4. seminar

Problem 1

Independent laboratory measurements of particular constant μ are characterized by a random sample X_1, \ldots, X_n , $E(X_i) = \mu$, $D(X_i) = \sigma^2$, $i = 1, \ldots, n$. Consider statistics $M_n = \frac{1}{n} \sum_{i=1}^n X_i$ and $L_n = \frac{X_1 + X_2}{2}$.

- a) Prove that M_n and L_n are unbiased estimators of the constant μ .
- b) Find out which of these estimators is better.
- c) Prove that $\{M_n\}$ and $\{L_n\}$ make the sequence of asymptotically unbiased estimators of the parameter μ .
- d) Prove that $\{M_n\}$ and $\{L_n\}$ make the sequence of consistent estimators of the parameter μ .

Problem 2

Let X_{11}, \ldots, X_{1n_1} and X_{21}, \ldots, X_{2n_2} be two independent random samples. The first sample follows the distribution with expected value μ_1 and variance σ^2 , the second sample follows the distribution with expected value μ_2 and variance σ^2 . Let M_1 , M_2 denote sample means; let S_1^2 , S_2^2 denote sample variances and $S_*^2 = \frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1+n_2-2}$ denote weighted mean of sample variances.

- a) Prove that the statistic $M_1 M_2$ is an unbiased estimator of the parametric function $\mu_1 \mu_2$.
- b) Prove that the statistic S_*^2 is an unbiased estimator of the parametric function σ^2 .

Problem 3

Let X_1, \ldots, X_n be a random sample from the continuous uniform distribution U(0, b), where b > 0 is an unknown parameter. The following statistics are defined: $T_1 = X_1 + \frac{1}{2}X_2 + \frac{1}{3}X_3 + \frac{1}{6}X_4$ and $T_2 = \frac{1}{2}(X_1 + X_2 + X_3 + X_4)$.

- a) Show that statistics T_1 and T_2 are unbiased estimators of the parameter b.
- b) Decide which estimator is better.
- c) Suggest any other estimator. Let $X_{(n)} = max\{X_1, \ldots, X_n\}$. Show that the statistic $T_3 = X_{(n)}$ is a consistent estimator of parameter b.

Problem 4

The plane speed was measured 5 times and the realization of sample mean was 870,3 m/sec. Find 95% confidence interval for parameter μ if the plane speed follows normal distribution with standard deviation $\sigma = 2.1m/s$.