
4 Point estimation and interval estimation of parameters
and parametric functions

Let us consider a random sample X1, . . . , Xn ∼ L(ϑ), whose parameter ϑ is unknown and unobserva-
ble. However information about this constant is ”hidden” and due to random influences ”covered
up” in the random sample. Point and interval estimation is aimed to ”discover” this parameter.
A point estimator T = T (X1, . . . , Xn) is to serve as a ”best guess” for an unknown parameter ϑ

(which is called the estimand). It is a function of the observable sample data, thus it is a statistic.
An estimate is the result from the actual application of the function to a particular sample of data.
This estimate substitute the unknown parameter and we hope it is sufficiently close to this parameter.
Point estimation should be contrasted with interval estimation, which is the use of sample data

to calculate an interval of possible (or probable) values of an unknown parameter ϑ. The most
prevalent form of interval estimation is confidence interval (D, H), which is constructed with regard
to in advance given confidence level. This level states how likely the interval is to cover the true
parameter. The confidence limits D = D(X1, . . . , Xn), H = H(X1, . . . , Xn) are statistics, their
numerical realizations depend on a particular sample of data.

Definition 4.1
Let X1, . . . , Xn be a random sample from a distribution L(ϑ). The set of all values, which the
parameter ϑ gains, is called parametric space and is denoted as Θ. Arbitrary function h(ϑ) is called
parametric function.

Definition 4.2
Let X1, . . . , Xn be a random sample from a distributionL(ϑ), let h(ϑ) be a parametric function and
let T, T1, T2, . . . be statistics.
(i.) Statistics T is said to be unbiased estimator of parametric function h(ϑ), if and only if

∀ϑ ∈ Θ : E(T ) = h(ϑ)
[An unbiased estimator does not cause systematically overvalued or undervalued estimates of
the parameter or the parametric function.]

(ii.) Let T1, T2 be two unbiased estimators of the identical parametric function h(ϑ). The estimator
T1 is said to be better, than estimator T2 if and only if
∀ϑ ∈ Θ : D(T1) < D(T2)

(iii.) A sequence of estimators T1, T2, . . . , Tn, . . . is a sequence of asymptotically unbiased estimators
of parametric function h(ϑ) if and only if
∀ϑ ∈ Θ : lim

n→∞
E(Tn) = h(ϑ)

[If E(T ) 6= h(ϑ) then the estimates are distorted and the estimator is said to be biased. If dis-
tortion decrease as n increase statistic T is an asymptotically unbiased estimator of parameter
or parametric function.]

(iv.) A sequence of estimators T1, T2, . . . , Tn, . . . is a sequence of consistent estimators of parametric
function h(ϑ) if and only if converges in probability toward h(ϑ), i.e.
∀ϑ ∈ Θ, ∀ε > 0 : lim

n→∞
P (|Tn − h(ϑ)| < ε) = 1

[ Increasing the sample size increases the probability of the estimator being close to the para-
meter.]

Previous definition listed desirable properties of point estimators of which consistency is most useful.
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Corollary 4.3
If Tn is an unbiased estimator then it is asymptotically unbiased as well. If in addition lim

n→∞
D(Tn) = 0

then asymptotical unbiasness imply consistency. Thus:
If lim

n→∞
E(Tn) = h(ϑ)∧ lim

n→∞
D(Tn) = 0, then Tn is a consistent estimator of parametric function h(ϑ).

The statistics M, S2, S12, R12, . . . introduced in 3rd section will be now explored whether they have
some of mentioned desirable properties. Ve 3. kapitole jsem si zavedli statistiky M, S2, S12, R12, . . ..
Nyní posoudíme, jestli tyto statistiky mají některé ze zmíněných žádoucích vlastností.

Theorem 4.4
Let X1, . . . , Xn be a random sample from a distribution with expected value µ, variance σ2 and
distribution function F (x). Let Mn is a sample mean, S

2

n is a sample variance and Fn(x) is a value
of sample distribution function in a point x. Then:

1. – Mn is an unbiased estimator of a parameter µ. [Thus ∀µ ∈ R : E(Mn) = µ]

– S2n is an unbiased estimator of a parameter σ2. [Thus ∀σ ≥ 0 : E(S2n) = σ2]

– Fn(x) is an unbiased estimator of F (x) for any given x ∈ R.
[Thus ∀x ∈ R : E(Fn(x)) = F (x)]

2. – M1, . . . , Mn, . . . is a sequence of consistent estimators of the parameter µ.

– S2
1
, . . . , S2n, . . . is a sequence of consistent estimators of the parameter σ2.

– F1(x), . . . , Fn(x), . . . is a sequence of consistent estimators of the parameter F (x) for any
given x ∈ R.

Remark 4.5
Sample standard deviation S is not !! unbiased estimator of the parameter σ with only exception -
when S follows degenerate distribution, thus it is certain to take the constant value.
[If S would be unbiased estimator of parameter σ, then E(S) = σ. Hence
D(S) = E(S2)− (E(S))2 = σ2 − σ2 = 0. Zero variance implies degenerate distribution.]

Theorem 4.6
Let (X1, Y1), . . . , (Xn, Yn) be a random sample from two-dimensional distribution with covariance
σ12. Then sample covariance S12 is an unbiased estimator of parameter σ12.
[Thus ∀σ12 ∈ R : E(S12) = σ12]

So far we have attended to point estimators and their properties. Now let us turn to interval estima-
tors. Interval estimates may be contrasted with point estimates and have the advantage over these
as they convey more information not just a ”best estimate” of a parameter but an indication of the
precision with which the parameter is between confidence limits.

Definition 4.7
Let X1, . . . , Xn be a random vector from distribution L(ϑ), h(ϑ) be parametric function, number
α ∈ (0, 1) and D = D(X1, . . . , Xn), H = H(X1, . . . , Xn) be statistics.
(i.) Interval (D, H) is called 100(1− α)% (two-sided) confidence interval for h(ϑ), if

∀ϑ ∈ Θ : P (D < h(ϑ) < H) ≥ 1− α

[It is almost certain that the confidence interval contains parameterh(ϑ).]

(ii.) Interval (D,∞) is called 100(1− α)% (left-sided) confidence interval for h(ϑ), if
∀ϑ ∈ Θ : P (D < h(ϑ)) ≥ 1− α
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(iii.) Interval (−∞, H) is called 100(1− α)% (right-sided) confidence interval for h(ϑ), if
∀ϑ ∈ Θ : P (h(ϑ) < H) ≥ 1− α

(iv.) The number α is called significance level. [The convention is that α is a small number close
to zero; the most common α is 0,05; 0,01; 0,1.] The number 1 − α (sometimes reported as a
percentage 100%(1−α)) is called the confidence level. Statistic D is called lower bound (lower
limit), statistic H is called upper bound (upper limit).

Remark 4.8
The choice of two-sided, left-sided or right-sided confidence interval depends on particular situation.
For instance two-sided interval may be of use for constructor who is interested in lower and upper
bound for the true size µ of particular product. Doing purchase of precious metals we would be
interested in lower bound for true gold content µ in bought ingot. Right-sided confidence interval is
of use for chemist, who needs to know the upper bound for content of foreign matters µ in analyzed
sample.

Poznámka 4.9 Process of confidence interval derivation

1. Find out a statistic V which is an unbiased point estimator of parametric function h(ϑ).

2. Find out a pivotal quantity (statistic) W which is a monotone function of both point estimator
V and parametric function h(ϑ), further its distribution is known and does not depend on
unknown parametric function h(ϑ).
Then find its quantiles wα/2 and w1−α/2 such that:
∀ϑ ∈ Θ : P (wα/2 < W < w1−α/2) ≥ 1− α.

3. Rearrange equivalently an inequality wα/2 < W < w1−α/2 toward an inequality D < h(ϑ) < H.

4. StatisticsD andH replace with their numerical realization d and h and thus obtain 100(1− α)%
empirical confidence interval for h(ϑ). This interval covers unknown parametric function h(ϑ)
with probability at least 1− α.

Remark 4.10
Imagine 100 mutually independent random samples from distribution with expected value µ and for
each of them derive corresponding 95% empirical confidence interval for parameter µ. If we randomly
choose one interval, the probability is 95% we end up having chosen an interval that contains the
parameter; however we may be unlucky and have picked the wrong one. We will never know. (A
number of right intervals is approximately 95, a number of wrong intervals is approximately 5.)

µ

Process of confidence interval derivation is shown in following example.

Example 4.11
Let X1, . . . , Xn be a random sample from normal distribution N(µ, σ2), where n ≥ 2 and numeric
value of parameter σ is known. Set a 100(1− α)% confidence interval on µ.
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Solution

1. Statistic V is an unbiased poin estimator for parameter µ.

V =M = 1

n

n∑

i=1
Xi ∼ N(µ, σ2

n
).

[E(M) = µ, D(M) = σ2

n
and linear combination of normal random sample keeps normality.]

2. Pivotal quantity W = U is convenient to our task;
W = U = M−µ

σ
√

n

∼ N(0, 1)

In this case quantiles wα/2, w1−α/2 are standard normal, thus uα/2 = −u1−α/2 and u1−α/2.
Hence
∀ϑ ∈ Θ : 1− α ≤ P (uα/2 < U < u1−α/2).

3. Stated inequality will be rearranged equivalently so that estimand µ will be isolated between
lower and upper limit statistic.

1− α ≤ P (uα/2 < U < u1−α/2) = P (M − σ√
n
· u1−α/2

︸ ︷︷ ︸

D

< µ < M +
σ√
n
· u1−α/2

︸ ︷︷ ︸

H

).

4. After observing the sample we can find values m for M and n, from which we calculate the
empirical confidence interval with fixed numbers d and h as endpoints.

In case of left-sided or right-sided confidence interval the significance level α does not to be halved,
it is concentrated on one tail of distribution instead. Thus in previous example
the left-sided confidence interval would be expressed as (D,∞) = (M − σ√

n
· u1−α,∞)

the right-sided confidence interval would be expressed as (−∞, H) = (−∞, M + σ√
n
· u1−α).

uα/2 0 u1−α/2 uα u1−α

Example 4.12
Consider a random sample of size 10 from a distribution N(µ; 0, 04). Based on the data set the
realization of sample mean m was calculated, m = 2, 06. Set a 95% empirical confidence interval on
µ : a) two-sided, b) left-sided, c) right-sided.

Solution
σ = 0, 02; n = 10; m = 2, 06; α = 0, 05; u1−α/2 = u0,975 = 1, 96; u1−α = u0,95 = 1, 64
ad a)

d = m − σ√
n
· u1−α/2 = 2, 06− 0,2√

10
· 1, 96 = 1, 94

h = m + σ√
n
· u1−α/2 = 2, 06 +

0,2√
10

· 1, 96 = 2, 18
P (1, 94 < µ < 2, 18) ≥ 0, 95
Thus µ ∈ (1, 94; 2, 18) with probability at least 0,95.
ad b)
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d = m − σ√
n
· u1−α = 2, 06− 0,2√

10
· 1, 64 = 1, 96

P (1, 96 < µ) ≥ 0, 95
Thus µ > 1, 96 with probability at least 0,95.

ad c)

h = m + σ√
n
· u1−α = 2, 06 +

0,2√
10

· 1, 64 = 2, 16
P (µ < 2, 16) ≥ 0, 95
Thus µ < 2, 16 with probability at least 0,95.

Remark 4.13
Let (d, h) be a 100(1− α)% empirical confidence interval for parametric function h(ϑ). Let us denote
∆ = h − d. A number ∆ is called the width of confidence interval.

a) As the significance level α remains constant the width of confidence interval ∆ decreases with
increasing size of sample n.

b) As the size of sample n remains constant the width of confidence interval ∆ decreases with
increasing significance level α

Example 4.14
Let X1, . . . , Xn be a random sample from N(µ, σ2), where σ2 is known. Find the minimum sample
size such that the width of 100(1− α)% empirical confidence interval on parameter µ does not exceed
the number δ.

Solution
We require that the confidence interval width ∆ ≤ δ. Thus
δ ≥∆ = h − d = m + σ√

n
· u1−α/2 − (m − σ√

n
· u1−α/2) =

2σ√
n
· u1−α/2

√
n ≥ 2σ

δ
· u1−α/2

n ≥ 4σ2u2
1−α/2

δ2

We choose the minimum natural number which satisfies the last inequality to be the sample size.

Example 4.15
In an example 4.12 a) an user is not satisfied with the with of 95% confidence interval on µ (1,94;
2,18). He would appreciate the width which would not exceed the umber 0.16, further he do not want
increase the significance level α. What would you suggest him?

Solution
To constrict the width of interval we have to change the sample size n.
δ = 0, 16, n =?, σ = 0, 2, u0,975 = 1, 96

n ≥ 4σ2u2
1−α/2

δ2
= 4·0,04·1,962

0,162
= 24, 01

The sample size n = 25 meets the requirements of the user.
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