Extra Project 4.1: Maximum and Minimum Values on a Closed Interval

Objective

To illustrate how Maple can be used to find the maximum and minimum values of a function on a closed interval.

Narrative

If you have not already done so, read Section 4.1 of the text. In particular, be sure to read Example 4, p. 224: below we use this example to illustrate how Maple can be used to find the maximum and minimum values of $f(x) = 3x^4 - 16x^3 + 18x^2$ on the closed interval [-1, 4].

Task

a) Type the command lines in the left-hand column below into Maple in the order in which they are listed. The effect of each command is described in the right-hand column for your reference.

> # Project 4.1: Maximum and Minimum Values on a Closed Interval	
> restart;	Clear Maple's memory.
> f := x -> 3*x^4-16*x^3+18*x^2;	Let $f(x) = 3x^4 - 16x^3 + 18x^2$.
> plot(f(x),x=-14);	Plot the graph of f over the interval $[-1, 4]$.
> f1 := D(f);	Let $f1$ denote the first derivative f' of f .
<pre>> cn:= fsolve(f1(x)=0,x,x=-14);</pre>	Find the critical numbers of f on $[-1, 4]$ by solving
	the equation $f'(x) = 0$.
<pre>> print(cn[1],f(cn[1]));</pre>	The first critical number and the value of f there.
> print(cn[2],f(cn[2]));	The second critical number and the value of f
	there.
> print(cn[3],f(cn[3]));	The third critical number and the value of f there.
> print(-1,f(-1));	The left-hand endpoint of $[-1, 4]$ and the value of
	f there.
> print(4,f(4));	The right-hand endpoint of $[-1, 4]$ and the value
	of f there.
<pre>> plot({f(x),f1(x)},x=-14,y=-3040);</pre>	Plot the graphs of f and f' over a y -range large
	enough to capture all relevant behavior.

At this point make a copy of your typed input and Maple's responses (both text and graphics). Then, ...

b) What is the maximum value of f on the closed interval [-1, 4]? What is the minimum value of f on the closed interval [-1, 4]?

c) By hand, label the graphs of f and f' in the last plot, and highlight that part of the graph of f over which f is increasing, and that part of the graph of f' over which the values of f' are positive.

Comments

To find the critical numbers of f we must find the values of x in the domain of f for which f'(x) = 0 and f'(x) does not exist. We restricted our attention to points at which f'(x) = 0 in the above example since f(x) is a polynomial function so f'(x) exists for all x. If f(x) were a quotient, however, then we would need to find not only the values of x for which the numerator of f'(x) — namely $\operatorname{numer}(f1(x))$ — is zero, but also the values of x for which the denominator of f'(x) — namely $\operatorname{denom}(f1(x))$ — is zero.