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Abstract

Specialized hardware technologies or recent pose estimation software tools
can digitize human motion into a discrete sequence of 3D skeletons. Such
spatio-temporal data have enormous application potential in many fields,
ranging from entertainment and sports to security and healthcare. To make
the recorded data useful for a variety of applications, effective and effi-
cient data management techniques are needed. This habilitation thesis in-
troduces general-purpose techniques developed for classification, annota-
tion, and searching in complex human skeleton data. The presented tech-
niques are primarily based on recent advances in deep learning and simi-
larity searching, with an emphasis on both effectiveness and performance
issues. The applicability of selected techniques is also supported by devel-
oped prototype implementations or interactive web applications.
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Chapter 1

Introduction

Human motion can be digitized by estimating 3D positions of selected
body points, typically joints, in time. Recorded joints captured at a given
time moment form a pose, which can be visualized by a stick figure resem-
bling a 3D skeleton. Therefore, human motion data are often denoted as 3D
skeleton sequences. Traditionally, these spatio-temporal data have been cap-
tured using specialized hardware technologies, such as precise but expen-
sive systems of synchronized optical cameras like Vicon, or cheap but inac-
curate depth-sensor devices like Microsoft Kinect. A high-level overview
of existing acquisition technologies is provided in Table 1.1. Today, there
is a growing interest in developing pose-estimation software tools that are
able to estimate joint positions from ordinary video data [1].

The acquired skeleton data have enormous application potential in a lot
of domains. In entertainment, the data are used to render realistic-looking
movements in movies, games, and virtual or augmented reality. This in-
volves direct mapping of captured movements from live subjects to vir-
tual characters and synthesizing animations in high quality [3, 4], or as-
sisting people in learning dancing [5] or any movements according to a
projected performance [6]. In healthcare, doctors and therapists can browse
the recorded skeleton data to better determine the diagnosis and treat-
ment of patients. Gait analysis helps determine neurodegenerative dis-
eases [7], prevent possible injuries in the near future [8], evaluate different
treatment outcomes for cerebral palsy [9], or identify individualized ther-
apeutic strategies for running injuries [10]. A lot of research is devoted
to rehabilitation systems that assist patients during recovery [11] and in-
crease their engagement via gamification [12]. In professional sports, a re-
search primarily focuses on posterior analysis and evaluation of athletic
performances, e.g., in golf [13], dancing [14], figure-skating [15], or martial
arts [16]. The skeleton data are also analyzed to predict the future tennis-
shot direction [17], detect swimming strokes [18], or analyze the phases of
long and triple jumps [19]. In smart cities, skeleton data from real-time sen-
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Table 1.1: Acquisition technologies of 3D skeleton data.

Technology Sensors Frame Occl. Error Cost Mobility Markers
rate resist.1) margin

Vicon2) (optical sensors) 10–40 360 G# mm $$$ – X
xSens3) (inertial sensors) 17 240  mm–cm $$ X X

Kinect v24) (RGB + depth) 2 30 # cm $ – –
synchr. video cameras [2] 3 ˜video G# cm $ – –

video + xNect [1] 1 ˜video # >cm $ X –
1) Degree of resistance towards occlusions – resist. ( ), partially resist. (G#), not resist. (#)
2) https://www.vicon.com/ 3) https://www.xsens.com/
4) https://developer.microsoft.com/en-us/windows/kinect/

sors and ordinary cameras can be used to analyze situations in crowded
spaces, smart homes, or autonomous driving vehicles. This involves iden-
tification of subjects by posture and gait [20], customer analysis and shop-
ping support [21], social-interaction understanding in public places [22],
detection of abnormal activities of elderly people in smart homes [23], or
movement prediction of pedestrians and cyclists approaching a camera in
autonomous driving vehicles [24].

A great application potential together with the current progress in pose-
estimation tools indicate a fast increase of 3D human motion data in the
near future. To make the recorded data useful for a wide range of applica-
tions, we need general-purpose data management techniques that are able
to effectively and efficiently analyze the motion content. Let us assume we
have a set of skeleton sequences from a figure-skating competition. Then,
a user can be interested in the following tasks: (i) categorizing the figure
element performed in a given, manually selected motion segment, (ii) de-
termining all occurrences of the triple Axel jump, or (iii) locating all com-
petitors who performed a similar element as a specified query figure. These
tasks are typically referred to as action recognition, action detection, and search
or subsequence search.

Current research primarily focuses on processing of actions, which are
short skeleton sequences with a clear semantics that is subjective to an ob-
server (e.g., kick, punch, cartwheel, or Axel jump). The action recogni-
tion task aims at determining the class of pre-segmented actions based on
a labeled set of training ones. This is typically solved using deep neural-
network classifiers [25, 26, 27]. However, these classifiers can not be di-
rectly applicable to scenarios where skeleton data are captured as continu-
ous long motions without any information about semantic partitioning. In
such cases, the action detection task can be performed to determine the
beginnings and endings of all occurrences of user-interested actions. This
is usually solved by adapting recurrent neural networks [28, 29, 30]. The
actions can even be predicted if early action detection is needed during
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Figure 1.1: Basic motion-processing tasks: action recognition, action detec-
tion, search and subsequence search. The data known in advance represent
a database that can be pre-processed offline, while a user query needs to be
answered online.

online processing. The tasks of action recognition, detection or prediction
require a set of labeled pre-segmented training actions to be specified in
advance. If data labeling is not known, query-by-example search can be
applied to inspect a collection of pre-segmented motions and find those
that are the most similar to a specified query. If unsegmented and unla-
beled long motions are only available, subsequence search can be used to
retrieve the most similar sub-motions with respect to the query. All these
tasks are graphically illustrated in Figure 1.1.

Challenges

The tasks of action recognition, action detection, search, and subsequence
search are considered as the most useful for a wide range of applications.
However, solving these tasks is difficult since they require completely dif-
ferent data-processing paradigms when compared to the traditional do-
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mains such as attribute-like data, text or images. In addition, these tasks
have to cope with variability, complexity, impreciseness, and voluminous-
ness of the captured spatio-temporal data. This leads to the following two
high-level challenges that are common for most of the motion-processing
tasks.

• Similarity modeling – learning a metric for determining similarity be-
tween a pair of semantic actions, or any pieces of motions in general.
The metric should preserve the motion semantics with respect to the
needs of a target application, while being efficiently evaluated. The
metric can be learned either in a supervised, or unsupervised way
based on the availability of labeled training data.

• Efficient processing – organizing known data to be efficiently accessi-
ble during evaluation of user queries. This typically requires building
various index structures with reasonable space requirements and ap-
plying approximate retrieval algorithms.

In the following, we describe how we have contributed to fulfilling the
stated challenges from the perspective of the aforementioned tasks.

Scope of the Thesis

Since 2012, we have published 21 conference papers and 6 journal publica-
tions purely in the context of skeleton data processing. This thesis brings
a brief commentary on these papers and highlights the 10 most significant
works whose full versions can be found in the second part of this docu-
ment (Part II: Work 1–Work 10). The mentioned papers are usually based
on deep-learning and similarity-search principles and can be classified into
the following topics:

1. Metric learning – determining a similarity between two skeleton sequ-
ences as a fundamental pre-requisite for any motion-processing task;
the similarity is learned using deep neural networks [31, 32], or un-
supervised feature-extraction approaches [33, 34, 35, 36];

2. Gait recognition – segmenting skeleton sequences semantically into
gait cycles [37] whose specifically-defined similarity is used for iden-
tifying subjects based on the way they walk [38];

3. Action recognition – determining the classes of pre-segmented skele-
ton sequences using deep learning principles in combination with k-
nearest neighbor classification [39, 40] and various data normaliza-
tion and augmentation techniques [41, 42];
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4. Subsequence search – searching for query-similar subsequences within
long database motions; the database sequences are partitioned into
short segments [43] whose features are efficiently organized [44, 45,
46, 47, 48, 49];

5. Action detection – annotating continuous skeleton sequences in both
offline- and stream-based processing modes [50, 29].

We have also contributed to the field by developing additional cross-
topic techniques that deal with general-purpose analysis of skeleton data.
In particular, we have focused on analyzing quality of captured data [51],
building a large dataset of continuous skeleton sequences [52], or estimat-
ing the accuracy gap between 2D and 3D skeleton modalities [53, 54].

The selected topics have also been summarized [55, 56] and presented
as 3-hour tutorials at the top multimedia conferences – the ACM Multi-
media (MM) 2018 and the ACM International Conference on Multimedia
Retrieval (ICMR) 2019. The achieved results have additionally been rec-
ognized by other research community – the ESMAC (European Society for
Movement analysis in Adults and Children) board has invited us to give
a seminar lecture within the ESMAC 2018 conference. This conference be-
longs to one of the two largest world conferences on movement analysis in
adults and children.

Except for the standard research papers, the proposed contributions
have been additionally supported by developed prototype implementa-
tions or online web applications, some of them registered in the form of
“software”. Jan Sedmidubský is always the main author and developer of
all the applications as well as software-based outputs.
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Chapter 2

Proposed Content-Based
Processing Techniques

This chapter briefly describes the proposed approaches structured accord-
ing to the five topics mentioned above. The contributions achieved within
these topics are confronted with state-of-the-art approaches and experi-
mentally evaluated on different real-life datasets, e.g., HDM05 [57], CMU 1,
PENN [58] or PKU-MMD [59]. Nevertheless, most of the experiments are
conducted on the HDM05 dataset because it:

• Contains the highest number of 130 classes to be recognized, com-
pared to other datasets having typically fewer than a half of classes;

• Provides only about 20 action samples for each class on average (min-
imum/maximum number of samples is 10/52), compared to other
datasets having one or two orders of magnitude more samples in each
class;

• Provides not only segmented actions but also annotated long skeleton
sequences that can be used for evaluation of subsequence-search or
annotation algorithms.

Both the high number of classes and a limited number of samples in each
class make the processing on the HDM05 dataset difficult, especially in the
context of action recognition and action detection tasks.

2.1 Metric Learning

All the considered tasks – gait recognition, action recognition, action detec-
tion and subsequence search – explicitly or implicitly require to compare
skeleton data based on similarity. It is important to realize that the exact

1http://mocap.cs.cmu.edu
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match on 3D skeleton sequences has very little meaning, as any motion can
be hardly performed again in the exactly same way. The similarity is usu-
ally determined by pre-processing motion data to extract their application-
specific features and comparing the extracted features by a distance function.
Nevertheless, the extraction of high-quality features is very difficult since
the similarity is subjective and context-dependent [33].

The former approaches have introduced many variants of handcrafted
features, such as distances between joints [60], joint-angle rotations [61],
or relational characteristics [62]. These features are commonly extracted
for each motion pose in the form of n-dimensional vector (usually n < 100)
and compared on the level of whole motions using expensive time-warping
techniques, such as the Dynamic Time Warping (DTW) [62]. Except for
time-consuming comparison, the handcrafted features have to be designed
by domain experts and have limited ability to represent more complex
dependencies in movement patterns. Therefore, the handcrafted features
have been practically abandoned and replaced by deep features extracted
from well-trained neural-network models [63].

Deep neural networks are often used for classification of actions into
a predefined set of classes, typically using convolutional neural networks
(CNN) [64, 65], graph convolutional networks (GCN) [66, 67], or Long
Short-Term Memory (LSTM) networks [68, 69]. The learned parameters
of hidden network layers can then be utilized for extraction of content-
preserving features from input actions. Such features are often represented
as fixed-size high-dimensional vectors (e.g., 4,096D features in [32]) and
generalize very well when varied training data are provided. Contrary to
the handcrafted features, the deep features have higher descriptive power
and their fixed-size nature enables efficient and indexable comparison by
the Manhattan or Euclidean distance functions.

In the following, we present our techniques for extraction of effective
deep features using CNN and LSTM neural networks, and also the motion-
word technique that transforms skeleton data into a compact text-like rep-
resentation suitable for efficient indexing.

2.1.1 CNN Features

In [32], we have proposed a new approach for extraction of highly descrip-
tive motion features using a fine-tuned deep convolutional neural network.
First, we have encoded each 3D skeleton sequence into a 2D motion image.
The colors of pixels within the motion image determine how the coordi-
nates of individual joints change over time as the subject moves. Then, we
have proposed to fine-tune the AlexNet convolutional neural network by
the motion images of training actions. As the network is fine-tuned, the de-
scriptive 4,096D feature vectors are extracted from the last hidden network
layer, as schematically illustrated in Figure 2.1. The similarity of a pair of
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Figure 2.1: Illustration of the CNN feature extraction process outputting
the fixed-size 4,096D vector for the input motion of a variable length.

motions is finally quantified by the Euclidean distance calculated between
their corresponding deep feature vectors. The advantage of this approach
is its tolerance towards an imprecise segmentation of training actions, the
variance in movement speed, and a lower data quality in terms of preci-
sion of estimated 3D joint positions. More details about this approach can
be found in the attached publication in Part II (Work 1). We have further
proposed some improvements in generation of motion images [31], leading
to slightly better descriptive power of the extracted deep features. In gen-
eral, the motion image representation is convenient when a limited amount
of training data is available. In such cases, small data amounts are sufficient
when the pre-trained AlexNet is fine-tuned.

2.1.2 Bi-LSTM Features

The disadvantage of the CNN-based approach is that it assumes input data
in the form of motion images that have to be resized into the fixed size
before entering the AlexNet network, which leads to deformation of the
temporal motion dimension. Therefore, in [41] we have proposed to adopt
the LSTM variant of recurrent neural networks that well suit the sequen-
tial nature of motion data. Individual skeletons, represented as vectors of
3D joint coordinates, are gradually fed to recurrent network cells, and the
hidden-state output of a previous time step is passed to the input of the
current step. In particular, we have adopted a bidirectional LSTM (Bi-LSTM)
neural network, which connects two hidden layers of opposite directions
to the same output. As illustrated in Figure 2.2, we have trained the Bi-
LSTM model on the classification task and then extracted motion features
as the concatenation of hidden layers hl and h′1. In [41], we fix both the hid-
den layers to 512 dimensions, resulting in the output of 1, 024 dimensions.
By adjusting the hidden state size we can simply control the trade-off be-
tween efficiency and descriptive power of extracted features. Compared
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Figure 2.2: Schema of the Bi-LSTM architecture trained on the classifica-
tion task [42] – individual action poses P1, . . . , Pl are gradually embedded
into LSTM cells in both past-to-future and future-to-past directions to de-
termine classification probabilities p1, . . . , pm of m classes. The action fea-
ture can then be extracted by concatenating the hidden states hl and h′1.

to CNNs in [32, 39] with the last hidden layer of 4, 096 dimensions, this
approach keeps 4-times smaller features and can be directly trained using
raw skeleton coordinates, instead of intermediate motion-image represen-
tations. The output features can be finally compared using the Manhattan
or Euclidean distance functions, that achieve a comparable result quality.

2.1.3 Motion-Word Features

The proposed CNN or Bi-LSTM features are very effective for the action
recognition task when labeled pre-segmented actions are provided. How-
ever, there is a growing amount of motion data captured as a continuous 3D
skeleton sequence without any information about its semantic partition-
ing. To make such unsegmented and unlabeled data efficiently accessible,
we have proposed to transform them into a structured text-like representa-
tion [35], to which mature text retrieval models could be possibly applied.
Specifically, each long motion is synthetically partitioned into a sequence
of short segments that are quantized into motion words (MWs) – compact
features with similar characteristics as words in text documents. The sim-
ilarity of variable-length motion-word sequences is determined using the
DTW function.

The main issue here is to find an effective quantization of the motion
segments to build a vocabulary of MWs. The most desirable MW prop-
erty is that two MWs match each other if their corresponding segments
exhibit similar movement characteristics, and do not match if the segments
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are dissimilar. This is challenging with the quantization approach, since
it is generally not possible to divide a given space in such way that all
pairs of similar objects are in the same partition. Some pairs of similar seg-
ments thus get separated by partition borders and become non-matching.
We deal with this problem by designing soft MWs that are more complex
structures keeping information also about neighboring partitions. The soft
MWs demonstrate much better ability to preserve the motion content, but
their processing is more computationally demanding because of their non-
trivial matching. More details about this approach can be found in the
attached publication in Part II (Work 2).

In [36], we have also successfully applied the motion-word concept to
medium-sized skeleton sequences, so-called episodes, taking from dozens
of seconds to several minutes (e.g., a figure-skating performance). We have
especially built a MW vocabulary for episode data and designed new match-
ing functions by employing the advances known from the text-document
processing. This has resulted in much more efficient similarity comparison
with respect to the expensive DTW function used in [35]. This approach
was selected into the best-paper session within the ISM 2020 conference,
held online. More details about this approach can be found in the attached
publication in Part II (Work 3).

2.2 Gait Recognition

Gait recognition is the problem of identifying people based on the way they
walk. It is also one of the first application-oriented tasks that have tried to
employ 3D human skeleton data [70]. Today, there are deep-learning ap-
proaches that strive to extract descriptive gait features from different hu-
man motion modalities captured by ordinary video cameras, floor sensors,
radars, or accelerometers [20]. As the accuracy of gait recognition methods
is disputable at larger scales, the gait modality can be used as a comple-
mentary approach in fingerprint- or face-recognition systems.

Although our main objective is general-purpose management of human
skeleton data, our first attempts [37, 38] were designed and evaluated on
the specific task of gait recognition. In the following, we briefly describe
our initial idea – comparison of movement patterns on semantically mean-
ingful parts that correspond to individual gait cycles, i.e., the left and right
footstep. The cycles are then processed to extract their handcrafted gait
features, whose similarity is quantified by a time warping function. The
persons are finally recognized using a 1-nearest neighbor (1NN) classifier.
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2.2.1 Walk Cycle Detection

We have proposed a specialized algorithm [37] to detect individual gait cy-
cles within a long motion sequence. This algorithm firstly localizes all local
minima within a time series representing how the distance between the left
and right foot changes as the person walks. The segments between the con-
secutive minima correspond to individual footsteps. Since human walking
might not be balanced, e.g., due to some injury, we also distinguish whether
a given footstep is performed by the left or right leg by analyzing the ad-
ditional time series between the left knee and right foot. As a proper gait
cycle, we select a pair of the left footstep and consecutive right footstep.
As natural variation in walking behavior results in different lengths of de-
tected cycles, the gait cycles are finally normalized to a fixed length. For
example, in [37] the cycles are normalized to a length of 150 video frames,
which is the length of average cycle of the CMU dataset captured at the 120
frame-per-second rate.

2.2.2 Person Identification using Static and Dynamic Features

Person’s walk can be characterized by a time series of distances between
a pair of selected joints on the human body. In [38], we select four pairs
of joints on legs and hands and extract the corresponding four time series
for each detected gait cycle as dynamic features. We determine a similarity
between two time series by the Dynamic Time Warping (DTW) function.
We then estimate a similarity between two gait cycles by summing DTW
similarities of that four pairs of time series. The experiments evaluated
on the 131 walking sequences of 24 persons of the CMU dataset show the
recognition rate of 96% using the 1NN classifier.

To additionally increase recognition accuracy, we have extracted static
skeleton features, represented by lengths of important bones on the human
body, and fuse them with the dynamic features [71]. We have also proposed
how lengths of specific bones can be better estimated in case the captured
data exhibit some tracking errors [51], as in case of Kinect devices.

2.2.3 Prototype Implementation

The proposed gait-cycle detection and gait recognition algorithms are also
available in the form of software [72], so-called MotionMatch software.
This software encapsulates an application that demonstrates the gait recog-
nition capabilities on the concatenation of the publicly available CMU and
HDM05 datasets. To further increase the accuracy of person identification,
we have considered the face modality and employed the MPEG-7 descrip-
tor to recognize people based on their faces. In particular, we have devel-
oped a multi-modal software [71], so-called MMPI, that recognizes peo-
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ple based on a weighted fusion of both the face and gait modalities. This
software also includes a graphical user interface to demonstrate the multi-
modal recognition characteristics.

2.3 Action Recognition

Action recognition, also referred to as action classification, is probably the
most popular motion-analysis operation [73, 74]. It is the problem of infer-
ring the kind of a 3D skeleton action based on a labeled dataset of training
actions. Solving this problem is difficult as the actions of the same kind,
i.e., belonging to the same class, can be performed by various subjects in
different styles, speeds, and initial body postures.

Currently, action recognition is almost exclusively solved by training a
deep neural-network classifier that can effectively learn semantic relation-
ships among related training actions. In deep learning, 3D skeleton ac-
tions are transformed into intermediate representations (e.g., graph struc-
tures [75, 67] or 2D motion images [25, 65]) that are used to train some
kind of classification model, commonly based on convolutional neural net-
works (CNN) [64, 65], graph convolutional networks (GCN) [66, 67], Long
Short-Term Memory (LSTM) networks [68, 69], or their combinations [76].
The trained models are then directly used for classification of input ac-
tions. Alternatively, the trained models can be used for extraction of high-
dimensional deep features, as stated in Section 2.1. The features are com-
pared by a distance measure to find the most similar training actions with
respect to a query action being classified. The retrieved samples are then
processed by a k-nearest-neighbor (kNN) classifier to determine the class of
the query action [32]. Although kNN classifiers require additional process-
ing costs, they do not need to be expensively retrained when new action
classes appear, compared to standalone neural networks.

In the context of action recognition, we mainly focus on kNN classifica-
tion. We have proposed several kNN classifiers that employ the 4,096D fea-
tures extracted from a CNN. We have also proposed new action augmen-
tation techniques and shown how they can significantly help to increase
recognition accuracy in combination with the LSTM features. We present
these achievements in the following.

2.3.1 kNN Classification

To compare a pair of actions, we adopt our similarity metric originally pro-
posed in [32] and improved in [31]. In particular, we fine-tune the AlexNet
convolutional network by motion images of training actions and extract the
corresponding 4,096D deep feature vectors, which can be compared by the
Euclidean distance to determine their similarity. By comparing the feature
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vector of a query against the feature vectors of all training actions, we iden-
tify the k-most similar ones. In [32, 31], we have simply set k to 1 and clas-
sified the query based on the class of the nearest neighbor only. Although
the 1NN classifier is simple and quite accurate, it need not be convenient
when the query-closest neighbors have almost the same distance while be-
longing to different classes. To solve this problem, we have introduced a
weighted-distance (WD) kNN classifier [39] that recognizes the query based
on the combination of both class-assignment and similarity of the nearest
neighbors.

2.3.2 Confusion-based kNN Classification

Action recognition is difficult when the correct class is confusable with an-
other class, e.g., “grab a thing” with “deposit a thing”. In such cases, the
WD classifier can return very similar probabilities for the two best match-
ing classes. In [39], we have proposed to apply the WD classifier to identify
the best matching classes and then re-rank the retrieved k-nearest neigh-
bors based on different similarity measures which can better separate the
top ranked classes, than the original measure [31]. We can define many
handcrafted-based similarity measures and automatically select the most
useful one for each pair of classes using confusion matrices learned from the
training data. The class of the neighbor with the smallest re-ranked dis-
tance is finally considered as the classification result. More details about
this approach can be found in the attached publication in Part II (Work 4).

2.3.3 Bi-LSTM Recognition with Data Augmentation

Current research in action recognition suggests to employ various architec-
tures of deep neural networks [77]. However, the quality of such proposals
much depends on the size of training datasets. It is not easy to train well-
performing models using a small number of action samples in each class,
as in case of the HDM05-130 dataset distinguishing in 130 classes but pro-
viding only about 10 class samples when 50% of training data are used. Al-
though providing new training data is feasible in other domains, e.g., in the
image domain, it is much more difficult to obtain new high-quality samples
of 3D skeleton sequences, mainly due to the high costs of motion capture
technologies and an absence of professional actors. In [41, 42], we have
proposed several augmentation techniques for the domain of 3D actions in
order to artificially enlarge training data. As illustrated in Figure 2.3, the
proposed techniques deform either the spatial, or temporal dimension of
original actions, and thus contribute to higher intra-class variances com-
pared to the original actions.

As a first step towards more accurate action recognition, we have gener-
ated various sets of augmented training data and used them to train the Bi-
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action length.
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(c) Key pose augmenta-
tion: five key poses are
detected, where the dis-
tance between any two
consecutive key poses is
higher than the key pose
threshold set to 3.7.

Figure 2.3: Illustration of three selected techniques for augmentation of 3D
skeleton actions [42].

LSTM classifier [41]. As reported in the last row in Table 2.1, the achieved
recognition rate outperforms the state-of-the-art results on the HDM05-130
dataset. Even though the Bi-LSTM classifier with augmented data performs
very well, it is generally very hard to determine what are the most suit-
able augmentation techniques for a given dataset. Assume n augmentation
techniques are available, then there are 2n possible combinations how dif-
ferent sets of augmented training data can be generated. For example, if
n = 16, there are 65, 536 different subsets of combinations. And it is not
computationally feasible to train such number of Bi-LSTM classifiers for
choosing the best combination for each dataset. To overcome this problem,
we have proposed to (i) train only one independent classifier for each of the
n augmentation techniques and (ii) estimate the accuracy of a specific com-
bination by efficient fusion of the corresponding classification results of the
independent classifiers. This has enabled us to fast estimate the suitability
of augmentation techniques for the HDM05-130 dataset and helped slightly
improve recognition accuracy. More details about the whole approach can
be found in the attached publication in Part II (Work 5).

2.3.4 Prototype Implementation

We have also developed a prototype [40] that utilizes the weighted-distance
3NN classifier for recognizing actions represented by the 4,096D CNN fea-
tures. This prototype application allows a user to browse long motion se-
quences and specify any subsequence as the input for probabilistic classi-
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Table 2.1: Comparison of action-recognition accuracy with the state-of-the-
art methods using the 2-fold cross validation (i.e. 50% of training data) on
the HDM05-130 ground truth. The methods are sorted by achieved accu-
racy.

Method1) Classifier Accuracy
[78] (2017) LieNet-2Blocks 75.78 %
[65] (2017) CNN on motion images 83.33 %
[26] (2020) DMT-Net 85.30 %
[67] (2019) Si-GCN 85.45 %
[79] (2020) PGCN-TCA 86.59 %

*[32] (2018) CNN features + 1NN 86.79 %
*[31] (2017) Enh. CNN features + 1NN 87.38 %
[80] (2018) PB-GCN 88.17 %

*[39] (2018) CNN & handcrafted features + confusion kNN 88.78 %
*[41] (2019) Bi-LSTM with augmented actions 92.92 %
1) Our proposed methods are denoted by the star symbol (*)

fication based on the 130 predefined HDM05-130 classes, as schematically
illustrated in Figure 2.4.

2.4 Subsequence Search

The subsequence retrieval operation aims at inspecting long data sequences
and detecting such their subsequences that are highly similar to a short
query motion. This task is difficult as query-relevant subsequences can
occur arbitrarily within the data sequences and can vary in lengths based
on the speed of execution. The retrieval process can be generally divided
into two steps: search and refinement. In the search step, a set of query-
relevant candidate results is efficiently retrieved, e.g., using various index
structures, such as the tries in [81] or M-index in [44]. In the refinement
step, the retrieved candidates are re-ranked by more expensive techniques
(e.g., PageRank in [82] or ranking by DTW in [83]) to determine the final
results. When the search step is not supported [74, 84], the refinement is
evaluated over the whole database.

One of the main retrieval issues is to find the accurate alignment of an
arbitrary query within a data sequence. This can be solved by expensive
matching on the level of individual poses [84, 44], or by partitioning either
the query [81, 47] or data [49] motions into overlapping segments. In partic-
ular, unsegmented queries are typically combined with an overlapping and
hierarchical segmentation of the data, where the segment sizes on individ-
ual levels correspond to expected query sizes [49]. Alternatively, both the
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Figure 2.4: Schematic screenshot of the action-recognition application [40].
The input motion is selected as a subsequence between 740–840 frames (i.e.,
roughly between sixth and seventh second) and finally recognized as the
“kickRSide1Reps” class with the 100 % probability, since all the three most
similar retrieved actions correspond to that class.

query and data can be partitioned into short segments to support the eval-
uation of variable-length queries. However, the retrieval phase is more dif-
ficult as a sequence of multiple query segments has to be located within the
sequence of many data segments using temporal filters [81, 44] or expen-
sive warping functions, such as DTW [84], Longest Common Subsequence
(LCS) [85], or Earth-mover’s distance (EMD) [74]. While the overlapping
data segments increase space requirements due to data replication, the query
expansion into multiple segments increases query response times due to the
necessity of evaluating multiple sub-queries.

In the following, we present our subsequence retrieval techniques based
on indexing individual data poses [44, 45] or matching fixed-size data seg-
ments [47, 46, 49].

2.4.1 Pose-Based Indexing

We have firstly proposed a retrieval algorithm [44] that indexes long mo-
tions on the level of individual poses, which are represented as handcrafted
28D feature vectors of angles between selected pairs of bones [45]. In the
search phase, the algorithm selects key poses of a query motion and effi-
ciently retrieves the candidate poses within a data motion which are similar
to any query key pose. In the refinement phase, the temporal surroundings
of the candidate poses are carefully examined to determine relevant sub-
sequences. Such subsequences are then compared against the query using
the Manhattan distance function and the most similar and non-overlapping
ones are returned as the query result. More details about this approach can
be found in the attached publication in Part II (Work 6).

17



2.4.2 Segment-Based Matching

However, indexing on the level of individual poses is not much convenient
since the temporal dimension is ignored and so many poses can become the
candidates for the refinement phase. In [47], we have proposed to take the
temporal dimension into account by indexing long motion sequences on
the level of segments – short subsequences of poses. In the pre-processing
step, we partition input long motions into sequences of segments of about
1 second duration, extract their deep 4,096D CNN features, and index them.
During query processing, we also partition the query into several segments,
extract their deep features, and efficiently search for the candidate data seg-
ments that are the most similar to the query segments. The surrounding
around each candidate segment is specifically inspected to locate relevant
subsequences that are finally refined against the query based on the Eu-
clidean distance between their deep features. More details about this ap-
proach can be found in the attached publication in Part II (Work 7).

2.4.3 Multi-Level Segment-Based Matching

We further simplify query processing by skipping the refinement phase,
which can be very time-consuming (e.g., evaluation of the PageRank al-
gorithm in [82]). By skipping the refinement, we need to retrieve query
results directly in the search phase. Our key idea is to consider the whole
query as a single segment [46]. However, this requires to partition the long
data motions into segments of lengths that are similar to any future query
length. As the length of future queries can be lower- and upper-bounded
in advance, we have proposed to partition the data motions multiple times
into sequences of segments of different lengths, that are organized within a
multi-level segmentation structure – see Figure 2.5 for more details. In the
search phase, the query-similar subsequences can then be easily and effi-
ciently located by searching just a single level of segments – whose length is
the closest to the query length – without any need of additional expensive
post-processing. This approach was selected among the best five papers
within the SISAP 2016 conference, held in Tokyo, Japan. We have further
extended this idea in [49] where several segmentation levels are searched
in parallel to locate also subsequences that are performed more slowly and
faster with respect to the query performance speed. More details about
the whole multi-level and speed-invariant approach can be found in the
attached publication in Part II (Work 8).

In Table 2.2, a comparative summary of our and existing subsequence
search methods is provided from several perspectives: the volume of repli-
cation of data segments, the expansion of query leading to several sub-
queries that need to be separately evaluated, the existence of the search
step, and the way of evaluation of the refinement step. We also provide
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1st level segments (l1 = 125)

2nd level segments (l2 = 187)

3rd level segments (l3 = 280)
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…

… shift of l2 ∙ cf = 37 frames

…      l4 ∙ cf = 85
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… shift of l3 ∙ cf = 56 frames

Figure 2.5: Four-level segmentation structure built over a single skeleton
sequence [46]. This structure is sufficiently dense to evaluate any query
whose length is bounded from 100 to 500 frames (i.e., query duration be-
tween 0.8–4.2 seconds in case of the 120 FPS rate). The i-th level contains
segments of the same length li that are shifted by cf · li frames, where
cf = 0.2 stands for the segmentation density factor.

the query response time (QRT) that shows the actual time to answer a single
query. The individual QRTs are taken from individual papers and cannot
be directly comparable, as they significantly depend on the database size
(DB) and other factors, such as the frame-per-second rate, hardware, fea-
ture selection, length of the query, and the number of retrieved results (e.g.,
the value of k in k-nearest neighbor queries).

2.4.4 Prototype Implementation and Demonstration Application

We have developed an online web application [48] that allows users to
evaluate subsequence-search queries in the two popular motion capture
datasets: HDM05 and CMU. These datasets contain 324 and 2, 191 mo-
tion sequences with the average length of 4, 699 and 1, 750 frames, respec-
tively. The total length of all 2, 515 sequences is more than 5.3millions of
frames, which corresponds to about 12hours with the sampling frequency
of 120Hz.

The proposed application does not require any textual annotations nor
explicit knowledge of the data and can deal with spatio-temporal vari-
ances of human movements. It is effective due to the integration of deep
features reaching high-quality results in action recognition [32]. It is also
very efficient by locating query-similar subsequences in the 12-hour mo-
tion database in less than 1 s. A live demo of subsequence search is running
publicly available at: http://disa.fi.muni.cz/mocap-demo/.
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Table 2.2: Methods for subsequence searching in long motions.

Method1) Features Data Query Search Refinement Efficiency
rep.2) expan. QRT DB size

[83] (2005) geom. relations # – linear scan DTW 294ms 3h
[84] (2006) geom. relations # – – DTW 104 ms 0.5h
[86] (2009) motion patterns # X – body-part fusion 72ms 4h
[85] (2011) joint rotations # – – LCS 105 ms 9h

*[44] (2013) joint rotations # X M-index temporal filter 103 ms 1h
[81] (2013) geom. relations # X trie temporal filter 40ms 35h

*[47] (2017) deep features G# X linear scan Euclidean 103 ms 1h
[74] (2018) deep motifs G# – – EMD 103−4 ms 0.25h

*[49] (2019) deep features  – – Euclidean 84ms 1h
[82] (2019) 3D coordinates # – text search PageRank 40ms 9h

1) Our proposed methods are denoted by the star symbol (*)
2) Data replication – none (#), overlapping data segments (G#), overlapping data segments

organized in multiple levels ( )

2.5 Action Detection

Action detection, sometimes referred to as annotation, is the problem of
identifying actions within a long skeleton sequence. The actions can also
be detected within a continuous stream, which typically requires real-time
processing. In contrast to the subsequence search operation, the examples
of labeled training actions are provided in advance. Such training actions
can be pre-processed to extract their deep features [50] or to aggregate the
same-class actions into motion templates [87, 62]. The pre-processed ac-
tions or templates are then used to detect the desired actions in the input
skeleton sequence/stream either on the level of virtual segments or indi-
vidual poses (i.e., frames).

Segment-level detectors model the temporal context by partitioning the
sequence into many overlapping segments using a sliding window princi-
ple [62, 88, 89], or into disjoint semantic segments [90, 91, 92]. The segments
are then directly classified (e.g., using Naive Bayes [92]) or matched against
the pre-processed actions or templates using various distance functions,
such as the Dynamic Time Warping in [62], Euclidean distance in [50], or
fusion of linear classifiers in [90]. The action is finally detected if the dis-
tance satisfies some predefined threshold.

Pose-level detectors [29, 28, 87, 30, 93, 60, 94] typically learn various mod-
els on the provided training actions to estimate a class-relevance probabil-
ity for each pose of the input skeleton sequence. These probabilities are esti-
mated based on LSTM networks [29, 28, 30], Support Vector Machines [93],
or linear regression classifiers [60]. To deal with the neighboring context of
individual poses, the recent past is encoded within enriched pose features
(e.g., Moving Pose [94] or Structured Streaming Skeleton [60]) or within the
memory of hidden states of LSTM networks (e.g., a whole attention mod-

20



Table 2.3: Methods for action detection in long motions or streams.

Method1) Temporal mechanism Type Early Predict. FPS
det. speed

[62] (2009) DTW + motion templates segment – – 240
[92] (2017) Naive Bayes + Riemannian manifold segment – – 7

*[50] (2017) kNN classifier + CNN features segment – – 131
[88] (2018) Sparse group lasso + direct. features segment – – N/A
[90] (2018) Curvilinear seg. + fusion classifier segment X – 667
[91] (2019) LSTM + sliding window features segment – – 5.4
[94] (2013) kNN classifier + Moving pose pose X – N/A
[60] (2013) Linear regression + SSS features pose X – 500
[93] (2015) SVM + temporal pyramids pose – – 380
[89] (2016) Linear search + BoG + sliding window pose X X 93
[30] (2016) Classification-regression LSTM pose X X 1,230
[87] (2018) Linear search + bag of gestures (BoG) pose X – N/A
[28] (2018) Attention-based LSTM pose X – N/A

* [29] (2019) Online-LSTM pose X X 7,700
1) Our proposed methods are denoted by the star symbol (*)

ule is dedicated to learning temporal evolution in [28]). Noticeably, the
pose-level approach can reveal actions before they finish [94, 60] (i.e., early
detection), or even predict future ones [89, 30].

Let us mention that a general disadvantage of all the detection meth-
ods which internally use a neural network for classification of segment or
pose data into the predefined number of classes, is that they need to be
completely retrained whenever a new class of actions is introduced. The
pose-level and segment-level action detection methods are summarized
in Table 2.3. In the following, we present our action detectors based on
segment-level [50] and pose-level [29] matching.

2.5.1 Segment-Based Action Detection

Similarly as in our subsequence-search paper [46], we gradually build the
multi-level segmentation structure over an input motion sequence to be an-
notated [50]. The number of levels and corresponding lengths of segments
are determined based on the lengths of training actions. During the annota-
tion phase, each virtual segment is processed by extracting its deep 4,096D
CNN feature that is compared against the deep features of training actions.
If the similarity of the nearest neighbor satisfies the threshold condition,
the segment is assigned the neighbor class, i.e., all the poses covered by
that segment get such class label. This approach was awarded as the Best
Student Paper at the IEEE ISM 2017 conference, held in Taichung, Taiwan.
More details about this approach can be found in the attached publication
in Part II (Work 9).
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2.5.2 Pose-Based Action Detection

Segment-based annotation generally suffers from (i) a large number of sim-
ilarity comparisons between the segments and training actions, (ii) not pre-
cise marking of the beginnings and endings of detected actions, and (iii)
necessity of reading each segment before its processing, implying that an-
notations are discovered with a slight delay. We have suppressed these
disadvantages by proposing two pose-based annotation algorithms [29]
that are based on the LSTM and Bi-LSTM neural networks. Such net-
works have already proven to be successful in recognizing pre-segmented
actions [69, 41]. In particular, we have proposed an online action detection
algorithm (Online-LSTM) able to recognize precise beginnings and end-
ings of concurrent actions within skeleton streams. We have shown that
the beginnings of actions are detected immediately, without the necessity
to wait for their termination, which enables predicting actions a few hun-
dreds milliseconds ahead. Additionally, we have proposed an offline al-
gorithm (Offline-LSTM) that utilizes a bidirectional LSTM network to fur-
ther enhance annotation accuracy by analyzing also the future-to-past con-
text. This limits the Offline-LSTM algorithm to be applied to streams, as the
whole sequence needs to be available in advance. In contrast to standard al-
gorithms, both approaches provide a multi-label annotation of actions that
can be performed concurrently. The results on the long skeleton sequences
of the HDM05 dataset outperform the state-of-the-art approaches not only
in effectiveness, but also in efficiency, as our approach is at least one order
of magnitude faster, capable of annotating roughly 10 k poses per second.
More details about this approach can be found in the attached publication
in Part II (Work 10).
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Chapter 3

Conclusions and Future
Research Directions

The last decade’s research has established many fundamental techniques
for content-based similarity management of 3D human skeleton data, espe-
cially from the perspective of the action recognition, action detection, and
subsequence search tasks. In the context of such tasks, this thesis briefly
summarizes the state-of-the-art principles and compares them to more than
25 published papers in which Jan Sedmidubský participated as the co-
author. The big interest in this topic is supported by our tutorials accepted
to computer-science conferences (ACM Multimedia and ACM ICMR) and
by the invited seminar lecture we had within the medicine conference (ES-
MAC). This topic is also highly interdisciplinary which is supported by
diverse motion-processing papers appearing in various domains, such as
computer science, sports, or medicine. From the computer-science point of
view, a large number of related papers also appear in different fields, such
as computer vision, multimedia, or information retrieval.

The current situation in skeleton data management can be generally
characterized in a way that there are content-based processing technologies
operating over relatively small and single-person collections. However, the
current progress in technologies and pose-estimation software tools [95, 1,
96, 97, 98] suggests that massive volumes of 2D (or even 3D) skeleton data
will soon be available from ordinary cameras or videos uploaded and freely
available on the web. Apart from being voluminous, such motion data are
likely to be imprecise due to constrained video resolution, limited accu-
racy of the pose-estimation methods, reduced frequency of frame rates, or
occlusions. At the same time, the video-based data will often contain mul-
tiple, possibly interacting, entities (e.g., individuals or groups). In general,
we expect the gradual shift in research focus from single-person, small, pre-
cise, and uni-modal data collections to groups of people, huge, imprecise, and
multi-modal data collections.
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We believe that this paradigm shift offers unique research opportuni-
ties. Therefore, we outline and discuss several types of challenges brought
by the expected nature of future skeleton data and technologies in the fol-
lowing. We first focus on the applicability of existing techniques to the mas-
sively produced data and discuss the issues related to data cleaning, metric
learning, and searching. Then, we take a step beyond the established areas
of action recognition, action detection, and subsequence search and outline
new possibilities for analyzing the motion data content from the perspec-
tive of complex queries and group understanding.

Data Cleaning

The extraction of 2D or 3D skeleton data from ordinary videos is likely
to produce datasets of uncertain quality that will need to be cleaned and
enhanced. Though there are some techniques on motion data cleaning, they
mainly focus on correcting small data errors coming from marker-based
capturing systems using statistical methods, which are not applicable to
highly erroneous video-based 2D skeleton sequences [99]. This requires
to study alternative data-cleaning directions, for example, to enhance the
estimation of imprecise joint coordinates by additional visual modalities
such as colors, faces, or context in general, which can also be extracted
from the video data [100].

Crawling web videos and extracting the corresponding skeleton data
also brings the need to detect duplicate and near-duplicate motion sequen-
ces. In the field of general content-based retrieval, the similarity join oper-
ator [101] is used to detect very similar objects. By adapting this operator
to the motion processing domain, all pairs of crawled skeleton sequences
within a certain similarity threshold could be efficiently located and further
analyzed to reveal the duplicates.

Metric Learning

Most of the existing similarity metrics are learned using various kinds of
deep neural networks in a supervised way, by providing a rather low num-
ber of application-specific motion classes for which high-quality training
data exist. Nevertheless, the usability of the learned metrics to 2D skeleton
data, new application domains, or larger datasets is limited by the avail-
ability of training data and the ability of the deep neural networks to deal
with a growing number of classes, which has not been much studied yet.
In this respect, there are three important research directions that should
be considered. First, new reference collections of cleaned, precise, and la-
beled data should be built for supervised metric learning as well as for
evaluating benchmarks. Compared to the current situations when training
data are often created and labeled manually, the building of large future
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collections could be done in a crowdsourcing manner, e.g., using crowd-
sourcing, relevance feedback, or gamification [102]. Second, in addition to
the skeleton data, other visual modalities could be extracted from the video
data and used to better distinguish among the growing number of motion
classes [103]. The utilization of orthogonal modalities should be especially
useful in situations when reliable training data are not available. Third, in
environments where labeled training data are difficult to obtain, unsuper-
vised learning approaches could be adopted, such as the triplet-loss learn-
ing that requires to provide the examples of similar and dissimilar motions
with respect to the training ones [74]. Such examples could be possibly ob-
tained either by crowdsourcing, or by defining some coarse-grained match-
ing function capable of recognizing only between similar and dissimilar
motions.

To be able to integrate a learned metric into large-scale retrieval sys-
tems, it is important that the learned motion features as well as the corre-
sponding comparison function can be efficiently indexed. Since the state-
of-the-art features are typically extracted from the hidden layers of deep
neural networks in the form of high-dimensional vectors, their indexing
becomes problematic due to the curse of dimensionality. Therefore, it is
challenging to propose indexable motion features that would provide a rea-
sonable trade-off between their descriptiveness and complexity [35].

Scalable Searching

The state-of-the-art retrieval techniques are primarily designed to oper-
ate on 3D skeleton-data collections of the maximum length of dozens of
hours. For collections of 2D skeleton sequences which are considered sev-
eral orders of magnitude larger, we need completely new and scalable al-
gorithms for both search and subsequence search operations. In contrast
to the current skeleton-data retrieval techniques with linear [74] or sub-
linear search complexity [44], there is a need to develop approximate search
strategies with nearly constant processing costs while reaching reasonable
quality of the query results. One of the possible solutions could be to
apply some content-preserving transformation of 2D skeleton sequences
into structured text-like documents and index such documents based on
adapted text-based processing principles, which are successfully used by
large-scale text search engines [104]. Another possible approach could trans-
form 2D skeleton data into compact fixed-size bit representations [105] and
employ the efficient Hamming distance to compare a pair of motions. To
efficiently access the most query-relevant motions, the bit representations
could be indexed by generic metric-based structures [106].
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Evaluating Complex Queries

Current research mainly focuses on processing short motions with a clear
semantics, e.g., recognizing the classes of short actions, detecting short ac-
tions in long motions, or searching for the sub-motions that are the most
similar to a short query. On the other hand, there are application scenar-
ios where more complex motion sequences and their relationships need to
be analyzed. Let us again consider the figure-skating scenario: we might
be interested in performances with two triple-jumps at the beginning and
a five-second spin towards the end. This shifts the focus of queries from
short actions to complex recordings that consist of multiple actions while
representing some real-world semantic unit (e.g., a figure-skating perfor-
mance) [36]. Evaluation of such types of complex queries requires a com-
plete re-thinking of skeleton-data management techniques that currently
focus on evaluation of standard k-nearest neighbor queries. A possible
solution could (i) decompose a query into many segments, (ii) search for
query-relevant data segments using standard techniques, (iii) compose the
retrieved segments into candidate sequences while respecting the segment
sequentiality with respect to the query, and (iv) refining the constructed
sequences based on additional query requirements.

Processing of Multi-Subject Recordings

Understanding behavior of groups of people is highly desirable in many
domains, such as smart cities, psychology, or human-computer interaction.
However, existing methods for motion understanding typically consider
only single-person recordings. Interactions among more subjects are stud-
ied rarely [22], and usually involve only activities of pairs [88] in speci-
fic application scenarios. The research challenge is to propose generic ap-
proaches for matching similar movement patterns within multiple inter-
acting subjects. A big potential especially lies in designing methods able to
determine the similarity of performing activities of two groups containing
a different number of subjects. This problem opens many research oppor-
tunities, for example, (i) recognition of group activities that are invariant to
the number of subjects, (ii) detection of a subgroup of individuals perform-
ing a given activity, (iii) searching, eventually subsequence searching, in
multi-person skeleton sequences where both database and query data can
contain a different number of interacting subjects, (iv) discovering similar
movement patterns in small groups, or (v) identifying semantically-related
groups of individuals (e.g., families, couples, or friends) within crowded
scenes. This would require to completely redefine the existing similarity
models as well as the techniques for action recognition, action detection,
and subsequence search, originally developed for single-subject motion
recordings. To be able to evaluate future technologies, there is also a need
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to collect new datasets and benchmarks for multi-subject processing. In
addition, the standard query-by-example search paradigm could be substi-
tuted by alternative query construction approaches, as the example query
might not simply exist due to the explosion of possibilities how multiple
subjects can interact.
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ber, “Documentation Mocap Database HDM05,” Tech. Rep. CG-2007-
2, Universität Bonn, 2007.

[58] W. Zhang, M. Zhu, and K. G. Derpanis, “From actemes to action: A
strongly-supervised representation for detailed action understand-
ing,” in International Conference on Computer Vision (ICCV), pp. 2248–
2255, IEEE, 2013.

[59] C. Liu, Y. Hu, Y. Li, S. Song, and J. Liu, “PKU-MMD: A large
scale benchmark for skeleton-based human action understanding,”
in Workshop on Visual Analysis in Smart and Connected Communities
(VSCC), pp. 1–8, ACM, 2017.

33



[60] X. Zhao, X. Li, C. Pang, X. Zhu, and Q. Z. Sheng, “Online human
gesture recognition from motion data streams,” in ACM Conference
on Multimedia, pp. 23–32, ACM, 2013.

[61] M. Raptis, D. Kirovski, and H. Hoppe, “Real-time classifica-
tion of dance gestures from skeleton animation,” in ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (SCA), SCA
2011, pp. 147–156, ACM, 2011.

[62] M. Müller, A. Baak, and H.-P. Seidel, “Efficient and Robust Annota-
tion of Motion Capture Data,” in ACM SIGGRAPH Eurographics Sym-
posium on Computer Animation (SCA), pp. 17–26, ACM, 2009.

[63] J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu, “Deep learning for
sensor-based activity recognition: A survey,” Pattern Recognition Let-
ters, vol. 119, pp. 3–11, 2019.

[64] Z. Ahmad and N. M. Khan, “Towards improved human action recog-
nition using convolutional neural networks and multimodal fusion
of depth and inertial sensor data,” in 20th International Symposium on
Multimedia (ISM), pp. 223–230, IEEE, 2018.

[65] S. Laraba, M. Brahimi, J. Tilmanne, and T. Dutoit, “3d skeleton-based
action recognition by representing motion capture sequences as 2d-
rgb images,” Computer Animation and Virtual Worlds, vol. 28, no. 3-4,
p. e1782, 2017.

[66] K. Liu, L. Gao, N. M. Khan, L. Qi, and L. Guan, “Graph convolu-
tional networks-hidden conditional random field model for skeleton-
based action recognition,” in 21st International Symposium on Multime-
dia (ISM), pp. 25–31, IEEE, 2019.

[67] R. Liu, C. Xu, T. Zhang, W. Zhao, Z. Cui, and J. Yang, “Si-gcn:
Structure-induced graph convolution network for skeleton-based ac-
tion recognition,” in International Joint Conference on Neural Networks
(IJCNN), pp. 1–8, IEEE, 2019.

[68] Y. Wu, L. Wei, and Y. Duan, “Deep spatiotemporal LSTM network
with temporal pattern feature for 3d human action recognition,”
Computational Intelligence, vol. 35, no. 3, pp. 535–554, 2019.

[69] J. Liu, G. Wang, L. Duan, P. Hu, and A. C. Kot, “Skeleton based hu-
man action recognition with global context-aware attention LSTM
networks,” IEEE Transactions on Image Processing, vol. 27, no. 4,
pp. 1586–1599, 2018.

34



[70] R. Tanawongsuwan and A. F. Bobick, “Gait recognition from time-
normalized joint-angle trajectories in the walking plane,” Interna-
tional Conference on Computer Vision and Pattern Recognition (CVPR),
vol. 2, no. C, pp. II:726–II:731, 2001.

[71] J. Sedmidubsky, J. Valcik, and P. Zezula, “Multi-modal person iden-
tification,” 2015. Software (http://disa.fi.muni.cz/demo/person-
identification/).

[72] J. Sedmidubsky, J. Valcik, and P. Zezula, “Motion-
match: Motion recognition technology,” 2014. Software
(http://disa.fi.muni.cz/motionmatch/).

[73] J. Zhu, W. Zou, Z. Zhu, and Y. Hu, “Convolutional relation network
for skeleton-based action recognition,” Neurocomputing, vol. 370,
pp. 109–117, 2019.

[74] A. Aristidou, D. Cohen-Or, J. K. Hodgins, Y. Chrysanthou, and
A. Shamir, “Deep motifs and motion signatures,” ACM Transactions
on Graphics, vol. 37, no. 6, pp. 187:1–187:13, 2018.

[75] R. Zhao, K. Wang, H. Su, and Q. Ji, “Bayesian graph convolution lstm
for skeleton based action recognition,” in IEEE International Confer-
ence on Computer Vision (ICCV), pp. 6882–6892, IEEE, 2019.

[76] J. C. Nunez, R. Cabido, J. J. Pantrigo, A. S. Montemayor, and J. F.
Velez, “Convolutional neural networks and long short-term memory
for skeleton-based human activity and hand gesture recognition,”
Pattern Recognition, vol. 76, pp. 80–94, 2018.

[77] B. Ren, M. Liu, R. Ding, and H. Liu, “A survey on 3d skeleton-based
action recognition using learning method,” 2020.

[78] Z. Huang, C. Wan, T. Probst, and L. Van Gool, “Deep learning on lie
groups for skeleton-based action recognition,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1243–1252, IEEE,
2017.

[79] H. Yang, Y. Gu, J. Zhu, K. Hu, and X. Zhang, “PGCN-TCA: pseudo
graph convolutional network with temporal and channel-wise at-
tention for skeleton-based action recognition,” IEEE Access, vol. 8,
pp. 10040–10047, 2020.

[80] K. C. Thakkar and P. J. Narayanan, “Part-based graph convolutional
network for action recognition,” in British Machine Vision Conference
(BMVC), pp. 1–13, BMVA Press, 2018.

35



[81] M. Kapadia, I. Chiang, T. Thomas, N. Badler, and J. T. K. Jr., “Effi-
cient motion retrieval in large motion databases,” in Symposium on
Interactive 3D Graphics and Games (I3D), pp. 19–28, ACM, 2013.

[82] M. G. Choi and T. Kwon, “Motion rank: applying page rank to mo-
tion data search,” Vis. Comput., vol. 35, no. 2, pp. 289–300, 2019.
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