REDUCIBILITY

In Chapter 4 we established the Turing machine as our model of a general pur-
pose computer. We presented several examples of problems that are solvable
on a Turing machine and gave one example of a problem, Atwy, that is compu-
tationally unsolvable. In this chapter we examine several additional unsolvable
problems. In doing so we introduce the primary method for proving that prob-
lems are computationally unsolvable. It is called reducibility.

A reduction is a way of converting one problem to another problem in such a
way that a solution to the second problem can be used to solve the first problem.
Such reducibilities come up often in everyday life, even if we don’t usually refer
to them in this way.

For example, suppose that you want to find your way around a new city. You
know that doing so would be easy if you had a map. Thus you can reduce the
problem of finding your way around the city to the problem of obtaining a map
of the city.

Reducibility always involves two problems, which we call A and B. If A re-
duces to B, we can use a solution to B to solve A. So in our example, A is the
problem of finding your way around the city and B is the problem of obtaining
a map. Note that reducibility says nothing about solving A or B alone, but only
about the solvability of A4 in the presence of a solution to B.

The following are further examples of reducibilities. The problem of travel-
ing from Boston to Paris reduces to the problem of buying a plane ticket between
the two cities. That problem in turn reduces to the problem of earning the
money for the ticket. And that problem reduces to the problem of finding a job.

187

188 CHAPTER 5 / REDUCIBILITY

Reducibility also occurs in mathematical problems. For example, the problem
of measuring the area of a rectangle reduces to the problem of measuring its
length and width. The problem of solving a system of linear equations reduces
to the problem of inverting a matrix.

Reducibility plays an important role in classifying problems by decidability
and later in complexity theory as well. When A is reducible to B, solving A
cannot be harder than solving B because a solution to B gives a solution to A. In
terms of computability theory, if A is reducible to B and B is decidable, A also is
decidable. Equivalently, if A is undecidable and reducible to B, B is undecidable.
This last version is key to proving that various problems are undecidable.

In short, our method for proving that a problem is undecidable will be to
show that some other problem already known to be undecidable reduces to it.

5.1

UNDECIDABLE PROBLEMS FROM
LANGUAGE THEORY

We have already established the undecidability of Arm, the problem of deter-
mining whether a Turing machine accepts a given input. Let’s consider a related
problem, HALT 1w, the problem of determining whether a Turing machine halts
(by accepting or rejecting) on a given input.! We use the undecidability of Aty
to prove the undecidability of HALT 1y by reducing Aty to HALT 1. Let

HALTtv = {{(M,w)| M isa TM and M halts on input w}.

THEOREM 5.1
HALTt\ is undecidable.

PROOF IDEA This proof is by contradiction. We assume that HALT 1w is
decidable and use that assumption to show that Aty is decidable, contradicting
Theorem 4.11. The key idea is to show that A is reducible to HALTtm.
Let’s assume that we have a TM R that decides HALTtm. Then we use R to
construct S, a TM that decides Atm. To get a feel for the way to construct S,
pretend that you are S. Your task is to decide Atm. You are given an input of
the form (M, w). You must output accept if M accepts w, and you must output

Tn Section 4.2, we used the term halting problem for the language Atm even though
HALTw is the real halting problem. From here on we distinguish between the two by
calling Arwm the acceptance problem.

5.1 UNDECIDABLE PROBLEMS FROM LANGUAGE THEORY 189

reject if M loops or rejects on w. Try simulating M on w. If it accepts or rejects,
do the same. But you may not be able to determine whether M is looping, and
in that case your simulation will not terminate. That’s bad, because you are a
decider and thus never permitted to loop. So this idea, by itself, does not work.

Instead, use the assumption that you have TM R that decides HALT tm. With
R, you can test whether M halts on w. If R indicates that M doesn’t halt on w,
reject because (M, w) isn’t in Atm. However, if R indicates that M does halt on
w, you can do the simulation without any danger of looping.

Thus, if TM R exists, we can decide ATy, but we know that Aty is unde-
cidable. By virtue of this contradiction we can conclude that R does not exist.
Therefore HALT 1\ is undecidable.

PROOF Let’s assume for the purposes of obtaining a contradiction that TM
R decides HALTtm. We construct TM S to decide Ay, with S operating as
follows.

S = “On input (M, w), an encoding of a TM M and a string w:
1. Run T™M R on input (M, w).
2. If R rejects, reject.
3. If R accepts, simulate M on w until it halts.
4. If M has accepted, accept; if M has rejected, reject.”

Clearly, if R decides HALT 1w, then S decides Atm. Because Atm is unde-
cidable, HA LTty also must be undecidable.

Theorem 5.1 illustrates our strategy for proving that a problem is undecid-
able. This strategy is common to most proofs of undecidability, except for the
undecidability of Aty itself, which is proved directly via the diagonalization
method.

We now present several other theorems and their proofs as further examples
of the reducibility method for proving undecidability. Let

Erm = {(M)| MisaTMand L(M) = 0}.

THEOREM 5.2

Etwm is undecidable.

PROOF IDEA We follow the pattern adopted in Theorem 5.1. We assume for
the purposes of obtaining a contradiction that Fry is decidable and then show
that A+m is decidable—a contradiction. Let R be a TM that decides Ery. We
use R to construct TM S that decides Atm. How will S work when it receives
input (M, w)?

190 CHAPTER 5/ REDUCIBILITY

One idea is for S to run R on input (M) and see whether it accepts. If it does,
we know that L(M) is empty and therefore that M does not accept w. But, if R
rejects (M), all we know is that L(M) is not empty and therefore that M accepts
some string, but we still do not know whether M accepts the particular string w.
So we need to use a different idea.

Instead of running R on (M) we run R on a modification of (M). We modify
(M) to guarantee that M rejects all strings except w, but on input w it works as
usual. Then we use R to determine whether the modified machine recognizes
the empty language. The only string the machine can now accept is w, so its
language will be nonempty iff it accepts w. If R accepts when it is fed a descrip-
tion of the modified machine, we know that the modified machine doesn’t accept
anything and that M doesn’t accept w.

PROOF Let’s write the modified machine described in the proof idea using
our standard notation. We call it M.

M; = “On input :
1. Ifz # w, reject.
2. Ifz = w, run M on input w and accept if M does.”

This machine has the string w as part of its description. It conducts the test
of whether z = w in the obvious way, by scanning the input and comparing it
character by character with w to determine whether they are the same.

Putting all this together, we assume that TM R decides Ery and construct TM
S that decides Aty as follows.

S = “On input (M, w), an encoding of a TM M and a string w:
1. Use the description of M and w to construct the TM M; just
described.
2. Run R on input (M,).
3. If R accepts, reject; if R rejects, accept.”

Note that S must actually be able to compute a description of M; from a
description of M and w. It is able to do so because it needs only add extra states
to M that perform the z = w test.

If R were a decider for Etn, S would be a decider for Atm. A decider for
ATm cannot exist, so we know that Fty must be undecidable.

Another interesting computational problem regarding Turing machines con-
cerns determining whether a given Turing machine recognizes a language that
also can be recognized by a simpler computational model. For example, we let
REGULARTwm be the problem of determining whether a given Turing machine
has an equivalent finite automaton. This problem is the same as determining

5.1 UNDECIDABLE PROBLEMS FROM LANGUAGE THEORY 191

whether the Turing machine recognizes a regular language. Let

REGULARtm = {(M)| M isa TM and L(M) is a regular language}.

THEOREM 5.3
REGULARTw\ is undecidable.

PROOF IDEA As usual for undecidability theorems, this proof is by reduction
from Atm. We assume that REGULARTwm is decidable by a TM R and use this
assumption to construct a TM § that decides Atm. Less obvious now is how to
use R’s ability to assist S in its task. Nonetheless we can do so.

The idea is for S to take its input (M, w) and modify M so that the result-
ing TM recognizes a regular language if and only if M accepts w. We call the
modified machine M;. We design M, to recognize the nonregular language
{0™1"|n > 0} if M does not accept w, and to recognize the regular language £*
if M accepts w. We must specify how S can construct such an M, from M and
w. Here, M, works by automatically accepting all strings in {0"1"| n > 0}. In
addition, if M accepts w, M> accepts all other strings.

PROOF We let R be a TM that decides REGULARTwm and construct TM S to
decide Atm. Then S works in the following manner.

S = “On input (M, w), where M is a TM and w is a string:
1. Construct the following TM M.
M, = “On input z:
1. If z has the form 0™1", accept.
2. If z does not have this form, run M on input w and
accept if M accepts w.”
2. Run R on input (Ms).
3. If R accepts, accept; if R rejects, reject.”

Similarly, the problems of testing whether the language of a Turing machine
is a context-free language, a decidable language, or even a finite language, can
be shown to be undecidable with similar proofs. In fact, a general result, called
Rice’s theorem, states that testing any property of the languages recognized by
Turing machines is undecidable. We give Rice’s theorem in Problem 5.28.

So far, our strategy for proving languages undecidable involves a reduction
from Atm. Sometimes reducing from some other undecidable language, such
as Erwm, is more convenient when we are showing that certain languages are
undecidable. The following theorem shows that testing the equivalence of two
Turing machines is an undecidable problem. We could prove it by a reduction

192 CHAPTER 5 / REDUCIBILITY

from Atm, but we use this opportunity to give an example of an undecidability
proof by reduction from Ety. Let

EQmy = {(My, My)| M, and M, are TMs and L(M;) = L(Ms)}.

THEOREM 5.4
EQ+ is undecidable.

PROOF IDEA Show that, if EQqy were decidable, Fry also would be decid-
able, by giving a reduction from Ery to EQ1y. The idea is simple. Erwm is the
problem of determining whether the language of a TM is empty. EQqy is the
problem of determining whether the languages of two TMs are the same. If one
of these languages happens to be (}, we end up with the problem of determining
whether the language of the other machine is empty—that is, the Fry problem.
So in a sense, the Erm problem is a special case of the EQ+y problem wherein
one of the machines is fixed to recognize the empty language. This idea makes
giving the reduction easy.

PROOF We let TM R decide EQty and construct TM S to decide Frm as
follows.

S = “On input (M), where M is a TM:
1. Run R on input (M, M), where M; is a TM that rejects all in-
puts.
2. If R accepts, accept; if R rejects, reject.”

If R decides EQty, S decides Ery. But Ery is undecidable by Theorem 5.2,
s0 EQty also must be undecidable.

REDUCTIONS VIA COMPUTATION HISTORIES

The computation history method is an important technique for proving that
Atwm is reducible to certain languages. This method is often useful when the
problem to be shown undecidable involves testing for the existence of some-
thing. For example, this method is used to show the undecidability of Hilbert’s
tenth problem, testing for the existence of integral roots in a polynomial.

The computation history for a Turing machine on an input is simply the se-
quence of configurations that the machine goes through as it processes the input.
It is a complete record of the computation of this machine.

5.1 UNDECIDABLE PROBLEMS FROM LANGUAGE THEORY 193

DEFINITION 5.5

Let M be a Turing machine and w an input string. An accepting
computation history for M on w is a sequence of configurations,
C1, Cs, ..., Cy, where C; is the start configuration of M on w, C; is
an accepting configuration of M, and each C; legally follows from
Ci—1 according to the rules of M. A rejecting computation his-
tory for M on w is defined similarly, except that C; is a rejecting
configuration.

Computation histories are finite sequences. If M doesn’t halt on w, no accept-
ing or rejecting computation history exists for M on w. Deterministic machines
have at most one computation history on any given input. Nondeterministic ma-
chines may have many computation histories on a single input, corresponding
to the various computation branches. For now, we continue to focus on deter-
ministic machines. Our first undecidability proof using the computation history
method concerns a type of machine called a linear bounded automaton.

DEFINITION 5.6

A linear bounded automaton is a restricted type of Turing machine
wherein the tape head isn’t permitted to move off the portion of
the tape containing the input. If the machine tries to move its head
off either end of the input, the head stays where it is, in the same
way that the head will not move off the left-hand end of an ordinary
Turing machine’s tape.

A linear bounded automaton is a Turing machine with a limited amount of
memory, as shown schematically in the following figure. It can only solve prob-
lems requiring memory that can fit within the tape used for the input. Using a
tape alphabet larger than the input alphabet allows the available memory to be
increased up to a constant factor. Hence we say that for an input of length n, the
amount of memory available is linear in n—thus the name of this model.

control

ajblafba]

FIGURE 5.7
Schematic of a linear bounded automaton

194 CHAPTER 5/ REDUCIBILITY

Despite their memory constraint, linear bounded automata (LBAs) are quite
powerful. For example, the deciders for Apra, Acrg, Epra, and Ecrg all are
LBAs. Every CFL can be decided by an LBA. In fact, coming up with a decidable
language that can’t be decided by an LBA takes some work. We develop the
techniques to do so in Chapter 9.

Here, Aiga is the problem of determining whether an LBA accepts its input.
Even though A ga is the same as the undecidable problem Aty where the Tur-
ing machine is restricted to be an LBA, we can show that A ga is decidable. Let

Aiga = {{M,w)| M is an LBA that accepts string w}.

Before proving the decidability of A ga, we find the following lemma useful.
It says that an LBA can have only a limited number of configurations when a
string of length n is the input.

LEMMA 5.8

Let M be an LBA with ¢ states and g symbols in the tape alphabet. There are
exactly gng™ distinct configurations of M for a tape of length n.

PROOF Recall that a configuration of M is like a snapshot in the middle of its
computation. A configuration consists of the state of the control, position of the
head, and contents of the tape. Here, M has g states. The length of its tape is n,
so the head can be in one of n positions, and g™ possible strings of tape symbols
appear on the tape. The product of these three quantities is the total number of
different configurations of M with a tape of length n.

THEOREM 5.9
ALBA is decidable.

PROOF IDEA Inorder to decide whether LBA M accepts input w, we simulate
M on w. During the course of the simulation, if M halts and accepts or rejects,
we accept or reject accordingly. The difficulty occurs if M loops on w. We need
to be able to detect looping so that we can halt and reject.

The idea for detecting when M is looping is that, as M computes on w, it
goes from configuration to configuration. If M ever repeats a configuration it
would go on to repeat this configuration over and over again and thus be in
a loop. Because M is an LBA, the amount of tape available to it is limited. By
Lemma 5.8, M can be in only a limited number of configurations on this amount
of tape. Therefore only a limited amount of time is available to M before it
will enter some configuration that it has previously entered. Detecting that M is
looping is possible by simulating A for the number of steps given by Lemma 5.8.
If M has not halted by then, it must be looping.

5.1 UNDECIDABLE PROBLEMS FROM LANGUAGE THEORY 195

PROOF The algorithm that decides A g is as follows.

L = “On input (M, w), where M is an LBA and w is a string:
1. Simulate M on w for gng™ steps or until it halts.
2. If M has halted, accept if it has accepted and reject if it has
rejected. If it has not halted, reject.”

If M on w has not halted within gng™ steps, it must be repeating a configura-
tion according to Lemma 5.8 and therefore looping. That is why our algorithm
rejects in this instance.

Theorem 5.9 shows that [BAs and TMs differ in one essential way: For LBAs
the acceptance problem is decidable, but for TMs it isn’t. However, certain other
problems involving LBAs remain undecidable. One is the emptiness problem
Eiga = {(M)| M is an LBA where L(M) = (}. To prove that E ga is undecid-
able, we give a reduction that uses the computation history method.

THEOREM 5.10

E\ ga is undecidable.

PROOF IDEA This proof is by reduction from Aty. We show that, if £iga
were decidable, Aty would also be. Suppose that Fjga is decidable. How can
we use this supposition to decide Atm?

For a TM M and an input w we can determine whether M accepts w by con-
structing a certain LBA B and then testing whether L(B) is empty. The language
that B recognizes comprises all accepting computation histories for M on w. If
M accepts w, this language contains one string and so is nonempty. If M does
not accept w, this language is empty. If we can determine whether B’ language
is empty, clearly we can determine whether M accepts w.

Now we describe how to construct B from M and w. Note that we need
to show more than the mere existence of B. We have to show how a Turing
machine can obtain a description of B, given descriptions of M and w.

WEe construct B to accept its input if z is an accepting computation history
for M on w. Recall that an accepting computation history is the sequence of
configurations, C1, Ca, ..., C; that M goes through as it accepts some string w.
For the purposes of this proof we assume that the accepting computation history
is presented as a single string, with the configurations separated from each other
by the # symbol, as shown in Figure 5.11.

"96 CHAPTER 5/ REDUCIBILITY

C 1 Cz CB Cl

FIGURE 3.11
A possible input to B

The LBA B works as follows. When it receives an input z, B is supposed
to accept if is an accepting computation for M on w. First, B breaks up z
according to the delimiters into strings Ci, C2,..., C;. Then B determines
whether the C; satisfy the three conditions of an accepting computation history.

1. C; is the start configuration for M on w.
2. Each Cy44 legally follows from C;.
3. C} is an accepting configuration for M.

The start configuration C; for M on w is the string gowiws - - - wy, where
qo is the start state for M on w. Here, B has this string directly built in, so
it is able to check the first condition. An accepting configuration is one that
contains the gccepe State, so B can check the third condition by scanning C; for
Gaccept- 1 he second condition is the hardest to check. For each pair of adjacent
configurations, B checks on whether C;; legally follows from C;. This step
involves verifying that C; and C;4; are identical except for the positions under
and adjacent to the head in C;. These positions must be updated according to the
transition function of M. Then B verifies that the updating was done properly
by zig-zagging between corresponding positions of C; and C;4;. To keep track
of the current positions while zig-zagging, B marks the current position with
dots on the tape. Finally, if conditions 1, 2, and 3 are satisfied, B accepts its
input.

Note that the LBA B is not constructed for the purposes of actually running
it on some input—a common confusion. We construct B only for the purpose
of feeding a description of B into the decider for Ej ga that we have assumed to
exist. Once this decider returns its answer we can invert it to obtain the answer
to whether M accepts w. Thus we can decide Atw, a contradiction.

PROOF Now we are ready to state the reduction of Aty to E_ga. Suppose
that TM R decides F| ga. Construct TM S that decides Aty as follows.

S = “On input (M, w), where M is a TM and w is a string:
1. Construct LBA B from M and w as described in the proof idea.
2. Run R on input (B).
3. If R rejects, accept; if R accepts, reject.”

If R accepts (B), then L(B) = 0. Thus M has no accepting computation
history on w and M doesn’t accept w. Consequently S rejects (M, w). Similarly,
if R rejects (B), the language of B is nonempty. The only string that B can
accept is an accepting computation history for M on w. Thus M must accept w.
Consequently S accepts (M, w). Figure 5.12 illustrates LBA B.

5.1 UNDECIDABLE PROBLEMS FROM LANGUAGE THEORY 197

B

... [#]x|ala|b|#|x][x][g|p[#]...]

C’i CZ +1

FIGURE 5.12
LBA B checking a TM computation history

We can also use the technique of reduction via computation histories to es-
tablish the undecidability of certain problems related to context-free grammars
and pushdown automata. Recall that in Theorem 4.8 we presented an algo-
rithm to decide whether a context-free grammar generates any strings—that is,
whether L(G) = (. Now we show that a related problem is undecidable. It is the
problem of determining whether a context-free grammar generates all possible
strings. Proving that this problem is undecidable is the main step in showing
that the equivalence problem for context-free grammars is undecidable. Let

ALLcrg = {(G)| Gisa CFG and L(G) = £*}.

THEOREM 5.13
ALLcpg is undecidable.

PROOF This proof is by contradiction. To get the contradiction we assume
that ALLcrc is decidable and use this assumption to show that Aty is decidable.
This proof is similar to that of Theorem 5.10 but with a small extra twist: It
is a reduction from Aty via computation histories, but we have to modify the
representation of the computation histories slightly for a technical reason that
we will explain later.

We now describe how to use a decision procedure for ALLcgg to decide Atm.
For a TM M and an input w we construct a CFG G that generates all strings if
and only if M does not accept w. So, if M does accept w, G does not generate
some particular string. This string is—guess what—the accepting computation
history for M on w. That is, G is designed to generate all strings that are not
accepting computation histories for M on w.

To make the CFG G generate all strings that fail to be an accepting computa-
tion history for M on w, we utilize the following strategy. A string may fail to be
an accepting computation history for several reasons. An accepting computation
history for M on w appears as #C1#Co# - - - #C#, where C; is the configuration
of M on the ith step of the computation on w. Then, G generates all strings that

198 CHAPTER 5/ REDUCIBILITY

1. do not start with C,
2. do not end with an accepting configuration, or
3. where some C; does not properly yield C;1 under the rules of M.

If M does not accept w, no accepting computation history exists, so #// strings
fail in one way or another. Therefore G would generate all strings, as desired.

Now we get down to the actual construction of G. Instead of constructing
G, we construct a PDA D. We know that we can use the construction given in
Theorem 2.20 (page 115) to convert D to a CFG. We do so because, for our
purposes, designing a PDA is easier than designing a CFG. In this instance, D will
start by nondeterministically branching to guess which of the preceding three
conditions to check. One branch checks on whether the beginning of the input
string is C; and accepts if it isn’t. Another branch checks on whether the input
string ends with a configuration containing the accept state, gaccept, and accepts
if itisn’t.

The third branch is supposed to accept if some C; does not properly yield
Cit+1. It works by scanning the input until it nondeterministically decides that
it has come to C;. Next, it pushes C; onto the stack until it comes to the end as
marked by the # symbol. Then D pops the stack to compare with C;;1. They
are supposed to match except around the head position where the difference is
dictated by the transition function of M. Finally, D accepts if it is a mismatch or
an improper update.

The problem with this idea is that, when D pops C; off the stack, it is in
reverse order and not suitable for comparison with C; ;. At this point the twist
in the proof appears: We write the accepting computation history differently.
Every other configuration appears in reverse order. The odd positions remain
written in the forward order, but the even positions are written backward. Thus
an accepting computation history would appear as shown in the following figure.

— — # #
—_——— —— —— N——— ————
ol CR Cs CR Ci

FIGURE 35.14
Every other configuration written in reverse order

In this modified form, the PDA is able to push a configuration so that when it
is popped, the order is suitable for comparison with the next one. We design D
to accept any string that is not an accepting computation history in the modified
form.

In Exercise 5.1 you can use Theorem 5.13 to show that EQ ¢ is undecidable.

5.2 A SIMPLE UNDECIDABLE PROBLEM 199

5.2

A SIMPLE UNDECIDABLE PROBLEM

In this section we show that the phenomenon of undecidability is not confined to
problems concerning automata. We give an example of an undecidable problem
concerning simple manipulations of strings. It is called the Post correspondence
problem, or PCP.

We can describe this problem easily as a type of puzzle. We begin with a col-
lection of dominos, each containing two strings, one on each side. An individual
domino looks like

a
o

and a collection of dominos looks like

b a ca abc
{ARRSAES]
The task is to make a list of these dominos (repetitions permitted) so that the
string we get by reading off the symbols on the top is the same as the string of

symbols on the bottom. This list is called a match. For example, the following
list is a match for this puzzle.

S EEIEEE
Reading off the top string we get abcaaabc, which is the same as reading off the

bottom. We can also depict this match by deforming the dominos so that the
corresponding symbols from top and bottom line up.

a &K&Q c
a blc alala bilc
For some collections of dominos finding a match may not be possible. For

example, the collection
{5 () 521}

cannot contain a match because every top string is longer than the corresponding
bottom string.

The Post correspondence problem is to determine whether a collection of
dominos has a match. This problem is unsolvable by algorithms.

Before getting to the formal statement of this theorem and its proof, let’s state
the problem precisely and then express it as a language. An instance of the PCP

200 CHAPTER 5/ REDUCIBILITY

is a collection P of dominos:

)

and a match is a sequence i1, ig, ..., %, where ¢; t;, -+ t;, = b; b, -+ b;,. The
problem is to determine whether P has a match. Let

PCP = {(P)| P is an instance of the Post correspondence problem
with a match}.

THEOREM 5.15
PCP is undecidable.

PROOF IDEA Conceptually this proof is simple, though it involves many
technical details. The main technique is reduction from Aty via accepting com-
putation histories. We show that from any TM M and input w we can construct
an instance P where a match is an accepting computation history for M on w.
If we could determine whether the instance has a match, we would be able to
determine whether M accepts w.

How can we construct P so that a match is an accepting computation history
for M on w? We choose the dominos in P so that making a match forces a
simulation of M to occur. In the match, each domino links a position or positions
in one configuration with the corresponding one(s) in the next configuration.

Before getting to the construction we handle three small technical points.
(Don’t worry about them too much on your initial reading through this con-
struction.) First, for convenience in constructing P, we assume that M on w
never attempts to move its head off the left-hand end of the tape. That requires
first altering M to prevent this behavior. Second, if w = €, we use the string u
in place of w in the construction. Third, we modify the PCP to require that a
match starts with the first domino,

t1
)

Later we show how to eliminate this requirement. We call this problem the
modified Post correspondence problem (MPCP). Let

MPCP = {(P)| P is an instance of the Post correspondence problem
with a match that starts with the first domino}.

Now let’s move into the details of the proof and design P to simulate M on w.

PROOF We let TM R decide the PCP and construct S deciding Atm. Let
M= (Q7 %,T,0,qo, Gaccept; Qreject)a

where @, ¥, T, and 4, are the state set, input alphabet, tape alphabet, and transi-
tion function of M, respectively.

5.2 A SIMPLE UNDECIDABLE PROBLEM 201

In this case S constructs an instance of the PCP P that has a match iff M
accepts w. To do that S first constructs an instance P’ of the MPCP. We describe
the construction in seven parts, each of which accomplishes a particular aspect of
simulating M on w. To explain what we are doing we interleave the construction
with an example of the construction in action.

Part 1. The construction begins in the following manner.

Put [#

. . t
————— | into P’ as the first domino [—1—})
#gowiws - - - wyp# b

1
Because P’ is an instance of the MPCP, the match must begin with this domino.
Thus the bottom string begins correctly with C; = gow;yws - - - wy, the first con-
figuration in the accepting computation history for M on w, as shown in the
following figure.

gy wy wy ... w,

FIGURE 5.16
Beginning of the MPCP match

In this depiction of the partial match achieved so far, the bottom string con-
sists of #gowiw, - - - wy,# and the top string consists only of #. To get a match we
need to extend the top string to match the bottom string. We provide additional
dominos to allow this extension. The additional dominos cause M’s next config-
uration to appear at the extension of the bottom string by forcing a single-step
simulation of M.

In parts 2, 3, and 4, we add to P’ dominos that perform the main part of
the simulation. Part 2 handles head motions to the right, part 3 handles head
motions to the left, and part 4 handles the tape cells not adjacent to the head.

Part 2. Forevery a,b € T and every ¢, € Q where ¢ # grejects

if (g, a) = (r,b,R), put [%ﬂ into P'.

Part 3. For every a,b,c € I and every ¢, € Q where ¢ # greject,

if 6(¢,a) = (r,b,L), put [fﬂ‘i

ch} into P'.

202 CHAPTER 5/ REDUCIBILITY

Part4. Foreverya €T,
a
— | into P'.
put [a} into

Now we make up a hypothetical example to illustrate what we have built so
far. Let I' = {0,1,2,u}. Say that w is the string 0100 and that the start state
of M is go. In state qo, upon reading a 0, let’s say that the transition function
dictates that M enters state g7, writes a 2 on the tape, and moves its head to the
right. In other words, d(¢o,0) = (g7, 2,R).

Part 1 places the domino

[eaooz00s] = (7]

in P’, and the match begins:

#

o0 10 0

In addition, part 2 places the domino
5]
2q7
as 0(qo,0) = (g7,2,R) and part 4 places the dominos
G} G G] e]

in P, as 0, 1, 2, and u are the members of I'. That, together with part 5, allows
us to extend the match to

o0 1 0 0 #12 ¢;1110101#

Thus the dominos of parts 2, 3, and 4 let us extend the match by adding
the second configuration after the first one. We want this process to continue,
adding the third configuration, then the fourth, and so on. For it to happen we
need to add one more domino for copying the # symbol.

5.2 A SIMPLE UNDECIDABLE PROBLEM 203

Part 5.

Put [f} and [i} into P'.
u#

The first of these dominos allows us to copy the # symbol that marks the sep-
aration of the configurations. In addition to that, the second domino allows us
to add a blank symbol u at the end of the configuration to simulate the infinitely
many blanks to the right that are suppressed when we write the configuration.

Continuing with the example, let’s say that in state g7, upon reading a 1, M
goes to state gs, writes a 0, and moves the head to the right. That s, §(g7, 1) =
(g5,0,R). Then we have the domino

17.
[qL] in P'.
0gs

So the latest partial match extends to

#1201g; 11000 #

2 g;1 00 #1210 ¢10101#

Then, suppose that in state g5, upon reading a 0, M goes to state gg, writes
a 2, and moves its head to the left. So §(gs,0) = (go,2,L). Then we have the
dominos

[0%0] [1%0] {2(]50] and ['—J%O}
790217 Lgg12]" Lgg22)’ qou2l’

The first one is relevant because the symbol to the left of the head is a 0. The
preceding partial match extends to

#20 g0 0 #1210 2101 #

Note that, as we construct a match, we are forced to simulate M on input w.
This process continues until M reaches a halting state. If an accept state occurs,
we want to let the top of the partial match “catch up” with the bottom so that
the match is complete. We can arrange for that to happen by adding additional
dominos.

204 CHAPTER 5/ REDUCIBILITY

Part 6. ForeveryaeT,
Q Gaccept } and |:Qaccept a] into P'.

Gaccept

put

Gaccept

This step has the effect of adding “pseudo-steps” of the Turing machine after
it has halted, where the head “eats” adjacent symbols until none are left. Con-
tinuing with the example, if the partial match up to the point when the machine
halts in an accept state is

2 1 QuopO 2

The dominos we have just added allow the match to continue:

i

2 1 Qaceepr O 2 #1211 1 Gaccept 1 21# 1 * * = # Qaccept|#

Part 7. Finally we add the domino

[GacceptH#]
#

and complete the match:

Gaccept #

Qaccept

That concludes the construction of P’. Recall that P’ is an instance of the
MPCP whereby the match simulates the computation of M on w. To finish
the proof, we recall that the MPCP differs from the PCP in that the match is
required to start with the first domino in the list. If we view P’ as an instance of

5.2 A SIMPLE UNDECIDABLE PROBLEM 205

the PCP instead of the MPCP, it obviously has a match, regardless of whether
M halts on w. Can you find it? (Hint: It is very short.)

We now show how to convert P’ to P, an instance of the PCP that still simu-
lates M on w. We do so with a somewhat technical trick. The idea is to build the
requirement of starting with the first domino directly into the problem so that
stating the explicit requirement becomes unnecessary. We need to introduce
some notation for this purpose.

Let u = ujuz - - - u, be any string of length n. Define xu, ux, and *ux to be
the three strings

*U = kUp kU2 *xU3* ~--° XUy,
Ux = Uy *UQkUI* + *XUp*
* Uk = * U kU * UZ * * Uy * .

Here, xu adds the symbol * before every character in u, u*x adds one after each
character in u, and ux adds one both before and after each character in u.
To convert P’ to P, an instance of the PCP, we do the following. If P’ were

the collection
G}) [l

we let P be the collection

(2] () (2] (][] [

Considering P as an instance of the PCP, we see that the only domino that
could possibly start a match is the first one,

[*tq }
bl ’
because it is the only one where both the top and the bottom start with the same
symbol—namely, *. Besides forcing the match to start with the first domino, the
presence of the xs doesn’t affect possible matches because they simply interleave

with the original symbols. The original symbols now occur in the even positions
of the match. The domino

*O

5]

is there to allow the top to add the extra * at the end of the match.

206 CHAPTER 5/ REDUCIBILITY

5.3

MAPPING REDUCIBILITY

We have shown how to use the reducibility technique to prove that various prob-
lems are undecidable. In this section we formalize the notion of reducibility.
Doing so allows us to use reducibility in more refined ways, such as for prov-
ing that certain languages are not Turing-recognizable and for applications in
complexity theory.

The notion of reducing one problem to another may be defined formally in
one of several ways. The choice of which one to use depends on the application.
Our choice is a simple type of reducibility called mapping reducibility.”

Roughly speaking, being able to reduce problem A to problem B by using
a mapping reducibility means that a computable function exists that converts
instances of problem A to instances of problem B. If we have such a conversion
function, called a reduction, we can solve A with a solver for B. The reason is
that any instance of A can be solved by first using the reduction to convert it
to an instance of B and then applying the solver for B. A precise definition of
mapping reducibility follows shortly.

COMPUTABLE FUNCTIONS

A Turing machine computes a function by starting with the input to the function
on the tape and halting with the output of the function on the tape.

DEFINITION 5.17

A function f: £*— X* is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.

EXAMPLE 5.18

All usual arithmetic operations on integers are computable functions. For exam-
ple, we can make a machine that takes input (m,n) and returns m + n, the sum
of m and n. We don’t give any details here, leaving them as exercises.

EXAMPLE 5.19

Computable functions may be transformations of machine descriptions. For
example, one computable function f takes input w and returns the description
of a Turing machine (M') if w = (M) is an encoding of a Turing machine M.

2Tt is called many—one reducibility in some other textbooks.

5.3 MAPPING REDUcCIBILITY 207

The machine M’ is a machine that recognizes the same language as M, but
never attempts to move its head off the left-hand end of its tape. The function
f accomplishes this task by adding several states to the description of M. The
function returns € if w is not a legal encoding of a Turing machine.

FORMAL DEFINITION OF MAPPING REDUCIBILITY

Now we define mapping reducibility. As usual we represent computational prob-
lems by languages.

DEFINITION 5.20

Language A is mapping reducible to language B, written A <., B,
if there is a computable function f: ¥*— X*, where for every w,

we A<+ f(w) € B.

The function f is called the reduction of A to B.

The following figure illustrates mapping reducibility.

FIGURE 5.21
Function f reducing A to B

A mapping reduction of A to B provides a way to convert questions about
membership testing in A to membership testing in B. To test whether w € A,
we use the reduction f to map w to f(w) and test whether f(w) € B. The term
mapping reduction comes from the function or mapping that provides the means
of doing the reduction.

If one problem is mapping reducible to a second, previously solved problem,
we can thereby obtain a solution to the original problem. We capture this idea
in the following theorem.

208 CHAPTER 5/ REDUCIBILITY

THEOREM 5.22
If A <., B and B is decidable, then A is decidable.

PROOF We let M be the decider for B and f be the reduction from A to B.
We describe a decider N for A as follows.

N = “On input w:
1. Compute f(w).
2. Run M on input f(w) and output whatever M outputs.”

Clearly, if w € A, then f(w) € B because f is a reduction from A to B. Thus
M accepts f(w) whenever w € A. Therefore N works as desired.

The following corollary of Theorem 5.22 has been our main tool for proving

undecidability.

COROLLARY 5.23
If A <., B and A is undecidable, then B is undecidable.

Now we revisit some of our earlier proofs that used the reducibility method
to get examples of mapping reducibilities.

EXAMPLE 5.24

In Theorem 5.1 we used a reduction from Aty to prove that HALT 1y is un-
decidable. This reduction showed how a decider for HALT 1y could be used to
give a decider for Atm. We can demonstrate a mapping reducibility from Arwm
to HALT 1\ as follows. To do so we must present a computable function f that
takes input of the form (M, w) and returns output of the form (M’ w'), where

(M,w) € Arm if and only if (M’ ,w') € HALTtm.
The following machine F' computes a reduction f.

F = “On input (M, w):
1. Construct the following machine M’.
M'" = “On input z:
1. Run M onz.
2. If M accepts, accept.
3. If M rejects, enter a loop.”
2. Output (M’ ,w).”

A minor issue arises here concerning improperly formed input strings. If TM F
determines that its input is not of the correct form as specified in the input line
“On input (M, w):” and hence that the input is not in Aty, the TM outputs a

5.3 MAPPING REDUCIBILITY 209

string not in HALT tm. Any string notin HALT 1ty will do. In general, when we
describe a Turing machine that computes a reduction from A to B, improperly
formed inputs are assumed to map to strings outside of B.

EXAMPLE 5.25

The proof of the undecidability of the Post correspondence problem in Theo-
rem 5.15 contains two mapping reductions. First, it shows that Aty <,, MPCP
and then it shows that MPCP <,, PCP. In both cases we can easily obtain
the actual reduction function and show that it is a mapping reduction. As Ex-
ercise 5.6 shows, mapping reducibility is transitive, so these two reductions to-
gether imply that Aty <., PCP.

EXAMPLE 5.26

A mapping reduction from Ety to EQry lies in the proof of Theorem 5.4. In
this case the reduction f maps the input (M) to the output (M, M,), where M,
is the machine that rejects all inputs.

EXAMPLE 5.27

The proof of Theorem 5.2 showing that Ety is undecidable illustrates the dif-
ference between the formal notion of mapping reducibility that we have defined
in this section and the informal notion of reducibility that we used earlier in this
chapter. The proof shows that Ety is undecidable by reducing Atw to it. Let’s
see whether we can convert this reduction to a mapping reduction.

From the original reduction we may easily construct a function f that takes
input (M, w) and produces output (M), where M is the Turing machine de-
scribed in that proof. But M accepts w ift L(M)) is not empty so f is a mapping
reduction from Aty to Etm. It still shows that Erym is undecidable because
decidability is not affected by complementation, but it doesn’t give a mapping
reduction from Aty to Erm. In fact, no such reduction exists, as you are asked
to show in Exercise 5.5. ;

The sensitivity of mapping reducibility to complementation is important
in the use of reducibility to prove nonrecognizability of certain languages.
We can also use mapping reducibility to show that problems are not Turing-
recognizable. The following theorem is analogous to Theorem 5.22.

THEOREM 5.28

If A <., B and B is Turing-recognizable, then A is Turing-recognizable.

The proof is the same as that of Theorem 5.22, except that M and N are recog-
nizers instead of deciders.

210 CHAPTER 5/ REDUCIBILITY

COROLLARY 5.29

If A <,, B and A is not Turing-recognizable, then B is not Turing-recognizable.

In a typical application of this corollary, we let A be A1y, the complement
of Aty. We know that Ay is not Turing-recognizable from Corollary 4.23.
The definition of mapping reducibility implies that A <,, B means the same
as A <., B. To prove that B isn’t recognizable we may show that Aty <., B.
We can also use mapping reducibility to show that certain problems are neither
Turing-recognizable nor co-Turing-recognizable, as in the following theorem.

THEOREM 5.30

EQ+y is neither Turing-recognizable nor co-Turing-recognizable.

PROOF First we show that EQt), is not Turing-recognizable. We do so by
showing that Aty is reducible to EQry. The reducing function f works as
follows.

F = “On input (M, w) where M is a TM and w a string:
1. Construct the following two machines M; and Ma.
M, = “On any input:
1. Reject.”
Mj; = “On any input:
1. Run M on w. If it accepts, accept.”
2. Output (M, My).”

Here, M, accepts nothing. If M accepts w, M, accepts everything, and so the
two machines are not equivalent. Conversely, if M doesn’t accept w, M, accepts
nothing, and they are equivalent. Thus f reduces Aty to EQry, as desired.

To show that EQ+y is not Turing-recognizable we give a reduction from Ay
to the complement of EQry—namely, EQry. Hence we show that Aty <p
EQ+p- The following TM G computes the reducing function g.

G = “The input is (M, w) where M is a TM and w a string:
1. Construct the following two machines M; and Mo.
M, = “On any input:
1. Accept.”
My = “On any input:
1. Run M on w.
2. Ifitaccepts, accept.”
2. Output (]\/[1,]\/[2>.”

The only difference between f and g is in machine M. In f, machine M,
always rejects, whereas in g it always accepts. In both f and g, M accepts w iff
M, always accepts. In g, M accepts w iff M, and M, are equivalent. That is why
g is a reduction from Atm to EQ1py-

EXERCISES 211

EXERCISES

5.1
52
5.3

5.4

A5.5

A5.6

A5.7
A58

Show that EQ g is undecidable.
Show that EQ g is co-Turing-recognizable.

Find a match in the following instance of the Post Correspondence Problem.

(=)) 1) (2]}

If A <u B and B is a regular language, does that imply that A is a regular lan-
guage? Why or why not?

Show that Atwm is not mapping reducible to Erym. In other words, show that no
computable function reduces Aty to Erm. (Hint: Use a proof by contradiction,
and facts you already know about Arm and Erm.)

Show that <, is a transitive relation.
Show that if A is Turing-recognizable and A <., A, then A is decidable.

In the proof of Theorem 5.15 we modified the Turing machine M so that it never
tries to move its head off the left-hand end of the tape. Suppose that we did not
make this modification to M. Modify the PCP construction to handle this case.

PROBLEMS

5.9

A5.10

A5.11

5.12

5.13

Let T = {(M)| M is a TM that accepts w™ whenever it accepts w}. Show that T
is undecidable.

Consider the problem of determining whether a two-tape Turing machine ever
writes a nonblank symbol on its second tape when it is run on input w. Formulate
this problem as a language, and show that it is undecidable.

Consider the problem of determining whether a two-tape Turing machine ever
writes a nonblank symbol on its second tape during the course of its computation
on any input string. Formulate this problem as a language, and show that it is
undecidable.

Consider the problem of determining whether a single-tape Turing machine ever
writes a blank symbol over a nonblank symbol during the course of its computation
on any input string. Formulate this problem as a language, and show that it is
undecidable.

A useless state in a Turing machine is one that is never entered on any input string.
Consider the problem of determining whether a Turing machine has any useless
states. Formulate this problem as a language and show that it is undecidable.

212

5.14

5.15

5.16

5.17

5.18

5.19

5.20
5.21

5.22
5.23
5.24

5.25
5.26

CHAPTER 5/ REDUCIBILITY

Consider the problem of determining whether a Turing machine M on an input
w ever attempts to move its head left when its head is on the left-most tape cell.
Formulate this problem as a language and show that it is undecidable.

Consider the problem of determining whether a Turing machine M on an input
w ever attempts to move its head left at any point during its computation on w.
Formulate this problem as a language and show that it is decidable.

Let " = {0, 1,u} be the tape alphabet for all TMs in this problem. Define the busy
beaver function BB: N— N as follows. For each value of k, consider all k-state
TMs that halt when started with a blank tape. Let BB(k) be the maximum number
of 1s that remain on the tape among all of these machines. Show that BB is not a
computable function.

Show that the Post Correspondence Problem is decidable over the unary alphabet
E={1}

Show that the Post Correspondence Problem is undecidable over the binary alpha-
bet ¥ = {0,1}.

In the silly Post Corvespondence Problem, SPCP, in each pair the top string has the
same length as the bottom string. Show that the SPCP is decidable.

Prove that there exists an undecidable subset of {1}*.

Let AMBIGcre = {(G)| G is an ambiguous CFG}. Show that AMBIGckc is unde-
cidable. (Hint: Use a reduction from PCP. Given an instance

e ([) ()

of the Post Correspondence Problem, construct a CFG G with the rules

S—T|B
T—-—> t1Ta1 ' | tkTak |t1a1 I [tkak
B — b1 Ba; | J br Bay |b1a1 | l bray ,
where ay, ..., ax are new terminal symbols. Prove that this reduction works.)

Show that A is Turing-recognizable iff A <, Atm.
Show that A is decidable iff A <., 0*1*.

Let J = {w] either w =0z for some € Atm, or w = 1y for some y € Atm }.
Show that neither J nor J is Turing-recognizable.

Give an example of an undecidable language B, where B <., B.

Define a two-headed finite automaton (2DFA) to be a deterministic finite automa-
ton that has two read-only, bidirectional heads that start at the left-hand end of the
input tape and can be independently controlled to move in either direction. The
tape of a 2DFA is finite and is just large enough to contain the input plus two ad-
ditional blank tape cells, one on the left-hand end and one on the right-hand end,
that serve as delimiters. A 2DFA accepts its input by entering a special accept state.
For example, a 2DFA can recognize the language {a"b"c"|n > 0}.

a. Let Aopra = {(M,)| M is a 2DFA and M accepts x}. Show that Aypra is
decidable.

b. Let Expra = {(M)| M is a 2DFA and L(M) = 0}. Show that Expea is not
decidable.

5.27

A*5.28

5.29

5.30

5.31

5.32

5.33

5.34

PROBLEMS 213

A two-dimensional finite automaton (2DIM-DFA) is defined as follows. The input
is an m x n rectangle, for any m,n > 2. The squares along the boundary of the
rectangle contain the symbol # and the internal squares contain symbols over the
input alphabet £. The transition function is a mapping @ x ¥ — Q x {L,R,U,D}
to indicate the next state and the new head position (Left, Right, Up, Down). The
machine accepts when it enters one of the designated accept states. It rejects if it
tries to move off the input rectangle or if it never halts. Two such machines are
equivalent if they accept the same rectangles. Consider the problem of determin-
ing whether two of these machines are equivalent. Formulate this problem as a
language, and show that it is undecidable.

Rice’s theorem. Let P be any nontrivial property of the language of a Turing
machine. Prove that the problem of determining whether a given Turing machine’s
language has property P is undecidable.

In more formal terms, let P be a language consisting of Turing machine descrip-
tions where P fulfills two conditions. First, P is nontrivial—it contains some, but
not all, TM descriptions. Second, P is a property of the TM’s language—whenever
L(My) = L(Ma), we have (M;) € P iff (M) € P. Here, My and M are any
TMs. Prove that P is an undecidable language.

Show that both conditions in Problem 5.28 are necessary for proving that P is
undecidable.

Use Rice’s theorem, which appears in Problem 5.28, to prove the undecidability of
each of the following languages.
Aa. INFINITEtm = {(M)| M is a TM and L(M) is an infinite language}.
b. {(M)| M isaTMand 1011 € L(M)}.
c. ALLtw ={(M)| MisaTMand L(M) =X*}.
Let
3z+1 foroddzx
flz) =
z/2 for even x
for any natural number x. If you start with an integer « and iterate f, you obtain a
sequence, z, f(z), f(f(z)),... Stop ifyou ever hit 1. For example, if z = 17, you
get the sequence 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1. Extensive computer
tests have shown that every starting point between 1 and a large positive integer

gives a sequence that ends in 1. But, the question of whether all positive starting
points end up at 1 is unsolved; it is called the 3z + 1 problem.

Suppose that Aty were decidable by a TM H. Use H to describe a TM that is
guaranteed to state the answer to the 3z + 1 problem.
Prove that the following two languages are undecidable.
a. OVERLAPcec = {(G, H)| G and H are CFGs where L(G) N L(H) # 0}.
(Hint: Adapt the hint in Problem 5.21.)
b. PREFIX-FREEcrc = {G| G is a CFG where L(G) is prefix-free}.

Let S = {(M)| M isa TM and L(M) = {(M)}}. Show that neither S nor S is
Turing-recognizable.

Consider the problem of determining whether a PDA accepts some string of the
form {ww| w € {0,1}*} . Use the computation history method to show that this
problem is undecidable.

214

5.35

CHAPTER 5/ REDUCIBILITY

Let X = {{M,w)| M is a single-tape TM that never modifies the portion of the
tape that contains the input w}. Is X decidable? Prove your answer.

SELECTED SOLUTIONS

5.5

5.6

5.7

5.8

5.10

Suppose for a contradiction that Atm <, Erm via reduction f. It follows from the
definition of mapping reducibility that Atm <. Etm via the same reduction func-
tion f. However Frw is Turing-recognizable and Arw is not Turing-recognizable,
contradicting Theorem 5.28.

Suppose A <;, B and B <,, C. Then there are computable functions f and
gsuch thatzx € A <= f(z) € Bandy € B < g(y) € C. Consider the
composition function h(z) = g(f(z)). We can build a TM that computes h as
follows: First, simulate a TM for f (such a TM exists because we assumed that f
is computable) on input z and call the output y. Then simulate a TM for g on y.
The output is h(z) = g(f(x)). Therefore h is a computable function. Moreover,
z € A<= h(zx) € C. Hence A <., C via the reduction function h.

Suppose that A < A. Then A <., A via the same mapping reduction. Because A
is Turing-recognizable, Theorem 5.28 implies that A is Turing-recognizable, and
then Theorem 4.22 implies that A is decidable.

You need to handle the case where the head is at the leftmost tape cell and attempts
to move left. To do so add dominos
k=
#rb

for every q,r € Q and a,b € T, where (¢, a) = (r,b,L).

Let B = {(M,w)| M is a two-tape TM which writes a nonblank symbol on its
second tape when it is run on w}. Show that Aty reduces to B. Assume for the
sake of contradiction that TM R decides B. Then construct TM S that uses R to
decide Arm.

S = “On input (M, w):
1. Use M to construct the following two-tape TM T'.
T = “On input z:
1. Simulate M on z using the first tape.
2. If the simulation shows that M accepts, write a non-
blank symbol on the second tape.”
2. Run R on (T, w) to determine whether 7" on input w writes a
nonblank symbol on its second tape.
3. If R accepts, M accepts w, therefore accept. Otherwise reject.”

5.11

5.28

5.30

SELECTED SOLUTIONS 215

Let C = {(M)| M is a two-tape TM which writes a nonblank symbol on its second
tape when it is run on some input}. Show that Aty reduces to C. Assume for the
sake of contradiction that TM R decides C. Construct TM S that uses R to decide
Arm.

S = “On input (M, w):
1. Use M and w to construct the following two-tape TM T,.
T = “On any input:
1. Simulate M on w using the first tape.
2. If the simulation shows that M accepts, write a non-
blank symbol on the second tape.”
2. Run Ron (Ty) to determine whether T, ever writes a nonblank
symbol on its second tape.
3. If R accepts, M accepts w, therefore accept. Otherwise reject.”

Assume for the sake of contradiction that P is a decidable language satisfying the
properties and let Rp be a TM that decides P. We show how to decide Atm using
Rp by constructing TM S. First let Tj be a TM that always rejects, so L(Ty) =0.
You may assume that (T)) ¢ P without loss of generality, because you could pro-
ceed with P instead of P if (Ty) € P. Because P is not trivial, there exists a TM T
with (T') € P. Design S to decide Aty using Rp’s ability to distinguish between
Tpand T.

S = “On input (M, w):
1. Use M and w to construct the following TM M,,.
M, = “On input z:
1. Simulate M on w. If it halts and rejects, reject.
If it accepts, proceed to stage 2.
2. Simulate T on z. If it accepts, accept.”
2. Use TM Rp to determine whether (M,,) € P. If YES, accept.
If NO, reject.”

TM M,, simulates T' if M accepts w. Hence L(M,,) equals L(T) if M accepts w
and () otherwise. Therefore (M, w) € P iff M accepts w.

(a) INFINITEw is a language of TM descriptions. It satisfies the two conditions
of Rice’s theorem. First, it is nontrivial because some TMs have infinite languages
and others do not. Second, it depends only on the language. If two TMs recognize
the same language, either both have descriptions in INFINITEtwm or neither do.
Consequently, Rice’s theorem implies that INFINITEy is undecidable.

