
6 The statistical inferences based on a single sample from

the normal distribution

It is not very difficult to find random variables which refer to natural or social phenomena and
which are - or can be assumed to be - normally distributed. Then in case of not normally distributed
random variables if the sample is large, we can invoke the central limit theorem. Thus we can obtain
approximately normal distribution. Therefore it is necessary to pay great attention to random samples
from normal distribution.
Normal distribution is fully specified by two parameters, mean µ and variance σ2. Thus we are
going to follow the tasks concerning with these parameters, e.g. forming the confidence intervals or
hypothesis testing.

For simple random sample from normal distribution the following theorem states the list of common
test statistics and their distributions:

Theorem 6.1

Let X1, . . . , Xn be a random sample from normal distribution N(µ, σ2). Then:

1. The sample mean M =
n
∑

i=1
Xi and the sample variance S2 =

n
∑

i=1
(Xi − M)2 are mutually

independent.

2. U = M−µ
σ

√

n

∼ N(0, 1), thus M ∼ N(µ, σ2

n
)

[Pivotal statistic U is instrumental towards inferences about µ, when σ2 is known.]

3. K = (n−1)S2

σ2
∼ χ2(n − 1)

[Pivotal statistic K is instrumental towards inferences about σ2, when µ is unknown.]

4. T = M−µ
S
√

n

∼ t(n − 1)
[Pivotal statistic T is instrumental towards inferences about µ, when σ2 is unknown.]

5.

n
∑

i=1

(Xi−µ)2

σ2
∼ χ2(n)

[This pivotal statistic is instrumental towards inferences about σ2, when µ is known.]
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Example 6.2

A weight of a packet of granulated sugar follows the normal distribution N(1002 g, 64 g2). The
inspection draws randomly 9 packets of one series and is finding if the average weight is at least
999 g. Otherwise the enterprise has to pay a penalty. Find the probability that the enterprise will
have to pay the penalty.

Solution

X1, . . . , X9 ∼ N(1002, 64), M ∼ N(1002, 64
9
), P (M ≤ 999) =?

P (M ≤ 999) = P (M−1002√
64

9

≤ 999−1002√
64

9

) = P (U ≤ −9
8
) = 1 − Φ(9

8
) = 1 − Φ(1, 125) = 1 − 0, 87076 =

0, 12924.
The probability, that the enterprise will pay the penalty is approximately 12,9%.

The common statistician’s task is to derive confidence intervals for unknown parameters. In case of
the normal distribution they are parameters µ and σ2, thus four situations may occur: finding the
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confidence interval 1. for µ, when σ2 is known; 2. for σ2, when µ is unknown; 3. for µ, when σ2

is unknown a 4. for σ2, when µ is known. Doing confidence interval in accordance to one of four
mentioned situations the appropriate pivotal statistic has to be selected . Then using the procedure
4.9, the construction of the confidence interval is easy. In case of the first situation it has been done in
the example 4.11. The following theorem states the upper and lower limits of the confidence intervals
for any mentioned situation.

Theorem 6.3

Let X1, . . . , Xn be a random sample from normal distribution N(µ, σ2). Let us consider 100(1−α)%
empirical confidence interval.

1. The confidence interval for µ, when σ2 is known is derived from pivotal statistic

U = M−µ
σ

√

n

∼ N(0, 1). Thus the limits are for:

two-sided conf. int. (d, h) =
(

m − σ
√

n
· u1−α/2 , m+ σ

√

n
· u1−α/2

)

left-sided conf. int. (d,∞) =
(

m − σ
√

n
· u1−α , ∞

)

right-sided conf. int. (−∞, h) =
(

−∞ , m + σ
√

n
· u1−α

)

2. The confidence interval for σ2, when µ is unknown is derived from pivotal statistic

K = (n−1)S2

σ2
∼ χ2(n − 1). Thus the limits are for:

two-sided conf. int. (d, h) =
(

(n−1)s2

χ2
1−α/2

(n−1)
,

(n−1)s2

χ2
α/2
(n−1)

)

left-sided conf. int. (d,∞) =
(

(n−1)s2

χ2
1−α(n−1)

, ∞
)

right-sided conf. int. (−∞, h) =
(

−∞ ,
(n−1)s2

χ2α(n−1)

)

3. The confidence interval for µ, when σ2 is unknown is derived from pivotal statistic

T = M−µ
s

√

n

∼ t(n − 1). Thus the limits are for:
two-sided conf. int. (d, h) =

(

m − s
√

n
· t1−α/2(n − 1) , m+ s

√

n
· t1−α/2(n − 1)

)

left-sided conf. int. (d,∞) =
(

m − s
√

n
· t1−α(n − 1) , ∞

)

right-sided conf. int. (−∞, h) =
(

−∞ , m + s
√

n
· t1−α(n − 1)

)

4. The confidence interval for σ2, when µ is known is derived from pivotal statistic
n
∑

i=1

(Xi−µ)2

σ2
∼ χ2(n). Thus the limits are for:

two-sided conf. int. (d, h) =







n
∑

i=1

(xi−µ)2

χ2
1−α/2

(n)
,

n
∑

i=1

(xi−µ)2

χ2
α/2
(n)







left-sided conf. int. (d,∞) =







n
∑

i=1

(xi−µ)2

χ2
1−α(n)

, ∞







right-sided conf. int. (−∞, h) =





−∞ ,

n
∑

i=1

(xi−µ)2

χ2α(n)







Example 6.4

The constant µ was measured 10 times independently. The results of measuring are:
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2 1, 8 2, 1 2, 4 1, 9 2, 1 2 1, 8 2, 3 2, 2
These results are assumed to be the numerical realization of a random sample X1, . . . , Xn from
distribution N(µ, σ2) where parameters µ, σ2 are unknown. Find the 95% confidence interval for the
parameter µ a) two-sided, b) left-sided, c) right-sided.

Solution

It is the confidence interval for µ when σ2 is unknown. The statistic T is instrumental to deriving
confidence limits, T = M−µ

s
√

n

∼ t(n − 1) whose α− quantiles are looked up in table.
n = 10 α = 0, 05 t1−α/2(n − 1) = t0,975(9) = 2, 2622
t1−α(n − 1) = t0,95(9) = 1, 8331
m = 2, 06 s2 = 0.0404 s = 0.2011.
ad a)
d = m − s

√

n
· t1−α/2(n − 1) = 2, 06− 0,2011

√

10
· 2, 2622 = 1, 92

h = m + s
√

n
· t1−α/2(n − 1) = 2, 06 + 0,2011

√

10
· 2, 2622 = 2, 20

1, 92 < µ < 2, 2 with the probability at least 0,95

ad b)
d = m − s

√

n
· t1−α(n − 1) = 2, 06− 0,2011

√

10
· 1, 8331 = 1, 94

1, 94 < µ with the probability at least 0,95

ad c)
h = m + s

√

n
· t1−α/2(n − 1) = 2, 06 + 0,2011

√

10
· 1, 8331 = 2, 18

µ < 2, 18 with the probability at least 0,95

So much for confidence intervals and now let us turn to hypothesis testing. We will follow the classical
method using critical region; the other methods can be derived easily.

Definition 6.5

Let X1, . . . , Xn be a random sample from N(µ, σ2), where σ2 is known. Let n ≥ 2 and c is a constant.
Test H0 : µ = c versus H1 : µ 6= c (eventually H1 : µ < c eventually H1 : µ > c) is called z-test.

Let X1, . . . , Xn be a random sample from N(µ, σ2), where σ2 is unknown. Let n ≥ 2 and c is a
constant. Test H0 : µ = c versus H1 : µ 6= c (eventually H1 : µ < c eventually H1 : µ > c) is called
one-sample t-test.

Let X1, . . . , Xn be a random sample from N(µ, σ2), where µ is unknown. Let n ≥ 2 and c is a
constant. Test H0 : σ2 = c versus H1 : σ2 6= c (eventually H1 : σ2 < c eventually H1 : σ2 > c) is
called test about variance.

Remark 6.6

The selection of an appropriate test statistic corresponding to particular test is analogous to the
selection of an appropriate pivotal statistic in 6.3, thus for z-test the test statistic T0 is derived from
statistic U , for t-test it is derived from statistic T and for test about variance it is derived from
statistic K.
Beware of ambiguity of a letter T . In general T0 stands for any test statistic; in case of t-test T stands
for statistic following Student’s t-distribution. Under the null hypothesis it can be written T0 = U ,
T0 = T , T0 = K

Theorem 6.7

Let X1, . . . , Xn ∼ N(µ, σ2) , c ∈ R, n ≥ 2
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1. Considering z-test at the significance level α the null hypothesis H0 is rejected in favor of
alternative hypothesis H1, if the realization of the test statistic T0 =

M−c
σ

√

n

falls within critical

region W . According to the form of the alternative hypothesis the list of corresponding critical
regions follows :
two-tailed test H1 : µ 6= c W = (−∞, −u1−α/2〉

⋃〈u1−α/2, ∞)
left-tailed test H1 : µ < c W = (−∞, −u1−α〉
right-tailed test H1 : µ > c W = 〈u1−α, ∞)

2. Considering t-test at the significance level α the null hypothesis H0 is rejected in favor of
alternative hypothesis H1, if the realization of the test statistic T0 =

M−c
S
√

n

falls within critical

region W .
two-tailed test H1 : µ 6= c W = (−∞, −t1−α/2(n − 1)〉⋃〈t1−α/2(n − 1), ∞)
left-tailed test H1 : µ < c W = (−∞, −t1−α(n − 1)〉
right-tailed test H1 : µ > c W = 〈t1−α(n − 1), ∞)

3. Considering test about variance at the significance level α the null hypothesis H0 is rejected

in favor of alternative hypothesis H1, if the realization of the test statistic T0 =
(n−1)S2

c
falls

within critical region W .
two-tailed test H1 : σ2 6= c W = (0, χ2α/2(n − 1)〉⋃〈χ21−α/2(n − 1), ∞)
left-tailed test H1 : σ2 < c W = (0, χ2α(n − 1)〉
right-tailed test H1 : σ2 > c W = 〈χ21−α(n − 1), ∞)

Example 6.8

According to the chocolate-wrapper, the net weight of chocolate should be 125 g. Manufacturer
recorded buyers’s complaints of lower weight then it was declared. For that reason the audit division
drawn randomly 50 chocolates and found out the mean weight was 122g and the standard deviation
was 8.6 g. Assuming that the weight of chocolates follows the normal distribution and using the
significance level α = 0.01 can we conclude that the buyer’s complaints are true?

Solution

X1, . . . , X50 ∼ N(µ, σ2). We are testing H0 : µ = 125 versus H1 : µ < 125. Parameter σ2 is unknown,
thus the task leads to one-sample t-test..
The test statistic: T0 =

M−c
S
√

n

.

The numerical realization of it: t0 =
122−125
8,6
√

50

= −2, 4667.
Critical region: W = (−∞, −t1−α(n − 1)〉 = (−∞, −t0,99(49)〉 = (−∞; −2, 4049〉
Since t0 ∈ W, H0 is rejected at the significance level 0,01.

The buyer’s complaints can be concluded as true and the risk of an error is at most 1%.

Having random sample from two-dimensional normal distribution, this can be convert to single
normal sample. Then the above stated inferences can be used.

Poznámka 6.9 on random sample from two-dimensional normal distribution

Let
(

X1
Y1

)

, . . . ,
(

Xn

Yn

)

∼ N2

(

(

µ1
µ2

)

,
(

σ2
1

σ12
σ12 σ2

2

)

)

, n ≥ 2.
Using linear transformation the random sample

(

X
Y

)

is converted to scalar random variable Z =

(X − Y ) ∼ N((µ1 − µ2), (σ
2
1 − 2σ12 + σ22))

Let us denote µ = µ1 − µ2 σ2 = σ21 − 2σ12 + σ22
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Thus the random sample (X1 − Y1), . . . , (Xn − Yn) = Z1, . . . , Zn follows the normal distribution
N(µ, σ2) and is called říkáme mu differential random sample .

Theorem 6.10

Let
(

X1
Y1

)

, . . . ,
(

Xn

Yn

)

∼ N2

(

(

µ1
µ2

)

,
(

σ2
1

σ12
σ12 σ2

2

)

)

, n ≥ 2 and variance-covariance matrix Σ is unknown. Con-
sidering 100(1− α)% empirical confidence interval the confidence limits for the parametric function
µ = µ1 − µ2 have the form:
d = m − s

√

n
· t1−α/2(n − 1)

h = m + s
√

n
· t1−α/2(n − 1)

Example 6.11

The chemical content in solution were tested by two laboratory measurements. (Data are in percen-
tages.) The random sample consist of 5 specimen.:
the number of specimen 1 2 3 4 5

1. method 2.3 1.9 2.1 2.4 2.6
2. method 2.4 2.0 2.0 2.3 2.5

Assuming the sample is selected from two-dimensional normal distribution determine 90% empirical
confidence interval for difference between expected values of considered methods.

Solution

At first we transform the given sample to the differential sample, where:
z1 = −0.1 z2 = −0.1 z3 = 0.1 z4 = 0.1 z5 = 0.1
m = 0.2 s2 = 0.012 s = 0.109545 n = 5 t1−α/2(n − 1) = t0.95(4) = 2.1318.
d = m − s

√

n
· t1−α/2(n − 1) = 0, 02− 0,109545

√

5
· 2, 1318 = −0.0844

h = m + s
√

n
· t1−α/2(n − 1) = 0, 02 + 0,109545

√

5
· 2, 1318 = 0, 1244

The confidence interval −0, 0844 < µ < 0, 1244 is true with the probability at least 0.95.

Definition 6.12

Let
(

X1
Y1

)

, . . . ,
(

Xn

Yn

)

∼ N2

(

(

µ1
µ2

)

,
(

σ2
1

σ12
σ12 σ2

2

)

)

, n ≥ 2.
The test H0 : µ1 − µ2 = 0 versus H1 : µ1 − µ2 6= 0 is called paired t-test. Using differential random
sample the paired t-test is converted to single sample t-test. Přechodem k rozdílovému náhodnému
výběru převedeme párový t-test na jednovýběrový t-test.

Example 6.13

The following table lists the rate of return on investment (in percentages) of 12 randomly drawn
companies, whose foreign investments are represented by random variable X and domestic invest-
ments are represented by random variable Y :
a number of company 1 2 3 4 5 6 7 8 9 10 11 12

X 10 12 14 12 12 17 9 15 9 11 7 15
Y 11 14 15 11 13 16 10 13 11 17 9 19

Assuming the sample is selected from two-dimensional normal distribution, at a significance level
α = 0.1 run the test that there is no difference between foreign and domestic investment. Use
a)confidence interval method, b) classical method.

Solution

At first we transform the given sample to the differential sample Zi = Xi−Yi, i = 1, . . . 12. Realization
of sample characteristics follows: m = −1, 33, s2 = 4, 78
We are testing hypothesis H0 : µ = 0 versus H1 : µ 6= 0,
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needed quantile t0.95(11) = 1, 7959.
ad a)

d = m − s
√

n
· t1−α/2(n − 1) = −1, 3−

√
4,78

√

12
· 1, 7959 = −2, 4677

h = m + s
√

n
· t1−α/2(n − 1) = −1, 3 +

√
4,78

√

12
· 1, 7959 = −0, 1989

•Since 0 6∈ (−2, 4677 , −0, 1989), H0 is rejected on the significance level 0,1.
ad b)
The test statistic follows: T0 =

M−c
S
√

n

.

The numerical realization follows: t0 =
−1,3−0
√

4,78
√

12

= −2, 11085.

The critical region follows: W = (−∞, −t1−α/2(n − 1)〉⋃ 〈t1−α/2(n − 1), ∞) =
= (−∞, −1, 7959〉⋃ 〈1, 7959, ∞)
•Since t0 ∈ W , H0 is rejected on the significance level 0,1.
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