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Lukáš Žı́dek CORE19 2/174



Wolfgang Amadeus Mozart
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18th-century microscopes from the Musée des Arts et Métiers, Paris, Edal Anton Lefterov
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Lukáš Žı́dek CORE19 15/174



Electromagnetic waves
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Lukáš Žı́dek CORE19 22/174



Light microscopy
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Wilhelm Konrad Röntgen Anna Berta Röntgen’s hand
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Light microscopy

Archiv für Pathologische Anatomie und Physiologie, 1847

Lukáš Žı́dek CORE19 31/174



Proteins 1902

Franz Hofmeister Herrmann Emil Fischer
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Charles University, Faculty of Medicine, Praha-Nové Město
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James B. Sumner urease crystals
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Johannes Kepler Karlova 4, Praha
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Johannes Kepler: Strena seu de nive sexangula, 1611
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Crystals diffract X-rays

Max von Laue CuSO4
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Lukáš Žı́dek CORE19 48/174



Structure from diffraction
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Structure from diffraction

wool, structure α wool, structure β
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Structure from diffraction

Linus Pauling Mozart’s hair
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Lukáš Žı́dek CORE19 64/174



Protein crystallography

Diffractometer in 1940’s
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European Synchrotron Radiation Facility Grenoble
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Myoglobin

MADFDAVLKCWGPVEADYTTI
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FAGIAQADIAGNAAVSAHGAT
VLKKLGELLKAKGSHAAILKP
LANSHATKHKIPINNFKLISE
VLVKVMQEKAGLDAGGQTALR
NVMGIIIADLEANYKELGFSG
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Christian Anfinsen: refolding ribonuclease, 1961
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Johann Gregor Mendel:Versuche über Pflanzen-Hybriden,
1866
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How is structure encoded

Year organism size
1977 bacteriophage φX174 5 386
1984 Epstein-Barr virus 172 282
1995 Haemophilus influenzae 1 830 137
2003 Homo sapiens 3 088 286 401
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we determined thousands protein structures
we know they are encoded genetically
we can read genetic information
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Highly accurate protein structure prediction 
with AlphaFold

John Jumper1,4 ✉, Richard Evans1,4, Alexander Pritzel1,4, Tim Green1,4, Michael Figurnov1,4, 
Olaf Ronneberger1,4, Kathryn Tunyasuvunakool1,4, Russ Bates1,4, Augustin Žídek1,4, 
Anna Potapenko1,4, Alex Bridgland1,4, Clemens Meyer1,4, Simon A. A. Kohl1,4, 
Andrew J. Ballard1,4, Andrew Cowie1,4, Bernardino Romera-Paredes1,4, Stanislav Nikolov1,4, 
Rishub Jain1,4, Jonas Adler1, Trevor Back1, Stig Petersen1, David Reiman1, Ellen Clancy1, 
Michal Zielinski1, Martin Steinegger2,3, Michalina Pacholska1, Tamas Berghammer1, 
Sebastian Bodenstein1, David Silver1, Oriol Vinyals1, Andrew W. Senior1, Koray Kavukcuoglu1, 
Pushmeet Kohli1 & Demis Hassabis1,4 ✉

Proteins are essential to life, and understanding their structure can facilitate a 
mechanistic understanding of their function. Through an enormous experimental 
effort1–4, the structures of around 100,000 unique proteins have been determined5, but 
this represents a small fraction of the billions of known protein sequences6,7. Structural 
coverage is bottlenecked by the months to years of painstaking effort required to 
determine a single protein structure. Accurate computational approaches are needed 
to address this gap and to enable large-scale structural bioinformatics. Predicting the 
three-dimensional structure that a protein will adopt based solely on its amino acid 
sequence—the structure prediction component of the ‘protein folding problem’8—has 
been an important open research problem for more than 50 years9. Despite recent 
progress10–14, existing methods fall far short of atomic accuracy, especially when no 
homologous structure is available. Here we provide the first computational method 
that can regularly predict protein structures with atomic accuracy even in cases in which 
no similar structure is known. We validated an entirely redesigned version of our neural 
network-based model, AlphaFold, in the challenging 14th Critical Assessment of protein 
Structure Prediction (CASP14)15, demonstrating accuracy competitive with 
experimental structures in a majority of cases and greatly outperforming other 
methods. Underpinning the latest version of AlphaFold is a novel machine learning 
approach that incorporates physical and biological knowledge about protein structure, 
leveraging multi-sequence alignments, into the design of the deep learning algorithm.

The development of computational methods to predict 
three-dimensional (3D) protein structures from the protein sequence 
has proceeded along two complementary paths that focus on either the 
physical interactions or the evolutionary history. The physical interac-
tion programme heavily integrates our understanding of molecular 
driving forces into either thermodynamic or kinetic simulation of pro-
tein physics16 or statistical approximations thereof17. Although theoreti-
cally very appealing, this approach has proved highly challenging for 
even moderate-sized proteins due to the computational intractability 
of molecular simulation, the context dependence of protein stability 
and the difficulty of producing sufficiently accurate models of protein 
physics. The evolutionary programme has provided an alternative in 
recent years, in which the constraints on protein structure are derived 
from bioinformatics analysis of the evolutionary history of proteins, 
homology to solved structures18,19 and pairwise evolutionary correla-
tions20–24. This bioinformatics approach has benefited greatly from 

the steady growth of experimental protein structures deposited in 
the Protein Data Bank (PDB)5, the explosion of genomic sequencing 
and the rapid development of deep learning techniques to interpret 
these correlations. Despite these advances, contemporary physical 
and evolutionary-history-based approaches produce predictions that 
are far short of experimental accuracy in the majority of cases in which 
a close homologue has not been solved experimentally and this has 
limited their utility for many biological applications.

In this study, we develop the first, to our knowledge, computational 
approach capable of predicting protein structures to near experimental 
accuracy in a majority of cases. The neural network AlphaFold that we 
developed was entered into the CASP14 assessment (May–July 2020; 
entered under the team name ‘AlphaFold2’ and a completely different 
model from our CASP13 AlphaFold system10). The CASP assessment is 
carried out biennially using recently solved structures that have not 
been deposited in the PDB or publicly disclosed so that it is a blind test 
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M. Haggag et al.: Intelligent Hybrid Experimental-Based Deep Learning Algorithm for Tomato-Sorting Controllers

TABLE 4. Costing information of the manufactured tomato sorting machine.

FIGURE 1. Main components of the developed tomatoes sorting machine.

of a defective tomato. The workshop drawings of the budget
tomato sorting is illustrated in Fig. 3. A productivity of
19,200 tomatoes can be achieved for every 8-hour shift, which
is about 2.88 tons, based on an average weight of 150 grams
per tomato.

The methodology that should be followed for real opera-
tion and experimental testing is as follows:

1. Capture images of tomato and load them to MATLAB.
2. Select, then extract the features of the images (i.e. RGB,

red color, grayscale, red color histogram, etc.).

VOLUME 7, 2019 106895

Haggag, M. et al, IEEE Access 7 (2019) 106890–106898.
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M. Haggag et al.: Intelligent Hybrid Experimental-Based Deep Learning Algorithm for Tomato-Sorting Controllers

FIGURE 2. Tomatoes sorting machine in operation.

FIGURE 3. Workshop drawings for the developed tomatoes sorting
machine structure. The dimensions provided are in millimeters and all
beams are made of a standard hollow steel section of 40 × 40 × 3 mm.

3. Train the neural networks using the selected set of
features.

4. Assess the performance of the network using the MSE
performance measure.

5. Iteratively change the configuration of neural network
until the required performance is achieved.

6. Conduct a real-time testing and performance assess-
ment using tomato samples from all classes. The sam-
ples should be different from which the network was
trained for.

7. Retrain the network. Change the neural network
configuration, if needed.

8. Operate the machine and evaluate the performance
during operation.

Table 4 summarizes the bill of material along with the costing
information of the manufactured tomato sorting machine.

FIGURE 4. AI-based tomato sorting algorithm.

The total cost of the machine is about 1,368 USD and this
cost is based on item prices in Qatar. This information may
be used to manufacture a similar operational low-cost tomato

106896 VOLUME 7, 2019

Haggag, M. et al, IEEE Access 7 (2019) 106890–106898.
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Haggag, M. et al, IEEE Access 7 (2019) 106890–106898.
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24 64

Physeter macrocephalus sperm whale HGQ HGVTV
Balaena mysticetus bowhead HGQ HGNTV
Sus scrofa pig HGQ HGNTI
Orycteropus afer afer aardvark HGQ HGTTV
Equus caballus horse HGQ HGTVV
Homo sapiens man HGQ HGATV

G small
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26 116

Physeter macrocephalus sperm whale QDH HSRH
Balaena mysticetus bowhead QDH HSRH
Sus scrofa pig QEH QSKH
Orycteropus afer afer aardvark QEH QSKH
Equus caballus horse QEH HSKH
Homo sapiens man QEH QSKH

short-D 	 · · · ⊕ R – l o n g
l o n g – E 	 · · · ⊕ K-short
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intrinsic property of the Mb molecules determined by their structures. ΔGsolv increased during the evolution 
from aMbWp to aMbWb, whereas it minimally changed during the evolution from aMbWb to swMb, indicating 
that the single-molecule solubility in an aqueous solution rather decreased during the evolution. However, the 
resistance to the precipitant (β) significantly increased during the evolution from aMbWp to aMbWb’, slightly 
increased from aMbWb’ to aMbWb, and remained almost unchanged from aMbWb to swMb.

In the proposed hypothesis of Mb adaptation in diving animals, the ZMb increase was expected to enhance 
the protein solubility by preventing precipitation through positive charge repulsion among Mb molecules11,21, 
although the present results seem to be inconsistent with that hypothesis. Therefore, we measured SAXS of the 
Mb solutions to analyze their self-interaction potentials, in order to monitor the repulsion between Mbs (Fig. S6). 
The second virial coefficients (A2), which indicate either attractive (A2 < 0) or repulsive (A2 > 0) intermolecular 
interactions, were obtained from the analyses. The results demonstrated that the intermolecular repulsion has 
increased during evolution, not only from aMbWp to aMbWb but also from aMbWb to swMb (Fig. 4b,c).

Taken together, both ZMb and pI significantly increased during the evolution from aMbWp to aMbWb as 
previously hypothesized, whereas their increases are small during the evolution from aMbWb to swMb (Table S3 
and Fig. S7). Contrary to the hypothesis, the solubility (log S0) was shown to decrease, despite the increase in ZMb 
during the early stage of the evolution (Fig. 4a and Table S5), and the molecular repulsion increased even with no 

Figure 3. Residue replacements of whale myoglobin during the evolution from the terrestrial animal to sperm 
whale. (a) Amino-acid sequence alignment of ancestral and sperm whale Mbs. Amino acid replacements on 
aMbWp to aMbWb’, aMbWb’ to aMbWb, and aMbWb to swMb are meshed with light brown, light green, and 
light blue, respectively. The residues in the canonical helices A – H are boxed. (b) The replaced residues are 
shown on the crystal structures of aMbWp (PDB code 5YCG), aMbWb’ (5YCI and 5YCJ), aMbWb (5YCH), 
and swMb (5YCE). The canonical helices A – H are indicated on the structure of aMbWp.  (c) V13I, T34K, and 
K118R and E27D are replacements from aMbWp (light brown) to aMbWb’ (light green). (d) G1V and G15A 
are those from aMbWb’ to aMbWb (light blue). (e) D4E, V28I, N12H, K45R, and D109E are from aMbWb to 
swMb (blue). The electrostatic interactions/hydrogen bonds and cavity filling positions are indicted with the 
yellow dotted lines and red circles, respectively. The green arrows indicate alternative conformations.

Isogai, Y., et al. Sci Rep 8 (2018) 16883.
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for the participating methods, and has long served as the gold-standard 
assessment for the accuracy of structure prediction25,26.

In CASP14, AlphaFold structures were vastly more accurate than 
competing methods. AlphaFold structures had a median backbone 
accuracy of 0.96 Å r.m.s.d.95 (Cα root-mean-square deviation at 95% 
residue coverage) (95% confidence interval = 0.85–1.16 Å) whereas 
the next best performing method had a median backbone accuracy 
of 2.8 Å r.m.s.d.95 (95% confidence interval = 2.7–4.0 Å) (measured on 
CASP domains; see Fig. 1a for backbone accuracy and Supplementary 
Fig. 14 for all-atom accuracy). As a comparison point for this accuracy, 
the width of a carbon atom is approximately 1.4 Å. In addition to very 
accurate domain structures (Fig. 1b), AlphaFold is able to produce 
highly accurate side chains (Fig. 1c) when the backbone is highly accu-
rate and considerably improves over template-based methods even 
when strong templates are available. The all-atom accuracy of Alpha-
Fold was 1.5 Å r.m.s.d.95 (95% confidence interval = 1.2–1.6 Å) compared 
with the 3.5 Å r.m.s.d.95 (95% confidence interval = 3.1–4.2 Å) of the best 
alternative method. Our methods are scalable to very long proteins with 
accurate domains and domain-packing (see Fig. 1d for the prediction 
of a 2,180-residue protein with no structural homologues). Finally, the 
model is able to provide precise, per-residue estimates of its reliability 
that should enable the confident use of these predictions.

We demonstrate in Fig. 2a that the high accuracy that AlphaFold dem-
onstrated in CASP14 extends to a large sample of recently released PDB 

structures; in this dataset, all structures were deposited in the PDB after 
our training data cut-off and are analysed as full chains (see Methods, 
Supplementary Fig. 15 and Supplementary Table 6 for more details). 
Furthermore, we observe high side-chain accuracy when the back-
bone prediction is accurate (Fig. 2b) and we show that our confidence 
measure, the predicted local-distance difference test (pLDDT), reliably 
predicts the Cα local-distance difference test (lDDT-Cα) accuracy of the 
corresponding prediction (Fig. 2c). We also find that the global super-
position metric template modelling score (TM-score)27 can be accu-
rately estimated (Fig. 2d). Overall, these analyses validate that the high 
accuracy and reliability of AlphaFold on CASP14 proteins also transfers 
to an uncurated collection of recent PDB submissions, as would be 
expected (see Supplementary Methods 1.15 and Supplementary Fig. 11 
for confirmation that this high accuracy extends to new folds).

The AlphaFold network
AlphaFold greatly improves the accuracy of structure prediction by 
incorporating novel neural network architectures and training proce-
dures based on the evolutionary, physical and geometric constraints 
of protein structures. In particular, we demonstrate a new architecture 
to jointly embed multiple sequence alignments (MSAs) and pairwise 
features, a new output representation and associated loss that enable 
accurate end-to-end structure prediction, a new equivariant attention 
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Fig. 1 | AlphaFold produces highly accurate structures. a, The performance 
of AlphaFold on the CASP14 dataset (n = 87 protein domains) relative to the top-
15 entries (out of 146 entries), group numbers correspond to the numbers 
assigned to entrants by CASP. Data are median and the 95% confidence interval 
of the median, estimated from 10,000 bootstrap samples. b, Our prediction of 
CASP14 target T1049 (PDB 6Y4F, blue) compared with the true (experimental) 
structure (green). Four residues in the C terminus of the crystal structure are 
B-factor outliers and are not depicted. c, CASP14 target T1056 (PDB 6YJ1).  

An example of a well-predicted zinc-binding site (AlphaFold has accurate side 
chains even though it does not explicitly predict the zinc ion). d, CASP target 
T1044 (PDB 6VR4)—a 2,180-residue single chain—was predicted with correct 
domain packing (the prediction was made after CASP using AlphaFold without 
intervention). e, Model architecture. Arrows show the information flow among 
the various components described in this paper. Array shapes are shown in 
parentheses with s, number of sequences (Nseq in the main text); r, number of 
residues (Nres in the main text); c, number of channels.

Jumper et al., Nature 596 (2021) 583–593

Lukáš Žı́dek CORE19 97/174



Predicting structure

584 | Nature | Vol 596 | 26 August 2021

Article

for the participating methods, and has long served as the gold-standard 
assessment for the accuracy of structure prediction25,26.

In CASP14, AlphaFold structures were vastly more accurate than 
competing methods. AlphaFold structures had a median backbone 
accuracy of 0.96 Å r.m.s.d.95 (Cα root-mean-square deviation at 95% 
residue coverage) (95% confidence interval = 0.85–1.16 Å) whereas 
the next best performing method had a median backbone accuracy 
of 2.8 Å r.m.s.d.95 (95% confidence interval = 2.7–4.0 Å) (measured on 
CASP domains; see Fig. 1a for backbone accuracy and Supplementary 
Fig. 14 for all-atom accuracy). As a comparison point for this accuracy, 
the width of a carbon atom is approximately 1.4 Å. In addition to very 
accurate domain structures (Fig. 1b), AlphaFold is able to produce 
highly accurate side chains (Fig. 1c) when the backbone is highly accu-
rate and considerably improves over template-based methods even 
when strong templates are available. The all-atom accuracy of Alpha-
Fold was 1.5 Å r.m.s.d.95 (95% confidence interval = 1.2–1.6 Å) compared 
with the 3.5 Å r.m.s.d.95 (95% confidence interval = 3.1–4.2 Å) of the best 
alternative method. Our methods are scalable to very long proteins with 
accurate domains and domain-packing (see Fig. 1d for the prediction 
of a 2,180-residue protein with no structural homologues). Finally, the 
model is able to provide precise, per-residue estimates of its reliability 
that should enable the confident use of these predictions.

We demonstrate in Fig. 2a that the high accuracy that AlphaFold dem-
onstrated in CASP14 extends to a large sample of recently released PDB 

structures; in this dataset, all structures were deposited in the PDB after 
our training data cut-off and are analysed as full chains (see Methods, 
Supplementary Fig. 15 and Supplementary Table 6 for more details). 
Furthermore, we observe high side-chain accuracy when the back-
bone prediction is accurate (Fig. 2b) and we show that our confidence 
measure, the predicted local-distance difference test (pLDDT), reliably 
predicts the Cα local-distance difference test (lDDT-Cα) accuracy of the 
corresponding prediction (Fig. 2c). We also find that the global super-
position metric template modelling score (TM-score)27 can be accu-
rately estimated (Fig. 2d). Overall, these analyses validate that the high 
accuracy and reliability of AlphaFold on CASP14 proteins also transfers 
to an uncurated collection of recent PDB submissions, as would be 
expected (see Supplementary Methods 1.15 and Supplementary Fig. 11 
for confirmation that this high accuracy extends to new folds).

The AlphaFold network
AlphaFold greatly improves the accuracy of structure prediction by 
incorporating novel neural network architectures and training proce-
dures based on the evolutionary, physical and geometric constraints 
of protein structures. In particular, we demonstrate a new architecture 
to jointly embed multiple sequence alignments (MSAs) and pairwise 
features, a new output representation and associated loss that enable 
accurate end-to-end structure prediction, a new equivariant attention 
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Fig. 1 | AlphaFold produces highly accurate structures. a, The performance 
of AlphaFold on the CASP14 dataset (n = 87 protein domains) relative to the top-
15 entries (out of 146 entries), group numbers correspond to the numbers 
assigned to entrants by CASP. Data are median and the 95% confidence interval 
of the median, estimated from 10,000 bootstrap samples. b, Our prediction of 
CASP14 target T1049 (PDB 6Y4F, blue) compared with the true (experimental) 
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B-factor outliers and are not depicted. c, CASP14 target T1056 (PDB 6YJ1).  

An example of a well-predicted zinc-binding site (AlphaFold has accurate side 
chains even though it does not explicitly predict the zinc ion). d, CASP target 
T1044 (PDB 6VR4)—a 2,180-residue single chain—was predicted with correct 
domain packing (the prediction was made after CASP using AlphaFold without 
intervention). e, Model architecture. Arrows show the information flow among 
the various components described in this paper. Array shapes are shown in 
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residues (Nres in the main text); c, number of channels.
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for the participating methods, and has long served as the gold-standard 
assessment for the accuracy of structure prediction25,26.
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of 2.8 Å r.m.s.d.95 (95% confidence interval = 2.7–4.0 Å) (measured on 
CASP domains; see Fig. 1a for backbone accuracy and Supplementary 
Fig. 14 for all-atom accuracy). As a comparison point for this accuracy, 
the width of a carbon atom is approximately 1.4 Å. In addition to very 
accurate domain structures (Fig. 1b), AlphaFold is able to produce 
highly accurate side chains (Fig. 1c) when the backbone is highly accu-
rate and considerably improves over template-based methods even 
when strong templates are available. The all-atom accuracy of Alpha-
Fold was 1.5 Å r.m.s.d.95 (95% confidence interval = 1.2–1.6 Å) compared 
with the 3.5 Å r.m.s.d.95 (95% confidence interval = 3.1–4.2 Å) of the best 
alternative method. Our methods are scalable to very long proteins with 
accurate domains and domain-packing (see Fig. 1d for the prediction 
of a 2,180-residue protein with no structural homologues). Finally, the 
model is able to provide precise, per-residue estimates of its reliability 
that should enable the confident use of these predictions.

We demonstrate in Fig. 2a that the high accuracy that AlphaFold dem-
onstrated in CASP14 extends to a large sample of recently released PDB 

structures; in this dataset, all structures were deposited in the PDB after 
our training data cut-off and are analysed as full chains (see Methods, 
Supplementary Fig. 15 and Supplementary Table 6 for more details). 
Furthermore, we observe high side-chain accuracy when the back-
bone prediction is accurate (Fig. 2b) and we show that our confidence 
measure, the predicted local-distance difference test (pLDDT), reliably 
predicts the Cα local-distance difference test (lDDT-Cα) accuracy of the 
corresponding prediction (Fig. 2c). We also find that the global super-
position metric template modelling score (TM-score)27 can be accu-
rately estimated (Fig. 2d). Overall, these analyses validate that the high 
accuracy and reliability of AlphaFold on CASP14 proteins also transfers 
to an uncurated collection of recent PDB submissions, as would be 
expected (see Supplementary Methods 1.15 and Supplementary Fig. 11 
for confirmation that this high accuracy extends to new folds).

The AlphaFold network
AlphaFold greatly improves the accuracy of structure prediction by 
incorporating novel neural network architectures and training proce-
dures based on the evolutionary, physical and geometric constraints 
of protein structures. In particular, we demonstrate a new architecture 
to jointly embed multiple sequence alignments (MSAs) and pairwise 
features, a new output representation and associated loss that enable 
accurate end-to-end structure prediction, a new equivariant attention 
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Fig. 1 | AlphaFold produces highly accurate structures. a, The performance 
of AlphaFold on the CASP14 dataset (n = 87 protein domains) relative to the top-
15 entries (out of 146 entries), group numbers correspond to the numbers 
assigned to entrants by CASP. Data are median and the 95% confidence interval 
of the median, estimated from 10,000 bootstrap samples. b, Our prediction of 
CASP14 target T1049 (PDB 6Y4F, blue) compared with the true (experimental) 
structure (green). Four residues in the C terminus of the crystal structure are 
B-factor outliers and are not depicted. c, CASP14 target T1056 (PDB 6YJ1).  

An example of a well-predicted zinc-binding site (AlphaFold has accurate side 
chains even though it does not explicitly predict the zinc ion). d, CASP target 
T1044 (PDB 6VR4)—a 2,180-residue single chain—was predicted with correct 
domain packing (the prediction was made after CASP using AlphaFold without 
intervention). e, Model architecture. Arrows show the information flow among 
the various components described in this paper. Array shapes are shown in 
parentheses with s, number of sequences (Nseq in the main text); r, number of 
residues (Nres in the main text); c, number of channels.
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Lukáš Žı́dek CORE19 102/174

http://www.ncbr.chemi.muni.cz/~lzidek/CORE19/working_robot.html


Protein dynamics
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Intrinsically disordered proteins

25–40 % proteins from eukaryotic genome contain
disordered sequences longer than 30 amino acids
Related to various human diseases
Well-defined biological function
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Lukáš Žı́dek CORE19 126/174



Physics 1900: Mystery No. 2

z / Gm

18 x / Gm

3

6

9

12

15

18

3 6 9 12 15
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1924: Matter and wave-particle duality
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F. Förster, Proc. Natl. Acad. Sci. USA 109 (2012) 14870–14875.

Lukáš Žı́dek CORE19 144/174



Electron microscope

Nature | Vol 584 | 27 August 2020 | 641

accumulate, whereas the EF-Tu-bound states accumulate and then  
disappear, as expected for reaction intermediates (Fig.  1c). Our 
approach therefore captures transient states of aa-tRNA delivery 
catalysed by EF-Tu and GTP (Fig. 1d).

To visualize the structural intermediates of elongation, we focused 
on high-resolution maps from the 29-second time point (Methods, 
Extended Data Fig. 1, Supplementary Table 1, Supplementary Table 2), 
at which EF-Tu-bound particles reach a near-maximum level and 
peptidyl-transfer products begin to accumulate (Fig. 1c; see additional 
discussion in Methods). Most maps resolve near-atomic-resolution 
details (Fig. 1e–g) in the ribosome core and lower-resolution features 
at the periphery, enabling interpretation of secondary-structure and/
or domain rearrangements of EF-Tu (Extended Data Figs. 3–5, 8, 9). Six 
categories of structure describe distinct functional states (Fig. 1b): 
substrates I-A and I-B, similar to A-site vacant 70S structures described 
previously18,19 (Methods); EF-Tu-bound intermediates II-A to II-D and 
III-A to III-C (Fig. 2); tRNA accommodation-like states IV-A and IV-B 
(Fig. 3); peptidyl-transfer classical states V-A and V-B (Fig. 3); and 
pre-translocation hybrid states VI-A and VI-B (Fig. 3). Collectively, the 
17 structures suggest a pathway for cognate aa-tRNA—from its initial 
binding to the ribosome, through to accommodation, peptide-bond 
formation and on to pre-translocation (Fig. 1d, Supplementary Video 1).

30S samples open states during EF-Tu rearrangement
EF-Tu contributes to the initial selection, proofreading20 and accom-
modation21 of tRNA, but the structural mechanisms of the latter two 
processes are unknown. Initial selection is achieved by separating the 
EF-Tu GTPase (domain 1) from the 50S sarcin–ricin loop (SRL) until the 

cognate tRNA is recognized in the 30S decoding centre. Recognition 
of the tRNA anticodon causes a 30S-shoulder shift that docks EF-Tu at 
the SRL, catalysing GTP hydrolysis (see below and refs. 5,6). How EF-Tu 
rearranges and dissociates after GTP hydrolysis is less well understood. 
Biochemical studies have yielded conflicting results, suggesting that 
large-scale rearrangements of EF-Tu occur either on the ribosome22 or 
after dissociation from the ribosome23. It is also unclear whether EF-Tu 
dynamics facilitate spontaneous or power-stroke-driven accommoda-
tion of tRNA into the PTC14 (Supplementary Information). Isolated EF-Tu 
adopts two globally different conformations: a compact GTP-bound 
form and an extended GDP-bound form24–26. In the extended conforma-
tion, the GTPase domain is rotated by approximately 90°, concurrent 
with the rearrangement of the switch I (amino acids 38–64) and switch 
II (amino acids 83–97) regions that outline the GTP-binding pocket24–26. 
However, the available structures of ribosome-bound EF-Tu complexes 
feature only compact EF-Tu5,6,12,13,27.

We found three categories of EF-Tu-bound states (nine maps), which 
suggest the stepwise dissociation of EF-Tu from tRNA. First, in five maps 
(II-A, II-B1, II-B2, III-A and III-B), EF-Tu adopts a compact conformation 
that resembles the GTP-bound state but features different conforma-
tions of switch regions, indicating distinct states of the GTP-binding 
pocket (Fig. 2a, b, Extended Data Fig. 3a–f, m, n, p, q). Sub-classification 
reveals a subset of states, in which EF-Tu interacts with the N-terminal 
domain of L11 and with L7/L12 (Extended Data Fig. 3s–v, Supplemen-
tary Information), consistent with stochastic binding of these 50S 
proteins28. Second, in three maps (II-C1, II-C2 and III-C), EF-Tu adopts 
extended conformations that resemble the GDP-bound state, in which 
domain 1 (amino acids 1–200) is released from domain 2 (amino acids 
201–299) and rotated by up to around 90° from its position in the 
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Fig. 1 | Cryo-EM of an elongation event reveals structural intermediates. 
 a, Scheme of the reaction of the initiation 70S•fMet-tRNAfMet complex with the 
cognate Phe-tRNAPhe•EF-Tu•GTP complex to form dipeptidyl fMet-Phe-tRNA.  
b, Cryo-EM maps of 17 states of the elongation reaction, and their assignment 
as substrates, EF-Tu-bound intermediates or products of the reaction. The 
maps are coloured to show the 50S ribosomal subunit (light blue), 30S 
ribosomal subunit (yellow), E-tRNA (orange), P-tRNA (dark blue), A-tRNA 
(green) and EF-Tu (magenta). c, Relative abundance of substrates, EF-Tu 
intermediates and products over time, obtained from particle distributions in 

cryo-EM datasets. d, Conformations of the incoming tRNA in 17 structures, 
starting from EF-Tu bound A*/T states (light green tRNA and magenta EF-Tu) to 
elbow-accommodated (EA) to pre-translocation A/P states (dark green).  
e, Cryo-EM density (mesh) consistent with GTP in the EF-Tu GTPase centre of a 
transient early state of mRNA decoding (open 30S). f, Cryo-EM density of a 
transient state in the peptidyl transferase centre consistent with aa-tRNA 
substrates. g, Cryo-EM density for fMet-Phe dipeptidyl-tRNA, the product of 
peptidyl transfer.
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Lukáš Žı́dek CORE19 150/174



1928: Quantum electrodynamic

Paul Dirac
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Lukáš Žı́dek CORE19 155/174



Nuclear magnetic resonance
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Lukáš Žı́dek CORE19 174/174


