

PROTEIN ENGINEERING

BIOTECHNOLOGY, ENZYME APPLICATIONS, PROTEIN ENGINEERING APPROACHES

Radka Chaloupkova Loschmidt Laboratories Department of Experimental Biology Masaryk University, Brno

- Outline
 - Biotechnology
 - ☐ Enzymes in technologies
 - Enzyme applications
 - ☐ Enzyme advantages and disadvantages
 - Common targets of protein engineering
 - Enzymes with desired properties
 - Protein engineering, strategies of protein engineering
 - Examples of protein engineering

Biotechnology

any technological application that uses biological systems, living organisms or derivatives thereof, to make or modify products or processes for specific use

Protein Engineering

- Enzymes
- mostly proteins, RNA (ribozyme)
- catalysis of chemical reactions
- lowering of activation energy = increasing of reaction rate
- non toxic substances
- catalysis under mild conditions
- high efficiency, easy regulation
- high specificity (functional specificity, substrate specificity)
- requirement of cofactors (oxidoreductases, transferases)

Enzymes in technologies

- ☐ to manufacture both bulk and high added-value **products**
 - food and animal feed
 - fine chemicals
 - pharmaceuticals
- ☐ to provide **services**
 - housework
 - industry
 - environmental technologies
 - analytical purposes
 - diagnostics

Distribution of sales in **Novozymes**

Protein Engineering 5/64

Detergent industry

- ☐ **laundry** and **dishwashing** detergents
- proteases, lipases, amylases, cellulases
- enzymes reduce the environmental load of detergents products
 - save energy and CO₂ emissions by enabling lower wash temperatures
 - have no negative environmental impact on sewage treatment process

- do not present a risk to aquatic life

Computer simulation: A laundry detergent enzyme (red) attacks the soil (yellow) on a textile fiber (gray).

Food processing

- ☐ improvement of **bread** quality (alpha-amylases)
- production of **sugars** from starch (amylases)
- ☐ fruit **juice** and **wine** manufacture (pectinases, cellulases, amylases)
- brewing industry (enzymes from barley)
- ☐ **milk** industry (chymosin, beta-galactosidases, lactases)
- meat tenderizers (papain, bromelain)

Protein Engineering 7/64

Paper industry

- xylanases reduce bleach required for decolorizing
- □ **cellulases** smooth fibers and enhance water drainage
- ☐ amylases degrade starch to lower viscosity sugars
- ☐ **lipases** reduce pitch

Textile industry

- ☐ **cellulases** are used in denim washing for a stone-washed look
- amylases are used for desizing of textile fibers
- catalases are used for bleach clean-up
- ☐ laccases are used as bleaching agents

Protein Engineering

Biofuel industry

bacterial and fungal cellulases break down cellulose into sugars that can be fermented

Protein Engineering 10/64

Synthesis of chemicals and pharmaceuticals

- □ kiloton-scale production of **acrylamide** (nitrile hydratase)
- □ synthesis of 6-APA − precursor of antibiotics (penicilin amidase)

□ synthesis of **single enantiomers** – precursors of drugs (lipases)

Specialty enzymes

- clinical analytical applications
 - glucose biosensor (glucose oxidase)
 - alkaline phosphatase and peroxidase immunoassays
- ☐ flavor production
 - production of glutamates used in food flavouring (glutamases)
- personal care products
 - contact lens cleaning (lipase, proteinase)
 - in toothpaste to convert glucose to H₂O₂ (glucose oxidase)
- DNA technology
 - restriction enzymes (restriction endonuclease)
 - DNA-modifying enzymes (ligase)

Bioremediation

- use of microorganisms or their enzymes to return the
 environment altered by contaminants to its original condition
- examples of biodegradation enzymes and pollutants
 - monooxygenases alkane, steroids, fatty acid and aromatic compounds
 - dioxygenases phenolic and aromatic compounds
 - peroxidases lignin and other phenolic compounds
 - lipases organic pollutants such as oil spill
 - cellulases cellulosic substances
 - haloalkane dehalogenases halogenated hydrocarbons
 - proteases proteins

Advantages of enzymes

- □ high catalytic efficiency
- ☐ high degree of **selectivity**
- □ **compatibility** of each other
- reusability
- sustainability
 - produced from biomass
 - easily biodegradable
 - non-toxic and non-flammable
 - less byproducts and wastes
 - operate at mild conditions

- Disadvantages of enzymes
- ☐ generally **less stable**
- insufficient activity
- insufficient selectivity
- cofactor requirement
- □ allergies

Protein Engineering

Common targets of protein engineering

- enzyme stability
- enzyme activity
- enzyme substrate specificity
- enzyme enantioselectivity

Enzyme stability

☐ thermodynamic x kinetic stability

Definitions of various stability parameters.					
Measure	Symbol	Type of stability	Definition		
Free energy of unfolding	ΔG_{u}	Thermodynamic	Change in Gibbs free energy going from the folded to unfolded state		
Melting temperature	$T_{\rm m}$	Thermodynamic	The temperature at which half of the protein is in the unfolded state		
Unfolding equilibrium constant	Ku	Thermodynamic	The concentration of unfolded species divided by the concentration of folded species		
Half-concentration	C _{1/2}	Thermodynamic	The concentration of denaturant needed to unfold half of the protein (chemical equivalent of T_m)		
Observed deactivation rate constant	$k_{ m d,obs}$	Kinetic	Overall rate constant for going from native to deactivation species		
Half-life	$\tau_{1/2}$	Kinetic	Time required for residual activity to be reduced to half		
Temperature of half-inactivation	T ₅₀	Kinetic	Temperature of incubation to reduce residual activity by half during a defined time period		
Optimum temperature	$T_{\rm opt}$	Kinetic	Temperature leading to highest activity		
Total turnover number	TTN	Kinetic	Moles of product produced over the lifetime of the catalyst		

Protein Engineering 17/64

Enzyme stability

Protein Engineering 18/64

Enzyme activity

- enzyme property measured by the increase in reaction rate
- reaction rate concentration of product produced per time

Protein Engineering 19/64

Enzyme activity

Units of enzyme activity

- **SI unit, katal (kat)** amount of enzyme that catalyzes conversion of 1 mole of substrate per second (mol.s⁻¹)
- activity unit (U) amount of enzyme that catalyzes conversion of 1µmol of substrate per minute (µmol.min⁻¹), 1U = 16.67 nkat
- specific activity activity of enzyme per milligram of total protein (μmol.s⁻¹.mg⁻¹)

Enzyme substrate specificity

- definition of substrate specificity **discrimination between** several **substrates competing for** enzyme **active site**
- commonly used meaning enzyme activity with alternative substrate in the absence of specific (native) substrate
- enzyme activity measured towards a broad range of substrates under similar conditions
- ☐ fingerprint of enzyme ability to convert various substrates
- usually compared for different enzymes
- quantitative comparison of enzyme data statistical analysis

Enzyme substrate specificity

- statistical analysis of substrate specificity data sorting of enzymes according to their preference to different substrates
- ☐ identification of unique SSGs within one enzyme family

SSG – substrate specificity group

Protein Engineering 23/64

Enzyme enantioselectivity

- discrimination between enantiomeric substrates or products
- preferential conversion of one enantiomer of chiral substrate

Protein Engineering 24/64

Enzyme enantioselectivity

- ☐ discrimination between enantiomeric substrates or products
- preferential conversion of one enantiomer of chiral substrate

Enzyme enantioselectivity

characterized by enantiomeric ratio E

$$E = \frac{k_{\text{cat}}^{(R)}/K_{\text{m}}^{(R)}}{k_{\text{cat}}^{(S)}/K_{\text{m}}^{(S)}}$$

- \Box E- description how the enzyme discriminates between the enantiomers of a substance under given reaction conditions
- \Box E- intrinsic property of a given system consisting of the enzyme, its substrate and the environment
- \Box E strongly affected by the environment (T, pH, solvents, ...)

Process design criteria

- higher activity at process conditions
- increased process stability
- increased thermostability to run at higher temperatures
- stability to organic solvents
- absence of substrate and/or product inhibition
- increased selectivity (enantio-, regio-, chemo-)
- accept new substrate
- catalyse new reactions

Enzymes with desired properties

□ concepts used to identify/create enzymes with desired properties

	Starting Material	Realization	Result	Screening
Database Search	structural information and prediction of key motifs	gene1:HIYQPRAHQF gene2: .YIRPRMGVRP gene3:FVERGVRGTR gene4:FVELGVRGSR .	library of novel enzymes novel protein sequences	
de novo Design	define transition state for the desired reaction	propose an active site able to stabilize that transition state QM/MM modeling	accomodate the active site into an existing scaffold ROSETTA algorithm	determination of specific activity, enantioselectivity, etc.

Protein Engineering

Protein engineering

- ☐ altering the structure of existing protein to improve its properties
- overcome limitations of natural enzymes as catalysts
- basic understanding of how enzymes fuction and have evolved
- ☐ already point to many industrial successes

□ "in the past, an enzyme-based process was designed around the limitations of the enzymes; today, the enzyme is engineered to fit the process specifications"

Protein engineering

- ☐ three main approaches of protein engineering
 - rational design
 - directed evolution
 - semi-rational design

Rational design

RATIONAL DESIGN

1. Computer aided design

2. Site-directed mutagenesis

Individual mutated gene

- 3. Transformation
 - 4. Protein expression
 - 5. Protein purification
 - 6. not applied

7. Biochemical testing

Rational design

- □ site-specific changes on the target enzyme
- few amino-acid substitutions that are predicted to elicit desired improvements of enzyme function
- based on detailed knowledge of protein structure, function and catalytic mechanism
- relatively simple characterization of constructed variants
- factor limiting general application of rational design complexity of structure-fuction relationship in enzymes

Directed evolution

DIRECTED EVOLUTION

1. not applied

Selected mutant enzymes

7. Biochemical testing

Directed evolution

- large numbers of mutants randomly generated
- mimicking natural evolution processes
- evolution without knowledge of enzyme structure and function
- identification of functionally improved variants required powerful screening or selection
- limitation necessity of developing a high-throughput screening

Protein Engineering

Semi-rational design

RATIONAL DESIGN

1. Computer aided design

2. Site-directed mutagenesis

Individual mutated gene

- 3. Transformation
 - 4. Protein expression
 - 5. Protein purification
 - 6. not applied

7. Biochemical testing

DIRECTED EVOLUTION

1. not applied

- 2. Random mutagenesis Library of mutated genes (>10,000 clones)
- 3. Transformation
- 4. Protein expression
- 5. not applied
- 6. Screening and selection
 - stability
 - selectivity
 - affinity
 - activity

Selected mutant enzymes

Constructed mutant enzyme

- Semi-rational design
- also called focused directed evolution
- based on knowledge of structure and fuction of target enzyme
- combine advantages of rational and random approaches
- selection of promising target sites
- **creation of small focused "smart" libraries**
- elimination the need of high-throughput screening
- increase likelihood of beneficially modifying property

Protein engineering approaches

Comparison of protein engineering approaches

	Rational design	Directed evolution	Semi-rational design
high-throughput screening/selection	not essential	essential	advantageous but not essential
structural and/or functional information	both essential	neither essential	either is sufficient
sequence space exploration	low	high, random	moderate, targeted
probability to obtain synergistic mutations	moderate	low	high

Protein Engineering

Process design criteria

- □ higher activity at process conditions
- ☐ increased process stability
- ☐ increased thermostability to run at higher temperatures
- stability to organic solvents
- absence of substrate and/or product inhibition
- increased selectivity (enantio-, regio-, chemo-)
- accept new substrate
- catalyse new reactions

Target enzyme family

- haloalkane dehalogenases (HLDs)
- microbial enzymes α/β hydrolases¹
- hydrolytic cleavage of C-X bond

- high enantioselectivity
- potential applications: biodegradation, biosensing, biosynthesis

¹Ollis, D.L. et al.: *Protein Eng.* 5, 197-211 (1992)

DhaA from *Rhodococcus rhodochrous*

Directed evolution

4 positive hits

Protein Engineering 42/64

DhaA 57

Protein Engineering 43/64

DhaA 57

Protein Engineering 44/64

- melting temperature in buffer (°C)
- half-concentration of DMSO (%)
 - half-life in 40% DMSO at 37 °C (h)

- melting temperature in buffer (°C)
- half-concentration of DMSO (%)
- half-life in 40% DMSO at 37 °C (h)

- melting temperature in buffer (°C)
- half-concentration of DMSO (%)
- half-life in 40% DMSO at 37 °C (h)

¹Gray, K.A. et al.: *Adv. Synth. Catal.* 343, 607-617 (2001)

- melting temperature in buffer (°C)
- half-concentration of DMSO (%)
- half-life in 40% DMSO at 37 °C (h)

¹Gray, K.A. et al.: *Adv. Synth. Catal.* 343, 607-617 (2001)

DhaA wt

Protein Engineering 50/64

DhaA 57

Protein Engineering 51/64

Protein Engineering 52/64

- Conclusion I
- resistance towards organic cosolvents correlates with thermostability
- mutations lining access tunnel modulate occupancy of active site by solvent and can **stabilize** protein
- robust catalysts (DhaA80) were developed: 4 point mutations, $T_{\rm m}\uparrow$ **19 °C**, $T_{1/2}$ (40 % DMSO) **min** \rightarrow **days**
- engineering of access tunnels represents novel strategy for engineering of robust catalysts

DhaA80

- ☐ 4 point mutations: T148L, G171Q, A172V and C176F
- \Box $\tau_{1/2}$ (40% DMSO) improved 4000-fold
- \Box $\Delta T_{\rm m} = 16 \, {}^{\circ}\text{C}$
- □ very low activity in buffer

Saturation mutagenesis

Sequencing+ characterizationof selected hits

DhaA106

☐ T148L, G171Q, A172V and F176G

Protein Engineering 56/64

Stability and specific activity¹

Variant	DhaAwt	DhaA63	DhaA80	DhaA106
<i>T</i> _m (°C)	50.4 ± 0.3	68.3 ± 0.3	66.8 ± 0.2	62.7 ± 0.1

Substrate specificity

DhaA80

Protein Engineering 58/64

Substrate specificity

DhaA80 DhaA106

Protein Engineering 59/64

Substrate specificity

Protein Engineering 60/64

Structure and molecular modeling

Protein Engineering 61/64

Conclusion II

- enzyme catalytic performance enhanced by fine-tuning the geometry and flexibility of its access tunnel
- tunnel residues are good targets to balance activitystability trade-off of enzymes

Helpful references

- ☐ Faber, K. (2011) Biotransformations in Organic Chemistry, Springer
- □ Soetaert, W. & Vandamme, E.J. (2010) Industrial Biotechnology, Wiley-VCH Verlag GmbH & Co. KGaA
- □ Kazlauskas, R.J. & Bornscheuer, U.T. (2009) Finding better protein engineering strategies, Nat. Chem. Biol. 5: 526-529
- □ Davis, T. et al. (2013) Strategies for the Discovery and Engineering of Enzymes for Biocatalysis, Curr. Opin. Chem. Biol. 17: 1-6
- Koudelakova, T. et al. (2013) Engineering enzyme stability and resistance to an organic cosolvent by modification of residues in the access tunnel, Angew. Chem. Int. Ed. 52: 1959-1963
- ☐ Liskova, V. et al. (2015) Balancing the stability-activity trade-off by fine-tuning dehalogenase assess tunnels, ChemCatChem 7: 648-659