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Investigating the Concept and Origin of Viruses, Nasir et al., Trends in Microbiology, 2020
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Origin of viruses: primordial replicators recruiting capsids from hosts, Krupovic et al., Nature Reviews Microbiology, 2019.
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Tape-measure protein of the GTA
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Olia et al., Nat Struct Mol Biol 2007; www.viralexpasy.org
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Genome release intermediates of echovirus 18

Buchta et al. 2019
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Acidic pH induces genome reorganization

Virions at neutral pH Activated particles at acidic pH
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Skubnik et al. 2021



Buchta et al. 2019, Sukenik et al. 2021
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Lectures x Bachelor's and Master's theses

* Lectures are the theoretical basis, but you will gain
practical skills by solving real problems.

* |n a bachelor's/master's thesis, you will encounter
guestions without a known solution for the first time.



A good supervisor is the basis for your career

The thesis topic and the supervisor
are an indivisible whole.

The topic of your bachelor's thesis
will define your study specialisation
and thus determine your
employment.




How to choose a supervisor and topic for
your bachelor's and master's thesis

e Think and invest time in the choice.
* |nternet and MU website.

* Ask sensible colleagues and teachers.



Choosing the right supervisor requires information

Starting to work on BC work from the first semester means less stress,
better results, and more experience.



What NOT to choose by

academic degrees

| like her/him (how she/he lectures)

attended his/her lecture

have a friend working for him




Desirable traits of a supervisor

receives individual research funding from GACR, TACR, and EU
- Read CV

publishes as corresponding author in international journals
- Read CV

students and post-docs are at the first place of their supervisor's
publications

studied or worked abroad
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The worldwide population of western honey bees (Apis mellifera)
is under pressure from habitat loss, environmental stress, and path-
ogens, particularly viruses that cause lethal epidemics. Deformed
wing virus (DWV) from the family Iflaviridae, together with its
vector, the mite Varroa destructor, is likely the major threat to
the world's honey bees. H , lack of k ledge of the atomic
structures of iflavi has hindered the devel of effective
treatments against them. Here, we present the virion structures of
DWV determined to a resolution of 3.1 A using cryo-electron mi-

to produce structural (capsid-forming) and nonstructural pro-
teins (11). The major capsid proteins VP1, VP2, and VP3
originating from a single polyprotein form a protomer, the basic
building block of the pseudo-T3 icosahedral capsid. The entire
capsid consists of 60 such protomers, arranged in 12 pentamer
units of 5 protomers each.

Previously, the structure of the iflavirus Chinese sacbrood vi-
rus was characterized to a resolution of 25 A by cryo-electron
microscopy. The structure confirmed the pseudo-T3 icosahedral

croscopy and 3.8 A by X-ray cry graphy. The C | exten-
sion of capsid protein VP3 folds into a globular protruding (P)
domain, exposed on the virion surface. The P domain contains an
Asp-His-Ser catalytic triad that is, together with five residues that
are spatially close, conserved among iflaviruses. These residues
may participate in receptor binding or provide the protease, lipase,
or esterase activity required for entry of the virus into a host cell.
Furthermore, nucleotides of the DWV RNA genome interact with
VP3 subunits. The capsid protein residues involved in the RNA bind-
ing are conserved among honey bee iflaviruses, suggesting a puta-
tive role of the genome in stabilizing the virion or facilitating capsid
assembly. Identifying the RNA-binding and putati lytic sites
within the DWV virion structure enables future analyses of how
DWYV and other iflaviruses infect insect cells and also opens up
possibilities for the devel of antiviral

colony collapse disorder | virus | structure | Apis melliifera | honey bee

¢ western honey bee (Apis mellifera) plays a vital role in
world agriculture by providing pollination services to diverse
commercial crops, a service valued at US$ 215 billion annually
(1). In addition, honey bees pollinate numerous wild flowering
plants, thereby supporting biodiversity (2, 3). However, over the
past two decades, honey bees have suffered from elevated
mortality in North America and Europe (4, 5). Colony losses
have been associated with the exotic ectoparasitic mite Varroa
destructor, which feeds on honey bee hemolymph, thereby vector-
ing numerous honey bee viral pathogens, in particular the iflavirus
deformed wing virus (DWV). In the absence of varroa, DWV
levels are low, and the virus causes asymptomatic infections, Var-
roa-infested colonies show elevated levels of DWV (6, 7). Symp-
toms associated with acute DWV infections include the death of
pupae, as well as deformed wings, shortened abdomen, and cuticle
discoloration of adult bees that die soon after pupation, causing
colony collapse (6, 8). Indeed, winter colony mortality is strongly
correlated with the presence of DWYV, irrespective of the levels of
varroa infestation (8, 9). DWV-induced loss of honey bees, coupled
with a long-term decline in beekeeping, has become a senous
threat to adequate provision of pollination services, th

ry of its capsid and a smooth outer surface of the virion
(12) Recently, we determined the structure of the iflavirus slow
bee paralysis virus (SBPV) to a resolution of 2.6 A by X-ray
crystallography (13). Despite its efficient transmission by
V. destructor, SBPV infection is a rare disease of honey bees (14).
The structure revealed that the C-terminal extension of capsid
protein VP3 of SBPV forms a globular protruding (P) domain
positioned at the virion surface. The P domain is anchored to the
core of the VP3 subunit by a 23-residue-long flexible linker that
allows the P domain to attach to different areas of the capsid
(13). In addition, the P domain contains the putative active site
Asp-His-Ser, which is conserved among several iflaviruses (13).
Iflaviruses were also proposed to harbor short VP4 subunits con-
sisting of only about 20 residues (11, 14); however, electron density

Significance

Honey bee populations in Europe and North America have
been decreasing slnuthe 1950s. Deformed wing virus (DWV),
which is undergoi Idwide epidemic, causes the deaths
oflndlvldualhomybnsand collapse of whole colonies. We

ined th of DWV at different
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ablynquimdforﬁulmryofdnvimlmththostull In
addition, parts of the DWV RNA genome interact with the in-
side of the virus capsid. Identifying the RNA binding and cat-
alytic sites within the DWV virion offers prospects for the
e S T

Author contributions: P.P. designed research; KS$. and AP performed research; R.J.P.
contributed new reagents/analytic tools: K.S., JN., TF, and P.P. analyzed data; and
K.S. RJ.P., and P.P. wrote the paper.
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Data deposition: Cryo-EM maps of the DWV virions from different conditions have been

food security and ecosystem stability (1).

Viruses from the order Picomavirales, including the family
Iflaviridae, have no loped icosahedral virions that are about
30 nm in diameter (10). Iflavirus capsids protect 10,000-nt-long
sSRNA genomes, which are translated into polyproteins that are
cotranslationally and posttranslationally cleaved by viral proteases

vevew.pnas.org/cgi/doil10.1073/pnas. 1615695114

in the Electron Mi Data Bank (EMDB) (accession nos. EMD-4014, EMD-
3574, EMD-3570, and EMD-3575); the corresponding coordinates and structure factors
have been depcsited in the Protein Data Bank (PDB), www.pdb.org (PDB ID codes
5L8Q, SMVS, SMUP, and SMVE). The crystal structures of the DWV virion and P domain
have been deposited under PDB 1D codes 5G52 and 5G51.
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tive role of the genome in stabilizing the virion or facilitating capsid
assembly. Identifying the RNA-binding and putative catalytic sites
within the DWV virion structure enables future analyses of how
DWYV and other iflaviruses infect insect cells and also opens up
possibilities for the develop of antiviral tr

colony collapse disorder | virus | structure | Apis melliifera | honey bee

he western honey bee (Apis mellifera) plays a vital role in

world agriculture by providing pollination services to diverse
commercial crops, a service valued at US$ 215 billion annually
(1). In addition, honey bees pollinate numerous wild flowering
plants, thereby supporting biodiversity (2, 3). However, over the
past two decades, honey bees have suffered from elevated
mortality in North America and Europe (4, 5). Colony losses
have been associated with the exotic ectoparasitic mite Varroa
destructor, which feeds on honey bee hemolymph, thereby vector-
ing numerous honey bee viral pathogens, in particular the iflavirus
deformed wing virus (DWYV). In the absence of varroa, DWV
levels are low, and the virus causes asymptomatic infections, Var-
roa-infested colonies show elevated levels of DWV (6, 7). Symp-
toms associated with acute DWYV infections include the death of
pupae, as well as deformed wings, shortened abdomen, and cuticle
discoloration of adult bees that die soon after pupation, causing
colony collapse (6, 8). Indeed, winter colony mortality is strongly
correlated with the presence of DWYV, irrespective of the levels of
varroa infestation (8, 9). DWV-induced loss of honey bees, coupled
with a long-term decline in beekeeping, has become a serious
threat to adequate provision of pollination services, threatening
food security and ecosystem stability (1).

Viruses from the order Picomavirales, including the family
Iflaviridae, have nonenveloped icosahedral virions that are about
30 nm in diameter (10). Iflavirus capsids protect 10,000-nt-long
sSRNA genomes, which are translated into polyproteins that are
cotranslationally and posttranslationally cleaved by viral proteases

VW, pnas.org/cgi/doi/10.1073/pnas. 1615695114

allows the P domain to attach to different areas of the capsid
(13). In addition, the P domain contains the putative active site
Asp-His-Ser, which is conserved among several iflaviruses (13).
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Data deposition: Cryo-EM maps of the DWV virions from different conditions have been
deposited in the Electron Microscopy Data Bank (EMDB) (accession nos. EMD-4014, EMD-
3574, EMD-3570, and EMD-3575); the corresponding coordinates and structure factors
have been deposited in the Protein Data Bank (PDB), www.pdb.org (PDB ID codes
5L8Q, 5MV5, 5SMUP, and 5MV6). The crystal structures of the DWV virion and P domain
have been deposited under PDB ID codes 5G52 and 5G51.
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the supervisors will be happy if you come to talk to them
casually about job opportunities

get to know the members of the lab (students, technicians,
post-docs)

internship or short project (2 months)
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