
4. Tests for randomnessBelow only a few out of many frequently used tests are briey de-sribed. See [BD93, x9.4℄ for more details.4.1. Five tests for IID sequene.We shall desribe �ve tests implemented in MATLAB m-�le trand.Even though the tests are not primarily designed for residuals, theyare often used as a seondary riterion for this purpose as well.x = [x1; : : : ; xn℄T . . . �nite sample path of time series fXtg.All tests are onstruted under the null hypothesis:H0 : fXtg � IID(�;�2)Eah of the �ve testing statistis T (x) desribed below is asymptoti-ally normal: T � AsN(0;1), whih means that their distribution islose to the normal one N(0; 1) for large sample size. Thus quantilesof normal distribution are appliable for testing if n is suÆientlylarge:We rejet H0 at signi�ane level � (by default usually� = 0:05 ) if jT (x)j > u1��=2where u1��=2 is the (1� �2 )-quantile of normal distributionN(0; 1) (u0:975 � 1:96 for the default � = 0:05).Thus the risk of rejeting the hypothesis with data whih are IID isvery small: 100�%. For smaller sample sizes exat quantiles of theappropriate statistis should be used instead of u1��=2. They anbe found in speialized Statistial Tables, or suitable approximateformulas may be used. However for users of trand these implemen-tation details are not important.39



Be areful when using the tests: some of them are not appro-priately sensitive to a ertain type of randomness violation: for ex-ample the testsNo. 1 and 2 show often nearly no response toosillatory deterministi omponent violating white noise.The best method is to draw onlusion not from an individual test,but from all of them as a whole: if none of the tests rejets random-ness, you an believe H0 to be true.4.1.1. The Di�erene-Sign Test.�x := [x2 � x1; : : : ; xn � xn�1℄T . . . di�erened seriesm . . . the number of nonzero di�erenes in �xk �m . . . the number of positive di�erenes (observation ofrandom variable K)If H0 is valid then it holdsE(K) = m2 ; �(K) =rm+ 212T (x) = k� E(k)�(k)4.1.2. A Test Based on Turning Points.�x, m . . . as of 4.1.1Æx . . . length m subvetor of all nonzero di�erenes in�xr �m � 1 . . . the number of turning points in x, i.e. the num-ber of neighbor entries in Æx having oppositesign (observation of random variable R)If H0 is valid then it holdsE(R) = 2(m� 1)3 ; �(R) =r 16(m+ 1)� 299040



T (x) = r � E(r)�(r)4.1.3. A Test Based on Kendall CoeÆient.v . . . the number of pairs (xs; xt) suh that xs < xt for s < t� = 4vn(n�1)�1 . . .Kendall oeÆient (observation of ran-dom variable T with values in the range [�1; 1℄)If H0 is valid then it holdsE(T) = 0; �(T) =s 2(2n+ 5)9n(n� 1)T (x) = ��(�)4.1.4. A Test Based on Spearman CoeÆient.y := [y1; : : : ; yn℄T . . . values of x sorted in asending order:y1 � y2 � � � � � ynq := [q1; : : : ; qn℄T permutation of f1; 2; : : : ; ng relating entriesof vetors x and y: xj = yqj for j = 1; 2; : : : ; n� = 1 � 6n(n2�1)Pnj=1(j � qj)2 . . .Spearman oeÆient(observation of random variable P)If H0 is valid then it holdsT (x) = �pn� 1 for n > 30In the ase of a short sample n � 30 exat ritial values rs(�)related to the exat distribution of P should be used: P (jPj �rs(�)) � �. Thenj�j � rs(�) ) H0 is rejeted at level � :41



4.1.5. Median Test.ex . . . median of x, alias mid value in the sequene y1 � y2 �� � � � yn as of 4.1.4m := ardM� = ardM+ where M� := fj jxj < exg andM+ := fj jxj > exgs . . . number of groups of adjoining elements xj whih fallompletely either to M� or to M+, ignoring all xjequal to median ex (observation of random variable S)NOTE: It may sometimes happen that M� and M+ do not haveexatly the same ardinality (several mid values being equal to me-dian). In suh a ase we hange some of the mid values by a smallquantity to balane the ardinality of both sets.If H0 is valid then it holdsT (x) = s� (m+ 1)pm(m� 1)=(2m� 1) for n > 100In the ase of a short sample n � 100 again exat ritial values of Sfound in speialized Statistial Tables should be used. The testingproedure is then similar to that of 4.1.4.4.2. Three Tests for White Noise.We shall desribe three tests whih test data for being sample fromwhite noise. In ontrast with the tests of setion 4.1, these tests aresuitable also for testing residuals from �tted models. The tests arebased on sample autoorrelation or partial autoorrelation funtion:x = [x1; : : : ; xn℄T : : : �nite sample path of time series fXtgb�K = [b�1; : : : ; b�K℄T : : : sample autoorrelation funtion from xb�K = [b�1; : : : ; b�K℄T : : : sample partial autoorr. funtion from b�KAll tests are onstruted under the null hypothesis:H0 : fXtg � WN(0; �2)42



4.2.1. The Portmanteau test.Either of the following statistis may be used, the latter being re-ommended by some authors as more suitable for tests on residuals:Q = n KXk=1 b�(k)2Q� = n(n+ 2) KXk=1 b�(k)2n� k :For n ! 1, K ! 1, K � pn, both Q and Q� have asymptotiChi-square distribution �2(K � P ) with K � P degrees of freedomwhere P is the number of parameters in the model (P = 0 forobserved data).Q(or Q�) > �21��(K � P ) ) H0 is rejeted at level �These statistis are implemented in MATLAB m-�les af, NAGafand NAGhek (output parameter stat). Funtion af omputes Qfor observed data and Q� for residuals along with the orresponding(1 � �)-quantile. Analogially NAGaf is using the statisti Q andNAGhek the statisti Q�, the latter returning p-value instead ofthe quantile.4.2.2. Test based on the sample autoorrelation funtion.For n!1 the random vetor b�K is asymptotially K-variate nor-mal b�K � AsNK(�K; V ) for stationary time series ful�lling ertainnatural onditions ([BD93, Se.7.2℄). If the series is a white noisethen V = 1nIK and therefore b�(1); : : : ; b�(K) are approximately inde-pendent and identially distributed normal random variables withzero means and variane 1=n. On this basis the following asymp-toti test an be applied:jb�(h)j > u1��=2 1pn for some h > 0 ) H0 is rejeted at level �43



where u1��=2 is the (1� �2 )-quantile of normal distribution N(0; 1)(u0:975 � 1:96 for the default � = 0:05). The bounds �1:96=pnare plotted by dotted line in Figures 3.7.1, 3.7.2 and 3.7.3 allowingfor visual testing. A value b�(h) lying outside these bounds suggestspossible inonsisteny of the residuals with the �tted model (ordoubts on white noise assumption about observed data). Howeverit is essential to bear in mind that approximately 5 perent of thevalues of b�(h) an be expeted to fall outside the bounds even if the�tted model is orret (or white noise hypothesis is true).4.2.3. Test based on sample partial autoorrelation funtion.The proedure is the same as in 4.2.2 exept that b�(h) is usedinstead of b�(h).
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