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3.9. Orthogonal Complements and Projection Theorem

By a subspace of a Hilbert space H, we mean a vector subspace of H. A
subspace of a Hilbert space is an inner product space. If we additionally
assume that S is a closed subspace of H, then S is a Hilbert space itself,
because a closed subspace of a complete normed space is complete.

Definition 3.9.1 ( Orthogonal Complement). Let S be a non-empty subset
of a Hilbert space H. An element x € H is said to be orthogonal to S, de-
noted by x L S, if {x.y) =0 for every y € S. The set of all elements of H
orthogonal to S, denoted by S*, is called the orthogonal complement of S.
In symbols:

L ={xeHxLlS}

The orthogonal complement of S is denoted by ™ = (§+)*.

If x Ly for every y€ H, then x=0. Thus, H- ={0}. Similarly,
{0} = H. Two subsets 4 and B of a Hilbert space are said to be orthogonal
if x L y for every x € 4 and y € B. This is denoted by 4 1 B. Note that, if
A L B, then AN B={0} or (.

Theorem 3.9.1. For any subset S of a Hilbert space H, the set S* is a
closed subspace of H.
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Proof. 1f a,3 € C and x,y € §*, then
(ax+ By, z) = afx,z) + By, 2) =

for every z € S. Thus, S~ is a vector subspace of H. We next prove that S*
1s closed.

Let (x,) € §* and x, — x for some x € H. From the continuity of the
mmner product, we have

(x,) = < lim xusy> = Jim (xin¥) =0

e X

for every y € S. This shows that x € ST, and thus S* is closed. 0
The preceding theorem says that S is a Hilbert space for any subset S of

H. Note that S does not have to be a vector space. Since S L S, we have
SNSt={0}orSNS" =

Definition 3.9.2 (Convex Sets). A set U in a vector space is called convex
if for any x,y € U and o € (0,1) we have ax+ (1 —a)y € U.

Note that a vector subspace is a convex set.
The following theorem, concerning the minimization of the norm, is of
fundamental importance in approximation theory.

Theorem 3.9.2 (The Closest Point Property). Let S be a closed convex
subset of a Hilbert space H. For every point x € H there exists a unique

point y € S such that .
v =yl = inf fx = 2. (3.9.1)

Proof. Let (y,) be a sequence in S such that

Tim [lx =y, | = inf |lx - [

Denote d = inf..g ||x — z||. Since 1 5 (Vm + ) €S, we have
|x =5, +y)ll =d forallmneN.
Moreover, by the parallelogram law (3.3.6), we obtain
v = ll” = 4% = 3G+ 2 I+ 1l = 2l = 4l = 50+ 201
= (= p) + (=) P+ 1 = ) = (k= 2|1
—4lx =L 0+ 2l
= 2(xc = il + % = 2ll?) = 4llx = LG+ )1
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Since
2l = il =3l ) = 4’ as mmn— o,

and

HX - % (ym + yn)H; > dzs

we have ||y, fy,,Hz — 0, as m,n — oo. Thus, (y,) is a Cauchy sequence.
Since H is complete and S is closed, the limit lim, ., y, = » exists and
y € S. From the continuity of the norm we obtain

v =yl = |} = lim 3= lim =yl = d
H—2C 1—

We have proved that there exists a point in S satisfying (3.9.1). It remains to
prove the uniqueness. Suppose there is another point y; in S satisfying
(3.9.1). Then, since {(y +y,) € S, we have

Iy = will =4 4] - 222 <o
This can only happen if y = yy. [

Theorem 3.9.2 gives an existence and uniqueness result which is crucial
for optimization problems. However, it does not tell us how to find that
optimal point. The characterization of the optimal point in the case of a real
Hilbert space, stated in the following theorem, is often useful in such
problems.

Theorem 3.9.3. Let S be a closed convex subset of a real Hilbert space H,
v e S, and let x € H. Then the following conditions are equivalent:

() sl = inf |~ 2I.

(b) (x—y,z—y)<0 forallzeS.
Proof. Let ze€S. Since S is convex, A\z+ (1 —-Aye S for every
A € (0,1). Then, by (a), we have

= ¥l < v — Az — (1= Ayl = [l = 2) — Az = )l

Hence, as H is a real Hilbert space, we get

T P - 2 vz =)+ Xzl

[x—»
and consequently,

-
2

llz =¥l

o] >

<x7 ,7’:7y> g

Thus, (b) follows by letting A — 0.
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FIGURE 3.3.

Conversely, if x € H and y € S satisfy (b), then for every z € S, we have
2 2
by = ylP = x = 2P = 2(x =y, 2 = 3) = Iz = ¥I* <O,
Thus, x and y satisfy (a). O

If H =R* and S is a closed convex subset of R?, then condition (b) has a
clear geometrical meaning: The angle between the line through x and y and
the line through z and y is always obtuse (see Fig. 3.3).

Theorem 3.9.4 (Orthogonal Projection). If S is a closed subspace of a
Hilbert space H, then every element x € H has a unique decomposition in
the form x = y +z where y € S and z € S*.

Proof. 1f x ¢ S, then the obvious decomposition is x = x + 0. Suppose
now that x¢ S. Let y be the unique point of S satisfying
lx —y|| = infyes|lx —wl, as in Theorem 3.9.2. We will show that
x =y + (x—yp) is the desired decomposition.

If we Sand A € C, then y + Aw € S and

b = 2IF < b = p = AP = flx = 2117 = 2RAGw,x = )+ A el

Hence,
—2RA(w,x — ) + APl > 0.

If A > 0, then dividing by X and letting A — 0 gives

R(w,x — ) <0. (3.9.2)
Similarly, replacing A by —iX (A > 0), dividing by A, and letting A — 0 yields
S{w,x —y) <0. (3.9.3)

Since y € S implies —y € S, inequalities (3.9.2) and (3.9.3) hold also with
-y instead of w. Therefore {w,x —y) =0 for every w € S, which means
x—ypc St
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To prove the uniqueness note that if x =y, +z, ¥, €S, and z; € S,
then y—y, €S and z—z; € S~. Since y -~y =z, —z, we must have
y—y1=z1—z=0. Il

According to Theorem 3.9.4, every element of H can be uniquely repre-
sented as the sum of an element of S and an element of S*. This can be
stated symbolically as

H=5%S5" (3.9.4)

We say that H is the direct sum of S and S*. Equality (3.9.4) is called an
orthogonal decomposition of H. Note that the union of a basis of S and a
basis of S* is a basis of H.

Theorem 3.9.2 allows us to define a mapping Pg(x) = y, where y is as in
(3.9.1). Mapping Ps is called the orthogonal projection onto S. Such map-
pings will be discussed in Section 4.7.

Example 3.9.1. Let H =R°. Figure 3.4 exhibits the geometric meaning
of the orthogonal decomposition in R?. Here x € R*, x=y+z, y€ S,
and z € S*. Note that, if 57 is a unit vector in S, then y = {x,50)50-

Example 3.9.2. If H =R’ given a plane P, any vector x can be pro-
jected onto the plane P. Figure 3.5 illustrates this situation.

Theorem 3.9.5. If S is a closed subspace of a Hilbert space H, then
St =5

Proof. If x € S, then for every z € S* we have (x,z) =0, which means
x € S*. Thus, § C §**+. To prove that S+ C S consider an x € S*+.

Figure 3.4. Orthogonal decomposition in R>.
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P

Ficure 3.6. Orthogonal projection onto a plane.

Since S is closed, x = y + z for some y € S and z € S*. In view of the in-
clusion S C S™, we have y € S** and thus z=x -y € S*, because
S—— is a vector subspace. But z € S*, so we must have z =0, which
means x = y € S. This shows that §*+ C S, completing the proof. O



