

TIME COMPLEXITY

Even when a problem is decidable and thus computationally solvable in prin-
ciple, it may not be solvable in practice if the solution requires an inordinate
amount of time or memory. In this final part of the book we introduce com-
putational complexity theory—an investigation of the time, memory, or other
resources required for solving computational problems. We begin with time.
Our objective in this chapter is to present the basics of time complexity theory.
First we introduce a way of measuring the time used to solve a problem. Then we
show how to classify problems according to the amount of time required. After
that we discuss the possibility that certain decidable problems require enormous
amounts of time and how to determine when you are faced with such a problem.

i B wE I N " 0 " i s B I I A e N
; I i - . I - - . 2 B N B e (3 BN BN B
L]

MEASURING COMPLEXITY

Let’s begin with an example. Take the language A = {0*1*| k > 0}. Obviously
A is a decidable language. How much time does a single-tape Turing machine
need to decide A? We examine the following single-tape TM M; for A. We give

247

248 CHAPTER 7 / TIME COMPLEXITY

the Turing machine description at a low level, including the actual head motion
on the tape so that we can count the number of steps that M; uses when it runs.

M, = “On input string w:
1. Scan across the tape and reject if a 0 is found to the right of a 1.
2. Repeat if both 0s and 1s remain on the tape:
3. Scan across the tape, crossing off a single 0 and a single 1.
4. 1If Os still remain after all the 1s have been crossed off, or if 1s
still remain after all the Os have been crossed off, reject. Other-
wise, if neither Os nor 1s remain on the tape, accept.”

We analyze the algorithm for TM M deciding A to determine how much time it
uses.

The number of steps that an algorithm uses on a particular input may depend
on several parameters. For instance, if the input is a graph, the number of steps
may depend on the number of nodes, the number of edges, and the maximum
degree of the graph, or some combination of these and/or other factors. For
simplicity we compute the running time of an algorithm purely as a function
of the length of the string representing the input and don’t consider any other
parameters. In worst-case analysis, the form we consider here, we consider the
longest running time of all inputs of a particular length. In average-case anal-
ysis, we consider the average of all the running times of inputs of a particular

length.

DEFINITION 7.1

Let M be a deterministic Turing machine that halts on all in-
puts. The running time or time complexity of M is the function
f: N— N, where f(n) is the maximum number of steps that M
uses on any input of length n. If f(n) is the running time of M,
we say that M runs in time f(n) and that M is an f(n) time Tur-
ing machine. Customarily we use n to represent the length of the
input.

BIG-O AND SMALL-O NOTATION

Because the exact running time of an algorithm often is a complex expression,
we usually just estimate it. In one convenient form of estimation, called asymp-
totic analysis, we seek to understand the running time of the algorithm when
it is run on large inputs. We do so by considering only the highest order term
of the expression for the running time of the algorithm, disregarding both the
coefficient of that term and any lower order terms, because the highest order
term dominates the other terms on large inputs.

7.1 MEASURING COMPLEXITY 249

For example, the function f(n) = 6n® + 2n? + 20n + 45 has four terms,
and the highest order term is 6n°. Disregarding the coefficient 6, we say that
f is asymptotically at most n3. The asymptotic notation or big-O notation for
describing this relationship is f(n) = O(n®). We formalize this notion in the
following definition. Let R™ be the set of nonnegative real numbers.

DEFINITION 7.2

Let f and g be functions f, g: N /— R ™. Say that f(n) = O(g(n))

if positive integers ¢ and ng exist such that for every integer n > ng
f(n) <cg(n).

When f(n) = O(g(n)) we say that g(n) is an upper bound for
f(n), or more precisely, that g(n) is an asymptotic upper bound for
f(n), to emphasize that we are suppressing constant factors.

Intuitively, f(n) = O(g(n)) means that f is less than or equal to g if we
disregard differences up to a constant factor. You may think of O as rep-
resenting a suppressed constant. In practice, most functions f that you are
likely to encounter have an obvious highest order term h. In that case write
f(n) = O(g(n)), where g is h without its coefficient.

EXAMPLE 7.3 ..

Let f1(n) be the function 5n3 4 2n? + 22n + 6. Then, selecting the highest order
term 5n° and disregarding its coefficient 5 gives f1(n) = O(n?).

Let’s verify that this result satisfies the formal definition. We do so by letting
c be 6 and ng be 10. Then, 5n3 + 2n? + 22n + 6 < 6n° for every n > 10.

In addition, f;(n) = O(n*) because n* is larger than n® and so is still an
asymptotic upper bound on f;.

However, f1(n) is not O(n?). Regardless of the values we assign to ¢ and ny,
the definition remains unsatistfied in this case.

EXAMPLE 7.4 ..

The big-O interacts with logarithms in a particular way. Usually when we use
logarithms we must specify the base, as in z = log, n. The base 2 here indicates
that this equality is equivalent to the equality 2* = n. Changing the value of
the base b changes the value of log, n by a constant factor, owing to the identity
log, n = log, n/logy b. Thus, when we write f(n) = O(logn), specifying the
base is no longer necessary because we are suppressing constant factors anyway.
Let f2(n) be the function 3nlog, n + 5nlog, log, n + 2. In this case we have
f2(n) = O(nlogn) because log n dominates log log n. 3

250 CHAPTER 7 / TIME COMPLEXITY

Big-O notation also appears in arithmetic expressions such as the expression
f(n) = O(n?) + O(n). In that case each occurrence of the O symbol represents
a different suppressed constant. Because the O(n?) term dominates the O(n)
term, that expression is equivalent to f(n) = O(n?). When the O symbol occurs
in an exponent, as in the expression f(n) = 29" the same idea applies. This
expression represents an upper bound of 2" for some constant c.

The expression f(n) = 29(°8™) occurs in some analyses. Using the identity
n = 2'°82" and thus that n® = 2°!°82"_ we see that 20(°8™) represents an upper
bound of n¢ for some c¢. The expression n°(1) represents the same bound in a
different way, because the expression O(1) represents a value that is never more
than a fixed constant.

Frequently we derive bounds of the form n¢ for ¢ greater than 0. Such bounds
are called polynomial bounds. Bounds of the form 2(n") are called exponential
bounds when ¢ is a real number greater than 0.

Big-O notation has a companion called small-o notation. Big-O notation says
that one function is asymptotically #o more than another. To say that one func-
tion is asymptotically Jess than another we use small-o notation. The difference
between the big-O and small-o notations is analogous to the difference between
< and <.

DEFINITION 7.3
Let f and g be functions f, g: N—R™. Say that f(n) = o(g(n))

if
lm f—(fb—) =0.
—o0 g(n
In other words, f(n) = o(g(n)) means that, for any real number

¢ > 0, a number ng exists, where f(n) < cg(n) for all n > ny.

EXAMPLE 7.6 ..

The following are easy to check.
1. /n = o(n).
2. n=o(nloglogn).
3. nloglogn = o(nlogn).
4. nlogn = o(n?).
5. n2 = o(n?).

However, f(n) is never o(f(n)).

7.1 MEASURING COMPLEXITY 251

ANALYZING ALGORITHMS

Let’s analyze the TM algorithm we gave for the language A = {0*1%|k > 0}. We
repeat the algorithm here for convenience.

M; = “On input string w:
1. Scan across the tape and reject if a 0 is found to the right of a 1.
2. Repeat if both Os and 1s remain on the tape:
3. Scan across the tape, crossing off a single 0 and a single 1.
4. If Os still remain after all the 1s have been crossed off, or if 1s
still remain after all the Os have been crossed off, reject. Other-
wise, if neither Os nor 1s remain on the tape, accept.”

To analyze M; we consider each of its four stages separately. In stage 1,
the machine scans across the tape to verify that the input is of the form 0*1*.
Performing this scan uses n steps. As we mentioned earlier, we typically use n to
represent the length of the input. Repositioning the head at the left-hand end of
the tape uses another n steps. So the total used in this stage is 2n steps. In big-O
notation we say that this stage uses O(n) steps. Note that we didn’t mention the
repositioning of the tape head in the machine description. Using asymptotic no-
tation allows us to omit details of the machine description that affect the running
time by at most a constant factor.

In stages 2 and 3, the machine repeatedly scans the tape and crosses off a 0
and 1 on each scan. Each scan uses O(n) steps. Because each scan crosses off
two symbols, at most /2 scans can occur. So the total time taken by stages 2
and 3 is (n/2)0(n) = O(n?) steps.

In stage 4 the machine makes a single scan to decide whether to accept or
reject. The time taken in this stage is at most O(n).

Thus the total time of M; on an input of length n is O(n) + O(n?) + O(n),
or O(n?). In other words, its running time is O(n?), which completes the time
analysis of this machine.

Let’s set up some notation for classifying languages according to their time
requirements.

DEFINITION 7.7

Let t: N— R™ be a function. Define the time complexity class,
TIME(t(n)), to be the collection of all languages that are decid-
able by an O(t(n)) time Turing machine.

Recall the language A = {0%1%| k > 0}. The preceding analysis shows that
A € TIME(n?) because M; decides A in time O(n?) and TIME(n?) contains all
languages that can be decided in O(n?) time.

252 CHAPTER 7 / TIME COMPLEXITY

Is there a machine that decides A asymptotically more quickly? In other
words, is A in TIME(¢(n)) for t(n) = o(n?)? We can improve the running
time by crossing off two Os and two 1s on every scan instead of just one because
doing so cuts the number of scans by half. But that improves the running time
only by a factor of 2 and doesn’t affect the asymptotic running time. The fol-
lowing machine, M, uses a different method to decide A asymptotically faster.
It shows that A € TIME(n logn).

M5 = “On input string w:

1. Scan across the tape and reject if a 0 is found to the right of a 1.

2. Repeat as long as some Os and some 1s remain on the tape:

3. Scan across the tape, checking whether the total number of
Os and 1s remaining is even or odd. If it is odd, reject.

4. Scan again across the tape, crossing off every other O starting
with the first 0, and then crossing off every other 1 starting
with the first 1.

5. If no Os and no 1s remain on the tape, accept. Otherwise,

reject.”

Before analyzing Mo, let’s verify that it actually decides A. On every scan
performed in stage 4, the total number of Os remaining is cut in half and any
remainder is discarded. Thus, if we started with 13 Os, after stage 4 is executed a
single time only 6 Os remain. After subsequent executions of this stage, 3, then
1, and then 0 remain. This stage has the same effect on the number of 1s.

Now we examine the even/odd parity of the number of 0s and the number
of 1s at each execution of stage 3. Consider again starting with 13 0s and 13
1s. The first execution of stage 3 finds an odd number of Os (because 13 is
an odd number) and an odd number of 1s. On subsequent executions an even
number (6) occurs, then an odd number (3), and an odd number (1). We do not
execute this stage on 0 Os or 0 1s because of the condition on the repeat loop
specified in stage 2. For the sequence of parities found (odd, even, odd, odd) if
we replace the evens with Os and the odds with 1s and then reverse the sequence,
we obtain 1101, the binary representation of 13, or the number of Os and 1s at
the beginning. The sequence of parities always gives the reverse of the binary
representation.

When stage 3 checks to determine that the total number of 0s and 1s re-
maining is even, it actually is checking on the agreement of the parity of the Os
with the parity of the 1s. If all parities agree, the binary representations of the
numbers of 0s and of 1s agree, and so the two numbers are equal.

To analyze the running time of M,, we first observe that every stage takes
O(n) time. We then determine the number of times that each is executed.
Stages 1 and 5 are executed once, taking a total of O(n) time. Stage 4 crosses
off at least half the 0s and 1s each time it is executed, so at most 1 + log, n iter-
ations of the repeat loop occur before all get crossed off. Thus the total time of
stages 2, 3, and 4 is (1 + log, n)O(n), or O(nlogn). The running time of M, is
O(n) + O(nlogn) = O(nlogn).

7.1 MEASURING COMPLEXITY 253

Earlier we showed that A € TIME(n?), but now we have a better bound—
namely, A € TIME(nlogn). This result cannot be further improved on single-
tape Turing machines. In fact, any language that can be decided in o(nlogn)
time on a single-tape Turing machine is regular, as Problem 7.47 asks you to
show.

We can decide the language A in O(n) tme (also called linear time) if the
Turing machine has a second tape. The following two-tape TM M3 decides A in
linear time. Machine A3 operates differently from the previous machines for A.
It simply copies the Os to its second tape and then matches them against the 1s.

M3 = “On input string w:

1. Scan across the tape and reject if a 0 is found to the right of a 1.

2. Scan across the 0s on tape 1 until the first 1. At the same time,
copy the Os onto tape 2.

3. Scan across the 1s on tape 1 until the end of the input. For each
1 read on tape 1, cross off a 0 on tape 2. If all Os are crossed off
before all the 1s are read, reject.

4. It all the Os have now been crossed off, accept. If any Os remain,
reject.”

This machine is simple to analyze. Each of the four stages uses O(n) steps, so
the total running time is O(n) and thus is linear. Note that this running time is
the best possible because n steps are necessary just to read the input.

Let’s summarize what we have shown about the time complexity of A, the
amount of time required for deciding A. We produced a single-tape TM M;
that decides A in O(n?) time and a faster single tape TM M, that decides A in
O(nlogn) time. The solution to Problem 7.47 implies that no single-tape TM
can do it more quickly. Then we exhibited a two-tape TM M3 that decides A in
O(n) time. Hence the time complexity of A on a single-tape TM is O(n logn)
and on a two-tape TM it is O(n). Note that the complexity of A depends on the
model of computation selected.

This discussion highlights an important difference between complexity the-
ory and computability theory. In computability theory, the Church-Turing thesis
implies that all reasonable models of computation are equivalent—that is, they
all decide the same class of languages. In complexity theory, the choice of model
affects the time complexity of languages. Languages that are decidable in, say,
linear time on one model aren’t necessarily decidable in linear time on another.

In complexity theory, we classify computational problems according to their
time complexity. But with which model do we measure time? The same language
may have different time requirements on different models.

Fortunately, time requirements don’t differ greatly for typical deterministic
models. So, if our classification system isn’t very sensitive to relatively small
differences in complexity, the choice of deterministic model isn’t crucial. We
discuss this idea further in the next several sections.

254 CHAPTER 7 / TIME COMPLEXITY

COMPLEXITY RELATIONSHIPS AMONG MODELS

Here we examine how the choice of computational model can affect the time
complexity of languages. We consider three models: the single-tape Turing ma-
chine; the multitape Turing machine; and the nondeterministic Turing machine.

THEOREM 7.8 ..

Let t(n) be a function, where ¢(n) > n. Then every t(n) time multitape Turing
machine has an equivalent O(¢?(n)) time single-tape Turing machine.

PROOF IDEA The idea behind the proof of this theorem is quite simple.
Recall that in Theorem 3.13 we showed how to convert any multitape TM into
a single-tape TM that simulates it. Now we analyze that simulation to determine
how much additional time it requires. We show that simulating each step of
the multitape machine uses at most O(t(n)) steps on the single-tape machine.
Hence the total time used is O(¢%(n)) steps.

PROOF Let M be a k-tape TM that runs in ¢(n) time. We construct a single-
tape TM S that runs in O(t?(n)) time.

Machine S operates by simulating M, as described in Theorem 3.13. To
review that simulation, we recall that S uses its single tape to represent the con-
tents on all k£ of M’s tapes. The tapes are stored consecutively, with the positions
of M’s heads marked on the appropriate squares.

Initially, S puts its tape into the format that represents all the tapes of M
and then simulates M’s steps. To simulate one step, S scans all the information
stored on its tape to determine the symbols under M’s tape heads. Then S makes
another pass over its tape to update the tape contents and head positions. If one
of M’s heads moves rightward onto the previously unread portion of its tape, S
must increase the amount of space allocated to this tape. It does so by shifting a
portion of its own tape one cell to the right.

Now we analyze this simulation. For each step of M, machine S makes two
passes over the active portion of its tape. The first obtains the information nec-
essary to determine the next move and the second carries it out. The length
of the active portion of S’s tape determines how long S takes to scan it, so we
must determine an upper bound on this length. To do so we take the sum of
the lengths of the active portions of M’s k tapes. Each of these active portions
has length at most ¢t(n) because M uses t(n) tape cells in ¢(n) steps if the head
moves rightward at every step and even fewer if a head ever moves leftward.
Thus a scan of the active portion of S’ tape uses O(t(n)) steps.

To simulate each of M’s steps, S performs two scans and possibly up to &
rightward shifts. Each uses O(t(n)) time, so the total time for S to simulate one
of M’s steps is O(t(n)).

Now we bound the total time used by the simulation. The initial stage, where
S puts its tape into the proper format, uses O(n) steps. Afterward, S simulates
each of the t(n) steps of M, using O(t(n)) steps, so this part of the simulation
uses t(n) x O(t(n)) = O(t?(n)) steps. Therefore the entire simulation of M uses

7.1 MEASURING COMPLEXITY 255

O(n) + O(t?(n)) steps.

We have assumed that ¢(n) > n (a reasonable assumption because M could
not even read the entire input in less time). Therefore the running time of S is
O(t?(n)) and the proof is complete.

--

Next, we consider the analogous theorem for nondeterministic single-tape
Turing machines. We show that any language that is decidable on such a ma-
chine is decidable on a deterministic single-tape Turing machine that requires
significantly more time. Before doing so, we must define the running time of
a nondeterministic Turing machine. Recall that a nondeterministic Turing ma-
chine is a decider if all its computation branches halt on all inputs.

DEFINITION 7.9

Let N be a nondeterministic Turing machine thatis a decider. The
running time of N is the function f: N— N, where f(n) is the
maximum number of steps that N uses on any branch of its com-
putation on any input of length n, as shown in the following figure.

Deterministic Nondeterministic
f(n) reject/ f(n)
} _accept
l _accept/reject l _ reject l

FIGURE 7.10 -
Measuring deterministic and nondeterministic time

The definition of the running time of a nondeterministic Turing machine is
not intended to correspond to any real-world computing device. Rather, itis a
useful mathematical definition that assists in characterizing the complexity of an
important class of computational problems, as we demonstrate shortly.

256 CHAPTER 7 / TIME COMPLEXITY

THEOREM 7.1 T e e s e

Let ¢(n) be a function, where t(n) > n. Then every t(n) time nondeterministic
single-tape Turing machine has an equivalent 2°((")) time deterministic single-
tape Turing machine.

PROOF Let N be anondeterministic TM running in ¢(n) time. We construct a
deterministic TM D that simulates NV as in the proof of Theorem 3.16 by search-
ing N’s nondeterministic computation tree. Now we analyze that simulation.

On an input of length n, every branch of N’s nondeterministic computation
tree has a length of at most ¢(n). Every node in the tree can have at most b
children, where b is the maximum number of legal choices given by N’s transition
function. Thus the total number of leaves in the tree is at most b*(™),

The simulation proceeds by exploring this tree breadth first. In other words,
it visits all nodes at depth d before going on to any of the nodes at depth d + 1.
The algorithm given in the proof of Theorem 3.16 inefficiently starts at the root
and travels down to a node whenever it visits that node, but eliminating this
inefficiency doesn’t alter the statement of the current theorem, so we leave it
as is. The total number of nodes in the tree is less than twice the maximum
number of leaves, so we bound it by O(b(™)). The time for starting from the
root and traveling down to a node is O(¢(n)). Therefore the running time of D
is O(t(n)bt(")) = 20(tn),

As described in Theorem 3.16, the TM D has three tapes. Converting to a
single-tape TM at most squares the running time, by Theorem 7.8. Thus the
running time of the single-tape simulator is (20('5(")))2 = 20@2t(n) = 20(t(n))
and the theorem is proved.

/.2

THE CLASS P

Theorems 7.8 and 7.11 illustrate an important distinction. On the one hand, we
demonstrated at most a square or polynomial difference between the time com-
plexity of problems measured on deterministic single-tape and multitape Turing
machines. On the other hand, we showed at most an exponential difference be-
tween the time complexity of problems on deterministic and nondeterministic
Turing machines.

POLYNOMIAL TIME

For our purposes, polynomial differences in running time are considered to be
small, whereas exponential differences are considered to be large. Let’s look at

7.2 THE CLASS P 257

why we chose to make this separation between polynomials and exponentials
rather than between some other classes of functions.

First, note the dramatic difference between the growth rate of typically oc-
curring polynomials such as n3 and typically occurring exponentials such as 2.
For example, let n be 1000, the size of a reasonable input to an algorithm. In
that case, n? is 1 billion, a large, but manageable number, whereas 2" is a num-
ber much larger than the number of atoms in the universe. Polynomial time
algorithms are fast enough for many purposes, but exponential time algorithms
rarely are useful.

Exponential time algorithms typically arise when we solve problems by ex-
haustively searching through a space of solutions, called brute-force search. For
example, one way to factor a number into its constituent primes is to search
through all potential divisors. The size of the search space is exponential, so this
search uses exponential time. Sometimes, brute-force search may be avoided
through a deeper understanding of a problem, which may reveal a polynomial
time algorithm of greater utility.

All reasonable deterministic computational models are polynomially equiv-
alent. That is, any one of them can simulate another with only a polynomial
increase in running time. When we say that all reasonable deterministic models
are polynomially equivalent, we do not attempt to define reasonable. However,
we have in mind a notion broad enough to include models that closely approxi-
mate running times on actual computers. For example, Theorem 7.8 shows that
the deterministic single-tape and multitape Turing machine models are polyno-
mially equivalent.

From here on we focus on aspects of time complexity theory that are unaf-
fected by polynomial differences in running time. We consider such differences
to be insignificant and ignore them. Doing so allows us to develop the theory
in a way that doesn’t depend on the selection of a particular model of computa-
tion. Remember, our aim is to present the fundamental properties of computation,
rather than properties of Turing machines or any other special model.

You may feel that disregarding polynomial differences in running time is ab-
surd. Real programmers certainly care about such differences and work hard just
to make their programs run twice as quickly. However, we disregarded constant
factors a while back when we introduced asymptotic notation. Now we propose
to disregard the much greater polynomial differences, such as that between time
n and time n3.

Our decision to disregard polynomial differences doesn’t imply that we con-
sider such differences unimportant. On the contrary, we certainly do consider
the difference between time n and time n® to be an important one. But some
questions, such as the polynomiality or nonpolynomiality of the factoring prob-
lem, do not depend on polynomial differences and are important, too. We
merely choose to focus on this type of question here. Ignoring the trees to see
the forest doesn’t mean that one is more important than the other—it just gives
a different perspective.

Now we come to an important definition in complexity theory.

258 CHAPTER 7 / TIME COMPLEXITY

DEFINITION 7.12

P is the class of languages that are decidable in polynomial time on
a deterministic single-tape Turing machine. In other words,

P = | TIME(n").
k

The class P plays a central role in our theory and is important because

1. P is invariant for all models of computation that are polynomially equiva-
lent to the deterministic single-tape Turing machine, and

2. P roughly corresponds to the class of problems that are realistically solv-
able on a computer.

Item 1 indicates that P is a mathematically robust class. Itisn’t affected by the
particulars of the model of computation that we are using.

Item 2 indicates that P is relevant from a practical standpoint. When a
problem is in P, we have a method of solving it that runs in time n* for some
constant k. Whether this running time is practical depends on k and on the
application. Of course, a running time of n'% is unlikely to be of any practical
use. Nevertheless, calling polynomial time the threshold of practical solvability
has proven to be useful. Once a polynomial time algorithm has been found for
a problem that formerly appeared to require exponential time, some key insight
into it has been gained, and further reductions in its complexity usually follow,

often to the point of actual practical utility.

EXAMPLES OF PROBLEMS IN P

When we present a polynomial time algorithm, we give a high-level description
of it without reference to features of a particular computational model. Doing
so avoids tedious details of tapes and head motions. We need to follow certain
conventions when describing an algorithm so that we can analyze it for polyno-
miality.

We describe algorithms with numbered stages. The notion of a stage of an
algorithm is analogous to a step of a Turing machine, though of course, imple-
menting one stage of an algorithm on a Turing machine, in general, will require
many ‘Turing machine steps.

When we analyze an algorithm to show that it runs in polynomial time, we
need to do two things. First, we have to give a polynomial upper bound (usu-
ally in big-O notation) on the number of stages that the algorithm uses when it
runs on an input of length n. Then, we have to examine the individual stages
in the description of the algorithm to be sure that each can be implemented in
polynomial time on a reasonable deterministic model. We choose the stages
when we describe the algorithm to make this second part of the analysis easy to

7.2 THE CLASS P 259

do. When both tasks have been completed, we can conclude that the algorithm
runs in polynomial time because we have demonstrated that it runs for a poly-
nomial number of stages, each of which can be done in polynomial time, and the
composition of polynomials is a polynomial.

One point that requires attention is the encoding method used for problems.
We continue to use the angle-bracket notation (-) to indicate a reasonable en-
coding of one or more objects into a string, without specifying any particular
encoding method. Now, a reasonable method is one that allows for polyno-
mial time encoding and decoding of objects into natural internal representations
or into other reasonable encodings. Familiar encoding methods for graphs, au-
tomata, and the like all are reasonable. But note that unary notation for encoding
numbers (as in the number 17 encoded by the unary string 11111111111111111)
isn’t reasonable because it is exponentially larger than truly reasonable encod-
ings, such as base k notation for any k > 2.

Many computational problems you encounter in this chapter contain encod-
ings of graphs. One reasonable encoding of a graph is a list of its nodes and
edges. Another is the adjacency matrix, where the (i, j)th entry is 1 if there is
an edge from node ¢ to node j and 0 if not. When we analyze algorithms on
graphs, the running time may be computed in terms of the number of nodes
instead of the size of the graph representation. In reasonable graph represen-
tations, the size of the representation is a polynomial in the number of nodes.
Thus, if we analyze an algorithm and show that its running time is polynomial
(or exponential) in the number of nodes, we know that it is polynomial (or expo-
nential) in the size of the input.

The first problem concerns directed graphs. A directed graph G contains
nodes s and t, as shown in the following figure. The PATH problem is to deter-
mine whether a directed path exists from s to ¢. Let

PATH = {(G, s, t)| G is a directed graph that has a directed path from s to t}.

FIGURE 7.13
The PATH problem: Is there a path from s to ¢?

260 CHAPTER 7 / TIME COMPLEXITY

THEOREM 7.]4 ...
PATH € P.

PROOF IDEA We prove this theorem by presenting a polynomial time algo-
rithm that decides PATH. Before describing that algorithm, let’s observe that a
brute-force algorithm for this problem isn’t fast enough.

A brute-force algorithm for PATH proceeds by examining all potential paths
in G and determining whether any is a directed path from s to t. A potential path
is a sequence of nodes in G having a length of at most m, where m is the number
of nodes in G. (If any directed path exists from s to ¢, one having a length of at
most m exists because repeating a node never is necessary.) But the number of
such potential paths is roughly m™, which is exponential in the number of nodes
in G. Therefore this brute-force algorithm uses exponential time.

To get a polynomial time algorithm for PATH we must do something that
avoids brute force. One way is to use a graph-searching method such as breadth-
first search. Here, we successively mark all nodes in G that are reachable from s
by directed paths of length 1, then 2, then 3, through m. Bounding the running
time of this strategy by a polynomial is easy.

PROOF A polynomial time algorithm M for PATH operates as follows.

M = “Oninput (G, s, t) where G is a directed graph with nodes s and t:
1. Place a mark on node s.
2. Repeat the following until no additional nodes are marked:
3. Scan all the edges of G. If an edge (a, b) is found going from
a marked node a to an unmarked node b, mark node b.
4. Iftis marked, accept. Otherwise, reject.”

Now we analyze this algorithm to show that it runs in polynomial time. Ob-
viously, stages 1 and 4 are executed only once. Stage 3 runs at most m times
because each time except the last it marks an additional node in G. Thus the
total number of stages used is at most 1 4 1 + m, giving a polynomial in the size
of G.

Stages 1 and 4 of M are easily implemented in polynomial time on any rea-
sonable deterministic model. Stage 3 involves a scan of the input and a test of
whether certain nodes are marked, which also is easily implemented in polyno-
mial time. Hence M is a polynomial time algorithm for PATH.

..

Let’s turn to another example of a polynomial time algorithm. Say that two
numbers are relatively prime if 1 is the largest integer that evenly divides them
both. For example, 10 and 21 are relatively prime, even though neither of them

is a prime number by itself, whereas 10 and 22 are not relatively prime because
both are divisible by 2. Let RELPRIME be the problem of testing whether two

7.2 THE CLASS P 261

numbers are relatively prime. Thus

RELPRIME = {(z,y)| « and y are relatively prime}.

THEOREM 7.'| 5 ...
RELPRIME € P.

PROOF IDEA One algorithm that solves this problem searches through all
possible divisors of both numbers and accepts if none are greater than 1. How-
ever, the magnitude of a number represented in binary, or in any other base
notation for k > 2, is exponential in the length of its representation. Therefore
this brute-force algorithm searches through an exponential number of potential
divisors and has an exponential running time.

Instead, we solve this problem with an ancient numerical procedure, called
the Euclidean algorithm, for computing the greatest common divisor. The
greatest common divisor of natural numbers x and y, written ged(z, y), is the
largest integer that evenly divides both x and y. For example, ged(18,24) = 6.
Obviously, z and y are relatively prime iff ged(z,y) = 1. We describe the Eu-
clidean algorithm as algorithm E in the proof. It uses the mod function, where
x mod y is the remainder after the integer division of z by y.

PROOF The Euclidean algorithm FE is as follows.

E = “On input (z,y), where x and y are natural numbers in binary:
1. Repeatuntil y = 0:
2. Assignz < x mod y.
3. Exchange z and y.
4. Outputz.”

Algorithm R solves RELPRIME, using E as a subroutine.

R = “On input (z, y), where = and y are natural numbers in binary:
1. Run Eon (z,y).
2. Iftheresultis 1, accept. Otherwise, reject.”

Clearly, if E runs correctly in polynomial time, so does R and hence we only
need to analyze E for time and correctness. The correctness of this algorithm is
well known so we won’t discuss it further here.

To analyze the time complexity of E, we first show that every execution of
stage 2 (except possibly the first), cuts the value of x by at least half. After stage 2
is executed, r < y because of the nature of the mod function. After stage 3,
x > y because the two have been exchanged. Thus, when stage 2 is subsequently
executed, z > y. If /2 > y, then 2 mod y < y < /2 and = drops by at least
half. If /2 < y, then £ mod y = = — y < /2 and « drops by at least half.

262 CHAPTER 7 / TIME COMPLEXITY

The values of = and y are exchanged every time stage 3 is executed, so each
of the original values of x and y are reduced by at least half every other time
through the loop. Thus the maximum number of times that stages 2 and 3 are
executed is the lesser of 2 log, = and 2log, y. These logarithms are proportional
to the lengths of the representations, giving the number of stages executed as
O(n). Each stage of E uses only polynomial time, so the total running time is
polynomial.

The final example of a polynomial time algorithm shows that every context-
free language is decidable in polynomial time.

THEOREM 7.16 ...

Every context-free language is a member of P.

PROOF IDEA In Theorem 4.9 we proved that every CFL is decidable. To do
so we gave an algorithm for each CFL that decides it. If that algorithm runs in
polynomial time, the current theorem follows as a corollary. Let’s recall that
algorithm and find out whether it runs quickly enough.

Let L be a CFL generated by CFG G that is in Chomsky normal form. From
Problem 2.26, any derivation of a string w has 2n — 1 steps, where n is the length
of w because G is in Chomsky normal form. The decider for L works by trying
all possible derivations with 2n — 1 steps when its input is a string of length n. If
any of these is a derivation of w, the decider accepts; if not, it rejects.

A quick analysis of this algorithm shows that it doesn’t run in polynomial
time. The number of derivations with k steps may be exponential in %, so this
algorithm may require exponential time.

"To get a polynomial time algorithm we introduce a powerful technique called
dynamic programming. This technique uses the accumulation of information
about smaller subproblems to solve larger problems. We record the solution to
any subproblem so that we need to solve it only once. We do so by making a
table of all subproblems and entering their solutions systematically as we find
them.

In this case, we consider the subproblems of determining whether each vari-
able in G generates each substring of w. The algorithm enters the solution to
this subproblem in an n x n table. For i < j the (¢, j)th entry of the table con-
tains the collection of variables that generate the substring w;w;; - - - w;. For
i > j the table entries are unused.

The algorithm fills in the table entries for each substring of w. First it fills
in the entries for the substrings of length 1, then those of length 2, and so on.
It uses the entries for the shorter lengths to assist in determining the entries for
the longer lengths.

7.2 THE CLASS P 263

For example, suppose that the algorithm has already determined which vari-
ables generate all substrings up to length k. To determine whether a variable A
generates a particular substring of length k£ + 1 the algorithm splits that substring
into two nonempty pieces in the k possible ways. For each split, the algorithm
examines each rule A — BC to determine whether B generates the first piece
and C generates the second piece, using table entries previously computed. If
both B and C generate the respective pieces, A generates the substring and so
is added to the associated table entry. The algorithm starts the process with the
strings of length 1 by examining the table for the rules A — b.

PROOF The following algorithm D implements the proof idea. Let G be
a CFG in Chomsky normal form generating the CFL L. Assume that S is the
start variable. (Recall that the empty string is handled specially in a Chomsky
normal form grammar. The algorithm handles the special case in which w = €
in stage 1.) Comments appear inside double brackets.

D =“Oninput w = wy - - - Wp:
1. Ifw=-¢eand S — eisarule, accept. [handle w = & case]
2. Fori=1ton: [examine each substring of length 1]
3. For each variable A:

4, Test whether A — b is a rule, where b = w;.
5. If so, place A in table(i, 7).
6. Forl=2ton: [l is the length of the substring |
7. Fori=1ton —1+1: [iisthe start position of the substring]
8. Letj=i+1-1, [j is the end position of the substring]
9. Fork=itoj—1: [k is the split position]
10. For each rule A — BC:
11. If table(i, k) contains B and table(k + 1, j) contains

C, put A in table(i, j).
12. If Sisin table(1,n), accept. Otherwise, reject.”

Now we analyze D. Each stage is easily implemented to run in polynomial
time. Stages 4 and 5 run at most nv times, where v is the number of variables in
G and is a fixed constant independent of n; hence these stages run O(n) times.
Stage 6 runs at most n times. Each time stage 6 runs, stage 7 runs at most n
times. Each time stage 7 runs, stages 8 and 9 run at most n times. Each time
stage 9 runs, stage 10 runs r times, where 7 is the number of rules of G and
is another fixed constant. Thus stage 11, the inner loop of the algorithm, runs
O(n3) times. Summing the total shows that D executes O(n?) stages.

264 CHAPTER 7 / TIME COMPLEXITY

7.3

THE CLASS NP

As we observed in Section 7.2, we can avoid brute-force search in many problems
and obtain polynomial time solutions. However, attempts to avoid brute force
in certain other problems, including many interesting and useful ones, haven’t
been successful, and polynomial time algorithms that solve them aren’t known
to exist.

Why have we been unsuccessful in finding polynomial time algorithms for
these problems? We don’t know the answer to this important question. Perhaps
these problems have, as yet undiscovered, polynomial time algorithms that rest
on unknown principles. Or possibly some of these problems simply cannot be
solved in polynomial time. They may be intrinsically difficult.

One remarkable discovery concerning this question shows that the complex-
ities of many problems are linked. A polynomial time algorithm for one such
problem can be used to solve an entire class of problems. To understand this
phenomenon, let’s begin with an example.

A Hamiltonian path in a directed graph G is a directed path that goes through
each node exactly once. We consider the problem of testing whether a directed
graph contains a Hamiltonian path connecting two specified nodes, as shown in
the following figure. Let

HAMPATH = {(G, s,t)| G is a directed graph
with a Hamiltonian path from s to ¢}.

FIGURE 7.17
A Hamiltonian path goes through every node exactly once

We can easily obtain an exponential time algorithm for the HAMPATH prob-
lem by modifying the brute-force algorithm for PATH given in Theorem 7.14.
We need only add a check to verify that the potential path is Hamiltonian. No
one knows whether HAMPATH is solvable in polynomial time.

The HAMPATH problem does have a feature called polynomial verifiabil-

7.3 THE CLASS NP 265

ity that is important for understanding its complexity. Even though we don’t
know of a fast (i.e., polynomial time) way to determine whether a graph contains
a Hamiltonian path, if such a path were discovered somehow (perhaps using
the exponential time algorithm), we could easily convince someone else of its
existence, simply by presenting it. In other words, verifying the existence of a
Hamiltonian path may be much easier than determining its existence.

Another polynomially verifiable problem is compositeness. Recall that a nat-
ural number is composite if it is the product of two integers greater than 1 (i.e., a
composite number is one that is not a prime number). Let

COMPOSITES = {z| xz = pq, for integers p,q > 1}.

We can easily verify that a number is composite—all that is needed is a divisor
of that number. Recently, a polynomial time algorithm for testing whether a
number is prime or composite was discovered, but it is considerably more com-
plicated than the preceding method for verifying compositeness.

Some problems may not be polynomially verifiable. For example, take
HAMPATH, the complement of the HAMPATH problem. Even if we could
determine (somehow) that a graph did 7ot have a Hamiltonian path, we don’t
know of a way for someone else to verify its nonexistence without using the
same exponential time algorithm for making the determination in the first place.
A formal definition follows.

DEFINITION 7.18
A verifier for a language A is an algorithm V', where
A = {w| V accepts (w, ¢) for some string c}.

We measure the time of a verifier only in terms of the length of w,
so a polynomial time verifier runs in polynomial time in the length
of w. A language A is polynomially verifiable if it has a polynomial
time verifier.

A verifier uses additional information, represented by the symbol ¢ in Defini-
tion 7.18, to verify that a string w is a member of A. This information is called a
certificate, or proof, of membership in A. Observe that, for polynomial verifiers,
the certificate has polynomial length (in the length of w) because that is all the
verifier can access in its time bound. Let’s apply this definition to the languages
HAMPATH and COMPOSITES.

For the HAMPATH problem, a certificate for a string (G, s,t) € HAMPATH
simply is the Hamiltonian path from s to ¢t. For the COMPOSITES problem, a
certificate for the composite number z simply is one of its divisors. In both cases
the verifier can check in polynomial time that the input is in the language when
it is given the certificate.

266 CHAPTER 7 / TIME COMPLEXITY

DEFINITION 7.19

NP is the class of languages that have polynomial time verifiers.

The class NP is important because it contains many problems of practical in-
terest. From the preceding discussion, both HAMPATH and COMPOSITES are
members of NP. As we mentioned, COMPOSITES is also a member of P which
is a subset of NP, but proving this stronger result is much more difficult. The
term NP comes from nondeterministic polynomial time and is derived from an
alternative characterization by using nondeterministic polynomial time Turing
machines. Problems in NP are sometimes called NP-problems.

The following is a nondeterministic Turing machine (NTM) that decides the
HAMPATH problem in nondeterministic polynomial time. Recall that in Defi-
nition 7.9 we defined the time of a nondeterministic machine to be the time used
by the longest computation branch.

N1 = “On input (G, s, t), where G is a directed graph with nodes s and t:
1. Write a list of m numbers, p1, ..., p,,, where m is the number
of nodes in GG. Each number in the list is nondeterministically
selected to be between 1 and m.
2. Check for repetitions in the list. If any are found, reject.
Check whether s = p; and t = p,,,. If either fail, reject.
4. For each i between 1 and m — 1, check whether (p;, p;+1) is an
edge of G. If any are not, reject. Otherwise, all tests have been
passed, so accept.”

had

To analyze this algorithm and verify that it runs in nondeterministic poly-
nomial time, we examine each of its stages. In stage 1, the nondeterministic
selection clearly runs in polynomial time. In stages 2 and 3, each part is a simple
check, so together they run in polynomial time. Finally, stage 4 also clearly runs
in polynomial time. Thus this algorithm runs in nondeterministic polynomial
time.

THEOREM 7.20 ...

A language is in NP iff it is decided by some nondeterministic polynomial time
Turing machine.

PROOF IDEA We show how to convert a polynomial time verifier to an
equivalent polynomial time NTM and vice versa. The NTM simulates the ver-
ifier by guessing the certificate. The verifier simulates the NTM by using the
accepting branch as the certificate.

PROOF For the forward direction of this theorem, let A € NP and show that
Ais decided by a polynomial time NTM N. Let V' be the polynomial time verifier
for A that exists by the definition of NP. Assume that V' is a TM that runs in time
n* and construct N as follows.

7.3 THE CLASS NP 267

N = “On input w of length n:
1. Nondeterministically select string ¢ of length at most n*.
2. Run V on input (w, c).
3. IfV accepts, accept; otherwise, reject.”

To prove the other direction of the theorem, assume that A is decided by a
polynomial time NTM N and construct a polynomial time verifier V' as follows.

V = “On input (w, c), where w and c are strings:
1. Simulate N on input w, treating each symbol of ¢ as a descrip-
tion of the nondeterministic choice to make at each step (as in
the proof of Theorem 3.16).
2. If this branch of N’s computation accepts, accept; otherwise,
reject.”

We define the nondeterministic time complexity class NTIME(¢(n)) as anal-
ogous to the deterministic time complexity class TIME(¢(n)).

~— DEFINITION 7.21

NTIME(t(n)) = {L| L is a language decided by a O(¢t(n)) time

nondeterministic Turing machine}.

COROLLARY 7.22 ---
NP = J, NTIME(nk).

The class NP is insensitive to the choice of reasonable nondeterministic com-
putational model because all such models are polynomially equivalent. When
describing and analyzing nondeterministic polynomial time algorithms, we fol-
low the preceding conventions for deterministic polynomial time algorithms.
Each stage of a nondeterministic polynomial time algorithm must have an obvi-
ous implementation in nondeterministic polynomial time on a reasonable non-
deterministic computational model. We analyze the algorithm to show that
every branch uses at most polynomially many stages.

EXAMPLES OF PROBLEMS IN NP

A cligue in an undirected graph is a subgraph, wherein every two nodes are
connected by an edge. A k-clique is a clique that contains k nodes. Figure 7.23
illustrates a graph having a 5-clique

268 CHAPTER 7 / TIME COMPLEXITY

Q (2)

O O O

FIGURE 7.23
A graph with a 5-clique

The clique problem is to determine whether a graph contains a clique of a
specified size. Let

CLIQUE = {(G, k)| G is an undirected graph with a k-clique}.

THEOREM 7.24 ...
CLIQUE is in NP.

PROOF IDEA The clique is the certificate.

PROOF The following is a verifier V' for CLIQUE.

V =“On input ((G, k), c):
1. Test whether cis a set of k nodes in G
2. Test whether G contains all edges connecting nodes in c.
3. If both pass, accept; otherwise, reject.”

ALTERNATIVE PROOF If you prefer to think of NP in terms of nonde-
terministic polynomial time Turing machines, you may prove this theorem by
giving one that decides CLIQUE. Observe the similarity between the two proofs.

N = “On input (G, k), where G is a graph:
1. Nondeterministically select a subset ¢ of k nodes of G.
2. Test whether G contains all edges connecting nodes in c.
3. Ifyes, accept; otherwise, reject.”

Next we consider the SUBSET-SUM problem concerning integer arithmetic.
In this problem we have a collection of numbers z1, ...,z and a target num-
ber t. We want to determine whether the collection contains a subcollection that

7.3 THE CLASS NP 269

adds up to t. Thus
SUBSET-SUM = {(S,t)| S = {z1, ...,z } and for some
{vi, ...y} C{x1, ..., 2z}, we have Dy; = t}.

For example, ({4,11,16,21,27}, 25) € SUBSET-SUM because 4 + 21 = 25.
Note that {z1, ..., zx} and {y1, ...,y } are considered to be multisets and so
allow repetition of elements.

THEOREM 7.25 ...
SUBSET-SUM is in NP.

PROOF IDEA The subset is the certificate.

PROOF The following is a verifier V for SUBSET-SUM.

V = “On input ((S, t), c):
1. Test whether ¢ is a collection of numbers that sum to .
2. Test whether S contains all the numbers in c.
3. If both pass, accept; otherwise, reject.”

ALTERNATIVE PROOF We can also prove this theorem by giving a nonde-
terministic polynomial time Turing machine for SUBSET-SUM as follows.

N = “On input (S, t):
1. Nondeterministically select a subset ¢ of the numbers in S.
2. 'Test whether cis a collection of numbers that sum to ¢.
3. If the test passes, accept; otherwise, reject.”

Observe that the complements of these sets, CLIQUE and SUBSET-SUM,
are not obviously members of NP. Verifying that something is 7ot present seems
to be more difficult than verifying that it is present. We make a separate com-
plexity class, called coNP, which contains the languages that are complements of
languages in NP. We don’t know whether coNP is different from NP.

THE P VERSUS NP QUESTION

As we have been saying, NP is the class of languages that are solvable in polyno-
mial time on a nondeterministic Turing machine, or, equivalently, it is the class
of languages whereby membership in the language can be verified in polynomial
time. P is the class of languages where membership can be tested in polyno-
mial time. We summarize this information as follows, where we loosely refer to

270 CHAPTER 7 / TIME COMPLEXITY

polynomial time solvable as solvable “quickly.”

P = the class of languages for which membership can be decided quickly.
NP = the class of languages for which membership can be verified quickly.

We have presented examples of languages, such as HIMPATH and CLIQUE,
that are members of NP but that are not known to be in P. The power of polyno-
mial verifiability seems to be much greater than that of polynomial decidability.
But, hard as it may be to imagine, P and NP could be equal. We are unable to
prove the existence of a single language in NP that is not in P.

The question of whether P = NP is one of the greatest unsolved problems
in theoretical computer science and contemporary mathematics. If these classes
were equal, any polynomially verifiable problem would be polynomially decid-
able. Most researchers believe that the two classes are not equal because people
have invested enormous effort to find polynomial time algorithms for certain
problems in NP, without success. Researchers also have tried proving that the
classes are unequal, but that would entail showing that no fast algorithm exists
to replace brute-force search. Doing so is presently beyond scientific reach. The
following figure shows the two possibilities.

NP

FIGURE 7.26
One of these two possibilities is correct

The best method known for solving languages in NP deterministically uses
exponential time. In other words, we can prove that

NP C EXPTIME = | J TIME(2""),
k

but we don’t know whether NP is contained in a smaller deterministic time com-
plexity class.

7.4 NP-COMPLETENESS 271

/.4

NP-COMPLETENESS

One important advance on the P versus NP question came in the early 1970s
with the work of Stephen Cook and Leonid Levin. They discovered certain
problems in NP whose individual complexity is related to that of the entire class.
If a polynomial time algorithm exists for any of these problems, all problems in
NP would be polynomial time solvable. These problems are called NP-complete.
The phenomenon of NP-completeness is important for both theoretical and
practical reasons.

On the theoretical side, a researcher trying to show that P is unequal to NP
may focus on an NP-complete problem. If any problem in NP requires more
than polynomial time, an NP-complete one does. Furthermore, a researcher
attempting to prove that P equals NP only needs to find a polynomial time al-
gorithm for an NP-complete problem to achieve this goal.

On the practical side, the phenomenon of NP-completeness may prevent
wasting time searching for a nonexistent polynomial time algorithm to solve
a particular problem. Even though we may not have the necessary mathematics
to prove that the problem is unsolvable in polynomial time, we believe that P is
unequal to NP, so proving that a problem is NP-complete is strong evidence of
its nonpolynomiality.

The first NP-complete problem that we present is called the satisfiability
problem. Recall that variables that can take on the values TRUE and FALSE are
called Boolean variables (see Section 0.2). Usually, we represent TRUE by 1 and
FALSE by 0. The Boolean operations AND, OR, and NOT, represented by the
symbols A, V, and —, respectively, are described in the following list. We use the
overbar as a shorthand for the — symbol, so T means - z.

0AN0=0 oOovo=20 0=1
0OAN1=0 ovli=1 1=0
1AN0=0 1v0o=1
INl=1 1vli=1

A Boolean formula is an expression involving Boolean variables and opera-
tions. For example,

¢={TAy)V (zAZ)

is a Boolean formula. A Boolean formula is satisfiable it some assignment of Os
and 1s to the variables makes the formula evaluate to 1. The preceding formula is
satisfiable because the assignment x = 0, y = 1, and z = 0 makes ¢ evaluate to 1.
We say the assignment satisfies ¢. The satisfiability problem is to test whether a
Boolean formula is satisfiable. Let

SAT = {{¢)| ¢ is a satisfiable Boolean formula}.

Now we state the Cook-Levin theorem, which links the complexity of the
SAT problem to the complexities of all problems in NP.

272 CHAPTER 7 / TIME COMPLEXITY

THEOREM 7.27 ...
Cook-Levin theorem SAT € P iff P = NP.

..

Next, we develop the method that is central to the proof of the Cook-Levin
theorem.

POLYNOMIAL TIME REDUCIBILITY

In Chapter 5 we defined the concept of reducing one problem to another. When
problem A reduces to problem B, a solution to B can be used to solve A. Now
we define a version of reducibility that takes the efficiency of computation into
account. When problem A is efficiently reducible to problem B, an efficient
solution to B can be used to solve A efficiently.

DEFINITION 7.28

A function f: ¥*— X* is a polynomial time computable function
if some polynomial time Turing machine M exists that halts with
just f(w) on its tape, when started on any input w.

DEFINITION 7.29

Language A is polynomial time mapping reducible,'or simply poly-
nomial time reducible, to language B, written A <p B, if a polyno-
mial time computable function f: ¥*— X* exists, where for every
w’

we A<= f(w) € B.

The function f is called the polynomial time reduction of A to B.

Polynomial time reducibility is the efficient analog to mapping reducibility
as defined in Section 5.3. Other forms of efficient reducibility are available, but
polynomial time reducibility is a simple form that is adequate for our purposes
so we won'’t discuss the others here. The following figure illustrates polynomial
time reducibility.

Nt is called polynomial time many—-one reducibility in some other textbooks.

7.4 NP-COMPLETENESS 273

FIGURE 7.30
Polynomial time function f reducing A to B

As with an ordinary mapping reduction, a polynomial time reduction of A to
B provides a way to convert membership testing in A to membership testing in
B, but now the conversion is done efficiently. To test whether w € A, we use
the reduction f to map w to f(w) and test whether f(w) € B.

If one language is polynomial time reducible to a language already known to
have a polynomial time solution, we obtain a polynomial time solution to the
original language, as in the following theorem.

THEOREM 7.31 ...
If A<p Band B € P, then A € P.

PROOF Let M be the polynomial time algorithm deciding B and f be the
polynomial time reduction from A to B. We describe a polynomial time algo-
rithm N deciding A as follows.

N = “On input w:
1. Compute f(w).
2. Run M oninput f(w) and output whatever M outputs.”

We have w € A whenever f(w) € B because f is a reduction from A to B.
Thus M accepts f(w) whenever w € A. Moreover, N runs in polynomial time
because each of its two stages runs in polynomial time. Note that stage 2 runs in
polynomial time because the composition of two polynomials is a polynomial.

Before demonstrating a polynomial time reduction we introduce 3SAT, a spe-
cial case of the satisfiability problem whereby all formulas are in a special form. A

274 CHAPTER 7 / TIME COMPLEXITY

literal is a Boolean variable or a negated Boolean variable, as in = or T. A clause
is several literals connected with Vs, as in (21 V 73 V T3 V 24). A Boolean for-
mula is in conjunctive normal form, called a cnf-formula, if it comprises several
clauses connected with As, as in

(1 VT2 VT3V ag) A (23VT5Vas) A (z3VTp).
It is a 3enf-formula if all the clauses have three literals, as in
(1 VT2 VT3) A (3 VT Vas) A (x3VTeVag) A (x4 Vs Vag).

Let 3SAT = {(¢)| ¢ is a satisfiable 3cnf-formula}. In a satisfiable cnf-formula,
each clause must contain at least one literal that is assigned 1.

The following theorem presents a polynomial time reduction from the 3SAT
problem to the CLIQUE problem.

THEOREM 7Z.32 oo s s s s s s s sas s s
3SAT is polynomial time reducible to CLIQUE.

PROOF IDEA The polynomial time reduction f that we demonstrate from
3SAT to CLIQUE converts formulas to graphs. In the constructed graphs,
cliques of a specified size correspond to satisfying assignments of the formula.
Structures within the graph are designed to mimic the behavior of the variables
and clauses.

PROOF Let ¢ be a formula with k clauses such as
¢=(G1V61V61)A(a2Vb2VCQ)A /\(ak\/bk\/ck).

The reduction f generates the string (G, k), where G is an undirected graph
defined as follows.

The nodes in G are organized into k groups of three nodes each called the
triples, t1, ..., t;. Each triple corresponds to one of the clauses in ¢, and each
node in a triple corresponds to a literal in the associated clause. Label each node
of G with its corresponding literal in ¢.

The edges of G connect all but two types of pairs of nodes in G. No edge
is present between nodes in the same triple and no edge is present between two
nodes with contradictory labels, as in 25 and Z3. The following figure illustrates
this construction when ¢ = (z; V1 Va2) A (ZT VT2 VT2) A (T V22 V 22).

7.4 NP-COMPLETENESS 275

FIGURE 7.33
The graph that the reduction produces from
p=(x1VeiVa) N (TTVI2VT2) A (TTV 2 V1)

Now we demonstrate why this construction works. We show that ¢ is satisfi-
able iff G has a k-clique.

Suppose that ¢ has a satisfying assignment. In that satisfying assignment, at
least one literal is true in every clause. In each triple of G, we select one node
corresponding to a true literal in the satisfying assignment. If more than one
literal is true in a particular clause, we choose one of the true literals arbitrarily.
The nodes just selected form a k-clique. The number of nodes selected is k,
because we chose one for each of the k triples. Each pair of selected nodes is
joined by an edge because no pair fits one of the exceptions described previously.
They could not be from the same triple because we selected only one node per
triple. They could not have contradictory labels because the associated literals
were both true in the satisfying assignment. Therefore G contains a k-clique.

Suppose that G has a k-clique. No two of the clique’s nodes occur in the same
triple because nodes in the same triple aren’t connected by edges. Therefore
each of the k triples contains exactly one of the k clique nodes. We assign truth
values to the variables of ¢ so that each literal labeling a clique node is made
true. Doing so is always possible because two nodes labeled in a contradictory
way are not connected by an edge and hence both can’t be in the clique. This
assignment to the variables satisfies ¢ because each triple contains a clique node
and hence each clause contains a literal that is assigned TRUE. Therefore ¢ is
satisfiable.

..

Theorems 7.31 and 7.32 tell us that, if CLIQUE is solvable in polynomial
time, so is 3SAT. At first glance, this connection between these two problems
appears quite remarkable because, superficially, they are rather different. But
polynomial time reducibility allows us to link their complexities. Now we turn
to a definition that will allow us similarly to link the complexities of an entire
class of problems.

276 CHAPTER 7 / TIME COMPLEXITY

DEFINITION OF NP-COMPLETENESS

" DEFINITION 7.34
A language B is NP-complete if it satisfies two conditions:

1. Bisin NP, and
2. every A in NP is polynomial time reducible to B.

THEOREM Zo35 s st s s st ns
If B is NP-complete and B € P, then P = NP.

PROOF This theorem follows directly from the definition of polynomial time
reducibility.

THEOREM 7.36 ...
If B is NP-complete and B <p C for C in NP, then C' is NP-complete.

PROOF We already know that C is in NP, so we must show that every A in
NP is polynomial time reducible to C. Because B is NP-complete, every lan-
guage in NP is polynomial time reducible to B, and B in turn is polynomial
time reducible to C. Polynomial time reductions compose; that is, if A is poly-
nomial time reducible to B and B is polynomial time reducible to C, then A
is polynomial time reducible to C. Hence every language in NP is polynomial
time reducible to C.

THE COOK—-LEVIN THEOREM

Once we have one NP-complete problem, we may obtain others by polynomial
time reduction from it. However, establishing the first NP-complete problem is
more difficult. Now we do so by proving that SAT is NP-complete.

THEOREM Z o387 oo s s s s s sa s s s s st s
SAT is NP-complete.?

This theorem restates Theorem 7.27, the Cook-Levin theorem, in another
form.

2An alternative proof of this theorem appears in Section 9.3 on page 351.

7.4 NP-COMPLETENESS 277

PROOF IDEA Showing that SAT is in NP is easy, and we do so shortly. The
hard part of the proof is showing that any language in NP is polynomial time
reducible to SAT.

To do so we construct a polynomial time reduction for each language A in NP
to SAT. The reduction for A takes a string w and produces a Boolean formula
¢ that simulates the NP machine for A on input w. If the machine accepts, ¢
has a satisfying assignment that corresponds to the accepting computation. If
the machine doesn’t accept, no assignment satisfies ¢. Therefore w is in A if and
only if ¢ is satisfiable.

Actually constructing the reduction to work in this way is a conceptually
simple task, though we must cope with many details. A Boolean formula may
contain the Boolean operations AND, OR, and NOT, and these operations form
the basis for the circuitry used in electronic computers. Hence the fact that we
can design a Boolean formula to simulate a Turing machine isn’t surprising. The
details are in the implementation of this idea.

PROOF First, we show that SAT is in NP. A nondeterministic polynomial
time machine can guess an assignment to a given formula ¢ and accept if the
assignment satisfies ¢.

Next, we take any language A in NP and show that A is polynomial time
reducible to SAT. Let N be a nondeterministic Turing machine that decides A
in n* time for some constant k. (For convenience we actually assume that N
runs in time n® — 3, but only those readers interested in details should worry
about this minor point.) The following notion helps to describe the reduction.

A tableau for N on w is an n* x n* table whose rows are the configurations of
a branch of the computation of N on input w, as shown in the following figure.

9o |wy w2| e lwn W ‘ u | # | start configuration
| second configuration
#
window
[—

v # # | nkth configuration

FIGURE 7.38

A tableau is an n* x n* table of configurations
gu

278 CHAPTER 7 / TIME COMPLEXITY

For convenience later we assume that each configuration starts and ends with
a # symbol, so the first and last columns of a tableau are all #s. The first row
of the tableau is the starting configuration of N on w, and each row follows the
previous one according to N’s transition function. A tableau is accepting if any
row of the tableau is an accepting configuration.

Every accepting tableau for NV on w corresponds to an accepting computation
branch of N on w. Thus the problem of determining whether N accepts w is
equivalent to the problem of determining whether an accepting tableau for N
On W exists.

Now we get to the description of the polynomial time reduction f from A to
SAT. On input w, the reduction produces a formula ¢. We begin by describing
the variables of ¢. Say that @ and I are the state set and tape alphabet of N. Let
C = QUT U{#}. For each i and j between 1 and n* and for each s in C we have
a variable, z; ; ;.

Each of the (n*)? entries of a tableau is called a cell. The cell in row 4 and
column j is called cell[i, j] and contains a symbol from C. We represent the
contents of the cells with the variables of ¢. If z; ;, takes on the value 1, it
means that cell[i, j] contains an s.

Now we design ¢ so that a satisfying assignment to the variables does corre-
spond to an accepting tableau for N on w. The formula ¢ is the AND of four
Parts Geell A Gstare A Pmove A Paccepe- We describe each part in turn.

As we mentioned previously, turning variable z; ; ; on corresponds to placing
symbol s in cell[i, j]. The first thing we must guarantee in order to obtain a cor-
respondence between an assignment and a tableau is that the assignment turns
on exactly one variable for each cell. Formula ¢ . ensures this requirement by
expressing it in terms of Boolean operations:

¢cell = /\ l:(v xiij'S) /\ (A (:L,iaj’s v I.Z’Jat))} *
1<ij<nk - s€C s,teC
s#t
The symbols A and \/ stand for iterated AND and OR. For example, the
expression in the preceding formula

V i

seC

is shorthand for
xi,j,81 \/ wi:jaSQ \/ o v xivjasl

where C' = {s1,s2, ..., 5}. Hence ¢ is actually a large expression that con-
tains a fragment for each cell in the tableau because i and j range from 1 to n*.
The first part of each fragment says that at least one variable is turned on in the
corresponding cell. The second part of each fragment says that no more than
one variable is turned on (literally, it says that in each pair of variables, at least
one is turned off) in the corresponding cell. These fragments are connected by

A\ operations.

7.4 NP-COMPLETENESS 279

The first part of ¢ inside the brackets stipulates that at least one variable
that is associated to each cell is on, whereas the second part stipulates that no
more than one variable is on for each cell. Any assignment to the variables that
satisfies ¢ (and therefore ¢..)) must have exactly one variable on for every cell.
Thus any satisfying assignment specifies one symbol in each cell of the table.
Parts @stare, Pmove, ad Paccepr €nsure that these symbols actually correspond to an
accepting tableau as follows.

Formula ¢, ensures that the first row of the table is the starting configu-
ration of N on w by explicitly stipulating that the corresponding variables are
on:

Ostare = T1,1,4 NT1,2,90/\
$1,3,’LL)1 /\ x1’47w2 /\ e /\ xl,n"‘f‘szn/\

T1,n+3,u AN xl’nk_l’[_, AN fl?l’nk’# .

Formula ¢,ccepr guarantees that an accepting configuration occurs in the
tableau. It ensures that guccepe, the symbol for the accept state, appears in one
of the cells of the tableau, by stipulating that one of the corresponding variables
Is on:

Cbaccept = v xi aj »Qaccept *

1<i4,j<nk

Finally, formula ¢move guarantees that each row of the table corresponds to a
configuration that legally follows the preceding row’s configuration according to
N’s rules. It does so by ensuring that each 2 x 3 window of cells is legal. We say
that a 2 x 3 window is legal if that window does not violate the actions specified
by N’s transition function. In other words, a window is legal if it might appear
when one configuration correctly follows another.?

For example, say that a, b, and ¢ are members of the tape alphabet and ¢; and
g2 are states of N. Assume that, when in state ¢; with the head reading an a, N
writes a b, stays in state ¢; and moves right, and that when in state g; with the
head reading a b, N nondeterministically either

1. writes a c, enters g2 and moves to the left, or

2. writes an a, enters g, and moves to the right.

Expressed formally, 6(¢1,a) = {(g1,b,R)} and d(¢1,b) = {(g2,¢,L), (¢2,8,R)}.
Examples of legal windows for this machine are shown in Figure 7.39.

3We could give a precise definition of legal window here, in terms of the transition func-
tion. But doing so is quite tedious and would distract us from the main thrust of the
proof argument. Anyone desiring more precision should refer to the related analysis in
the proof of Theorem 5.15, the undecidability of the Post Correspondence Problem.

280 CHAPTER 7 / TIME COMPLEXITY

ajlq|b a|q1|b alalq
(2) (b) ()

g2| ajc a|ajgqgz alalb
d #1b| a a/b|a ¢ b
(d) P (e 1o (o #) .

FIGURE 7.39
Examples of legal windows

In Figure 7.39, windows (a) and (b) are legal because the transition function
allows N to move in the indicated way. Window (c) is legal because, with ¢;
appearing on the right side of the top row, we don’t know what symbol the head
is over. That symbol could be an a, and ¢; might change it to a b and move to the
right. That possibility would give rise to this window, so it doesn’t violate N’s
rules. Window (d) is obviously legal because the top and bottom are identical,
which would occur if the head weren’t adjacent to the location of the window.
Note that # may appear on the left or right of both the top and bottom rows
in a legal window. Window (e) is legal because state ¢; reading a b might have
been immediately to the right of the top row, and it would then have moved to
the left in state g2 to appear on the right-hand end of the bottom row. Finally,
window (f) is legal because state ¢; might have been immediately to the left of
the top row and it might have changed the b to a ¢ and moved to the left.

The windows shown in the following figure aren’t legal for machine N.

(@ (b) (©

FIGURE 7.40
Examples of illegal windows

In window (a) the central symbol in the top row can’t change because a state
wasn’t adjacent to it. Window (b) isn’t legal because the transition function spec-
ifies that the b gets changed to a ¢ but not to an a. Window (c) isn’t legal because
two states appear in the bottom row.

CLAIM F.8T oooooeoeeoesieseiisscssssssssssssssssassssssssssss st 58S R8RSR R RRR SRR

If the top row of the table is the start configuration and every window in the
table is legal, each row of the table is a configuration that legally follows the
preceding one.

7.4 NP-COMPLETENESS 281

We prove this claim by considering any two adjacent configurations in the
table, called the upper configuration and the lower configuration. In the upper
configuration, every cell that isn’t adjacent to a state symbol and that doesn’t
contain the boundary symbol #, is the center top cell in a window whose top row
contains no states. Therefore that symbol must appear unchanged in the center
bottom of the window. Hence it appears in the same position in the bottom
configuration.

The window containing the state symbol in the center top cell guarantees that
the corresponding three positions are updated consistently with the transition
function. Therefore, if the upper configuration is a legal configuration, so is the
lower configuration, and the lower one follows the upper one according to N’s
rules. Note that this proof, though straightforward, depends crucially on our
choice of a 2 x 3 window size, as Exercise 7.39 shows.

Now we return to the construction of @pove. It stipulates that all the windows
in the tableau are legal. Each window contains six cells, which may be set in
a fixed number of ways to yield a legal window. Formula ¢peve says that the
settings of those six cells must be one of these ways, or

Pmove = /\ (the (4, j) window is legal)

1<i<nk, 1<j<nk

We replace the text “the (4, j) window is legal” in this formula with the following
formula. We write the contents of six cells of a window as a4, ..., ag.

\/ (in,j—1,a1 N Zijay NTij+1,as N\ Titlj—1,as N Tit1,5,as N $¢+1,j+1,a6)
ai,...,ae
is a legal window

Next we analyze the complexity of the reduction to show that it operates in
polynomial time. To do so we examine the size of ¢. First, we estimate the
number of variables it has. Recall that the tableau is an n* x n* table, so it
contains n2* cells. Each cell has [variables associated with it, where [is the
number of symbols in C. Because [depends only on the TM N and not on the
length of the input n, the total number of variables is O(n?*).

We estimate the size of each of the parts of ¢. Formula ¢ contains a fixed-
size fragment of the formula for each cell of the tableau, so its size is O(n?*).
Formula ¢gre has a fragment for each cell in the top row, so its size is O(n*).
Formulas ¢move and @accepe €ach contain a fixed-size fragment of the formula for
each cell of the tableau, so their size is O(n?*). Thus ¢’ total size is O(n?).
That bound is sufficient for our purposes because it shows that the the size of
¢ is polynomial in n. If it were more than polynomial, the reduction wouldn’t
have any chance of generating it in polynomial time. (Actually our estimates are
low by a factor of O(logn) because each variable has indices that can range up
to n* and so may require O(logn) symbols to write into the formula, but this
additional factor doesn’t change the polynomiality of the result.)

"To see that we can generate the formula in polynomial time, observe its highly
repetitive nature. Each component of the formula is composed of many nearly

282 CHAPTER 7 / TIME COMPLEXITY

identical fragments, which differ only at the indices in a simple way. Therefore
we may easily construct a reduction that produces ¢ in polynomial time from the
input w.

Thus we have concluded the proof of the Cook-Levin theorem, showing that
SAT is NP-complete. Showing the NP-completeness of other languages gen-
erally doesn’t require such a lengthy proof. Instead NP-completeness can be
proved with a polynomial time reduction from a language that is already known
to be NP-complete. We can use SAT for this purpose, but using 3SAT, the spe-
cial case of SAT that we defined on page 274, is usually easier. Recall that the
formulas in 3SAT are in conjunctive normal form (cnf) with three literals per
clause. First, we must show that 3SAT itself is NP-complete. We prove this
assertion as a corollary to Theorem 7.37.

COROLLARY 7.42 ...
3SAT is NP-complete.

PROOF Obviously 384T is in NP, so we only need to prove that all languages
in NP reduce to 3SAT in polynomial time. One way to do so is by showing
that SAT polynomial time reduces to 3SAT. Instead, we modify the proof of
Theorem 7.37 so that it directly produces a formula in conjunctive normal form
with three literals per clause.

Theorem 7.37 produces a formula that is already almost in conjunctive nor-
mal form. Formula ¢ is a big AND of subformulas, each of which contains a
big OR and a big AND of ORs. Thus ¢ is an AND of clauses and so is already
in cnf. Formula ¢gare is 2 big AND of variables. Taking each of these variables to
be a clause of size 1 we see that g is in enf. Formula @yccepe is a big OR of vari-
ables and is thus a single clause. Formula ¢meve is the only one that isn’t already
in cnf, but we may easily convert it into a formula that is in cnf as follows.

Recall that ¢pove is a big AND of subformulas, each of which is an OR of ANDs
that describes all possible legal windows. The distributive laws, as described in
Chapter 0, state that we can replace an OR of ANDs with an equivalent AND of
ORs. Doing so may significantly increase the size of each subformula, but it can
only increase the total size of ¢meve by a constant factor because the size of each
subformula depends only on N. The result is a formula that is in conjunctive
normal form.

Now that we have written the formula in cnf, we convert it to one with three
literals per clause. In each clause that currently has one or two literals, we repli-
cate one of the literals until the total number is three. In each clause that has
more than three literals, we split it into several clauses and add additional vari-
ables to preserve the satisfiability or nonsatisfiability of the original.

For example, we replace clause (a1 V ap Vas V ay), wherein each q; is a literal,
with the two-clause expression (a; V a2 V 2) A (Z V a3 V aq), wherein z is a new

7.5 ADDITIONAL NP-COMPLETE PROBLEMS 283

variable. If some setting of the a;’s satisfies the original clause, we can find some
setting of z so that the two new clauses are satisfied. In general, if the clause
contains [literals,

(arVagV---Va),
we can replace it with the [— 2 clauses
(@ VaaVzi)AN(ZTVazVz)A(ZaVagVa) A A(ZZ3 Va-1 Va).

We may easily verify that the new formula is satisfiable iff the original formula
was, so the proof is complete.

; ; BB OB B R B BB B BB R BB YRR R BB ol
.

ADDITIONAL NP-COMPLETE PROBLEMS

The phenomenon of NP-completeness is widespread. NP-complete problems
appear in many fields. For reasons that are not well understood, most naturally
occurring NP-problems are known either to be in P or to be NP-complete. If
you seek a polynomial time algorithm for a new NP-problem, spending part of
your effort attempting to prove it NP-complete is sensible because doing so may
prevent you from working to find a polynomial time algorithm that doesn’t exist.

In this section we present additional theorems showing that various languages
are NP-complete. These theorems provide examples of the techniques that are
used in proofs of this kind. Our general strategy is to exhibit a polynomial time
reduction from 3SAT to the language in question, though we sometimes reduce
from other NP-complete languages when that is more convenient.

When constructing a polynomial time reduction from 3SA4T to a language, we
look for structures in that language that can simulate the variables and clauses in
Boolean formulas. Such structures are sometimes called gadgets. For example,
in the reduction from 3SAT to CLIQUE presented in Theorem 7.32, individual
nodes simulate variables and triples of nodes simulate clauses. An individual
node may or may not be a member of the clique, which corresponds to a variable
that may or may not be true in a satisfying assignment. Each clause must contain
a literal that is assigned TRUE and that corresponds to the way each triple must
contain a node in the clique if the target size is to be reached. The following
corollary to Theorem 7.32 states that CLIQUE is NP-complete.

COROLLARY 7.43 ---
CLIQUE is NP-complete.

284 CHAPTER 7 / TIME COMPLEXITY

THE VERTEX COVER PROBLEM

If G is an undirected graph, a vertex cover of G is a subset of the nodes where
every edge of G touches one of those nodes. The vertex cover problem asks
whether a graph contains a vertex cover of a specified size:

VERTEX-COVER = {(G, k)| G is an undirected graph that

has a k-node vertex cover}.

THEOREM Z44 sttt s s
VERTEX-COVER is NP-complete.

PROOF IDEA To show that VERTEX-COVER is NP-complete we must show
that it is in NP and that all NP-problems are polynomial time reducible to
it. The first part is easy; a certificate is simply a vertex cover of size k. To
prove the second part we show that 3SAT is polynomial time reducible to
VERTEX-COVER. The reduction converts a 3cnf-formula ¢ into a graph G
and a number k, so that ¢ is satisfiable whenever G has a vertex cover with k
nodes. The conversion is done without knowing whether ¢ is satisfiable. In ef-
fect, G simulates ¢. The graph contains gadgets that mimic the variables and
clauses of the formula. Designing these gadgets requires a bit of ingenuity.

For the variable gadget, we look for a structure in G that can participate in
the vertex cover in either of two possible ways, corresponding to the two possible
truth assignments to the variable. Two nodes connected by an edge is a structure
that works, because one of these nodes must appear in the vertex cover. We
arbitrarily associate TRUE and FALSE to these two nodes.

For the clause gadget, we look for a structure that induces the vertex cover to
include nodes in the variable gadgets corresponding to at least one true literal
in the clause. The gadget contains three nodes and additional edges so that any
vertex cover must include at least two of the nodes, or possibly all three. Only
two nodes would be required if one of the vertex gadget nodes helps by covering
an edge, as would happen if the associated literal satisfies that clause. Otherwise
three nodes would be required. Finally, we chose k so that the sought-after
vertex cover has one node per variable gadget and two nodes per clause gadget.

PROOF Here are the details of a reduction from 3SAT to VERTEX-COVER
that operates in polynomial time. The reduction maps a Boolean formula ¢ to a
graph G and a value k. For each variable z in ¢, we produce an edge connecting
two nodes. We label the two nodes in this gadget © and Z. Setting = to be
TRUE corresponds to selecting the left node for the vertex cover, whereas FALSE
corresponds to the right node.

The gadgets for the clauses are a bit more complex. Each clause gadgetis a

7.5 ADDITIONAL NP-COMPLETE PROBLEMS 285

triple of three nodes that are labeled with the three literals of the clause. These
three nodes are connected to each other and to the nodes in the variables gadgets
that have the identical labels. Thus the total number of nodes that appear in G
is 2m + 31, where ¢ has m variables and [clauses. Let k be m + 2I.

For example, if ¢ = (z1 Va1 Vas) A (TT VT2V TZ) A (Tr Va2 V x2), the
reduction produces (G, k) from ¢, where k = 8 and G takes the form shown in
the following figure.

FIGURE 7.45
The graph that the reduction produces from
dp=(r1VriVa) N(TAVZT2VT2) A (TTVa V)

To prove that this reduction works, we need to show that ¢ is satisfiable if and
only if G has a vertex cover with k nodes. We start with a satisfying assignment.
We first put the nodes of the variable gadgets that correspond to the true literals
in the assignment into the vertex cover. Then, we select one true literal in every
clause and put the remaining two nodes from every clause gadget into the vertex
cover. Now, we have a total of £ nodes. They cover all edges because every vari-
able gadget edge is clearly covered, all three edges within every clause gadget are
covered, and all edges between variable and clause gadgets are covered. Hence
G has a vertex cover with k nodes.

Second, if G' has a vertex cover with k nodes, we show that ¢ is satisfiable
by constructing the satisfying assignment. The vertex cover must contain one
node in each variable gadget and two in every clause gadget in order to cover
the edges of the variable gadgets and the three edges within the clause gadgets.
That accounts for all the nodes, so none are left over. We take the nodes of the
variable gadgets that are in the vertex cover and assign the corresponding literals
TRUE. That assignment satisfies ¢ because each of the three edges connecting
the variable gadgets with each clause gadget is covered and only two nodes of
the clause gadget are in the vertex cover. Therefore one of the edges must be
covered by a node from a variable gadget and so that assignment satisfies the
corresponding clause.

286 CHAPTER 7 / TIME COMPLEXITY

THE HAMILTONIAN PATH PROBLEM

Recall that the Hamiltonian path problem asks whether the input graph contains
a path from s to ¢ that goes through every node exactly once.

THEOREM 7.46 ...
HAMPATH is NP-complete.

PROOF IDEA We showed that HAMPATH is in NP in Section 7.3. To show
that every NP-problem is polynomial time reducible to HAMPATH, we show
that 3SAT is polynomial time reducible to HAMPATH. We give a way to convert
3cnf-formulas to graphs in which Hamiltonian paths correspond to satisfying
assignments of the formula. The graphs contain gadgets that mimic variables
and clauses. The variable gadget is a diamond structure that can be traversed in
either of two ways, corresponding to the two truth settings. The clause gadget
is a node. Ensuring that the path goes through each clause gadget corresponds
to ensuring that each clause is satisfied in the satisfying assignment.

PROOF We previously demonstrated that H4MPATH is in NP, so all that
remains to be done is to show 3SAT <p HAMPATH. For each 3cnf-formula ¢
we show how to construct a directed graph G with two nodes, s and ¢, where a
Hamiltonian path exists between s and ¢ iff ¢ is satisfiable.

We start the construction with a 3cnf-formula ¢ containing k clauses:

¢=(a1Vbl\/cl)/\(a2\/bg\/02)/\ /\(ak\/kack),

where each a, b, and cis a literal z; or T;. Let z1, ..., z; be the [variables of ¢.
Now we show how to convert ¢ to a graph G. The graph G that we construct
has various parts to represent the variables and clauses that appear in ¢.
We represent each variable x; with a diamond-shaped structure that contains
a horizontal row of nodes, as shown in the following figure. Later we specify the
number of nodes that appear in the horizontal row.

FIGURE 7.47
Representing the variable z; as a diamond structure

7.5 ADDITIONAL NP-COMPLETE PROBLEMS 287

We represent each clause of ¢ as a single node, as follows.

Q Ci

FIGURE 7.48
Representing the clause ¢; as a node

The following figure depicts the global structure of G. It shows all the ele-
ments of G and their relationships, except the edges that represent the relation-
ship of the variables to the clauses that contain them.

Iy O 1
O ¢
QO ¢
)
O ¢k
Zy

FIGURE 7.49
The high-level structure of G

288 CHAPTER 7 / TIME COMPLEXITY

Next we show how to connect the diamonds representing the variables to the
nodes representing the clauses. Each diamond structure contains a horizontal
row of nodes connected by edges running in both directions. The horizontal
row contains 3k + 1 nodes in addition to the two nodes on the ends belonging to
the diamond. These nodes are grouped into adjacent pairs, one for each clause,
with extra separator nodes next to the pairs, as shown in the following figure.

FIGURE 7.50
The horizontal nodes in a diamond structure

If variable z; appears in clause c;, we add the following two edges from the
jth pair in the ith diamond to the jth clause node.

FIGURE 7.51
The additional edges when clause ¢; contains z;

If 77 appears in clause ¢;, we add two edges from the jth pair in the ith dia-
mond to the jth clause node, as shown in Figure 7.52.

After we add all the edges corresponding to each occurrence of z; or Z; in
each clause, the construction of G is complete. To show that this construction
works, we argue that, if ¢ is satisfiable, a Hamiltonian path exists from s to ¢ and,
conversely, if such a path exists, ¢ is satisfiable.

7.5 ADDITIONAL NP-COMPLETE PROBLEMS 289

FIGURE 7.52
The additional edges when clause ¢; contains Z;

Suppose that ¢ is satisfiable. To demonstrate a Hamiltonian path from s to
t, we first ignore the clause nodes. The path begins at s, goes through each
diamond in turn, and ends up at £. To hit the horizontal nodes in a diamond,
the path either zig-zags from left to right or zag-zigs from right to left, the
satisfying assignment to ¢ determines which. If z; is assigned TRUE, the path
zig-zags through the corresponding diamond. If z; is assigned FALSE, the path
zag-zigs. We show both possibilities in the following figure.

<P

zag-7ig

FIGURE 7.53
Zig-zagging and zag-zigging through a diamond, as determined by the
satisfying assignment

So far this path covers all the nodes in G except the clause nodes. We can
easily include them by adding detours at the horizontal nodes. In each clause,
we select one of the literals assigned TRUE by the satisfying assignment.

If we selected z; in clause ¢;, we can detour at the jth pair in the ith diamond.
Doing so is possible because x; must be TRUE, so the path zig-zags from left to
right through the corresponding diamond. Hence the edges to the ¢; node are
in the correct order to allow a detour and return.

Similarly, if we selected 77 in clause ¢;, we can detour at the jth pair in the
ith diamond because x; must be FALSE, so the path zag-zigs from right to left
through the corresponding diamond. Hence the edges to the ¢; node again are

290 CHAPTER 7 / TIME COMPLEXITY

in the correct order to allow a detour and return. (Note that each true literal in a
clause provides an option of a detour to hit the clause node. As a result, if several
literals in a clause are true, only one detour is taken.) Thus we have constructed
the desired Hamiltonian path.

For the reverse direction, if G has a Hamiltonian path from s to ¢, we demon-
strate a satisfying assignment for ¢. If the Hamiltonian path is normal—it goes
through the diamonds in order from the top one to the bottom one, except for
the detours to the clause nodes—we can easily obtain the satisfying assignment.
If the path zig-zags through the diamond, we assign the corresponding variable
TRUE, and if it zag-zigs, we assign FALSE. Because each clause node appears on
the path, by observing how the detour to it is taken, we may determine which of
the literals in the corresponding clause is TRUE.

All that remains to be shown is that a Hamiltonian path must be normal.
Normality may fail only if the path enters a clause from one diamond but returns
to another, as in the following figure.

FIGURE 7.54
"This situation cannot occur

The path goes from node a; to ¢, but instead of returning to as in the same
diamond, it returns to by in a different diamond. If that occurs, either as or az
must be a separator node. If ap were a separator node, the only edges entering
a2 would be from a; and as. If a3 were a separator node, a; and a3 would be in
the same clause pair, and hence the only edges entering as would be from a4, as,
and c. In either case, the path could not contain node a;. The path cannot enter
ay from c or a; because the path goes elsewhere from these nodes. The path
cannot enter ap from ag, because as is the only available node that ay points at,
so the path must exit as via a3. Hence a Hamiltonian path must be normal. This
reduction obviously operates in polynomial time and the proof is complete.

7.5 ADDITIONAL NP-COMPLETE PROBLEMS 291

Next we consider an undirected version of the Hamiltonian path problem,
called UHAMPATH. 'To show that UHAMPATH is NP-complete we give a

polynomial time reduction from the directed version of the problem.

THEOREM 7.55 ...
UHAMPATH is NP-complete.

PROOF The reduction takes a directed graph G with nodes s and ¢ and con-
structs an undirected graph G’ with nodes s’ and ¢. Graph G has a Hamiltonian
path from s to ¢ iff G’ has a Hamiltonian path from s’ to t’. We describe G’ as
follows.

Each node u of G, except for s and ¢, is replaced by a triple of nodes u™", mid
and u°" in G’. Nodes s and ¢ in G are replaced by nodes s°t and ¢ in G’. Edges
of two types appear in G’. First, edges connect v™9 with 4 and u°". Second,
an edge connects u°"t with v™ if an edge goes from u to v in G. That completes
the construction of G'.

We can demonstrate that this construction works by showing that G has a
Hamiltonian path from s to t iff G’ has a Hamiltonian path from s°* to . To
show one direction, we observe that a Hamiltonian path P in G,

S, U1, U2, ...,’U,k,,t,

has a corresponding Hamiltonian path P’ in G/,

Sout’ Uiln, urlnid, U?ut, ui2n7 u12nid’ ugut./ . tin'

To show the other direction, we claim that any Hamiltonian path in G’ from
s°U to 1" in G’ must go from a triple of nodes to a triple of nodes, except for
the start and finish, as does the path P’ we just described. That would complete
the proof because any such path has a corresponding Hamiltonian path in G.
We prove the claim by following the path starting at node s°**. Observe that
the next node in the path must be ui* for some i because only those nodes are
connected to s°*'. The next node must be ™4, because no other way is available
to include «™¢ in the Hamiltonian path. After u™ comes u¢" because that is
the only other one to which u is connected. The next node must be u" for
some j because no other available node is connected to u{"*. The argument then
repeats until ¢ is reached.

THE SUBSET SUM PROBLEM
Recall the SUBSET-SUM problem defined on page 269. In that problem, we

were given a collection of numbers z1, ..., z) together with a target number ¢,
and were to determine whether the collection contains a subcollection that adds
up to t. We now show that this problem is NP-complete.

292 CHAPTER 7 / TIME COMPLEXITY

THEOREM ZB56 s,
SUBSET-SUM is NP-complete.

PROOF IDEA We have already shown that SUBSET-SUM is in NP in The-
orem 7.25. We prove that all languages in NP are polynomial time reducible
to SUBSET-SUM by reducing the NP-complete language 3SAT to it. Given
a 3cenf-formula ¢ we construct an instance of the SUBSET-SUM problem that
contains a subcollection summing to the target ¢ if and only if ¢ is satisfiable.
Call this subcollection T'.

To achieve this reduction we find structures of the SUBSET-SUM problem
that represent variables and clauses. The SUBSET-SUM problem instance that
we construct contains numbers of large magnitude presented in decimal nota-
tion. We represent variables by pairs of numbers and clauses by certain positions
in the decimal representations of the numbers.

We represent variable z; by two numbers, y; and z;. We prove that either y;
or z; must be in T for each i, which establishes the encoding for the truth value
of z; in the satisfying assignment.

Each clause position contains a certain value in the target ¢, which imposes a
requirement on the subset 7. We prove that this requirement is the same as the
one in the corresponding clause—namely, that one of the literals in that clause
is assigned TRUE.

PROOF We already know that SUBSET-SUM € NP, so we now show that
3SAT <p SUBSET-SUM.

Let ¢ be a Boolean formula with variables z1, ..., z; and clauses ¢y, ..., ck.
The reduction converts ¢ to an instance of the SUBSET-SUM problem (S, t),
wherein the elements of S and the number ¢ are the rows in the table in Fig-
ure 7.57, expressed in ordinary decimal notation. The rows above the double
line are labeled

Y1521, Y2:22, -+, YL, 21 and gl»h17927h27 "'7gk7h/§

and comprise the elements of S. The row below the double line is ¢.

Thus S contains one pair of numbers, y;, 2;, for each variable z; in ¢. The
decimal representation of these numbers is in two parts, as indicated in the table.
The left-hand part comprises a 1 followed by [— 4 0s. The right-hand part
contains one digit for each clause, where the jth digit of y; is 1 if clause ¢;
contains literal z; and the jth digit of z; is 1 if clause ¢; contains literal 7;. Digits
not specified to be 1 are 0.

The table is partially filled in to illustrate sample clauses, ¢, ¢z, and cx:

(ZL’1\/ZL’_2\/£L'3> A (.%2\/.%3\/"')/\ /\(:B_g\/\/)

Additionally, S contains one pair of numbers, g;, h;, for each clause ¢;. These
two numbers are equal and consist of a 1 followed by k£ — 5 0s.

7.5 ADDITIONAL NP-COMPLETE PROBLEMS 293

Finally, the target number ¢, the bottom row of the table, consists of [1s
followed by £ 3s.

1 2 3 4 llc1 e Ck
yi|1l 0 0 O 0O}(1 O 0
z111 0 0 O 0[]0 O 0
Yo 1 0 0 0] 0 1 0
29 1 0 O O] 1 O 0
Y3 1 0 01 1 0
23 1 0 00 O 1
Y1 0 0 0
V| 1 0 0 0
g1 1 0 0
h1 1 0 0
92 1 0
ho 1 0
9k 1
hy

t 11 1 1 1 113 3 3

FIGURE 7.57
Reducing 3SAT to SUBSET-SUM

Now we show why this construction works. We demonstrate that ¢ is satisfi-
able iff some subset of S sums to t.

Suppose that ¢ is satisfiable. We construct a subset of S as follows. We select
y; 1f x; 1s assigned TRUE in the satisfying assignment and z; if z; is assigned
FALSE. If we add up what we have selected so far, we obtain a 1 in each of the
first digits because we have selected either y; or z; for each i. Furthermore, each
of the last & digits is a number between 1 and 3 because each clause is satisfied
and so contains between 1 and 3 true literals. Now we further select enough of
the g and A numbers to bring each of the last £ digits up to 3, thus hitting the
target.

Suppose that a subset of S sums to t. We construct a satisfying assignment
to ¢ after making several observations. First, all the digits in members of S are
either 0 or 1. Furthermore, each column in the table describing S contains at
most five 1s. Hence a “carry” into the next column never occurs when a subset
of Sis added. To geta 1 in each of the first [columns the subset must have either

294 CHAPTER 7 / TIME COMPLEXITY

y; or z; for each ¢, but not both.

Now we make the satisfying assignment. If the subset contains y;, we assign
x; TRUE; otherwise, we assign it FALSE. This assignment must satisfy ¢ because
in each of the final k£ columns the sum is always 3. In column ¢;, at most 2 can
come from g; and hj, so at least 1 in this column must come from some y; or
z; in the subset. If it is y;, then z; appears in ¢; and is assigned TRUE, so c;
is satisfied. If it is z;, then Z; appears in ¢; and z; is assigned FALSE, so ¢; is
satisfied. Therefore ¢ is satisfied.

Finally, we must be sure that the reduction can be carried out in polynomial
time. The table has a size of roughly (k +)2, and each entry can be easily
calculated for any ¢. So the total time is O(n?) easy stages.

EXERCISES
7.1 Answer each part TRUE or FALSE.
a. 2n = 0(n). Ad. nlogn = O(n?).
b. n? = 0O(n). e. 3" =20,
Ac. n? = O(nlog?n). £ 22" = 0(2%").

7.2 Answer each part TRUE or FALSE.

a. n=o(2n). Ad. 1=o(n).
b. 2n = o(n?). e. n=o(logn).
Ae. 2" =o(3"). f. 1=0(1/n).

7.3 Which of the following pairs of numbers are relatively prime? Show the calcula-
tions that led to your conclusions.

a. 1274 and 10505
b. 7289 and 8029

7.4 Fill out the table described in the polynomial time algorithm for context-free lan-
guage recognition from Theorem 7.16 for string w = baba and CFG G:

S — RT

R —>TR|a

T — TR|b
7.5 Is the following formula satisfiable?

(zVy) A (zVY) AN (EVyY) A (TVY)

7.6 Show that P is closed under union, concatenation, and complement.

7.7
7.8

7.9

7.10
7.11

PROBLEMS 295

Show that NP is closed under union and concatenation.

Let CONNECTED = {(G)| G is a connected undirected graph}. Analyze the
algorithm given on page 157 to show that this language is in P.

A triangle in an undirected graph is a 3-clique. Show that TRIANGLE € P, where
TRIANGLE = {(G)| G contains a triangle}.

Show that ALLpfa is in P.

Call graphs G and H isomorphic if the nodes of G may be reordered so that it is
identical to H. Let ISO = {(G, H)| G and H are isomorphic graphs}. Show that
ISO € NP.

PROBLEMS

7.12

7.13

7.14

A7.15
7.16

7.17

*7.18

7.19

Let

MODEXP = {(a,b,c,p)| a,b,c, and p are binary integers
such thata® = ¢ (mod p)}.

Show that MODEXP € P. (Note that the most obvious algorithm doesn’t run in
polynomial time. Hint: Try it first where b is a power of 2.)

A permutation on the set {1, ..., k} is a one-to-one, onto function on this set.
When p is a permutation, p* means the composition of p with itself ¢ times. Let

PERM-POWER = {(p, q,t)| p = q" where p and ¢ are permutations
on {1, ..., k} and ¢ is a binary integer}.

Show that PERM-POWER € P. (Note that the most obvious algorithm doesn’t
run within polynomial time. Hint: First try it where ¢ is a power of 2).

Show that P is closed under the star operation. (Hint: Use dynamic programming.
Oninputy = y1 - - yn for y; € X, build a table indicating for each i < j whether
the substring y; - - -y; € A* forany A € P.)

Show that NP is closed under the star operation.

Let UNARY-SSUM be the subset sum problem in which all numbers are repre-
sented in unary. Why does the NP-completeness proof for SUBSET-SUM fail to
show UNARY-SSUM is NP-complete? Show that UNARY-SSUM € P.

Show that, if P = NP, then every language A € P, except A = §and A = X7, is
NP-complete.

Show that PRIMES = {m/|m is a prime number in binary} € NP. (Hint: Forp > 1
the multiplicative group Z; = {z|x is relatively prime to pand 1 < < p} is both
cyclic and of order p — 1 iff p is prime. You may use this fact without justifying
it. The stronger statement PRIMES € P is now known to be true, but it is more
difficult to prove.)

We generally believe that PATH is not NP-complete. Explain the reason behind
this belief. Show that proving PATH is not NP-complete would prove P % NP.

296

7.20

7.21

A7.22

7.23

7.24

7.25

CHAPTER 7 / TIME COMPLEXITY

Let G represent an undirected graph. Also let

SPATH = {(G, a,b, k)| G contains a simple path of
length at most & from a to b},

and

LPATH = {(G, a,b, k)| G contains a simple path of
length at least k£ from a to b}.

a. Show that SPATH € P.

b. Show that LPATH is NP-complete. You may assume the NP-completeness
of UHAMPATH, the Hamiltonian path problem for undirected graphs.

Let DOUBLE-SAT = {(¢)| ¢ has at least two satisfying assignments}. Show that
DOUBLE-SAT is NP-complete.

Let HALF-CLIQUE = {(G)| G is an undirected graph having a complete sub-
graph with at least m/2 nodes, where m is the number of nodes in G}. Show that
HALF-CLIQUE is NP-complete.

Let CNFy, = {(®)| ¢ is a satisfiable cnf-formula where each variable appears in at
most k places}.

a. Show that CNF; € P.
b. Show that CNF5 is NP-complete.

Let ¢ be a 3cnf-formula. An #-assignment to the variables of ¢ is one where
each clause contains two literals with unequal truth values. In other words, an
#-assignment satisfies ¢ without assigning three true literals in any clause.

a. Show that the negation of any 7#-assignment to ¢ is also an #-assignment.

b. Let #£SAT be the collection of 3enf-formulas that have an #-assignment.
Show that we obtain a polynomial time reduction from 3SAT to #SAT by
replacing each clause ¢;

(y1 Vy2Vys)
with the two clauses

(y1 Vy2Vz) and (Z7VysVb),

where z; is a new variable for each clause ¢; and b is a single additional new
variable.

c. Conclude that #SAT is NP-complete.

A cut in an undirected graph is a separation of the vertices V into two disjoint
subsets S and T'. The size of a cut is the number of edges that have one endpoint
in S and the otherin T". Let

MAX-CUT = {(G, k)| G has a cut of size k or more}.

Show that MAX-CUT is NP-complete. You may assume the result of Prob-
lem 7.24. (Hint: Show that #SAT <p MAX-CUT. The variable gadget for
variable z is a collection of 3¢ nodes labeled with x and another 3¢ nodes labeled
with T, where c is the number of clauses. All nodes labeled x are connected with
all nodes labeled T. The clause gadget is a triangle of three edges connecting three
nodes labeled with the literals appearing in the clause. Do not use the same node
in more than one clause gadget. Prove that this reduction works.)

PROBLEMS 297

7.26 You are given a box and a collection of cards as indicated in the following figure.
Because of the pegs in the box and the notches in the cards, each card will fit in the
box in either of two ways. Each card contains two columns of holes, some of which
may not be punched out. The puzzle is solved by placing all the cards in the box so
as to completely cover the bottom of the box, (i.e., every hole position is blocked
by at least one card that has no hole there.) Let PUZZLE = {{c1, ...,ck)| eache,
represents a card and this collection of cards has a solution}. Show that PUZZLE
is NP-complete.

box card
one way other way
egs ™ p q <« notch

pegs P o o o o
]

9 ° hole
O 0] O O

\ o O
A

<>

7.27 A coloring of a graph is an assignment of colors to its nodes so that no two adjacent
nodes are assigned the same color. Let

3COLOR = {(G)| the nodes of G can be colored with three colors such that

no two nodes joined by an edge have the same color}.

Show that 3COLOR is NP-complete. (Hint: Use the following three subgraphs.)

-~ - N
- A
palette variable OR-gadget

7.28 Let SET-SPLITTING = {(S,C)| S is a finite set and C = {C1,...,Ck} is a
collection of subsets of S, for some k > 0, such that elements of S can be colored
red or blue so that no C, has all its elements colored with the same color.} Show
that SET-SPLITTING is NP-complete.

7.29 Consider the following scheduling problem. You are given a list of final exams
F1, ..., Fx to be scheduled, and a list of students S1, . . ., S;. Each student is taking
some specified subset of these exams. You must schedule these exams into slots so
that no student is required to take two exams in the same slot. The problem is to
determine if such a schedule exists that uses only A slots. Formulate this problem
as a language and show that this language is NP-complete.

298

7.30

A7.31

7.32

7.33

7.34

*7.35

*7.36

CHAPTER 7 / TIME COMPLEXITY

This problem is inspired by the single-player game Minesweeper, generalized to an
arbitrary graph. Let G be an undirected graph, where each node either contains
a single, hidden mine or is empty. The player chooses nodes, one by one. If the
player chooses a node containing a mine, the player loses. If the player chooses an
empty node, the player learns the number of neighboring nodes containing mines.
(A neighboring node is one connected to the chosen node by an edge.). The player
wins if and when all empty nodes have been so chosen.

In the mine consistency problem you are given a graph G, along with numbers labeling
some of G’s nodes. You must determine whether a placement of mines on the
remaining nodes is possible, so that any node v that is labeled m has exactly m
neighboring nodes containing mines. Formulate this problem as a language and
show that it is NP-complete.

In the following solitaire game, you are given an m x m board. On each of its
n? positions lies either a blue stone, a red stone, or nothing at all. You play by
removing stones from the board so that each column contains only stones of a sin-
gle color and each row contains at least one stone. You win if you achieve this
objective. Winning may or may not be possible, depending upon the initial con-
figuration. Let SOLITAIRE = {(G)| G is a winnable game configuration}. Prove
that SOLITAIRE is NP-complete.

LetU = {(M, z,#")| TM M accepts input x within ¢ steps on at least one branch}.
Show that U is NP-complete.

Recall, in our discussion of the Church-Turing thesis, that we introduced the lan-
guage D = {(p)| pis a polynomial in several variables having an integral root}. We
stated, but didn’t prove, that D is undecidable. In this problem you are to prove
a different property of D—namely, that D is NP-hard. A problem is NP-bard if
all problems in NP are polynomial time reducible to it, even though it may not
be in NP itself. So, you must show that all problems in NP are polynomial time
reducible to D.

A subset of the nodes of a graph G is a dominating set if every other node of G is
adjacent to some node in the subset. Let

DOMINATING-SET = {(G, k)| G has a dominating set with k nodes}.

Show that it is NP-complete by giving a reduction from VERTEX-COVER.

Show that the following problem is NP-complete. You are given a set of states @ =
{90,¢1,...,q} and a collection of pairs {(s1,71),...,(sk,7k)} where the s; are
distinct strings over ¥ = {0, 1}, and the r, are (not necessarily distinct) members
of Q. Determine whether a DFA M = (Q, X, 6, qo, F) exists where §(qo, s:) = 7,
for each i. Here, 6(q, s) is the state that M enters after reading s, starting at state
q. (Note that F'is irrelevant here).

Show that if P = NP, a polynomial time algorithm exists that produces a satisfying
assignment when given a satisfiable Boolean formula. (Note: The algorithm you
are asked to provide computes a function, but NP contains languages, not func-
tions. The P = NP assumption implies that SAT is in P, so testing satisfiability is
solvable in polynomial time. But the assumption doesn’t say how this test is done,
and the test may not reveal satisfying assignments. You must show that you can find
them anyway. Hint: Use the satisfiability tester repeatedly to find the assignment
bit-by-bit.)

*7.37

Ax7.38

7.39

*7.40

7.41

*7.42

7.43

7.44

PROBLEMS 299

Show that if P = NP, you can factor integers in polynomial time. (See the note in
Problem 7.36.)

Show that if P = NP, a polynomial time algorithm exists that takes an undirected
graph as input and finds a largest clique contained in that graph. (See the note in
Problem 7.36.)

In the proof of the Cook-Levin theorem, a window is a 2 x 3 rectangle of cells.
Show why the proof would have failed if we had used 2 x 2 windows instead.

Consider the algorithm MINIMIZE, which takes a DFA M as input and outputs
DFA M.

MINIMIZE = “On input (M), where M = (Q, %, 6, go, A) is a DFA:
1. Remove all states of M that are unreachable from the start state.
2. Construct the following undirected graph G whose nodes are
the states of M.
3. Place an edge in G connecting every accept state with every
nonaccept state. Add additional edges as follows.
Repeat until no new edges are added to G-
For every pair of distinct states ¢ and r of M and everya € X:
Add the edge (g, 7) to G if (6(g, a),d(r,a)) is an edge of G.
For each state g, let [¢] be the collection of states
l[q) = {r € Q| no edge joins ¢ and r in G}.
8. Form anewDFA M’ = (Q', 2,8, q0’, A") where
Q" ={ld]l ¢ € Q}, (if [q] = [r], only one of them is in Q"),
8'([g],a) = [0(q,a)], foreveryq € Qanda € %,
g’ = [qo], and
A" ={ldllq € A}.
9. Output (M').”

NS0k

a. Show that M and M’ are equivalent.

b. Show that M’ is minimal—that is, no DFA with fewer states recognizes the
same language. You may use the result of Problem 1.52 without proof.

c. Show that MINIMIZE operates in polynomial time.

For a cnf-formula ¢ with m variables and ¢ clauses, show that you can construct
in polynomial time an NFA with O(cm) states that accepts all nonsatisfying assign-
ments, represented as Boolean strings of length m. Conclude that NFAs cannot be
minimized in polynomial time unless P = NP.

A 2cenf-formula is an AND of clauses, where each clause is an OR of at most two
literals. Let 2SAT = {(#)| ¢ is a satisfiable 2cnf-formula}. Show that 2SAT € P.

Modify the algorithm for context-free language recognition in the proof of The-
orem 7.16 to give a polynomial time algorithm that produces a parse tree for a
string, given the string and a CFG, if that grammar generates the string.

Say that two Boolean formulas are equivalent if they have the same set of variables
and are true on the same set of assignments to those variables (i.e., they describe
the same Boolean function). A Boolean formula is minimal if no shorter Boolean
formula is equivalent to it. Let MIN-FORMULA be the collection of minimal
Boolean formulas. Show that, if P = NP, then MIN-FORMULA € P.

300

7.45

*7.46

*7.47

*7.48

*7.49

CHAPTER 7 / TIME COMPLEXITY

The difference bierarchy D;P is defined recursively as

a. D;P=NPand
b. D;P={A|A= B\ Cfor BinNP and C in D,_1P}.
(Here B\ C = BNC.)

For example, a language in D2P is the difference of two NP languages. Sometimes
D, P is called DP (and may be written D). Let

Z = {(G1,k1,Ga, k2)| G1 has a k1-clique and G2 doesn’t have a ka-clique}.

Show that Z is complete for DP. In other words, show that every language in DP
is polynomial time reducible to Z.

Let MAX-CLIQUE = {(G, k)| the largest clique in G is of size exactly k}. Use the
result of Problem 7.45 to show that MAX-CLIQUE is DP-complete.

Let f: N— N be any function where f(n) = o(nlogn). Show that TIME(f(n))
contains only the regular languages.

Call a regular expression star-free if it does not contain any star operations. Let
EQsr_rex = {(R, S)| R and S are equivalent star-free regular expressions}. Show
that EQsp_gex is in coNP. Why does your argument fail for general regular ex-
pressions?

This problem investigates 7esolution, a method for proving the unsatisfiability of
cnf-formulas. Let ¢ = C1 A C2 A -+ - A Cyp, be a formula in cnf, where the C; are
its clauses. Let C = {C;| C, is a clause of ¢}. In a resolution step we take two clauses
Ca and Cy in C which both have some variable z, occurring positively in one of
the clauses and negatively in the other. Thus Co = (z Vy1 Vy2 V-+- V yi) and
Co = (T Vz1Vz2V---V z), where the y, and z; are literals. We form the new
clause (y1 Vy2 V- Vyr V 21V 22 V-V z) and remove repeated literals. Add
this new clause to C. Repeat the resolution steps until no additional clauses can be
obtained. If the empty clause () is in C then declare ¢ unsatisfiable.

Say that resolution is sound if it never declares satisfiable formulas to be unsatisfi-
able. Say that resolution is complete if all unsatisfiable formulas are declared to be
unsatisfiable.

a. Show that resolution is sound and complete.
b. Use part (a) to show that 2SAT € P.

SELECTED SOLUTIONS

7.1
7.2

(c) FALSE; (d) TRUE.

(c) TRUE; (d) TRUE.

SELECTED SOLUTIONS 301

7.15 Let A € NP. Construct NTM M to decide A in nondeterministic polynomial time.

7.22

7.31

7.38

M = “On input w:
1. Nondeterministically divide w into pieces w = z1x2 - - - k.
2. For each z,, nondeterministically guess the certificates that
show z, € A.
3. Verify all certificates if possible, then accept.
Otherwise if verification fails, reject.”

WEe give a polynomial time mapping reduction from CLIQUE to HALF-CLIQUE.
The input to the reduction is a pair (G, k) and the reduction produces the graph
(H) as output where H is as follows. If G has m nodesand k = m/2 then H =G. If
k < m/2, then H is the graph obtained from G by adding j nodes, each connected
to every one of the original nodes and to each other, where j = m — 2k. Thus H
has m + j = 2m — 2k nodes. Observe that G has a k-clique iff H has a clique of
sizek+j = m—kandso (G, k) € CLIQUE iff (H) € HALF-CLIQUE. If k > 2m,
then H is the graph obtained by adding j nodes to G without any additional edges,
where j = 2k — m. Thus H has m + j = 2k nodes, and so G has a k-clique iff
H has a clique of size k. Therefore (G, ki) € CLIQUE iff (H) €e HALF-CLIQUE.
We also need to show HALF-CLIQUE € NP. The certificate is simply the clique.

First, SOLITAIRE € NP because we can verify that a solution works, in polynomial
time. Second, we show that 3SAT <p SOLITAIRE. Given ¢ with m variables
z1,...,Tm and k clauses c1, ..., ck, construct the following k& x m game G. We
assume that ¢ has no clauses that contain both z, and Z; because such clauses may
be removed without affecting satisfiability.

If z, is in clause ¢, put a blue stone in row ¢,, column z,. If Z; is in clause ¢, puta
red stone in row ¢;, column z,. We can make the board square by repeating a row
or adding a blank column as necessary without affecting solvability. We show that
¢ 1s satisfiable iff G has a solution.

(—) Take a satisfying assignment. If x; is true (false), remove the red (blue) stones
from the corresponding column. So, stones corresponding to true literals remain.
Because every clause has a true literal, every row has a stone.

(«) Take a game solution. If the red (blue) stones were removed from a column,
set the corresponding variable true (false). Every row has a stone remaining, so
every clause has a true literal. Therefore ¢ is satisfied.

If you assume that P = NP, then CLIQUE € P, and you can test whether G con-
tains a clique of size k in polynomial time, for any value of k. By testing whether G
contains a clique of each size, from 1 to the number of nodes in G, you can deter-
mine the size ¢ of a maximum clique in G in polynomial time. Once you know ¢,
you can find a clique with ¢ nodes as follows. For each node z of G, remove z and
calculate the resulting maximum clique size. If the resulting size decreases, replace
z and continue with the next node. If the resulting size is still ¢, keep = perma-
nently removed and continue with the next node. When you have considered all
nodes in this way, the remaining nodes are a t-clique.

