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List of Alternatives

States of Nature

Part Two Stochastic Models

DECISION theory represents a generalized approach to decision making,
which often serves as the basis for a wide range of managerial decision making.
The decision model includes a list of courses of action that are available ang
the possible consequences of each course of action. An important factor jn
making a decision is the degree of certainty associated with the consequences;
This can range anywhere from complete certainty to complete uncertainty,
and it generally affects the way a decision is reached.
The chapter presents two commonly used decision theory approaches,
a payoff table and a decision tree. They provide structure for organizing the
relevant information in a format conducive to making rational decisions.
The chapter begins with a description of the characteristics of a decisio
model. ‘

Decision theory problems are characterized by the following:

1. A list of alternatives. _

2. A list of possible future states of nature.

3. Payoffs associated with each alternative/state of nature combination.
4. An assessment of the degree of certainty of possible future events.
5. A decision criterion.

Let’s examine each of these.

The list of alternatives must be a set of mutually exclusive and collectively
exhaustive decisions that are available to the decision maker. (Sometimes,
but not always, one of these alternatives will be to “do nothing.”)

For example, suppose that a real estate developer must decide on a plan
for developing a certain piece of property. After careful consideration, the
developer has ruled out “do nothing” and is left with the following list of
acceptable alternatives: '

1. Residential proposal.

2. Commercial proposal #1.
3. Commercial proposal #2.

States of nature refer to a set of possible future conditions, or events, beyond;
the control of the decision maker, that will be the primary determinants of
the eventual consequence of the decision. The states of nature, like the lis

ayofis

¢

Chapter 11 Decision Theory 373

of alternatives, must be mutually exclusive and collectively exhaustive. Sup-
pose, in the case of the real estate developer, the main factor that will influence
the profitability of the development is whether or not a shopping center is
built, and the size of the shopping center, if one is built. Suppose that the
developer views the possibilities as:

1. No shopping center.
2. Medium-size shopping center.
3. Large shopping center.

In order for a decision maker to be able to rationally approach a decision
problem, it is necessary to have some idea of the payoffs that would be associ-
ated with each decision alternative and the various states of nature. The payoffs
might be profits, revenues, costs, or other measure of value. Usually the mea-
sures are financial. They may be weekly, monthly or annual amounts, or they
might represent present values' of future cash flows. Usually, payoffs are esti-
mated values. The more accurate these estimates, the more useful they will
be for decision making purposes and the more likely it is that the decision
maker will choose an appropriate alternative.

The number of payoffs depends on the number of alternative/state of
nature combinations. In the case of the real estate developer, there are three
alternatives and three states of nature, so there are 3 X 3 = 9 possible payoffs
that must be determined.

ertainty

The approach used by a decision maker often depends on the degree of
certainty that exists. There can be different degrees of certainty. One extreme
is complete certainty and the other is complete uncertainty. The latter, exists
when the likelihood of the various states of nature are unknown. Between
these two extremes is risk, a term that implies that probabilities are known
for the states of nature.

" Knowledge of the likelihood of each of the states of nature can play an
important role in selecting a course of action. Thus, if a decision maker feels
that a particular state of nature is highly likely, this will mean that the payoffs
associated with that state of nature are also highly likely. This enables the
decision maker to focus more closely on probable results of a decision. Conse-
quently, probability estimates for the various states of nature can serve an
important function if they can be obtained. Of course, in some situations,

1 A present value is a lump sum payment that is the current equivalent to one or a set of future cash
amounts using an assumed interest rate.



374

Part Two Stochastic Models

accurate estimates of probabilities may not be available, in which case the
decision maker may have to select a course of action without the benefit of
probabilities.

Decision Criterion

The process of selecting one alternative from a list of alternatives is governed
by a decision criterion, which embodies the decision maker’s attitudes toward
the decision as well as the degree of certainty that surrounds a decision. For
instance, some decision makers are more optimistic, whereas others are more
pessimistic. Moreover, some want to maximize gains, whereas others are more
concerned with protecting against large losses. ;
One example of a decision criterion is: “Maximize the expected payoff.”
Another example is: “Choose the alternative that has the best possible payoff.”
A variety of the most popular decision criteria are presented in the remainder
of this chapter.

A payoff table is a device a decision maker can use to summarize and organize
information relevant to a particular decision. It includes a list of the alterna-
tives, the possible future states of nature, and the payoffs associated with
each of the alternative/state of nature combinations. If probabilities for the
states of nature are available, these can also be listed. The general format of
a payoff table is illustrated in Table 11-1.

Table 11-1 ~ Gemneral Format of a Decision Table

State of nature

S1 S2 S3
a4 Vis Viz Vis
Alternatives a, Vaq Voo Vs
as Va - Vao Vas

where

a; = the ith alternative
s; = the jth state of nature

V;; = the value or payoff that will be realized if alternative /
is chosen and event j occurs
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Table 11-2 Payoff Table for Real Estate Developer

No Medium Large

Center Center Center
Residential $4 16 12
Alternative Commercial #1 5. 6 10
Commercial #2 —1 4 15

A payoff table for the real estate developer’s decision is shown in Table
11-2. The three alternatives under consideration are listed down the left
side of the table and the three possible states of nature are listed across the
top of the table. The payoffs that are associated with each of the alternative/
state-of-nature combinations are shown in the body of the table. Suppose
that those values represent profits (or losses) in hundred thousand dollar
amounts. Hence, if the residential proposal is chosen and no shopping center
is built, the developer will realize a profit of $400,000. Similarly, if the second
commercial proposal is selected and no center is built, the developer will
lose $100,000.

The simplest of all circumstances occurs when decision making takes place
in an environment of complete certainty. For example, in the case of the
real estate problem, an unexpected early announcement concerning the build-
ing of the shopping center could reduce the problem to a situation of certainty.

Thus, if there is an announcement that no shopping center will be built,
the developer then can focus on the first column of the payoff table (see
Table 11-3). Because the Commercial proposal #1 has the highest payoff in
that column (85), it would be selected. Similarly, if the announcement indi-
cated that a medium-size shopping center is planned, only the middle column
of the table would be relevant, and the residential alternative would be se-
lected because its estimated payoff of 16 is the highest of the three payoffs
for a medium size shopping center; whereas if a large center is planned, the
developer could focus on the last column, selecting the Commercial #2 pro-
posal because it has the highest estimated payoff of 15 in that column.

In summary, when a decision is made under conditions of complete cer-
tainty, the attention of the decision maker is focused on the column in the
payoff table that corresponds to the state of nature that will occur. The decision



376

Maxinnin

Part Two Stochastic Models

Table 11—3 If It Is Known that No Shopping Center Will Be Built, Only the

First Column Payoffs Would Be Relevant

No Medium Large

Center Center Center
Residential 16 12
Commercial #1 6 10
Commercial #2 4 15

maker then selects the alternative that will yield the best payoff, given that

state of nature.

Under complete uncertainty, the decision maker either is unable to estimate

the probabilities for the occurrence of the different states of nature, or else ‘
he or she lacks confidence in available estimates of probabilities, and for
that reason, probabilities are not included in the analysis. Still another possibil-
ity is that the decision is a one-shot case, with an overriding goal that needs
to be satisfied (e.g., a firm may be on the verge of bankruptcy and this might

be the last chance to turn things around).

Decisions made under these circumstances are at the opposite end of
the spectrum from the certainty case just mentioned. We shall consider four
approaches to decision making under complete uncertainty. They are:

1. Maximin.

2. Maximax.

3. Minimax regret.
4. Insufficient reason.

The maximin strategy is a conservative one; it consists of identifying the
worst (minimum) payoff for each alternative, and, then, selecting the alterna-
tive that has the best (maximum) of the worst payoffs. In effect, the decision
maker is setting a floor on the potential payoff; the actual payoff cannot be

less than this amount.

For the real estate problem, the maximin solution is to choose the second

alternative, Commercial #1, as illustrated in Table 11-4.

Maximax
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Table 11-4 Maximin Solution for Real Estate Problem
State of nature
No Medium Large Row
Center Center Center Minimum

Residential 16 12 4
Commercial #1 6 10 5 <« Maximum
Commercial #2 4 15 -1

Many people view the maximin criterion as pessimistic because they
believe that the decision maker must assume that the worst will occur. In
fact, if the minimum payoffs are all negative, this view is accurate. Others
view the maximin strategy in the same light as a decision to buy insurance:
protect against the worst possible events, even though you neither expect

them nor want them to occur.

The maximax approach is the opposite of the previous one: The best payoff
for each alternative is identified, and the alternative with the maximum of

these is the designated decision.

For the real estate problem, the maximax solution is to choose the residen-

tial alternative, as shown in Table 11-5.

Table 11-5 Maximax Solution for Real Estate Problem

State of nature

No Medium Large Row
Center Center Center Maximum
Residential 16
Commercial #1 10
Commercial #2 15

<« Maximum
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Just as the maximin strategy can be viewed as pessimistic, the maximax
strategy can be considered optimistic, that is, choosing the alternative that
could result in the maximum payoff. '

Both the maximax and maximin strategies can be criticized because they
focus only on a single, extreme payoff and exclude the other payoffs. Thus,
the maximax strategy ignores the possibility that an alternative with a slightly
smaller payoff might offer a better overall choice. For example, consider this
payoff table:

State of nature

S So S3
a, -5 16 -10
as 15 15 15
ag 15 15 15

The maximax criterion would lead to selecting alternative a,, even though
two out of the three possible states of nature will result in negative payoffs.
Moreover, both other alternatives will produce a payoff that is nearly the
same as the maximum, regardless of the state of nature.

A similar example could be constructed to demonstrate comparable weak-
ness of the maximin criterion, which is also due to the failure to consider
all payoffs.

An approach that does take all payoffs into account is minimax regret.
In order to use this approach, it is necessary to develop an opportunity loss
table. The opportunity loss reflects the difference between each payoff and
the best possible payoff in a column (i.e., given a state of nature). Hence,
opportunity loss amounts are found by identifying the best payoff in a column
and, then, subtracting each of the other values in the column from that payoff.
For the real estate problem, the conversion of the orginal payoffs into an
opportunity loss table is shown in Table 11-6.

Hence, in column 1, the best payoff is 5; therefore, all payoffs are subtracted
from 5 to determine the amount of payoff the decision maker would miss
by not having chosen the alternative that would have yielded the best payoff
if that state of nature occurs. Of course, there is no guarantee that it will
occur. Similarly, the best payoff in the column 2 is 16, and all payoffs are
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Table 11-6 Opportunity Loss Table for Real Estate Problem

Original Payoff Table

No Medium Large
Center Center Center

Residential $4 12

Commercial #1 10

Commercial #2 -1 4
Best payoff
in column 5 16 15

Opportunity Loss Table

No Medium Large
Center Center Center

Residential

Commercial #1

Commercial #2

subtracted from that number to reflect the opportunity losses that would
occur if a decision other than “Residential” was selected and a medium-size
shopping center turned out to be the state of nature that comes to pass.
Thus, for column 3, the opportunity costs evolve by subtracting each payoff
from 15. Note that for every column, this results in a value of zero in the
opportunity loss table in the same position as the best payoff for each column.
For example, the best payoff in the last column of the payoff table is 15, and
the corresponding position in the last column of the opportunity loss table
is 0.

The values in an opportunity loss table can be viewed as potential “regrets”
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Table 11-7 Identifying the Minimax Regret Alternative

Opportunity Losses

No Medium Large Maximum
Center Center Center Loss
Residential 1 0 3 3 <« Minimum a4
Commercial #1 0 10 5 10 a
Commercial #2 6 12 0 12 as
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Table 11-8 Minimax Regret Can Lead to a Poor Decision

Opportunity Loss Table

Worst
Sq So S3 Sy S5 in Row
0 0 0 0 24 24
23 23 23 23 0 23
Minimum
/ Regret
23 23 23 23 0 23

that might be suffered as the result of choosing various alternatives. A decision
maker could select an alternative in such a way as to minimize the maximum
possible regret. This requires identifying the maximum opportunity loss in
each row and, then, choosing the alternative that would yield the best (mini-
mum) of those regrets. As illustrated in Table 11-7, for the real estate problem, '
this leads to selection of the “Residential” alternative.
Although this approach has resulted in the same choice as the maximax
strategy, the reasons are completely different; therefore, it is merely coinci-
dence that the two yielded the same result. Under different circumstances,
each can lead to selection of a different alternative. ,
Although this approach makes use of more information than either maxi- ‘
min or maximax, it still ignores some information and, therefore, can lead
to a poor decision. Consider, for example, the opportunity loss table iliustrated

The payoff table from which the opportunity losses of Table 11-8 were
computed is shown in Table 11-9, along with the row averages. Note how
a; now stands out compared to the others. In fact, we could have obtained
a similar result by finding the row averages for the opportunity loss table
and, then, choosing the alternative that had the lowest average.

Thus, the row averages for the opportunity losses presented in Table 11-8
are:

Alternative = Row Average

a 4.8 <« Minimum
as 18.4
as 18.4

in Table 11-8. Using minimax regret, a decision maker would be indifferent
between alternatives @, and as, although a, would be a better choice because

Table 11-9 The Principle of Insufficient Reason

for all but one of the states of nature there would be 7o opportunity loss,
and in the worst case, would result in an opportunity loss that exceeded
the other worst cases by $1.

a4

The minimax regret criterion weakness is the inability to factor row differ-
ences. Hence, sometimes the minimax regret strategy will lead to a poor
decision because it ignores certain information.

The principle of insufficient reason offers a method that incorporates
more of the information. It treats the states of nature as if each were equally
likely, and it focuses on the average payoff for each row, selecting the alterna-
tive that has the highest row average.

a

as

Payoff Table
Row
S4 So S3 S4 Sg Average
28 28 28 28 4 23.2 <« Maximum
5 5 5 5 28 9.6
5 5 5 5 28 9.6
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Note that in both cases, the difference between the average of a; and
the average of the other two is the same (13.6). Hence, we could obtain
the same result from either the payoff table or the opportunity loss table:
they will both always lead to the same decision.

The basis for the criterion of insufficient reason is that under complet
uncertainty, the decision maker should not focus on either high or low payofs,
but should treat all payoffs (actually, all states of nature), as if they wer
equally likely. Averaging row payoffs accomplishes this. :

The essential difference between decision making under complete uncertainty
and decision making under partial uncertainty is the presence of probabilities
for the occurrence of the various states of nature under partial uncertainty.
The term risk is often used in conjunction with partial uncertainty.

The probabilities may be subjective estimates from managers or from
experts in a particular field, or they may reflect historical frequencies. If they
are reasonably correct, they provide a decision maker with additional informa-
tion that can dramatically improve the decision-making process.

The sum of the probabilities for all states of nature must be 1.00. Thus,
the real estate developer might estimate the probability of no shopping center
being built at .2, the probability of a medium-size shopping center at .5,
and the probability of a large shopping center at .3. (Note that .2 + .5 +
3 =1.0.)

The expected monetary value (EMV) approach provides the decision maker
with a value which represents an average payoff for each alternative. The
best alternative is, then, the one that has the highest expected monetary
value.

The average or expected payoff of each alternative is a weighted average:
the state of nature probabilities are used to weight the respective payoffs.
Thus, the expected monetary value is:

k
EMV;= Y, P,V (11-1)
i=1

where

EMV,; = the expected monetary value for the ith alternative
P; = the probability of the jth state of nature
V,;; = the estimated payoff for alternative 7 under state of nature j
For example, using the figures in Table 11—10, we can compute the expected

payoffs for the real estate developer’s alternatives. The expected monetary
value of the residential alternative is

EMVg = 2($4) + .5($16) + .3($12) = $12.40
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Table 11-10 Real Estate Payoff Table with Probabilities

Probabilities —— 2 5 .3
No Medium Large Expected
Center Center Center Payoff
Residential $4 16 12 $12.40 <« Maximum
Commercial #1 5 6 10 7.00
Commercial #2 -1 4 15 6.30

Similarly, the expected monetary values of the other alternatives are:

EMV, = .2($5) + .5($6) + .3($10) = $7.00
EMVg, = 2(8 — 1) + 5(84) + .3($15) = $6.30

Because the residential alternative has the largest expected monetary value,
it would be selected using this criterion.

Note that it does 7ot necessarily follow that the developer will actually
realize a payoff equal to the expected monetary value of a chosen alternative.
For example, note that the possible payoffs for the residential proposal are
4, 16, and 12, whereas the expected payoff is $12.40, which is not equal to
any of the payoffs. Similarly, the expected payoffs for either of the other
alternatives do not equal any of the payoffs in those rows. What, then, is the
interpretation of the expected payoff? Simply a long-run average amount;
the approximate average amount one could reasonably anticipate for a large
number of identical situations.

In contrast to the strategies outlined for decision making under complete
uncertainty, which are realistically best used for one-time major decisions,
the expected value approach is more suited to an ongoing decision strategy.
Over the long run, taking probabilities into account will yield the highest
payoff, even though in the short run actual payoffs will tend to be higher or
lower than the expected amounts. Conversely, over the long run, a strategy
that failed to take probabilities into account would tend to yield lower payoffs
than one that does take the probabilities into account.

Expected Opportunity Loss

An alternate method for incorporating probabilities into the decision making
process is to use expected opportunity loss (EOL). The approach is nearly
identical to the EMV approach, except that a table of opportunity losses is
used rather than a table of payoffs. Hence, the opportunity losses for each
alternative are weighted by the probabilities of their respective states of nature
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to compute a long-run average opportunity loss, and the alternative Wlth
the smallest expected loss is selected as the the best choice.

For the real estate problem, the expected opportunity losses can be calcyy.
lated as follows:

EOL, = 2(1) +.5(0) + .3(3) = 1.1 « Minimum
EOL;; = .2(0) + .5(10) + .3(5) = 6.5
EOL, = 2(6) + .5(12) + .3(0) =
Note that the EOL approach resulted in the same alternative as the EMV
approach. This is more than coincidence; the two methods will always resul

in the same choice because they are equivalent ways of combining the values
maximizing the payoffs is equivalent to minimizing the opportunity losses.

It can sometimes be useful for a decision maker to determine the potential
benefit of knowing for certain which state of nature is going to prevail. For
instance, a decision maker might have the option of delaying a decision until
it is evident which state of nature is going to materialize. The obvious benefit
of waiting would be to move the decision into the realm of certainty, thereby
allowing the decision maker to obtain the maximum possible payoff. Such
delays typically will involve a cost of some sort (e.g., higher prices, the cos
of an option, storage costs). Hence, the question is whether the cost of waiting
outweighs the potential benefits that could be realized by waiting. Or, th‘el’
decision maker might wonder if it would be worth the cost to refine or
eliminate the probabilities of the states of nature (e.g., using marketing re- f
search or a better forecasting technique). Although such techniques may
not completely eliminate uncertainty, the decision maker often can beneﬁt a
from knowledge of the upper limit of the potential gain that perfect informa
tion would permit.

The expected value of perfect information (EVPI) is a measure of the‘
difference between the certain payoff that could be realized under a condition
of certainty and the expected payoff under a condition involving risk.

Consider the payoff that the real estate developer could expect under
certainty. If the developer knew that no center would be built, Commercial
#1 proposal would be chosen with a payoff of 5; if the developer knew a_
medium-size shopping center would be built, the residential alternative would
be chosen for a payoff of 16; and if the developer knew that a large center
would be built, Commercial #2 proposal would be chosen for a payoff of
15. Hence, if it were possible to remove the uncertainty surrounding the
states of nature, the decision maker could capitalize on that knowledge. Obvi-
ously, before investing time or money in eliminating the probabilities, it will
be impossible for the decision maker to say which state of nature will turi
out to be the one that will occur. However, what can be said is that the
probability that perfect information will indicate that no center will be buil

Comment
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is .2, that the probability that perfect information will indicate a medium
center will be built is .5, and the probability of perfect information indicating
a large center is .3. Thus, these probabilities, which are the original state of
nature probabilities, can be used to weight the payoffs, one of which will
occur under certainty. This is called the expected payoff under certainty
(EPC), and is computed in the following way for the real estate problem:

EPC = 2(5) + .5(16) + .3(15) = 13.5

The difference between this figure and the expected payoff under- risk
(ie., the EMV) is the expected value of perfect information. Thus,

EVPI = EPC — EMV (11-2)

For the real estate problem, with EPC = 13.5 and EMV = 12.4, we find
EVPI = 135 — 124 =

The EVPI represents an upper bound on the amount of money the real
estate developer would be justified in spending to obtain perfect information.
Thus, the real estate developer would be justified in spending up to $110,000
to find out for certain which state of nature will prevail. Of course, it is not
always possible to completely remove uncertainty. In such cases, the decision
maker must weigh the cost to reduce the uncertainty (i.e., obtain better
estimates of the probabilities) against the expected benefits that would yield.

Note that the EVPI is exactly equal to the previously computed EOL. In
fact, these two quantities will always be equal. The EOL indicates the expected
opportunity loss due to imperfect information, which is another way of saying
the expected payoff that could be achieved by having perfect information.
Hence, there are two equivalent ways to determine the expected value of
perfect information: subtract the EMV from the expected payoff under cer-
tainty, or compute the EOL.

The expected value approach is particularly useful for decision making when
a number of similar decisions must be made; it is a “long-run” approach. For
one-shot decisions, especially major ones, other methods (perhaps maximax
or maximin) may be preferable. In addition, nonmonetary factors, although
not included in a payoff table, may be of considerable importance. Unfortu-
nately, there is no convenient way to include them in an expected value
analysis.

Decision trees sometimes are used by decision makers to obtain a visual
portrayal of decision alternatives and their possible consequences. The term
gets its name from the tree-like appearance of the diagram (see Figure
11-1).
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Figure 11-1 Decision Tree Format

=N Payoff 1,1

Payoff 1,2

Payoff 1,3

=N — Payoff 2,1

X S
Payoff 2,2
e

Payoff 2,3

Payoff 3,1

D< Decision fork
CX Chance fork

A tree is composed of squares, circles, and lines. The squares indicate
decision points while the circles represent chance events. The lines or
“branches” that emanate from a square represent alternatives, while the
branches which emanate from a circle represent states of nature. The tree is
read from right to left. ,

Decision trees are fairly simple to construct. The decision tree for the
real estate developer’s problem is shown in Figure 11-2. The dollar amounts
along side of each chance node (circle) indicate the expected payoff of the
alternative that leads into that particular chance node. The expected payoffs
are computed in the same manner as previously described, and, as before,
the decision maker will select the alternative with the largest expected payoft
if maximizing expected payoff is the decision criterion. ,

It should be noted that although decision trees represent an alternative
approach to payoff tables, they are not commonly used for problems that
involve a single decision. Rather, their greatest benefit lies in portraying se-
quential decisions (i.e., a series of chronological decisions). In the case of a
single decision, constructing a tree can be cumbersome and time consuming.
For example, imagine the decision tree that would be necessary to portray a
decision with 7 alternatives and 10 states of nature; there would be 70 payoffs,
and, hence, 70 branch-ends on the right side of the tree. Conversely, situations
that involve sequential decisions are difficult to represent in payoff tables.

As an example of a sequential decision, suppose that the real estate devel-
oper has several options that might be considered after the initial decision.
For instance, regardless of which of the three alternatives he chooses, the
worst payoff will result if no shopping center is built. Hence, it might be

Payoff 3,2

Payoff 3,3
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Figure 11-2 Decision Tree for Real Estate Developer Problem
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prudent for the developer to plan for that contingency. Thus, the developer
might consider certain options. Suppose the developer states that he would
consider these additional alternatives in the event that no center is built:

1. Do nothing.

2. Develop a small shopping center.
3. Develop a park.

The tree diagram of Figure 11-2 has been modified to include these additional
options, along with their estimated payoffs as supplied by the real estate
developer, and it is shown in Figure 11-3. Note that the payoffs for “do
nothing” are the same as in the original tree for the event “no center is
built.”

In order to analyze this modified tree (i.e., to make a choice among the
alternatives “Residential,” “Commercial #1,” and “Commercial #27), the
branches for each possible second decision must be reduced in each instance
to a single branch. This is easily accomplished by recognizing that at each
of those points, a rational decision maker would simply choose the alternative
with the largest payoff. Hence, if “Residential” were chosen initially and no
center was built, a park would be selected because it would have the largest
payoff. Similarly, if “Commercial #1” was chosen and no center was built,
the “small center” option would be chosen because it offers the largest payoff,
and if “Commercial #2” were initially chosen and no center was built, the
developer would chose the option of building a small center because its
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Figure 11-3 Real Estate Problem with a Second Possible Decision

Do nothing

Small center

Do nothing

Small center

Commercial #1

&
&
07@/-0 . .
/'9/&« Do nothing

Small center

payoff is greater than either “do nothing” or “park.” Thus, in each case the
tree is pruned by cutting the undesirable options and keeping the one best
option. This also is illustrated in Figure 11-3. Note that the payoff for the
best option, then, becomes the payoff for each “no center” branch. The tree
would then be analyzed as previously.

Decision makers can sometimes improve decision making by bringing addi-
tional information into the process. The additional information can come€.
from a variety of sources. For example, either a market survey might be
used to acquire additional information or a forecasting technique might be
employed. In certain situations, it may be possible to delay a decision; the
passage of time often allows a decision maker to obtain a clearer picture of
the future because it shortens the time horizon the decision maker must
deal with. Whatever the source of information, the benefit is that estimates
of probabilities of possible future events tend to become more accurate.

An Example
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In general, obtaining additional (sample) information includes an associ-
ated cost. Consequently, a key question for a decision maker in such circum-
stances is whether the value of additional information is worth the cost of
obtaining that information. The analysis of that type of problem is the subject
of this section.

Let’s take a look at an example.

Suppose an advertising manager is trying to decide which of two advertising
proposals to use for an upcoming promotion. The manager has developed
the following payoff table:

Market
.70 .30
| Strong Weak
Print media 40 20
Video media 50 10

Alternative
*($000)

At this point, the manager simply could make a decision using the expected
value criterion with the information given. However, suppose that the manager
has the option of testing the market, and this testing will provide additional
information in the form of revised probabilities on whether the market will
be strong or weak. If the manager chooses to test the market, it will cost
$1,000; the manager, therefore, must decide whether the expected benefit
from the test will offset the cost required to conduct the test.

If the manager conducts the test, this will undoubtedly alter the probabili-
ties of a strong and weak market that were originally estimated. In fact, an
integral part of the analysis in assessing the value of this sample information
involves computing revised probabilities. However, in order to hone in on
what we are trying to accomplish, let’s suppose that the revised probabilities
have been calculated, and consider how the decision maker could use that
new information to make a decision.

The market test can show one of two things: a strong market or a weak
market. Each result would pertain to the payoff table, but with different proba-
bilities for the states of nature. Suppose these are the two possible results:

If the Market Test If the Market Test
Shows a Strong Market Shows a Weak Market
.95 .05 34 .66
Strong  Weak Strong  Weak
Print 40 20 Print 40 20
Video 50 10 Video 50 10

Finally, suppose the manager is able to determine that the probability
that the market test will show a strong market is .59 and the probability
that it will show a weak market is .41.
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Figure 11-4 Conceptual Portrayal of Market Test Example

Market
o ] .95 054 Revised probabilities given.
sth\,?,b: Z‘thrtgntgsntqgwet |Strong  Weak test results of strong market
2 -
& Print] 40 20
\.59 ‘\OQ‘(&\(@\

5K\ Video| 50 10
-3‘;\/' et 66 Revised probabilities given
|Strong  Weak test results of weak market

) Probability test will Print| 40 20

017}.(/ show a weak market .. | oo 0

5,
2%,
>
4’—@("
s
7(‘!&v| arket 30— Original
|Stong  Weak  Probablities
Print| 40 20
Video| 50 10

The overall problem, given these probabilities, is shown conceptually in
the tree diagram of Figure 11-4. ;

Analysis of the problem will result in determining an expected payoff
for the two branches at square node 1. This will enable the manager to
select the branch (i.e., alternative) that has the higher expected payoff. Thus,
if “use market test” has the higher expected payoff, the manager would select
that alternative, assuming the difference between its payoff and the payoff
for “don’t use market test” is enough to cover the cost ( $1,000) of the market
test. Of course, if “don’t use market test” has the higher expected payoff, .
the manager would select that alternative because it would not require the
cost of the market test.

In order to determine the payoffs for those two branches, it is necessary
first to compute the expected monetary value of each of the three payoff
tables. These are computed as follows:

Market
.95 .05
| Strong Weak
Print 40 20 -9540) + .0520) = 39

Video 50 10 9550) + .0510) =48  (maximum expected payoff)
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Market
34 .66
| Strong Weak
Print 40 20 .34(40) + .65 (20) = 26.8 (maximum expected payoff)
Video 50 10 .34(50) +.65(10) = 23.6
Market

.70 .30
| Strong Weak

Print 40 20 .70(40) +.30(20) = 34
Video 50 10 .70(50) +.30(10) = 38 (maximum expected payoff)

Note that in each instance, we want the alternative (either print or video)
that has the higher expected payoff.

The maximum expected payoff for the original table (i.e., the one with
probabilities of .70 and .30) is 38 thousand. This, in effect, is the expected
value of the branch “don’t use the market test.”

To find the expected payoff for the “use market test” branch, we must
combine the probability of each possible test result with the expected payoff
for that result and, then, sum these. In other words, there is a probability of
59 that the market test will indicate a strong market, in which case the
manager will choose the video alternative with an expected payoff of 46.
Likewise, there is a probability of .41 that the test will show a weak market,
and the manager will choose print with an expected payoff of 26.8. Hence,
the overall or combined expected payoff for using the market test is:

.59(48) + .41(26.8) = 39.308

Thus, our analysis boils down to the results shown in Figure 11-5.
Using the market test has an expected value of $39.308 thousand, or $39,308,
whereas not using the market test has an expected value of $38 thousand,
or $38,000. We can see that using the market test has an expected value

Figure 11-5 Summary of Amalysis of Market Test Example

$39,308

$38,000
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that is $308 more than not using the test. Recall, though, that the test will
involve an additional cost of $1,000. It would not be prudent to spend $1,000
if the additional expected payoff is only $130. Hence, the manager should
not use the market test because to do so would lead to an expected loss of ‘
$870:

$308 — $1,000 = — $692

The preceding analysis illustrates how a manager can assess the value of
additional (sample) information when such information is available. .In this
instance, we found that the expected gain that would result from using the
additional information was outweighed by the cost that would be needed to
acquire that additional information. N _

In sum, we can compute the expected value of sample (additional) infor-
mation, or EVSI, as:

Expected value Expected value
EVSI = | with sample — | without sample (11-3)
information information

Then, if the cost of obtaining the additional information is less than this amount,
it would seem reasonable to spend the money to obtain the inform.atior.l.
But if the cost equals or exceeds the expected value of the information, _1t
would seem reasonable to 7ot spend the additional money needed to obtain
the information. -

In order to complete our discussion of decision making using additional
information, we need to see how the revised probabilities are Comqued
and how the probabilities for the test results are computed. Before doing
that, let’s take a brief look at a measure that sometimes is used to expr.ess
the degree of increase in information from a sample (e.g., test results) relative
to perfect information.

One way to judge how much information is generated by a sample is to
compute the ratio of EVSI to EVPL This is known as the efficiency of sample
information. Thus:

Efficiency of _ EVSI (11-4)

sample information EVPI
For the preceding example, the probabilities without additional information
were .70 and .30, and the payoff table was:

Market

.70 .30
| Strong Weak

Print 40 20
Video 50 10
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The expected monetary value was 38 (ie., $38,000). The expected profit
under certainty (EPC) is:

.70(50) + .30(20) = 41, or $41,000

(To compute EPC, multiply the best payoff in each column by the column
probability and sum the products.) :
EVPI is the difference between EPC and EMV. Thus:

EVPI = $41,000 — $38,000 = $3,000

In the preceding example, it was determined that the EVSI = $308. Hence,
the efficiency of the sample information is:

This number is interpreted as follows. The number can range from O to 1.00.
The closer the number is to 1.00, the closer the sample information is to
being perfect; the closer the number is to 0, the less the amount of information
there is in the sample. Thus, a value such as .1027 is fairly low, meaning

that relative to perfect information, the information that could be gained
from the market test is small.

 Computing the Probabilities

Two sets of probabilities were used in the analysis of sample information:
the probabilities of the test results (.59 and .41) and the revised probabilities
for the states of nature (i.e., strong and weak markets) given the test results
(ie, .95, .05 and .34, .66). We now turn our attention to the calculation of
those values.

A basic piece of information that is necessary to this procedure is the
reliability of the source of sample information (in this case, the market test).
In assessing this reliability, the manager might make use of historical data
on test results versus actual results, expert opinion, or his or her personal
judgment of the probabilities. Let’s suppose that in this case the manager
was able to obtain the reliability information from past records. The reliability
information pertains to every possible combination of test result and actual

result. The reliability figures for the preceding example are shown in Table
11-11. :

Table 1111 Reliability of Market Test

Results of Actual State of Nature
Market Test

Strong Market Weak Market
Shows strong market .80 .10

Shows weak market .20 .90




394

Part Two Stochastic Models

The figures indicate that in past cases when the market actually was strong,
the market test correctly indicated this information 80 percent of the time,
and incorrectly indicated a weak market 20 percent of the time. Moreover,
when a weak market existed, the market test incorrecly indicated a strong
market 10 percent of the time, while it correctly indicated a weak market
90 percent of the time. (Note that the probabilities in each column add to
1.00.) These probabilities are known as conditional probabilities because
they express the reliability of the sampling device (e.g., market test) given
the condition of actual market type.

In order to calculate the desired probabilities, we must combine these
conditional probabilities with the original (prior) probabilities (.70 and .30)
that were associated with the original payoff table. We must do this for each
of the possible test results. .

For -a “strong market” test result, the calculations are shqwn in Table
11-12. ,
The first column of the table lists the two possible actual market condl-
tions: strong and weak. The next column shows the probability of a market
test that will show a strong market, given each possible actual market condi-
tion. The prior probabilities are the initial estimates of each type of rn'afl‘iet
condition. Multiplying the prior probabilities by the conditional probabilities
yields the joint probability of each market condition. The sum of these (e.g’., "
.59) is the probability that a test result will show a strong market. (Note
that this is one of the two types of probabilities we set out to compute.)
The last column of the table illustrates the computation of the revised probabil
ities, given a market test that shows a strong market. The computati_o.n involves
obtaining the ratio of the joint probability of each market condition to the
total joint probability (in this case, .59). The resulting values of .95 and .05
are the ones shown in Figure 11—4 (top). (Note that these are two of the
revised probabilities we set out to compute.)

Probabilities for a market test that shows a weak market are computed
in a similar way. These are illustrated in Table 11-13. As in the preceding
table, the sum of the joint probabilities indicates the probability of this te§t
result (weak market), and the ratios in the last column are the revised probabil-
ities, given this test result. -

It should be noted that in both tables the computations shown in the
last column involve the use of Bayes’ Theorem.

Table 11-12 Probability Calculations Given the Market Test Indicates a
Strong Market

Actual Conditional Prior Joint. . Revis_e;c@

Market Probabilities Probabilities Probabilities Probabilities

Strong .80 X .70 = .56 .56/.59 = .95

Weak 10 X .30 = 08 .03/.59 = .05
.59
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Table 11-13 Probability Calculations Given the Market Test Indicates a
Weak Market

Actual Conditional Prior Joint Revised
Market Probabilities Probabilities Probabilities Probabilities

Strong .20 X .70 = 14 .14/.41 = 34
Weak .90 X .30 = 27 27/.41 = .66
41

Analyzing decisions under risk requires working with estimated values: Both
the payoffs and the probabilities for the states of nature are typically estimated
values. Inaccuracies in these estimates can have an impact on the choice of
an alternative, and ultimately, on the outcome of a decision. Given such possi-
bilities, it is easy to see that a decision maker could benefit from an analysis
of the sensitivity of a decision to possible errors in estimation. If it turns
out that a certain decision will be deemed optimal over a wide range of
values, the decision maker can proceed with relative confidence. Conversely,
if analysis indicates a low tolerance for errors in estimation, additional efforts
to pin down values may be needed.

In this section, sensitivity to probability estimates is examined. Sensitivity
to payoff estimates is not covered; that topic is beyond the scope of this
text.

Probability estimates are particularly interesting because it is not unusual
to find instances in which managers are reluctant to attempt to pinpoint
probabilities. This may stem from a desire to avoid having to justify those
estimates, or it may be that certain managers are uncomfortable with making
such estimates. The approach described here enables decision makers to iden-
tify a range of probability over which a particular alternative would be optimal.
In other words; the manager or decision maker is presented with ranges of
probabilities for various alternatives, and he or she need only decide if a
probability is within a range, rather than decide on a specific value for the
probability of a state of nature.

Let’s consider an example that has two states of nature. Because only
two states of nature can occur, this permits us to use graphical analysis,
Suppose a decision maker has prepared this profit payoff table:

State of nature

| #1 #2
a 3 9
Alternative b 12 1
c 9 6

The analysis is designed to provide ranges for the probability of State of
nature #2, merely because it is convenient to do so. Nonetheless, these ranges
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Figure 11-6 Format of Graph for Sensitivity Analysis

i Payoff if State of
te of
E?c,&z I;f?tgcigrs Nature #2 occurs

P (State of Nature #2)

can easily be converted into ranges for State of nature #1, as you will se
We will use a graph that has two vertical axes and one horizontal axis, as
shown in Figure 11-6. The left vertical axis pertains to payoffs if State of
nature #1 occurs, whereas the right vertical axis pertains to payoffs if Stat:
of nature #2 occurs. The horizontal axis represents the probability Qf State
of nature #2, P(#2). Each alternative can be represented on the graph by
plotting its payoff for State of nature #1 on the left side and its payoff folf
State of nature #2 on the right side and, then, connecting those two points
with a straight line. This is illustrated for Alternative a in Figurci 11-7. Thc
line represents the expected value of Alternative a for the entire range of
P(#2). Thus, for any value of P(#2), the expected value of Alternative a
can be found by running a vertical line from the value of P(#2) on the
horizontal axis up to the point where it intersects the line. By running a
horizontal line to either axis from that intersection, the expected Valu.e for
that probability can be determined. An example is illustrated in Figure
11-8.

Figure 11-7 The Expected Value Line for Alternative @

i Payoff if
Stat:a;?fggcurs State #2 occurs

five 8
“_e\’ﬂa -
g vawe \° for M
1e )
/M
3

P(#2)
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Figure 11-8 Example of Finding the Expected Value for Alternative a
when P(#2) Is .50

Payoff if Payoff if
State #1 occurs’ State #2 occurs
Expected value of Expected value of
Alternative a for 9 Alternative a for

P#2) = 50. P@#2) = 50.
- ——

1.0

Of course, different values of P(#2) would produce different expected
values. In general, you should be able to see from the graph that the nearer
P(#2) is to 0, the closer the expected value of Alternative ¢ will be to the
payoff for State of nature #1, whereas the nearer P(#2) is to 1.0, the closer
the expected value will be to the payoff for State of nature #2.

Our analysis of sensitivity requires that all the alternatives be plotted on
the same graph. Adding the other two alternatives produces the graph shown
if Figure 11-9. You will recall that plotting the line for an alternative involves
connecting its payoff for #1 (left axis) and its payoff for #2 (right axis).

Because higher expected profits are more desirable than lower expected
profits, the highest line for any given value of P(#2) represents the optimal
alternative for that probability. Thus, referring to Figure 11-9, for low values
of P(#2), Alternative b would give higher expected profits than either Alterna-
tive a or ¢ However, for values of P(#2) close to 1.0, Alternative a would
have higher expected profits than either b or ¢, whereas for values of P(#2)
somewhere in the middle, Alternative ¢ would yield the highest expected

Figure 11-9 All Three Alternatives Are Plotted on a Single Graph

Payoff if Payoff if
State #1 occurs State #2 occurs
12 [

9 s S
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profits. What we want to determine is the range of P(#2) for which each
alternative is the best. ;

We can see in Figure 11-10 that Alternative b is best up to the point
(probability) where lines b and ¢ intersect because the b line is highes
from P(#2) = O up to that probability. Then, line ¢ is highest from tha
point until it intersects with line & after that, line & is highest all the way td
P(#2) = 1.0. Hence, the values of P(#2) at these intersections are the key
values in our analysis because they represent the end points of the ranges
These concepts are illustrated in Figure 11-10.

In order to be able to determine the P(#2) values at the line intersections
it is necessary to first develop equations of the lines in terms of P(#2). This

EV = Payoff #1 + (Payoff #2 — Payoff #1)P (11-5)

where

EV = expected value of alternative
P = P(#2)

Thus, for Alternative 4, the equation is:

il

EV, =3+ (9 — 3)P, which is EV, =3 + GP

Similarly, for & and ¢ we have:

EV, =12 + (1 — 12)P, which is EV,, = 12 — 11P
EV, =9 + (6 — 9)P, which is EV, =9 — 3P

Figure 11-10 The Line with the Highest Expected Profit Is Optimal for a
Given Value of P(#2)

Payoff if Payoff if
¢ best

State #1 occurs b best a best State #2 occurs

|
|
12| '4/1‘@,77 . %
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Now, to find the values of P at the intersections, we can set two equations
equal to each other and solve for P. Thus, for the intersection of lines b and
¢, we have:

12— 11P=9 — 3P
Solving for P yields:
8P = 3,s0 P = 3/8, or .375

For the intersection of lines a and ¢ we set EV,, = EV:
3+6P=9—3P
Solving for P, we find:
9P = 6, so P = 6/9 or .67

Thus, lines » and ¢ intersect at P(#2) = .375. So, Alternative b is best over
the range of P(#2) from O to less than .375 (note that for P(#2) = .375, b
and ¢ are equivalent). Similarly, Alternative ¢ is best from P(#2) > .375 to
P(#2) < .67, and from there up to P(#2) = 1.0, Alternative a is best.

In sum, the range of P(#2) over which each alternative is best is:

For Alternative a: .67 < P(#2) = 1.0
For Alternative b: 0 < P(#2) < 375
For Alternative ¢: .375 < P(#2) < .67

These ranges give the decision maker important insight on probability
estimates. For example, a decision maker may be reluctant to specify an exact
probability for State of nature #2. However, with this information, the decision
maker merely has to identify the most appropriate range for P(#2). Thus, if
the decision maker believes that P(#2) is somewhere in the range of, say
.80 to .90, according to the preceding calculations, Alternative a would be
best. Or, if the decision maker believes that P(#2) lies close to .50, then
Alternative ¢ would be best.

A similar analysis can be performed if the payoffs are costs or other values
that are to be minimized rather than maximized. In such cases, the lowest
line for a given value of P(#2) would be most desirable. An example of this
is illustrated in the Solved Problems section at the end of this chapter.

One final comment regarding the use of P(#2). It was mentioned previ-
ously that P(#2) is used for convenience. It happens that the equations of
the lines are a bit easier to develop using P(#2) rather than P(#1). However,
should a problem refer to P(#1) ranges rather than P(#2), you can proceed
by finding the ranges in terms of P(#2) and, then, converting these into
P(#1) ranges as the final step. This merely involves recognizing that P(#1)
and P(#2) are complements. For example, if P(#2) = 0, then P(#1) = 1.0;
if P(#2) = .40, then P(#1) = .60; and so on. Hence, if Alternative a is
optimal for the range 0 = P(#2) < .40, then in terms of P(#1), Alternative
a is optimal for the range .60 < P(#1) = 1.00. Figure 11-11 further illustrates
this concept using the previous example.
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Figure 11-11 Converting P(#2) Ranges into P(#1) Ranges
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Throughout this chapter decision criteria have been illustrated that use mone-
tary value as the basis of choosing among alternatives. Although monetary
value is a common basis for decision making, it is not the only basis, even
for business decisions. In certain instances, decision makers use multiple
criteria, one of which is the potential satisfaction or dissatisfaction associated
with possible payoffs.

For example, a great many people participate in state lotteries. However,
from a strict standpoint, lotteries have a negative expected value; the expected
return is less than the cost of the lottery. If it were not, the states would
lose money by running lotteries. Why do people play lotteries, then? The
answer is that they are hoping to win a large amount of money, and they
are willing to sacrifice a relatively small amount of money to have that chance.
In other words, even though their chances of winning are close to zero,
they have a greater utility for the potential winnings, despite a negative ex-
pected value, than for the amount of money they have to give up (pay) to
participate in the lottery. Similar arguments can be made for other forms of
wagering. People who behave in this fashion whether for purposes of wagering
or in other forms of decision making, are sometimes referred to as risk lakers.

Just the opposite happens when a person buys insurance, giving up 2
fixed dollar amount to insure against an event (e.g., a fire) that has very
little chance of occurring. Even so, if a fire or other insured event did occur,
the consequences would be so catastrophic that an individual would not
want to be exposed to that degree of risk. Thus, even though buying insurance
carries a negative monetary value, most individuals recognize the merit of
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doing so. We refer to such individuals as risk averters. Of course, some individ-
uals exhibit both forms of behavior in their decision making; they are risk
takers for certain kinds of decisions but risk averters for others. A lottery
player who owns a life insurance policy would be an example of this.

Thus, utility is a measure of the potential satisfaction derived from money.
Although utility can be an important factor in certain kinds of decision making,
assessing and using utility values can be rather complex. Not only does utility
vary within an individual for different types of situations, but it also seems
to vary among individuals for the same situations. That is, different people
might choose different alternatives in a given instance because of utility consid-
erations.

An expanded discussion of the topic of utility is beyond the scope of
this text. Interested readers might want to consult some of the references
listed for this chapter.

Decision theory is a general approach to decision making. It is very useful
for a decision maker who must choose from a list of alternatives, knowing
that one of a number of possible future states of nature will occur and that
this will have an impact on the payoff realized by a particular alternative.

Decision models can be categorized according to the degree of uncertainty
that exists relative to the occurrence of the states of nature. This can range
from complete knowledge about which state will occur to partial knowledge
(probabilities) to no knowledge (no probabilities, or complete uncertainty).
When complete uncertainty exists, the approach a decision maker takes in
choosing among alternatives depends on how optimistic or pessimistic he
or she is, and it also depends on other circumstances related to the eventual
outcome or payoff. Under complete certainty, decisions are relatively straight-
forward. Under partial uncertainty, expected values often are used to evaluate
alternatives. An extension of the use of expected values enables decision
makers to assess the value of improved or perfect information about which
state of nature will occur.

Problems that involve a single decision are usually best handled through
payoff tables, whereas problems that involve a sequence, or possible sequence,
of decisions, are usually best handled using tree diagrams.

Sometimes, decision makers can improve the decision process by taking
into account additional (sample) information, which enables them to modify
state of nature probabilities. Because there is almost always an additional
cost associated with obtaining that sample information, the decision maker
must decide whether the expected value of that information is worth the
cost necessary to obtain it.

Sensitivity analysis can sometimes be useful to decision makers, particu-
larly for situations in which they find it difficult to accurately assess the proba-
bilities of the various states of nature. Sensitivity analysis can help by providing
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ranges of probabilities for which a given alternative would be chosen, using
expected monetary value as the criterion. Hence, the problem of specifying
probabilities is reduced to deciding whether a probability merely falls within
a range of values. '

Although expected monetary value is a widely used approach to decision
making, certain individuals and certain situations may require consideration
of utilities, which reflect how decision makers view the satisfaction associated
with different monetary payoffs. '

decision criterion A standard or rule for choosing among alternatives (e.g,
choose the alternative with the highest expected profit).

decision tree A schematic representation of a decision problem that in-
volves the use of branches and nodes.

expected monetary value (EMV) For an alternative, the sum of the prod-
ucts of each possible payoff and the probability of that payoff.

expected opportunity loss (EOL) For an alternative, the sum of the prod-
ucts of each possible regret and the probability of that regret.

expected payoff under certainty (EPC) For a set of alternatives, the sum
of products of the best payoff for each state of nature and that state’s probabil-
ity.

expected regret (See expected opportunity loss.)
expected value of perfect information (EVPI) The maximum additional
benefit attainable if a problem involving risk could be reduced to a problem
in which it was certain which state of nature would occur. Equal to the
minimum expected regret. Also equal to EPC minus best EMV.

expected value of sample information The expected benefit of acquiring
sample information. Equal to the difference between the best EMV without
information and the best EMV with information.

maximax A decision criterion that specifies choosing the alternative with
the best overall payoff.

maximin A decision criterion that specifies choosing the alternative with
the best of the worst payoffs for all alternatives.

minimax regret A decision criterion that specifies choosing the alternative
that has the lowest regret (opportunity loss).

opportunity loss For an alternative given a state of nature, the difference
between that alternative’s payoff and the best possible payoff for that state
of nature.

payoff table A table that shows the payoff for each alternative for each
state of nature. ‘

principle of insufficient reason A decision criterion that seeks the alterna-
tive with the best average payoff, assuming all states of nature are equally
likely to occur.
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regret (See opportunity loss.)

risk A decision problem in which the states of nature have probabilities
associated with their occurrence.

state of nature ~Possible future events.

uncertainty Refers to a decision problem in which probabilities of occur-
rence for the various states of nature are unknown.

utility Of a payoff, a measure of the personal satisfaction associated with a
payoft.

1. Given this profit payoff table:

State of nature
# #2 #3
2. 18 15
17 10 14

22 16 10
14 14 14

Alternative

: Determme Wthh alternatrve Would be chosen usmg each of these
decision criteria: '
- a. Maximax.

b. Maximin.
¢. Minimax regret.
d. Principle of insufficient reason.

Solutlon : ~
.. The mmmax approach seeks the alternative that has the best
~overall payolf Because these are proﬁts the best payoff would
be the largest value, Wthh is the payoff 22. Thus, in order to
have a chance at that payoif the decision maker should Choose
Alternative ¢ : ' ;

b. The maximin approach is to choose the alternauve that Wr]l pro-
vide the best of the worst possible payoifs To find this, ﬁrst 1dent1fy
the worst proﬁt possible for each alternative:

‘Alternative = Worst Payoff

12
10
10
14 (best)





