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Gauss-Markov Assumptions 

A1 E{εi} = 0 for all i

A2 all εi are independent of all xi (exogeneous xi)

A3 V{ei} = s2 for all i (homoskedasticity)

A4 Cov{εi, εj} = 0 for all i and j with i ≠ j (no autocorrelation)
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Observation yi is a linear function 

yi = xi'b + εi

of observations xik, k =1, …, K, of the regressor variables and the 

error term εi

for i = 1, …, N; xi' = (xi1, …, xiK)



Hackl, Advanced Econometrics, Lecture 2 4

OLS Estimators: Properties

Under assumptions (A1) and (A2):

1. E{b} = β, the OLS estimator is unbiased

Under assumptions (A1), (A2), (A3), and (A4):

2. The variance of the OLS estimator b is

V{b} = σ2( Σi xi xi‟ )
-1

3. s2 = e'e/(N-K) is unbiased for σ2

4. The OLS estimator b is BLUE (best linear unbiased 

estimator) for β
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Implications of Gauss-Markov 
Assumptions
The conditional distribution of error terms ε given X fulfills

 E{ε | X} = 0 

 V{ε | X} = σ2I

ε: N-dimensional vector of all error terms

X: NxK matrix of explanatory variables

I: NxN identity matrix

The conditional distribution of ε given X has

 zero means 

 constant variances and zero covariances
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Violations of V{ε|X} = σ2I

In economic reality, 

1. constancy of variances of the error terms may be violated

V{ε | X} = diag{s1
2, …, sN

2} = s2 diag{h1
2, …, hN

2}

the error terms are denoted as heteroskedastic

2. the error terms may be correlated

V{ε | X} = s2Ψ, with a positive definite matrix Ψ with 

diagonal elements 1; the error terms are denoted as 

autocorrelated or serially correlated 

The notation V{ε | X} = s2 Ψ with a positive definite matrix Ψ

encompasses both

 Heteroskedasticity: diagonal matrix Ψ

 Autocorrelation: Ψ with diagonal elements 1
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The Questions

Aspects of both heteroskedasticity and autocorrelation of error terms

 What are the consequences of violations of V{ε | X} = σ2I for the 
OLS estimator?

 How can violations of V{ε | X} = σ2I be identified?

 Which modifications of methods can be used in case of violations of 
V{ε | X} = σ2I?
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Heteroskedasticity: Typical 
Situations
Heteroskedasticity is typically observed

 In cross sectional surveys, e.g., in household surveys:

 Data, e.g., income from single person households vs. 

households with several individuals; 

 data from males and females 

 data from several regions

 For models with stochastic coefficients

 For data from financial markets, e.g., exchange rates, yields 

from securities
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Heteroskedasticity: An Example

70 households:

monthly income of 

households and 

monthly expendi-

tures for durable 

goods
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Heteroskedasticity: Example, 
cont‘d

Residuals e = y- ŷ from

Ŷ = 44.18 + 0.17 X

X: monthly income

Y: monthly expenditures 

for durable goods

the larger the income, 

the more are the 

residuals scattered! -600
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Heteroskedasticity: Stochastic 
Regression Coefficients
Yi = a + bi Xi + ei: the coefficients are random

bi = b + ui

ui: identically and independently distributed variable with variance 

su
2 for all i

The model can be written as

Yi = a + b Xi + vi

with error terms vi = ei + Xi ui

The variance of vi

Var{vi} = se
2 + Xi

2 su
2

is a function of X and not constant
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Autocorrelation and economic 
time series
 Consumption in the current period does not differ too much 

from that in the previous period; the current consumption is a 

function of the consumption in the previous period

 Production, consumption, investment, etc.: typically, 

successive observations of economic variables are positively 

correlated 

 The shorter the observation interval, the higher the correlation 

between economic variables

 Seasonal adjustment: applying smoothing or filtering 

procedures may cause correlated data
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Autocorrelation: Typical 
Situations
Autocorrelation is typically observed for time series

 If a relevant regressor with trend is not included in the model; a 
case of missspecification

 If the functional form of a regressor is missspecified

 If the explained variable is autocorrelated in a form which is not 
adequately represented by the systematic part of the model

Attention! 

 Autocorrelation of error terms is in general an indicator for not 
appropriate model specification

 Tests for autocorrelation are the most commonly used 
diagnostic tools for checking the model specification

March 26, 2010



Hackl, Advanced Econometrics, Lecture 2 15

OLS estimator in case of V{ε|X} 

≠ σ2I
The case V{ε | X} = s2 Ψ with a positive definite matrix Ψ

encompasses both heteroskedasticity and autocorrelation

 The OLS estimators 

b = (X„X)-1 X„y = b + (X„X)-1 X„ε

are unbiased as E{ε | X} = 0; the violation V{ε | X} = σ2I has 

no effect on a the expectation of the OLS estimators 

 The covariance matrix of the OLS estimators is

V{b} = s2 (X'X)-1 X' Ψ X (X'X)-1

with positive definite matrix Ψ from V{ε | X} = s2 Ψ
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Consequences of V{ε|X} ≠ σ2I

The consequences of both heteroskedasticity and autocorrelation 

are similar 

 The OLS estimators are still unbiased but no longer BLUE

 Routinely computed standard errors s.e.(b) are incorrect

Ways to deal with this situation:

 Look for an alternative estimator which is more efficient than 

the OLS estimator

 Substitute the routinely computed, incorrect standard errors by 

corrected standard errors 

 Reconsider the model specification 
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The GLS Estimator

The model y = Xb + ε with V{ε | X} = s2 Ψ is transformed into a 

model 

Py = y* = PXb + Pε = X*b + ε*

such that V{ε* | X} = V{Pε | X} = PV{ε | X}P’ = s2P Ψ P’ = s2I

This implies that the transformation matrix P is square and 

nonsingular with P‟P = Ψ-1; then Ψ = (P‟P)-1 = P-1(P‟)-1

The OLS estimator ᵬ for the transformed model y* = X*b + ε*,

ᵬ= (X*„X*)-1 X*„y* = (X„Ψ-1X)-1 X„Ψ-1y

is called GLS (generalized least squares) estimator

 ᵬ is based on the Gauss-Markov assumptions!  

 ᵬis unbiased and BLUE, V{ᵬ} = s2 (X' Ψ-1X)-1

The choice or derivation of P is specific for each situation or 

model

March 26, 2010



Hackl, Advanced Econometrics, Lecture 2 18

The EGLS Estimator

The transformation matrix P is a function of the elements of Ψ

To calculate the GLS estimator ᵬ, the matrix Ψ, which in most 

situations is unknown, is substituted by an (unbiased and 

consistent) estimated matrix ψ

The GLS estimator ᵬis derived in a two-step procedure:

1. Derive an estimate ψ for the matrix Ψ

2. Use the estimated matrix ψ to calculate the GLS estimator

ᵬ= (X„ψ-1X)-1 X„ψ-1y

This estimator is called the estimated GLS or EGLS estimator for 

ß; it is also called FGLS (feasible GLS) estimator 

 For large N the EGLS estimator and the GLS estimator have 

similar properties

 No guarantee that the EGLS outperforms the OLS estimator
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Consequences of 
Heteroskedasticity
 The OLS estimators b for b

 are unbiased and consistent

 have the covariance matrix 

V{b} = s2 (X'X)-1 X' Ψ X (X'X)-1

 are not efficient

 follow under generally satisfied regularity conditions 
asymptotically the normal distribution

 The estimator s2 = e'e/(N-K) for the variance s2 of the error 
terms is biased

 Standard errors for b from s2(X'X)-1 are biased

 Attention! The sign of the bias can be positive ore negative! 

 t- and F-Test may be misleading
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The GLS Estimator ᵬ

Heteroskedasticity: The error terms εi of yi = xi‟β + εi have variances 

V{εi| X} = σ2
i = σ2hi

2

The transformed model (P = diag{h1
-1, …, hN

-1})

yi /hi = (xi /hi)‟β + εi /hi

has homoskedastic error terms: V{εi /hi} = σ2

GLS estimator ᵬ:

 The GLS estimator is also denoted weighted least squares 

(WLS) estimator

 Observations with higher variance get a lower weight (they 

provide less accurate information on β)

March 26, 2010
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Properties of ᵬand t-test

The covariance matrix of ᵬ is

V{ᵬ} = s2 (Σi hi
-2 xi x„i)

-1

Estimation of the error term variance s2

t-statistic

 Follows the t-distribution with N-K d.f., if the error terms are normally 

distributed and E{ᵬk} = q; se(ᵬk) is the square root of the k-th 

diagonal element of Var{ᵬ} with estimated s2

 Can be used for testing H0: βk=q

 The t-distribution holds approximately under generally satisfied 

regularity conditions 
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The EGLS Estimator ᵬ*

Estimates ĥi for diagonal elements hi from matrix Ψ

 N observations for estimating N quantities hi

 Additional assumptions needed, depending on the form of 

heteroskedasticity

 Consistent estimator ĥi² implies asymptotically equivalent 

GLS ᵬ and EGLS ᵬ*

Concepts for estimating hi

 Model for hi as a function of regressor variables, variance 

function

 hi² = exp{zi‟α}; “multiplicative heteroskedasticity” (Verbeek)

 More general, hi² = h(zi‟α) with a non-negative function h(.);  

see Breusch-Pagan test
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Robust Standard Errors

The covariance matrix of the OLS estimator b is

V{b} = s2 (X'X)-1 X' Ψ X (X'X)-1

Inference on β can be based on standard errors from V{b} if Ψ is

substituted by suitable estimates : 

 Heteroskedasticity-consistent covariance matrix estimator 

(HCCME)

Heteroskedasticity-consistent standard errors: square roots of the 

diagonal elements of HCCME; 

 also called White, heteroskedasticity-robust , or simply robust 

standard errors
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Model-based Estimated vs
Robust Standard Errors
Robust standard errors: 

+ Need no information on the functional form of the variance 

function

+ Produce asymptotically valid inference

+ Widely available in econometric software, e.g. in GRETL

Model based standard errors: 

+ Preferable to robust standard errors at least asymptotically, 

i.e., smaller standard errors, if true variance function is used

- Incorrect variance function may cause incorrect inference
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Tests for Heteroskedasticity

In case of heteroskedasticity: Results based on OLS may be 

misleading due to biased standard errors of OLS estimates b

Important to know whether the error terms fulfill homoskedasticity 

or not

Tests for checking the null hypothesis of homoskedasticity

 Breusch-Pagan-Test 

 White-Test 

 Goldfeld-Quandt-Test

Tests based on OLS residuals from original model
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The Breusch-Pagan Test

Model for heteroskedasticity

σi² = σ² h(zi‟α)

 function h(.) with h(.) > 0 and h(0) = 1

 zi: J variables including the intercept

Null hypothesis

H0: α = 0

i.e., si
2 = σ² for all i, i.e. homoskedasticity

Breusch-Pagan test:

1. Auxiliary regression of the squared OLS residuals ei² on zi;, i.e., 

h(.) a linear function; typically, zi is chosen to be the model 

regressors; Re
2

2. Test statistic: BP = N Re
2, with Re

2 from the auxiliary regression

3. BP follows the Chi-squared distribution with J d.f.
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Example: Labor Demand

Labor demand function 

 Explanatory  variables: output, wage costs, capital stock 

 LABOR: total emploment (number of workers)

 CAPITAL: total fixed assets (in Mio EUR)

 WAGE: total wage costs per worker (in 1000 EUR)

 OUTPUT: value added (in Mio EUR)

 Sample: 569 Belgian firms, data from1996

 Model specification LABOR = g(OUTPUT, CAPITAL, WAGE)

 Linear model

 Loglinear model

March 26, 2010
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Labor Demand: The Data
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Labor Demand Function: 
Linear Model
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OLS estimated linear labor demand function : Output from GRETL

Modell 1:KQ, benutze die Beobachtungen 1-569

Abhängige Variable: LABOR

Koeffizient Std. Fehler t-Quotient P-Wert

const 287,719 19,6418 14,6483 <0,00001 ***

WAGE -6,7419 0,501405 -13,4460 <0,00001 ***

OUTPUT 15,4005 0,355633 43,3043 <0,00001 ***

CAPITAL -4,59049 0,268969 -17,0670 <0,00001 ***

Mittel d. abh. Var. 201,0808 Stdabw. d. abh. Var. 611,9959

Summe d. quad. Res. 13795027 Stdfehler d. Regress. 156,2561

R-Quadrat 0,935155 Korrigiertes R-Quadrat 0,934811

F(3, 565) 2716,024 P-Wert(F) 0,000000

Log-Likelihood -3679,670 Akaike-Kriterium 7367,341

Schwarz-Kriterium 7384,716 Hannan-Quinn-Kriterium 7374,121
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Actual vs Predicted Labor 
Demand
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Labor Demand: Residuals vs
Output
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Linear Labor Demand 
Function: Breusch-Pagan Test

March 26, 2010

Modell 2: KQ, benutze die Beobachtungen 1-569

Abhängige Variable: u2

Koeffizient   Std.-fehler           t-Quotient          P-Wert  

-------------------------------------------------------------

const      -22719,5       11838,9        -1,919            0,0555    *

WAGE          228,857       302,217 0,7573          0,4492   

OUTPUT     5362,21      214,354         25,02            1,57e-093 ***

CAPITAL    -3543,51        162,119         -21,86           3,25e-077 ***

Mittel d. abh. Var.          24244,34        Stdabw. d. abh. Var.    145259,5

Summe d. quad. Res. 5,01e+12        Stdfehler d. Regress.   94181,84

R-Quadrat         0,581837        Korrigiertes R-Quadrat      0,579617

F(3, 565)               262,0493        P-Wert(F)                        1,6e-106

Log-Likelihood         -7322,116       Akaike-Kriterium        14652,23

Schwarz-Kriterium    14669,61        Hannan-Quinn-Kriterium   14659,01

BP = 569x0.5818 = 331.1, p-value : 1.9E-71



Labor Demand Function: 
Loglinear Model
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OLS estimated linear labor demand function : Output from GRETL

Modell 3: KQ, benutze die Beobachtungen 1-569

Abhängige Variable: l_LABOR

Koeffizient Std.-fehler t-Quotient    P-Wert  

--------------------------------------------------------------

const            6,17729       0,246211       25,09      6,53e-094 ***

l_WAGE -0,927764      0,0714046     -12,99      5,85e-034 ***

l_OUTPUT 0,990047      0,0264103      37,49      2,23e-155 ***

l_CAPITAL -0,00369748    0,0187697      -0,1970    0,8439   

Mittel d. abh. Var.     4,488665   Stdabw. d. abh. Var.    1,171166

Summe d. quad. Res.   122,3388   Stdfehler d. Regress.   0,465327

R-Quadrat 0,842971      Korrigiertes R-Quadrat 0,842138

F(3, 565)               1011,023      P-Wert(F)               1,3e-226

Log-Likelihood         -370,0750     Akaike-Kriterium 748,1501

Schwarz-Kriterium 765,5256      Hannan-Quinn-Kriterium 754,9300
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Loglinear Labor Demand 
Function, cont’d

Test for heteroskedasticity

 BP = 7.73, p-value:  0.052

 White test: 

 With regression on all regressors, squared regressors and 

interactions: test statistic: NxR² = 58.5; p-value: 2.6E-9

 With regression on only regressors  and squared 

regressors: test statistic: NxR² = 21.5; p-value: 0.0015
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Loglinear Labor Demand 
Function, cont’d

White's Test für Heteroskedastizität

KQ, benutze die Beobachtungen 1-569

Abhängige Variable: uhat^2

Koeffizient Std.-fehler t-Quotient   P-Wert  

-----------------------------------------------------------------

const           2,54460       3,00278        0,8474     0,3971   

l_WAGE -1,29900      1,75274       -0,7411     0,4589   

l_OUTPUT -0,903725    0,559854      -1,614      0,1070   

l_CAPITAL 1,14205       0,375822       3,039      0,0025    ***

sq_l_WAGE 0,192741     0,258954       0,7443     0,4570   

X2_X3           0,138038     0,162563       0,8491     0,3962   

X2_X4          -0,251779    0,104967      -2,399      0,0168    **

sq_l_OUTPUT 0,138198     0,0356469      3,877      0,0001    ***

X3_X4          -0,191605    0,0368665     -5,197      2,84e-07  ***

sq_l_CAPITAL 0,0895374   0,0139874      6,401      3,27e-010 ***

White = 0.1029x569 = 58.5; p-value: 2.6E-9
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The White Test

Generalizes the Breusch-Pagan test with linear function for 

heteroskedasticity with linear function h(.) 

White test:

1. Auxiliary regression: the squared OLS residuals ei² on all 

regressors, the squared regressors, and the interactions of the 

regressors

ei²  = Σk αk xik + Σk αk xik²  + Σk Σj αkj xikxij

P: the number of coefficients in the auxiliary regression

2. Test statistic: N Re
2, with Re

2 from the auxiliary regression

3. The test statistic follows the Chi-squared distribution with P d.f. 

Alternatively, the White test is based on ei²  = Σk αk xik + Σk αk xik² 
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Goldfeld-Quandt-Test

Null hypothesis: homoskedasticity

Alternative: two regimes with variances of the error terms: sA
2

(regime A) and sB
2 (regime B) 

Example:

y1 = X1b1 + u1, Var{u1} = sA
2IN1 (Regime A)

y2 = X2b2 + u2, Var{u2} = sB
2IN2 (Regime B)

Null hypothesis: sA
2 = sB

2

F-Test: 

Si: sum of squared residuals for regime i

March 26, 2010
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Goldfeld-Quandt-Test, cont’d

Test procedure:

1. Separate the NA observations from regime A and the NB 

observations from regime B 

For time series, arrange the observations in the order of 
increasing value of variable Z and drop 2c observations 
around the center of the ordered set of observations; NA = NB

= (N-c)/2

2. Fit the model separately to the NA and the NB observations: 
OLS estimates bi and sum of squared residuals Si (i = A, B) 

3. Determine the Goldfeld-Quandt  test statistic

under the null hypothesis, F follows approximately the F-
distribution with NB-c-K and NA-c-K d.f.
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Example: Expenditures for 
Durable Goods

70 households:

monthly income  (X) 

of households and 

monthly expendi-

tures for durable 
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Household Expenditures

Households with (A) X<4000 and (B) X>4000: two regimes? σA
2 ≠ σB

2?

The model Yi = β1 + β2Xi + εi is fitted 

(I)  to all data (N = 70): Ŷ = 44.18 + 0.17 X, S = 2,094.511, s = 175.5 

(II)(A): to data with X < 4000 (NA = 48): Ŷ = 119.71 + 0.13 X, SA = 

627.648, sA = 117

(II)(B): to data with X > 4000 (NB = 22): Ŷ = -155.34 + 0.20 X, SB = 

1,331.777, sB =  258

Test statistics:

p-value: 0.000004; null hypothesis is to be rejected

Attention: Rejection can be caused by σA
2 ≠ σB

2; but also because 

coefficients β1 and β2 change from regime A to regime B

1331777 48 2
4.88

627648 22 2
F


= =


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Household Expenditures, cont’d

Breusch-Pagan test: Null hypothesis σA
2 = σB

2; 

The alternative is: σi
2 = α1 + α2xi, i =1, …, N

1. Consumption function: Ŷ = 44.18 + 0.17 X

2. Fitting the squared residuals et
2 to α1 + α2 xi gives

Re
2 = 0.2143 

BP = 70 (0.2143) = 15.0 

p-Wert: 0.0001

Null hypothesis is to be rejected

March 26, 2010



Advanced Econometrics -
Lecture 2
 Violations of V{ε|X} = σ2I

 Heteroskedasticity and Autocorrelation

 Heteroskedasticity: Estimates

 Heteroskedasticity: Tests 

 Heteroskedasticity: Alternatives

 Autocorrelation: Cases and Examples

 First order Autocorrelation

 Tests for Autocorrelation

 Demand for Ice Cream 

 Autocorrelation: some Extensions

March 26, 2010 Hackl, Advanced Econometrics, Lecture 2 44

x



Inference in Case of 
Heteroskedasticity
Under heteroskedasticity, the covariance matrix of the OLS 

estimators b is:

V{b} = σ2 (X'X)-1 X' Ψ X (X'X)-1

The use of the covariance matrix σ2(X'X)-1 and the corresponding 

standard errors for inference like

 t-tests, F-test 

 Confidence intervals 

has the risk of biased results 

It is recommended

 To use corrected, i.e., robust standard errors 

 To transform the model so that the error terms are 

homoskedastic
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Labor Demand: White’s s.e.

The White standard errors or robust or heteroskedasticity-consistent 

standard errors

The uncorrected standard errors underestimate between 20 and 100%

As a consequence, changed p-values are obtained for the t- and F-test
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variable estimate OLS s.e. White s.e.

constant 6.177 0.246 0.294

log(WAGE) -0.928 0.071 0.087

log(OUTPUT) 0.990 0.026 0.047

log(CAPITAL) -0.004 0.019 0.038



Transformation to 
Homoskedasticity
The transformation requires information about the function h(.) from  hi² 

= h(zi‟α) [the error term of yi = xi‟β + εi has variances V{εi| X} = σ2
i = 

σ2hi
2]

In case of multiplicative heteroskedasticity, 

ĥi² = exp(zi‟a)

With transformation of the model into

the OLS estimators from the transformed model gives the EGLS 

estimators for β
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Labor Demand: EGLS with hi² 
= exp(zi’α)
Estimates b and standard errors se(b) obtained from (i) the loglinear

model with OLS, (ii) the loglinear model with OLS and White s.e., 

and (iii) the transformed model
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Variable OLS EGLS
OLS 

s.e.

White 

s.e.

EGLS 

s.e.

constant 6.177 5.895 0.246 0.294 0.248

log(WAGE) -0.928 -0.856 0.071 0.087 0.072

log(OUTPUT) 0.990 1.035 0.026 0.047 0.027

log(CAPITAL) -0.004 -0.057 0.019 0.038 0.022
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Autocorrelation

Assumption (A4) 

Cov{εi, εj} = 0 for all i and j with i ≠ j 

is violated

(in absence of heteroskedasticity)

V{ε | X} = σ2 Ψ

with a positive definite matrix Ψ with diagonal elements 1 

Autocorrelated or serially correlated error terms

Issues:

 What are consequences of autocorrelation?

 How to identify autocorrelation?

 What alternative methods that can be used to cope with 
autocorrelation?
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Example: Import Function

MTR: Imports

FDD: Demand

(from AWM database)

100000

200000

300000

400000

500000

600000

400000 8000001200000 2000000

FDD

M
T

R

Import function:  MTR = -227320 + 0.36 FDD

R2 = 0.977, tFFD = 74.8
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Example: Import Function, cont‘d

MTR: Imports

FDD: Demand

(from AWM database)

-30000

-20000

-10000

0

10000

20000

30000

40000

50000

1970 1975 1980 1985 1990 1995 2000

RESID

RESID: et = MTR - (-227320 + 0.36 FDD)
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Example: Import Function, cont‘d

Lagged residuals 

[Resid(-1)] vs. actual 

residuals [Resid] 

Attention! Serial 

correlation

r = 0.993

-30000

-20000

-10000

0

10000

20000

30000

40000

50000

-40000 -20000 0 20000 40000 60000

Resid

R
e

s
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1

)
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Example: Imports

1.E+09

2.E+09

3.E+09

4.E+09

5.E+09

6.E+09

1.E+09 2.E+09 3.E+09 4.E+09 5.E+09 6.E+09

MTR

M
T

R
(-

1
)

Lagged imports [MTR(-1)] vs

actual imports [MTR] 

corr{MTR, MTR(-1)} = 0.9994
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Typical Situations for 
Autocorrelation
Autocorrelation of the error terms typically occurs when

 a relevant regressor is not taken into account in the model, 

misspecification of the model

 the functional form of a regressor is erroneously specified

 the dependent variable has an autocorrelated pattern that is 

not adequately represented by the systematic part of the 

model 

Autocorrelation of the error terms may indicate a misspecified

model 

 omitted variables

 incorrect functional forms 

 incorrect dynamics

Autocorrelation tests are a tool for testing for misspecification
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Wrong Functional Form

Simulated data (+) from 0.5 log(Time) and fitted linear model 

(Verbeek, p.117)
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Positive Autocorrelation

Demand for ice cream explained from income and price index 

(Verbeek, p.106) 
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First-order Autocorrelation

A model with first-order autocorrelated error terms: 

yt = xt'β + εt 

with 

εt = ρεt-1 + vt 

where vt is an error with mean zero and constant variance σv
2; vt is

called “white noise”

Assumptions: for ρ = 0, the Gauss-Markov conditions are met
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The AR(1)-Process

For all t, 

εt = ρεt-1 + vt

with white noise vt 

εt is generated by an autoregression or by an AR(1) process, an 
autoregressive process of order 1

Properties of εt are derived for | ρ | < 1

 E{εt} = 0 for all t

 V{εt} = σv
2(1 - ρ2)-1

which follows from V{εt} = V{ρεt-1 + vt } = ρ2 V{εt-1} + σv
2

 Cov{εt, εt-1} = E{εt εt-1} = σv
2 ρ(1- ρ2)-1

 Cov{εt, εt-s} = σv
2 ρs(1- ρ2)-1 for all s

All error terms are correlated; the covariances decrease with 
growing distance s in time between the error terms

Autocorrelation function: Cov{εt, εt-s} vs lag s

March 26, 2010



Hackl, Einführung in die Ökonometrie (12) 61

Imports: Autocorrelation 
function
Date: 05/15/05   Time: 16:57

Sample: 1970:1 2003:4

Included observations: 136

AutocorrelationPartial Correlation AC PAC Q-Stat Prob

.|*******| .|*******|1 0.968 0.968 130.30 0.000

.|*******| .|.      | 2 0.936 -0.017 253.06 0.000

.|*******| .|.      | 3 0.903 -0.041 368.07 0.000

.|*******| .|.      | 4 0.869 -0.021 475.47 0.000

.|****** | *|.      | 5 0.832 -0.069 574.71 0.000

.|****** | .|.      | 6 0.799 0.044 666.95 0.000

.|****** | .|.      | 7 0.768 0.001 752.66 0.000

.|****** | .|.      | 8 0.739 0.029 832.69 0.000

.|*****  | *|.      | 9 0.706 -0.080 906.37 0.000

.|*****  | *|.      | 10 0.668 -0.107 972.93 0.000

.|*****  | *|.      | 11 0.626 -0.092 1031.8 0.000

.|****   | *|.      | 12 0.581 -0.081 1082.9 0.000
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The AR(1)-Process, cont‘d

Covariance matrix V{ε} of the errors ε

with |ρ| < 1

V{ε} 

 Has a band structure

 Depends only – besides σv
2 – of the parameter ρ

 Elements are decreasing with growing lag s
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A Transformed Model, GLS 
Estimators
Model yt = xt'β + εt with 

εt = ρεt-1 + vt

where vt is white noise

The transformed model 

yt – ρyt-1 = (xt – ρxt-1)‟b + vt , t = 2, …, T

satisfies the Gauss-Markov conditions

The differences yt – ρyt-1 are called Cochrane-Orcutt
transformations of the yt; analogously for xt

Given that ρ is known, estimation of coefficients of this model 
results (almost) in the GLS estimator

Note: Information of the first observation is lost by the 

transformation

Typically, ρ is unknown
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Estimation of ρ

Model yt = xt'β + εt with 

εt = ρεt-1 + vt

where vt is white noise

1. OLS estimation of β; residuals et

2. Auxiliary regression of residuals et on its lagged values et-1

gives the OLS estimator ȓ for ρ

The estimator ȓ

 is typically biased 

 is consistent for ρ under weak regularity conditions

March 26, 2010
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Cochrane-Orcutt Estimator

Model yt = xt'β + εt with 

εt = ρεt-1 + vt

where vt is white noise

Two steps:

1. OLS estimation of β, estimation of ȓ for ρ from auxiliary 

regression, Cochrane-Orcutt transformation yt* = yt – ȓ yt-1, xt* = xt

– ȓ xt-1 for t = 2, …, T

2. OLS estimation of β and σv
2 from

yt* = xt*' β + vt

gives the Cochrane-Orcutt estimators for β (EGLS estimator)

The Cochrane-Orcutt estimator is based on only T-1 observations!

Iterative Cochrane-Orcutt estimator: repeat the estimation of ρ and 

step 2 until convergence
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Prais-Winsten Estimator

The Prais-Winsten estimator is based on all T observations

The transformed model 

yt – ȓ yt-1 = (xt – ȓ xt-1)„ β + vt ,   t = 2, …, T

is supplemented by an equation for the first observation:

For the first equation:

 The error term ε1 is uncorrelated with all vt

 V{ε1} = σv
2(1 - ρ2)-1, so that V{(1 - ρ2)-1/2 ε1} has the same 

variance σv
2 as that of all other error terms 
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Tests for Autocorrelation

Residuals indicate autocorrelation (b is an unbiased estimator)

Graphical displays of residuals give indication on autocorrelation 

of errors

Tests on the basis of residuals 

 Durbin-Watson test

 Asymptotic tests, Breusch-Godfrey test

March 26, 2010



Advanced Econometrics -
Lecture 2
 Violations of V{ε|X} = σ2I

 Heteroskedasticity and Autocorrelation

 Heteroskedasticity: Estimates

 Heteroskedasticity: Tests

 Heteroskedasticity: Alternatives

 Autocorrelation: Cases and Examples

 First order Autocorrelation

 Tests for Autocorrelation

 Demand for Ice Cream 

 Autocorrelation: some Extensions

March 26, 2010 Hackl, Advanced Econometrics, Lecture 2 68

x



Hackl, Advanced Econometrics, Lecture 2 69

Asymptotic Tests for 
Autocorrelation
The auxiliary regression of residuals et on its lagged values et-1

gives 

 the OLS estimator ȓ for ρ 

 standard error for ȓ

The following test can be performed:

1. t-test: the statistic t for the t-test is approximately

t ≈ ȓ √T

under the null hypothesis (ρ = 0) it follows approximately the 

t-distribution with T-1 df

2. Breusch-Godfrey test: (T-1)R² with R² from the auxiliary 

regression follows under the null hypothesis (ρ = 0) 

approximately the Chi-squared distribution with 1 df
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Durbin-Watson Test

Requirements: 

 the model has an intercept 

 no lagged dependent variables as regressor; cf. assumption (A2) 

Test statistic

 For ρ>0: DW is in the interval (0,2)

 For ρ<0: DW is in the interval (2,4)

 DW close to the value 2: no indication of autocorrelation

 DW  close to 0 or 4: errors are highly correlated
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Durbin-Watson Test, cont‘d

Distribution and critical limits for DW:

 depends upon regressors xt

 exact critical values are unknown, but upper bounds (dU) and 

lower bounds (dL) can be derived 

 d< dL: H0 rejected

 d> dU: H0 not is rejected

 dL < d < dU: no decision  (inconclusive region )

Bounds for

critical limits

for a = 0.05

T
K=2 K=3 K=10

dL,0.05
dU,0.05 dL,0.05 dU,0.05 dL,0.05 dU,0.05

15 1.08 1.36 0.95 1.54 0.17 3.22

20 1.20 1.41 1.10 1.54 0.42 2.70

100 1.65 1.69 1.63 1.71 1.48 1.87

March 26, 2010



Hackl, Advanced Econometrics, Lecture 2 72

Import functions, cont‘d

 Regression of imports (MTR) on demand (FDD)

MTR = -2.27x109 + 0.357 FDD, tFDD = 74.9, R2 = 0.977

DW = 0.014 < 1.69 = dL,0.05 for T = 136, K = 2 

 Import function with trend (T)

MTR = -4.45x109 + 0.653 FDD – 0.030x109 T

tFDD = 45.8, tT = -21.0, R2 = 0.995

DW = 0.093 < 1.68 = dL,0.05 for T = 136, K = 3 

 Import function with lagged imports as regressor

MTR = -0.124x109 + 0.020 FDD + 0.956 MTR-1

tFDD = 2.89, tMTR(-1) = 50.1, R2 = 0.999

(DW = 1.079 < 1.68 = dL,0.05 for T = 135, K = 3)
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Durbin-Watson Test, cont‘d

 DW test does not indicate 

 reasons for rejecting the null hypothesis

 how the model can be improved

 Reason for rejecting the null hypothesis can be various kinds of 

misspecification 

 Test for autocorrelation of first order; analyzing quarterly data 

suggests test for fourth order autocorrelation

 The inconclusive region and the limited number of critical 

barriers (K, T, a) make the test unwieldy 
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Example: Demand for Ice Cream

Time-series from Hildreth and Lu (1960): 

 30 four-weekly observations, 1951-1953

 Variables:

 cons: consumption of ice cream per head (in pints)

 income:  average family income per week (in USD)

 price: price of ice cream (per pint)

 temp: average temperature (in F)
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Demand for Ice Cream: Data

Consumption and price of ice cream, temperature (Verbeek, p.112)
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Demand for Ice Cream: OLS 
Results

March 26, 2010

Consumption of ice cream, explained by three regressors (Verbeek, 

p.112)

D&W test (T=30, K=4): 

DW = 1.02 < dL;0.05 = 1.21
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Demand for Ice Cream: Actual 
and Fitted Values
Actual (+) and fitted (connected points) values of consumption of ice 

cream (Verbeek, p.113)
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Demand for Ice Cream: 
Autocorrelation
Regression of the OLS residuals et on et-1 gives

 ȓ = 0.401

 R² = 0.149

Tests for autocorrelation 

 ȓ √T = 2.19, p-value: 0.029

 (T-1) R² = 4.32, p-value: 0.038

Both tests reject the null hypothesis of no autocorrelation
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Demand for Ice Cream: 
Cochrane-Orcutt

March 26, 2010

EGLS estimates based on the iterative Cochrane-Orcutt procedure 

(Verbeek, p.114)
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Demand for Ice Cream: An 
Alternative Model

March 26, 2010

DW in the inconclusive region for α = 0.05 (Verbeek, p.114)
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Alternative Autocorrelation 
Patterns
Alternative patterns for autocorrelation of the error terms

 Higher order autocorrelation 

 Moving average structure

Higher order autocorrelation

 Typically, for quarterly data the AR(4) structure is appropriate

εt = γεt-4 + vt

with white noise vt

 More generally, the AR(4) structure is

εt = γ1εt-1 + … γ4εt-4 + vt

 It is called 4th order autocorrelation
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Alternative Autocorrelation 
Patterns, cont’d

Moving average structure

 Typically, if the correlation between different error terms is limited 

by a maximum time lag 

 MA(1) structure

εt = vt + α vt-1 

with white noise vt

 εt is correlated with εt-1, but not with εt-2, εt-3, …
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Inference in Case of 
Autocorrelation
The options – in the preferred order – are:

1. Reconsider the model: 

 Change functional form , e.g., use log(x) rather than x

 include additional explanatory variables (seasonals) or 

additional lags

2. Compute heteroskedasticity-and-autocorrelation consistent 

standard errors (HAC standard errors) for the OLS estimator;

3. Reconsider options 1 and 2; if autocorrelation is considered 

certain:

4. Use EGLS with existing model. 
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HAC Estimator for V{b}

Similar to the White standard errors for heteroskedasticity 

Corrects OLS standard errors for both heteroskedasticity and 

autocorrelation

In V{b} = s2 (X'X)-1 X'ΨX (X'X)-1, Ψ is substituted by an appropriate 

estimator

Newey-West: Substitution of Sx = s2(X'ΨX)/T = (StSsstsxtxs„)/T by 

with wj = j/(p+1); the so-called truncation lag p is to be chosen 

appropriately

HAC (heteroskedasticity-and-autocorrelation consistent) estimator 

T (X'X)-1 Ŝx (X'X)-1
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Import Function, cont‘d

Regression of imports (MTR) on demand (FDD)

MTR = -2.27x109 + 0.357 FDD, tFDD = 74.9, R2 = 0.977

OLS estimator and standard errors

The non-corrected standard errors underestimate considerably

March 26, 2010
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Dynamic Models

The model 

yt = xt‟β + εt with εt = ρεt-1 + vt

describes both

 E{yt | xt } = xt‟β

 E{yt | xt, xt-1, yt-1} = xt‟β + ρ (yt-1 – xt-1‟β)

The reformulation

yt = xt‟β + ρyt-1 – ρxt-1‟β + vt

specifies a linear model with uncorrelated error terms

In many cases, lagged values of y and/or x will eliminate the serial 

correlation problem
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Some Import Functions

 Regression of imports (MTR) on demand (FDD)

MTR = -2.27x109 + 0.357 FDD, tFDD = 74.9, R2 = 0.977

 Autocorrelation of the residuals: 

Corr(et, et-1) = 0.993

 Import function with trend (T)

MTR = -4.45x109 + 0.653 FDD – 0.030x109 T

tFDD = 45.8, tT = -21.0, R2 = 0.995

 Multicollinearity? Attention! Corr{FDD, T} = 0.987

 Import function with lagged imports as regressor

MTR = -0.124x109 + 0.020 FDD + 0.956 MTR-1

tFDD = 2.89, tMTR(-1) = 50.1, R2 = 0.999
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Exercise

1. Answer questions a, b, c, e, f and g of Exercise 4.1 of Verbeek. 

2. Answer questions of Exercise 4.2 of Verbeek. 
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