Honors Project 20: Least Squares

In many science and engineering applications, one is often given a set of data points $\{(x_i, y_i), i = 1, ..., N\}$ in \mathbb{R}^2 , and interested in finding the line which "best fits this data" (see Fig. (a) below). One solution to this problem is provided by *classical least squares*: finding the line for which the sum of the squares of the distances d_i from the data points to the line in the direction of the dependent axis is a minimum (see Fig. (b) below).

As an application of optimization of functions of two variables — specifically, finding the m and b that minimize the error term

$$\sum i = 1^N (y_i - (mx_i + b))^2,$$

— it follows that the line y = mx + b which best approximates the data in the sense of classical least squares is given by

$$m = \frac{N \sum x_i y_i - \left(\sum x_i\right) \left(\sum y_i\right)}{N \sum x_i^2 - \left(\sum x_i\right)^2} \quad \text{and} \quad b = \frac{\left(\sum y_i\right) \left(\sum x_i^2\right) - \left(\sum x_i\right) \left(\sum x_i y_i\right)}{N \sum x_i^2 - \left(\sum x_i\right)^2}.$$

Tasks

- 1. Verify the above formulas.
- 2. Devise a procedure for finding the plane Π whose equation is of the form z = ax + by + c which "best fits" the data $\{(x_i, y_i, z_i), i = 1, ..., N\}$ in \mathbb{R}^3 . In the end you should arrive at a system of linear equations that need to be solved. You do not have to solve this system here, however. Indeed, to do Task 3 below you can use Maples solve command.
- 3. Apply the procedure you developed above to the following data set:

x_i	0.9	1.1	1.2	1.4	2.3	2.9	3.5	3.6	4.1	4.8
y_i	1.2	3.6	3.5	2.4	2.2	0.6	1.6	4.3	1.5	2.7
z_i	10.8	19.2	18.9	15.4	15.8	11.1	15.2	24.5	15.6	20.5

4. Without going through any analysis, what system of linear equations would you guess you would have to solve to find the hyperplane whose equations is w = ax + by + cz + d which "best fits" the data $\{(x_i, y_i, z_i, w_i), i = 1, ..., N\}$ in \mathbb{R}^4 .