completion of the knowledge graph G.

3 Neural Knowledge Graph Embedding Models

Recently, neural link prediction models received a growing interest (Nickel et al.
2016). They can be interpreted as simple multi-layer neural networks, where
given a triple 〈s, p, o〉, its score φ(〈s, p, o〉;Θ) is given by a two-layer neural net-
work architecture, composed by an encoding layer and a scoring layer.

Encoding Layer – in the encoding layer, the subject and object entities s
and o are mapped to distributed vector representations es and eo, referred to
as embeddings, by an encoder ψ : E �→ Rk such that es � ψ(s) and eo � ψ(o).
Given an entity s ∈ E , the encoder ψ is usually implemented as a simple
embedding layer ψ(s) � [Ψ ]s ∈ Rk, where Ψ ∈ R|E|×k is an embedding
matrix (Nickel et al. 2016).
The distributed representations in this layer can be either pre-trained (Baroni
et al. 2012) or, more commonly, learnt from data by back-propagating the
link prediction error to the embeddings (Bordes et al. 2013; Yang et al. 2015;
Trouillon et al. 2016; Nickel et al. 2016).
Scoring Layer – in the scoring layer, the subject and object representa-
tions es and eo are scored by a predicate-dependent function φθ

p(es, eo) ∈ R,
parametrised by θ.

The architecture of neural link prediction models can be summarized as follows:

φ(〈s, p, o〉;Θ) � φθ
p(es, eo)

es, eo � ψ(s), ψ(o),
(1)

and the set of parameters Θ corresponds to Θ � {θ,Ψ}. Neural link prediction
model generate distributed embedding representations for all entities in a knowl-
edge graph, as well as a model of determining whether a triple is more likely than
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others, by means of a neural network architecture. For such a reason, they are
also referred to as neural knowledge graph embedding models (Yang et al. 2015;
Nickel et al. 2016).

Several neural link prediction models have been proposed in the litera-
ture. For brevity, we overview a small subset of these, namely the Translating
Embeddings model TransE (Bordes et al. 2013); the Bilinear-Diagonal model
DistMult (Yang et al. 2015); and its extension in the complex domain Com-
plEx (Trouillon et al. 2016). Unlike previous models, such models can scale
to very large knowledge graphs, thanks to: (i) a space complexity that grows
linearly with the number of entities |E| and relations |R|; and (ii) efficient and
scalable scoring functions and parameters learning procedures. In the following,
we provide a brief and self-contained overview of such neural knowledge graph
embedding models.

TRANSE – The scoring layer in TransE is defined as follows:

φp(es, eo) � −‖es + rp − eo‖ ∈ R,

where es, eo ∈ Rk represent the subject and object embeddings, rp ∈ Rk is a
predicate-dependent translation vector, ‖ · ‖ denotes either the L1 or the L2

norm, and ‖x − y‖ denotes the distance between vectors x and y. In TransE,
the score φp(es, eo) is then given by the similarity between the translated subject
embedding es + rp and the object embedding eo.

DISTMULT – The scoring layer in DistMult is defined as follows:

φp(es, eo) � 〈rp, es, eo〉 ∈ R,

where, given x,y, z ∈ Rk, 〈x,y, z〉 �
∑k

i=1 xiyizi denotes the standard
component-wise multi-linear dot product, and rp ∈ Rk is a predicate-dependent
vector.

COMPLEX – The recently proposed ComplEx is related to DistMult, but
uses complex-valued embeddings while retaining the mathematical definition of
the dot product. The scoring layer in ComplEx is defined as follows:

φp(es, eo) � Re (〈rp, es, eo〉)
= 〈Re (rp) ,Re (es) ,Re (eo)〉 + 〈Re (rp) , Im (es) , Im (eo)〉

+ 〈Im (rp) ,Re (es) , Im (eo)〉 − 〈Im (rp) , Im (es) ,Re (eo)〉 ∈ R,

where given x ∈ Ck, x denotes the complex conjugate of x1, while Re (x) ∈ Rk

and Im (x) ∈ Rk denote the real part and the imaginary part of x, respectively.

4 Training Neural Knowledge Graph Embedding Models

In neural knowledge graph embedding models, the parameters Θ of the embed-
ding and scoring layers are learnt from data. A widely popular strategy for

1 Given x ∈ C, its complex conjugate is x � Re (x) − iIm (x).
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Algorithm 1. Learning the model parameters Θ via Projected SGD

Require: Batch size n, epochs τ , learning rates η ∈ Rτ

Ensure: Optimal model parameters Θ̂
1: for i = 1, . . . , τ do
2: ee ← ee/‖ee‖, ∀e ∈ E
3: {Sample a batch of positive and negative examples B = {(t, t̃)}}
4: B ← SampleBatch(G, n)
5: {Compute the gradient of the loss function J on examples B}
6: gi ← ∇ ∑

(t,t̃)∈B
[
γ − φ(t; Θi−1) + φ(t̃; Θi−1)

]
+

7: {Update the model parameters via gradient descent}
8: Θi ← Θi−1 − ηigi

9: end for
10: return Θτ

learning the model parameters is described in Bordes et al. (2013); Yang et al.
(2015); Nickel et al. (2016). In such works, authors estimate the optimal param-
eters by minimizing the following pairwise margin-based ranking loss function
J defined on parameters Θ:

J (Θ) �
∑

t+∈G

∑

t−∈C(t+)

[
γ − φ(t+;Θ) + φ(t−;Θ)

]
+

(2)

where [x]+ = max{0, x}, and γ ≥ 0 specifies the width of the margin. Positive
examples t+ are composed by all triples in G, and negative examples t− are
generated by using the following corruption process:

C(〈s, p, o〉) � {〈s̃, p, o〉 | s̃ ∈ E} ∪ {〈s, p, õ〉 | õ ∈ E},

which, given a triple, generates a set of corrupt triples by replacing its subject
and object with all other entities in G. This method of sampling negative exam-
ples is motivated by the Local Closed World Assumption (LCWA) (Dong et al.
2014). According to the LCWA, if a triple 〈s, p, o〉 exists in the graph, other
triples obtained by corrupting either the subject or the object of the triples not
appearing in the graph can be considered as negative examples. The optimal
parameters can be learnt by solving the following minimization problem:

minimize
Θ

J (Θ)

subject to ∀e ∈ E : ‖ee‖ = 1,
(3)

where Θ denotes the parameters of the model. The norm constraints on the entity
embeddings prevent to trivially solve the optimization problem by increasing
the norm of the embedding vectors (Bordes et al. 2014). The loss function in
Eq. (2) will reach its global minimum 0 iff, for each pair of positive and negative
examples t+ and t−, the score of the (true) triple t+ is higher with a margin of
at least γ than the score of the (missing) triple t−. Following Yang et al. (2015),
we use the Projected Stochastic Gradient Descent (SGD) algorithm (outlined in
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Algorithm 1) for solving the loss minimization problem in Eq. (3), and AdaGrad
(Duchi et al. 2011) for automatically selecting the optimal learning rate η at
each iteration.

5 Regularizing via Background Knowledge

We now propose a method for incorporating background schema knowledge,
provided in the form of equivalence and inversion axioms between predicates, in
neural knowledge graph embedding models. Formally, let A1 and A2 denote the
following two sets of equivalence and inversion axioms between predicates:

A1 � {p1 ≡ q1, . . . , pm ≡ qm} A2 � {pm+1 ≡ q−
m+1, . . . , pn ≡ q−

n } (4)

where 1 ≤ m ≤ n, and ∀i ∈ {1, . . . , n} : pi, qi ∈ R. Recall that each axiom p ≡ q
encodes prior knowledge that predicates p and q are equivalent, i.e. they share
the same extension. Similarly, each axiom p ≡ q− encodes prior knowledge that
the predicate p and the inverse of the predicate q are equivalent.

Equivalence Axioms – Consider the case in which predicates p ∈ R and q ∈ R
are equivalent, as encoded by the axiom p ≡ q. This implies that a model with
scoring function φ( · ;Θ) and parameters Θ should assign the same scores to the
triples 〈s, p, o〉 and 〈s, q, o〉, for all entities s, o ∈ E :

φ(〈s, p, o〉;Θ) = φ(〈s, q, o〉;Θ) ∀s, o ∈ E . (5)

A simple method for enforcing the constraint in Eq. (5) during the parame-
ter learning process consists in solving the loss minimization problem in Eq. (3)
under the additional equality constraints in Eq. (5). However, this solution results

in introducing O(|E|2) constraints in the optimization problem in Eq. (3), a quan-
tity that grows quadratically with the number of entities |E|. This solution may
not be feasible for very large knowledge graphs, which typically contain millions
of entities or more, while |R| is usually several orders of magnitude lower. A more
efficient method consists in enforcing the model to associate similar embedding
representations to both p and q, i.e. rp = rq. This solution can be encoded by a
single constraint, satisfying all identities in Eq. (5).

Inversion Axioms – Consider the case in which the predicate p (e.g. partOf)
and the inverse of the predicate q (e.g. hasPart) are equivalent, as encoded by
the axiom p ≡ q−. This implies that a model with scoring function φ( · ;Θ) and
parameters Θ should assign the same scores to the triples 〈s, p, o〉 and 〈o, q, s〉,
for all entities s, o ∈ E :

φ(〈s, p, o〉;Θ) = φ(〈o, q, s〉;Θ) ∀s, o ∈ E . (6)

Also in this case we can enforce the identity in Eq. (6) through a single con-
straint on the embeddings of predicates p and q. In the following, we derive the
constraints for the models TransE, DistMult and ComplEx. The constraints
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rely on a function Φ( · ) that applies a model-dependent transformation to the
predicate embedding rq.

TRANSE: We want to enforce that, for any pair of s and o embedding vectors
es, eo ∈ Rk, the score associated to the triples 〈s, p, o〉 and 〈o, q, s〉 are the same.
Formally:

‖es + rp − eo‖ = ‖eo + rq − es‖, ∀es, eo ∈ Rk (7)

where ‖ · ‖ denotes either the L1 or the L2 norm.

Theorem 1. The identity in Eq. (7) is satisfied by imposing:

rp = Φ(rq) such that Φ(rq) � −rq.

Proof. For any es, eo ∈ Rk, the following result holds:

‖es + rp − eo‖ = ‖eo − rp − es‖,

where ‖ · ‖ is a norm on Rk. Because of the absolute homogeneity property of
norms we have that, for any α ∈ R and x ∈ Rk:

‖αx‖ = |α|‖x‖.

It follows that:

‖es + rp − eo‖ = ‖ − 1 (eo − rp − es) ‖
= |−1|‖eo − rp − es‖ (absolute homogeneity property)

= ‖eo − rp − es‖.

DISTMULT: We want to enforce that:

〈rp, es, eo〉 = 〈rq, eo, es〉, ∀es, eo ∈ Rk (8)

A limitation in DistMult, addressed by ComplEx, is that its scoring func-
tion is symmetric, i.e. it assigns the same score to 〈s, p, o〉 and 〈o, p, s〉, due to
the commutativity of the element-wise product.

The identity in Eq. (8) is thus satisfied by imposing rp = Φ(rq) such that

Φ(rq) � rq.

COMPLEX: We want to enforce that:

Re (〈rp, es, eo〉) = Re (〈rq, eo, es〉) , ∀es, eo ∈ Ck. (9)

The identity in Eq. (9) can be satisfied as follows:

Theorem 2. The identity in Eq. (9) is satisfied by imposing:

rp = Φ(rq) such that Φ(rq) � rq.
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Proof. For any es, eo ∈ Ck, the following result holds:

Re (〈rp, es, eo〉)) = Re (〈rp, eo, es〉)) .

Consider the following steps:

Re (〈rp, es, eo〉) = Re
(
〈rp, es, eo〉

)
(since(x) = x)

= Re
(
〈rp, eo, es〉

)
(commutative property)

= Re (〈rp, eo, es〉) (sinceRe (x) = Re (x) ).

Similar procedures for deriving the function Φ(·) can be used in the context
of other knowledge graph embedding models.

5.1 Regularizing via Soft Constraints

One solution for integrating background schema knowledge consists in solving the
loss minimization problem in Eq. (3) under additional hard equality constraints
on the predicate embeddings, for instance by enforcing rp = rq for all p ≡ q ∈ A1,
and rp = Φ(rq) for all p ≡ q− ∈ A2. However, this solution does not cover cases
in which two predicates are not strictly equivalent but still share very similar
semantics, such as in the case of predicates marriedWith and partnerOf.

A more flexible solution consists in relying on soft constraints (Meseguer
et al. 2006), which are used to formalize desired properties of the model rather
than requirements that cannot be violated: we propose relying on weighted
soft constraints for encoding our background knowledge on latent predicate
representations.

Formally, we extend the loss function J described in Eq. (2) with an addi-
tional penalty term RS for enforcing a set of desired relationships between the
predicate embeddings. This process leads to the following novel loss function JS :

RS(Θ) �
∑

p≡q∈A1

D [rp‖rq] +
∑

p≡q−∈A2

D [rp‖Φ(rq)]

JS(Θ) � J (Θ) + λRS(Θ),

(10)

where λ ≥ 0 is the weight associated with the soft constraints, and D [x‖y] is
a divergence measure between two vectors x and y. In our experiments, we use
the Euclidean distance as divergence measure, i.e. D [x‖y] � ‖x − y‖2

2.
In particular, RS in Eq. (10) can be thought of as a schema-aware regular-

ization term, which encodes our prior knowledge on the distribution of predicate
embeddings. Note that the formulation in Eq. (10) allows us to freely interpolate
between hard constraints (λ = ∞) and the original models represented by the
loss function J (λ = 0), permitting to adaptively specify the relevance of each
logical axiom in the embedding model.
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6 Related Works

How to effectively improve neural knowledge graph embeddings by making use
of background knowledge is a largely unexplored field. Chang et al. (2014);
Krompass et al. (2014); Krompaß et al. (2015) make use of type information
about entities for only considering interactions between entities belonging to
the domain and range of each predicate, assuming that type information about
entities is complete. In Minervini et al. (2016), authors assume that type infor-
mation can be incomplete, and propose to adaptively decrease the score of each
missing triple depending on the available type information. These works focus
on type information about entities, while we propose a method for leveraging
background knowledge about relation types which can be used jointly with the
aforementioned methods.

Dong et al. (2014); Nickel et al. (2014); Wang et al. (2015) propose combining
observable patterns in the form of rules and latent features for link prediction
tasks. However, rules are not used during the parameters learning process, but
rather after, in an ensemble fashion. Wang et al. (2015) suggest investigating how
to incorporate logical schema knowledge during the parameters learning process
as a future research direction. Rocktäschel et al. (2015) regularize relation and
entity representations by grounding first-order logic rules. However, as they state
in their paper, adding a very large number of ground constraints does not scale
to domains with a large number of entities and predicates.

In this work we focus on 2-way models rather than 3-way models (Garćıa-
Durán et al. 2014), since the former received an increasing attention during
the last years, mainly thanks to their scalability properties (Nickel et al. 2016).
According to Garćıa-Durán et al. (2014), 3-way models such as RESCAL (Nickel
et al. 2011; 2012) are more prone to overfitting, since they typically have a larger
number of parameters. It is possible to extend the proposed model to RESCAL,
whose score for a 〈s, p, o〉 triple is eT

s Wpeo. For instance, it is easy to show that
eT

s Wpeo = eT
o WT

p es. However, extending the proposed method to more complex
3-way models, such as the latent factor model proposed by Jenatton et al. (2012)
or the ER-MLP model (Dong et al. 2014) can be less trivial.

7 Evaluation

We evaluate the proposed schema-based soft constraints on three datasets:
WordNet, DBpedia and YAGO3. Each dataset is composed by a training, a
validation and a test set of triples, as summarized in Table 1. All material needed
for reproducing the experiments in this paper is available online2.

WordNet (Miller 1995) is a lexical knowledge base for the English language,
where entities correspond to word senses, and relationships define lexical rela-
tions between them: we use the version made available by Bordes et al. (2013).

2 At https://github.com/pminervini/neural-schema-regularization.
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Table 1. Statistics for the datasets used in experiments

Dataset |E| |R| #training #validation #test

WordNet 40,943 18 141,442 5,000 5,000

DBpedia 32,510 7 289,825 5,000 5,000

YAGO3 123,182 37 1,079,040 5,000 5,000

YAGO3 (Mahdisoltani et al. 2015) is a large knowledge graph automatically
extracted from several sources: our dataset is composed by facts stored in the
YAGO3 Core Facts component of YAGO3.

DBpedia (Auer et al. 2007) is a knowledge base created extracting struc-
tured, multilingual knowledge from Wikipedia, and made available using Seman-
tic Web and Linked Data standards. We consider a fragment extracted following
the indications from Krompaß et al. (2014), by considering relations in the music
domain3.

The axioms we used in experiments are simple common-sense rules, and are
listed in Table 1.

Evaluation Metrics – For evaluation, for each test triple 〈s, p, o〉, we measure
the quality of the ranking of each test triple among all possible subject and object
substitutions 〈s̃, p, o〉 and 〈s, p, õ〉, with s̃, õ ∈ E . Mean Reciprocal Rank (MRR)
and Hits@k as described by Bordes et al. (2013); Nickel et al. (2016); Trouillon
et al. (2016) are widely adopted evaluation measures for evaluating knowledge
graph completion algorithms. The measures are reported in the raw and filtered
settings (Bordes et al. 2013). In the filtered setting, metrics are computed after
removing all the other positive (true) triples that appear in either training,
validation or test set from the ranking, whereas in the raw setting these are not
removed. The filtered setting is motivated by observing that ranking a positive
test triple after another true triple should not be considered a mistake (Bordes
et al. 2013).

Evaluation Setting – In our experiments we consider three knowledge graph
embedding models – TransE, ComplEx and DistMult, as described in
Sect. 3. For evaluating the effectiveness of the proposed method, we train them
using both the standard loss function J , defined in Eq. (2), and the proposed
schema-aware loss function JS , defined in Eq. (10). Models trained by using the
proposed method are denoted by the R superscript.

For each model and dataset, hyper-parameters were selected on the vali-
dation set by grid search. Specifically, we selected the embedding size k ∈
{20, 50, 100, 150}, the regularization weight λ ∈ {0, 10−4, 10−2, . . . , 106} and,
in TransE, the norm ‖ · ‖ is selected across the L1 and the L2 norm.

3 Following Krompass et al. (2014), such relations are album, associated band,
associated musical artist, genre, musical artist, musical band, and record-
Label.
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Table 2. Link prediction results (Hits@k and Mean Reciprocal Rank, filtered setting)
on WordNet, DBpedia and YAGO3.

WordNet DBpedia YAGO3

Hits@N (%) MRR Hits@N (%) MRR Hits@N (%) MRR

3 5 10 3 5 10 3 5 10

TransE 79.9 87.3 91.1 0.452 44.3 52.6 59.0 0.245 32.4 40.7 50.5 0.214

TransER 86.9 91.6 93.3 0.566 47.8 54.0 60.0 0.256 33.4 42.5 52.0 0.248

DistMult 91.7 93.2 94.2 0.840 44.6 50.6 55.7 0.371 29.9 37.2 46.3 0.260

DistMultR 92.4 93.8 94.9 0.851 44.9 50.6 55.8 0.381 29.9 37.2 46.4 0.260

ComplEx 94.2 94.4 94.6 0.939 52.7 54.2 55.8 0.486 34.8 41.5 49.9 0.304

ComplExR 94.3 94.5 94.7 0.940 53.1 54.3 55.9 0.503 34.7 41.6 50.0 0.304

Similarly to Yang et al. (2015) we set the margin γ = 1 and, for each combi-
nation of hyper-parameters, we train each model for 1000 epochs. The learning
rate in Stochastic Gradient Descent was initially set to 0.1, and then adapted
during training by AdaGrad.

Results – We report test results in terms of raw and filtered Mean Reciprocal
Rank (MRR), and filtered Hits@k in Table 2. For both the MRR and Hits@k
metrics, the higher the results on the test set, the better.

We can see that, in every case, the proposed method – which relies on reg-
ularizing relation embeddings by leveraging background knowledge – improves
the generalization abilities for each of the models. Results are especially evident
for TransE, which largely benefits from the novel regularizer. For instance we
can see that, in the WordNet case, the Hits@10 improves from 91.1 to 93.3,
while the Mean Reciprocal Rank improves from 0.452 to 0.566. For the remain-
ing models we can only notice marginal improvements, probably because they
already able to capture the patterns encoded by the background knowledge.

In Fig. 2 we can see a set of trained WordNet predicate embeddings (using
the model TransE), where relationships predicates are described in the axioms
in Fig. 1. We can immediately see that, if p ≡ q−, i.e. p is the inverse of q, then
rp ≈ −rq, which means that their embeddings rp and rq will be similar but will
have opposite sign. On the left we set λ = 0, i.e. we do not enforce any soft
constraint: we can see that the model is naturally inclined to assign opposite
sign embeddings to relations such as part of and has part, and hyponym
and hypernym; however, there is still some error margin in such an assignment,
possibly due to the incompleteness of the knowledge graph. On the right we set
λ = 106, i.e. we enforce the relationships between predicate embeddings via soft
constraints: we can see that the aforementioned error margin in modeling the
relationships between predicate embeddings is greatly reduced, improving the
generalization properties of the model and establishing new state-of-the-art link
prediction results on several datasets.
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Fig. 1. Axioms used with WordNet, DBpedia and YAGO3 (left) and WordNet
predicate embeddings learned by ComplEx (right). Note that if p ≡ q− (e.g. part of
and has part) then rp ≈ rq, i.e. rp and rq have similar real parts and similar but
opposite sign imaginary parts.

Fig. 2. WordNet predicate embeddings learned using the TransE model, with k = 10
and regularization weight λ = 0 (left) and λ = 106 (right) – embeddings are represented
as a heatmap, with values ranging from larger (red) to smaller (blue). Note that,
assuming the axiom p ≡ q− holds, using the proposed method leads to predicate
embeddings such that rp ≈ −rq. (Color figure online)

Table 3. Average number of seconds
required for training.

Plain Regularized

WordNet 31.7 s 32.0 s

DBpedia 57.9 s 58.5 s

YAGO3 220.7 s 221.3 s

A similar phenomenon in Fig. 1 (right),
where predicated embeddings have been
trained using ComplEx: we can see that the
model is naturally inclined to assign complex
conjugate embeddings to inverse relations
and, as a consequence, nearly-zero imagi-
nary parts to the embeddings of symmetric
predicates – since it is the only way of ensuring rp ≈ rp. However, we can
enforce such relationships explicitly by means of model-specific regularizers, for
increasing the predictive accuracy and generalization abilities of the models.

We also benchmarked the computational overhead introduced by the novel
regularizers by timing the training time for unregularized (plain) models and for
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regularized ones – results are available in Table 3. We can see that the proposed
method for leveraging background schema knowledge during the learning process
adds a negligible overhead to the optimization algorithm – less than 10−1 s per
epoch.

8 Conclusions and Future Works

In this work we introduced a novel and scalable approach for leveraging back-
ground knowledge into neural knowledge graph embeddings. Specifically, we pro-
posed a set of background knowledge-driven regularizers on the relation embed-
dings, which effectively enforce a set of desirable algebraic relationships among
the distributed representations of relation types. We showed that the proposed
method improves the generalization abilities of all considered models, yielding
more accurate link prediction results without impacting on the scalability prop-
erties of neural link prediction models.

Future Works

A promising research direction consists in leveraging more sophisticated back-
ground knowledge – e.g. in the form of First-Order Logic rules – in neural knowl-
edge graph embedding models. This can be possible by extending the model in
this paper to regularize over subgraph pattern embeddings (such as paths), so
to leverage relationships between such patterns, rather than only between predi-
cates. Models for embedding subgraph patterns have been proposed in the liter-
ature – for instance, see (Niepert 2016; Guu et al. 2015). For instance, it can be
possible to enforce an equivalency between the path parentOf◦parentOf and
grandParentOf, effectively incorporating a First-Order rule in the model, by
regularizing over their embeddings.

Furthermore, a future challenge is also extending the proposed method to
more complex models, such as ER-MLP (Dong et al. 2014), and investigating
how to mine rules by extracting regularities from the latent representations of
knowledge graphs.
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simple link prediction. In: ICML, of JMLR Workshop and Conference Proceedings,
vol. 48, pp. 2071–2080. JMLR. org (2016)

Wang, Q., Wang, B., Guo, L.: Knowledge base completion using embeddings and rules.
In: IJCAI, pp. 1859–1866. AAAI Press (2015)

Yang, B., Yih, W-t., He, X., Gao, J., Deng, L.: Embedding entities and relations for
learning and inference in knowledge bases. In: Proceedings of the International Con-
ference on Learning Representations (ICLR) 2015, May 2015

108



Chapter 9

Prediction of Adverse Drug

Reactions

109



Facilitating prediction of adverse drug reactions

by using knowledge graphs and multi-label

learning models
Emir Mu~noz, V�ıt Nov�a�cek and Pierre-Yves Vandenbussche
Corresponding author: Emir Mu~noz, Fujitsu Ireland Ltd., Insight Building, IDA Business Park, Lower Dangan, Newcastle, Galway, Ireland. E-mail: emir.mu-
noz@ie.fujitsu.com or emir.munoz@gmail.com

Abstract

Timely identification of adverse drug reactions (ADRs) is highly important in the domains of public health and pharmacology.
Early discovery of potential ADRs can limit their effect on patient lives and also make drug development pipelines more robust
and efficient. Reliable in silico prediction of ADRs can be helpful in this context, and thus, it has been intensely studied. Recent
works achieved promising results using machine learning. The presented work focuses on machine learning methods that use
drug profiles for making predictions and use features from multiple data sources. We argue that despite promising results, exist-
ing works have limitations, especially regarding flexibility in experimenting with different data sets and/or predictive models.
We suggest to address these limitations by generalization of the key principles used by the state of the art. Namely, we explore
effects of: (1) using knowledge graphs—machine-readable interlinked representations of biomedical knowledge—as a conveni-
ent uniform representation of heterogeneous data; and (2) casting ADR prediction as a multi-label ranking problem. We present
a specific way of using knowledge graphs to generate different feature sets and demonstrate favourable performance of selected
off-the-shelf multi-label learning models in comparison with existing works. Our experiments suggest better suitability of cer-
tain multi-label learning methods for applications where ranking is preferred. The presented approach can be easily extended
to other feature sources or machine learning methods, making it flexible for experiments tuned toward specific requirements of
end users. Our work also provides a clearly defined and reproducible baseline for any future related experiments.

Key words: adverse drug reactions (ADR); drug similarity; knowledge graphs; multi-label learning

Introduction

Adverse drug reactions (ADRs) can cause significant clinical prob-
lems and represent a major challenge for public health and the
pharmaceutical industry. During a drug development process,
pharmacology profiling leads to the identification of potential
drug-induced biological system perturbations including primary
effects (intended drug–target interactions) as well as secondary
effects (off-target–drug interactions) mainly responsible for ADRs

[1]. Many ADRs are discovered during preclinical and clinical tri-
als before a drug is released on the market. However, the use of a
registered drug within a large population (demonstrating a wider
range of clinical genotypes and phenotypes than considered in
the clinical trials) can result in serious ADRs that have not been
identified before. This has a large impact on patient safety and
quality of life, and also has significant financial consequences for
the pharmaceutical industry [2].
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The result of a recent review of epidemiological studies in
Europe states that 3.5% of hospital admissions are because of
ADRs and 10% of patients experience an ADR during their hospi-
talization [3]. ADRs are a major cause of morbidity (and associ-
ated reduction of quality of life) and mortality [4, 2]. Recent
estimates set the number of yearly drug-induced fatalities to
100 000 in the United States and almost 200 000 in Europe, mak-
ing it the fourth cause of death before pulmonary diseases or
diabetes [5, 3]. In addition to the significance for the public
health, ADRs are associated with an important economic bur-
den imposed for public health systems and pharmaceutical in-
dustry. The extra costs are caused mainly by the withdrawal of
dangerous drugs from the market, litigations and further hospi-
talizations to treat the adverse effects. The annual cost of ADRs
in the United States is estimated at $136 billion [6].

Any improvements in the early identification of ADRs can
decrease the high attrition rate in the drug discovery and devel-
opment process. After the drug registration, better prediction of
ADRs can alleviate associated clinical problems and decrease
the adverse effect-induced extra costs. In silico approaches to
predict ADRs of candidate drugs are now commonly used to
complement costly and time-consuming in vitro methods [7].
Computational methods differ by the drug development/de-
ployment stage they are applied at, and by the features used for
the prediction of ADRs. Pharmacovigilance systems (monitoring
the effects of drugs after they have been licensed for use) mine
statistical evidence of ADRs from spontaneous reports by phys-
icians, such as the Food and Drug Administration (FDA) Adverse
Event Reporting System (FAERS) [8–10]; from patient records
[11]; or more recently from non-traditional sources, such as logs
of search engine activity or social media [12, 13]. While these
methods limit the risk of serious public health issues by iden-
tifying early occurrences of ADRs, they assume that such ad-
verse effects are already demonstrated within a population.

Computational prediction of ADRs during the development
cycle of a drug (before the drug is licenced for use) can reduce
the cost of drug development and provide a safer therapy for
patients [14]. Most state-of-the-art techniques adopt a drug-
centric approach and rely on the assumption that similar drugs
share the same properties, mechanism of action and therefore
also ADRs [15, 16] (there are also methods that focus on the ADR
information to overcome certain specific problems like drugs
with little or no features at all, or ADRs with low number of
related drugs [15, 9]. The methods are, however, less numerous
and also harder to evaluate in a comparative manner).
Predictions of new ADRs are then based on a drug–drug similar-
ity network. In most of the early works, this network was based
on the similarity of the substructures within the active ingredi-
ents of drugs [17–20]. More recent approaches combine data
covering both chemical space of drugs and biological
interaction-based features such as drug target, pathways, en-
zymes, transporters or protein–protein interactions [21–23].
Lately, integrative methods take into account also phenotypic
observation-based features such as drug indications [24–27].
The availability of multi-source structured data has allowed for
integration of complementary aspects of drugs and their links
to side effects leading to higher accuracy [28].

The scope of this review is given by recent state-of-the-art
methods (from 2011 on) that satisfy two key requirements. First,
we consider methods that take advantage of multi-source struc-
tured data. Secondly, we focus on techniques that use machine
learning to predict the likelihood of a side effect being caused by
a given drug (drug-centric approach). Table 1 lists the reviewed
approaches along with the features they use. T

ab
le

1.
M

u
lt

i-
so

u
rc

e
fe

at
u

re
se

ts
u

se
d

by
st

at
e-

o
f-

th
e-

ar
t

m
et

h
o

d
s

Fe
at

u
re

sp
ac

e
A

ti
as

an
d

Sh
ar

an
,

20
11

[1
7]

Pa
u

w
el

s
et

al
.

(2
01

1)
[1

8]
M

iz
u

ta
n

ie
t

al
.

(2
01

2)
[2

1]
Y

am
an

is
h

ie
t

al
.

(2
01

2)
[2

2]
Li

u
et

al
.

(2
01

2)
[2

4]
B

re
ss

o
et

al
.

(2
01

3)
[1

9]
H

u
an

g
et

al
.

(2
01

3)
[2

3]
Ja

h
id

an
d

R
u

an
(2

01
3)

[2
0]

Z
h

an
g

et
al

.
(2

01
5)

[2
5,

28
,2

6]
R

ah
m

an
ie

t
al

.
(2

01
6)

[2
9]

M
u

~ n
o

z
et

al
.

(2
01

6)
[2

7]

C
h

em
ic

al
sp

ac
e

D
ru

g
co

m
p

o
u

n
d

su
bs

tr
u

ct
u

re
�

�
�

�
�

�
�

�
�

B
io

lo
gi

ca
ls

p
ac

e
D

ru
g

ta
rg

et
�

�
�

�
�

�

Pa
th

w
ay

�
�

�
�

En
zy

m
es

�
�

�

T
ra

n
sp

o
rt

er
s

�
�

�

Pr
o

te
in

-p
ro

te
in

in
te

ra
ct

io
n

(P
Pi

)
�

�

Ph
en

o
ty

p
ic

sp
ac

e
In

d
ic

at
io

n
�

�
�

C
el

ll
in

e
re

sp
o

n
se

�

2 | Mu~noz et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/20/1/190/4085292 by guest on 13 Septem

ber 2021

111



While many of the state-of-the-art approaches produce re-
sults that have great potential for being used in drug develop-
ment pipelines, there are still things to improve. A limitation
that is most relevant as a motivation for the presented review is
the lack of flexibility that prevents users who are not proficient
in machine learning from easily using the predictive models.
This makes it difficult for people like biologists, pharma-
cologists or clinicians to experiment with data and models
fine-tuned towards their specific requirements on the ADR
prediction (such as increasing the sensitivity or specificity of
the model). The main issue of existing models is that they typic-
ally work with data sets that have been manually preprocessed,
and the particular prediction methods are adapted to the ex-
perimental data in a focused manner.

We review the key points and limitations of existing
approaches and introduce their generalization based on: (1) tap-
ping into many diverse interlinked knowledge bases (i.e. know-
ledge graphs) related to drugs and adverse effects that
substantially limits the manual effort required for data integra-
tion and feature engineering. (2) Rigorous formulation of the
ADR prediction problem as a multi-label learning-to-rank prob-
lem that allows for easy experimentation with many off-the-
shelf machine learning models.

We show that specific applications of these two principles can
lead to performance comparable with existing methods.
Moreover, the proposed approach produces ranked predictions
by default, with many relevant predictions present at the top of
the ranked result lists. This is potentially useful in scenarios
where experts (e.g. pharmaceutical researchers or public health
officials) have limited time and/or resources, and thus they can
only process a few prediction candidates out of many possibilities
(there can often be hundreds of predictions for a single drug).

The main contributions of this work are as follows. We pro-
pose a specific way of using knowledge graphs to generate dif-
ferent feature sets for ADR prediction and demonstrate the
favourable performance of selected off-the-shelf multi-label
learning models in comparison with existing works. In addition
to that, we show how the approach can be easily extended to
other feature sources or machine learning methods. This makes
the method flexible for experiments tuned towards specific re-
quirements of end users. Our results and data also provide a
clearly defined and reproducible baseline for any future related
experiments.

Materials

Various publicly available data sources can be used to define
similarity between drugs [14]. Each data source describes a
specific aspect of the pharmacological space of a drug such as
its chemical, biological or phenotypic properties. For instance,
SIDER database [30] presents information of side effects and
indication for marketed drugs. PubChem Compound data [31]
contain chemical structure description of drugs. DrugBank [32]
provides detailed information about drugs such as their
binding proteins and targets, enzymes or transporters, thus
informing on drugs’ mechanism of action and metabolism.
KEGG Genes, Drug, Compound and Disease databases [33]
describe further information about molecular interaction of
drugs and their signalling pathways.

In the following, we review the materials—results of data in-
tegration using multiple data sources, provided by the authors of
the state-of-the-art methods. Because previous data integration
activities were expensive and mostly carried out manually, here,

we propose a different data source and representation, which
can be considered a superset of all previous data sets used. This
data source is represented using a graph database, a model in
which it is simpler to integrate different data sources such as the
ones already mentioned. We also provide an algorithm to gener-
ate the required drugs’ profile, similarly to the ones provided by
the reviewed methods (Supplementary Section D). For compari-
sons, we use Liu’s data set [24] and Zhang et al. [25] data set
termed ‘SIDER 4’ as benchmarks. As presented in Table 1, Liu’s
data set contains six types of features covering the chemical, bio-
logical and phenotypic spaces of drugs combined with informa-
tion on their associated ADRs (cf. Table 2). We use this data set as
primary means to compare the reviewed methods. SIDER 4 data
set introduced by Zhang et al. [25] is an update of Liu’s data set
integrating the fourth version of SIDER. This data set is interest-
ing, as it introduces newly approved drugs for which fewer post-
market ADR have been detected. We use the SIDER 4 data set as
secondary means to compare the methods.

A new alternative multi-source graph data have recently be-
come via the Bio2RDF project [34]. Bio2RDF publishes the
pharmacological databases used in many ADR prediction ex-
periments in the form of a knowledge graph—a standardized,
interlinked knowledge representation based on labelled rela-
tionships between entities of interest. Bio2RDF data were first
used for the prediction of ADRs by Mu~noz et al. [27], where drug
similarities were computed by measuring the shared connec-
tions between drugs in the graph. Here, we build on top of that
and evaluate the use of the BioRDF knowledge graph as a means
to facilitate the generation of more expressive features for com-
puting similarity between drugs. Such automatically generated
data can be used to replace or enrich existing manually inte-
grated feature sets, and be used to evaluate prediction methods
as per normal machine learning pipelines.

Finally, to get another perspective for interpreting the evalu-
ation results, we use the FDA FAERS [8, 10]. FAERS publishes re-
cent ADR reports coming from population-wide post-marketing
drug effect surveillance activities. Extracting the most recent
ADRs for newly marketed drugs helps us to evaluate the ability
of various methods to predict ADRs of drugs after their release
on the market. We extract this information from the Aeolus
data set [35], which is a curated and annotated, machine-
readable version of the FAERS database. We use Aeolus to gen-
erate an updated version of the SIDER 4 data set that includes
also the latest ADRs as observed in the population.

For details on the generation of Liu’s data set [24] and the
SIDER 4 data set [25], we refer the readers to the original articles.
We will now detail the construction of the ‘Bio2RDF data set’
and the ‘Aeolus data set’.

Bio2RDF data set

The Bio2RDF project (http://bio2rdf.org/) aims at simplifying the
use of publicly available biomedical databases by representing
them in a form of an interconnected multigraph [34, 36].

Table 2. The data set characteristics

Data set Number of drugs Number of side effects

Liu’s data set 832 1385
Bio2RDF data set 1824 5880
SIDER 4 data set 1080 5579
Aeolus data set 750 181
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The project provides a set of scripts (https://github.com/bio2rdf)
to convert from the typically relational or tabular databases (e.g.
DrugBank; SIDER) to a more flexible triple-based RDF (Resource
Description Framework) format. The project also makes avail-
able the output of their conversions, and in its version 4, pub-
lished in December 2015, Bio2RDF represented 30 databases
including PubChem, DrugBank, SIDER and KEGG, among others
with valuable drug-related information. Each information such
as drug, protein or side effect is represented as a node entity
with a unique identifier, and each relation between them as an
edge with a qualified label, generating a network of great value
for bioinformatics [37]. Here, we use the release 4 of Bio2RDF
and represent its data using a knowledge graph
G ¼ fhs; p; oig � E �R� E, which is a set of hs; p; oi triples each
consisting of a subject s, a predicate p and an object o, and
encoding the statement ‘s has a relationship p with o’. The sub-
ject and object s; o 2 E are entities, p 2 R is a relation type and E;
R denote the sets of all entities and relation types in the know-
ledge graph, respectively. Figure 1 shows a fragment of the
Bio2RDF knowledge graph that integrates three databases,
namely, DrugBank, SIDER and KEGG. Usually, connections be-
tween databases are made using identifiers such as PubChem
compound or Chemical Abstracts Service (CAS) number. Notice
that a knowledge graph can also be built from the original data-
bases using different methods or scripts, and here, we select
Bio2RDF because it already contains mappings for most of the
relevant databases.

A knowledge graph G can contain biomedical facts [note that
the URIs in the examples are used as unique identifiers; the
availability of corresponding records through an HTTP request
(such as in a browser) depends on a third-party service
(Bio2RDF.org)] such as:

hhttp://bio2rdf.org/drugbank:DB00531, label, “Cyclophosphamide”i

or

hhttp://bio2rdf.org/drugbank:DB00531, enzyme, http://bio2rdf.org/
kegg:1.14.13.-i.

This format allows for easy representation of equivalences or
external links between data sources as an additional relation/
edge. For instance, a relationship between a DrugBank drug and
a PubChem compound can be expressed as:

hhttp://bio2rdf.org/drugbank:DB00531, x-pubchemcompound, http://
bio2rdf.org/pubchem.compound:2907i.

By simply merging multiple data sources from Bio2RDF, we
are able to build an integrated knowledge graph with links be-
tween databases materialized. During the integration, the
PubChem compound of a drug is used to link DrugBank and
SIDER, while the CAS number is used to link DrugBank and
KEGG. This flexibility for generating training and testing data is
currently impossible with the manual integration pipelines
used by the reviewed methods. In our experiments, we shall
use a knowledge graph integrating the DrugBank, SIDER and
KEGG databases (cf. Table 3).

Figure 1. A Bio2RDF fragment around the cyclophosphamide drug, showing the connections between three main databases: DrugBank, SIDER and KEGG.

Table 3. Number of hs; p; oi triples in the Bio2RDF data set used in our
experiments

Data set Type of information Number of triples

DrugBank Drug types, chemical information 5 151 999
SIDER Side effects of drugs 5 578 286
KEGG Drugs, genes and pathway maps 4 387 541
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Aeolus data set

Aeolus [35] is a curated and standardized adverse drug events
resource meant to facilitate research in drug safety. The data in
Aeolus come from the publicly available US FDA FAERS, but is
extensively processed to allow for easy use in experiments. In
particular, the cases (i.e. ADR events) in the FAERS reports are
deduplicated and the drug and outcome (i.e. effect) concepts are
mapped to standard vocabulary identifiers (RxNorm and
SNOMED-CT, respectively). A similar approach for extracting
ADR terms from FDA-approved drug labels was applied in [38]
to group similar drugs by topics. However, Aeolus is preferred
because of its curated status.

The Aeolus data set is presented in a convenient comma-
separated values (CSV) format, from which we can easily extract
pairs of drugs and their adverse effects ranked by the statistical
significance of their occurrences within the FAERS reports. We
map the identifiers for drugs and for adverse effects in Aeolus
to the ones in DrugBank, which are used in our experiments.
This means that we are able to use the FDA FAERS data as an
additional manually curated resource for validating any adverse
effect prediction method, as detailed later on in the description
of our experiments.

Methods

In this section, we present details of the reviewed approaches
for ADR prediction, on the basis of a multi-label learning
setting.

Multi-label learning framework

As a drug can generally have multiple adverse reactions, the
ADR prediction can be naturally formulated as a multi-label
learning problem [39]. Multi-label learning addresses a special
variant of the classification problem in machine learning, where
multiple labels (i.e. ADRs) are assigned to each example (i.e.
drug). The problem can be solved either by transforming the
multi-label problem into a set of binary classification problems
or by adapting existing machine learning techniques to the full
multi-label problem (see https://en.wikipedia.org/wiki/Multi-
label_classification for more details and a list of examples).

Most of the current ADR prediction methods, however, do
not fully exploit the convenient multi-label formulation, as they
simply convert the main problem into a set of binary classifica-
tion problems [40]. This is problematic for two main reasons.
First, transforming the multi-label problem into a set of binary
classification problems is typically computationally expensive
for large numbers of labels (which is the case in predicting thou-
sands of ADRs). Secondly, using binary classifiers does not ac-
curately model the inherently multi-label nature of the main
problem. We validate these two points empirically in ‘Results
and discussion’ section. Here, we follow the philosophy of algo-
rithm adaptation: fit algorithms to data [40].

Yet, there are exceptions, such as the work in [25], present-
ing the multi-label learning method FS-MLKNN that integrates
feature selection and k-nearest neighbours (kNN). Unlike most
previous works, Zhang et al. [25] propose a method that does not
generate binary classifiers per label but uses an ensemble learn-
ing instead. (We shall provide more details of this and other
methods in ‘Learning models’ section.) Also, Mu~noz et al. [27]
proposed a multi-label solution for the prediction problem using
a constrained propagation of ADRs between neighbouring

drugs, making clear the benefits of a graph structure of data (cf.
Supplementary Section F).

In the following, we formalize the learning framework with Q-
labels as in [41, 42]. Let X ¼ fx1; x2; . . . ; xNg be the instance space
of N different data points (i.e. drugs) in Rd, and let Y ¼ fy1; y2; . . . ;

yQg be the finite set of labels (i.e. ADRs). Given a training set
D ¼ fðxi;YiÞj1 � i � Ng, where xi 2 X is a d-dimensional drug
feature vector ½xi1; xi2; . . . ; xid�> and Yi 2 2Y is a vector of labels
associated with xi, the goal of the learning system is to output a
multi-label classifier h : X ! 2Y , which optimizes some specific
evaluation metric. In most cases, however, the learning system
will not output a multi-label classifier but instead will produce a
real-valued function (aka. regressor) of the form f : X � Y ! R,
where f ðx; yÞ can be regarded as the confidence of y 2 Y being a
proper label of x. It is expected that for a given instance x and its
associated label set Y, a successful learning system will tend to
output larger values for labels in Y than those not in Y, i.e. f ðx; y1Þ
> f ðx; y2Þ for any y1 2 Y and y2 62 Y. In other words, the model
should consistently be more ‘confident’ about true positives
(actual ADRs) than about false positives. Intuitively, the regressor
f ð�; �Þ can be transformed into a ranking function rankf ð�; �Þ, which
maps the outputs of f ðx; yÞ for any y 2 Y to fy1; y2; . . . ; yQg such
that if f ðx; y1Þ > f ðx; y2Þ, then rankf ðx; y1Þ < rankf ðx; y2Þ. The rank-
ing function can naturally be used for instance for selecting top-k
predictions for any given drug, which can be useful in cases
where only limited numbers of prediction candidates can be fur-
ther analysed by the experts.

Our learning problem can now be formally stated as: given a
drug x and a finite-size vector Y with its initially known adverse
reactions (i.e. labels) seek to find a discriminant function
f ðx;YÞ ¼ bY , where bY is a finite-size vector representation of the
labelling function bY ¼ ½f ðx; y1Þ; . . . ; f ðx; yQ Þ�> for yi 2 Y. For in-
stance, headache (C0018681) and vomiting (C0042963) are com-
mon adverse reactions of atomoxetine (DB00289), a drug used
for the treatment of attention deficit hyperactivity disorder, and
they should be ranked higher than conjunctivitis (C0009763) or
colitis (C0009319), which are rare or unregistered ADRs for
atomoxetine (cf. Supplementary Section E for features manipu-
lation guidelines).

Learning models

To complement most previous works, we formulate ADR predic-
tion as a multi-label ranking problem, and train different ma-
chine learning models. This allows for approaching the problem
more naturally in many practical use cases, such as when one
prefers to explore only a few, i.e. the most relevant adverse ef-
fect candidates out of many possible for a certain drug. Multi-
label learning models learn how to assign sets of ADRs/labels to
each drug/example. The main motivation for our model choices
was to have a representative sample of the different multi-label
learning families described in the machine learning literature
(ranging from decision trees through instance-based learning or
regression to neural networks). Such an approach demonstrates
the broad range of possibilities when adopting off-the-shelf
models. We investigate state-of-the-art multi-label learning
models, namely, decision trees, random forests, kNN and multi-
layer perceptron. We also investigate the use of logistic regres-
sion binary classifiers for multi-label following the one-vs-all
strategy in which the system builds as many binary classifiers
as input labels, where samples having label y are considered as
positive, and negative otherwise (cf. Supplementary Section B
for a description of each model).
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Among the methods for predicting ADRs that accept multi-
source data are Liu’s method, FS-MLKNN (feature selection-based
multi-label k-nearest neighbour) [25], the linear neighbourhood
similarity methods (LNSMs) with two different data integration
approaches, similarity matrix integration (LNSM-SMI) and cost
minimization integration (LNSM-CMI) [28] and, finally, knowledge
graph similarity propagation (KG-SIM-PROP) [27]. Liu et al. [24]
proposed a multi-source method using chemical, biological and
phenotypic information about drugs and built an SVM classifier
for each ADR. FS-MLKNN is a method that simultaneously deter-
mines critical feature dimensions and builds multi-label predic-
tion models. An FS-MLKNN model is composed of five MLKNN
models constructed from a selected subset of features selected
using a genetic algorithm. In the learning step, the LNSM-SMI
method generates K similarity matrices from K different data
sources and combines them using hi weights (for all 1� i�K),
while the LNSM-CMI learns the LNSM independently on each
data source. LNSM is itself a method that can train models and
make predictions based on single-source data, and takes the as-
sumption that a data point (i.e. drug) can be optimally recon-
structed by using a linear combination of its neighbours. Because
of this, LNSM methods usually require a large number of neigh-
bours to deliver better results. Both LNSM-SMI and LNSM-CMI are
formulated as convex optimization problems using the similarity
between drugs to later make predictions. On the other hand, KG-
SIM-PROP [27] proposes to exploit a graph structure built from the
similarity matrix of drugs to propagate ADR labels from one drug
to other drugs in its neighbourhood. Later, we will see that such
propagation, unlike LNSM-based methods, requires a smaller
number of neighbours to deliver efficient predictions. KG-SIM-
PROP has been modified to not limit the number of predictions as
stated in [27], and adopt the evaluation protocol defined for this
review, ensuring a fair comparison with the other models.

A comparative review of existing multi-source machine
learning models and selected off-the-shelf multi-label learning
models trained on knowledge graphs allows for assessing not
only the performance but also the flexibility of the various
approaches. The performance of the off-the-shelf methods can
also be used as a baseline for more focused experiments in ADR
prediction, which is something that has been missing before.
An additional contribution of this review is the analysis of the
model performance not only on the hand-crafted feature sets
used by existing approaches but also on drug features automat-
ically extracted from knowledge graphs (cf. Supplementary
Section E). This is to demonstrate the feasibility of this particu-
lar approach to increasing practical applicability of automated
ADR prediction pipelines.

We perform a comparison of the above models (Liu’s meth-
od; FS-MLKNN; LNSM-SMI; LNSM-CMI; KG-SIM-PROP; decision
trees; random forests; multi-layer perceptron; linear regression)
in terms of performance based on several multi-label ranking
evaluation metrics. All models are given a design matrix X with
binary features as input, where the row i of X represents drug-i
using a vector xi (for 1� i�N) with a 1 or 0 in column j to indi-
cate whether drug-i has feature j (for 1� j� d), respectively. In
the same way, labels are represented using a binary matrix Y,
where row i contains either 1 or 0 in column j indicating
whether drug-i has ADR-j, respectively. For instance, consider-
ing the following three features: (j¼ 0) enzyme P05181, (j¼ 1) in-
dication abdominal cramp (C0000729) and (j¼ 2) pathway
hsa00010, we can have the vector x1 ¼ ½1; 0; 1� for the drug fome-
pizole (DB01213), meaning that fomepizole interacts with en-
zyme P05181, is not used to treat abdominal cramps and is part
of pathway hsa00010.

In Figure 2, we show a typical flow chart for the processes of
training, testing and evaluating machine learning models. For a
given model, its output is used to generate ADR predictions.
These predictions are evaluated using Liu’s, SIDER 4 and Aeolus
data sets as gold standards.

Most of the reviewed models work directly with the drug fea-
ture matrices. However, two models, namely, KG-SIM-PROP and
kNN, require a similarity graph as input, which in this case is
generated from the similarity between drugs using either the
original data sets features or the Bio2RDF knowledge graph.
Such a similarity graph encodes the similarity relations be-
tween drugs, where the value of the i-th row with the j-th col-
umn is the similarity score between drug-i and drug-j. In
Supplementary Section A, we describe a method to generate
such similarity network of drugs from a knowledge graph.

Results and discussion
Experimental configuration and evaluation metrics

All five multi-label learning models plus KG-SIM-PROP were im-
plemented using the Scikit-Learn Python package [43] (http://sci
kit-learn.org/stable/), whereas, when available, we use the im-
plementations provided by the reviewed methods. (General de-
tails on training and using the models are provided in the
Supplementary Section B.) In many cases, we used the default
hyper-parameters values, as our main focus was to compare
the performance of different models and not to find the optimal
hyper-parameter settings for each of them. Some specific
hyper-parameters, however, proved to have an obvious impact
on the model results, and therefore, we changed some of the de-
fault values and performed limited hyper-parameter optimiza-
tion via grid search. In particular: (a) the KG-SIM-PROP model
uses the 3w-Jaccard similarity metric [44], with 10–100 neigh-
bours size; (b) the kNN model is tested with 10–100 neighbours,
with uniform and distance-based weights using the Minkowski,
Manhattan, Chebyshev, Jaccard and Rogers Tanimoto distance
metrics [44]; (c) the decision trees and random forests models
use the mean squared error criterion, which is the only one sup-
porting multi-label learning; (d) the multi-layer perceptron
model is set with a unique hidden layer with 64, 128, 256 and
512 hidden units, a batch size equals to the 20% of drugs (which
was chosen from an independent grid search), a logistic sigmoid
activation and the Adam solver; (e) the logistic regression model
uses a L2 penalty function, C¼ 1.0, stochastic average gradient
as solver and 200 maximum iterations.

Figure 2. Machine learning flow chart for training and testing of a model.
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To compare all the models, we adopt common metrics for
ranking in multi-label learning [40]. We also compute example-
based ranking metrics [40] used in related works, namely, one-
error (One-error), coverage (Cov-error), ranking loss (R-loss) and
average precision (AP). Summary and details of all metrics we
use are given in the Supplementary Section C. The performance
of all models is evaluated using a 5-fold cross-validation. First,
all drugs are randomly split into five equal sized subsets. Then,
for each of the k folds, one part is held out for testing, and the
learning algorithm is trained on the remaining four parts. In
this way, all parts are used exactly once as validation data. The
selection of the best hyper-parameters for each model is per-
formed in each fold on the training set during the 5-fold cross-
validation, and the best model is applied over the test set for
validation (cf. Supplementary Section G). The five validation re-
sults are then averaged over all rounds. We also use common
evaluation metrics for ranking systems, the area under the re-
ceive operator curve (AUC-ROC) and the area under the preci-
sion–recall curve (AUC-PR) (as defined by Davis and Goadrich in
[45], when dealing with highly skewed data sets) to evaluate the
models because they can be used to evaluate models, regardless
of any threshold. However, because of the existing unbalance of
the labels (i.e. an ADR is more commonly found as a negative
value than as a positive one among drugs), the AUC-PR gives a
more informative picture of the model’s performance [45].
Thus, we set the AUC-PR as our target metric (in the grid
searches) for each of the rounds. Additionally, we compute
other example-based metrics [46, 40], namely, AP, one error,
Cov-error and R-loss. The last type of measures we use are the
general ranking evaluation metrics Hits at K (Hits@K) and
Precision at K (P@K). Among the measures we used, the Hits@K
and P@K are arguably the most accurate scores in terms of eval-
uating the benefit of ADR discovery for certain types of end
users like clinical practitioners. As explained in [47], these
scores are easily grasped by non-informaticians and are there-
fore apt for explaining the reliability of the system to them.
Moreover, in settings where quick decisions are needed, like in
clinical practice, users do not tend to perform comprehensive
search among many possible alternatives to find the relevant
ones [47]. The Hits@K and P@K scores reflect the likelihood that
such users will find relevant results quickly at the top of the list
of possibly relevant results.

Comparison on Liu’s data set

In this section, we present the evaluation of all methods using
Liu’s data set, which includes multi-source data with different
types of features about drugs. Specifically, we compare the
methods considering the features and labels in Liu’s data set,
which was introduced in [24] and has been considered as a
benchmark in [25, 28].

We compare the results reported in [28] for four existing
methods (Liu’s method, FS-MLKNN, LNSM-SMI and LNSM-CMI)
with the KG-SIM-PROP [27] and the five off-the-shelf multi-label
learning models selected by us. Table 4 shows the values of
evaluation metrics for each model, highlighting the best-per-
forming methods per metric in bold. We found out that the
methods FS-MLKNN, LNSM-SMI and LNSM-CMI proposed by
Zhang et al. recently [25, 28] perform best on Liu’s data set. The
multi-layer perceptron comes second by a rather small margin
in all but one metric. The methods FS-MLKNN [25], LNSM-SMI
and LNSM-CMI [28] exploit the notion of drug–drug similarity
for propagating side effects from a drug to its neighbours. A
similar approach is followed by the KG-SIM-PROP and kNN mod-
els, which can be considered a simplified version of the ones
presented in [28]. The difference between the KG-SIM-PROP and
kNN methods and the FS-MLKNN, LNSM-SMI and LNSM-CMI
methods is that the last three require large numbers of neigh-
bours to work properly (400 as reported in [25, 28]), while the
KG-SIM-PROP and kNN methods can work with as few as 30
neighbours. This makes them more applicable to sparse data
sets. As hypothesized by the authors [28], the better results of
LNSM-SMI and LNSM-CMI may be attributed to their consider-
ation of neighbourhood as an optimization problem via the lin-
ear neighbourhood similarity used. This is confirmed by the
observed results and leads to better accuracy in the similarity
computation but at the cost of efficiency because of the gener-
ation of neighbourhoods. The benefits of treating the similarity
as an optimization problem are also shown in the competitive
results of multi-layer perceptron, where a logistic sigmoid func-
tion was used as kernel. On the other hand, KG-SIM-PROP and
kNN use widely used off-the-shelf similarity metrics between
feature vectors to determine the neighbourhoods. Methods that
do not consider a similarity, namely, decision trees, random for-
ests and linear regression, are among the worst-performing
methods. In terms of efficiency, we report that FS-MLKNN was

Table 4. Predictive power of the models using Liu’s data set

Model Evaluation criterion

AP " AUC-PR " AUC-ROC " R-loss # One-error # Cov-error #

Liu’s method [24] 0.2610 0.2514 0.8850 0.0927 0.9291 837.4579
FS-MLKNN [28] 0.5134 0.4802 0.9034 0.0703 0.1202 795.9435
LNSM-SMI [28] 0.5476 0.5053 0.8986 0.0670 0.1154 789.8486
LNSM-CMI [28] 0.5329 0.4909 0.9091 0.0652 0.1250 776.3053
KG-SIM-PROP [27] 0.489560.0058 0.429560.0078 0.886060.0075 0.112060.0139 0.161060.0164 1100.9985665.8834
kNN 0.502060.0078 0.441760.0081 0.889260.0085 0.107360.0053 0.153860.0181 1102.3548641.4641
Decision trees 0.225260.0137 0.198960.0181 0.663460.0316 0.651960.0242 0.549360.0374 1377.131668.3936
Random forests 0.462660.0163 0.433160.0261 0.834260.0218 0.252560.0176 0.200760.0154 1284.3111627.0454
Multi-layer perceptron 0.519660.0069 0.496760.0204 0.900360.0057 0.087460.0009 0.145460.0166 954.0372622.2870
Linear regression 0.285460.0088 0.259560.0196 0.672460.0232 0.620960.0137 0.426760.0103 1380.076364.0209

Note: For each metric, we report the SD values (when available). The values for the first four models were taken from [28]. The evaluation metrics are AP, AUC-PR curve,

AUC-ROC, R-loss, one-error and Cov-error. (‘"’ indicates that the higher the metric value, the better, and ‘#’ indicates that the lower the metric value, the better.) Bold

values represent the best performing methods across a given metric.
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the slowest method with >2 weeks running time on a single
machine with commodity hardware. This is mainly because of
its multiple feature selection steps based on genetic algorithms.
From the multi-label ranking methods, the slowest was kNN
with 13 h and 18 min, followed by linear regression with 9 h and
26 min. Both multi-layer perceptron and KG-SIM-PROP took �2 h
and 16 min, while the decision trees were the fastest with only
16 min. We can see that even the slowest among multi-label
learning models we have tested is orders of magnitude faster
than the best-performing previously published method. This is
important information in the context of applicability of differ-
ent models that is not obvious from previously published work.
In cases where quick experimentation with different data sets
or model parameters is required, the multi-layer perceptron
may well be the best choice, as its results are close to the best
performance of existing tools.

In addition to the metrics reported in previous works, we re-
port the ranking performance of the multi-label learning to rank
methods in Table 5. Results show that multi-layer perceptron
gives the best rankings across all metrics. This may indicate
that non-linear methods (such as deep neural nets) are better
suited to the ADR prediction problem. Deep learning methods
have shown to excel in applications, where there is an abun-
dance of training data, and sources such as Bio2RDF could serve
for this purpose. The use of deep learning methods for the
prediction of ADRs is still an open problem. Further studies
in this area may lead to significant performance improve-
ments as indicated by the preliminary results presented in this
review.

Comparison on the Bio2RDF data set

Several authors have found that combining information from
different sources can lead to improved performance of compu-
tational approaches in bioinformatics (see [48, 49] among
others). In ‘Materials’ section, we introduced the Bio2RDF data
set, which is a multi-source knowledge graph. An important as-
pect of increasing the practicality of ADR prediction we suggest
in this review is automation of the feature extraction process.
A possible way of doing it is to use heterogeneous knowledge
graphs to represent entities such as drugs. This makes experi-
mentation with different feature sets easier than with the exist-
ing reviewed works. To show the benefits of combining diverse
data sources in terms of performance, we tested the multi-label
learning models against two versions of the Bio2RDF data set:
(v1) containing DrugBank and SIDER, and (v2) containing
DrugBank, SIDER and KEGG. Table 6 shows the performance of
six multi-label learning methods (unfortunately, there were no
implementations available for LNSM-SMI, LNSM-CMI [28] for
comparison at the time of this writing, and FS-MLKNN was dis-
carded because of its intractability on larger feature sets) using
the set of 832 drugs and 1385 side effects from Liu’s data set, but
replacing the feature vectors of drugs with those extracted from
the Bio2RDF v1 (or Bio2RDF v2) data set. Originally, Liu’s data set
contained a set of 2892 manually integrated features coming
from six sources. These are replaced by 30 161 and 37 368 fea-
tures in Bio2RDF v1 and v2, respectively. Both sets are automat-
ically generated using the method described in Supplementary
Section A, and represent a drug according to its incoming and
outgoing relations with other entities in the knowledge graph.

Table 6. Predictive power of the models using drugs in Liu’s data set with features from Bio2RDF v1 (DrugBankþSIDER)

Model Evaluation criterion

AP " AUC-PR " AUC-ROC " R-loss # One-error # Cov-error #

KG-SIM-PROP [27] 0.501160.0106 0.448560.0115 0.893560.0096 0.105860.0122 0.158660.0177 1095.3082655.47904
kNN 0.497760.0107 0.421060.0228 0.884860.0062 0.121160.0113 0.165860.0206 1127.7254645.6342
Decision trees 0.196460.0116 0.171060.0138 0.630160.0250 0.722060.0194 0.567360.0144 1377.200166.9189
Random forests 0.431760.0107 0.384360.0143 0.809760.0102 0.303760.0088 0.221260.0139 1314.5006617.6714
Multi-layer perceptron 0.509960.0159 0.454660.0169 0.901060.0061 0.079160.0022 0.143060.0160 892.8340620.4758
Linear regression 0.284760.0083 0.248260.0137 0.640460.0248 0.672660.0141 0.346760.0238 1383.380863.2383

Note: The evaluation metrics are AP, AUC-PR, AUC-ROC, R-loss, one-error and Cov-error. (‘"’ indicates that the higher the metric value, the better, and ‘#’ indicates that

the lower the metric value, the better.) Bold values represent the best performing methods across a given metric.

Table 5. Ranking performance of the models using Liu’s data set

Model Evaluation criterion

P@3 P@5 P@10 HITS@1 HITS@3 HITS@5 HITS@10

KG-SIM-PROP [27] 0.933360.1333 0.840060.2332 0.920060.1166 0.839060.0164 2.435160.0240 3.869160.0671 7.073460.0746
kNN 0.933360.1333 0.920060.0980 0.940060.0800 0.845060.0173 2.456860.0316 3.902760.0452 7.174460.0581
Decision trees 0.466760.2667 0.440060.2653 0.480060.1470 0.417160.0176 1.197160.0570 1.965160.0940 3.807660.1941
Random forests 0.933360.1333 0.920060.0400 0.920060.0400 0.810160.0088 2.335360.0594 3.745160.0779 6.943460.0982
Multi-layer perceptron 1.000060.0000 0.960060.0800 0.960060.0490 0.854660.0166 2.467660.0295 3.977360.0544 7.363360.1451
Linear regression 0.333360.2981 0.400060.1265 0.440060.1347 0.574560.0469 1.626260.0716 2.639460.0782 5.185160.0823

Note: The evaluation metrics are P@X (precision at 3, 5 and 10), and HITS@X (hits at 1, 3, 5 and 10). (For all metrics, the higher the value of the metric, the better). Bold

values represent the best performing methods across a given metric.
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Results show that in both cases (Bio2RDF v1 and v2), the
methods perform better with the Bio2RDF features than with
Liu’s original data set features, confirming our assumption that
combination of various feature sources may increase the per-
formance. This can be explained by the fact that Bio2RDF pro-
vides a richer representation of drugs and their relationships
than the traditional feature sets. This is an important finding,
as the Bio2RDF features can be constructed automatically, while
the features in the Liu’s and Zhang’s data sets require non-
trivial manual efforts. Furthermore, our results also indicate
that having extra information about pathways provides better
performance as shown in Table 7, where Bio2RDF v2 is built by
adding KEGG data set [33] to Bio2RDF v1. To further explore the
influence of possible feature set combinations on the results,
we integrated the original Liu’s data set [24] features with
Bio2RDF v2, leading to 40 260 features in total. Table 8 shows the
performance results obtained when combining feature sets
from Liu’s and Bio2RDF v2 data sets. This yields slightly better
results in terms of the AP and AUC-PR metrics.

Comparison on the SIDER 4 data set

To further evaluate the practical applicability of the multi-label
learning models, we performed an experiment using SIDER 4
[25]. The intuition behind this experiment is to test the predict-
ive power of the models under a simple train and test set-up.
SIDER 4 data set contains 771 drugs used for training, which are
also present in Liu’s data set, and 309 newly added drugs used
for testing. First, we run all methods on the original SIDER 4
data set features and labels, and compare them against the re-
sults provided by Zhang et al. [28]. Table 9 shows the results of
the different methods over the SIDER 4 data set. The state-of-
the-art method LNSM-SMI gives the best AP and AUC-PR, while
LNSM-CMI produces the best Cov-error. However, multi-layer

perceptron is the best-performing model in the AUC-ROC, R-loss
and one-error metrics. These results suggest better relative suit-
ability of some multi-label learning methods for applications,
where a ranking function is preferred over classification.
Examples of such applications are use cases, where experts can
only review a few prediction candidates and need the relevant
ones to appear at the top of the list. Such use cases are indeed
realistic, as there are often hundreds of predictions for every
single drug. The results of multi-layer perceptron show some
improvements when using features coming from the Bio2RDF
v2 data set (cf. Table 10).

Comparison on the SIDER4 and Aeolus data sets

We further evaluate the models considering both the SIDER 4
and Aeolus data sets [35]. Aeolus data set provides us with rela-
tions between drugs and ADRs that were not previously known
during the training or testing steps. The reason for the experi-
ments using the SIDER 4 and Aeolus data sets is the evolving
nature of the knowledge about drugs—generally, new ADRs can
always be discovered for a drug, either by new studies or via
pharmacovigilance in the post-market stage. The classic ap-
proach for validating ADR predictions follows the closed-world
assumption (i.e. missing predictions are false), but the actual
problem follows the open-world assumption (i.e. missing pre-
dictions may be just unknown). Therefore, it is always possible
that predictions that are currently deemed false positives can
be considered true positives if more knowledge becomes avail-
able in the future. We hope to reflect this phenomenon by using
the complementary Aeolus data that is frequently updated and
contains information based on manually validated reports. For
these reasons, we believe it will be beneficial to use this data set
for complementary validations also in future studies in this
domain.

Table 7. Predictive power of the models using drugs in Liu’s data set with features from Bio2RDF v2 (DrugBankþSIDERþKEGG)

Model Evaluation criterion

AP " AUC-PR " AUC-ROC " R-loss # One-error # Cov-error #

KG-SIM-PROP [27] 0.511860.0101 0.460460.0097 0.895460.0054 0.105160.0109 0.146660.0214 1091.9749651.4537
kNN 0.508360.0124 0.434160.0277 0.883560.0086 0.128160.0031 0.147860.0027 1155.2053636.5165
Decision trees 0.206960.0176 0.174260.0266 0.625860.0242 0.714060.0233 0.546960.0385 1370.740267.5913
Random forests 0.443860.0162 0.399360.0256 0.815360.0171 0.288360.0225 0.210360.0169 1295.7516620.2287
Multi-layer perceptron 0.527860.0106 0.472560.0284 0.900260.0074 0.079560.0028 0.132260.0298 909.7297619.7920
Linear regression 0.291960.0109 0.258760.0165 0.644160.0261 0.666560.0166 0.355760.0306 1383.379663.2407

Note: The evaluation metrics are AP, AUC-PR, AUC-ROC, R-loss, one-error and Cov-error. (‘"’ indicates that the higher the metric value, the better, and ‘#’ indicates that

the lower the metric value, the better.) Bold values represent the best performing methods across a given metric.

Table 8. Predictive power of the models using a combination of features from both Liu’s data set and Bio2RDF v2 data set

Model Evaluation criterion

AP " AUC-PR " AUC-ROC " R-loss # One-error # Cov-error #

KG-SIM-PROP [27] 0.501260.0079 0.447160.0097 0.888260.0089 0.118460.0139 0.152660.0177 1127.3234651.2769
kNN 0.502060.0808 0.448260.0101 0.888360.0089 0.118460.0139 0.150260.0208 1127.1279651.3701
Decision trees 0.208060.0190 0.172860.0149 0.630660.0239 0.694460.0215 0.544460.0289 1372.109569.6089
Random forests 0.460960.0174 0.433160.0127 0.835760.0117 0.262760.0134 0.199560.0241 1308.7285624.9798
Multi-layer perceptron 0.528160.0088 0.487060.0269 0.894660.0067 0.083560.0034 0.141860.0158 937.8773636.9387
Linear regression 0.303160.0108 0.268160.0169 0.657860.02424 0.643160.0147 0.361760.0273 1381.721864.0156

Note: The evaluation metrics are AP, AUC-PR, AUC-ROC, R-loss, one-error and Cov-error. (‘"’ indicates that the higher the metric value, the better, and ‘#’ indicates that

the lower the metric value, the better.) Bold values represent the best performing methods across a given metric.
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To test this point, we updated the SIDER 4 matrix Y of ADRs
of the test set using a version of Aeolus data set generated after
the release of the SIDER 4 data set. We found 142 drugs in the
intersection of the SIDER 4 test set and Aeolus. Whenever a new
drug–ADR relationship is reported in the Aeolus data set for any
of the 309 drugs in the test set, this is reflected by modifying the
SIDER 4 data set. Aeolus introduces 615 new ADR relations in
total with an average of 4.3 per drug. For example, Aeolus pro-
vides two new ADRs for triclosan (DB08604), an aromatic ether
widely used as a preservative and antimicrobial agent in per-
sonal care products: odynophagia and paraesthesia oral. While
these changes because of the Aeolus data set are not crucial for
drugs with many previously known ADRs (for instance, nilotinib
(DB04868) has 333 ADRs in SIDER 4, and Aeolus only adds 3 new
ADRs), they can have high impact on drugs with few known
ADRs (such as triclosan or mepyramine both with only one
ADR). In total, Aeolus provides at least one new ADR for 46% of
drugs in the SIDER 4 test set. Interestingly, most of the new

ADRs added by Aeolus data set are related to the digestive sys-
tem (e.g. intestinal obstruction, gastric ulcer, etc.), which we be-
lieve is because of the disproportionate FAERS reporting [8, 10]
frequency for this type of events.

We ran the models once more and evaluated them against
the new gold standard with the updates provided by the Aeolus
data set. Table 11 shows the results of the updated data set
using the Aeolus data for the four best-performing multi-label
models, and when compared against values in Table 9 results
are marginally lower across all metrics. For instance, the AP of
multi-layer perceptron drops by 0.92% and AUC-ROC by 1.85%.
This observation is not consistent with our assumption that
new knowledge about relations between drugs and ADRs can in-
crease the true-positive rate by confirming some of the previous
false positives as being true. We believe that this could be
because of two reasons. (A) The added ADRs are under-
represented across drugs. We observed this in SIDER 4, where
37.5% (2093 of 5579) of ADRs are present at most once in either

Table 9. Predictive power of the models using SIDER 4 data set

Model Evaluation criterion

AP " AUC-PR " AUC-ROC " R-loss # One-error # Cov-error #

Liu’s method [24] 0.1816 0.1766 0.8772 0.1150 0.9870 1587.5663
FS-MLKNN [28] 0.3649 0.3109 0.8722 0.1038 0.1851 1535.9223
LNSM-SMI [28] 0.3906 0.3465 0.8786 0.0969 0.2013 1488.2977
LNSM-CMI [28] 0.3804 0.3332 0.8852 0.0952 0.1916 1452.7184
KG-SIM-PROP [27] 0.3375 0.2855 0.8892 0.1398 0.2233 4808.3689
kNN 0.3430 0.2898 0.8905 0.1392 0.2168 4086.0777
Random forests 0.3004 0.2599 0.8235 0.3318 0.2848 5362.6117
Multi-layer perceptron 0.3546 0.2899 0.8943 0.0922 0.1309 4054.0356

Note: The values for the first four models were taken from [28]. The evaluation metrics are AP, AUC-PR curve, AUC-ROC, R-loss, one-error and Cov-error. (‘"’ indicates

that the higher the metric value, the better, and ‘#’ indicates that the lower the metric value, the better.) Bold values represent the best performing methods across a

given metric.

Table 11. Predictive power of the models using SIDER 4 data set, and updating the ADRs with Aeolus data set

Model Evaluation criterion

AP " AUC-PR " AUC-ROC " R-loss # One-error # Cov-error #

KG-SIM-PROP [27] 0.3272 0.2791 0.8796 0.1619 0.2233 5040.06149
kNN 0.3324 0.2834 0.8808 0.1613 0.2168 5038.6570
Random forests 0.2883 0.2447 0.8059 0.3717 0.3366 5478.8479
Multi-layer perceptron 0.3437 0.2836 0.8858 0.1050 0.1909 4339.7540

Note: The evaluation metrics are AP, AUC-PR, AUC-ROC, R-loss, one-error and Cov-error. (‘"’ indicates that the higher the metric value, the better, and ‘#’ indicates that

the lower the metric value, the better.)

Table 10. Predictive power of the models using drugs in SIDER 4 data set and Bio2RDF v2 data set features

Model Evaluation criterion

AP " AUC-PR " AUC-ROC " R-loss # One-error # Cov-error #

KG-SIM-PROP [27] 0.3438 0.2876 0.8764 0.17460 0.2427 4969.0647
kNN 0.3416 0.2835 0.8728 0.1777 0.2395 5002.6084
Random forests 0.2384 0.2061 0.7651 0.4567 0.4304 5440.0712
Multi-layer perceptron 0.3529 0.2857 0.9043 0.0852 0.1909 3896.3625

Note: The evaluation metrics are AP, AUC-PR, AUC-ROC, R-loss, one-error and Cov-error. (‘"’ indicates that the higher the metric value, the better, and ‘#’ indicates that

the lower the metric value, the better.)

10 | Mu~noz et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/20/1/190/4085292 by guest on 13 Septem

ber 2021

119



the training or test set. This makes those ADRs hard to predict.
(B) There is a ‘weak’ relation between the drugs and the intro-
duced ADRs. This weak relation comes from the original split in
training and test set provided in SIDER 4 data set; we found out
that 50.15% (2798 of 5579) ADRs are only present in the training
set and not in the test set, compared with a 7% (392 of 5579) of
ADRs that are only present in the test set.

Advantages of using Aeolus data set are illustrated, for ex-
ample, by the drug eribulin (DB08871) that contains 123 ADRs in
SIDER 4, most of which have been discovered in the post-
marketing stage. Aeolus introduced seven new ADRs for eribu-
lin, where one of them, namely, pharyngitis (C0031350), was
ranked number 36 among all 5579 ADRs, which is a high ranking
considering 123 ADRs. This means the models are able to per-
form well for reactions that are true based on the recent data in
Aeolus, but not present among positives in the primary valid-
ation data like SIDER (and thus they could only be interpreted as
false positives during the primary evaluation). Such encourag-
ing results were observed on several of the analysed drugs for
which predictions previously considered as false positives were
indeed shown to be true by Aeolus.

All analysed methods consider a static view over the data
and do not consider the changes in data, e.g. new ADRs dis-
covered in a post-marketing stage. Therefore, a future research
direction could study the effects of learning under evolving data
sets (i.e. new drug–ADR relations), which is known as incremen-
tal learning (see [50, 51, 52] among others).

Comments on the behaviour of the models

To illustrate the flexibility and robustness of the approach we
suggest to complement the existing predictive models, we en-
riched the Liu’s data set using Bio2RDF data set features, which
in general are numerous. Intuitively, by having more features
for a drug, we can achieve a better representation of it, which
should lead to better performance results. However, we
observed mixed small positive and negative changes in the re-
sults shown in Table 8 when compared with the performance
previously reported in Tables 6 and 7. This can be attributed to
the famous curse of dimensionality, where the performance de-
grades as a function of dimensionality. This issue may have
large impact on models like multi-layer perceptron, where the
large number of inputs hampers the training performance if the
first hidden layer is too small. This is the case of our experi-
ments, as we limit the size of the first hidden layer for the
multi-layer perceptron. However, it is possible to cope with the
curse of dimensionality, using methods such as embeddings
into low-rank feature spaces. Embedding models aim to find a
dimensionality reduction, generating latent representations of
the data that preserve structural details as much as possible
[53]. This is something that represents a new research direction,
by considering learning of drug representations for tasks such
as comparison. We believe this could substantially improve the
performance of some of the models here reviewed.

We also observed that when merging Liu’s data set with
Bio2RDF, some features can be considered as duplicated fea-
tures. Certain models deal with this situation better, and others
would apparently require a filtering of duplicated features.
During our experiments, we did not filter features, and assumed
that deduplication is performed by the models.

Regarding scalability, despite the substantial increase of the
feature space (up to almost 13-fold), we only noticed up to dou-
ble execution times of the multi-label learning methods. All
running times are still far better than the time required by the

previously existing methods, which is another argument for
higher practical applicability of the suggested approach.

Conclusion

We have shown that using knowledge graphs for automated fea-
ture extraction and casting the problem of ADR prediction as
multi-label ranking learning can be used for building models that
are comparable with or better than existing related methods.
Moreover, the off-the-shelf models are orders of magnitude faster
than existing related ADR prediction systems. We argue that be-
cause of the demonstrated speed-up and automation of most of
the steps in building the prediction pipelines, this review pro-
vides a broad range of possibilities for biomedical experts to build
their own ADR prediction systems more easily than before. This
is supported by extensive documentation of all necessary steps
provided in the article (cf. Supplemental Material).

The applicability of some of the reviewed models is further
supported by good results in ranking metrics. This can be useful
in many practical scenarios, where experts cannot possibly ex-
plore all computed predictions, but require ranked results and
highly relevant candidates appearing at the top of the list. Last
but not least, the review presents results of the off-the-shelf
machine learning modules in a way that can be used as a well-
documented baseline for future experiments in this area.

In our future work, we want to investigate the influence of
embeddings (i.e. latent feature models and feature extractors) on
the performance of multi-label learning models for the ADR pre-
diction. We also want to analyse the influence of various hyper-
parameters on the prediction results more thoroughly. This will
bring more insight into the most promising directions for further
improvements of the performance of ADR prediction models.
Another area we want to target is development of more stratified
and comprehensive benchmark data sets that could increase the
interpretability of ADR prediction results in future studies. Last
but not least, we would like to perform not only quantitative valid-
ation but also qualitative trials with actual sample users. This will
let us assess the real-world usability of the reviewed approaches
and gain valuable feedback for further developments in this field.

Key Points

• Knowledge graphs allow for easy, automated integra-
tion of multiple diverse data sets to extract features for
ADR prediction.

• Approaching the ADR prediction as a multi-label learn-
ing problem facilitates easy experimentation with a di-
verse range of off-the-shelf algorithms. It also produces
results that can be used as a well-documented baseline
for future, more sophisticated experiments.

• Applying these two principles (i.e. knowledge graphs
and multi-label learning) leads to results that are com-
parable with or better than existing related approaches,
while the training is orders of magnitude faster on the
same data. Also, the resulting models provide ranked
predictions by default, which further contributes to
their practical applicability.

• Interested stakeholders can straightforwardly use the
review for building their own ADR prediction pipelines
and fine-tuning them based on their specific require-
ments (such as increasing particular classification or
ranking performances).
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ABSTRACT
Knowledge graphs became a popular means for modelling complex
biological systems where they model the interactions between bio-
logical entities and their effects on the biological system. They also
provide support for relational learning models which are known to
provide highly scalable and accurate predictions of associations be-
tween biological entities. Despite the success of the combination of
biological knowledge graph and relation learning models in biolog-
ical predictive tasks, there is a lack of unified biological knowledge
graph resources. This forced all current efforts and studies for ap-
plying a relational learning model on biological data to compile and
build biological knowledge graphs from open biological databases.
This process is often performed inconsistently across such efforts,
especially in terms of choosing the original resources, aligning
identifiers of the different databases and assessing the quality of
included data. To make relational learning on biomedical data more
standardised and reproducible, we propose a new biological knowl-
edge graph which provides a compilation of curated relational data
from open biological databases in a unified format with common,
interlinked identifiers. We also provide a new module for mapping
identifiers and labels from different databases which can be used
to align our knowledge graph with biological data from other het-
erogeneous sources. Finally, to illustrate practical relevance of our
work, we provide a set of benchmarks based on the presented data
that can be used to train and assess the relational learning models
in various tasks related to pathway and drug discovery.

CCS CONCEPTS
• Applied computing → Biological networks; Bioinformat-
ics; • Information systems→Extraction, transformation and
loading.
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1 INTRODUCTION
Knowledge graphs (KGs) are a popular means for modelling rela-
tional data in many systems and applications. They have currently
become the backbone of many semantic web search engines and
question answering systems in both academic and industrial set-
tings [27]. This encouraged the development of many public knowl-
edge graphs which model information from different domains such
as general human knowledge [18], lexical information [20] and
other domains. These knowledge graphs provide support for pre-
dictive models in different tasks and facilitate information retrieval
on the original linked data.

In recent years, knowledge graphs have also become a favourable
choice for modelling complex biological systems where they were
used in different predictive tasks such as predicting drug protein
targets [26], predicting polypharmacy side-effects [40] and the pre-
diction of cellular functions of proteins at the tissue level [22].
In each of these tasks, KGs were used to model biological net-
works, and then relational learning models were used to provide
new predictions. Despite the effectiveness of such approaches [24],
there is a lack of open biological knowledge graphs to support
them. Furthermore, current approaches rely on building customized
knowledge graph by parsing and transforming open biological
databases [24, 26, 29].

The effectiveness of knowledge graphs and the popularity of
the RDF framework form modelling linked data have encouraged
many open biological database to provide their contents in RDF
format. For example, the UNIPROT [6, 7], Reactome [8] and Gene
Ontology [5] databases provide an RDF version of their content
which preserves both the interlinks and metadata of their contained
biological entities. However, these RDF graphs only focus on a
limited set of biological entity types covered by the corresponding
original database. Moreover, they do not share any common entity
coding system, which makes it hard to use them in concert. There is
also a large body of biological data that has no RDF counterpart at
all. This encouraged efforts such as the Bio2RDF project [3] to build
and provide a network of linked biological data by transforming
open biological databases to RDF graphs.

The Bio2RDF project consists of a set of web parsers for open bi-
ological data which consume, process and convert these database to
RDF graphs. Despite the high coverage of its generated RDF graphs,
they are not commonly used in the different predictive biological
task by relational learning models [24]. One of the main reasons is
the large volume of metadata information stored in these graphs
which often decreases the predictive accuracy of relational models.
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This is due to the models’ tendency to over-represent the clearly-
interpretable and uniform metadata links and under-represent the
more subtle actual biological relationships.

The current studies of the applications of relational leaning mod-
els in biological settings commonly involve building customized
biological graphs from open biological databases [24, 26, 29]. This
process involves repeated procedures such as parsing the different
database sources into intermediate formats then merging these
format into knowledge graphs. It also involves mapping entity iden-
tifiers to a unified ID system as biological databases commonly
employ different identifier systems. Such steps are frequently asso-
ciated with many rather arbitrary decisions that complicate repro-
ducibility and meaningful comparisons between the corresponding
models. To address this problem, we provide a new open biolog-
ical knowledge graph, BioKG, and tools for its transparent cre-
ation, updates and extensions. Contrary to existing resources like
Bio2RDF, BioKG combines information from different open biologi-
cal databases in a simple graph format which focuses on biological
relationships while preserving basic important ontological infor-
mation, and thus it allows for straightforward development and
comparative evaluation of relation learning models.

We discuss related works in Section 2 and we discuss our main
contributions in Sections 3,4 and 5 as follows:
(1) In Section 3, we propose a biological knowledge graph (BioKG)

compiled from open source databases to support relational learn-
ing models in predictive tasks on biological data.

(2) In Section 4, we propose a software module (BioDBLinker)
which provides name-id lookup and mapping of different id
systems for biological entities.

(3) In Section 5, we propose a set of five benchmarking datasets for
assessing the predictive accuracy of relational learning mod-
els in different tasks related to drug–protein, drug–drug and
protein–protein interactions.

In Section 6, we discuss potential applications and possible issues
related to the development and use of BioKG knowledge graph,
and our intentions for future extensions of this work. Finally, in
Section 7 we discuss our conclusions.

2 RELATEDWORKS
In this section, we discuss studies and resources related to our
newly proposed knowledge graphs.

2.1 Open Biological Databases
Open biological databases support research in both clinical and
computational biology. They contain different types of structured
and unstructured data related to different biological phenomenons.
In this work, we focus on databases that provide biological data
which is related to molecular and pharmacological activities, e.g.
protein interactions, drug protein targets, etc.

In Table 1 we provide detailed statistics on a selected set of
popular biological databases which are commonly used to train
relational learning models in bioinformatics settings. We provide
a comparison between these databases in terms of their data for-
mats, specialities and the covered biological entities. In terms of
the data format, the table shows that almost all the databases con-
tain structured data while a subset of these databases contains

Table 1: A comparison between popular biological databases
in terms of the coverage of different types of biological en-
tities. The abbreviation S represent structured data, U repre-
sents unstructured data, DR represents drugs, PR represents
proteins, GO represents gene ontology,PA represents path-
ways, GD represents genetic disorders, CL represents cell-
lines and CH denotes chemicals.
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UniProt [7] S/U PR ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓

REACTOME [8] S PA ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✓

KEGG [14] S PA ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✓

DrugBank [15] S/U DR ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓

GO [5] S GO ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✓

CTD [19] S/U CH ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓

SIDER [16] S DR ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✓

HPA [36] S/U PR ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✓

STRING [33] S PR ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

BIOGRID [32] S PR ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

IntAct [30] S PR ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓

InterPro [21] S PR ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓

PharmaGKB [10] S DR ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

TTD [17] S DR ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

Supertarget [9] S DR ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

Cellosaurus [2] S/U CL ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓

MESH 1 S/U CL ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓

OMIM [1] S GD ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓

both structured and unstructured data. These unstructured data are
usually comments and annotations of describing pieces of the struc-
tured data as in the protein–protein interactions related comments
in the UniProt database [6].

While the majority of the reviewed databases specialize in data
focused on proteins, the UniProt database is themost popular source
for protein related data as it has the highest coverage of expert-
curated protein annotations [7]. The UniProt database consists of
two parts SwissProt (expert-curated) and TrEMBL (lower confi-
dence annotation). It also use a protein id naming system known
as "UniProt Accessions". Other databases such as KEGG and CTD
databases use "Gene Id Numbers" as ids for proteins where they
define unique proteins based on their source genes. The HPA [36]
and STRING [37] databases use yet another a different gene-based
id system for proteins. Although all these databases have intersec-
tion between their reported protein annotations, they do not have
a one-to-one mapping between their ids, therefore merging their
annotations can be complicated. Similarly, databases that provide
data on drugs such as the DrugBank [15], SIDER [16], CTD [19]
and KEGG [14] databases also use different id systems for drugs
which often does not have a one-to-one mapping for some of their
common entities.
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Figure 1: The schema of BioKG main biological entities and
their connections. Abbreviations in this illustration are the
same as in Table 1.

While resources like Bio2RDF and RDF versions of open biologi-
cal databases aim to resolve these problems, their main objective
was to integrate the biological databases with semantic web tech-
nologies. This led to the development of biological RDF graphs that
have complex ontological information. These graphs, however, still
have issues when used for training relational learning models due
to their use of different id systems, variable quality and dense onto-
logical data that is largely irrelevant to training predictive models,
which the presented work attempts to remedy.

2.2 Relational Learning in Bioinformatics
In recent years, relational learning models (RLMs) became a popular
method in many bioinformatics predictive tasks where they outper-
form other state-of-the-art approaches in various tasks [24]. They
use knowledge graphs to model complex biological systems and
they then learn feature representations of entities and relationships
to provide accurate and scalable predictions. For example, Zitnik et.
al. [40] have modelled drug–drug interactions and their associated
side-effects as a knowledge graph and they applied a graph convo-
lutional network model to predict the polypharmacy side-effects
of drugs. This work has also shown that such an approach outper-
forms previous state-of-the-art methods in terms of the predictive
accuracy. Furthermore, other studies have shown that modelling
biological data with knowledge graphs and using knowledge graph
embeddingmodels e.g. TransE [4], ComplEx [35], TriVec [25], etc, to
predict biological relationships is effective in tasks such as drug tar-
get interaction prediction [26] and tissue-specific protein function
prediction [22].

In Fig. 1, we provide an basic graph schema of the mainly inves-
tigated relationships between biological entities and their related
information at the molecular and pharmacological level. These re-
lationships include the previously mentioned drug protein targets
and drug side-effects along with other relationships such as disease
associated genes, protein associated pathway, etc. In the context
of predicting each of these relationships, relational learning mod-
els usually build a knowledge graph centred around the two end
of the relationships where it usually include other relationships

in graph schema. For example, in the prediction of relationships
between drugs and proteins, RLMs are usually training on a knowl-
edge graph that has information about drugs such as the ATC class,
chemical structure groups, etc [26]. It also includes information
about proteins such as protein–protein interactions, protein related
pathway, gene ontology annotations, etc. All this information has
to be fused in one knowledge graph centred around drug–protein
relationships to enable RLMs to efficiently model and predict new
drug–protein interactions. However, there is no existing, publicly
available data set that would enable this with sufficient coverage,
which is another gap the presented work covers.

3 BIOKG KNOWLEDGE GRAPH
In this section, we discuss the contents of BioKG knowledge graph
and the details of the pipeline to build these contents. We also
provide statistics of its covered entities and relations.

3.1 Processing the Original Data Sources
The BioKG knowledge graph is built through a two-phase procedure
as shown in Fig. 2. This procedure includes parsing open biological
database to intermediate structured formats, then integrating these
formats to obtain the BioKG contents. In the following, we discuss
this procedure where we describe materials and techniques used in
each phase.

3.1.1 Parsing Sources. The BioKG consists of a set open biological
databases (identified in Table 1) which contain different types of
biological data. The criteria used for choosing these databases de-
pend on three factors: entity coverage, data quality, and integration
with other databases. In terms of coverage, the UniProt and KEGG
databases are the most popular sources for protein data as they
have the highest coverage of proteins/genes especially in humans.
This can be shown by the wide adoption of UniProt ids as base-
line references for proteins in multiple open biological databases
such as Reactome, Phosphosite, etc. We also selected a wide range
database to cover the different types of biological entities such as
proteins, drugs, pathways, expressions and other entities as illus-
trated in Fig. 1. In terms of quality, we focus on databases that have
expert-curated data and we exclude data generated by inference
technique to ensure high quality data. We, therefore, only include
the SwissProt part of UniProt which contain only reviewed protein
entries and we exclude the inferred data parts of databases. We
also selected databases that have better integration to ensure the
connectivity of the different parts of BioKG knowledge graph.

For each of the selected databases, we parse the database contents
into a structured tabular format. This format allows for more dy-
namic representations of the included data which is often modelled
in higher dimensionality and/or more complex formats than knowl-
edge graph triplets. For example, the protein tissue expression data
parsed from the human protein atlas (HPA) is associated with differ-
ent expression levels. This data is stored in an intermediate format
in the form (<protein>, expressed_in, <tissue>, <expression_level>)
where protein, tissue and tissue levels are variable depending on
the different entries. This format is incompatible with knowledge
graph triplets, so, in the final phase it is converted to triplets by
excluding the expression level column data. We have developed au-
tomated parsers for each of the included databases which consume
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Figure 2: An Illustration of the processing pipeline to build the BioKG data.
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Figure 3: Statistics of proteins in the BioKG and their protein-protein interactions (PPIs) categorized by their species. The PPIs
for each species are only considered where both proteins are from the same species.

and parse the contents of the database and output intermediate
data files.

3.1.2 Compiling BioKG Contents. The BioKG knowledge graph
contents is compiled from the intermediate formats generated by
the biological databases’ parsers. The compilation process mainly
involves to three procedures: id , filtering and building triplets. The
mapping of ids is the process of converting ids of entities of the
same type to the same id system. We execute this process using
the BioDBLinker module that discuss in details in Section 4. For
example, all drugs in the BioKG use the DrugBank ids while all
proteins use the UniProt ids. This ensures the connectivity of nodes
coming from heterogeneous source in the BioKG knowledge graph.

Data filtering process in the building of BioKG contents is aimed
to satisfy to objectives: high quality data and focus on drug dis-
covery biological applications. The high quality data is obtained
by filtering intermediate data formats to only include the expert
curated parts of the included databases. The data is also filtered to
only include biological entities and phenomenons related to drugs
and their related protein targets’ activities such as illustrated in
Fig. 1.

3.2 Structure of the Knowledge Graph
The BioKG knowledge graph compiles biological data from differ-
ent sources in a graph format with focus on data on proteins and
chemical drugs. The contents of BioKG knowledge graph can be
categorized into three categories: links, properties and metadata.
Links represent the connections between the different biological
entities, while properties represent the annotations associated to

entities. Each biological entity type has its own set of links and
properties that describe its activities in biological systems. Fig. 1
illustrates the main biological entities included in the BioKG and
the relationships between them.

In the following, we discuss the contents included under each of
the three categories (links, properties and metadata) in the BioKG
knowledge graph.

3.2.1 BioKG Links. The links part of the BioKG data is the core part
of BioKG which models the relationships between the biological
entities as illustrated in Fig. 1. The number of instances of each
of the relationships in BioKG is illustrated in Fig 4 and they are
described as follows:

• protein–protein interactions (PPIs). BioKG contains 113451
PPIs of 21 selected species as illustrated in Fig 3. These inter-
actions are extracted from the respective protein entries from
SwissProt and IntAct databases.
• drug–protein interactions (DPIs). BioKG contains different
types of DPIs such as drug–protein targets, carriers, enzymes and
transporters. The DPIs in BioKG are focused on human proteins
and they are extracted from the DrugBank and KEGG databases
exclusively, and they are considered in two forms: unified relation
and separate relation for each type (exclusively from DrugBank).
The DPI relations (27781 instances) in the BioKG links are the
union of all the separate instances of the drug-carries, drug-
transporters, drug-targets, drug-enzymes relationships combined
with other drug-protein interactions extracted from the KEGG
database.
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Figure 4: Statistics of the links part of the BioKG knowledge graph. DPI and PPI refer to drug-protein interactions and protein-
protein interactions respectively, CM denotes complexes and other abbreviations follow definitions in Table 1.

• drug–drug interactions (DDIs). drug–drug interactions repre-
sent the interactions between drugs which often happens because
of the prescription of drug combinations i.e. polypharmacy. The
data of DDIs in BioKG is collected exclusively from the DrugBank
database where there are 1334875 instances of DDIs relationships
in BioKG links.
• protein relations to genetic disorders. Proteins are the prod-
ucts of genes, and the protein–genetic disorder relations capture
the associations between proteins and the disorders of their ori-
gin genes. There are 3852 associations between proteins and
genetic disorders in BioKG which are extracted from the Swis-
sProt database and their links to the OMIM genetic disorder
database.
• protein relations to diseases. BioKG contains 108995 instances
of relations between diseases and their associated proteins which
is extracted from the KEGG database. All disease ids are set the
Medical Subject Headings (MeSH) format and all protein ids are
set to UniProt format to comply with the rest of BioKG.
• protein–pathway associations. The involvement of proteins
in specific pathways is captured in protein–pathway relation
in BioKG where there are 248832 instance of protein–pathway
associations. These instances are collected from the UniProt,
KEGG, Reactome and DrugBank databases.
• disease–genetic disorder associations. There are 4945 disease–
genetic disorder relationships in BioKG which are extracted from
the KEGG and MESH databases.
• disease–pathway associations. Associations between diseases
and specific protein interaction chains (pathways) which describe
the disease or describe another biological process related to it.
BioKG contains 3544 disease–pathway associations exclusively
extracted from the KEGG database.
• drug–pathway associations. There are 5114 associations be-
tween drugs and pathways in the BioKG which are exclusively
extracted from the DrugBank database.
• complex related associations. Complexes are composites of
proteins which represent a set of physically interacting proteins.
BioKG contain data on complexes and their member proteins
and associated pathways which is extracted exclusively from the
Reactome database.

3.2.2 Properties. The properties part of BioKG contains the asso-
ciations between the previously discussed biological entities and

their different attributes as illustrated in Fig. 5. For example, pro-
tein attributes include their association to gene ontology entries
and their sequence annotations. On the other hand, properties of
drugs in BioKG are their associated side-effects, indications and
ATC classification codes.

BioKG also contains other types of properties for pathways,
disease and genetic disorders where these properties are often a
categorization of these entity types into groups based on different
type-specific criteria.

3.2.3 Metadata. The metadata part contains data about biological
entities names, types, synonyms, etc. This part of the data is not
meant to be used in the training of relational learning models, and
it does not contain any attributes or important associations for
biological entities. Our objective, however, in this part is to maxi-
mize the richness of metadata on each of the included biological
entities to facilitate analysing their related insights and to allow
for tracking history of changes of ids and synonyms of biological
entities’ databases entries.

4 BIODBLINKER
In this section, we discuss the motivation behind the BioDBLinker
library and its implementation as well as its usage.

4.1 Motivation
Many biological knowledge bases contain overlapping or partially
overlapping data. In order to extract the unique set of relations
between a given set of entities it is therefore necessary to remove
this duplication. This process is made more difficult by the fact that
some data sources use different identifiers for the same entity. To
overcome this issue it is necessary to parse entity ids into a unified
id system. As we have found that this is a recurring step required
when generating biological knowledge graphs we undertook to
develop a library which could be reused for this purpose which we
believe would be useful to others in the community when building
biological knowledge graphs.

Current methods for mapping biological entities include online
services which require manual data entry, or mapping files which
require writing scripts to process mapping inputs. Our approach
main objective is to tackle these issues by providing offline services
for the mappings which can be used automatically/programmati-
cally in various application.
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Figure 5: Illustration of BioKGmain biological entities and their associated attributes in the properties part of the BioKG data.

4.2 Mapping Generation
BioDBLinker library provides a mapping generator class to generate
themappings required for the linker classes. Themapping generator
parses the data in a number of formats from a number of different
biological data sources to extract mappings from these data sources
to other biological data sources in a unified manner. The source files
for the mappings are downloaded from their respective biological
data source at runtime allowing the mappings to be updated as new
versions of the source files are released as required. For example, we
use the UniProt mapping file to building mappings from/to UniProt
ids and other 21 identifier systems. Similarly, we build mappings
from the mapping files provided by the KEGG database to map its
ids with other related databases.

4.3 Usage
BioDBLinker provides 3 main functions: (1) linking entity ids and
names, (2) linking from entity ids to ids in other data sources and
(3) retrieving ids for a given entity type in a specific database. The
ids in a linker class can be accessed as properties of the class. When
converting to names or other data sources a list of ids are passed to
the function and a list of lists of names or mapped ids is returned,
this allows for the case where an entity has multiple names or can
be mapped to multiple entities in the target data sources.

4.4 Coverage
The BioDBLinker module covers 5 main data sources in relation to
the BioKG knowledge graph, UniProt/SwissProt, Drugbank, KEGG,
SIDER and Human Protein Atlas (HPA). Each of these data sources
map to a number of other biological data sources, the BioDBLinker
covers the mappings from/to each of the main mentioned databases
to their respective associated databases.

5 BENCHMARKS
In this section, we discuss a set of four benchmarks that we pro-
vide with the BioKG. These benchmarks are focused on drug target
discovery and drug-drug interactions related effects. In the follow-
ing, we discuss the properties of each of our proposed benchmark
datasets.
DDI-MINERALBenchmark.TheDDI-MINERAL benchmark con-
sists of a set of drug-drug interactions and their associations to
abnormalities of minerals levels in the human body where we focus
on four elements: potassium, calcium, sodium and glucose. The
benchmark contains 56017 drug-drug interactions of 922 drugs
which is associated to an increased or decreased risk of an abnor-
mal level of a mineral. For example, the interaction between the
Canagliflozin and Miglitol drugs is associated with an increase of
the risk of hypoglycemia (the condition in which your blood sugar
(glucose) level is lower than normal).

The benchmark is formatted in triplets form where each entry
represents a (drug, condition, drug) triplet. Each condition in the
entries consist of two parts:risk modifier and risk type. The risk
modifier is a basic increase or decrease flag while the risk type part
denotes the risk type such as hyperkalemia, hyponatremia, etc.

This benchmark can be used in the assessment of relational mod-
els in the context of drug-drug interactions and their associated
side-effects. The current popular polypharmacy side-effects bench-
mark provided by Zitnik et. al. [40] is based on a rather outdated
TWOSIDES dataset [34] and it has a non-specific range of diverse
side-effects. Our benchmark, on the other hand, is based on the
DrugBank database (a recent, continually updated and more com-
prehensive resource) and focuses on a more specific set of DDI risks
(e.g. the anomalies of minerals levels). This supports training more
up to date and specific predictive models.
DDI-EFFICACY Benchmark. The DDI-EFFICACY benchmark is
another drug-drug interaction based benchmark which is focused
on the relation between these interaction and the therapeutic effi-
cacy of the interacting drugs. The benchmark consists of 136127
drug-drug interactions of 3342 drugs and their effect (increase or
decrease) on the therapeutic efficacy of the interacting drugs.

Similar to the DDI-MINERAL Benchmark benchmark, this bench-
mark provides a dataset which is focused on polypharmacy side-
effects in relation to the drug efficacy. This benchmark can be used
to assess the ability of relational models to predict such specific
side-effects of interactions between drugs.

It is also worth noting that the types of polypharmacy side-effects
included in both the DDI-EFFICACY and DDI-MINERAL bench-
marks are not included at all in the current standard benchmarks
such as Zitnik et. al. [40].
DPI-FDABenchmark. The DPI-FDA consist of a set of drug target
protein interactions of FDA approved drugs which is compiled from
the KEGG and drug bank databases. This benchmark consist of
18928 drug protein interaction of 2277 drugs and 2654 proteins.

This benchmarks provides an extension to currently available
benchmarks such as the DrugBank_FDA [38] and Yamanishi09 [39]
benchmarks which have 9881 and 5127 DPIs respectively. Such
an increase in the data size can enhance the training process of
relational learning models and mitigate the generalization problems
associated with the smaller benchmarks [26]. This extension of the
number of DPIs provided in our benchmark is possible as we use
the latest data releases of related biological databases unlike current
benchmarks which we based on outdated versions (sometimes 10+
years old).
DPI-FDA-EXP Benchmark. The DPI-FDA-EXP is drug-protein
association based benchmark which capture the effect of drugs
on the expression levels of proteins in the living systems. The
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benchmark contain 903429 statements on 1291 FDA approved drugs
and their effects on the expression of 55196 proteins.
PPI-PHOSPHO Benchmark. Protein phosphorylation interac-
tions is an enzymic protein–protein interaction which happens
when a protein i.e. kinases, donates a phosphate group to another
protein i.e. substrate. This type of PPIs is crucial for signalling in
virtually any living cell. The PPI-PHOSPHO benchmark dataset is
a kinase–substrate phosphorylation dataset which is based on the
PhosphoSitePlus database [13] and the work of Hijazi et. al. [11].
The benchmark contains 25662 records in the format (<kinase>,
PHOSPHORYLATES, <substrate>, <site>), where kinases and sub-
strates are specific protein types represented using the proteins’
UniProt ids and the site field represents the specific residue in
substrate sequence which interacts with the kinase protein.

This benchmark provides a richer dataset for phosphorylation
interactions which extends the currently used benchmarks [12, 28,
31] that suffer from limited coverage of kinases and substrates,
and have fewer records due to dependence on older version of
phosphorylation databases.

All the benchmarks can be downloaded from the biokg github
repository at https://github.com/dsi-bdi/biokg/releases/download/
v1.0.0/benchmarks.zip.

6 DISCUSSION
In this section, we discuss issues, lessons learned and other observa-
tions regarding the development and the use of BioKG knowledge
graph in building relational learning models for biological applica-
tions.

6.1 Data Quality
In the process of building the BioKG knowledge graph, we tried
to ensure the highest quality of all the data included by extract-
ing data from curated sources exclusively. However, one of our
included sources, the InterPro database for protein sequence an-
notations [21], is based on predicted sequence patterns using pre-
defined rules and Markov models. We included this database as
it is well-integrated with expert-curated SwissProt database and
it compiles the most accurate parts of open sources for sequence
annotations [21].

6.2 Availability
The implementation of the pipeline to build the BioKG contents is
available at https://github.com/dsi-bdi/biokg. Downloadable BioKG
contents (links, properties and metadata) are also available in the
releasees section of the BioKG repository.

The BioDBLinker module is available as a Python module called
biodblinker which can be installed using the standard pip process.
The source code of the BioDBLinker module is also available on
GitHub at https://github.com/dsi-bdi/biodblinker.

6.3 Limitations and Potential Issues
Despite the high coverage of biological entries in the BioKG, it
still suffers from sparsity of data due to the unbalanced represen-
tation biological entities in open biological databases [24]. This
unbalance is a result of the unbalanced research focus on specific

entities, where some biological entities which are related to popular
phenomenons are heavily studied, therefore, have richer database
entries and annotations. This unbalance has a negative effect on
relational learning models where they learn less efficient represen-
tations for the under-represented entities [24].

The use of BioKG and any other form of biological knowledge
graphs can often lead to train-test data leakage when used without
careful review of the relation between investigated phenomenons
and the data in the knowledge graph. For example, the data on
drug–drug combinations interactions (polypharmacy) is related to
drug–protein interactions where two interacting drugs are often
detected when they have the same protein target. The TWOSIDES
database for instance uses DPIs to extract DDIs [34], therefore,
using DPIs as extra data to support relational models in predict-
ing DDIs can introduce indirect data leakage in such settings. We,
therefore, suggest careful review of the relation between training
knowledge graphs and investigated phenomenons in the testing
data in biological predictive tasks to avoid such an issue.

Knowledge graphs and their embedding models are also biased
towards well-studied biological entities which have better represen-
tation within the graph. Hence, the performance of models relying
on biological KGs can suffer from low accuracy when executed on
understudied or new biological entities which is absent from the
graph. We, therefore suggest incorporating other forms of biologi-
cal data such as protein sequences, protein structures and structures
of chemical compounds into the predictive models to enhance their
representations of the understudied entities.

6.4 Future Directions
We aim to provide updates to the BioKG in future works to keep it
updated with the latest releases and changes of the source biological
databases. We have recently investigated the principles and results
presented here in the development of several state-of-the-art rela-
tional learning models [22–24, 26], and we aim to continue this line
of work where we intend to assess the predictive accuracy and scal-
ability of popular relational models on various other benchmarks
based on the data introduced in this paper.

7 CONCLUSIONS
In this work, we proposed a new knowledge graph, BioKG, which
covers a broad range of primary sources of biological data with
the objective of supporting relational learning models on biological
predictive tasks. The BioKG creation pipeline extracts data from
open biological databases and provides them in a form of a graph of
biological entities and their connections to each other along with
their attributes and other related metadata. The contents of BioKG
is compiled from expert-curated and popular sources to ensure high
data quality and high level of integration.

We also provided a module for linking biological entities from
different databases, the BioDBLinker which is based on open bio-
logical databases mappings. The module provides offline services
for mapping between the different id systems for biological enti-
ties along with bidirectional name-id lookup services. The range
and depth of resources covered as well as the flexibility in adding
new sources arguably complements and extends currently available
solutions, such as the Bio2RDF suite.
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Furthermore, we have proposed a set of benchmarking datasets
which can be are built from the drug–drug and drug–protein in-
teractions data in the BioKG. These benchmarks cover different
aspects related to both types of interactions and can be useful means
for assessing the predictive accuracy of relational learning models
in corresponding discovery tasks.
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Abstract

Motivation: Computational approaches for predicting drug–target interactions (DTIs) can provide

valuable insights into the drug mechanism of action. DTI predictions can help to quickly identify

new promising (on-target) or unintended (off-target) effects of drugs. However, existing models

face several challenges. Many can only process a limited number of drugs and/or have poor prote-

ome coverage. The current approaches also often suffer from high false positive prediction rates.

Results: We propose a novel computational approach for predicting drug target proteins. The

approach is based on formulating the problem as a link prediction in knowledge graphs (robust,

machine-readable representations of networked knowledge). We use biomedical knowledge bases

to create a knowledge graph of entities connected to both drugs and their potential targets. We pro-

pose a specific knowledge graph embedding model, TriModel, to learn vector representations (i.e.

embeddings) for all drugs and targets in the created knowledge graph. These representations are

consequently used to infer candidate drug target interactions based on their scores computed by

the trained TriModel model. We have experimentally evaluated our method using computer simu-

lations and compared it to five existing models. This has shown that our approach outperforms all

previous ones in terms of both area under ROC and precision–recall curves in standard benchmark

tests.

Availability and implementation: The data, predictions and models are available at: drugtargets.

insight-centre.org.

Contact: sameh.kamal@insight-centre.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The development of drugs has a long history (Drews, 2000). Until

quite recently, pharmacological effects were often discovered using

primitive trial and error procedures, such as applying plant extracts

on living systems and observing the outcomes. Later, the drug devel-

opment process evolved to elucidating mechanisms of action of drug

substances and their effects on phenotype. The ability to isolate

pharmacologically active substances was a key step towards modern

drug discovery (Sneader, 2005; Terstappen et al., 2007). More re-

cently, advances in molecular biology and biochemistry allowed for

more complex analyses of drugs, their targets and their mechanisms

of action. The study of drug targets has become very popular with

the objective of explaining mechanisms of actions of current drugs

and their possible unknown off-target activities. Knowing targets of

potential clinical significance also plays a crucial role in the process

of rational drug development. With such knowledge, one can design

candidate compounds targeting specific proteins to achieve intended

therapeutic effects.

However, a drug rarely binds only to the intended targets, and

off-target effects are common (Xie et al., 2012). This may lead to

unwanted adverse effects (Bowes et al., 2012), but also to successful

drug re-purposing, i.e. use of approved drugs for new diseases

(Corbett et al., 2012). To illustrate the impact off-target effects can
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have in new therapy development, let us consider aspirin that is cur-

rently being considered for use as a chemopreventive agent

(Rothwell et al., 2010). However, such a therapy would be ham-

pered by known adverse side-effects caused by long-term use of the

drug, such as bleeding of upper gastrointestinal tract (Li et al.,

2017). After identifying the exact protein targets of aspirin that

cause these adverse effects, the proteins can be targeted by newly

developed and/or re-purposed drugs to avoid the unwanted side-

effects of the proposed treatment.

Large-scale and reliable prediction of drug–target interactions

(DTIs) can substantially facilitate development of such new treat-

ments. Various DTI prediction methods have been proposed to date.

Examples include chemical genetic (Terstappen et al., 2007) and

proteomic methods (Sleno and Emili, 2008) such as affinity chroma-

tography and expression cloning approaches. These, however, can

only process a limited number of possible drugs and targets due to

the dependency on laboratory experiments and available physical

resources. Computational prediction approaches have therefore

received a lot of attention lately as they can lead to much faster

assessments of possible drug–target interactions (Mei et al., 2013;

Yamanishi et al., 2008).

The work of Yamanishi et al. (2008) was one of the first

approaches to predict drug targets computationally. Their approach

utilized a statistical model that infers drug targets based on a bipart-

ite graph of both chemical and genomic information. The BLM-NII

(Mei et al., 2013) model was developed to improve the previous

approach by using neighbour-based interaction-profile inference for

both drugs and targets. More recently, (Cheng et al., 2012a, b)

proposed a new way for predicting DTIs, where they have used a

combination of drug similarity, target similarity and network-based

inference. The COSINE (Rosdah et al., 2016) and NRLMF (Liu

et al., 2015) models introduced the exclusive use of drug–drug and

target–target similarity measures to infer possible drug targets. This

has an advantage of being able to compute predictions even for

drugs and targets with limited information about their interaction

data. However, these methods only utilized a single measure to

model components similarity. Other approaches such as the

KronRLS-MKL (Nascimento et al., 2016) model used a linear com-

binations of multiple similarity measures to model the overall simi-

larity between drugs and targets. Non-linear combinations were also

explored in (Mei et al., 2013) and shown to provide better

predictions.

Recently, Hao et al. (2017) proposed a model called DNILMF

that uses matrix factorization to predict drug targets over drug in-

formation networks. This approach showed significant improve-

ments over other methods on standard benchmarking datasets (Hao

et al., 2017; Yamanishi et al., 2008). All the previously discussed

works were designed to operate on generic similarities of drug struc-

ture and protein sequence, therefore they can provide efficient pre-

dictions on new chemicals. More recently, approaches that

incorporate prior knowledge about drugs and targets were proposed

to enhance predictive accuracy on well-studied chemicals and tar-

gets. Such models may not be best suited to de novo drug discovery.

However, they may provide valuable new insights in the context of

drug repurposing and understanding the general mechanisms of

drug action. The current state-of-the-art work in this context is ar-

guably the DDR model (Olayan et al., 2018), which uses a multi-

phase procedure to predict drug targets from relevant heterogeneous

graphs. The gist of the approach is to combine various similarity in-

dices and random walk features gained from the input graphs by

means of non-linear fusion. Similarly, the NeoDTI model (Wan

et al., 2019) predicts DTIs using supporting information about drugs

and targets and a non-linear learning model over heterogeneous net-

work data.

Despite continuous advances of similarity based approaches like

DDR, these models depended on time-consuming training and pre-

diction procedures as they need to compute the similarity features

for each drug and target pair during both training and prediction.

Also, the models still have a high false positive rate, especially when

using large drug target interaction datasets like DrugBank_FDA

(Olayan et al., 2018).

Here, we propose a method utilizing prior knowledge about

drugs and targets, similarly to the DDR and NeoDTI model. Our

method overcomes the afore-mentioned limitations by approaching

the problem as link prediction in knowledge graphs. Knowledge

graphs are a data representation model that represents relational in-

formation as a graph, where the graph nodes represent entities and

edges represent relations between them. Facts are modelled as (sub-

ject, predicate, object) (SPO) triples, e.g. (Aspirin, Drug–Target,

COX-1), where a subject entity (drug) is connected to an object en-

tity (target protein) through a predicate relation (Drug–Target). In

recent years, knowledge graphs have been successfully used for

knowledge representation and discovery in many different domains,

including life sciences (Dumontier et al., 2014; Lehmann et al.,

2014; Mu~noz et al., 2019).

Our work utilizes the fact that the current drug target knowledge

bases like DrugBank (Wishart et al., 2006) and KEGG (Kanehisa

et al., 2017) are largely structured as networks representing infor-

mation about drugs in relationship with target proteins (or their

genes), action pathways and targeted diseases. Such data can natur-

ally be interpreted as a knowledge graph. The task of finding new

associations between drugs and their targets can then be formulated

as a link prediction problem based on knowledge graph embeddings

(Nickel et al., 2016).

We have proposed a new knowledge graph embedding based ap-

proach, TriModel, for predicting drug target interactions in a multi-

phase procedure. We first used the currently available knowledge

bases to generate a knowledge graph of biological entities related to

both drugs and targets. We then trained our model to learn efficient

vector representations (i.e. embeddings) of drugs and target in the

knowledge graph. These representations were then used to score

possible drug target pairs using a scalable procedure that has a linear

time and space complexity. We compared our method to other

state-of-the-art models using experimental evaluation on standard

benchmarks. Our results show that the TriModel model outper-

forms all other approaches in areas under ROC and precision recall

curve, metrics that are well suited to assessing general predictive

power of ranking models (Davis and Goadrich, 2006).

2 Materials

In this section we discuss the datasets that we used to train and

evaluate our model. We present the standard benchmarking data-

sets: Yamanishi_08 (Yamanishi et al., 2008) and DrugBank_FDA

(Wishart et al., 2008), and we present statistics for elements in both

datasets. We also discuss some flaws in the Yamanishi_08 dataset,

and we present a new KEGG based drug targets dataset that

addresses these flaws.

2.1 Standard benchmarks
The Yamanishi_08 (Yamanishi et al., 2008) and DrugBank_FDA

(Wishart et al., 2008) datasets represent the most frequently used

gold standard datasets in the previous state-of-the-art models for
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predicting drug targets (Olayan et al., 2018). The DrugBank_FDA

(Wishart et al., 2008) dataset consists of a collection of DTIs of

FDA approved drugs that are gathered from DrugBank Database

(https://www.drugbank.ca). The Yamanishi_08 dataset is a collec-

tion of known drug target interactions gathered from different sour-

ces like KEGG BRITE (Kanehisa et al., 2006), BRENDA

(Schomburg et al., 2004), SuperTarget (Günther et al., 2007) and

DrugBank (Wishart et al., 2008). It consists of four groups of drug

target interactions corresponding to four different target protein

classes: (i) enzymes (E), (ii) ion-channels (IC), (iii) G-protein-coupled

receptors (GPCR) and (iv) nuclear receptors (NR). The data in these

groups vary in terms of size and positive to negative ratios as shown

in Table 1, ranging from 90 known DTIs with 1:15 as in the NR

group to 2926 DTIs with 1:100 in the E group. These properties

of the datasets affect the effectiveness of both training and

evaluating models that use them. For example, the NR DTIs group

has the largest positive to negative ratio among all the groups in

the Yamanishi_08 dataset and therefore they are the easiest for

predictive models in terms of evaluation. Contrary to that, the state-

of-the-art models show the worst evaluation results on the NR

group compared to other groups. This happens due to the low num-

ber of available DTIs training instances, which affects the models’

generalization on the training data.

2.2 New KEGG based benchmarking dataset
The Yamanishi_8 benchmarking dataset was published in 2008, and

it contained drug target interactions from various sources including

the KEGG BRITE, BRENDA and SuperTarget databases

(Yamanishi et al., 2008). In recent years, these sources have wit-

nessed multiple developments [modifications, deletions, additions of

many brand new records to their data (Hecker et al., 2012; Placzek

et al., 2017)]. These modification have directly affected the

Yamanishi_08 dataset, where a subset of the identifiers of both its

drugs and targets has been modified through these developments.

This affects the ability to link these drugs and targets to their

corresponding properties, e.g. associated pathways, diseases, or

other biological entities in the recent versions of biological know-

ledge bases. These modifications have also included various newly

discovered drug target interactions that are not included in the

Yamanishi_08 dataset. For example, the KEGG database alone con-

tains 12 112 drug target interactions, while the total number of drug

target interactions in the Yamanishi_08 dataset is only 5127.

To overcome these limitations, we propose a new drug target

interaction benchmarking dataset that depends on recent versions of

biological knowledge bases and includes a larger set of drug target

interactions than the Yamanishi_08 dataset. We propose

KEGG_MED, a dataset which is collected by extracting all the drug

target interactions from the KEGG medicus database (https://www.

genome.jp/kegg/medicus.html). The KEGG_MED dataset contains

4284 drugs and 945 targets which are connected with 12 112 drug

target interactions. Table 1 shows a summary of statistics of the con-

tent on the dataset. Later in this paper, we report our results on this

new suggested benchmark (in addition to the comparative validation

on DrugBank_FDA) so that future approaches can be compared to

our model.

2.3 Supporting knowledge graphs
Link prediction with knowledge graph embedding models require

data to be modelled in a graph form, where the objective is to pre-

dict new links between graph entities. In the case of drug target

discovery, we use supporting data from biomedical knowledge bases

to generate informative graphs around drug target interactions.

We generate a knowledge graph for each dataset to provide descrip-

tive features for both drugs and targets. These knowledge graphs are

extracted from different sources like KEGG (Kanehisa et al., 2017),

DrugBank (Wishart et al., 2006), InterPro (Mitchell et al., 2019)

and UniProt (Consortium, 2017). In our study we use a customized

set of knowledge assertions about both drugs and targets.

Supplementary Appendix S1 and Supplementary Table S1 contain

more information about the relation types present in each know-

ledge graph, and about their construction. For further information

about the construction of such knowledge bases we refer to the

work of Himmelstein et al. (2017) that provides a study of systemat-

ic integration of biological knowledge for learning drug–target

interactions.

We generate a group-specific knowledge graph of information

extracted from KEGG and UniProt for each DTI groups in the

Yamanishi_8 dataset, while we use the DrugBank with UniProt

knowledge bases to model information about DTIs of the

DrugBank_FDA dataset. The information extracted in both cases is

modelled as a graph of interconnected biological entities (schema

shown in Fig. 1).

3 Methods

The knowledge graph embedding models we use follow a generative

approach to learn low-rank embedding vectors for knowledge

Table 1. Statistics of elements in the benchmarking datasets used

in this work

Dataset Group Drugs Proteins DTIs Corruptions P2N

Yamanishi_08 E 445 664 2926 �300K 1.00%

IC 210 204 1476 �41K 3.57%

GPCR 223 95 635 �21K 3.03%

NR 54 26 90 1314 6.67%

All 791 989 5127 �777K 0.66%

DrugBank_FDA — 1482 1408 9881 �2.1M 0.48%

KEGG_MED — 4284 945 12 112 �4M 0.30%

Note: The DTIs column represent the number of known drug target

interactions, the Corruptions column represent the number of all possible

combinations of drugs and targets that are not in the known drug target inter-

actions which is used as negative in model training and evaluation, and the

P2N column represents the ratio of positive to negative instances.
Fig. 1. A graph schema for a knowledge graph about drugs, their target

genes, pathways, diseases and gene networks extracted from KEGG and

UniProt databases
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entities and relations. For learning the embeddings, multiple techni-

ques can be used, such as tensor factorization [c.f. the DistMult

model (Bordes et al., 2013)] or latent distance similarity [c.f. the

TransE model (Yang et al., 2015)]. The goal of all these techniques

is to model possible interactions between graph embeddings and to

provide scores for possible graph links. In the following, we provide

details on the knowledge graph embedding procedure and the design

of our proposed model, TriModel.

3.1 Knowledge graph embedding
Knowledge graph embedding (KGE) models learn a low rank vector

representation of knowledge entities and relations that can be used

to rank knowledge assertions according to their factuality. They are

trained in a multi-phase procedure. First, a KGE model initializes all

embedding vectors using random noise values. It then uses these

embeddings to score the set of true and false training facts using a

model-dependent scoring function. The output scores are then

passed to the training loss function to compute training error. These

errors are used by optimizers like AMSGrad (Reddi et al., 2018) to

generate gradients and update the initial embeddings, where the

updated embeddings give higher scores for true facts and lower

scores for false facts. This procedure is performed iteratively for a

set of iterations, i.e. epochs in order to reach a state where the learnt

embeddings provide best possible scoring for both true and false

possible facts.

In the rest of this paper, we use E and R to denote the set all enti-

ties and relations in a knowledge graph respectively, where Ne and

Nr represent the number of instances in E and R respectively.

We also use HE and HR which denote the embeddings of entities and

relations respectively, where HEðiÞ is the embedding of entity i,

HRðjÞ is the embedding of relation j, and fmðs; r;o;HÞ denotes the

score of the fact that a subject entity s is connected to an object en-

tity o with a relation r based on the embedding values H of the

model m.

3.2 Embeddings representation
TriModel is a knowledge graph embedding model based on tensor

factorization that extends the DistMult (Yang et al., 2015) and

ComplEx (Trouillon et al., 2016) models. It represents each entity

and relation using three embedding vectors such that the embedding

of entity i is HEðiÞ ¼ fe1
i ; e

2
i ; e

3
i g where all embedding vectors have

the same size K (a user-defined embeddings size). Similarly, the

embedding of relation j is HRðjÞ ¼ fw1
j ;w

2
j ;w

3
j g. em and wm denote

the m part of the embeddings of the entity or the relation, and m 2
f1;2; 3g represents the three embeddings parts. The embeddings in

the TriModel model are initially with random values generated by

the Glorot uniform random generator (Glorot and Bengio, 2010).

The embedding vectors are then updated during the training proced-

ure to provide optimized scores for the knowledge graph facts.

3.3 Training procedure
The TriModel is a knowledge graph embedding model that follows

the multi-phase procedure discussed in Section 3.1 to effectively

learn a vector representation for entities and relation of a knowledge

graph. First, the model initializes its embeddings with random noise.

It then updates them by iterative learning on the training data.

In each training iteration i.e. epoch, the model splits the training

data into mini-batches and executes its learning pipeline over each

batch. The learning pipeline of the model learns the embeddings of

entities and relations by minimizing a negative softmax log-loss that

maximizes the scores of true facts and minimizes the scores of

unknown facts (assumed false during training). This loss is defined

as follows:

LTriModel
spo ¼ �/spo þ logð

P
o0 exp ð/spo0 ÞÞ

�/spo þ logð
P

s0 exp ð/s0poÞÞ

þ k
3

XK

k¼1

X3

m¼1

ðjem
s j

3 þ jwm
p j

3 þ jem
o j

3Þ
(1)

where x0 represents an entity e : e 6¼ x; e 2 E; em
i is the embedding

part m of the entity embedding HEðiÞ; wm
i is the embedding part m

of the relation embedding HRðiÞ; /spo denotes the score of the triple

(s, p, o), m denotes the embedding part index, k denotes a configur-

able regularization weight parameter and jxj is the absolute of x.

The term k
3

PK
k¼1

P3
m¼1ðjem

s j
3 þ jwm

p j
3 þ jem

o j
3Þ is the nuclear 3-norm,

which is a regularization term (Lacroix et al., 2018) that enhances

model generalization over datasets with large entity vocabularies.

The scores of the TriModel model are computed using an embed-

dings interaction function (scoring function) that is defined as

follows:

fTriModelðs; r;o;HÞ ¼
XK

e1
s w1

r e3
o þ e2

s w2
r e2

o þ e3
s w3

r e1
o: (2)

It uses a set of three interactions: one symmetric interaction:

(e2
s w2

pe2
o) and two asymmetric interactions: (e1

s w1
pe3

o) and (e3
s w3

pe1
o)

for a convenient graphical explanation of the interaction (see

Supplementary Fig. S2). This approach models both symmetry and

asymmetry in simple form similar to the DistMult (Yang et al.,

2015) model where the DisMult model can be seen as a special case

of the TriModel model if the first and third embeddings parts are

equivalent (e1 ¼ e3). We include more details about the training pro-

cedure in Supplementary Appendix S2.

4 Results

In this section we describe the configuration of the data used in the

experimentation, the evaluation protocol, the setup of our experi-

ments and the results and findings of our experiments. We also com-

pare the predictive accuracy of our model to selected existing

approaches, including the state-of-the-art one.

4.1 Evaluation protocol
In order to facilitate comparison with the state-of-the-art models,

we use a 10-fold cross validation (CV) to evaluate our model on the

Yamanishi_08 and DrugBank_FDA datasets. First, we split the drug

target interaction data into 10 splits i.e. folds. We then evaluate the

model 10 times on each split, where the model is trained on the

other 9 splits. This procedure is repeated 5 times and average results

across these runs are reported. This is to further minimize the impact

of data variability on the result stability.

In each training configuration we use the known drug target

interactions as positives, and all other possible combinations be-

tween the investigated dataset drugs and protein targets as negatives.

This yields different positive to negative ratios since the datasets

have different number of drugs, targets and drug target interactions

(see Table 1 for exact statistics of the ratios for each dataset).

We use the area under the ROC and precision recall curves

(AUC-ROC and AUC-PR respectively) as an indication of the

predictive accuracy of our model. We compute both metrics on the

testing data (DTIs), where we divide the testing data into three

groups: (i) Sp, containing testing drug target interactions where

both the drug and the target are involved in known drug target inter-

actions in the training data, (ii) Sd, containing testing drug target
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interactions which contain drugs that have no known drug target

interactions in the training data, (iii) St, containing testing data of tar-

gets that has not involved in any known drug target interactions in

the training data. The main reason for splitting the data this way was

that one of the methods could not be compared with the others on

the St, Sp data. The largest Sp group, however, generally exhibits least

fluctuations across particular cross-validation runs, and therefore it is

arguably most representative in terms of the comparative validation.

We also compute aggregated weighted AU-ROC, AU-PR scores

for comparing the different models regardless the data group. These

scores are defined as follows:

M ¼
X

g

xg �Mg; (3)

where g 2 fSp; Sd ; Stg, M represents the aggregated score (AUC-ROC

or AUC-PR), Mg is the specific score value for the group g, and xg is

the weight of the particular data group computed by dividing the num-

ber of instances in g by the total number of instances in Sp [ Sd [ St.

4.2 Experimental setup
We use the supporting knowledge graph to perform a grid search to

learn the model’s best hyperparameters. In all of our experiments we

initialize our model embeddings using the Glorot uniform random

generator (Glorot and Bengio, 2010) and we optimize the training

loss using the AMSGrad optimizer (Reddi et al., 2018), where the

learning rate ðlrÞ 2 f0:01; 0:02;0:03g, embeddings size ðKÞ 2 f50;

100;150; 200g and batch size ðbÞ 2 f128;256; 512;1024; 4000g.
The rest of the grid search hyper parameters are defined as follows:

the regularization weight ðkÞ 2 f0:1;0:3;0:35;0:01; 0:03; 0:035g,
dropout ðdÞ 2 f0:0; 0:1; 0:2; 0:01;0:02g. The number of training

epochs is fixed to 1000. The outcome best parameter for this grid

search is included in Supplementary Table S2.

We use Tensorflow framework (GPU) along with Python 3.5 to

perform our experiments. All experiments were executed on a Linux

machine with processor Intel(R) Core(TM) i70.4790K CPU @

4.00 GHz, 32 GB RAM, and an nVidia Titan Xp GPU. We include the

training runtime of the TriModel model for each cross-validation iter-

ation for all the investigated benchmarks in Supplementary Figure S1.

4.3 Comparison with state-of-the-art models
We evaluate our model on the Yamanishi_08 and DrugBank_FDA

datasets, and we compare our results to the following state-of-the-art

models: DDR (Olayan et al., 2018), NRLMF (Hao et al., 2017),

NRLMF (Liu et al., 2015), KRONRLS-MKL (Nascimento et al.,

2016), COSINE (Lim et al., 2016) and BLM-NII (Mei et al., 2013).

The comparison is made using the metrics of area-under-the-ROC

(AUC-ROC) and precision–recall (AUC-PR) curves.

Figure 2 presents overall results in terms of the AUC-ROC and

AUC-PR scores for all compared models. The overall scores are

combined across all testing configurations (Sp; Sd ; St) for each data-

set, where each specific score is computed as described in Eq. 3.

The results show that the TriModel model outperforms all other

models in terms of AUC-ROC and AUC-PR on every benchmarking

dataset. The TriModel model achieves a better AUC-PR score with a

margin of 4%, 2%, 3%, 3%, 4% on E, IC, GPCR, NR and

DrugBank_FDA datasets respectively. It should be noted that we did

not include the COSINE method in Figure 2 as it is specifically

designed to predict new drugs that do not have DTIs in the training

phase. As such, the description of the method only reports accuracy

on the new drug configuration (Sd), while the presented combined

scores require values of all three evaluation configurations.

Table 2 shows a detailed comparison of the TriModel model and

state-of-the-art models on all the standard benchmarking datasets

for the different evaluation settings Sp, Sd and St. It also shows the

relative number (in per cent) of drug–target statements available for

each of the three validation settings.

The results in Table 2 show that the TriModel model outper-

forms other state-of-the-art models on 13 out of 15 different AUC-

ROC experimentation configurations. In case of AU-PR, our model

is better 14 out of 15 configurations. The results also show that the

experimental configurations where our model is not the best repre-

sent a small portion of the total number of DTIs, while the

TriModel model provides consistently better results for the largest

Sp partition of the validation data.

Table 2 also show the results of the TriModel model on our pro-

posed KEGG_MEDD dataset, where the model’s AUC-PR scores

are 0.18, 0.18 and 0.94 and its AUC-ROC scores are 0.81, 0.58 and

0.99 on the configurations Sd, St and Sp respectively. No comparison

with existing tools has been performed as their published versions

cannot be directly applied to this dataset.

4.4 Limitations
Despite the very promising results achieved by the prior knowledge-

based models like DDR and TriModel, their predictive capabilities

are best suited to finding new associations between well-studied

drugs and targets (useful for instance in the drug repurposing con-

text). If one needs predictions for de novo drug discovery, the mod-

els that utilize drug structure and target sequence similarities (e.g.

Fig. 2. Bar chart for the values of the area under the roc curve (AUC-ROC) and area under the precision recall curve (AUC-PR) for the TriModel compared to other

state-of-the-art models on standard benchmarking datasets. All values are rounded to two digits and multiplied by 100 to represent a percentage (%). DB repre-

sents the DrugBank_FDA dataset
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BLM-NII, COSINE, KRONRLS-MKL, NRLMF or NRLMF) will

likely deliver better results.

4.5 Web application for exploring the TriModel

predictions
To let users explore our results, we have designed a web application

(Hosted at: http://drugtargets.insight-centre.org). The application

allows for searching the predictions of the TriModel model. One

can look for predictions using either drugs or targets as queries.

Queries concerning multiple entities are possible simply by append-

ing new terms to the search query. The results are presented as a

table of the TriModel model scores of all the possible drug–target

associations of the searched term.

The predictions provided by the web application are learnt by training

the TriModel model on all the Yamanishi_08 dataset. The prediction

scores are then computed for all possible drug–target combinations

induced by the dataset. The scores of known drug interactions in the

Yamanishi_08 dataset are set to 1, while the scores of all other drug target

interactions are the normalized outcome of the TriModel predictions. The

table of predictions in the application indicates the origin of each score,

where a unique label ‘Experimental Evidence’ is given to known DTIs

and another label ‘Model Prediction’ is assigned to the predicted scores.

5 Discussion

In the following we discuss possible reasons for the improved per-

formance of our approach when compared to existing methods.

We also review the limitations of the current DTI prediction bench-

marks and discuss impact of data stratification on the predictive

power of the models. Last but not least, we present tentative results

in expert-based validation of predictions of our model that are not

covered by the benchmark datasets. These results show high promise

in terms of actual new discoveries predicted by our model.

5.1 Distinctive features of the presented approach
The relative success of the TriModel model can be attributed to

two distinctive features not present in the state-of-the-art models.

Firstly, we model input for the training as knowledge graphs. This

allows for encoding multiple types of associations within the same

graph and thus utilizing more complex patterns. Other models that

use graph-based data are limited in this respect as they only employ

networks with single relation type. Secondly, the TriModel model

uses a generative approach to learn efficient representations for both

drugs and their targets. This approach enables scalable predictions of

large volumes of drug–target interactions as it uses linear training time

(Nickel et al., 2016) and constant prediction time, which is not the

case of the existing works. Furthermore, the TriModel model is able

to predict other biological associations within the training data (e.g.

drug and target pathways) with no extra computational effort. This

shows substantial promise for further development of this technique.

5.2 Impact of data stratification on the predictive power
The Yamanishi_08 dataset is divided into four groups of DTIs accord-

ing to the functionality of the target proteins. The groups are enzymes

(E), ion-channels (IC) G-protein-coupled receptors (GPCR) and nuclear

receptors (NR). The objective of this categorization is to distinguish be-

tween models specifically tailored to predicting targets associated with

a particular drug class (Yamanishi et al., 2008). Olayan et al. (2018)

confirmed that organizing the drug target interactions into groups

according to the target’s biological functionality enhances the predict-

ive accuracy of models trained on such stratified data.

Based on our observations, we suggest a different explanation.

The differences in performance appear to correlate with the relative

numbers of negative examples in the grouped and full dataset con-

figuration. Table 1 shows that the full Yamanishi_08 dataset config-

uration has a 0.66% positive to negative ratio, while the groups E,

IC, GCPR and NR have 1, 3.57, 3.03 and 6.67% respectively. These

differences can explain the variability of model performance quite

well, since predicting positive instances is generally harder with

more negatives present in the data (Liu et al., 2007). In addition,

dividing the DTI information gives rise to groups like the GPCR and

NR groups. These contain only a small number of true DTIs (635

and 90 DTIs respectively), which further hampers the ability of

models to generalize well (as we show in Section 2).

5.3 Validating the discovery potential of TriModel
Good performance of a model in benchmark tests is no doubt im-

portant. For various reasons like overfitting or training data

Table 2. A comparison with state-of-the-art models on standard datasets using multiple configurations (Sp ;Sd ;St )

Note: The state-of-the-art results were obtained from (Olayan et al., 2018). The count (%) represents the percentage of the configuration instances, and the DB

and KM columns represent DrugBank_FDA and KEGG_MED respectively. All the experimental configurations on all the datasets are evaluated using a 10-fold

cross validation which is repeated 5 times. The M. column represents metrics. The Ft. column represents model’s feature type. The structure feature type repre-

sents protein and drug structure based features and Ext. denotes extensive prior knowledge features. Underlined scores represent the best scores in their feature

category while the overall best results are in bold and highlighted with green colour. (Color version of this table is available at Bioinformatics online.)
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imbalances, however, good benchmark results may not necessarily

mean that the model can effectively support new discoveries.

Laboratory validation can ultimately confirm the model predic-

tions as actual discoveries, but this is costly and time-consuming to

be done at large scale. One can, however, perform alternative vali-

dations of the predictions using data that was not used for training

the model. Such complementary validation can provide stronger

foundations for claiming a model has high generalization power.

We have performed a complementary validation of the TriModel’s

predictions by manual analysis of top-10 drug–target associations per

each of the examined benchmarking datasets. To decide whether or not

the associations are true positives, we reviewed available literature. We

only validated the predictions that were not part of the training data.

The validation outcome shows that the TriModel model achieves 7 out

of 10, 7 out of 10, 8 out of 10, 7 out of 10 and 6 out of 10 true predic-

tions on the E, IC, GPCR, NR, DB datasets respectively. A detailed ver-

sion of the validated predictions is included in Supplementary Table S3.

One can easily see that our model puts actual drug–target intro-

ductions (some of which were only recently discovered) high up in

the result list. This is very promising for further development of the

model and its deployment in clinical application scenarios.

6 Conclusions and future work

In this work, we have approached the problem of predicting new drug

targets as a link prediction task in biomedical knowledge graphs. We

have presented the TriModel model, a knowledge graph embedding

model that can efficiently predict new drug target interactions. We have

generated knowledge graphs of biological entities related to drugs and

targets using available biological knowledge bases like KEGG, UniProt

and DrugBank. We have then used these knowledge graphs to train the

TriModel model to learn efficient vector representation for both drugs

and targets. In experiments using a standard benchmark data, we have

demonstrated that the TriModel model outperforms state-of-the-art

models in terms of both the area under ROC and precision recall curves.

Our study has also led to several secondary findings and contri-

butions. We have shown that dividing datasets of drug target inter-

actions into groups based on target properties does not positively

affect the predictive accuracy of computation models. It can result in

groups with very few drug target interactions, which negatively

affects the accuracy of learnt models. Last but not least, we have

developed a new KEGG based drug target interactions dataset that

tackles the issues in the Yamanishi_08 dataset, and provides a richer

set of up-to-date drug target interactions.

In future, we intend to explore how incorporation of more con-

text data relevant to the target prediction problem can further im-

prove the accuracy of our model. Last but not least, we will validate

selected predictions of our model in laboratory experiments to dem-

onstrate the clinical relevance of our results.
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Abstract

Phosphorylation of specific substrates by protein kinases is a key control mechanism for

vital cell-fate decisions and other cellular processes. However, discovering specific kinase-

substrate relationships is time-consuming and often rather serendipitous. Computational

predictions alleviate these challenges, but the current approaches suffer from limitations like

restricted kinome coverage and inaccuracy. They also typically utilise only local features

without reflecting broader interaction context. To address these limitations, we have devel-

oped an alternative predictive model. It uses statistical relational learning on top of phos-

phorylation networks interpreted as knowledge graphs, a simple yet robust model for

representing networked knowledge. Compared to a representative selection of six existing

systems, our model has the highest kinome coverage and produces biologically valid high-

confidence predictions not possible with the other tools. Specifically, we have experimen-

tally validated predictions of previously unknown phosphorylations by the LATS1, AKT1,

PKA and MST2 kinases in human. Thus, our tool is useful for focusing phosphoproteomic

experiments, and facilitates the discovery of new phosphorylation reactions. Our model can

be accessed publicly via an easy-to-use web interface (LinkPhinder).

Author summary

LinkPhinder is a new approach to prediction of protein signalling networks based on

kinase-substrate relationships that outperforms existing approaches. Phosphorylation

networks govern virtually all fundamental biochemical processes in cells, and thus have

moved into the centre of interest in biology, medicine and drug development. Fundamen-

tally different from current approaches, LinkPhinder is inherently network-based and

makes use of the most recent AI developments. We represent existing phosphorylation

data as knowledge graphs, a format for large-scale and robust knowledge representation.
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Training a link prediction model on such a structure leads to novel, biologically valid

phosphorylation network predictions that cannot be made with competing tools. Thus

our new conceptual approach can lead to establishing a new niche of AI applications in

computational biology.

Introduction

Nearly all aspects of cell behaviour are controlled by phosphorylation events and intricate net-

works of kinases-substrate relationships mediating these phosphorylations [1]. Depending

on the phosphorylation site, the attachment of a phosphate group can alter the activity of a

substrate, its interaction with other proteins or its subcellular localization. This diversity of

phosphorylation mediated processes control important cellular functions such as signal trans-

duction, differentiation, migration, cell division and apoptosis. Dysregulation of these kinase-

substrate relationships can have devastating consequences and are regularly observed in preva-

lent diseases, such as cancers or immune diseases. Therefore, kinases have emerged as attrac-

tive drug targets and have become the mainstay of targeted therapies with nearly fourty kinase

inhibitors approved for clinical use as of 2018 [2] and over 150 in clinical trials since 2012

[3, 4].

In order to improve the design of kinase inhibitors, understand their mode of action and

potential side effects, a better understanding of kinase-substrate relationships and the net-

works they form is necessary. With the advent of modern high-throughput mass-spectrometry

based phosphoproteomics, many thousands of phosphorylation sites in substrate proteins can

be identified [5]. However, large scale and reliable prediction of which kinase can phosphory-

late which substrates at which sites remains challenging. High-throughput experiments are not

informative in this case, because they cannot establish these detailed functional relationships,

and addressing this issue in a one-by-one fashion is prohibitively expensive and time-consum-

ing due to the large number of candidate interactions to be tested [6].

Reliable automated prediction of phosphorylation candidates is therefore much desired,

because it can substantially reduce the number of possibilities that have to be tested experi-

mentally. During the last decade, several tools for predicting phosphorylations have become

available. The most widely used and recently described include: Scansite [7], GPS [8], NetPhos

[9], NetPhorest [10], NetworKin [6, 10], PhosphoPredict [11]. Each of these tools, however,

covers only a limited fraction of over 500 known human kinases [12], with 33, 217, 17, 178,

and 6 kinases covered, accordingly. In addition to the limited coverage, existing approaches

also suffer from an important conceptual limitation. Only intrinsic features of proteins (such

as sequence, structure or functional annotations) are primarily used in training the predictive

models. Phosphorylations, however, are inherent parts of complex interaction networks, and

this type of information is largely neglected by current models.

Here, we show that predicting kinase-substrate relationships can be formulated as finding

missing links in a knowledge graph (i.e. a relational, machine-readable knowledge base con-

structed from known phosphorylation networks). Knowledge graphs are a powerful way to

organise descriptions of properties of objects and their connections [13]. However, they have

not been widely used yet to analyse biological relationships. We show that using such a rela-

tional representation enables models that have superior generalisation power and precision

when compared to existing approaches, lead to increased phosphoproteome coverage and pro-

duce biologically valid predictions. This can be explained by the fact that our approach fully

utilises latent patterns in phosphorylation networks that are neglected by existing approaches
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(e.g. long-range relational dependencies and implicit hierarchical structure). Moreover, the

relational representation is not critically dependent on local features, which means our

approach can make predictions even for under-researched proteins where existing approaches

fail to provide results.

To test this concept, we have built a predictive model based the known phosphorylation

network in PhosphoSitePlus [14] interpreted as knowledge graph. This model uses statistical

relational learning to address the kinase-substrate prediction problem. We show that our

model has superior predictive power based on a comparative validation trial following stan-

dard machine learning evaluatuion protocols. The model also outperforms existing tools in

the total number of human kinases covered (327, nearly twice as many as the next best tool),

which substantially increases the number of potential discoveries that can be made using our

tool. The biological relevance of our approach is evidenced by the discovery and experimental

validation of previously unknown kinase-substrate relationships for the AKT1, LATS1, PKA

and MST2 kinases.

Results

The concept of our approach in comparison with related existing techniques is illustrated in

Fig 1 and details are given in the Materials and Methods section. Where existing tools use

Fig 1. a) Sequence-based approaches aim to identify linear amino acid motifs that are phosphorylated by certain kinases. This is done based on known motif

preferences of kinases, their groups or families. Each site and substrate is examined in isolation. Only limited numbers of well-studied kinases can typically be

associated with substrates this way, and network context is largely ignored in such predictions. b) The LinkPhinder approach aims at learning regular patterns in a

knowledge graph that represents the known kinase-substrate links as motif-based abstractions of the associated consensus sites. Based on the global, latent properties of

the knowledge graph, the system can predict unknown, site-specific interactions between any kinase and substrate present in the input data.

https://doi.org/10.1371/journal.pcbi.1007578.g001
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primarily local features based on sequence of particular proteins (left-hand side), our approach

also considers the network information in training the model. Our predicitons are effectively

based on explicit and implicit functional links between kinases and substrates represented as

knowledge graphs. Briefly, we used a PhosphoSitePlus, a highly curated database of experi-

mentally confirmed phosphorylation sites [14], to construct a knowledge graph where links

between kinases and substrate corresponded to shared characteristics of kinase consensus

sites. This knowledge graph represented a training set of known kinase-substrate relationships

that was used for learning our predictive model (effectively, a multi-variate probability distri-

bution function fitted to the input data). This model can consequently be used for predicting

unknown kinase-substrate relationships with high coverage and precision.

The workflow of our methodology is illustrated in Fig 2. Details on training the computa-

tional model and the data used are provided in the Materials and Methods section. The main

steps of constructing the LinkPhinder model are: (i) Generation of a phosphorylation network

based on kinase-substrate pairs reported in PhosphoSitePlus (albeit any other database could

be used). (ii) Inference of phosphorylation site motifs for kinase families based on quantifying

the contribution of each amino acid in a set of consensus sequences to the likelihood that this

sequence is phosphorylated. (iii) Conversion of the phosphorylation network into a knowledge

graph using the phosphorylation motifs as generalised links to connect compatible kinase-sub-

strate pairs while preserving the site information. (iv) Learning of new links based on both

explicit and latent relationships in the input network data. The learning process is supervised

and thus requires negative kinase-substrate relationships. These were generated using random

Fig 2. The model is first trained on phosphorylation network data that has been converted to a knowledge graph representation. Such a

representation can be readily processed by link prediction algorithms (contrary to the original phosphorylation data). In the training stage, an optimal

combination of model parameters is found and computationally validated. The optimal model is then trained on full phosphorylation network data and

used for providing probabilistic ranking scores for all possible predictions that can be made using the input. Finally, reverse conversion technique is applied

to the computed predictions to present them to users as residue-specific kinase-substrate relationships.

https://doi.org/10.1371/journal.pcbi.1007578.g002
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perturbations of the positive examples. (v) Selection of the best performing model. (vi) Genera-

tion of all possible kinase-substrate combinations using the input data and using our trained

model for computing ranking scores for each kinase-substrate link. This ranking effectively

allows to select most likely, previously unknown phosphorylations a kinase or substrate of

interest can be involved in. (vii) Conversion of kinase-substrate links back to phosphorylation

site sequences that provide the user exact information about the amino acid sequence phos-

phorylated by the given kinase in the substrate.

In the following, we present the performance of the LinkPhinder model. First, we bench-

mark LinkPhinder against six commonly used existing tools. Then, we present results of bio-

logical validation experiments focused on selected kinases of clinical relevance and their

substrates. Finally, we introduce a web interface that allows the scientific community conve-

nient access to LinkPhinder.

Computational validation of LinkPhinder shows superior precision and

kinome coverage

While the LinkPhinder model learns its parameters from the input data automatically, the

optimal model configurations (also called hyperparameters) cannot be inferred that way and

need to be determined empirically. In order to find these hyperparameters that optimise the

performance of our model, we used the knowledge graph generated from PhosphoSitePlus

[14] and evaluated several link prediction techniques across a range of their possible settings as

described in the Materials and Methods section. The best method was ComplEx [15], which

can handle large networks and generalises well for anti-symmetric relationships (of which the

directed kinase-substrate links are an example). The optimal hyperparameters were identified

by a grid search [16] and the best performing model was selected for the experiments described

in this section. This model was trained on the entire network of phosphorylations contained in

PhosphoSitePlus to produce unknown phosphorylation candidates for laboratory validation

experiments described in the following sections.

The trained model can predict the likelihood of phosphorylation reactions that exist in the

training dataset but have not been observed yet. In principle, any phosphorylation dataset can

be used, but we chose PhosphoSitePlus because it is widely considered the most comprehen-

sive and accurate dataset on known phosphorylations in many different organisms including

human [17].

The computational validation experiments compared our approach to a selection of six

existing and commonly used phoshorylation prediction techniques: Scansite [7], GPS [8], Net-

Phos [9], NetPhorest [10], NetworKin [6, 10] and PhosphoPredict [11]. For running this

benchmarking trial, we generated 100 random train/test splits (90% train, 10% test) of true

positives from the subset of PhosphoSitePlus human phosphorylations (i.e., kinase-phosphory-
lation site-substrate triples). A pool of negative statements was generated by random associa-

tions between all human kinases and (phosphorylation site, substrate) pairs available in

PhosphoSitePlus. This pool was used for sampling as many negatives as there were positives in

each train/test split. For each of the 100 splits, we trained our model on the 90% of the data

and validated it on the unseen 10%. For the existing techniques, we generated all their predic-

tions relevant to the proteins in the PhosphoSitePlus dataset and assessed them using the test

splits.

Note that to make sure the presented relative differences between the methods are not

merely due to the specific way we prepared the benchmarking data, we have also experimented

with different train-test split and positive-negative ratios. The relative performances of the

compared methods have not, however, changed from what is presented here. More
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information on the benchmarking methodology and results corresponding to the different

ratios can be found in the Materials and Methods section.

The results are summarised in Table 1. The corresponding charts with the PR and ROC

curves are given in Fig 3. The table presents means and standard deviations for each of the per-

formance metrics computed across the 100 experimental runs with random train/test splits.

Our model outperforms the existing techniques in all validated metrics, often by rather large

margins. The narrower confidence margins of LinkPhinder results (about 1.8-42 times less

than for the related works) mean that even if the experiment was done just once, it is still very

likely the relative performance differences between the tools would be the same as presented in

the table.

To gain additional insights into the presented results, we analysed to what extent each tool

covered the phosphorylations in the test splits. The coverage is an important factor influencing

the results since we assign zero scores to phosphorylations which the systems are not able to

process (i.e., those for which no ranking scores can be produced). Therefore, a tool that does

not produce scores for negative examples will have these annotated with zeros automatically

and thus they will be at the bottom of their ranking lists. This is a possible advantage over tools

that do produce scores for such negative phosphorylations, as any positive scores can only

move the negatives up in the ranking, resulting in more false positive assignments.

Table 1. Comparative validation results. AU-PR, AU-ROC refer to the area under the precision-recall and ROC curve, respectively. These metrics are widely used for val-

idating predictive models based on ranking across their whole operating range [18]. P@K refers to the precision at K metric that gives the ratio of true positive statements

ranked among top K results (e.g., P@10 refers to precision at 10; precision at 10 equal to 0.9 would mean that the corresponding tool typically returns 9 true positives

among the top 10 results).

Model AU-PR AU-ROC P@10 P@50

GPS 0.741±0.011 0.731±0.011 0.862±0.108 0.857±0.049

NetworKin 0.688±0.010 0.619±0.011 0.981±0.046 0.961±0.027

NetPhorest 0.650±0.012 0.598±0.011 0.905±0.091 0.905±0.041

Scansite 0.605±0.012 0.573±0.013 0.727±0.143 0.777±0.059

Phosphopredict 0.504±0.011 0.503±0.168 0.539±0.168 0.523±0.081

Netphos 0.612±0.012 0.563±0.013 0.865±0.105 0.863±0.048

LinkPhinder 0.973±0.004 0.968±0.004 0.994±0.024 0.993±0.012

https://doi.org/10.1371/journal.pcbi.1007578.t001

Fig 3. The average precision-recall and ROC curves as per the experimental results reported in Table 1 (left and

right part of the figure, respectively).

https://doi.org/10.1371/journal.pcbi.1007578.g003

PLOS COMPUTATIONAL BIOLOGY Accurate prediction of kinase-substrate networks using knowledge graphs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007578 December 3, 2020 6 / 30

147



The coverage of the different tools, i.e., their ability to make predictions for proteins repre-

sented in PhosphoSitePlus, is given in Table 2. This table shows that our model has the highest

coverage of the test splits, especially when it comes to positive statements. However, the per-

centage of missed negative phosphorylations is still the lowest for our model, which means

that the other tools are not disadvantaged by the setup of this benchmarking test.

Thus, LinkPhinder outperforms existing popular tools in terms of sensitivity and specificity

(by means of the area-under-the-curve and precision metrics used), but also in terms of the

number of predictions it can make. Importantly, LinkPhinder also covers a larger fraction of

the human kinome than the other tools. Comprehensive visualisation of this fact is given in

Figs 4 and 5.

The results diplayed in Fig 4 clearly illustrate the superior potential of LinkPhinder for dis-

covering new phosphorylations relevant to under-researched kinases, which is currently con-

sidered one of the most pressing challenges in phosphoproteomics [17]. This is complemented

by Fig 5 that shows, among other things, the relative advantages LinkPhinder presents in num-

bers of kinase-substrate and site-specific kinase-substrate interactions for which it can provide

predictions (having the second best and best coverage, respectively). While higher coverage of

possible predictions may not mean much on its own, we believe it is a reassuring sign when

combined with the presented data on the superior performance of LinkPhinder in terms of the

quality of the prediction scores it can associate with such an unprecedented range of kinase-

substrate interaction candidates.

To provide a complementary computational validation using a dataset independent of the

one we trained our model on, we have used a very recent data on site-specific interactions of

103 human kinases with their substrates in cancer cells [19]. Table 3 presents the performance

of LinkPhinder and the six related tools when using this data for validation in the same fashion

as in the previously reported computational experiment.

While the performance of all tools is substantially weaker than when using the PhosphoSite-

Plus benchmark (i.e. only slightly above the random baseline for both area-under-the-curve

metrics), LinkPhinder is still the best in three out of four metrics, and close second in the

remaining one. The overall poor performance can be attributed to a relatively small coverage

of the [19] gold standard exhibited by most tools when compared to the PhosphoSitePlus [14]

one (detailed overlap statistics are provided in section Training of the LinkPhinder Model). In

such a situation, the relative ranks of the true positives among the rather large sets of all candi-

date predictions provided by the tools would tend to fluctuate quite widely, which can provide

at least partial explanation of the differences in the predominantly ranking-based metrics

between the two benchmark datasets. Another part of the explanation may be the fact that

while [14] covers a broad range of cell lines and tissues, [19] only covers three cell lines. Tools

that are presumably trained using existing knowledge covering as many cell/tissue types as

Table 2. Coverage of the tools in per cents. Total, positive and negative coverage is given in the first three columns with data, respectively. The last column gives the per-

centage of missed negatives (i.e., negatives that are assigned the default zero score).

Model Tot. coverage Pos. coverage Neg. coverage Missed neg.

GPS 38.6±1.0% 60.6±1.5% 16.6±1.2% 83.4%

NetworKin 34.1±1.0% 40.6±1.5% 27.7±1.3% 72.3%

NetPhorest 34.1±1.0% 40.6±1.5% 27.7±1.3% 72.3%

Scansite 10.8±0.6% 18.0±1.1% 3.6±0.5% 99.5%

Phosphopredict 1.1±0.2% 1.3±0.3% 1.0±0.3% 99.0%

Netphos 28.8±1.1% 33.0±1.7% 24.7±1.2% 75.3%

LinkPhinder 64.2±0.8% 97.0±0.5% 31.4±1.5% 68.6%

https://doi.org/10.1371/journal.pcbi.1007578.t002

PLOS COMPUTATIONAL BIOLOGY Accurate prediction of kinase-substrate networks using knowledge graphs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007578 December 3, 2020 7 / 30

148



possible (like ours) may thus be expected to perform relatively poorly on a dataset that specifi-

cally covers a limited number of cell lines and corresponding kinases. That being said, this

issue may point to an interesting research avenue to be addressed by future studies in this

area that would further investigate the cell line-specific performance of models for predicting

kinase-substrate interactions.

Targeted experiments confirm two previously unknown phosphorylation

sites targeted by LATS1 and AKT1

The rich dataset of over 11 million candidate predictions was assessed regarding its potential

for discovering new phosphorylation sites for kinases that have biomedical relevance, such as

AKT and LATS1. Both kinases regulate cell survival, growth, proliferation, and are frequently

altered in cancer [20–22]. AKT has now become a leading drug target in cancer research, but

the long term application of AKT inhibitors is still considered problematic because of AKT’s

essential roles in regulating glucose homeostasis [23]. The situation is similar with LATS1.

Originally described as tumor suppressor, it also can have growth promoting roles [22]. In

Fig 4. Coverage of the human kinome and kinase families as per PhosphoSitePlus. The “not_processed” category reflects the number of

kinases for which a tool cannot produce any predictions. Note that NetPhorest and NetworKin only differ in scores assigned to predictions, while

the set of phosphorylations they can produce scores for is identical. Therefore, they are grouped under a common KinomeExplorer [10] in the

plot.

https://doi.org/10.1371/journal.pcbi.1007578.g004
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order to resolve unwanted from desired effects a better and more comprehensive understand-

ing of the substrate spectrum of these kinases is needed.

To this end, we have extracted high-stringency predictions for the LATS1 and AKT1

kinases. By visual inspection of this list, we were able immediately pinpoint several known and

promising substrates of these kinases. YAP1 for example is the best characterized substrate of

LATS1, and our tool predicted that LATS1 would phosphorylate YAP at serine 127, which is

the best studied phosphorylation site that contributes to YAP inactivation [21]. Additionally,

the list of the top 200 predictions for AKT contained eight bona-fide AKT substrates [24], for

which several phosphorylation reactions were predicted. This means that our tool generated

interesting, biologically relevant predictions.

Therefore, we decided to validate some of the new substrates experimentally. In order to

select the most promising candidates we selected three proteins that are part of the wider

LATS1 signaling network and for which antibodies were commercially available. To

Fig 5. Complementary statistics of the coverage of different systems in terms of number of kinases, substrates, sites per substrate, etc.

https://doi.org/10.1371/journal.pcbi.1007578.g005

Table 3. Complementary computational validation of LinkPhinder using the recent dataset published in [19] as a benchmark independent of the primary training

dataset (i.e. PhosphoSitePlus [14]).

Model AUPR AUROC P@10 P@50

GPS 0.518 ± 0.008 0.509 ± 0.010 0.675 ± 0.171 0.663 ± 0.059

NetworKin 0.519 ± 0.008 0.511 ± 0.010 0.682 ± 0.132 0.616 ± 0.062

NetPhorest 0.519 ± 0.007 0.510 ± 0.008 0.731 ± 0.135 0.659 ± 0.056

Scansite 0.504 ± 0.008 0.502 ± 0.009 0.561 ± 0.170 0.563 ± 0.066

Phosphopredict 0.502 ± 0.008 0.502 ± 0.009 0.519 ± 0.137 0.507 ± 0.069

Netphos 0.508 ± 0.009 0.505 ± 0.009 0.551 ± 0.149 0.554 ± 0.074

LinkPhinder 0.540 ± 0.009 0.532 ± 0.010 0.713 ± 0.153 0.671 ± 0.061

https://doi.org/10.1371/journal.pcbi.1007578.t003
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experimentally validate predicted LATS1 substrates we used the following strategy. HEK293

cells were transfected with two specific siRNAs against LATS1 in order to downregulate

LATS1 protein levels (knockdown). Following this LATS1 knockdown, we would expect to see

a decrease in the phosphorylation of LATS1 substrates. For confirmation, we used a positive

control where we measured the phosphorylation of the known LATS1 substrate YAP1-S127,

and indeed observed a decrease in YAP1-S127 phosphorylation in total cell lysates (c.f. S1A

Fig). This control experiment demonstrated that our LATS1 knockdown works as expected

and can be used to confirm potential LATS1 substrates.

One of the proteins that we selected for validation was CREB which is transcription factor

that is regulated by phosphorylation [25]. This transcription factor is one of the best character-

ized effectors of the MAPK ad PKA pathways. Evidence in the literature indicates that CREB

modulates important LATS1 pathway functions by direct interaction with YAP1 and regula-

tion of transcription [26]. Our tool predicted serine 133 of CREB (CREB-S133) as a putative

substrate of LATS1. To confirm this, we used a specific antibody against CREB-S133, and saw

that downregulation of LATS1 resulted in about 50% decrease of CREB-S133 phosphorylation

(Fig 6, S1B Fig). This result clearly indicated that CREB is a physiological LATS1 substrate and

highlights the potential of our tool to identify previously unknown kinase substrates.

In the case of AKT we decided to monitor putative substrates by manipulating the level of

AKT activation using two strategies. Firstly, we inhibited endogenous AKT activity by using

the specific chemical inhibitor AKTi IV. Secondly, we increased AKT activity by transfecting a

kinase hyperactive form of AKT with gag-AKT [27]. One of the predicted AKT substrates is

MST2 (MST2), which is an important protein kinase in the Hippo pathway that can phosphor-

ylate and activate LATS1 [21], and which according to the prediction should be phosphory-

lated at serine 18. Unfortunately, no commercially available antibody exists that could measure

this phosphorylation site. Therefore, we employed an indirect approach to validate this predic-

tion. We used an antibody that specifically binds to phosphorylated AKT substrates, which

will immunoprecipitate (IP) all the proteins that are phosphorylated by AKT. Next, we blotted

this IP using a specific antibody against MST2 (S1C Fig). The inhibition of AKT resulted in a

slight, but consistent decrease of MST2 phosphorylation (0.75 fold), while expression of active

AKT resulted in a 10 fold increase (Fig 6). The results validate the prediction that AKT1 phos-

phorylates MST2.

Fig 6. Experimental validation of model predictions. A) HEK293 cells were transfected with non targeted siRNA (Scr) of the indicated siRNA against

LATS1. Phosphorylation of CREB or p53 was measured using specific antibodies and normalised to the level of expression of the corresponding proteins.

The graph shows the fold change of the phosphorylation of the specific residues with respect to the Scr control. B) HEK293 were transfected with empty

vector (EV) or GAG-AKT or treated with AKTi IV (10μM) for 1 hour. Phosphorylated proteins were immunoprecipitated using an anti-AKT antibody and

the immunoprecipitates were blotted with anti-MST2. The bars show the fold change with respect to the control. The experiments were repeated at least 2

times. Error bars represent standard variations.

https://doi.org/10.1371/journal.pcbi.1007578.g006
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After confirming the new site-specific kinase-substrate relationships involving the LATS1

and AKT1 kinases as reported above, we found out that none of the six existing systems used

in our comparative validation could predict these phosphorylations on high stringency set-

tings. This further demonstrates the unique power of LinkPhinder in the context of computa-

tional phosphorylation prediction.

Mass spectrometry experiments confirm seven previously unknown

phosphorylations by LATS1

To extend the targeted validation experiments we cross-referenced our predictions with high-

throughput phospho-proteomic data on the LATS1 interactome (Fig 7A). This strategy is

based on the fact that in order to phosphorylate a substrate, the kinase needs to bind to it.

Based on our previous observations, kinases tend to be associated with their substrates in com-

plexes that can be isolated and characterized by mass spectrometry [28]. Thus, by isolating all

proteins that are bound to LATS1 by immunoprecipitation (IP) and analyzing this interactome

using mass-spectrometry based proteomics, we should be able to identify a large number of

LATS1 phosphorylation targets.

Using this approach, we obtained phospho-proteomic data on the LATS1 interactome from

cells treated with two proapoptotic signals: FAS and etoposide, which both activate LATS

kinase activity [29]. To identify the LATS1 interactome we transiently expressed GFP-LATS1

in HeLa cells, immunoprecipitated GFP-LATS1 with anti-GFP antibodies and identified the

associated proteins using mass-spectrometry. Unspecific binding proteins were discarded by

comparing with the control GFP IP. This approach identified seven proteins that were bound

to LATS1 and phosphorylated on at least one residue (Fig 7B, S1 Data). These proteins are

potential LATS1 substrates, but it is important to note that not all of these phosphoproteins

are LATS1 targets, because LATS1 also binds to proteins that are phosphorylated by other

kinases. Therefore, we cross-referenced this list of phosphorylated LATS1 interactors with our

list of predicted LATS1 phosphorylation targets from LinkPhinder (Fig 7C, S1 Data). This con-

firmed 7 previously unknown phosphorylations on three substrates; five residues were phos-

phorylated on LATS1 (S613, S278, S464, S181, T17), one on MAP4 (S5), and one on ZMYM2

(T1253). Importantly, stimulation with FAS caused reduction of the phosphorylation of phos-

phorylation of LAST1-S464, MAP4-S5 and ZMYM2-T1253 (Fig 7D) indicating that regulation

of these residues are specifpicaly regulated by the death receptor pro-apoptotic signal.

After confirming the new site-specific kinase-substrate relationships involving the LATS1

kinase as reported above, we searched for these in the prediction data provided by the existing

tools. However, on high stringency settings, only GPS could predict one of the seven predic-

tions made by us (LATS1-S464, GPS Score = 8.8, S2 Data). This further demonstrates the

enhanced prediction capabilities of LinkPhinder.

Kinase assays based on mass spectrometry confirm the sensitivity of

LinkPhinder

One of the challenges to show the sensitivity of our tool and how it compares with existing

tools is the lack of experimental methods to validate substrates systematically on a large scale.

In order to further validate LinkPhinder predictions we decided to extend our validation

experiments and use an in vitro kinase assay system that can identify multiple substrates for a

given kinase. This method is based on the purification of proteins that have been phosphory-

lated by the kinase using an ATP analogue modified with a biotin group [30]. Briefly, all the

endogenous kinases are inhibited with FSBA, a pan-kinase inhibitor, and the recombinant

kinase is added to protein lysates together with ATP-biotin. ATP-biotin allows the purification
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Fig 7. Mass-spectrometry validation of a subset of LinkPhinder predicted phosphorylations. A) Overview of the experimental

design. B) Mass-spectrometry result: Specific LATS1 interactors and their phopshorylations. Bold rows indicate phosphorylation

that were predicted by LinkPhinder. (�There is a risk that ZMYM2 binding might be unspecific. Some samples show high

intensities in the GFP1 control, see panel D.) C) LinkPhinder predictions for the results in panel B. D) Mass-spec raw intensity

values (dots) of the detected phosphorylation sites in GFP-LATS1 associated proteins under the indicated conditions (n = 6

replicates), and corresponding box plots indicating median (red line), upper and lower quartile (grey box), whiskers (most

extreme values not defined as outliers), and outliers (plus marks) defined as values outside 1.5 times the interquartile range.

https://doi.org/10.1371/journal.pcbi.1007578.g007
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of phosphorylated proteins using streptavidin and the subsequent identification of these pro-

teins as substrates using mass-spectrometry. In order to test the method we replicated the

Pflum study using PKA as kinase in HeLA cells [30] in a different cell line (HEK-293). From a

total of 834 identified proteins, 34 proteins were identified as putative substrates of PKA by

comparing with the PKA deficient control samples (Table 4, and supplementary experimental

information). Five of these proteins were previously identified in the Pflum study, and 11 of

them were isoforms or proteins of the same protein family. We also identified 18 new putative

substrates. These additional 18 proteins that did not occur in the Pflum study using HeLa cells

may be cell-specific substrates in the here used HEK-293 cells. The overlap in the results clearly

indicated that the global kinase assay is an additional tool that could be used to validate our

predictions.

We then extended our validation experiments using this global kinase assay to LATS1 and

MST2. First, we used LATS1 as kinase. We identified 240 putative LATS1 substrates from a

total of 1397 identified proteins by comparing to the LATS1 deficient controls (Table 4, and

detailed description in Section on Experimental Model and Subject Details). Secondly, we

used MST2 as kinase. MST2 is another core kinases of the MST2/Hippo pathway with poorly

characterised substrates. Our results identified 211 proteins as putative MST2 substrates.

Strengthening our confidence into the validity of these results, five of the identified putative

substrates have been described as MST2 interactors previously.

The experimentally validated PKA, MST2 and LATS1 substrate predictions made by Link-

Phinder are listed in Table 4. The table also provides the sensitivity (S) of these predictions in

the context of each specific kinase assay. The sensititivy was computed as

S ¼
SUBSpredicted
SUBStotal

;

where SUBSpredicted is the number of substrates for which LinkPhinder provided at least one

site-specific phosphorylation prediction with a score above the high confidence threshold, and

SUBStotal is the number of substrates that were identified in the kinase assay and that are also

present in the PhosphoSitePlus knowledge graph. Identified substrate proteins that were not in

the knowledge graph were excluded for this analysis, because no predictions can be generated

for those proteins.

The sensitivity of the PKA predictions was 0.57, which we consider a good result given that

they were validated in an unbiased approach that has inherent technical limitations. For the

poorly characterised MST2 and LATS1 kinases the sensitivities were lower, 0.13 and 0.17

respectively. It must be noted that generating predictions for MST2 and LATS1 is challenging

because only a few substrates have been described experimentally, and most of the existing

predictions tools could not generate predictions for MST2 and LATS1. Together these results

indicate that LinkPhinder can be used to predict kinase-substrates interactions for poorly

characterised kinases.

Finally, we wanted to benchmark LinkPhinder performance against the exsisting tools.

However, we found this was not an easy task. Comparing LinkPhinder with existing tools

Table 4. Sensitivity (S) of LinkPhinder substrate predictions per each of the kinase assay.

Kinase Predicted substrate gene names S

PKA PKA, TGM2, PSMC5, PA2G4 0.57

MST2 MST2, MOB1A, NUP153, SNAPIN 0.13

LATS1 LATS1, RHOA, VCP, SNAP25, CCT2, HNRNPK, RPS6, HSP90AA1 0.17

https://doi.org/10.1371/journal.pcbi.1007578.t004
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using the results of these experiments is not as straightforward as in the cases reported before.

The main reasons are conceptually different methods for determining the decision threshold

employed by each of the tools. This does not allow for direct comparisons in terms of sensitiv-

ity as defined above. However, one high-level observation can be made: Only GPS matches the

coverage of LinkPhinder as it can produce predictions for all the three kinases we assayed. Net-

worKin and NetPhorest cannot compute any predictions for LATS1, NetPhos and Phospho-

predict only cover PKA, and Scansite covers none of the assayed kinases.

LinkPhinder web interface

In order to facilitate usage of LinkPhinder by the community we have developed an online

interface available at https://LinkPhinder.insight-centre.org/.

A typical interaction with LinkPhinder is depicted in Fig 8. The corresponding instruction

video is available in the About tab of the tool’s web page. Briefly, the protein of interest can be

entered into a search box with auto-completion (box A). Gene names and UniProt accession

numbers are supported. The search is performed for high-stringency statements by default.

However, all predicted statements can be searched as well (cf. the radio buttons in A). The

query protein is evaluated by the system in two different ways, as a kinase and as a substrate

and each type of predictions can be browsed independently (box B). The results can be filtered,

and the predicted kinase-substrate pairs can be expanded to see the list of corresponding phos-

phorylation sites and prediction scores. Export of the predictions into a CSV file is also

Fig 8. The LinkPhinder web interface. Shown is a typical search and browse interaction.

https://doi.org/10.1371/journal.pcbi.1007578.g008
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possible. Further, users can easily access contextual information from a comprehensive protein

database (UniProt) by clicking on the proteins in the results (box C).

Discussion

In this work, we have overcome several limitations of the current phosphorylation prediction

tools by representing phosphorylation networks as knowledge graphs. Knowledge graphs are

a relatively new approach to representing relational knowledge in the Machine Learning,

Artificial Intelligence and Semantic Web communities. They have quickly gained popularity

for two main reasons. First, they can represent diverse types of knowledge in a simple format.

Secondly, they are amenable to robust techniques of statistical relational machine learning,

that can for example be used to discover new facts. The discovery naturally makes use of the

entire structure of the knowledge graph (i.e. latent features and long range, implicit relation-

ships instead of just local, explicit features). This makes the representation very useful in

domains where complex network dependencies are critical. Kinase-substrate relationships

are a good example of such a domain. Our results show that knowledge graphs enabled phos-

phorylation predictions that were not possible with existing tools that are primarily based on

local features.

In particular, we have shown that phosphorylation networks can be meaningfully captured

by knowledge graphs with kinases and substrate entities linked by relationships based on phos-

phorylation site motifs. Therewith, modern link prediction methods can be used to predict

novel phosphorylation reactions and estimate their probability based on the entire network

context. The resulting predictive model allows for making predictions about any protein pres-

ent in the input data. This is a substantial advantage when compared with the existing tools.

These tools typically focus on substrates as initial queries and include only a limited number of

kinases. LinkPhinder not only covers a much broader range of possible kinase-substrate rela-

tionships than existing tools, but also shows very high generalization power and desirable

ranking properties not exhibited by other, currently gold standard approaches. This aspect has

been validated in experiments showing that our tool can generate numerous biologically valid

predictions. Crucially, these predictions were not possible with a representative range of state-

of-the-art tools (Scansite [7], GPS [8], NetPhos [9], NetPhorest [10], NetworKin [6, 10], Phos-

phoPredict [11]), demonstrating the utility of our tool.

More specifically, none of the LATS1 and AKT1 discoveries validated in targeted experi-

ments were predicted with four out of six related tools starting with LATS1 or AKT1 as kinase

queries. Only GPS and PhosphoPredict support such queries, but for less than 66.4% and 1.8%

of the kinases covered by LinkPhinder, respectively. Furthermore, querying for the substrates

directly did not predict any of the validated discoveries using any of the existing tools using

their high stringency settings (if applicable; if controlling the stringency was not offered by a

particular tool, we used all predictions made by the given tool). On medium stringency, the

GPS tool could identify one prediction; the CREB1 phosphorylation by LATS1. On low strin-

gency, the NetPhosK tool could also identify one prediction; the MST2 phosphorylation by

AKT1. No existing tool could identify both predictions. The LATS1 predictions validated by

the mass spectrometry experiments were not be predicted by any of the existing tools but one.

Specifically, the GPS tool could predict one out of the seven predictions we made (LATS1

auto-phosphorylation at S464) on high stringency (and no further ones on lower stringencies).

The other five tools could not identify any of our validated predictions. When cross-referenc-

ing the list of LATS1 predictions from other tools with our predictions, no additional predic-

tions were made, demonstrating that our tool has the best coverage. Together, these results

clearly illustrate the advantages of our tool.
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Experimental validation using the global PKA, MST2 and LATS1 kinase assays showed

promising results in terms of LinkPhinder’s sensitivity for identifying new substrates. Direct

comparison with the existing tools was not possible due to disparate methods employed by

each tool in determining their decision/high-stringency threshold. However, the results recon-

firmed one significant benefit of LinkPhinder. We were able to produce substrate predictions

for all three kinases studied, which was not possible with five of the six existing tools, with the

exception of GPS, again demonstrating that LinkPhinder’s increased kinase covarage is an

important contribution.

To build on the work presented here, we intend to incorporate more contextual data (e.g.,

relevant protein interactions from STRING or pathway data from Reactome) to see whether

they can bring new and/or more accurate predictions pertinent to clinically relevant pathways.

We also want to develop predictive models that would utilize the biology of phosphorylation

directly in the training process and not only in the knowledge graph conversion and negative

example generation. As demonstrated, incorporating more network context and biological

knowledge into the prediction process has great potential to further increase the coverage, pre-

dictive power, and usefulness of the resulting tools.

Another research direction to explore in future is the applicability of our predictive model

to improving the accuracy and scope of methods for predicting downstream effects of kinase

signalling or the kinase activity profiles. An example of such method that could benefit from

our results is described in [31]. We believe follow-up experiments combining focused phos-

phoproteomics studies like this with our model will further demonstrate the practical rele-

vance of the work presented here.

Materials and methods

Computational model and validation details

Datasets and tools used. To compile the phosphorylation network that is the primary

input for building the LinkPhinder model, we used the PhosphoSitePlus dataset in a version

available on 26th of June 2017 (c.f. https://www.phosphosite.org/staticDownloads.action).

There were 10,173 phosphorylation statements on 362, 7,302 and 2,377 distinct kinases, sub-

strate-site combinations and substrates in the compiled phosphorylation network, respectively.

Note that in the construction of all datasets, we have focused only on the Homo Sapiens species,

unless specified otherwise.

In order to convert the phosphorylation statements extracted from PhosphoSitePlus into a

knowledge graph, we had to compute motifs characteristic to the context sequences of phos-

phorylation sites. For that task, we used the MEME tool, version 4.11.2 (c.f. http://meme-suite.

org/doc/download.html?man_type=web).

We used three state of the art knowledge graph embedding and link prediction methods to

train a model that can discover new links in the phosphorylation knowledge graph. The meth-

ods are TransE [32], DistMult [33] and ComplEx [15].

The PhosphoSitePlus dataset, together with UniProt (c.f. http://www.uniprot.org/) was also

used for generating a mapping between substrates and their possible phosphorylation sites.

This mapping was used in the conversion of the internal, motif-based knowledge graph state-

ments to phosphorylation statements when computing scores of possible phosphorylations

that have not been known before. We focused only on substrates present in our knowledge

graph, which resulted in 74,142 distinct substrate-site pairs that can be used for generating

candidate phosphorylations (i.e. potential discoveries).

To assess LinkPhinder in comparison with related state of the art systems, we downloaded

and/or generated full sets of phosphorylation predictions that can be made with the following
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tools: Scansite 3 (c.f. http://scansite3.mit.edu), KinomeExplorer (predictions produced by two

tools, NetworKIN and NetPhosK, c.f. http://kinomexplorer.info/), Netphos (c.f. http://www.

cbs.dtu.dk/services/NetPhos/), GPS (c.f. http://gps.biocuckoo.org/index.php) and Phospho-

Predict (c.f. http://phosphopredict.erc.monash.edu/). The numbers of predictions that can be

made with the corresponding tools are as follows: 6,130,542 (GPS), 5,192,235 (KinomeEx-

plorer), 3,614,271 (Netphos), 2,006,185 (PhosphoPredict), 311,196 (Scansite 3). The numbers

of high-stringency predictions are not straightforward to determine using the set of all predic-

tions available, since some tools allow for stringency settings just at the level of manual, single-

protein queries. Thus we were only able to establish the number of high-stringency predictions

for Scansite, NetPhos and PhosphoPredict: 12,346, 212,107 and 132, respectively.

Construction of the phosphorylation network and knowledge graph for training the

model. The construction of the phosphorylation network requires data sources containing

relation information of kinase, substrate and substrate’s amino acid phosphorylation site. In

our experiment, we used PhosphoSitePlus kinase-substrate dataset, an experimentally deter-

mined substrates, sequences, cognate kinases, and metadata curated from the literature [14].

Only relations involving a kinase and substrate protein for the human species were considered

(KIN_ORGANISM == SUB_ORGANISM == ‘human’). Although the dataset includes phos-

phorylation site’s amino acids context sequence of size 7, we did not use that information as

we wanted to experiment with different and potentially larger context sequence sizes. Instead

we extract the context sequence from UniProt (Universal Protein Resource) and more specifi-

cally from the reviewed (Swiss-Prot) main protein sequence (uniprot_sprot.fasta) and from

isoform sequences (uniprot_sprot_varsplic.fasta). We discard any relation in the kinase-sub-

strate dataset for which the phosphorylation site does not match the UniProt sequence.

Table 5 presents some statistics about the phosphorylation network.

The knowledge graph conversion makes use of kinase family consensus motifs to transform

phosphorylation network statements to knowledge graph relations. The kinase families classi-

fication is extracted from UniProt’s human and mouse protein kinases: classification and

index. Only information about human kinases which are part of the phosphorylation network

are kept.

The conversion of phosphorylation network data into knowledge made use of the MEME

tool in a pipeline graphically described in Fig 9.

To realise the step 3 of the above pipeline we used specifically the meme command line

utility for sequence motif discovery, version 4.11.2. MEME was applied in parallel on batches

of site context sequences drawn from substrates targeted by kinases of the same family. The

size of the batches was a configurable hyper-parameter of the conversion and model training

process. We used values ranging over the set {50, 100}. The static parameters used for every

invocation of the MEME tool were: -text, -protein, -mod zoops, -x_branch,

-minw 2.

Table 5. Phosphorylation network components statistics.

No. of elements in the phosphorylation network

Phosphorylation relations 9,802

Kinases 327

Substrates 2,350

Phosphorylation sites 7,083

Avg. No. of substrate/kinase 7.19

Avg. No. of substrate’s site/kinase 21.66

https://doi.org/10.1371/journal.pcbi.1007578.t005
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The MEME parameters that were dependent on the specific properties of the sequence

batch and/or hyper-parameters of the whole model were: ’-maxw MW, -maxsize MS,

-nmotifs NM, -bfile BF where MW was the maximum width of a sequence in the batch,

MS was the maximum width multiplied by the number of sequences in the batch, NM was the

maximum number of motifs to be generated (set conservatively to 10 in the reported experi-

ments as no batch generated more motifs than that number under any tested settings) and BF
was a background Markov model of order 5 generated from the sequence batch.

Table 6 presents some statistics about the generated knowledge graph.

Training of the LinkPhinder model. Generating a phosphorylation knowledge graph.

Before we could train a statistical relational learning model, we had to construct a knowledge

graph representing the known phosphorylation information. As the primary input into the

knowledge graph, we chose a phosphorylation network compiled from the PhosphoSitePlus

[14] data set (focusing on Homo Sapiens species only). In principle, any phosphorylation data

can be used, but PhosphoSitePlus is well curated and comprehensive making it an ideal start-

ing point. There were 10,173 site-specific phosphorylation statements on 363 and 2,377 dis-

tinct kinases and substrates, respectively, in the compiled phosphorylation network. The

network consists of statements hK, L, Si where K, L, S are kinase, phosphorylation site and sub-

strate, respectively. The biological meaning of such statements is that the kinase K phosphory-

lates the substrate S by binding to it and attaching a phosphoryl group to the site L.

To convert the phosphorylation network into a knowledge graph, we utilised motifs of

phosphorylation sites preferred by specific kinase families. For each kinase family as defined in

[34], we computed a set of consensus sequence motifs using the MEME tool run with parame-

ters described in the previous section. The input to the tool were sets of sequences representing

the local context of 2k + 1 amino acids surrounding all phosphorylation sites in substrates tar-

geted by the kinases in each family. The value of k was a configurable hyperparameter of the

conversion algorithm representing the context size, i.e. the number of amino acids on the left

and right side of the phosphorylation site. See section on Finding the Optimal Hyperpara-

meters of the Model for details on the other hyperparameters. The output of the conversion

process were motifs that characterise the local context of the kinase-substrate interaction using

Fig 9. High-level workflow of generating predicate labels for the phosphorylation knowledge graph based on motifs extracted from the context

sequences of phosphorylation sites by means of the MEME tool.

https://doi.org/10.1371/journal.pcbi.1007578.g009

Table 6. Knowledge graph components statistics.

No. of elements in the knowledge graph

Motif-based relations 9,956

Kinase families 12

Kinase family motifs (relation types) 24

Avg. No. of motif/kinase family 2.00

https://doi.org/10.1371/journal.pcbi.1007578.t006
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a position-specific scoring matrix, that quantifies the relative contribution of each amino acid

in the substrate sequence. The scoring matrices were extracted from the text output of the

MEME tool executed as described above. The motifs were consequently used for converting

the hK, L, Si statements coming from the input phosphorylation network to labeled knowledge

graph edges hK, M, Si, where M is a link label (also called a typed relation) that corresponds to

a motif compatible with the family of K and the site L in the substrate S. Here, compatibility

means a positive score of the site’s context sequence with respect to the position-specific scor-

ing matrix of the motif M.

The end result of the conversion is a knowledge graph consisting of true positive statements

hK, M, Si. Here, a protein may act as kinase in several statements and as substrate in several

other statements. Therewith, these statements describe entire known phosphorylation network

from PhosphoSitePlus.

Generating negative statements based on the phosphorylation biology. The knowledge

graph generated from the phosphorylation network can be used for discovering new kinase-

substrate relationships by means of link prediction [35], which is a technique for estimating

likelihood of existence of a typed relationship between two entities based on other observed

relationships in the data. The typical intention is discovering new relations that are not explic-

itly present in a knowledge graph. Training a link prediction model is a supervised machine

learning process, and therefore requires negative examples in addition to the positive state-

ments in the phosphorylation knowledge graph. Such negative examples are typically created

by corruption of the positive statements by introducing random entities as part of the positive

relation statements [35]. In our case, this technique could lead to correct kinase-substrate rela-

tionships being treated as negatives because kinases are promiscuous (i.e. one kinase can phos-

phorylate many substrates and one phosphorylation site can be targeted by many kinases).

Hence, random corruptions of true statements may generate many false negative statements.

Such false negatives would adversely affect the discriminative power of the model. Therefore,

we need to impose specific restrictions when generating negative statements. We based these

constraints on biological knowledge as follows. Firstly, most kinases belong to families that

usually share substrates, while different families tend to phosphorylate different substrates

[34]. Secondly, substrates are unlikely to be phosphorylated by a kinase if they have highly

incompatible phosphorylation sites with respect to the kinase consensus motif. This incompat-

ibility directly motivates two types of corruptions. For a statement hK, M, Si, valid corruptions

are: i) statements h�K ;M; Si such that �K is from a different family than K; ii) statements

hK;M; �Si such that all phosphorylation sites in �S score negatively with respect to the scoring

matrix of the motif M.

Training the model on the full input dataset to maximise its generalisation power. The

model with best-performing hyper-parameters was retrained on the entire knowledge graph

derived from PhosphoSitePlus. This is appropriate due to the excellent numerical stability

reported in Table 1. The main reason for training the model on the entire dataset is that such a

strategy is preferable for making new discoveries because it uses all available information.

The model can be used for computing probabilistic ranking scores (with values between 0

and 1) of predictions ranging across all possible combinations of kinases, sites and substrates

present in PhosphoSitePlus, and thus contribute to the discovery of previously unknown

phosphorylations.

As described in Fig 2 and the prior parts of this section, the core link prediction model

works on the converted knowledge graph, which means that it can only deal with relationships

that abstract the site information using motifs. Putative phosphorylations for which the model

is supposed to compute scores, therefore, have to be converted to the same form. After the
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converted phosphorylation statements are scored, they have to be transformed back to the

form that contains the specific phosphorylation site. This conversion is dual to the knowledge

graph conversion—each statement hK, M, Si corresponds to statements hK, L, Si such that L is

a known phosphorylation site in S (as per the PhosphoSitePlus [36] and UniProt data sets) that

scores positively with respect to the position-specific scoring matrix of the motif M.

Given a single protein as a query, the model can produce a ranked set of candidate phos-

phorylation sites that involve the protein either as a substrate or as a kinase. The ranked list

can optionally be filtered using high- or medium-stringency thresholds. We apply a threshold

derived from the manually curated phosphorylation network we use as an input—the high-

stringency threshold is a value such that 99.5% of the known phosphorylations score above it

(the value is 0.672 in the reported model). The medium-stringency threshold is 0.5 (i.e. a score

that indicates higher-than-random plausibility of the given statement). The ranking of the

results reflects the global network context of all known phosphorylation sites and kinase-sub-

strate relationships represented in the input knowledge graph, which is a type of information

that is not incorporated by any other existing tool. Moreover, the predictions can be generated

on any protein, be it a kinase or substrate.

This coverage and flexibility makes our model more powerful than most existing phosphor-

ylation prediction tools that can only be queried for substrate proteins (in the GPS and Phos-

phoPredict tools, one can generate predictions associated with a kinase, but the systems

combined still cover only about half of the kinases covered by LinkPhinder).

In total, LinkPhinder can produce 11,581,940 predictions when applied to all putative phos-

phorylations that can be generated from the proteins and phosphorylation sites present in the

input data (PhosphoSitePlus). Out of these, 2,009,171 and 7,232,636 are of high and medium

stringency, respectively. We can make predictions for 327 human kinases, nearly twice as

many predictions than the next best among six related methods we have tested (GPS [8], with

217). This shows substantial improvement in the kinome and also general proteome coverage.

Further details and information about the coverage of LinkPhinder compared to other sys-

tems can be found in Table 7.

Finding the optimal hyperparameters of the model. Prediction of phosphorylation reac-

tions is based on models trained on the knowledge graph data consisting of positive and nega-

tive statements. Negative statements are computed via perturbation of positive statements by

means of ad-hoc operators. In our experiments, two negative statements are generated from

each positive statement. Data is split into training+validation and testing. In particular, eighty

percent of the available data is used for training and validating the models and the remaining

part is used for testing. This data is used to evaluate multiple link prediction techniques with

the aim of optimising prediction performance. For each of these, a grid search within the space

Table 7. Statistics of the coverage of the different predictive systems and their overlap with the [19] gold standard. The letters S and K in the column headers denote

substrates and kinases respectively.

Model Triplets Kinases Substrates K-S pairs S-S pairs S per K Sites per S

Cutilass20 19066 (100.0%) 103 (100.0%) 2556 (100.0%) 15178 (100.0%) 6090 (100.0%) 147.4 2.4

GPS 6130543 (5.3%) 218 (62.1%) 2531 (35.9%) 516158 (23.7%) 293070 (42.8%) 2367.7 115.8

Netphos 3614272 (2.8%) 18 (5.8%) 2531 (35.9%) 42957 (2.7%) 293354 (43.2%) 2386.5 115.9

Networkin 5192236 (0.0%) 206 (55.3%) 6676 (70.0%) 986494 (35.1%) 40737 (0.0%) 4788.8 6.1

Phosphopredict 2006186 (0.0%) 13 (1.0%) 40624 (99.7%) 252509 (0.1%) 1332427 (25.1%) 19423.8 32.8

Scansite 311197 (0.7%) 34 (16.5%) 2530 (35.9%) 61268 (5.3%) 157214 (36.5%) 1802.0 62.1

netphorest 5192236 (0.0%) 206 (55.3%) 6676 (70.0%) 986494 (35.1%) 40737 (0.0%) 4788.8 6.1

LinkPhinder 11581940 (26.2%) 327 (84.5%) 2350 (33.2%) 738518 (35.7%) 63509 (39.7%) 2258.5 27.0

https://doi.org/10.1371/journal.pcbi.1007578.t007
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of available hyperparameter values of the models is performed. For each configuration, 10-fold

cross validation is run. The combination of prediction technique and parameters that delivers

the best performance is selected and this information is used to train a model on all the avail-

able data in order to exploit the entire knowledge about the phosphorylation reactions that

have been experimentally validated.

Three link prediction techniques have been used, they are: TransE, DistMult and ComplEx
[15, 32, 33]. TransE is one of the earliest techniques to have been proposed and its simplicity

makes it a valid reference to learn about embeddings. In our case these embeddings are entities

and relation types that are represented by means of vectors of the same length. A true state-

ment is expected to satisfy the vectorial expression subject + relation type� object. DistMult

adopts a different approach, the score is the sum of the element-wise products between the

subject vector, a diagonal matrix representing the relation type and the object vector:

score ¼
Xd

i¼1

subjecti � relationi � objecti

This denotes that the score is not built considering inter-relations between different latent fea-

tures. ComplEx follows the same approach as DistMult, with the difference that complex num-

bers are used in place of real values. The score is the real part of the score formula used in

DistMult.

The hyperparameters that control model generation are, in this order: number of negatives

generated for each positive statement; number of training epochs through which the model

parameters are optimised; number of batches in which data for model training is divided;

batch size of amino acid sequences for motif generation (it affects the number of relation

types); number of dimensions of vectors; margin of the hinge loss; distance function for com-

puting similarity (only for TransE); learning rate of the model and, ultimately, context size,

namely, the number of amino acids to consider on the left and on the right of the binding site.

While for some hyperparameters values are selected from a set, for others the values are fixed

as they were determined by means of independent experiments. Their respective values are

listed in Table 8.

The link prediction technique that delivers the best performance is ComplEx with vectors

of size 50 and context size equal to 15. This configuration was used to train a model on the

entire network of phosphorylations and their associated negatives. The trained model is used

to predict the likelihood of unobserved phosphorylation reactions actually existing in nature.

Table 8. Hyperparameters space used by grid search to identify the best model (L1, L2 stand for Manhattan and

Euclidean distance norms, respectively).

hyperparameter values

number of negatives 2

number of epochs 100

number of batches for model training 10

batch size for motif generation 50

embedding size {50, 100, 150, 250, 500}

margin 1

similarity (only TransE) {L1, L2}

learning rate 0.1

context size {7, 15}

https://doi.org/10.1371/journal.pcbi.1007578.t008
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Construction of the state of the art prediction data sets. The following paragraphs

describe the construction of sets of predictions computed by existing tools that are used in

comparative validation of the LinkPhinder model.

Scansite 3. Scansite searches for motifs within protein substrates that are likely to be phos-

phorylated by a specific protein kinase. It takes as input a protein substrate ID and sequence

and gives as output a confidence score for given substrate amino acid sites to be phosphory-

lated by one of 70 kinases handled by the system. We queried the system with all substrates

contained in our phosphorylation network and separately accepted results with low and high

stringency leveld.

NetworKIN and NetPhorest. KinomeXplorer framework contains results of both Net-

worKIN and NetPhorest systems with only the score changing. The KinomeXplorer dataset

uses gene identifiers to refer to protein phosphorylation. In order to compare the results

with the validation set we had first to use UniProt gene query to recover the protein identi-

fier. After downloading the dataset, we queried UniProt using both EmbID and gene name

to resolve a protein ID. In case a query did not yield any result or multiple proteins were

returned, the original statement was omitted. Finally, we keept only the system protein iden-

tifier-based statement responses that pertained to the proteins contained in our phosphoryla-

tion network.

NetPhos 3.1. The NetPhos 3.1 system predicts serine, threonine or tyrosine phosphoryla-

tion sites in eukaryotic proteins using ensembles of neural networks. The system can provide

predictions for 17 kinases only. Using the stand-alone software package, we queried the system

with all substrates and associated sequences contained in our phosphorylation network. The

results obtained ar low and high stringency levels were used seperately.

GPS 3.0. Group-based Prediction System (GPS) predicts phosphorylation sites with their

cognate protein kinases using a four level kinase hierarchical structure in multiple species. We

used the batch predictor of the desktop application to pull out results for all substrates and

associated sequences contained in our phosphorylation network.

PhosphoPredict. The PhosphoPredict system reportedly predicts kinase-specific substrates

and the corresponding phosphorylation sites for 12 human kinases, including CSNK1A1,

CSNK2A1, PRKACA, ATM, AKT1 (aka. PKB), SRC, GRK, PKC, GSK, CaMK, CDKs and

MAPKs. However, only six of these actually correspond to single kinases, whereas the other

seven are often rather diverse families of different proteins (CDKs, MAPKs, PKC, GRK, GSK,

CaMK), and thus we focused on them in our comparison. PhosphoPredict employs a feature

selection method based on the minimum Redundancy and Maximum Relevance (mRMR) to

select the most informative feature subsets that contribute to the prediction success of each

kinase families. We keept only those system statements which referred to the proteins present

in our phosphorylation network.

Comparative computational validation. A comparative evaluation was performed with

the purpose of assessing the performance of LinkPhinder in the context of existing phosphory-

lation prediction methods (i.e. GPS, NetworKin, NetPhorest, NetPhosK, Scansite and Phos-

phopredict). Since the process of training LinkPhinder is stochastic, the performance changes

slightly every time a new model is trained. To minimise the variability of the results, and allow

for comparison and repeatability of the experiment, the results we reported in the main part of

this work were averaged over 100 runs of the experiment. The dataset generated for each run

consists of positive triples, extracted from PhosphoSitePlus, and negative triples, generated by

randomly combining kinases with (site,substrate) pairs that appear in PhosphoSitePlus. The

training split accounts for 90% of the data, the remaining 10% is used for testing. Both training

and test set contain equal numbers of positive and negative instances.
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To evaluate LinkPhinder, training data are used to learn a model in each run and its perfor-

mance is evaluated on the test set. Triples in the test set are assigned the prediction score if this

is available, otherwise a zero score is assigned.

One note to be taken into account regarding prediction score assignment is this. As stated

in the main text, a very accurate model that generates predictions only on a small subset of the

triples may be of limited use in phosphorylation prediction. Hence, we also assessed the rate of

predictions a model is able to generate by measuring the percentage of triples in the test set for

which the model is able to generate a prediction (i.e. non-zero score). We refered to this value

as coverage in the Results section.

Concerning the existing methods to which we compare ourselves, scores are extracted from

the predictions provided by each method (created as described in the previous section). This

does not exclude that part of the testing triples may have been used to train the comparative

models. Assuming that this is the case, this would represent a disadvantage in terms of perfor-

mance for our model. Similarly to the LinkPhinder case, coverage is therefore computed over

the test data and zero scores are assigned to triples for which a prediction is not available.

Verifying the stability of LinkPhinder under different conditions of the computational

experiments. To make sure various decisions made in preparation of the benchmarking data

do not influence the presented results in terms of comparing the performance of LinkPhinder

and related existing tools, we have first experimented with a different positive-negative ratio

(ten negatives per one positives, see Table 9), and then with various different train-test split

ratios (Table 10).

The increase in the number of negatives per a positive typically hampers performance of

ranking-based models, and Table 9 clearly shows that our experiments are no exception. How-

ever, one can also immeditaly notice that LinkPhinder remains by far the best tool, and is sig-

nificantly less affected by the change. This demonstrates the superior stability of our tool in the

context of changing experimental conditions.

The results in Table 10 clearly show that while the performance of LinkPhinder decreases with

increasing proportion of testing over the training data, it is still superior to the corresponding

Table 9. LinkPhinder performance compared to other systems on our benchmark with 1:10 positive to negative ratio in the testing split where the training/testing

splits are 90% and 10% respecitvely.

Model AUPR AUROC P@10 P@50

GPS 0.259 ± 0.007 0.731 ± 0.006 0.337 ± 0.145 0.416 ± 0.063

NetworKin 0.281 ± 0.009 0.618 ± 0.007 0.798 ± 0.122 0.756 ± 0.055

NetPhorest 0.199 ± 0.007 0.597 ± 0.007 0.542 ± 0.137 0.520 ± 0.071

Scansite 0.149 ± 0.004 0.571 ± 0.006 0.132 ± 0.099 0.210 ± 0.048

Phosphopredict 0.091 ± 0.002 0.500 ± 0.006 0.029 ± 0.050 0.050 ± 0.029

Netphos 0.166 ± 0.006 0.563 ± 0.007 0.426 ± 0.149 0.390 ± 0.064

LinkPhinder 0.875 ± 0.010 0.982 ± 0.002 0.993 ± 0.025 0.981 ± 0.024

https://doi.org/10.1371/journal.pcbi.1007578.t009

Table 10. Relative LinkPhinder performance across different training-testing splits where the positive to negative ratio of the testing set is 1:10 (the relative perfor-

mance results were substantially less variable for the 1:1 ratio, therefore we do not report them here).

Model AUPR AUROC P@10 P@50

Train 60%, Test 40% 0.768 ± 0.006 0.969 ± 0.001 0.987 ± 0.034 0.981 ± 0.017

Train 70%, Test 30% 0.797 ± 0.006 0.974 ± 0.001 0.960 ± 0.049 0.968 ± 0.018

Train 80%, Test 20% 0.835 ± 0.005 0.978 ± 0.001 0.990 ± 0.030 0.984 ± 0.012

Train 90%, Test 10% 0.875 ± 0.010 0.982 ± 0.002 0.993 ± 0.025 0.981 ± 0.024

https://doi.org/10.1371/journal.pcbi.1007578.t010
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results of the related works given in Table 9. This further corroborates our claim of LinkPhinder’s

stability with respect to different experimental conditions.

Generating phosphorylation data for the web interface of LinkPhinder. In order to pre-

pare data of phosphorylation reactions for prediction, a list of known kinases and a list of

known substrates with their corresponding phosphorylation sites are extracted from the phos-

phorylation network. The elements of the lists are combined using their Cartesian product to

generate every possible combination of kinase and phosphorylation site of each substrate.

These are converted into knowledge graph phosphorylation statements and are then scored

using the previously trained best-performing prediction model (i.e. the result of the grid search

described previously). Finally, knowledge graph statements with their associated scores are

converted back to phosphorylation site-specific statements. If there are duplicate statements

after the conversion process that only differ in the scores assigned to them by the conversion

and the model, we only keep the one with the highest score determined by the model. This

is motivated by the fact that the model utilises more information on the actual phosphoryla-

tions than the conversion process and therefore its scores override the scores assigned after

conversion.

Experimental model and subject details

Cell culture experiments for targeted validation. Hek-293 cells were regularly grown in

Dulbecco’s modified medium supplemented with 10% foetal serum. Subconfluent cell were

transfected with Lipofectamine (Invitrogene) following manufacturer’s instructions. pSG5-

gag-AKT was previously described [37]. LATS1 siRNA and AKT siRNA were from Dharma-

corn and sequences have been described before [29]. Twentyfour hours after tranfection

HEK293 cells were serum deprived for 16 hours. Subsiquently, cell were lysed in 20mM

HEPES (pH 7.5), 150 mM NaCl, 1% NP-40, phosphatase inhibitors (2mM NaF, 10mMb-Gly-

cerolphosphate, 2 MM Na4P2O4) and protease inhibitors (5 μg/ml Leupeptin and 2.2 μg/ml

aprotinin). Cell lysates were separated by SDS-PAGE analysed by western blotting. Phosphory-

lated proteins were immunoprecipitated with pAKT-Substrate specific antibody. Briefly, the

lysates were incubated with 1μl of antibody and 5μl of protein-G sepharose beads for 1 hour at

4C in an orbital wheel. The immunoprecipitates were washed 3 times with lysis buffer. 2 bed

volumes of denaturing laemli buffer were added to the dry pelleted beads and immunocom-

plex were eluted by boiling the samples at 100C for 5 minutes. Anti-creb, anti-LATS1 anti-P53

anti-tub, p-YAP-S127 were obtained from commercial sources.

Mass-spectrometry experiments for extended validation. HeLa cells were transiently

transfected with a GFP-tagged LATS1 construct or a GFP construct as control. After 2 days

they were serum starved over-night and left untreated (control) or were treated with FasL

(50nM) or Etoposide (50muM) for 16 hours. Then, cells were lysed with Lysis buffer (20mM

4-(2 hydroxyethyl)-1piperazineethanesulfonic acid (HEPES) pH7.5, 150mM NaCl, 1% NP-40,

phosphatase inhibitors (10 mMβ-Gycerolphosphate, 1 mM Na3VO4, 2mM Na4P2O7, 2 mM

NaF) and protease inhibitors (5 μg/ml Leupeptin and 2.2 μg/ml Aprotinin), and proteins were

immunoprecipitated using GFP-trap_A (Chromotek) according to the manufacturer’s instruc-

tions. The beads were washed 3 times with lysis buffer followed by two washes with the same

buffer not containing NP-40. The proteins immunoprecipitated onto GFP-beads were pre-

pared for masss-spectrometry analysis as previously described [38]. Briefly, the immunopre-

cipitates were digested in two steps. Firstly, by adding 60μl of elution buffer-1 (2M urea,

50mM Tris-HCl pH7.5, 5μg/ml Trypsin), to each sample and incubation at 27˚C on a shaker.

After 30 minutes initial digestion the samples were centrifuged at 13,000 rpm in a table top

centrifuge for 30 seconds and the supernatant was collected into a new Eppendorf tube. In the
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second step 25μl of elution buffer-2 (2M urea, 50mM Tris-HCL pH7.5, 1mM Dithiothreitol)

was added per sample followed by centrifugation as above. The supernatant was collected into

a new Eppendorf tube. The elution step was repeated, and both supernatants were combined

and incubated overnight at room temperature to allow trypsin digestion to go to completion.

The, samples were alkylated by adding 20 μl iodoacetamide (5mg/ml), and incubation for 30

min in the dark at room temperature. The reaction was stopped by adding 1 μl 100% Trifluora-

cetic acid (TFA) to each sample. 100 μl of each sample was immediately loaded into equili-

brated handmade C18 StageTips containing Octadecyl C18 disks (Supelco) for desalting. Tips

were previously activated by washing with 50μl of 50% AcN and 0.1%TFA. After a quick cen-

trifugation the tips were washed with 50μl of 0.1%TFA. 100μl samples was loaded onto the tip

washed twice with 50μl of 0.1% TFA and eluted twice with 25μl of 50% AcN and 0.1% TFA

solution. The eluates were combined and concentrated until the volume was reduced to 5μl

using a CentriVap Concentrator (Labconco). Samples were diluted to obtain a final volume of

15μl by adding 0.1% TFA and centrifuged for 10 minutes at 13000rpm. 12μl of the samples

were analysed by MS. The samples were analysed by liquid Chromatography-Tandem Mass

Spectrometry (Nanoflow Ultimate 3000 LC and Q-Exactive mass spectrometer [Thermo]). A

10 cm long, 75 μm inner diameter, HLPC c18-reversed pahes column was used. Samples were

loaded at 600nl/min and peptides were eluted at a constant flow rate of 250nl/ min for 40 min.

A multisegment linear gradient of 2-135% buffer (98% Acetonitrile and 0.1% formic acid) in

positive ion mode was used. Data were acquired with the mass spectrometer operating in auto-

matic data dependent switching mode selecting the 12 most intense ions prior to MS/MS anal-

ysis. Mass spectra were analysed by MaxQuant. Label-free quantitation was performed using

MaxQuant.

PKA Kinase assay. Serum straved HEK293T were lysed in a Nonidet P-40 buffer (50 mM

Tris-HCl, pH 7.8, 150 mM NaCl, 1% (vol/vol) Nonidet P-40, protease inhibitors and phospha-

tase inhibitors). Lysates were treated at 1 mg/ml with 10 mM 5’-4-fluorosulphonylbenzoylade-

nosine (FSBA) solubilised in DMSO and then incubated at 31˚C for 2 hour. Samples were

spun down at 200 x g to remove any precipitate. Sample were diluted down with 2 ml of PKA

kinase buffer (50 mM Tris pH 7.5, 10 mM MgCl2, 0.1 mM EGTA and 2 mM DTT) and

desalted using a Millipore Amicon ultrafiltration columns with a 3 kDa molecular weight cut-

off. Following concentration, the samples were incubated with PKA kinase buffer (50 mM Tris

pH 7.5, 10 mM MgCl2, 0.1 mM EGTA and 2 mM DTT), 500 uM ATP-biotin and 1250 units

of recombinant PKA (New England Biolabs) in a total volume of 60 μl. Control samples with-

out recombinant PKA and ATP-biotin were also made up. The controls and kinase-added

samples were incubated at 31˚C for 2 hours. 300 μl of phosphate buffer was added to the sam-

ples. Streptavidin resin (100 μl of a 50% slurry) was incubated with the samples overnight at

4˚C. Samples were spun down samples at 2000 x g for 1 minute and the supernatant was

removed. Samples were washed 5 times with 1 ml of phosphate buffer. Samples were analysed

by mass spectrometry.

The full results of the assay are given in the kinase assays supplement (S1 Table).

MST2 Kinase assay. Serum straved HEK293T cells were treated with 3 μM of the MST2

kinase specific inhibitor, XMU-MP-1 or DMSO for 3 hours. Cells were lysed in a Nonidet P-

40 buffer (50 mM Tris-HCl, pH 7.8, 150 mM NaCl, 1% (vol/vol) Nonidet P-40, protease inhib-

itors and phosphatase inhibitors). Lysates were treated at 1 mg/ml with 10 mM 5’-4-fluorosul-

phonylbenzoyladenosine (FSBA) solubilised in DMSO and then incubated at 31˚C for 2 hour.

Samples were spun down at 200 x g to remove any precipitate. Sample were diluted down with

2 ml of MST2 kinase buffer (40 mM HEPES pH 8.0, 10 mM MgCl2, 0.5 mM EGTA) and

desalted using a Millipore Amicon ultrafiltration columns with a 3 kDa molecular weight cut-

off. Following concentration, the samples were incubated with MST2 kinase assay buffer (40
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mM HEPES pH 8.0, 10 mM MgCl2, 0.5 mM EGTA), 500 uM ATP-biotin and 32 ng of recom-

binant MST2 (made in house) in a total volume of 60 μl. Control samples without recombinant

MST2 and ATP-biotin were also made up. The controls and kinase-added samples were incu-

bated at room temperature for 3 hours. 300 μl of phosphate buffer was added to the samples.

Streptavidin resin (100 μl of a 50% slurry) was incubated with the samples for 1 hour at room

temperature. Samples were spun down samples at 2000 x g for 1 minute and the supernatant

was removed. Samples were washed 5 times with 1 ml of phosphate buffer. Samples were ana-

lysed by mass spectrometry.

The full results of the assay are given in the kinase assays supplement (S2 Table).

LATS1 Kinase assay. Serum straved HEK293T cells were lysed in a Nonidet P-40 buffer

(50 mM Tris-HCl, pH 7.8, 150 mM NaCl, 1% (vol/vol) Nonidet P-40, protease inhibitors and

phosphatase inhibitors). Lysates were treated at 1 mg/ml with 10 mM 5’-4-fluorosulphonyl-

benzoyladenosine (FSBA) solubilised in DMSO and then incubated at 31˚C for 2 hour. Sam-

ples were spun down at 200 x g to remove any precipitate. Sample were diluted down with 2

ml of LATS1 kinase buffer (25 mM HEPES pH 7.4, 50 mM NaCl, 5 mM MgCl2 and 5 mM

MnCl2, 5 mM β-glycerophosphate and 1 mM dithiothreitol) and desalted using a Millipore

Amicon ultrafiltration columns with a 3 kDa molecular weight cutoff. Following concentra-

tion, the samples were incubated with LATS1 kinase assay buffer (25 mM HEPES pH 7.4, 50

mM NaCl, 5 mM MgCl2 and 5 mM MnCl2, 5 mM β-glycerophosphate and 1 mM dithiothrei-

tol), 500 uM ATP-biotin and 100 ng of recombinant LATS1 (Abcam) in a total volume of 60

μl. Control samples without recombinant LATS1 and ATP-biotin were also made up. The con-

trols and kinase-added samples were incubated at 30˚C for 30 minutes. 300 μl of phosphate

buffer was added to the samples. Streptavidin resin (100 μl of a 50% slurry) was incubated with

the samples for 1 hour at room temperature. Samples were spun down samples at 2000 x g for

1 minute and the supernatant was removed. Samples were washed 5 times with 1 ml of phos-

phate buffer. Samples were analysed by mass spectrometry.

The full results of the assay are given in the kinase assays supplement (S3 Table).

Mass spectrometry sample preparation. The streptavidin resin containing the bound pro-

teins were incubated with 400 μl of elution buffer I (50 mM Tris-HCl ph 7.5, 2 M Urea, 181

ng/μl trypsin) at 37˚C for 30 minutes. The samples were spun at 2000 x g and the superntant

was retained. To the streptavidin resin 330 μl of elution buffer II (50 mM Tris-HCl ph 7.5, 2 M

Urea, 1 mM DTT) at 37˚C for 1 hour. The samples were spun at 2000 x g and the superntant

was retained. The two supernatant of elution buffers I and II were combined and incubated

overnight at 37˚C. After the incubation 130 μl of 5 mg/ml Iodocetamide was added to each

and the samples were incubated for 30 minutes at room temperature in the dark. C18 stage

tips that were previously prepared were mounted into a 1.5 ml eppendorf were activated by

adding 50 μl of 50% acetonitrile (AcN) and 0.1% Trifluoroacetic acid (TFA). The samples were

spun at 5000 rpm for 1 minute. 50 μl of 1% TFA was added to the C18 stage tips and the sam-

ples were spun at 5000 rpm. After the Iodocetamide incubation the reaction was stopped by

adding 1 μl of 100% TFA. The samples were loaded onto the C18 stage tips and they were spun

at 5000 rpm. The C18 stage tips were then washed by adding 50 μl of 1% TFA and then the

samples were spun at 5000 rpm, this was done twice. Before elution of the samples, the C18

stage tips were mounted into fresh 1.5 ml eppendorfs. The peptides were eluted of the C18

stage tips by adding 25 μl of 50% AcN and 0.1% TFA and spinning the samples at 5000 rpm,

this was repeated twice. Samples were evaporated for 10-15 in a CentriVap concentrator until

5 μl was left. The sample was then respuspended in 20 μl of TFA. The samples were then ana-

lysed by mass spectrometry.

Mass spectrometry. Mass spectrometry was performed using a Ultimate 3000 RSLC system

that was coupled to an Orbitrap Fusion Tribrid mass spectrometer (Thermo Fisher Scientific).
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Following tryptic digest, the peptides were loaded onto a nano-trap column (300 μM i.d x

5mm precolumn that was packed with Acclaim PepMap100 C18, 5 μM, 100 Å; Thermo Scien-

tific) running at a flow rate of 30 μl/min in 0.1% trifluoroacetic acid made up in HPLC water.

The peptides were eluted and separated on the analytical column (75 μM i.d. × 25 cm, Acclaim

PepMap RSLC C18, 2 μM, 100 Å; Thermo Scientific) after 3 minutes by a linear gradient from

2% to 30%of buffer B (80% acetonitrile and 0.08% formic acid in HPLC water) in buffer A (2%

acentonitrile and 0.1% formic acid in HPLC water) using a flow rate if 300 nl/min over 150

minutes. The remaining peptides were eluted using a short gradient from 30% to 95% in buffer

B for 10 minutes. The mass spectrometry parameters were as follows: for full mass spectrome-

try spectra, the scan range was 335-1500 with a resolution of 120,000 at m/z = 200. MS/MS

acquisition was performed using top speed mode with 3 seconds cycle time. Maximum injec-

tion time was 50 ms. The AGC target was set to 400,000, and the isolation window was 1 m/z.

Positive Ions with charge states 2-7 were sequentially fragmented by higher energy collisional

dissociation. The dynamic exclusion duration was set at 60 seconds and the lock mass option

was activated and set to a background signal with a mass of 445.12002.

Analysis of mass spectrometry data. Analysis was performed using MaxQuant (version

1.5.3.30). Trypsin was set to be the digesting enzyme with maximal 2 missed cleavages. Cyste-

ine carbmidomethylation was set for fixed modifications and oxidation of methionine and N-

thermal acetylation were specified as variable modifications. The data was then analysed with

the minimum ratio count of 2. The first search peptide was set to 20, the main search peptide

tolerance to 5 ppm and the “re-quantify” option was selected. For protein and peptide identifi-

cation the Human subset of the SwissProt database (Release 2015_12) was used and the con-

taminants were detected using the MaxQuant contaminant search. A minimum peptide

number of 1 and a minimum of 6 amino acids was tolerated. Unique and razor peptides were

used for quantification. The match between run option was enabled with a match time window

of 0.7 minutes and an alignment window of 20 minutes.

Quantification and statistical analysis

Peptide identification. MaxQuant (version 1.3.0.5.) was used to analyse raw mass spec-

trometric data files from LC-MS/MS for protein quantification. Default settings were used

unless stated otherwise, including the following parameters: Trypsin/P digest allowing for 2

misscleavages; variable modifications included oxidation and acetylation; fixed modification

included carbamidomethylation (at Cysteine); to detect phosphopeptides we included phos-

pho (STY) as a modification; first search at 20 ppm: main search at 6 ppm mass accuracy (MS)

and 20ppm mass deviation for the fragment ions. The MS data were searched against a human

database (Uniprot HUMAN) with a minimum peptide length of 6, unfiltered for labelled

amino acids, at a false discovery rate (FDR) of 0.01 for peptides and proteins. The results were

refined through the re-quantify option; also “match between runs” was selected with a 1 min

time window, and label free quantification was selected with the minimum ratio count set at 1.

Supporting information

S1 Table. PKA Kinase Assay Results (an PDF file; c.f. https://doi.org/10.6084/m9.figshare.

13118441).

(PDF)

S2 Table. MST2 Kinase Assay Results (an PDF file; c.f. https://doi.org/10.6084/m9.

figshare.13118477).

(PDF)
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S3 Table. LATS1 Kinase Assay Results (an PDF file; c.f. https://doi.org/10.6084/m9.

figshare.13118483).

(PDF)

S4 Table. Mass-spec results for the LATS1 IP (an xlsx file; c.f. https://doi.org/10.6084/m9.

figshare.12173163).

(XLSX)

S5 Table. Mass-spec data for the PKA kinase assay (an xlsx file; c.f. https://figshare.com/

articles/Mass_spec_data_PKA/12200681).

(XLSX)

S6 Table. Mass-spec data for the MST2 kinase assay (an xlsx file; c.f. https://doi.org/10.

6084/m9.figshare.12200675.v1).

(XLSX)

S7 Table. Mass-spec data for the LATS1 kinase assay (an xlsx file; c.f. https://figshare.com/

articles/Mass_spec_data_LATS_kinase_assay/12200597).

(XLSX)

S1 Data. Full set of LinkPhinder predictions (a single bzip2-archived CSV file; c.f. https://

doi.org/10.6084/m9.figshare.12173100).

(BZ2)

S2 Data. Full set of predictions computed by the related works (a bzip2-archive of 6 CSV

files for each of the related tools; c.f. https://doi.org/10.6084/m9.figshare.12173109).

(TBZ)

S1 Fig. Supporting details on the experimental validation of the LATS1/YAP1 phosphoryla-

tion: (A-B) HEK293 were transfected with the indicated siRNAs. 48 hours after transfection

the cells were lysed and blotted with the indicated antibodies. (C) HEK293 were transfected

with empty vector (EV) or GAG-AKT or treated with AKTi IV (10M) for 1 hour. Phosphory-

lated proteins were immunoprecipitated using an anti-AKT antibody and the immunoprecipi-

tates were blotted with the indicated antibodies (a PDF figure, c.f. https://doi.org/10.6084/m9.

figshare.13118561).

(PDF)
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Supervision: Vı́t Nováček, Pierre-Yves Vandenbussche, Walter Kolch.
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Introduction
Biological systems consist of complex interconnected biological
entities that work together to sustain life in living systems. This
occurs through complex and systematic biological interactions
of the different biological entities. Understanding these inter-
actions is the key to elucidating the mechanism of action of
the different biological functions (e.g. angiogenesis, metabolism,
apoptosis, etc.) and thus understanding causes and activities
of diseases and their possible therapies. This encouraged the
development of multiple physical and computational methods
to assess, verify and infer different types of these interactions.
In this study, we focus on the use of computational methods
for assessing and inferring interactions (associations) between
different biological entities at the molecular level. We hereof
study the use of knowledge graphs and their embedding models
for modelling molecular biological systems and the interactions
of their entities.

Initially, basic networks, i.e. uni-relational graphs, were
adopted by early efforts for modelling complex interactions in
biological systems [1–4]. Despite their initial success [5], these
networks could not preserve the semantics of different types
of associations between entities. For example, protein–protein
interaction networks modelled with basic networks cannot
differentiate between different types of interactions such as
inhibition, activation, phosphorylation, etc. Therefore, more
recent works modelled biological systems using heterogeneous
multi-relational networks i.e. knowledge graphs, where they
utilized different visual [6, 7] and latent representations [8, 9] of
graph entities to infer associations between them.

In the context of biological applications, knowledge graphs
were used to model biological data in different projects such as
the UNIPROT [10], Gene Ontology [11] and Bio2RDF [12] knowl-
edge bases. Moreover, they were the basis of multiple predictive
models for drug adverse reactions [6, 8], drug repurposing [9, 13]
and other predictions for different types of biological concepts
associations [13, 14]. The task of learning biological associations
in this context is modelled as link prediction in knowledge
graphs [15]. Predictive models then try to infer a typed link
between two nodes in the graph using two different types of
features: graph features and latent-space vector representations.

Graph features models (i.e. visual feature models) are part
of the network analysis methods, which learn their predictions
using different feature types such as random walks [16, 17], net-
work similarity [18], nodes connecting paths [19] and subgraph
paths [19, 20]. They are used in multiple biological predictive
applications such as predicting drug targets [21] and protein–
protein interaction analysis [18]. Despite the expressiveness of
graph feature models predictions, they suffer from two major
drawbacks: limited scalability and low accuracy [22, 23]. They
are also focused on graph local features compared to embedding
models, which learn global latent features of the processed
graph.

Latent feature models i.e. embedding models, on the other
hand, express knowledge graphs’ entities and relations using
low-rank vector representations that preserve the graph’s global
structure. Knowledge graph embedding (KGE) models on the
contrary are known to outperform other approaches in terms
of both the accuracy and scalability of their predictions despite
their lack of expressiveness [23–25].

In recent years, KGE models witnessed rapid developments
that allowed them to excel in the task of link prediction [24–30].
They have then been widely used in various applications includ-
ing computational biology in tasks like predicting drug–target

interactions (DTIs) [9] and predicting drug polypharmacy side
effects [8]. Despite their high-accuracy predictions in different
biological inference tasks, KGEs are in their early adoption stages
in computational biology. Moreover, many computational biol-
ogy studies that have used KGE models adopted old versions of
these models [31, 32]. These versions have then received signif-
icant modifications through recent computer science research
advances [25].

In a previous study, Su et al. [14] have introduced the use
of network embedding methods in biomedical data science.
The study compiles a taxonomy of embedding methods for
both basic and heterogeneous networks where it discusses a
broad range of potential applications and limitation. The study’s
objective was to introduce the broad range of network embed-
ding methods; however, it lacked deeper investigation into the
technical capabilities of the models and how can they be inte-
grated with a specific biological problem. The study also did
not compare the investigated models in terms of their accuracy
and scalability, which is essential to assist reader from the
biological domain to understand the key differences between
these methods as to their applicability.

In this study, we exclusively explore KGE models, focusing
on the best performing models in terms of both scalability and
accuracy across various biological tasks. We use these case stud-
ies to demonstrate the analytical capabilities of KGE models, e.g.
learning clusters and similarity measures in different biological
problems. We also explore the process of building biological
knowledge graphs for generic and specific biological inference
tasks. We then present computer-based experimental evalua-
tion of KGE models on different tasks such as predicting DTIs,
drug polypharmacy side effects and prediction of tissue-specific
protein functions.

The rest of this study is organized as follows: Section 2.1
discusses knowledge graphs as a data modelling technique and
their applications in the biological domain. Section 2.2 discusses
KGE models, their design and how they operate on different
types of data. Section 3 presents the example case studies that
we will use throughout the study. Section 4 discusses the pre-
dictive and analytical capabilities of KGE models on the desig-
nated case studies discussed in Section 3. Section 5 discusses
the performance of KGE models on biological data in terms
of the predictive accuracy and scalability. Section 6 discusses
the current challenges and possible opportunities of the use of
KGE models to model the different types of biological systems.
Finally, we discuss our conclusions in Section 7.

Background
In this section, we discuss both knowledge graphs and KGE
models in the context of biological applications.

Knowledge graphs

A knowledge graph is a data modelling technique that models
linked data as a graph, where the graph’s nodes represent data
entities and its edges represent the relations between these
entities. In recent years, knowledge graphs became a popular
means for modelling relational data where they were adopted
in various industrial and academic applications such as seman-
tic search engines [33], question answering systems [34] and
general knowledge repositories [35]. They were also used to
model data from different types of domains such as general
human knowledge [35], lexical information [36] and biological
systems [12].
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Figure 1. A schema of a knowledge graph that models a complex biological system of different types of entities and concepts. The abbreviation DR represents drugs, GE

represents proteins (their genes), EX represents protein expressions (tissues and cell-lines), AB represents protein antibodies, MO represents protein motifs and other

sequence annotations, GO represents gene ontology, DS represents diseases, SE represents drug side-effects, AT represents ATC classes, CL represents drug classes and

PA represents pathways.

Knowledge graphs model facts as subject, predicate and
object (SPO) triples, where subjects and objects are the
knowledge entities and predicates are the knowledge relations.
In this context, the subject entity is associated to the object
entity with the predicate relation e.g. (Aspirin, drug_target and
COX1). Figure 1 shows an illustration of a schema of a knowledge
graph that models complex associations between different types
of biological entities such as drugs, proteins, antibodies, etc. It
also models different types of relations between these entities,
where these relations carry different association semantics.

In our study, we use G to denote a knowledge graph, E to
denote entities and R to denote relations i.e. predicates. We also
use Ne and Nr to denote the total count of both entities and
relations in a knowledge graph, respectively.
Popular Biological Sources. Online knowledge bases are a popu-
lar means for publishing large volumes of biological data [37]. In
recent years, the number of these knowledge bases has grown,
where they cover different types of data such as paper abstracts
[38], raw experimental data [39], curated annotations [10, 40, 41],
etc. Biological knowledge bases store data in different structured
and unstructured (free text e.g. comments) forms. Although both
data forms can be easily comprehended by humans, structured
data are significantly easier for automated systems. In the fol-
lowing, we explore popular examples of these knowledge bases
that offer structured data that can be easily and automatically
consumed to generate knowledge graphs.

Table 1 summarizes the specializations and the different
types of covered biological entities of a set of popular biological
knowledge bases. The table also shows that most of the current
knowledge bases are compiled around proteins (genes). How-
ever, it also shows their wide coverage of the different types of
biological entities such as drugs, their indications, gene ontology
annotations, etc.

Building Biological Knowledge Graphs. Knowledge graphs
store information in a triplet form, where each triplet (i.e. triple)
model a labelled association between two unique unambiguous
entities. Data in biological knowledge bases, however, lack these
association labels. Different knowledge bases also use different

identifier systems for the same entity types, which results in the
ambiguity of entities of merged databases. Building biological
knowledge graph process therefore mainly deals with these two
issues.

In the association labelling routine, one can use different
techniques to provide meaningful labels for links between differ-
ent biological entities. This, however, is commonly achieved by
using entity types of both subject and object entities to denote
the relation labels as shown in Figure 1 (e.g. ‘Drug Side-effect’ as
a label for link between two entities that are known to be types
of drug and side effect, respectively).

The ambiguity issue, i.e. merging entities of different iden-
tifier systems, is commonly resolved using identifier mapping
resource files. Different systems study entities on different spe-
ciality levels. As a result, the links between their different identi-
fier systems is not always in a form of one-to-one relationships.
In such cases, a decision is made to apply a specific filtering
strategy based on either expert’s opinion or problem-specific
properties (for instance, deciding on an authoritative resource
such as UniProt for protein entities and resolving all conflicts by
sticking to that resource’s naming scheme and conventions).

To complement the basic principles introduced in the pre-
vious paragraphs, we refer the reader to the Bio2RDF initiative
[55] that has extensively studied the general topic of build-
ing interlinked biological knowledge graphs [see also Bio2RDF
scripts (https://github.com/bio2rdf/bio2rdf-scripts/wiki) for cor-
responding scripts and conversion convention details]. General
principles as well as an example of actual implementation of
conversion from (relational) databases into RDF (i.e. knowledge
graphs) are discussed in the study of Bizer et al. [56]. Possible
solutions to the problem of aligning and/or merging several
such knowledge graphs are reviewed in the study of Amrouch
et al. [57] that focuses on ontology matching. An example of a
more data-oriented method is for instance LIMES [58]. All these
approaches may provide a wealth of inspiration for building
bespoke approaches to building knowledge graphs in specific
biomedical use cases, should the information we provide in this
section be insufficient.
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Table 1. A comparison between popular biological knowledge graph in terms of the coverage of different types of biological entities. The
abbreviation S represents structured data, U represents unstructured data, DR represents drugs, GE represents proteins, GO represents gene
ontology,PA represents pathways and CH denotes chemicals

Properties Entity coverage

Knowledge base Format Speciality Proteins Drugs Indications Diseases Gene ontology Expressions Antibodies Phenotypes Pathways

UNIPROT [10] S/U GE � � � � � � �
REACTOME [42] S PA � � �
KEGG [40, 43] S PA � � � �
DrugBank [44] S/U DR � � �
Gene Ontology [11] S GO � � �
CTD [45] S/U CH � � � � �
ChEMBL [46] S/U CH � � � � �
SIDER [47] S DR � �
HPA [48] S/U GE � � � �
STRING [49] S GE �
BIOGRID [50] S GE �
InAct [41] S GE �
InterPro [51] S GE �
PharmaGKB [52] S DR � �
TTD [53] S DR � �
Supertarget [54] S DR � �

Figure 2. An illustration of the training network of one training instance of a KGE model.

Knowledge graph embeddings

In this section, we discuss KGE models where we briefly explore
their learning procedure. We then explore different embedding
representation types and their potential uses and application.
The learning procedure. Multiple studies have explored KGE
models, their technical design, training objectives and predic-
tive capabilities on general benchmarking settings [15, 24, 59].
Therefore, in the following, we only focus on providing a brief
and concise description of how KGE models work.

KGE models operate by learning low-rank representations of
knowledge graph entities and relations. The KGE learning step is
a multi-phase procedure as shown in Figure 2, which is executed
iteratively on knowledge graph data. Initially, all entities and
relations are assigned random embeddings (noise). They are
then updated using a multi-phase learning procedure.

KGE models consume knowledge graphs in the form of SPO
triplets. They first generate negative samples from the input
true triplets using uniform random corruptions of the subjects
and objects [60]. KGE models then lookup corresponding embed-
ding of both the true and corrupted triplets. The embeddings
are then processed using model-dependent scoring functions
(cf. mechanism of action in Table 2) to generate scores for all
the triplets. The training loss is then computed using model-
dependent loss functions where the objective is to maximize
the scores of true triplets and minimize the scores of corrupted
triplets. This objective can be formulated as follows:

∀t∈T,t′∈T′ f (θt) > f (θt′ ), (1)

where T denotes the set of true triplets, T′ denotes the set
of corrupted triplets, f denotes the model-dependent scoring
function and θt denotes the embeddings of the triplet t.

Traditionally, KGE models use a ranking loss, e.g. hinge loss
or logistic loss, to model the objective training cost [26, 28,
29]. This strategy allows KGE models to efficiently train their
embeddings in linear time, O(d), where K denotes the size of
the embedding vectors. On the other hand, some KGE models
such as the ConvE [30] and the ComplEx-N3 [25] models adopt
multi-class based strategies to model their training loss. These
approaches have shown superior predictive accuracy compared
to traditional ranking-based loss strategies [25, 30]. However,
they suffer from limited scalability as they operate on the full
entity vocabulary.

The KGE models minimize their training loss using different
variations of the gradient descent algorithm e.g. Adagrad, AMS-
Grad, etc. Finally, some KGE models normalize their embeddings
as a regularization strategy to enhance their generalization. This
strategy is often associated to models, which adopt ranking-
based training loss strategies such as the TransE and DistMult
models [26, 28].

The learning multi-phase procedure is executed iteratively to
update the model’s embeddings until they reach an optimal state
that satisfies the condition in Equation 1. Table 2 also provides a
summary of properties of popular KGE models, their mechanism
of action i.e. scoring mechanism, output embeddings format,
runtime complexity, release year and available code bases.

KGE models ingest graph data in triplets form where they
learn global graph low-rank latent features, which preserve the
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Table 2. A comparison between popular KGE models, their learning mechanism, published year and available code bases. Em. format column
denotes the format of the model embeddings in the form (g(d), h(d)), where d denotes the embeddings size, g(d) denotes the shape of the entities
embeddings and h(d) denotes the shape of the relations embeddings. n and m denote the number of entities and relations, respectively, in the
space complexity column

Model Scoring mechanism Em. Format Time complexity Space complexity Year Repository (Python)

RESCAL [27] Tensor factorization (d, d2) O(d2) O(nd + md2) 2011 mnick/rescal.py
TransE [26] Linear translation (d, d) O(d) O(nd + md) 2014 ttrouill/complex
DistMult [28] Bilinear dot product (d, d) O(d) O(nd + md) 2015 ttrouill/complex
HolE [62] Fast Fourier transformation (d, d) O(d log d) O(nd + md) 2016 mnick/holographic-embeddings
ComplEx [29] Complex product (2d, 2d) O(d) O(nd + md) 2016 ttrouill/complex
ANALOGY [63] Analogical structure (d, d) O(d) O(nd + md) 2017 quark0/ANALOGY
ConvE [30] Convolutional filters (d, d) O(d) O(nd + md) 2018 TimDettmers/ConvE
TriModel [64] Multi-part embeddings (3d, 3d) O(d) O(nd + md) 2019 samehkamaleldin/libkge

graph’s coherent structure. These features encode semantics
such as node types and their neighbours by isolating nodes’
embeddings on different embedding dimensions [23]. However,
they have limited ability to encode indirect semantics such as
logical rules and in-direct relations [61].

Embedding representation. KGEs have different formats e.g.
vectors, matrices, etc., which serve as numerical feature repre-
sentations of their respective objects. These representations can
be used in both general tasks such as clustering and similarity
analysis, as well as in specific inference tasks such as predicting
different association types. Similarly, in computational biology,
they can be used to cluster biological entities such as protein,
drugs, etc., as well as to learn specific biological associations
such as drug targets, gene-related diseases, etc. Embeddings of
biological entities can also be used as representative features
in traditional regression and classification models e.g. logistic
regression or SVM classifiers.

Popular KGE models. Table 2 presents a comparison between
a set of popular KGE models, their scoring mechanism, embed-
dings format, time complexity, space complexity, year of publi-
cation and corresponding source code repository. These models
use different approaches to learn their embeddings where they
can be categorized into three categories: distance-based models,
factorization-based models and convolutional models. Distance-
based models such as the TransE model use linear translations
to model their embeddings interactions using a linear time
and space complexity procedure. Convolution-based methods
such as the ConvE use convolutional neural networks to model
embedding interactions, which also have a linear time and space
complexity. Factorization-based models, on the other hand, use
dot product-based procedures to model embedding interactions,
where they also have linear time and space complexity. How-
ever, tensor factorization-based models commonly use higher
rank embeddings than convolution and distance-based models
[29, 64].

In this study, we are focused on embedding methods, which
operate on multi-relational graphs as we mentioned in the intro-
duction of the paper. The DeepWalk [65], Node2Vec [66], etc. are
uni-relational graphs embedding methods; thus, they we do not
include them in this study.

Examples of biological case studies
In the following, we present two example biological case studies
that we use through this study to demonstrate the capabilities
of KGE models. Firstly, we discuss the task of predicting DTIs
where we model biological information as a knowledge graph.
We then evaluate the predictive accuracy of KGE models, and we

compare them to other state-of-the-art approaches. Secondly,
we discuss the task of predicting drug polypharmacy side effects,
where we model the investigated drug polypharmacy data as a
3D tensor.

Predicting DTIs

The study of drug targets has become very popular with the
objective of explaining mechanisms of actions of current drugs
and their possible unknown off-target activities. Knowing tar-
gets of potential clinical significance also plays a crucial role in
the process of rational drug development. With such knowledge,
one can design candidate compounds targeting specific proteins
to achieve intended therapeutic effects. Large-scale and reliable
prediction of DTIs can substantially facilitate development of
such new treatments. Various DTI prediction methods have
been proposed to date. Examples include chemical genetic [67]
and proteomic methods [68] such as affinity chromatography
and expression cloning approaches. These, however, can only
process a limited number of possible drugs and targets due to the
dependency on laboratory experiments and available physical
resources. Computational prediction approaches have therefore
received a lot of attention lately as they can lead to much faster
assessments of possible DTIs [69, 70].
Data. We consider the DrugBank_FDA [71] benchmarking data
set as an example to evaluate the predictive accuracy of KGE
models and to compare them to other approaches. We also
utilize the UNIPROT [10] database to provide richer informa-
tion about both drugs and their protein targets in the input
knowledge graph. The data set contains 9881 known DTIs, which
involve 1482 drugs and 1408 protein targets.
Related work. The work of Yamanishi et al. [69] was one of the
1st approaches to predict drug targets computationally. Their
approach utilized a statistical model that infers drug targets
based on a bipartite graph of both chemical and genomic infor-
mation. The BLM-NII [70] model was developed to improve the
previous approach by using neighbour-based interaction-profile
inference for both drugs and targets. More recently, Cheng et
al. [72, 73] proposed a new way for predicting DTIs, where they
have used a combination of drug similarity, target similarity
and network-based inference. The COSINE [74] and NRLMF [75]
models introduced the exclusive use of drug–drug and target–
target similarity measures to infer possible drug targets. This has
an advantage of being able to compute predictions even for drugs
and targets with limited information about their interaction
data. However, these methods only utilized a single measure
to model components similarity. Other approaches such as the
KronRLS-MKL [76] model used a linear combination of multiple
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similarity measures to model the overall similarity between
drugs and targets. Non-linear combinations were also explored
in an early study [70] and shown to provide better predictions.
Recently, further predictive models were developed to utilize
matrix factorization [77] and biological graph path features [7]
to enable more accurate drug–target prediction.

Predicting polypharmacy side effects

Polypharmacy side effects are a specific case of adverse drug
reactions that can cause significant clinical problems and rep-
resent a major challenge for public health and pharmaceutical
industry [78]. Pharmacology profiling leads to identification of
both intended (target) and unintended (off-target) drug-induced
effects, i.e. biological system perturbations. While most of these
effects are discovered during pre-clinical and clinical trials
before a drug release on the market, some potentially serious
adverse effects only become known when the drug is in use
already.

When more drugs are used jointly (i.e. polypharmacy), the
risk of adverse effects rises rather rapidly [79, 80]. Therefore,
reliable automated predictions of such risks are highly desirable
to mitigate their impact on patients.
Data. In this case study, we consider the data set compiled by
Zitnik et al. [8] as an example benchmark. The data set includes
information about multiple polypharmacy drug side effects
(http://snap.stanford.edu/decagon/). The data set also contains
facts about single drug side effects, protein–protein interactions
and protein–drug targets. The drug side effects represented in
the data set are collected from the SIDER (Side Effect Resource)
database [47] and the OFFSIDES and TWOSIDES databases [80].
These side effects are categorized into two groups: mono-drug
and polypharmacy drug–drug interaction side effects.

In our study, we only consider the polypharmacy side effects,
and we filter out both the mono-side effects and drug targets
data.
Related work. The research into predictive approaches for
learning drug polypharmacy side effects is in its early stages
[8]. The Decagon model [8] is one of the 1st introduced methods
for predicting polypharmacy side effects, which models the
polypharmacy side-effect data as a knowledge graph. It then
solves the problem as a link prediction problem using a
generative convolution-based strategy. Despite its effectiveness,
this approach still suffers from a high rate of false positives.
Furthermore, other approaches considered using a multi-source
embedding model [81] to learn representations of drugs and
polypharmacy side effects. These approaches achieved similar
performance to the Decagon model with a more scalable training
procedure [81].

Predicting tissue-specific protein functions

Proteins are usually expressed in specific tissues within the
body where their precise interactions and biological functions
are frequently dependent on their tissue context [82, 83]. The
disorder of these interactions and functions results in diseases
[84, 85]. Deep understanding of tissue-specific protein activities
is therefore essential to elucidate the causes of diseases and
possible treatments.
Data. We consider the tissue-specific data set compiled by Zitnik
et al. [86] to study tissue-specific protein functions. The data set
contains protein–protein interactions and protein functions of
144 tissue types (http://snap.stanford.edu/ohmnet/).
Related work. Recently, Zitnik et al. have developed the state-
of-the-art model, the OhmNet model [86], a hierarchy-aware

unsupervised learning method for multi-layer networks. It mod-
els each tissue information as a separate network and learns
efficient representations for proteins and functions by generat-
ing their embeddings using the tissue-specific protein–protein
interactome and protein functions. They have also examined
other different approaches such as the LINE model [87], which
uses a composite learning technique where it learns half of the
embeddings’ dimensions from the direct neighbour nodes and
the other half from the 2nd hop connected neighbours. The
GeneMania model [88] is another model that has suggested a
propagation-based approach for predicting tissue-specific pro-
tein functions. In this method, the tissue-specific networks are
firstly combined into one weighted network, and they are then
propagated to allow predicting other unknown protein func-
tions.

Capabilities of KGE models
KGE models can be used in different supervised and unsuper-
vised applications where they provide efficient representations
of biological concepts. They can be used in applications such as
learning biological associations, concepts similarity and cluster-
ing biological entities. In this section, we discuss these applica-
tions in different computational biology tasks. We provide a set
of example uses cases where we present the data integrated in
each example, how the KGE models were utilized and we report
the predictive accuracy of the KGE models and we compare it to
other approaches when possible.

Learning biological associations

KGE models can process data in the form of a knowledge graph.
They then try to learn low-rank representations of entities and
relations in the graph, which preserve its coherent structure.
They can also process data in a three-dimensional (3D) tensor
form where they learn low-rank representations for the tensor
entities that preserve true entity combination instances in the
tensor.

In the following, we provide two examples for learning bio-
logical associations on a knowledge graph and a 3D tensor in
a biological application. First, we discuss the task of predicting
DTIs where we model biological information as a knowledge
graph. We then evaluate the predictive accuracies of KGE models,
and we compare them to other state-of-the-art approaches.
Secondly, we discuss the task of predicting drug polypharmacy
side effects, where we model the related data as a 3D tensor. We
then apply KGE models to perform tensor factorization, and we
evaluate their predictive accuracy in learning new polypharmacy
side effects compared to other state-of-the-art approaches.

• Drug–target prediction benchmark. We present a compari-
son between state-of-the-art drug–target predictors and KGE
models in predicting DTIs. The KGE models in this context
utilize the fact that the current drug–target knowledge bases
like DrugBank [71] and KEGG [40] are largely structured as
networks representing information about drugs and their
relationship with target proteins (or their genes), action path-
ways and targeted diseases. Such data can naturally be inter-
preted as a knowledge graph. The task of finding new associa-
tions between drugs and their targets can then be formulated
as a link prediction problem on a biological knowledge graph.

We use the standard evaluation protocol for the DTI task
[7] on the DrugBank_FDA data set that we introduced in
Section 3.1. We use a 5-fold cross-validation evaluation on
the DTIs where they are divided into splits with uniform
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Biological applications of KGE models 7

Figure 3. A summary of results of an evaluation of the predictive accuracy of knowledge graph embedding models compared to other models on two biological

inference tasks: predicting drug targets and predicting polypharmacy side-effects. The reported results represent the score percentage of the area under the ROC and

precision recall curves for the left and right side bars respectively.

random sampled negative instances with a 1:10 positive to
negative ratio.

Figure 3 presents the outcome results of the KGE mod-
els (DistMult, ComplEx and TriModel) compared to other
approaches (DDR [7], DNILMF [77], NRLMF [77], NRLMF [75],
KRONRLS-MKL [76], COSINE [89] and BLM-NII [70]) on the
DrugBank_FDA data set. The figure shows that the KGE mod-
els outperform all other approaches in terms of both the area
under the ROC and precision recall curves.

• Polypharmacy side effects prediction benchmark. In
Section 3.2, we discussed the problem of predicting polyphar-
macy side effects, the currently available data and related
works. In the following, we present an evaluation benchmark
for present polypharmacy side effects where we compare the
KGE models with current state-of-the-art approaches. We
first split the data into two sets, train and test splits, where
the two splits represent 90% and 10% of the data, respectively.
We then generate random negative polypharmacy side
effects by randomly generating combinations of drugs for
each polypharmacy side effect where the ratio between
negative and positive instances is 1:1. We only consider
drug combinations that did not appear in both training and
test splits to enhance the quality of sampled negatives and
decrease the ratio of false negatives.

We use the holdout test defined by Zitnik et al. [8] where
we train the predictive models on the training data and test
their accuracy on the testing data split. We also run a 5-runs
averaged 5-fold cross-validation evaluation to ensure the
consistency of the model reported results over the different
folds; however, we only report the holdout test results,
which are comparable with state-of-the-art methods. Our
k-fold cross validation experiments confirm that the model
results are similar or insignificantly different across different
random testing splits.

We use the area under the ROC and precision recall
metrics to assess the quality of the predicted scores. Figure 3
presents the results of our evaluation where we compare KGE
models such as the DistMult, ComplEx and TriModel models
to the current popular approaches (Decagon [8], KB_LRN [91],
RESCAL [27], DEDICOM [92] and DeepWalk [65]). The results
show that KGE models outperform other state-of-the-art
approaches in terms of both the area under the ROC and
precision recall curves.

• Tissue-specific protein function prediction benchmark.
In Section 3.3, we have presented the problem of tissue-
specific protein function prediction benchmark where we
have discussed current predictive models and established
benchmarking data sets. In the following, we present
an evaluation benchmark between a set of traditional
approaches such as the OhmNet [86], LINE [87], GeneMania
[88] and SVM [86] models and other KGE models. We
use the data set generated by Zitnik et al. [86], which
provides training and testing data with both positive and
negative instances where the negative to positive ratio is
1 to 10.

We conduct a holdout test using the provided training
and testing data set where we train our models on the
training split and evaluate them on the testing using the area
under the ROC and precision recall curves. Figure 3 presents
the outcome of our experiments where it shows that KGE
models such as the TriModel and ComplEx models achieve
the best results in terms of both the area under the ROC and
precision recall curves. Similar to the previous experiments,
we also ran a 5-runs 5-fold cross-validation test to ensure the
consistency of our results, and the results of our experiments
confirm the results reported in the holdout test. However, we
only report the holdout test results to be able to compare to
other approaches.
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8 Mohamed et al.

Figure 4. Three similarity matrices that denote the drug–drug similarities, motif–motif similarities and protein–protein similarities. The similarity values are generated

by computing the cosine similarity between the embeddings of the pairs of compared entities. All the embeddings used to generate this figure are computed on the

DrugBank_FDA data sets with the proteins associated to their PFam [90] motifs and protein families.

In all of our holdout test experiments, we learn the best
hyperparameters using a grid search on the validation data
split, where the training set is divided into two sets for training
and validation (90% and 10%, respectively) in the absence of
a validation set. On the other hand, in the cross validation
experiments, we re-split each into training and validation splits
(90% and 10%, respectively) in order to learn the model’s best
hyperparameters. We have found the embedding size is the most
sensitive hyperparameters where it correlates with the graph
size. The regulation weight and embedding dropout also are
important hyperparameters, which affect the generality of the
models from the validation to the testing split.

Example source code scripts and data sets of the experi-
ments, which we executed in this study, are available at https://
github.com/samehkamaleldin/bio-kge-apps.

Learning similarities between biological entities

The KGE models enable a new type of similarity that can be
measured between any two biological entities using the similar-
ity between their vector representation. The similarity between
vectors can be computed using different techniques such as the
cosine and p-norm similarities. Since the KGE representation
is trained to preserve the knowledge graph structure, the sim-
ilarity between two KGE representations reflects their similarity
in the original knowledge. Therefore, the similarities between
vector representations of KGE models, which are trained on a
biological knowledge graphs, represent the similarities between
corresponding entities in the original knowledge graph.

In the following, we explore a set of examples for using KGE
similarities on biological knowledge graphs. We have used the
drug–target knowledge graph created for the drug–target predic-
tion task to learn embeddings of drugs, their target proteins and
the entities of the motifs of these proteins according to the PFam
database [90]. We have then computed the similarities between
embeddings of entities of the same type such as drugs, proteins
and motifs as shown in Figure 4. All the similarity scores in
the illustration are computed using cosine similarity between
the embeddings of the corresponding entity pair. The results
show that the similarity scores are distributed from 0.0 to 1.0,
where the 0.0 represents the least similar pairs and the 1.0
scores represent the similarity between the entity and itself. We
then assess the validity of resulting scores by investigating the

similarity of attributes of a set of the examined concepts with
highest and lowest scores.

• Drug–drug embedding similarity. The left similarity matrix in
Figure 4 illustrates the drug–drug similarity scores between
the set of the most frequent drugs in the DrugBank_FDA data
set. The scores are computed on the embeddings of drugs
learnt in the DTI training pipeline. The figure shows that the
majority of drug pairs have a low similarity (0.0 ∼ 0.2). For
example, the similarity score between the drug pairs (diazox-
ideand caffeine) and (tacromlimus and diazoxide) is zero. We
asses these results by assessing the commonalities between
the investigated drugs in terms of indications, pharmaco-
dynamics, mechanism of action, targets, enzymes, carriers
and transporters. The caffeine and diazoxide in this context
have no commonalities except for that they are both diuretics
[93, 94]. On the other hand, halothane and alprazolam does
not share any of the investigated commonalities.

The results also shows a few drug–drug similarities with
relatively higher scores (0.6 ∼ 0.7). For example, the similarity
scores of the drug pairs (alprazolam and halothane), (alpra-
zolam and caffeine) and (halothane and caffeine) are 0.7, 0.6
and 0.6, respectively. These findings can be supported by the
fact that the two drug pairs share common attributes in terms
of their targets, enzymes and carriers. For example, both
alprazolam and halothane act on sedating individuals, and
they target the GABRA1 protein [95, 96]. They are also broken
by CYP3A4 and CYP2C9 enzymes and carried by albumin [97].
Similarly, the (alprazolamand caffeine) and (halothaneand
caffeine) pairs have common associated enzymes.

• Motif–motif embedding similarity. The middle similarity
matrix in Figure 4 illustrates the motif–motif similarity
scores between the set of the most frequent PFam motifs
associated with protein targets from the DTI benchmark. The
lowest motif–motif KGE-based similarity scores correspond
to the pairs (ANF_receptor and Trypsin), (ANF_receptor and
DUF1986) and (ANF_receptor and Trypsin_2).

• On the other hand, the highest similarity scores (0.8, 0.9 and
0.9) exist between the pairs (Trypsinand DUF1986), (Trypsin_2
and DUF1986) and (Trypsin and Trypsin_2), respectively.

We assess the aforementioned findings by investigating
the nature and activities of each of the discussed motifs.
For example, Trypsin is a serine protease that breaks down
proteins and cleaves peptide chains while Trypsin_2 is
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Biological applications of KGE models 9

Figure 5. Three similarity matrices that denotes the drug–drug similarities, motif–motif similarities and protein–protein similarities. The similarity values are generated

by computing the cosine similarity between the embeddings of the pairs of compared entities. All the embeddings used to generated this figure are computed on the

DrugBank_FDA data sets with the proteins associated to their PFam [90] motifs and protein families.

an isozyme of Trypsin, which has a different amino acid
sequence but catalyzes the same chemical reaction as
Trypsin [98].

Moreover, the DUF1986 is a domain that is found in both
of these motifs, which supports the high similarity scores. On
the other hand, the ANF receptor is an atrial natriuretic factor
receptor that binds to the receptor and causes the receptor to
convert GTP to cGMP, and it plays a completely different role
to trypsin, which supports its reported low similarity scores
with trypsin.

• Protein–protein embedding similarity. The right similarity
matrix in Figure 4 illustrates the protein–protein similarity
scores between the set of the most frequent protein targets
from the DTI benchmark. The highest-scored protein–protein
pairs are (PTGS1, PTGS2) and (CYP2C19, CYP2C9) with the
scores 0.8 and 0.8, respectively. This can be supported by the
fact that the proteins CYP2C9, CYP1A2 and CYP2E1 belong to
the same family of enzymes and thus they have similar roles.

On the other hand, the ACE protein have the lowest sim-
ilarity scores with the CYP2C9, CYP1A2 and CYP2E1 proteins
with 0.0 similarity score. This can be supported by the fact
that ACE is a hydrolase enzyme, which is completely different
from CYP2C9, CYP1A2 and CYP2E1, which are Oxidoreduc-
tases enzymes.

Clustering biological entities

In the following, we demonstrate the possible uses of embed-
dings based clustering in different biological tasks. We explore
two cases where we use the embeddings of KGE models to gen-
erate clusters of biological entities such as drugs and polyphar-
macy side effects. We use visual clustering as an example to
demonstrate cluster separation on a 2D space. However, in real
scenarios, clustering algorithms utilize the full dimensionality
of embedding vectors to build richer semantics of outcome clus-
ters. Figure 5 shows two scatter plots of the embeddings of drugs
from the DrugBank_FDA data set and the polypharmacy side
effects reduced to a 2D space. We reduced the original embed-
dings using the T-SNE dimensionality reduction module [99]
with the cosine distance configuration to reduce the embedding
vectors to a 2D space.

The following examples examines two cases that differs in
terms of the quality of generated clusters where we examine
both drugs and polypharmacy side effects according to different

properties. In the 1st example (drug clustering), the generated
embeddings is able to provide efficient clustering. On the other
hand, in the 2nd example, the polypharmacy side effects, the
learnt embeddings could not be separated into visible clusters
according to the investigated property.

• Clustering drugs. The left plot in Figure 5 shows a scatter
plot of the reduced embedding vectors of drugs coloured
according to their chemical structure properties. The drugs
are annotated with seven different chemical structure
annotations: Polycyclic, Hydrocarbons Cyclic, Hydrocarbons,
Heterocyclic, Heterocyclic 1-Ring, Heterocyclic 2-Ring and other
chemicals. These annotations represent the six most fre-
quent drug chemical structure category annotation extracted
from the DrugBank database.

We can see in the plot that the Polycyclic chemicals are
located within a distinguishable cluster in the right side of
the plot. The plot also shows that other types of Hydrocarbons
and Heterocyclic chemicals form different micro-clusters in
different locations in the plot.

These different clusters can be used to represent a form
of similarity between the different drugs. It can also be
used to examine the relation between the embeddings as
a representation with the original attributes of the examined
drugs.

• Clustering polypharmacy side effects. The right plot in
Figure 5 shows a scatter plot of the reduced embedding
vectors of polypharmacy side effects. The plot polypharmacy
side-effect points are coloured according to the human body
systems they affect. The plot includes a set of six categories of
polypharmacy side effects that represent six different human
body systems e.g. nervous system.

Unlike the drug clusters illustrated in the left plot,
the polypharmacy side-effect system-based categorization
does not yield obvious clusters. They, however, form tiny
and scattered groups across the plot. This shows that the
KGE models are unable to learn representations that can
easily separate polypharmacy side effects according to their
associated body system.

Practical considerations for KGE models
In this section, we discuss different practical considerations
related to the use of KGE models. We discuss their scalability
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10 Mohamed et al.

Figure 6. A set of line plots that describe the relation between the training runtime and the data size and configurable parameters of the TransE, DistMult, ComplEx

and TriModel KGE models. The y-axis in all the plots represents the training time in seconds with different scales while the x-axis represents the data size and the

models’ parameters embedding size, negative samples and batch size respectively. The reported results are acquired by running the KGE models on the polypharmacy

side-effects’ full dataset (≈ 4.5M instances).

on different experimental configurations, and we explore their
different training and implementation strategies.

Scalability

Not only KGE models outperform other approaches in biological
knowledge graphs completion tasks but they also have better
scalability compared to usual graph exploratory approaches.
Often, complex biological systems are modelled as graphs where
exploratory graph analytics methods are applied to perform dif-
ferent predictive tasks [5–7]. These models however suffer from
limited scalability as they depend on graph traversal techniques
that require complex training and predictions times [100, 101].
On the other hand, KGE models operate using linear time and
space complexity [29, 59].

On the other hand, explanatory graph models use graph path
searches, which require higher time and space complexity [22].
For example, the DDR model [21] is an exploratory graph drug–
target predictor, which uses graph random walks as features. A
recent study [102] has shown that KGE models can outperform
such models with higher scalability and better predictive accu-
racy. This is due to their linear time and space complexity pro-
cedures [29] compared to other exploratory models, which use
polynomial and exponential time and space procedures [23, 103].

In the following, we provide an empirical study of the scal-
ability of KGE models in terms of different experimental con-
figuration. We have studied the relation between the train-
ing runtime of KGE models and several training configuration
parameters to examine their scalability capabilities. We have
investigated the relation between the training runtime and the
data size, embedding size, training negative samples and the
training data batch size. We have performed our study on the
polypharmacy side-effect data where the objective was to learn
embeddings of drugs and polypharmacy side effects.

Figure 6 shows the outcome results of our study across the
different investigated attributes. Plot ‘A’ shows the relation
between the training runtime and the size of the processed
data. The plot shows that all the four investigated have a linear
relation between their training runtime and the investigated
data size. The plot also shows that the investigated models have
a consistent growth in terms of their runtime across all the data
sizes. The DistMult model consistency achieves the smallest
runtime followed by the TransE, ComplEx and TriModel models,
respectively.

Plot ‘B’ shows the relationship between the training run-
time and the model embedding size. The plot shows that all
the investigated models have a linear growth of their training
runtime corresponding to the growth of the embeddings size.
However, the growth rate of the TransE and DistMult models is
considerably smaller than the growth of both the ComplEx and
TriModel models. This occurs as both the TransE and DistMult
models use a single vector to represent each of their embeddings
while the ComplEx and TriModel models use two and three
vectors, respectively. Despite the better scalability of both the
TransE and DistMult models, the ComplEx and TriModel models
generally achieve better predictive accuracy than the TransE and
DistMult models [64].

Plot ‘C’ shows the relation between the runtime of KGE mod-
els and the number of negative samples they use during training.
The plot shows that there is a positive linear correlation between
training runtime and the number of negative samples—where all
the KGE models have similar results across all the investigated
sampling sizes. The TriModel, however, consistently have the
highest runtime compared to other models.

Plot ‘D’ shows the effects of the size of the batch on the
training runtime. The plot shows an exponential decay of the
training runtime with the linear growth of the data batch size.
The KGE models process all the training data for each training
iteration i.e. epoch, where the data are divided into batches for
scalability and generalization purposes. Therefore, the increase
of the training data batch sizes leads to a decrease of the number
of model executions for each training iteration. Despite the high
scalability that can be achieved with large batch sizes, the best
predictive accuracy is often achieved using small data batch
sizes. Usually, the most efficient training data batch size is
chosen during a hyperparameter grid search along with other
parameters such as the embedding size and the number of
negative samples.

Implementation and training strategies

Different implementations of KGE models are available online in
different repositories as shown in Table 2. The high scalability of
KGE models allows them to be ported to both CPUs and GPUs
where they can benefit from the high-performance capabilities
of GPU cores. They can also be implemented to operate in a
multi-machine design, where they perform embedding training
in a distributed fashion [104]. This configuration is better suited
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Biological applications of KGE models 11

for processing knowledge graph of massive volumes that is hard
to fit into one machine.

In this study, all our experiments are implemented in Python
3.5 using the Tensorflow library where we train our models on a
single GPU card on one machine. We run our experiments on a
Linux machine with an Intel(R) Core(TM) i7 processor, 32 GB RAM
and an nVidia Titan Xp GPU.

Opportunities and challenges
In this section, we discuss the challenges and opportunities
related to the general and biological applications of KGE models.
We begin by discussing the scope of input data for these models.
We then discuss possible applications of KGE models in the
biological domain. We conclude by discussing the limited inter-
pretability of KGE models and other general limitations related
to their biological applications.

Potential applications

KGE models can build efficient representations of biological
data, which are modelled as 3D tensors or knowledge graphs.
This includes multiple types of biological data such as protein
interactome and DTIs. In the following, we discuss examples of
biological tasks and applications that can be performed using
KGE models.

• Modelling proteomics data. KGE models can be used to
model the different types of protein–protein interactions
such as binding, phosphorylation, etc. [105, 106]. This can
be achieved by modelling these interactions as a knowledge
graphs and applying the KGE models to learn the embeddings
of the different proteins and interaction types. They can
also be used to model the tissue context of interactions
where different body tissues have different expression
profiles of proteins, and these differences in expression
affect the proteins’ interaction network. KGE can be used
to model these interactions with their associated contexts as
tensors [6].

The biological activities of proteins also differ depending
on their tissue context [86]. This type of information can
easily be modelled using tensors where KGE models can be
used to analyse the different functions of proteins depending
on their tissue context [107].

• Modelling genomics data. Genomics data have been widely
used to predict multiple gene associated biological entities
such as gene–disease and gene–function associations [108,
109]. These approaches model the gene association in differ-
ent ways including tensors and graph-based representations
[110]. KGE models can be easily utilized to process such
data and provide efficient representations of genes and their
associated biological objects. They can be further used to
analyse and predict new disease–gene and gene–function
associations.

• Modelling pharmacological systems. Information on phar-
maceutical chemical substances is becoming widely avail-
able on different knowledge bases [46, 71]. This information
includes the drug–drug and drug–protein interactome. In this
context, KGE models can be a natural fit, where they can
be used to model and extend the current pharmacological
knowledge. They can also be used to model and predict both
traditional and polypharmacy side effects of drugs as shown
in recent works [8, 111].

More details and discussion of the possible uses of KGE mod-
els and other general network embedding methods can be found
in the study of Su et al. [14], which discusses further potential
uses of these methods in the biological domain.

Limitations of the KGE models

In the following, we discuss the limitations of the KGE models in
both general and biological applications.

• Lack of interpretability. In KGE models, the learning objective
is to model nodes and edges of the graph using low-rank
vector embeddings that preserve the graph’s coherent
structure. The embedding learning procedure operates
mainly by transforming noise vectors to useful embeddings
using gradient decent optimization on a specific objective
loss. Despite the high accuracy and scalability of this
procedure, these models work as a black box and they
are hard to interpret. Some approaches have suggested
enhancing the interpretability of KGE models by using
constraining training with a set of predefined rules such as
type constraints [112], basic relation axioms [113], etc. These
approaches thus enforce the KGE models to learn embed-
dings that can be partially interpretable by their employed
constraints.

In recent studies, researchers have also explored the
interpretability of KGE models through new predictive
approaches on top of the KGE models. For example, Gusmão
et al. [114] suggested the use of pedagogical approaches where
they have used an alternative graphical predictive model, the
SFE model [19], to link the learnt graph embeddings to the
original knowledge graph. This approach was able to provide
a new way for finding links between the embeddings and the
original knowledge; however, the outcomes of these methods
are still limited by the expressibility and feature coverage
of the newly employed predictive models. The interpreting
method in this context also depends on graph traversal
methods, which have limited scalability on large knowledge
graphs [20].

• Data quality. KGE models generate vector representations of
biological entities according to their prior knowledge. There-
fore, the quality of this knowledge affects the quality of the
generated embeddings. For example, there is a high variance
in the available prior knowledge on proteins where well-
studied proteins have significantly higher coverage in most
databases [115]. This has a significant impact on quality of
the less represented proteins as KGE models will be biassed
towards more studied proteins (i.e. highly covered proteins).

In recent years, multiple works have explored the quality
of currently available knowledge graphs [116] and the effect
of low quality graphs on embedding models [117]. These
works have shown that the accuracy KGE predictions degrade
as sparsity and unreliability increase [117].

This issue can be addressed by extending the available
knowledge graph facts through merging knowledge bases of
similar content. For example, drug–target prediction using
KGE models can be enhanced by extending the knowledge
of protein–drug interactions by extra information such as
protein–protein interactions and drug properties [102].

• Knowledge evolution. Biological knowledge evolves everyday,
where new chemicals and drugs are introduced and different
associations between biological entities are discovered.
However, KGE models in this context are unable to encode
the newly introduced entities. This results from their

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article-abstract/doi/10.1093/bib/bbaa012/5739186 by IN

SER
M

 / IC
G

M
 user on 17 February 2020

183



12 Mohamed et al.

dependence on prior knowledge instead of the structural
informations of proteins and chemical substances.

This issue can be addressed by combining KGE scoring
procedure with other sequence- and structure-based scoring
mechanisms. This can allow informed prediction on new
unknown objects. However, such a strategy will affect
the scalability of predictions due to the newly introduced
sequence- and structure-based features.

• Hyperparameter sensitivity. The outcome predictive accu-
racy of KGE embeddings is sensitive to their hyperparameters
[118]. Therefore, minor changes in these parameters can have
significant effects on the outcome predictive accuracy of KGE
models. The process of finding the optimal parameters of
KGE models is traditionally achieved through an exhausting
brute-force parameter search. As a result, their training may
require rather time-consuming grid search procedure to find
the right parameters for each new dataset.

In this regard, new strategies for hyperparameter tuning
such as differential evolution [119], random searches [120]
and Bayesian hyperparameter optimization [121]. These
strategies can yield a more informed parameter search
results with less running time.

• Reflecting complex semantics of biological data in models
based on knowledge graphs. KGE methods are powerful in
encoding direct links between entities; however, they have
limited ability in encoding simple indirect semantics such
as types at different abstraction levels (i.e. taxonomies). For
example, a KGE model can be very useful in encoding net-
works of interconnecting proteins, which are modelled using
direct relations. However, it has limited ability in encoding
compound, multi-level relationships such as protein involve-
ment in diseases due to their involvement in pathways that
cause this disease. Such compound relationships that could
be used for modelling complex biological knowledge are
notoriously hard to reflect in KGE models [122]. However,
the KGE models do have some limited ability to encode for
instance type constraints [123], basic triangular rules [122] or
cardinality constraints [124]. This could be used for modelling
complex semantic features reflecting biological knowledge
in future works. One has to bear in mind, though, that the
designs of these semantics-enhanced KGE models typically
depends on an extra computational routines to regularize the
learning process, which affects their scalability.

In their study, Su et al. [14] have also discussed further gen-
eral limitations of network embedding methods and the effects
and consequences of such limitations on the use of network
embedding methods in the biological domain.

Conclusions
In this study, we discussed KGE models and their biological
applications. We presented two biological case studies, predict-
ing drug targets and predicting polypharmacy side-effects, to
demonstrate the predictive and analytical capabilities of KGE
models. We demonstrated by computational experimental eval-
uation that KGE models outperform state-of-the-art approaches
in solving the two studied problems on standard benchmarks.
We also demonstrated the analytical capabilities of KGE such as
clustering and measuring concept similarities. In this regard, we
demonstrated KGE models’ abilities to learn efficient similarities
between different biological entities such as drugs and proteins.
We also showed that the KGE models can efficiently be used as
clustering methods for biological entities.

Furthermore, we discussed different practical considerations
regarding the scalability and training strategies of KGE models.
We also discussed the potential applications of KGE models in
the biological domain. We finally discussed the challenges and
limitations that face KGE models where we explored both their
general limitations and the challenges that face them in the
biological domain. In conclusion, we believe that the presented
study can be a solid stepping stone towards many promising
applications of the emergent KGE technology in the field of
computational biology.

Key Points
• Knowledge graphs allow easy, automated integration of

multiple diverse biological data sets in order to model
complex biological systems.

• KGE models enable scalable and efficient predictions on
biological knowledge graphs.

• KGE models provide state-of-the-art predictive accu-
racy in learning biological associations with high scala-
bility.

• KGE models provide high-quality analytics, e.g. clus-
tering and concept similarities, of complex biological
systems that can be modelled as graphs or 3D tensors.

• KGE models can be utilized to model and analyse
different types of biological data including genomics,
proteomics and pharmacological data.

• Despite their accurate and scalable predictive capabil-
ities, however, KGE models have limited interpretabil-
ity. They are also sensitive to data quality, knowledge
evolution and training configurations.
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