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1. INTRODUCTION

Kernel and wavelet smoothing are two modern

tools for data analysis at this time. We shall ex-

plain the basic theoretical ideas of both methods

and confront the results obtained when processing

each of three environmental data series by either

method.

Notation.

N : : : the set of all natural numbers

Z : : : the set of all integers

R : : : the set of all real numbers

L

1

: : : the Banach space of all complex-

valued functions which are ab-

solutely integrable on R in the

Lebesgue sense

L

2

(I) : : : the Hilbert space of all complex-

valued measurable functions which

are absolutely square-integrable in

the Lebesgue sense on the interval

I � R; we denote further

hg

1

; g

2

i =

R

I

g

1

(x)g

2

(x) dx : : : the

inner product and

kgk =

p

hg; gi =

q

R

I

jg(x)j

2

dx

: : : the norm

L

2

:= L

2

(R)

�

i;j

: : : the Kronecker symbol (= 1 for i =

j and zero otherwise)

E : : : the operator of expectation

2. THE BASIC CONCEPT OF KERNEL

SMOOTHING

Problem statement

Let X = (X

1

; X

2

; : : : ; X

n

) be sorted values a �

X

1

< X

2

< : : : < X

n

� b of an independent

variable x 2 R, which are either �xed prescribed

or samples of a random variable X, and let Y =

(Y

1

; Y

2

; : : : ; Y

n

) be samples of a random variable

Y observed for X within the additive model

Y

i

= m(X

i

) + E

i

; i = 1; 2; : : :; n; n 2N

where m(x) = E(Y jX = x) is an unknown func-

tion to be estimated from a set of n measurements

of m(X

i

) which are loaded with independent and

identically distributed errors E

i

.

The frequently considered nonparametric estima-

tor bm(x) of m(x) is usually the weighted average

of response observations Y

1

; Y

2

; :::; Y

n

and a gen-

eral formula for this estimator is

m(x) � bm(x) =

n

X

i=1

Y

i

W

n;i

(x) (1)

where W

n;i

(x) is a suitable weight func-

tion depending in general not only on the

�tted point x but also on the covariate ob-

servations X

1

; X

2

; : : : ; X

n

, i.e. W

n;i

(x) =

W

n;i

(x;X

1

; : : : ; X

n

). Typically W

n;i

(x) ! 0 as

jx�X

i

j ! 1. Such an estimator is called a linear

smoother because it is linear in the response.

The linear smoothers di�er by the choice of the

weight functions W

n;i

; i = 1; 2; :::; n: (see e.g. [8]),

and a very useful method for the choice of weights

is the kernel smoothing.

De�nition.

A real function K(x) is called a kernel function

(kernel) if K(x) 2 L

1

and

R

1

�1

K(x) dx = 1.

We put also K

h

(x) =

1

h

K

�

x

h

�

; h > 0 the width-

modi�ed kernel function which, clearly, pre-

serves

R

1

�1

K

h

(x) dx = 1.

There are two popular approaches to constructing

kernel estimates.

De�nition. (Weight function by Nadaraya-

Watson (1964) [12, 14])

W

(1)

n;i

(x) :=

K

h

i

(x�X

i

)

P

n

i=1

K

h

i

(x�X

i

)

(2)

where K(x) is a continuous kernel with fast decay

lim

x!�1

xK(x) = 0.

De�nition. (Weight function by Gasser-

M�uller (1979) [7])

Put s

o

= a; s

i

=

1

2

(X

i

+X

i+1

) for i =

1; 2; : : : ; n� 1 and s

n

= b.
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Then

W

(2)

n;i

(x) :=

Z

s

i

s

i�1

K

h

i

(x� t) dt (3)

for a kernel K(x).

The former (eq. (2)) is based on the choice of

weights by means of direct kernel evaluation| the

so-called Nadaraya-Watson estimators (see [8]).

The latter (eq. (3)) is based on weights which

are a convolution of the kernel with a histogram

representing the data (see [11]). It is typical

for both of these methods that the weights W

n;i

depend on some function K called kernel and

on parameters h

i

called smoothing parameters

or bandwidths. The kernel K and the band-

widths h

i

determine the local properties of the es-

timator bm(x) at the point x. If the bandwidths

h := h

1

= h

2

= : : : = h

n

are �xed, depending

neither on the location of x nor on the covariate

values X

1

; X

2

; :::; X

n

, the information provided by

the density of data points is not fully incorporated

in the estimator. That is why Fan and Gijbels

introduced a new type of kernel estimator with

variable bandwidth (see [6]). Their estimator

is based on the Cleveland idea (see [1]) to obtain a

linear smoother via a local linear approximation to

the regression function. For an expository paper

on the variable bandwidth method see [10].

We can also guess the �xed bandwidth by the trial

and error method or in some optimal way by min-

imizing a suitable error measure, the mean-square

error estimate being the typical choice.

In addition also the so-called optimal kernels

may be used. These kernels are compactly sup-

ported on [�1; 1] where they coincide with a poly-

nomial of a given degree which smoothly decays

to zero at interval bounds �1 and 1 with order of

smoothness being prescribed.

3. THE BASIC CONCEPT OF WAVELET

SMOOTHING

Problem statement

Consider the additive model

Y (x) = m(x) + e(x); x 2 R

where Y (x) are observed values, m(x) 2 L

2

is an

unknown real function to be estimated and e(x)

is the white noise. In the discrete setting Y (x)

are of course observed only at a �nite discrete set

x = X

1

; X

2

; : : : ; X

n

.

On the contrary to kernel smoothing which yields

a direct estimate bm(x) of m(x), in the case of

wavelet smoothing (for basic wavelet theory see

for example the monographs [2, 9]) we estimate

m(x) indirectly by �nding estimates bc

j;k

of coe�-

cients c

j;k

; j; k 2 Z in the expansion

m(x) =

1

X

j=�1

1

X

k=�1

c

j;k

 

j;k

(x) (4)

where  

j;k

(x) = 2

j=2

 

�

x�k=2

j

1=2

j

�

is a speci�c basis

in L

2

generated by dilating and shifting a suit-

able function  (x) 2 L

2

; k k = 1 which is called

mother wavelet, clearly k 

j;k

k = 1 is preserved

for each j; k. If this basis is orthonormal in L

2

(h 

j;k

;  

l;m

i = �

j;l

�

k;m

) then  (x) is called or-

thogonal wavelet and c

j;k

are easily computed

by

c

j;k

= hm; 

j;k

i =

Z

1

�1

m(x) 

j;k

(x) dx (5)

The wavelet expansions are a non-periodic anal-

ogy of Fourier expansions of T -periodic functions

in L

2

([a; b]); b � a = T > 0 where w(x) =

1

p

T

exp

i2�x=T

is the basic complex wave func-

tion playing the role of  (x) and generating the

orthonormal Fourier basis fw

j

(x)g

j2Z

; w

j

(x) =

w(jx). Then for T -periodic m(x) 2 L

2

([a; b]) we

get its Fourier series expansion

m(x) =

1

X

j=�1

hm;w

j

iw

j

(x) =

1

X

j=�1

c

j

exp

i2�jx=T

where

c

j

=

1

p

T

hm;w

j

i =

1

p

T

Z

b

a

m(x)w

j

(x) dx

=

1

T

Z

b

a

m(x) exp

�i2�jx=T

dx

are the well-known Fourier coe�cients of m.

Hence it is natural to call the wavelet expansion

the wavelet series and the coe�cients c

j;k

the

wavelet coe�cients. The index j determines

the scaling parameter 1=2

j

which is closely re-

lated to the j-th harmonic frequency f

j

= j=T as-

sociated with the j-th Fourier coe�cient c

j

. Nev-

ertheless, one principal di�erence between w(x)

and  (x) is that  2 L

2

)  (x)! 0 for x!�1.

In addition the theory implies also another natural

condition, namely (x) 2 L

1

and

R

1

�1

 (x) dx = 0

which says that  (x) must change its sign. Al-

together  (x) is a \damped wave" or wavelet.

If  (x) is completely damped (zero outside of

a bounded interval) then we say that  (x) is a

compactly supported wavelet. This property

shows to be very useful because each wavelet co-

e�cient c

j;k

contributes to the wavelet expansion

of m(x) only in a neighbourhood of x = k=2

j

, i.e.

its e�ect is local compared with the global e�ect

of a Fourier coe�cient c

j

.

Wavelet smoothing

Due to the linearity of (5) we get



c

Y

j;k

= c

j;k

+ c

e

j;k

where c

Y

j;k

; c

j;k

and c

e

j;k

are wavelet coe�cients

in the expansions of Y (x);m(x) and e(x), re-

spectively. The wavelet smoothing techniques are

aimed at �nding a suitable modi�cation rule �(�)

such that �(c

Y

j;k

) = bc

j;k

� c

j;k

is a good esti-

mate of c

j;k

. This approach follows again the anal-

ogy with Fourier-based �ltration where we mod-

ify the Fourier coe�cients c

Y

j

, an important spe-

cial case being the classical linear �ltration where

�(c

Y

j

) = �

j

c

Y

j

; �

j

� 0 and f�

j

g

j2Z

is the so-

called transfer function of the �lter. Due to

the local e�ect of c

j;k

for a �xed k the wavelet rep-

resentation allows one to construct locally adap-

tive �lters in this way which is an excellent new

feature compared with the classical Fourier �lters

where the e�ect is global.

There are three wavelet coe�cient modi�cation

techniques commonly applied.

1. Positive scaling

bc

pos

j;k

= �

j;k

c

Y

j;k

; �

j;k

� 0

which is the direct generalization of the

transfer function mentioned above.

2. Hard thresholding

All wavelet coe�cients which are below a

certain threshold level � are put to zero:

c

hard

j;k

=

�

0 for jc

j;k

j < �

c

j;k

for jc

j;k

j � �

.

3. Soft thresholding

All wavelet coe�cients are reduced by a cer-

tain threshold level �:

c

soft

j;k

= sign(c

j;k

)max(0; jc

j;k

j � �)

Donoho and Johnstone [3, 4, 5] suggested a

method for an optimal (in a certain sense) choice

of the threshold � which is either universal or spe-

ci�c for each scaling level j (� = �

j

). These and

other similar methods became known as wavelet

shrinkage or wavelet de-noising.

In practical computation we use the discrete set-

ting where c

j;k

are evaluated via DWT (Dis-

crete Wavelet Transform) which is the natural

counterpart of the DFT (Discrete Fourier Trans-

form). The related fast algorithms are known

as FWT (Fast Wavelet Transform) and FFT

(Fast Fourier transform).

4. EXAMPLES OF PRACTICAL DATA

ANALYSIS

In this section both kernel and wavelet smoothing

will be demonstrated on real time series. All com-

putations were accomplished in MATLAB 4.2c

and supported by specialized m-�le libraries (tool-

boxes). While the toolbox for kernel smooth-

ing has been developed by the author himself,

the results of wavelet smoothing have been ob-

tained using WavBox 4.3b which is an excel-

lent Wavelet Toolbox (218 m-�les, 850 kB) of

Carl Taswell from the Stanford University, CA,

USA [13]. In particular for wavelet shrinkage we

have applied the WavBox function wdenoise with

the threshold estimator DJE (Donoho-Johnstone-

Estimator) which yields a separate threshold for

each scaling level. As the mother wavelet the

compactly supported orthogonal least asymmet-

ric wavelet of order 8 from the Daubechies family

has been chosen. For more details the list of main

WavBox object properties follows:

DataDimension = 1

MappingStructureType = DWT

MappingStructureClass = DWT

ObjectStructureType = DWT

ObjectStructureClass = DWT

FilterClass = ORTH

FilterFamily = DOLA

NumberVoices = 1

AnalysisFilterParameter = 8

SynthesisFilterParameter = 8

ConvolutionVersion = CPF

FilterName = DOLA16

FilterLength = 16

Description of data sets

Data set 1 (size 90):

Mean autumn atmospheric temperatures mea-

sured in Hurbanov, Czech republic in 1903{1992.

Data set 2 (size 168):

Seasonal deviations of cloudiness from the mean

observed in the Northern Croatia in 1951{1992.

Data set 3 (size 912):

Monthly mean ow on the river Morava observed

in Kromìøí¾, Czech Republic in 1916{1991.

Description of �gures showing the smooth-

ing results

Figure 1:

Plots of raw data | data set 1 (top), data set 2

(middle), data set 3 (bottom).

Figures 2{4:

Plots of kernel smoothed data sets 1, 2 and 3 , re-

spectively using the weights (2) with the quartic

kernel

K(x) =

�

15

16

(1� x

2

)

2

for x 2 [�1; 1]

0 for x =2 [�1; 1]

and three bandwidths: optimal (top), small (mid-

dle) resulting in undersmoothing and large (bot-

tom) resulting in oversmoothing.

Figures 5{7:

Plots of wavelet processed data sets 1, 2 and 3, re-

spectively showing the DJE smoothed data (top)

along with the wavelet coe�cients for the raw data



(bottom left) and smoothed data (bottom right).

In the bottom plots c

j;k

are shown at positions re-

lated horizontally to k and vertically to j in reverse

order of level numbers (the �nest scaling level 1

corresponds to the largest j).

Figure 8:

Multiresolution analysis of the data set 3. The

six plots when ordered row-by-row by the top-

down and left-right method show data smoothed

via clearing all wavelet coe�cients at levels 1,1{2,

: : : , 1{6, respectively. The plots visualize the step-

by-step decrease in the resolution when still more

coe�cients at successive levels are put to zero.

5. CONCLUSION

There are two basic factors which control the

smoothing operation. First, both methods al-

low for a wide choice among various kernel or

wavelet shapes. Second, both methods are yield-

ing a great exibility in the choice of the smooth-

ing strategy (�xed or variable bandwidth, thresh-

olding method or some other speci�c manipula-

tion with the wavelet coe�cients). For example

the �gures 2{4 show that the right choice of the

bandwidth magnitude is crucial to the �nal e�ect.

Both the variable bandwidth and a clever modi�-

cation of wavelet coe�cients are surely a powerful

tool how to adapt to the local data behaviour.

However the grand problem is to �nd the `best'

procudure just for the data we have.

Both methods o�er certain universal procedures

(optimal bandwidth, DJE thresholding) which

should give an optimal result. But these optimal-

ity criteria are hard to compare, they are more re-

lated to the method itself than to the data being

processed for which only certain general assump-

tions should be satis�ed which cannot be usually

exactly veri�ed (except in simulations where ev-

erything works well). Observe that the optimal

results of wavelet smoothing from �gures 5{7 are

not in a good agreement with those of optimal

kernel smoothing in �gures 2{4, respectively. In

case of the data set 1 we see that kernel smooth-

ing with bandwidth three times smaller than the

optimal value gives a result which is clearly closer

to the optimal wavelet result. The plots for the

data set 2 exhibit opposite behaviour giving bet-

ter agreement with a bandwidth two times larger

than the optimal one. The data sets 2 and 3 seem

to be extreme cases towards the DJE thresholding.

The wavelet smoothing of the data set 2 (Fig. 6) is

nearly total (close to zero mean) saying that only

a negligible portion of useful information was de-

tected. The data set 3 is the other extreme (Fig.

7) exhibiting a negligible smoothing e�ect. Al-

though kernel smoothing with optimal bandwidth

follows this trend, too (Fig. 3 and 4) we have

not obtained such extreme results. So the ques-

tion about credibility of the results is evident and

one is advised to be very careful with universal

techniques without exploiting any additional in-

formation about the data being processed.
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AUTUMN: Mean seasonal atmospheric temperatures measured at Hurbanov
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Figure 1: Plots of raw data sets 1,2 and 3



12−Jun−96 at 18:42:03

KERNEL: K(x)=(15/16)*(1−x^2)^2 on [−1,1] ... quartic
1−OPTIM.BANDWIDTH: 21.36 for n=90

12−Jun−96 at 18:42:03

KERNEL: K(x)=(15/16)*(1−x^2)^2 on [−1,1] ... quartic
1−OPTIM.BANDWIDTH: 21.36 for n=90
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autumn temp., Hurbanov in 1903−1992

12−Jun−96 at 18:49:47

KERNEL: K(x)=(15/16)*(1−x^2)^2 on [−1,1] ... quartic
BANDWIDTH: 7 for n=90

12−Jun−96 at 18:49:47

KERNEL: K(x)=(15/16)*(1−x^2)^2 on [−1,1] ... quartic
BANDWIDTH: 7 for n=90
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autumn temp., Hurbanov in 1903−1992

12−Jun−96 at 18:51:25

KERNEL: K(x)=(15/16)*(1−x^2)^2 on [−1,1] ... quartic
BANDWIDTH: 42 for n=90

12−Jun−96 at 18:51:25

KERNEL: K(x)=(15/16)*(1−x^2)^2 on [−1,1] ... quartic
BANDWIDTH: 42 for n=90
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autumn temp., Hurbanov in 1903−1992

Figure 2: Data set 1 smoothed with optimal, small and large bandwidth (top-down)



13−Jun−96 at 14:55:15

KERNEL: K(x)=(15/16)*(1−x^2)^2 on [−1,1] ... quartic
1−OPTIM.BANDWIDTH: 3.131 with h(n)=0.5*n^(−1/5) for n=168

13−Jun−96 at 14:55:15

KERNEL: K(x)=(15/16)*(1−x^2)^2 on [−1,1] ... quartic
1−OPTIM.BANDWIDTH: 3.131 with h(n)=0.5*n^(−1/5) for n=168
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DEVIATIONS OF CLOUDINESS FROM THE MEAN 1951−1992, NORTHERN CROATIA

13−Jun−96 at 14:56:01

KERNEL: K(x)=(15/16)*(1−x^2)^2 on [−1,1] ... quartic
BANDWIDTH: 1 for n=168

13−Jun−96 at 14:56:01

KERNEL: K(x)=(15/16)*(1−x^2)^2 on [−1,1] ... quartic
BANDWIDTH: 1 for n=168
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DEVIATIONS OF CLOUDINESS FROM THE MEAN 1951−1992, NORTHERN CROATIA

13−Jun−96 at 14:56:15

KERNEL: K(x)=(15/16)*(1−x^2)^2 on [−1,1] ... quartic
BANDWIDTH: 6 for n=168

13−Jun−96 at 14:56:15

KERNEL: K(x)=(15/16)*(1−x^2)^2 on [−1,1] ... quartic
BANDWIDTH: 6 for n=168
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Figure 3: Data set 2 smoothed with optimal, small and large bandwidth (top-down)



5−Jun−96 at 16:09:03

KERNEL: K(x)=(15/16)*(1−x^2)^2 on [−1,1] ... quartic
1−OPTIM.BANDWIDTH: 0.4838 for n=912

5−Jun−96 at 16:09:03

KERNEL: K(x)=(15/16)*(1−x^2)^2 on [−1,1] ... quartic
1−OPTIM.BANDWIDTH: 0.4838 for n=912
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MONTH MEAN FLOW ON THE RIVER MORAVA 1916−1991, KROMERIZ, CZECH REPUBLIC

5−Jun−96 at 16:27:35

KERNEL: K(x)=(15/16)*(1−x^2)^2 on [−1,1] ... quartic
BANDWIDTH: 0.16 for n=912

5−Jun−96 at 16:27:35

KERNEL: K(x)=(15/16)*(1−x^2)^2 on [−1,1] ... quartic
BANDWIDTH: 0.16 for n=912
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MONTH MEAN FLOW ON THE RIVER MORAVA 1916−1991, KROMERIZ, CZECH REPUBLIC

5−Jun−96 at 16:22:07

KERNEL: K(x)=(15/16)*(1−x^2)^2 on [−1,1] ... quartic
BANDWIDTH: 1.5 for n=912

5−Jun−96 at 16:22:07

KERNEL: K(x)=(15/16)*(1−x^2)^2 on [−1,1] ... quartic
BANDWIDTH: 1.5 for n=912
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Figure 4: Data set 3 smoothed with optimal, small and large bandwidth (top-down)
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Figure 5: Data set 1 smoothed via wavelet shrinkage of type DJE



1955 1960 1965 1970 1975 1980 1985 1990

−1.5

−1

−0.5

0

0.5

1

DEVIATIONS OF CLOUDINESS FROM THE MEAN 1951−1992, NORTHERN CROATIA

Data smoothed using threshold DJE (WAVELET: ORTH−DOLA−8) (year)

0 0.2 0.4 0.6 0.8 1

5

4

3

2

1

DEVIATIONS OF CLOUDINESS FROM THE MEAN 1951−1992, NORTHERN CROATIA

L
e

v
e

l

DWT coefficients of noisy data (WAVELET: ORTH−DOLA−8)
0 0.2 0.4 0.6 0.8 1

5

4

3

2

1

DEVIATIONS OF CLOUDINESS FROM THE MEAN 1951−1992, NORTHERN CROATIA

L
e

v
e

l

DWT coefficients of smoothed data (WAVELET: ORTH−DOLA−8)

Figure 6: Data set 2 smoothed via wavelet shrinkage of type DJE
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Data smoothed using threshold DJE (WAVELET: ORTH−DOLA−8) (year)
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Figure 7: Data set 3 smoothed via wavelet shrinkage of type DJE
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Data smoothed using threshold 1 (WAVELET: ORTH−DOLA−8) (year)
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Data smoothed using threshold 1−2 (WAVELET: ORTH−DOLA−8) (year)
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Data smoothed using threshold 1−2−3 (WAVELET: ORTH−DOLA−8) (year)
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Data smoothed using threshold 1−2−3−4 (WAVELET: ORTH−DOLA−8) (year)
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Data smoothed using threshold 1−2−3−4−5 (WAVELET: ORTH−DOLA−8) (year)
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Data smoothed using threshold 1−2−3−4−5−6 (WAVELET: ORTH−DOLA−8) (year)

Figure 8: Multiresolution analysis of the data set 3


