Honors Project 6: Finite Differences

Introduction

In this project we view a sequence $\{a_n\}$ to be a function $a : Z \to R$ which associates to *every* integer $n \in Z$ the real number $a_n \in R$. Thus, for example, if $a_n = n^3$ then some of the values of a are:

We define the forward difference operator Δ_+ as the function which associates to each sequence a the sequence $\Delta_+ a$ whose nth term is

$$(\Delta_+ a)_n = a_{n+1} - a_n$$

the backward difference operator Δ_{-} as the function which associates to each sequence a the sequence $\Delta_{-}a$ whose nth term is

$$(\Delta_-a)_n = a_n - a_{n-1},$$

and the sum operator Σ as the function which associates to each sequence a the sequence Σa whose nth term is

$$(\Sigma a)_n = \sum_{i=0}^n a_i.$$

Questions

1. If

$$a_n = \begin{cases} 0 & \text{if } n < 0\\ \frac{1}{2^n} & \text{if } n \ge 0 \end{cases},$$

find, in simplest form: a) $(\Delta_+ a)_n$, b) $(\Delta_- a)_n$, and c) $(\Sigma a)_n$.

2. What general rules apply to computing Δ_+ , Δ_- , and Σ ? (For example, what can you say about Δ_+ca where c is a constant and a is a sequence? What can you say about $\Delta_+(a \pm b)$ where a and b are sequences? How about Σ 1, Σn , Σn^2 ? *Hint*: Consider Sections 3.3 and 5.2 of the text.)

3. What:

a) is the composition $\Sigma \circ \Delta_+$? That is, what is the value of

$$((\Sigma \circ \Delta_+) a)_n = (\Sigma (\Delta_+ a))_n = \sum_{i=0}^n (\Delta_+ a)_i = \sum_{i=0}^n (a_{i+1} - a_i)_i$$

for any sequence a, in simplest form? How about $\Sigma \circ \Delta_-$?

b) is the composition $\Delta_+ \circ \Sigma$? That is, what is the value of

$$((\Delta_{+} \circ \Sigma) a)_{n} = (\Delta_{+} (\Sigma a))_{n} = (\Sigma a)_{n+1} - (\Sigma a)_{n} = \sum_{i=0}^{n+1} a_{i} - \sum_{i=0}^{n} a_{i}$$

for any sequence a, in simplest form? How about $\Delta_{-} \circ \Sigma$?

c) result (from MATH 163) do parts (a) and (b) remind us of?