SPACE COMPLEXITY

In this chapter we consider the complexity of computational problems in terms
of the amount of space, or memory, that they require. Time and space are two
of the most important considerations when we seek practical solutions to many
computational problems. Space complexity shares many of the features of time
complexity and serves as a further way of classifying problems according to their
computational difficulty.

As we did with time complexity, we need to select a model for measuring the
space used by an algorithm. We continue with the Turing machine model for
the same reason that we used it to measure time. Turing machines are mathe-
matically simple and close enough to real computers to give meaningful results.

DEFINITION 8.1

Let M be a deterministic Turing machine that halts on all inputs.
The space complexity of M is the function f: N— N, where f(n)
is the maximum number of tape cells that M scans on any input of
length n. If the space complexity of M is f(n), we also say that M
runs in space f(n).

If M is a nondeterministic Turing machine wherein all branches
halt on all inputs, we define its space complexity f(n) to be the
maximum number of tape cells that M scans on any branch of its
computation for any input of length n.

303

304 CHAPTER 8/ SPACE COMPLEXITY

We typically estimate the space complexity of Turing machines by using
asymptotic notation.

DEFINITION 8.2

Let f: N—R™ be a function. The space complexity classes,
SPACE(f(n)) and NSPACE(f(n)), are defined as follows.

SPACE(f(n)) = {L| L is a language decided by an O(f(n)) space
deterministic Turing machine}.
NSPACE(f(n)) = {L| L is a language decided by an O(f(n)) space

nondeterministic Turing machine}.

EXAMPLE 8.3 ..

In Chapter 7 we introduced the NP-complete problem SAT. Here, we show
that SAT can be solved with a linear space algorithm. We believe that SAT
cannot be solved with a polynomial time algorithm, much less with a linear time
algorithm, because SAT is NP-complete. Space appears to be more powerful
than time because space can be reused, whereas time cannot.

M; = “On input (¢), where ¢ is a Boolean formula:
1. For each truth assignment to the variables x1, ..., x,, of ¢:
2. Evaluate ¢ on that truth assignment.
3. If ¢ ever evaluated to 1, accept; if not, reject.”

Machine M; clearly runs in linear space because each iteration of the loop
can reuse the same portion of the tape. The machine needs to store only the
current truth assignment and that can be done with O(m) space. The number
of variables m is at most n, the length of the input, so this machine runs in space

O(n).

EXAMPLE 8.4 ..

Here, we illustrate the nondeterministic space complexity of a language. In the
next section we show how determining the nondeterministic space complex-
ity can be useful in determining its deterministic space complexity. Consider

8.1 SAVITCH’S THEOREM 305

the problem of testing whether a nondeterministic finite automaton accepts all
strings. Let

ALLnea = {(A)| AisaNFA and L(A) = £*}.

We give a nondeterministic linear space algorithm that decides the complement
of this language, ALLnra. The idea behind this algorithm is to use nondeter-
minism to guess a string that is rejected by the NFA and to use linear space to
keep track of which states the NFA could be in at a particular time. Note that
this language is not known to be in NP or in coNP.

N = “On input (M) where M is an NFA:

1. Place a marker on the start state of the NFA.

2. Repeat 29 times, where g is the number of states of M:

3. Nondeterministically select an input symbol and change the
positions of the markers on M’s states to simulate reading
that symbol.

4. Accept if Stages 2 and 3 reveal some string that M rejects, that

is, if at some point none of the markers lie on accept states of
M. Otherwise, reject.”

If M rejects any strings, it must reject one of length at most 29 because in
any longer string that is rejected the locations of the markers described in the
preceding algorithm would repeat. The section of the string between the rep-
etitions can be removed to obtain a shorter rejected string. Hence N decides
ALLynra. (Note that N accepts improperly formed inputs, too.)

The only space needed by this algorithm is for storing the location of the
markers and the repeat loop counter, and that can be done with linear space.
Hence the algorithm runs in nondeterministic space O(n). Next, we prove a
theorem that provides information about the deterministic space complexity of
ALLNEA. i

8.1

SAVITCH’S THEOREM

Savitch’s theorem is one of the earliest results concerning space complexity. It
shows that deterministic machines can simulate nondeterministic machines by
using a surprisingly small amount of space. For time complexity, such a simu-
lation seems to require an exponential increase in time. For space complexity,
Savitch’s theorem shows that any nondeterministic TM that uses f(n) space can
be converted to a deterministic TM that uses only f2(n) space.

306 CHAPTER 8 / SPACE COMPLEXITY

THEOREM 8.5 ..
Savitch’s theorem For any! function f: N—R™, where f(n) > n,
NSPACE(f(n)) C SPACE(f%(n)).

PROOF IDEA We need to simulate an f(n) space NTM deterministically. A
naive approach is to proceed by trying all the branches of the NTM’s computation,
one by one. The simulation needs to keep track of which branch it is currently
trying so that it is able to go on to the next one. But a branch that uses f(n)
space may run for 2°(/(") steps, and each step may be a nondeterministic choice.
Exploring the branches sequentially would require recording all the choices used
on a particular branch in order to be able to find the next branch. Therefore this
approach may use 2°(/(")) space, exceeding our goal of O(f?(n)) space.

Instead, we take a different approach by considering the following more gen-
eral problem. We are given two configurations of the NTM, ¢; and ¢y, together
with a number ¢, and we must test whether the NTM can get from ¢; to ¢ within
t steps. We call this problem the yieldability problem. By solving the yieldability
problem, where c; is the start configuration, c; is the accept configuration, and ¢
is the maximum number of steps that the nondeterministic machine can use, we
can determine whether the machine accepts its input.

We give a deterministic, recursive algorithm that solves the yieldability prob-
lem. It operates by searching for an intermediate configuration ¢,,, and recur-
sively testing whether (1) ¢; can get to ¢,, within t/2 steps, and (2) whether ¢,
can get to ¢y within ¢/2 steps. Reusing the space for each of the two recursive
tests allows a significant saving of space.

This algorithm needs space for storing the recursion stack. Each level of the
recursion uses O(f(n)) space to store a configuration. The depth of the recur-
sion is logt, where ¢ is the maximum time that the nondeterministic machine
may use on any branch. We have t = 20(/(") 50 logt = O(f(n)). Hence the
deterministic simulation uses O(f?(n)) space.

PROOF Let N be an NTM deciding a language A in space f(n). We construct
a deterministic TM M deciding A. Machine M uses the procedure CANYIELD,
which tests whether one of N’s configurations can yield another within a speci-
fied number of steps. This procedure solves the yieldability problem described
in the proof idea.

Let w be a string considered as input to N. For configurations ¢; and ¢z of N
on w, and integer ¢, CANYIELD ¢y, cg, t) outputs accept if N can go from con-
figuration ¢; to configuration ¢y in t or fewer steps along some nondeterministic
path. If not, CANYIELD outputs reject. For convenience, we assume that ¢ is a
power of 2.

10n page 323, we show that Savitch’s theorem also holds whenever f(n) > logn.

8.1 SAVITCH’S THEOREM 307

CANYIELD = “On input ¢, cg, and ¢:

1. Ift =1, then test directly whether ¢; = c2 or whether ¢; yields
c2 in one step according to the rules of N. Accept if either test
succeeds; reject if both fail.

2. Ift > 1, then for each configuration ¢, of N on w using space
f(n):

3 Run CANYIELD(c1, Cm, 5)-

4. Run CANYIELD(Cp, C2, 5).

5 If steps 3 and 4 both accept, then accept.

6. If haven’t yet accepted, reject.”

Now we define M to simulate IV as follows. We first modify IV so that when it
accepts it clears its tape and moves the head to the leftmost cell, thereby entering
a configuration called cyccepr. We let cyre be the start configuration of N on w.
We select a constant d so that N has no more than 2% (™ configurations using
f(n) tape, where n is the length of w. Then we know that 2¢/(") provides an
upper bound on the running time of any branch of IV on w.

M = “On input w:
1. Output the result of CANYIELD (Cstare, Caccepts df (n)).”

Algorithm CANYIELD obviously solves the yieldability problem, and hence
M correctly simulates N. We need to analyze it to verify that M works within
O(f?(n)) space.

Whenever CANYIELD invokes itself recursively, it stores the current stage
number and the values of ¢, c2, and ¢ on a stack so that these values may be
restored upon return from the recursive invocation. Each level of the recursion
thus uses O(f(n)) additional space. Furthermore, each level of the recursion
divides the size of ¢ in half. Initially ¢ starts out equal to 2% ("), so the depth
of the recursion is O(log 2% (™)) or O(f(n)). Therefore the total space used is
O(f%(n)), as claimed.

One technical difficulty arises in this argument because algorithm M needs to
know the value of f(n) when it calls CANYIELD. We can handle this difficulty
by modifying M so that it tries f(n) = 1,2,3,... For each value f(n) = i, the
modified algorithm uses CANYIELD to determine whether the accept configu-
ration is reachable. In addition, it uses CANYIELD to determine whether N uses
at least space i + 1 by testing whether N can reach any of the configurations of
length i+ 1 from the start configuration. If the accept configuration is reachable,
M accepts; if no configuration of length ¢ + 1 is reachable, M rejects; and oth-
erwise M continues with f(n) = i + 1. (We could have handled this difficulty in
another way by assuming that M can compute f(n) within O(f(n)) space, but
then we would need to add that assumption to the statement of the theorem).

308 CHAPTER 8 / SPACE COMPLEXITY

THE CLASS PSPACE

By analogy with the class P, we define the class PSPACE for space complexity.

DEFINITION 8.6

PSPACE is the class of languages that are decidable in polynomial
space on a deterministic Turing machine. In other words,

PSPACE = |_JSPACE(n*).
k

We define NPSPACE, the nondeterministic counterpart to PSPACE, in
terms of the NSPACE classes. However, PSPACE = NPSPACE by virtue of
Savitch’s theorem, because the square of any polynomial is still a polynomial.

In Examples 8.3 and 8.4 we showed that SAT is in SPACE(n) and that
ALLyfa is in coNSPACE(n) and hence, by Savitch’s theorem, in SPACE(n?),
because the deterministic space complexity classes are closed under complement.
Therefore both languages are in PSPACE.

Let’s examine the relationship of PSPACE with P and NP. We observe that
P C PSPACE because a machine that runs quickly cannot use a great deal of
space. More precisely, for ¢(n) > n, any machine that operates in time ¢(n) can
use at most ¢(n) space because a machine can explore at most one new cell at each
step of its computation. Similarly, NP C NPSPACE, and so NP C PSPACE.

Conversely, we can bound the time complexity of a Turing machine in terms
of its space complexity. For f(n) > n, a TM that uses f(n) space can have at most
f(n) 20U (M) different configurations, by a simple generalization of the proof of
Lemma 5.8 on page 194. A TM computation that halts may not repeat a configu-
ration. Therefore a TM? that uses space f(n) must run in time f(n) 200 (™) so
PSPACE C EXPTIME = | J, TIME(2"").

We summarize our knowledge of the relationships among the complexity
classes defined so far in the series of containments

P C NP C PSPACE = NPSPACE C EXPTIME.

We don’t know whether any of these containments is actually an equality.
Someone may yet discover a simulation like the one in Savitch’s theorem that
merges some of these classes into the same class. However, in Chapter 9 we
prove that P # EXPTIME. Therefore at least one of the preceding contain-
ments is proper, but we are unable to say which! Indeed, most researchers

2The requirement here that f(n) > n is generalized later to f(n) > logn, when we
introduce TMs that use sublinear space on page 322.

8.3 PSPACE-COMPLETENESS 309

believe that all the containments are proper. The following diagram depicts
the relationships among these classes, assuming that all are different.

EXPTIME
PSPACE

FIGURE 8.7
Conjectured relationships among P, NP, PSPACE, and EXPTIME

8.3

PSPACE-COMPLETENESS

In Section 7.4 we introduced the category of NP-complete languages as repre-
senting the most difficult languages in NP. Demonstrating that a language is
NP-complete provides strong evidence that the language is not in P. If it were,
P and NP would be equal. In this section we introduce the analogous notion,
PSPACE-completeness, for the class PSPACE.

[DEFINITION 8.8
A language B is PSPACE-complete if it satisfies two conditions:

1. Bisin PSPACE, and
2. every A in PSPACE is polynomial time reducible to B.

If B merely satisfies condition 2, we say that it is PSPACE-hard.

In defining PSPACE-completeness, we use polynomial time reducibility as
given in Definition 7.29. Why don’t we define a notion of polynomial space
reducibility and use that instead of polynomial #ime reducibility? To understand
the answer to this important question, consider our motivation for defining com-
plete problems in the first place.

310 CHAPTER 8 / SPACE COMPLEXITY

Complete problems are important because they are examples of the most
difficult problems in a complexity class. A complete problem is most difficult
because any other problem in the class is easily reduced into it, so if we find an
easy way to solve the complete problem, we can easily solve all other problems in
the class. The reduction must be easy, relative to the complexity of typical prob-
lems in the class, for this reasoning to apply. If the reduction itself were difficult
to compute, an easy solution to the complete problem wouldn’t necessarily yield
an easy solution to the problems reducing to it.

Therefore the rule is: Whenever we define complete problems for a com-
plexity class, the reduction model must be more limited than the model used for
defining the class itself.

THE TQBF PROBLEM

Our first example of a PSPACE-complete problem involves a generalization of
the satisfiability problem. Recall that a Boolean formula is an expression that
contains Boolean variables, the constants 0 and 1, and the Boolean operations A,
V, and —. We now introduce a more general type of Boolean formula.

The quantifiers V (for all) and 3 (there exists) make frequent appearances in
mathematical statements. Writing the statement Vz ¢ means that, for every value
for the variable z, the statement ¢ is true. Similarly, writing the statement 3z ¢
means that, for some value of the variable z, the statement ¢ is true. Sometimes,
V is referred to as the universal quantifier and 3 as the existential quantifier.
We say that the variable z immediately following the quantifier is bound to the
quantifier.

For example, considering the natural numbers, the statement Vz [z + 1 > 2]
means that the successor + 1 of every natural number z is greater than
the number itself. Obviously, this statement is true. However, the statement
Jy [y + y = 3] obviously is false. When interpreting the meaning of statements
involving quantifiers, we must consider the #niverse from which the values are
drawn. In the preceding cases the universe comprised the natural numbers, but
if we took the real numbers instead, the existentially quantified statement would
become true.

Statements may contain several quantifiers, as in Vz 3y [y > z]. For the uni-
verse of the natural numbers, this statement says that every natural number has
another natural number larger than it. The order of the quantifiers is impor-
tant. Reversing the order, as in the statement 3y Vz [y > z], gives an entirely
different meaning—namely, that some natural number is greater than all others.
Obviously, the first statement is true and the second statement is false.

A quantifier may appear anywhere in a mathematical statement. It applies to
the fragment of the statement appearing within the matched pair of parentheses
or brackets following the quantified variable. This fragment is called the scope
of the quantifier. Often, it is convenient to require that all quantifiers appear at
the beginning of the statement and that each quantifier’s scope is everything fol-
lowing it. Such statements are said to be in prenex normal form. Any statement
may be put into prenex normal form easily. We consider statements in this form
only, unless otherwise indicated.

8.3 PSPACE-COMPLETENESS 311

Boolean formulas with quantifiers are called quantified Boolean formulas.
For such formulas, the universe is {0, 1}. For example,

¢=VzIy [(zVy) ATVTY)]

is a quantified Boolean formula. Here, ¢ is true, but it would be false if the
quantifiers Vz and 3y were reversed.

When each variable of a formula appears within the scope of some quantifier,
the formula is said to be fully quantified. A fully quantified Boolean formula
is sometimes called a semtence and is always either true or false. For example,
the preceding formula ¢ is fully quantified. However, if the initial part, Vz, of
¢ were removed, the formula would no longer be fully quantified and would be
neither true nor false.

The TQBF problem is to determine whether a fully quantified Boolean for-
mula is true or false. We define the language

TQBF = {(¢)| ¢ is a true fully quantified Boolean formula}.

TH EOR EM 8.9 --
TQBF is PSPACE-complete.

PROOF IDEA To show that TQBF is in PSPACE we give a straightforward
algorithm that assigns values to the variables and recursively evaluates the truth
of the formula for those values. From that information the algorithm can deter-
mine the truth of the original quantified formula.

To show that every language A in PSPACE reduces to TQBF in polynomial
time, we begin with a polynomial space-bounded Turing machine for A. Then
we give a polynomial time reduction that maps a string to a quantified Boolean
formula ¢ that encodes a simulation of the machine on that input. The formula
is true iff the machine accepts.

As a first attempt at this construction, let’s try to imitate the proof of the
Cook-Levin theorem, Theorem 7.37. We can construct a formula ¢ that simu-
lates M on an input w by expressing the requirements for an accepting tableau.
A tableau for M on w has width O(n*), the space used by M, but its height is
exponential in n* because M can run for exponential time. Thus, if we were to
represent the tableau with a formula directly, we would end up with a formula
of exponential size. However, a polynomial time reduction cannot produce an
exponential-size result, so this attempt fails to show that A <p TQBF.

Instead, we use a technique related to the proof of Savitch’s theorem to con-
struct the formula. The formula divides the tableau into halves and employs the
universal quantifier to represent each half with the same part of the formula.
The result is a much shorter formula.

312 CHAPTER 8 / SPACE COMPLEXITY

PROOF First, we give a polynomial space algorithm deciding TQBF.

T = “On input (¢), a fully quantified Boolean formula:

1. If ¢ contains no quantifiers, then it is an expression with only
constants, so evaluate ¢ and accept if it is true; otherwise, reject.

2. If ¢ equals 3z ¢, recursively call T' on 1, first with 0 substituted
for z and then with 1 substituted for z. If either result is accept,
then accept; otherwise, reject.

3. If ¢ equals Vz 9, recursively call T on 1, first with 0 substituted
for z and then with 1 substituted for z. If both results are ac-
cept, then accept; otherwise, reject.”

Algorithm T obviously decides TQBF. 'To analyze its space complexity we
observe that the depth of the recursion is at most the number of variables. At
each level we need only store the value of one variable, so the total space used is
O(m), where m is the number of variables that appear in ¢. Therefore 7" runs in
linear space.

Next, we show that TQBF is PSPACE-hard. Let A be a language decided by
a TM M in space n* for some constant k. We give a polynomial time reduction
from A to TQBF.

The reduction maps a string w to a quantified Boolean formula ¢ that is true
iff M accepts w. To show how to construct ¢ we solve a more general problem.
Using two collections of variables denoted c¢; and ¢y representing two configu-
rations and a number ¢ > 0, we construct a formula ¢, ¢, . If we assign ¢; and
¢2 to actual configurations, the formula is true iff M can go from ¢; to ¢ in at
most ¢ steps. Then we can let ¢ be the formula ¢, c,......h, Where b = 24 (") for
a constant d, chosen so that M has no more than 2% (n) possible configurations
on an input of length n. Here, let f(n) = n*. For convenience, we assume that
t is a power of 2.

The formula encodes the contents of tape cells as in the proof of the Cook-
Levin theorem. Each cell has several variables associated with it, one for each
tape symbol and state, corresponding to the possible settings of that cell. Each
configuration has n* cells and so is encoded by O(n*) variables.

If t = 1, we can easily construct ¢, ¢, t. We design the formula to say that
either ¢; equals ¢, or c2 follows from ¢; in a single step of M. We express
the equality by writing a Boolean expression saying that each of the variables
representing ¢; contains the same Boolean value as the corresponding variable
representing ca. We express the second possibility by using the technique pre-
sented in the proof of the Cook-Levin theorem. That is, we can express that
c1 yields ¢z in a single step of M by writing Boolean expressions stating that
the contents of each triple of ¢;’s cells correctly yields the contents of the corre-
sponding triple of ¢o’s cells.

Ift > 1, we construct ¢, ., recursively. As a warmup let’s try one idea that
doesn’t quite work and then fix it. Let

¢015027t - aml [¢C15m13% /\ ¢m1a82a%:| ’

8.3 PSPACE-COMPLETENESS 313

The symbol m; represents a configuration of M. Writing Im, is shorthand for
3zy, ...,xz;, where | = O(n*) and 1, ..., z; are the variables that encode m;.
So this construction of ¢, ., ; says that Al can go from ¢; to ¢y in at most ¢ steps
if some intermediate configuration m, exists, whereby M can go from ¢; to m;
in at most £ steps and then from m; to ¢, in at most £ steps. Then we construct
the two formulas @, ,,, : and ¢,,, ., « recursively.

The formula ¢, ,: has the correct value; that is, it is TRUE whenever M
can go from c¢; to ¢z within ¢ steps. However, it is too big. Every level of the
recursion involved in the construction cuts ¢ in half but roughly doubles the size
of the formula. Hence we end up with a formula of size roughly ¢. Initially
t = 24/(") 5o this method gives an exponentially large formula.

To reduce the size of the formula we use the V quantifier in addition to the 3
quantifier. Let

Bey cn.t = M V(es,ca) €{(c1,m1), (Mm1,c2)} [¢03,04,%]-

The introduction of the new variables representing the configurations c3 and ¢4
allows us to “fold” the two recursive subformulas into a single subformula, while
preserving the original meaning. By writing V(c3,c4) € {(c1,m1), (m1,c2)}, we
indicate that the variables representing the configurations c3 and ¢, may take the
values of the variables of ¢; and m, or of m; and co, respectively, and that the

resulting formula @, ., + is true in either case. We may replace the construct
Vz € {y,z} [...] by the equivalent construct Vz [(z=yVx=2) — ...] to obtain

a syntactically correct quantified Boolean formula. Recall that in Section 0.2 we
showed that Boolean implication (—) and Boolean equality (=) can be expressed
in terms of AND and NOT. Here, for clarity, we use the symbol = for Boolean
equality instead of the equivalent symbol < used in Section 0.2.

To calculate the size of the formula ¢c.. c,ns Where b = 24" we note
that each level of the recursion adds a portion of the formula that is linear in the
size of the configurations and is thus of size O(f(n)). The number of levels of
the recursion is log(2% (™), or O(f(n)). Hence the size of the resulting formula

is O(f2(n)).

WINNING STRATEGIES FOR GAMES

For the purposes of this section, a game is loosely defined to be a competition
in which opposing parties attempt to achieve some goal according to prespec-
ified rules. Games appear in many forms, from board games such as chess to
economic and war games that model corporate or societal conflict.

Games are closely related to quantifiers. A quantified statement has a corre-
sponding game; conversely, a game often has a corresponding quantified state-
ment. These correspondences are helpful in several ways. For one, expressing a
mathematical statement that uses many quantifiers in terms of the correspond-
ing game may give insight into the statement’s meaning. For another, expressing
a game in terms of a quantified statement aids in understanding the complexity
of the game. To illustrate the correspondence between games and quantifiers,
we turn to an artificial game called the formula game.

314 CHAPTER 8 / SPACE COMPLEXITY

Let ¢ = 3x1 Vao 3z3 - - - Qg [] be a quantified Boolean formula in prenex
normal form. Here Q represents either a V or an 3 quantifier. We associate a
game with ¢ as follows. Two players, called Player A and Player E, take turns
selecting the values of the variables z1, ..., zx. Player A selects values for the
variables that are bound to V quantifiers and player E selects values for the vari-
ables that are bound to 3 quantifiers. The order of play is the same as that of the
quantifiers at the beginning of the formula. At the end of play we use the values
that the players have selected for the variables and declare that Player E has won
the game if ¢, the part of the formula with the quantifiers stripped off, is now
TRUE. Player A has won if ¢ is now FALSE.

EXAMPLE 8.10 ..

Say that ¢, is the formula
dzq Vo dzs [(Il V 172) AN (.CCQ V £L'3) N (TQ— V EE)] .

In the formula game for ¢, Player E picks the value of z;, then Player A picks
the value of z7, and finally Player E picks the value of z3.

To illustrate a sample play of this game, we begin by representing the Boolean
value TRUE with 1 and FALSE with 0, as usual. Let’s say that Player E picks
z1 = 1, then Player A picks zo = 0, and finally Player E picks z3 = 1. With
these values for z;, 2, and z3, the subformula

(x1 Vx2) A (22 V 23) A (T2 V T3)

is 1, so Player E has won the game. In fact, Player E may always win this game by
selecting z; = 1 and then selecting x5 to be the negation of whatever Player A
selects for xo. We say that Player E has a winning strategy for this game. A
player has a winning strategy for a game if that player wins when both sides play
optimally.

Now let’s change the formula slightly to get a game in which Player A has a
winning strategy. Let ¢, be the formula

dx1 Vo dxs [(Il V .TQ) AN (.CEQ vV xg) AN (IIZQ VTE)} .

Player A now has a winning strategy because, no matter what Player E selects
for x1, Player A may select 22 = 0, thereby falsifying the part of the formula
appearing after the quantifiers, whatever Player E’s last move may be. ;

We next consider the problem of determining which player has a winning
strategy in the formula game associated with a particular formula. Let

FORMULA-GAME = {(¢)| Player E has a winning strategy in
the formula game associated with ¢}.

8.3 PSPACE-COMPLETENESS 315

THEOREM 8. 'I 'I ...
FORMULA-GAME is PSPACE-complete

PROOF IDEA FORMULA-GAME is PSPACE-complete for a simple reason.
It is the same as TQBF. To see that FORMULA-GAME = TQBF, observe that a
formula is TRUE exactly when Player E has a winning strategy in the associated
formula game. The two statements are different ways of saying the same thing.

PROOF The formula ¢ = 3z, Vzy3z3 --- [¢] is TRUE when some setting
for x; exists such that, for any setting of x2, a setting of x3 exists such that, and so
on ..., where v is TRUE under the settings of the variables. Similarly, Player E
has a winning strategy in the game associated with ¢ when Player E can make
some assignment to x; such that, for any setting of z2, Player E can make an
assignment to x3 such that, and so on ..., 9 is TRUE under these settings of the
variables.

The same reasoning applies when the formula doesn’t alternate between ex-
istential and universal quantifiers. If ¢ has the form Vz1, z2, x5 34,25 V6 [¢],
Player A would make the first three moves in the formula game to assign values
to x1, T2, and z3; then Player E would make two moves to assign x4 and z5; and
finally Player A would assign a value .

Hence ¢ € TQBF exactly when ¢ € FORMULA-GAME, and the theorem
follows from Theorem 8.9.

GENERALIZED GEOGRAPHY

Now that we know that the formula game is PSPACE-complete, we can es-
tablish the PSPACE-completeness or PSPACE-hardness of some other games
more easily. We'll begin with a generalization of the game geography and later
discuss games such as chess, checkers, and GO.

Geography is a child’s game in which players take turns naming cities from
anywhere in the world. Each city chosen must begin with the same letter that
ended the previous city’s name. Repetition isn’t permitted. The game starts with
some designated starting city and ends when some player loses because he or she
is unable to continue. For example, if the game starts with Peoria, then Amherst
might legally follow (because Peoria ends with the letter #, and Amherst begins
with the letter), then Tucson, then Nashua, and so on until one player gets
stuck and thereby loses.

We can model this game with a directed graph whose nodes are the cities of
the world. We draw an arrow from one city to another if the first can lead to the
second according to the game rules. In other words, the graph contains an edge
from a city X to a city Y if city X ends with the same letter that begins city Y. We
illustrate a portion of the geography graph in Figure 8.12.

316 CHAPTER 8 / SPACE COMPLEXITY

Peoria

Tucson

FIGURE 8.12
Portion of the graph representing the geography game

When the rules of geography are interpreted for this graphic representation,
one player starts by selecting the designated start node and then the players take
turns alternately by picking nodes that form a simple path in the graph. The
requirement that the path be simple (i.e., doesn’t use any node more than once)
corresponds to the requirement that a city may not be repeated. The first player
unable to extend the path loses the game.

In generalized geography we take an arbitrary directed graph with a des-
ignated start node instead of the graph associated with the actual cities. For
example, the following graph is an example of a generalized geography game.

FIGURE 8.13
A sample generalized geography game

8.3 PSPACE-COMPLETENESS 317

Say that Player I is the one who moves first and Player II second. In this
example, Player I has a winning strategy as follows. Player I starts at node 1,
the designated start node. Node 1 points only at nodes 2 and 3, so Player Is
first move must be one of these two choices. He chooses 3. Now Player II must
move, but node 3 points only to node 5, so she is forced to select node 5. Then
Player I selects 6, from choices 6, 7, and 8. Now Player II must play from node 6,
but it points only to node 3, and 3 was previously played. Player II is stuck, and
thus Player I wins.

If we change the example by reversing the direction of the edge between
nodes 3 and 6, Player II has a winning strategy. Can you see it? If Player I starts
out with node 3 as before, Player II responds with 6 and wins immediately, so
Player I's only hope is to begin with 2. In that case, however, Player II responds
with 4. If Player I now takes 5, Player II wins with 6. If Player I takes 7, Player 11
wins with 9. No matter what Player I does, Player II can find a way to win, so
Player II has a winning strategy.

The problem of determining which player has a winning strategy in a gener-
alized geography game is PSPACE-complete. Let

GG = {(G, b)| Player I has a winning strategy for the generalized
geography game played on graph G starting at node b}.

THEOREM 8.1 R
GG is PSPACE-complete.

PROOF IDEA A recursive algorithm similar to the one used for TQBF in
Theorem 8.9 determines which player has a winning strategy. This algorithm
runs in polynomial space and so GG € PSPACE.

To prove that GG is PSPACE-hard, we give a polynomial time reduction
from FORMULA-GAME to GG. This reduction converts a formula game to
a generalized geography graph so that play on the graph mimics play in the
formula game. In effect, the players in the generalized geography game are
really playing an encoded form of the formula game.

PROOF 'The following algorithm decides whether Player I has a winning
strategy in instances of generalized geography; in other words, it decides GG.
We show that it runs in polynomial space.

M = “On input (G, b), where G is a directed graph and b is a node of G-

1. If b has outdegree 0, reject, because Player I loses immediately.

2. Remove node b and all connected arrows to get a new graph G.

3. For each of the nodes by, by, . . ., by that b originally pointed at,
recursively call M on (G, b;).

4. If all of these accept, Player II has a winning strategy in the
original game, so reject. Otherwise, Player II doesn’t have a
winning strategy, so Player I must; therefore accept.”

31 8 CHAPTER 8 / SPACE COMPLEXITY

The only space required by this algorithm is for storing the recursion stack.
Each level of the recursion adds a single node to the stack, and at most m levels
occur, where m is the number of nodes in G. Hence the algorithm runs in linear
space.

To establish the PSPACE-hardness of GG, we show that FORMULA-GAME
is polynomial time reducible to GG. The reduction maps the formula

¢ = Jz1 Voo 3z -+ Qg [¢]

to an instance (G, b) of generalized geography. Here we assume for simplicity
that ¢’s quantifiers begin and end with 3 and that they strictly alternate between
Jand V. A formula that doesn’t conform to this assumption may be converted
to a slightly larger one that does by adding extra quantifiers binding otherwise
unused or “dummy” variables. We assume also that ¢ is in conjunctive normal
form (see Problem 8.12).

The reduction constructs a geography game on a graph G where optimal play
mimics optimal play of the formula game on ¢. Player I in the geography game
takes the role of Player E in the formula game, and Player II takes the role of
Player A.

The structure of graph G is partially shown in the following figure. Play starts
at node b, which appears at the top left-hand side of G. Underneath b, a sequence
of diamond structures appears, one for each of the variables of ¢. Before getting
to the right-hand side of G, let’s see how play proceeds on the left-hand side.

Ty

FIGURE 8.15
Partial structure of the geography game simulating the formula game

8.3 PSPACE-COMPLETENESS 319

Play starts at b. Player I must select one of the two edges going from b. These
edges correspond to Player E’s possible choices at the beginning of the formula
game. The left-hand choice for Player I corresponds to TRUE for Player E in the
formula game and the right-hand choice to FALSE. After Player I has selected
one of these edges—say, the left-hand one—Player II moves. Only one outgoing
edge is present, so this move is forced. Similarly, Player I’s next move is forced
and play continues from the top of the second diamond. Now two edges again
are present, but Player II gets the choice. This choice corresponds to Player A’s
first move in the formula game. As play continues in this way, Players I and II
choose a rightward or leftward path through each of the diamonds.

After play passes through all the diamonds, the head of the path is at the
bottom node in the last diamond, and it is Player I's turn because we assumed
that the last quantifier is 3. Player I's next move is forced. Then they are at node
c in Figure 8.15 and Player II makes the next move.

This point in the geography game corresponds to the end of play in the
formula game. The chosen path through the diamonds corresponds to an as-
signment to ¢’s variables. Under that assignment, if ¢ is TRUE, Player E wins
the formula game, and if ¢ is FALSE, Player A wins. The structure on the right-
hand side of the following figure guarantees that Player I can win if Player E has
won and that Player II can win if Player A has won.

FIGURE 8.16
Full structure of the geography game simulating the formula game, where
¢=dr1Veg - Qup [(z1 VZ2Vas) AN (TaVI3V -)A - A()]

320 CHAPTER 8 / SPACE COMPLEXITY

At node ¢, Player II may choose a node corresponding to one of ¢’s clauses.
Then Player I may choose a node corresponding to a literal in that clause.
The nodes corresponding to unnegated literals are connected to the left-hand
(TRUE) sides of the diamond for associated variables, and similarly for negated
literals and right-hand (FALSE) sides as shown in Figure 8.16.

If ¢ is FALSE, Player II may win by selecting the unsatisfied clause. Any
literal that Player I may then pick is FALSE and is connected to the side of the
diamond that hasn’t yet been played. Thus Player II may play the node in the
diamond, but then Player I is unable to move and loses. If ¢ is TRUE, any clause
that Player II picks contains a TRUE literal. Player I selects that literal after
Player II’s move. Because the literal is TRUE, it is connected to the side of the
diamond that has already been played, so Player II is unable to move and loses.

..

In Theorem 8.14 we showed that no polynomial time algorithm exists for op-
timal play in generalized geography unless P = PSPACE. We’d like to prove
a similar theorem regarding the difficulty of computing optimal play in board
games such as chess, but an obstacle arises. Only a finite number of different
game positions may occur on the standard 8 x 8 chess board. In principle, all
these positions may be placed in a table, along with the best move in each posi-
tion. The table would be too large to fit inside our galaxy but, being finite, could
be stored in the control of a Turing machine (or even that of a finite automa-
ton!). Thus the machine would be able to play optimally in linear time, using
table lookup. Perhaps at some time in the future, methods that can quantify
the complexity of finite problems will be developed, but current methods are
asymptotic and hence apply only to the rate of growth of the complexity as the
problem size increases—not to any fixed size. Nevertheless, we can give some
evidence for the difficulty of computing optimal play for many board games by
generalizing them to an n xn board. Such generalizations of chess, checkers, and
GO have been shown to be PSPACE-hard or hard for even larger complexity
classes, depending on the details of the generalization.

8.4

THE CLASSES LL AND NL

Until now, we have considered only time and space complexity bounds that are at
least linear—that is, bounds where f(n) is at least n. Now we examine smaller,
sublinear space bounds. In time complexity, sublinear bounds are insufficient
for reading the entire input, so we don’t consider them here. In sublinear space
complexity the machine is able to read the entire input but it doesn’t have enough
space to store the input. To consider this situation meaningfully, we must modify
our computational model.

8.4 THECLASSESLANDNL 321

We introduce a Turing machine with two tapes: a read-only input tape and a
read/write work tape. On the read-only tape the input head can detect symbols
but not change them. We provide a way for the machine to detect when the head
is at the left-hand and right-hand ends of the input. The input head must remain
on the portion of the tape containing the input. The work tape may be read and
written in the usual way. Only the cells scanned on the work tape contribute to
the space complexity of this type of Turing machine.

Think of a read-only input tape as a CD-ROM, a device used for input on
many personal computers. Often, the CD-ROM contains more data than the
computer can store in its main memory. Sublinear space algorithms allow the
computer to manipulate the data without storing all of it in main memory.

For space bounds that are at least linear, the two-tape TM model is equivalent
to the standard one-tape model (see Exercise 8.1). For sublinear space bounds,
we use only the two-tape model.

DEFINITION 8.17

L is the class of languages that are decidable in logarithmic space
on a deterministic Turing machine. In other words,

L = SPACE(logn).

NUL is the class of languages that are decidable in logarithmic space
on a nondeterministic Turing machine. In other words,

NL = NSPACE(logn).

WEe focus on log n space instead of, say, /n or log?n space, for several reasons
that are similar to those for our selection of polynomial time and space bounds.
Logarithmic space is just large enough to solve a number of interesting computa-
tional problems, and it has attractive mathematical properties such as robustness
even when machine model and input encoding method change. Pointers into
the input may be represented in logarithmic space, so one way to think about
the power of log space algorithms is to consider the power of a fixed number of
input pointers.

EXAMPLE 8.]8 ..

The language A = {0%1*| k > 0} is a member of L. In Section 7.1 on page 247
we described a Turing machine that decides A by zigzagging back and forth
across the input, crossing off the Os and 1s as they are matched. That algorithm
uses linear space to record which positions have been crossed off, but it can be
modified to use only log space.

322 CHAPTER 8 / SPACE COMPLEXITY

The log space TM for A cannot cross off the Os and 1s that have been matched
on the input tape because that tape is read-only. Instead, the machine counts
the number of Os and, separately, the number of 1s in binary on the work tape.
The only space required is that used to record the two counters. In binary, each
counter uses only logarithmic space, and hence the algorithm runs in O(log n)
space. Therefore A € L. :

EXAMPLE 8,19 i s
Recall the language
PATH = {(G, s,t)| G is a directed graph that has a directed path from s to t}

defined in Section 7.2. Theorem 7.14 shows that PATH is in P but that the
algorithm given uses linear space. We don’t know whether PATH can be solved
in logarithmic space deterministically, but we do know a nondeterministic log
space algorithm for PATH.

The nondeterministic log space Turing machine deciding PATH operates by
starting at node s and nondeterministically guessing the nodes of a path from s
to t. The machine records only the position of the current node at each step on
the work tape, not the entire path (which would exceed the logarithmic space
requirement). The machine nondeterministically selects the next node from
among those pointed at by the current node. Then it repeats this action un-

til it reaches node ¢ and accepts, or until it has gone on for m steps and rejects,
where m is the number of nodes in the graph. Thus PATH is in NL.

Our earlier claim that any f(n) space bounded Turing machine also runs in
time 20(/(") is no longer true for very small space bounds. For example, a
Turing machine that uses O(1) (i.e., constant) space may run for n steps. To
obtain a bound on the running time that applies for every space bound f(n) we
give the following definition.

DEFINITION 8.20

If M is a Turing machine that has a separate read-only input tape
and w is an input, a configuration of M on w is a setting of the
state, the work tape, and the positions of the two tape heads. The
input w is not a part of the configuration of M on w.

If M runsin f(n) space and w is an input of length n, the number of configu-
rations of M on w is n2°/ ("), To explain this result, let’s say that M has c states
and g tape symbols. The number of strings that can appear on the work tape is
g7 The input head can be in one of n positions and the work tape head can

8.5 NL-COMPLETENESS 323

be in one of f(n) positions. Therefore the total number of configurations of M
on w, which is an upper bound on the running time of M on w, is cnf(n)g? ™,
or n20(f(n))

We focus almost exclusively on space bounds f(n) that are at least logn. Our
earlier claim that the time complexity of a machine is at most exponential in
its space complexity remains true for such bounds because n20(/ (") jg 20(f(n))
when f(n) > logn.

Recall that Savitch’s theorem shows that we can convert nondeterministic TMs
to deterministic TMs and increase the space complexity f(n) by only a squaring,
provided that f(n) > n. We can extend Savitch’s theorem to hold for sublinear
space bounds down to f(n) > logn. The proof is identical to the original one
we gave on page 305, except that we use Turing machines with a read-only input
tape and instead of referring to configurations of N we refer to configurations
of N on w. Storing a configuration of N on w uses log(n2°(")) = logn +
O(f(n)) space. If f(n) > logn, the storage used is O(f(n)) and the remainder
of the proof remains the same.

8.5

NL-COMPLETENESS

As we mentioned in Example 8.19, the PATH problem is known to be in NL but
isn’t known to be in L. We believe that PATH doesn’t belong to L, but we don'’t
know how to prove this conjecture. In fact, we don’t know of any problem in
NL that can be proven to be outside L. Analogous to the question of whether
P = NP we have the question of whether L = NL.

As a step toward resolving the L versus NL question, we can exhibit certain
languages that are NL-complete. As with complete languages for other com-
plexity classes, the NL-complete languages are examples of languages that are,
in a certain sense, the most difficult languages in NL. If L and NL are different,
all NL-complete languages don’t belong to L.

As with our previous definitions of completeness, we define an NL-complete
language to be one which is in NL and to which any other language in NL is
reducible. However, we don’t use polynomial time reducibility here because,
as you will see, all problems in NL are solvable in polynomial time. Therefore
every two problems in NL except () and ¥* are polynomial time reducible to one
another (see the discussion of polynomial time reducibility in the definition of
PSPACE-completeness on page 309). Hence polynomial time reducibility is too
strong to differentiate problems in NL from one another. Instead we use a new
type of reducibility called log space reducibility.

324 CHAPTER 8 / SPACE COMPLEXITY

DEFINITION 8.21

A log space transducer is a Turing machine with a read-only input
tape, a write-only output tape, and a read/write work tape. The
work tape may contain O(logn) symbols. A log space transducer
M computes a function f: ¥*— X%, where f(w) is the string re-
maining on the output tape after M halts when it is started with w
on its input tape. We call f a log space computable function. Lan-
guage A is log space reducible to language B, written A <p, B, if
A is mapping reducible to B by means of a log space computable
function f.

Now we are ready to define NL-completeness.

DEFINITION 8.22
A language B is NL-complete it

1. B € NL, and
2. every A in NL is log space reducible to B.

If one language is log space reducible to another language already known to
be in L, the original language is also in L, as the following theorem demonstrates.

THEOREM 8.23 ...
If A<y Band B€L,then A € L.

PROOF A tempting approach to the proof of this theorem is to follow the
model presented in Theorem 7.31, the analogous result for polynomial time re-
ducibility. In that approach, a log space algorithm for A first maps its input w to
f(w), using the log space reduction f, and then applies the log space algorithm
for B. However, the storage required for f(w) may be too large to fit within the
log space bound, so we need to modify this approach.

Instead, A’s machine M4 computes individual symbols of f(w) as requested
by B’s machine Mp. In the simulation, M4 keeps track of where Mp’s input
head would be on f(w). Every time Mp moves, M4 restarts the computation
of f on w from the beginning and ignores all the output except for the desired
location of f(w). Doing so may require occasional recomputation of parts of
f(w) and so is inefficient in its time complexity. The advantage of this method
is that only a single symbol of f(w) needs to be stored at any point, in effect
trading time for space.

8.5 NL-COMPLETENESS 325

COROLLARY 8.24 ...

If any NL-complete language is in L, then L = NL.

..

SEARCHING IN GRAPHS

THEOREM 8.25 ...
PATH is NL-complete.

PROOF IDEA Example 8.19 shows that PATH is in NL, so we only need to
show that PATH is NL-hard. In other words, we must show that every language
A in NL is log space reducible to PATH.

The idea behind the log space reduction from A to PATH is to construct a
graph that represents the computation of the nondeterministic log space Turing
machine for A. The reduction maps a string w to a graph whose nodes cor-
respond to the configurations of the NTM on input w. One node points to a
second node if the corresponding first configuration can yield the second con-
figuration in a single step of the NTM. Hence the machine accepts w whenever
some path from the node corresponding to the start configuration leads to the
node corresponding to the accepting configuration.

PROOF We show how to give a log space reduction from any language A in
NL to PATH. Let’s say that NTM M decides A in O(logn) space. Given an
input w, we construct (G, s,t) in log space, where G is a directed graph that
contains a path from s to ¢ if and only if M accepts w.

The nodes of G are the configurations of M on w. For configurations ¢; and
c2 of M on w, the pair (c1, c2) is an edge of G if cg is one of the possible next
configurations of M starting from ¢;. More precisely, if M’s transition function
indicates that ¢;’s state together with the tape symbols under its input and work
tape heads can yield the next state and head actions to make ¢; into ¢, then
(c1,c2) is an edge of G. Node s is the start configuration of M on w. Machine
M is modified to have a unique accepting configuration, and we designate this
configuration to be node ¢.

This mapping reduces A to PATH because, whenever M accepts its input,
some branch of its computation accepts, which corresponds to a path from the
start configuration s to the accepting configuration ¢ in G. Conversely, if some
path exists from s to ¢ in G, some computation branch accepts when M runs on
input w, and M accepts w.

To show that the reduction operates in log space, we give a log space trans-
ducer which, on input w, outputs a description of G. This description comprises
two lists: G’s nodes and G’s edges. Listing the nodes is easy because each node is
a configuration of M on w and can be represented in clogn space for some con-
stant ¢. The transducer sequentially goes through all possible strings of length

326 CHAPTER 8 / SPACE COMPLEXITY

clogn, tests whether each is a legal configuration of M on w, and outputs those
that pass the test. The transducer lists the edges similarly. Log space is suffi-
cient for verifying that a configuration ¢; of M on w can yield configuration ¢
because the transducer only needs to examine the actual tape contents under the
head locations given in ¢; to determine that AM’s transition function would give
configuration c; as a result. The transducer tries all pairs (¢;, ¢2) in turn to find
which qualify as edges of G. Those that do are added to the output tape.

..

One immediate spinoff of Theorem 8.25 is the following corollary which
states that NL is a subset of P.

COROLLARY 8.26 ...
NL C P.

PROOF Theorem 8.25 shows that any language in NL is log space reducible
to PATH. Recall that a Turing machine that uses space f(n) runs in time
n20U7(M) | 5o a reducer that runs in log space also runs in polynomial time.
Therefore any language in NL is polynomial time reducible to PATH, which in
turn is in P, by Theorem 7.14. We know that every language that is polynomial
time reducible to a language in P is also in P, so the proof is complete.

Though log space reducibility appears to be highly restrictive, it is adequate
for most reductions in complexity theory, because these are usually computa-
tionally simple. For example, in Theorem 8.9 we showed that every PSPACE
problem is polynomial time reducible to TQBF. The highly repetitive formu-
las that these reductions produce may be computed using only log space, and
therefore we may conclude that TQBF is PSPACE-complete with respect to log
space reducibility. This conclusion is important because Corollary 9.6 shows
that NL C PSPACE. This separation and log space reducibility implies that
TQBF ¢ NL.

NL EQUALS CONL

This section contains one of the most surprising results known concerning the
relationships among complexity classes. The classes NP and coNP are generally
believed to be different. At first glance, the same appears to hold for the classes
NL and coNL. The fact that NL equals coNL, as we are about to prove, shows
that our intuition about computation still has many gaps in it.

8.6 NL EQUALS CONL 327

THEOREM 8.27 ...
NL = coNL.

PROOF IDEA We show that PATH is in NL, and thereby establish that ev-
ery problem in coNL is also in NL, because PATH is NL-complete. The NL
algorithm M that we present for PATH must have an accepting computation
whenever the input graph G does 7ot contain a path from s to ¢.

First, let’s tackle an easier problem. Let ¢ be the number of nodes in G that
are reachable from s. We assume that c is provided as an input to M and show
how to use ¢ to solve PATH. Later we show how to compute c.

Given G, s, t, and ¢, the machine M operates as follows. One by one, M
goes through all the m nodes of G and nondeterministically guesses whether
each one is reachable from s. Whenever a node u is guessed to be reachable, M/
attempts to verify this guess by guessing a path of length m or less from s to u. If
a computation branch fails to verify this guess, it rejects. In addition, if a branch
guesses that ¢ is reachable, it rejects. Machine M counts the number of nodes
that have been verified to be reachable. When a branch has gone through all
of G’s nodes, it checks that the number of nodes that it verified to be reachable
from s equals ¢, the number of nodes that actually are reachable, and rejects if
not. Otherwise, this branch accepts.

In other words, if M nondeterministically selects exactly ¢ nodes reachable
from s, not including ¢, and proves that each is reachable from s by guessing the
path, M knows that the remaining nodes, including ¢, are not reachable, so it can
accept.

Next, we show how to calculate ¢, the number of nodes reachable from s. We
describe a nondeterministic log space procedure whereby at least one computa-
tion branch has the correct value for ¢ and all other branches reject.

For each i from 0 to m, we define A; to be the collection of nodes that are at
a distance of i or less from s (i.e., that have a path of length at most ¢ from s).
So Ag = {s}, each A; C A,;1, and A,, contains all nodes that are reachable
from s. Let ¢; be the number of nodes in A;. We next describe a procedure that
calculates ¢; 1 from ¢;. Repeated application of this procedure yields the desired
value of ¢ = ¢,,.

We calculate ¢;11 from ¢;, using an idea similar to the one presented earlier
in this proof sketch. The algorithm goes through all the nodes of G, determines
whether each is a member of A;11, and counts the members.

To determine whether a node v is in A;41, we use an inner loop to go through
all the nodes of G and guess whether each node is in A;. Each positive guess is
verified by guessing the path of length at most i from s. For each node u verified
to be in A;, the algorithm tests whether (u,v) is an edge of G. If it is an edge,
v is in A;41. Additionally, the number of nodes verified to be in A; is counted.
At the completion of the inner loop, if the total number of nodes verified to be
in A; is not ¢;, all A; have not been found, so this computation branch rejects.
If the count equals ¢; and v has not yet been shown to be in 4,1, we conclude
thatitisn’tin A;4;. Then we go on to the next v in the outer loop.

328 CHAPTER 8 / SPACE COMPLEXITY

PROOF Here is an algorithm for PATH. Let m be the number of nodes of G.

M = “On input (G, s, t):

1. Letcy=1. [Ao = {s} has 1 node]
2. Fori=0tom—1: [compute ¢ 41 from ¢; |
3 Letc;1q = 1. [ci+1 counts nodes in A;+1]
L For each node v # s in G: [checkifv € Ait1]
5. Letd = 0. [d re-counts A;]
6 For each node u in G: [checkifu € A;]
7 Nondeterministically either perform or skip these steps:
8 Nondeterministically follow a path of length at most ¢

from s and reject if it doesn’t end at w.

9. Increment d. [verified that u € A;]
10. If (u,v) is an edge of G, increment ¢;4; and go to
Stage 5 with the next v. [verified thatv € Ait1]
11. If d # c;, then reject. [check whether found all A;]
12. Letd =0. [¢cm now known; d re-counts A,]
13. For each node u in G: [checkifu € An]
14. Nondeterministically either perform or skip these steps:
15. Nondeterministically follow a path of length at most m
from s and reject if it doesn’t end at w.
16. If u = t, then reject. [found path from s to t]
17. Increment d. [verified that u € Ay,]
18. If d # ¢, then reject. [check that found all of A,]

Otherwise, accept.”

This algorithm only needs to store u, v, ¢;, ¢;11, d, 1, and a pointer to the head
of a path, at any given time. Hence it runs in log space. (Note that M accepts
improperly formed inputs, too.)

We summarize our present knowledge of the relationships among several
complexity classes as follows:

L C NL = coNL C P C PSPACE.

We don’t know whether any of these containments are proper, although we
prove NL. C PSPACE? in Corollary 9.6. Consequently, either coNL C P or
P ¢ PSPACE must hold, but we don’t know which one does! Most researchers
conjecture that all these containments are proper.

3We write A C B to mean that A is a proper (i.e., not equal) subset of B.

EXERCISES 329

EXERCISES

8.1

8.2

8.3

8.4

A8.5
8.6
A8.7

Show that for any function f: N—R™, where f(n) > n, the space complexity
class SPACE(f(n)) is the same whether you define the class by using the single-
tape TM model or the two tape read-only input TM model.

Consider the following position in the standard tic-tac-toe game.

X

O X

Let’s say that it is the X -player’s turn to move next. Describe the winning strategy
for this player. (Recall that a winning strategy isn’t merely the best move to make
in the current position. It also includes all the responses that this player must make
in order to win, however the opponent moves.)

Consider the following generalized geography game wherein the start node is the
one with the arrow pointing in from nowhere. Does Player I have a winning strat-
egy? Does Player II? Give reasons for your answers.

O s O s ©

Show that PSPACE is closed under the operations union, complementation, and
star.

Show that NL is closed under the operations union, intersection, and star.
Show that any PSPACE-hard language is also NP-hard.
Show that Apra € L.

PROBLEMS

8.8

Let EQrex = {(R,S)| R and S are equivalent regular expressions}. Show that
EQgrex € PSPACE.

330

8.9

8.10

8.11
8.12

8.13

8.14

*8.15

CHAPTER 8 / SPACE COMPLEXITY

A ladder is a sequence of strings s1, s2, ..., Sk, wherein every string differs from
the preceding one in exactly one character. For example the following is a ladder
of English words, starting with “head” and ending with “free”:

head, hear, near, fear, bear, beer, deer, deed, feed, feet, fret, free.

Let LADDERpra = {(M, s,t)| M is a DFA and L(M) contains a ladder of strings,
starting with s and ending with t}. Show that LADDERpra is in PSPACE.

The Japanese game go-moku is played by two players, “X” and “O,” on a 19 x 19
grid. Players take turns placing markers, and the first player to achieve 5 of his
markers consecutively in a row, column, or diagonal, is the winner. Consider this
game generalized to an n x n board. Let

GM = {(B)| B is a position in generalized go-moku,

where player “X” has a winning strategy}.

By a position we mean a board with markers placed on it, such as may occur in the
middle of a play of the game, together with an indication of which player moves
next. Show that GM € PSPACE.

Show that, if every NP-hard language is also PSPACE-hard, then PSPACE = NP.

Show that TQBF restricted to formulas where the part following the quantifiers is
in conjunctive normal form is still PSPACE-complete.

Define Aiga = {(M,w)| M is an LBA that accepts input w}. Show that A ga is
PSPACE-complete.

Consider the following two-person version of the language PUZZLE that was de-
scribed in Problem 7.26. Each player starts with an ordered stack of puzzle cards.
The players take turns placing the cards in order in the box and may choose which
side faces up. Player I wins if, in the final stack, all hole positions are blocked, and
Player IT wins if some hole position remains unblocked. Show that the problem of
determining which player has a winning strategy for a given starting configuration
of the cards is PSPACE-complete.

The cat-and-mouse game is played by two players, “Cat” and “Mouse,” on an arbi-
trary undirected graph. At a given point each player occupies a node of the graph.
The players take turns moving to a node adjacent to the one that they currently
occupy. A special node of the graph is called “Hole.” Cat wins if the two players
ever occupy the same node. Mouse wins if it reaches the Hole before the preceding
happens. The game is a draw if a situation repeats (i.e., the two players simultane-
ously occupy positions that they simultaneously occupied previously and it is the
same player’s turn to move).

HAPPY-CAT = {(G, ¢, m,h)| G,c, m, h, are respectively a graph, and
positions of the Cat, Mouse, and Hole, such that

Cat has a winning strategy if Cat moves first}.

Show that HAPPY-CAT is in P. (Hint: The solution is not complicated and doesn’t
depend on subtle details in the way the game is defined. Consider the entire game
tree. It is exponentially big, but you can search it in polynomial time.)

8.16

8.17

*8.18

*8.19

8.20

8.21

8.22

*8.23

*8.24

PROBLEMS 331

Read the definition of MIN-FORMUILA in Problem 7.44.

a. Show that MIN-FORMUI.A € PSPACE.

b. Explain why this argument fails to show that MIN-FORMULA € coNP:
If ¢ MIN-FORMULA, then ¢ has a smaller equivalent formula. An NTM
can verify that ¢ € MIN-FORMULA by guessing that formula.

Let A be the language of properly nested parentheses. For example, (()) and
(OCO))O arein A, but) (is not. Show that A isin L.

Let B be the language of properly nested parentheses and brackets. For example,
(LOOIOID) isin B but ([)] is not. Show that B is in L.

The game of Nim is played with a collection of piles of sticks. In one move a
player may remove any nonzero number of sticks from a single pile. The players
alternately take turns making moves. The player who removes the very last stick
loses. Say that we have a game position in Nim with & piles containing s1, ..., sk
sticks. Call the position balanced if, when each of the numbers s; is written in
binary and the binary numbers are written as rows of a matrix aligned at the low
order bits, each column of bits contains an even number of 1s. Prove the following
two facts.

a. Starting in an unbalanced position, a single move exists that changes the
position into a balanced one.

b. Starting in a balanced position, every single move changes the position into
an unbalanced one.

Let NIM = {(s1, ..., sk)| each s; is a binary number and Player I has a winning
strategy in the Nim game starting at this position}. Use the preceding facts about
balanced positions to show that NIM € L.

Let MULT = {a#b#c| where a, b, ¢ are binary natural numbers and a x b = c}.
Show that MULT € L.

For any positive integer z, let ™ be the integer whose binary representation is
the reverse of the binary representation of x. (Assume no leading Os in the binary
representation of z.) Define the function R™: N'— A where R* (z) = = + z ™.

a. Let Ax = {(z,y)| RT(z) = y}. Show 4> € L.
b. Let A5 = {{(z,y)| RT(R*(z)) = y}. Show A3 € L.

a. LetADD = {(z,y, 2)| z,y,z > 0 are binary integers and z + y = z}. Show
that ADD € L.

b. Let PAL-ADD = {{(z,y)| ,y > 0 are binary integers where = + y is an
integer whose binary representation is a palindrome}. (Note that the binary
representation of the sum is assumed not to have leading zeros. A palin-
drome is a string that equals its reverse). Show that PAL-ADD € L.

Define UCYCLE = {(G)| G is an undirected graph that contains a simple cycle}.
Show that UCYCLE € L. (Note: G may be a graph that is not connected.)

For each n, exhibit two regular expressions, R and S, of length poly(n), where
L(R) # L(S), but where the first string on which they differ is exponentially long.
In other words, L(R) and L(S) must be different, yet agree on all strings of length
2" for some constant € > 0.

332

8.25

8.26

8.27

8.28

8.29
8.30
*8.31
*8.32
*8.33

CHAPTER 8/ SPACE COMPLEXITY

An undirected graph is bipartite if its nodes may be divided into two sets so that
all edges go from a node in one set to a node in the other set. Show that a graph is
bipartite if and only if it doesn’t contain a cycle that has an odd number of nodes.
Let BIPARTITE = {(G)| G is a bipartite graph}. Show that BIPARTITE € NL.

Define UPATH to be the counterpart of PATH for undirected graphs. Show that
BIPARTITE < UPATH. (Note: As this edition was going to press, O. Rein-
gold [60] announced that UPATH € L. Consequently, BIPARTITE € L, but the
algorithm is somewhat complicated.)

Recall that a directed graph is strongly connected if every two nodes are connected
by a directed path in each direction. Let
STRONGLY-CONNECTED = {(G)| G is a strongly connected graph}.

Show that STRONGLY-CONNECTED is NL-complete.

Let BOTHnea = {(M1, M2)| My and M, are NFAs where L(M;) N L(M2) # 0}.
Show that BOTH nra is NL-complete.

Show that Anga is NL-complete.

Show that Epra is NL-complete.

Show that 2SAT is NL-complete.

Give an example of an NL-complete context-free language.

Define CYCLE = {(G)| G is a directed graph that contains a directed cycle}. Show
that CYCLE is NL-complete.

SELECTED SOLUTIONS

8.5

Let A; and A2 be languages that are decided by NL-machines N; and N2. Con-
struct three Turing machines: Ny deciding A; U Az; N, deciding A; o Ao;
and N, deciding A}. Each of these machines receives input w.

Machine Ny nondeterministically branches to simulate N; or to simulate Na. In
either case, Ny accepts if the simulated machine accepts.

Machine N, nondeterministically selects a position on the input to divide it into
two substrings. Only a pointer to that position is stored on the work tape—
insufficient space is available to store the substrings themselves. Then N, simulates
N1 on the first substring, branching nondeterministically to simulate N1’s nonde-
terminism. On any branch that reaches N1’s accept state, N, simulates N2 on the
second substring. On any branch that reaches N>’ accept state, N, accepts.

Machine N, has a more complex algorithm, so we describe its stages.

N, = “On input w:
1. Initialize two input position pointers p1 and p2 to 0, the position
immediately preceding the first input symbol.
2. Accept if no input symbols occur after po.
3. Move p; forward to a nondeterministically selected input posi-
tion.

SELECTED SOLUTIONS 333

4. Simulate N; on the substring of w from the position following
p1 to the position at pz, branching nondeterministically to sim-
ulate N:’s nondeterminism.

5. If this branch of the simulation reaches Ni’s accept state, copy
p2 to p1 and go to stage 2.”

8.7 Construct a TM M to decide Apra. When M receives input (A, w), a DFA and a

8.33

string, M simulates A on w by keeping track of A’s current state and its current
head location, and updating them appropriately. The space required to carry out
this simulation is O(log n) because M can record each of these values by storing a
pointer into its input.

Reduce PATH to CYCLE. The idea behind the reduction is to modify the PATH
problem instance (G, s, t) by adding an edge from ¢ to s in G. If a path exists from
s to tin G, a directed cycle will exist in the modified G. However, other cycles may
exist in the modified G because they may already be present in G. To handle that
problem, first change G so that it contains no cycles. A leveled directed graph is
one where the nodes are divided into groups, A1, As, ..., Ay, called levels, and only
edges from one level to the next higher level are permitted. Observe that a leveled
graph is acyclic. The PATH problem for leveled graphs is still NL-complete, as the
following reduction from the unrestricted PATH problem shows. Given a graph G
with two nodes s and ¢, and m nodes in total, produce the leveled graph G" whose
levels are m copies of G’s nodes. Draw an edge from node 7 at each level to node j
in the next level if G contains an edge from 7 to j. Additionally, draw an edge from
node 7 in each level to node 7 in the next level. Let s’ be the node s in the first level
and let ¢’ be the node ¢ in the last level. Graph G contains a path from s to t iff G’
contains a path from s’ to t'. If you modify G’ by adding an edge from ¢’ to s', you
obtain a reduction from PATH to CYCLE. The reduction is computationally sim-
ple, and its implementation in logspace is routine. Furthermore, a straightforward
procedure shows that CYCLE € NL. Hence CYCLE is NL-complete.

