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Private Consumption
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Private Consumption, cont’d
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Growth of private 
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Disposable Income
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Time Series
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Is a time-ordered sequence of observations of a random variable

Examples:

 Annual values of private consumption 

 Changes in expenditure on private consumption

 Quarterly values of personal disposable income 

 Monthly values of imports

Notation:

 Random variable Y

 Sequence of observations Y1, Y2, ... , YT

 Deviations from the mean: yt = Yt – E{Yt} = Yt – μ



Components of a Time Series
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Components or characteristics of a time series are

 Trend

 Seasonality

 Irregular fluctuations

Time series model: represents the characteristics as well as possible

Purpose of modeling 

 Describing the time series 

 Forecasting the future

Example: Yt = βt + ΣiγiDit + εt

with Dit = 1 if t corresponds to i-th quarter, Dit = 0 otherwise 

for describing the development of the disposable income
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Stochastic Process

Time series: realization of a stochastic process

Stochastic process is a sequence of random variables Yt, e.g.,

{Yt, t = 1, ..., n}

{Yt, t = -∞, ..., ∞} 

Joint distribution of the Y1, ... , Yn: 

p(y1, …., yn)

Of special interest

 Evolution of the expectation t = E{Yt} over time

 Dependence structure over time

Example: Extrapolation of a time series as a tool for forecasting 

April 16, 2010
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AR(1)-Process

States the dependence structure between consecutive observations as

Yt = δ + θYt-1 + εt,   |θ| < 1

with εt: white noise, i.e., serially uncorrelated, mean zero, V{εt} = ζ²

“Autoregressive process of order 1”

From Yt = δ + θYt-1 + εt = δ+θδ +θ²δ +… +εt + θεt-1 + θ²εt-2 +… follows

E{Yt} = μ = δ(1-θ)-1

In deviations from μ, yt = Yt - , the model is

yt = θyt-1 + εt

Autocovariances γk = Cov{Yt,Yt-k}

 k=0: γ0 = V{Yt} = θ²V{Yt-1} + V{εt} = … = Σi θ2i ζ² = ζ²(1-θ²)-1

 k=1: γ1 = Cov{Yt,Yt-1} = E{(θyt-1+εt)yt-1} = θV{yt-1} = θζ²(1-θ²)-1

 In general: γk = Cov{Yt,Yt-k} = θkζ²(1-θ²)-1

 Depends of k, not of t!

April 16, 2010
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MA(1)-Process

States the dependence structure between consecutive observations as

Yt = μ + εt + αεt-1

with εt: white noise, V{εt} = ζ²

Moving average process of order 1

E{Yt} = μ

Autocovariances γk = Cov{Yt,Yt-k}

 k=0: γ0 = V{Yt} = ζ²(1+α²)

 k=1: γ1 = Cov{Yt,Yt-1} = αζ²

 γk = 0 for k = 2, 3, …

 Depends of k, not of t!

April 16, 2010
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AR-Representation of MA-
Process
The AR(1) can be represented as MA-process of infinite order

yt = θyt-1 + εt = Σ∞
i=0 θi εt-i

given that |θ| < 1

Similarly, the AR representation of the MA(1) process

yt = αyt-1 – α²yt-2 + … εt = Σ∞
i=0 (-1)i αi+1yt-i-1 + εt

given that |α| < 1

April 16, 2010
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Stationary Processes

Refers to the joint distribution of Yt’s, in particular to second moments

A process is called strictly stationary if its stochastic properties are 
unaffected by a change of the time origin

 The joint probability distribution at any set of times is not affected 
by an arbitrary shift along the time axis

Covariance function: 

γt,k = Cov{Yt, Yt+k}, k = 0, 1,…

Properties: 

γt,k = γt,-k

Weak stationary process: 

E{Yt} = μ for all t

Cov{Yt, Yt+k} = γk, k = 0, 1, … for all t and all k

Also called covariance stationary process

April 16, 2010
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AC and PAC Function

Autocorrelation function (AC function, ACF) is independent of the scale 
of Y

for a stationary process: 

ρk = Corr{Yt,Yt-k} = γk/γ0, k = 0, 1,…

Properties: 

 |ρk| ≤ 1

 ρk = ρ-k 

 ρ0 = 1 

Correlogram: graphical presentation of the AC function

Partial autocorrelation function (PAC function, PACF):  

θkk = Corr{Yt, Yt-k|Yt-1,...,Yt-k+1}, k = 0, 1, …

θkk is obtained from Yt = θk0 + θk1Yt-1 + ... + θkkYt-k

Partial correlogram: graphical representation of the PAC function

April 16, 2010
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AC and PAC Function, cont‘d

Examples for the AC and PAC functions

 White noise

ρ0 = θ00 = 1

ρk = θkk = 0, if k ≠ 0

 AR(1) process, Yt = δ + θYt-1 + εt

ρk = θk, k = 0, 1,…

θ00 = 1, θ11 = θ, θkk = 0 for k > 1

 MA(1) process, Yt = μ + εt + αεt-1

ρ0 = 1, ρ1 α/( α2), ρk = 0 for k > 1 

PAC function: damped exponential if > 0, otherwise alternating 

and damped exponential 

April 16, 2010
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AC and PAC Function: 
Estimates
Estimating of AC and PAC function 

Estimator for ρk:

Estimator for θkk: coefficient of Yt-k in the regression of Yt on Yt-1, …, Yt-k

2
)(

))((

t t

ktt t

k
yy

yyyy
r

April 16, 2010



Hackl, Advanced Econometrics, Lecture 5 

AR(1) Processes, Verbeek, p.274
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MA(1) Processes, Verbeek, p.275
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The ARMA(p,q) Process

Generalization of the AR and MA processes: ARMA(p,q) process

yt = θ1yt-1 + … + θpyt-p + εt + α1εt-1 + … + αqεt-q

with εt: white noise 

Lag (or shift) operator L (Lyt = yt-1, L
0yt = Iyt = yt, L

pyt = yt-p)

ARMA(p,q) process on operator notation

θ(L)yt = α(L)εt

with operator polynomials θ(L) and α(L)

θ(L) = I - θ1L - … - θpL
p, α(L) = I + α1L + … + αqL

q

April 16, 2010
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Lag Operator

Lag (or shift) operator L

 Lyt = yt-1, L
0yt = Iyt = yt, L

pyt = yt-p

 Algebra of polynomials in L like algebra of variables

Examples: 

 (I - ϕ1L)(I - ϕ2L) = I – (ϕ1+ ϕ2)L + ϕ1ϕ2L
2

 (I - θL)-1 = Σ∞
i=0θ

i Li

 MA(∞) representation of the AR(1) process

yt = (I - θL)-1εt

the infinite sum needs (e.g., finite variance) |θ| < 1

 MA(∞) representation of the ARMA(p,q) process

yt = [θ (L)]-1α(L)εt

similarly the AR(∞) representations; invertibility condition: 

restrictions on parameters

April 16, 2010
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Invertibility of Lag Polynomials

Invertibility condition for I - θL: |θ| < 1

Invertibility condition for I - θ1L - θ2L
2:

 θ(L) = I - θ1L - θ2L
2 = (I - ϕ1L)(I - ϕ2L) with ϕ1+ϕ2 = θ1 and -ϕ1ϕ2 = 

θ2

 Invertibility conditions: both (I – ϕ1L) and (I – ϕ2L) invertible; |ϕ1| < 

1, |ϕ2| < 1

 Characteristic equation: θ(z) = (1- ϕ1z) (1- ϕ2z) = 0 

 Characteristic roots: solutions z1, z2 from (1- ϕ1z) (1- ϕ2z) = 0 

 Invertibility conditions: |z1| > 1, |z2| > 1

Can be generalized to lag polynomials of higher order

Unit root: a characteristic root of value 1

 Polynomial θ(z) evaluated at z = 1: θ(1) = 0, if Σiθi = 1

 Simple check, no need to solve characteristic equation

April 16, 2010
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Types of Trend

Trend: The expected value of a process Yt increases or decreases with 

time

 Deterministic trend: a function f(t) of the time, describing the 

evolution of E{Yt} over time

Yt = f(t) + εt, εt: white noise 

Example: Yt = α + βt + εt describes a linear trend of Y; an 

increasing trend corresponds to β > 0

 Stochastic trend: Yt = δ + Yt-1 + εt or 

ΔYt = Yt – Yt-1 = δ + εt, εt: white noise

 describes an irregular or random fluctuation of the differences 

ΔYt around the expected value δ 

 AR(1) – or AR(p) – process with unit root

 “random walk with trend”

April 16, 2010
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Example: Private Consumption

Private consumption, AWM database; level values (PCR) and first 

differences (PCR_D)
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Trends: Random Walk and AR 
Process
Random walk: Yt = Yt-1 + εt; random walk with trend: Yt = 0.1 +Yt-1 + εt; 

AR(1) process: Yt = 0.2 + 0.7Yt-1 + εt; εt simulated from N(0,1) 
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Random Walk with Trends

The random walk with trend Yt = δ + Yt-1 + εt can be written as

Yt = Y0 + δt + Σi≤t εi

δ: trend parameter 

Components of the process

 Deterministic growth path Y0 + δt

 Cumulative errors Σi≤t εi

Properties: 

 Expectation Y0 + δt is not a fixed value!

 V{Yt} = ζ²t becomes arbitrarily large!

 Corr{Yt,Yt-k} = √(1-k/t)

 Non-stationary

April 16, 2010
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Random Walk with Trends, cont’d

From Corr{Yt,Yt-k} = √(1-k/t) follows

 For fixed k,Yt and Yt-k are the stronger correlated, the larger t

 With increasing k, correlation tends to zero, but the slower the 

larger t (long memory property)

Comparison of random walk with the AR(1) process Yt = δ + θYt-1 + εt

 AR(1) process: εt-i has the lesser weight, the larger i

 AR(1) process similar to random walk when θ is close to one

April 16, 2010
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Non-Stationarity: Consequences 

AR(1) process Yt = θYt-1 + εt

OLS Estimator for θ:

For |θ| < 1: the estimator is

 Consistent

 Asymptotically normally distributed

For θ = 1 (unit root)

 θ is underestimated

 Estimator not normally distributed

 Spurious regression problem
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Spurious Regression

Random walk without trend: Yt = Yt-1 + εt, εt: white noise 

 Yt is a non-stationary process, stochastic trend?

 V{Yt}: a multiple of t

Specified model: Yt = α + βt + εt

 Deterministic trend

 Constant variance

 Misspecified model!

Consequences for OLS estimator for β

 t- and F-statistics: wrong critical limits, rejection probability too large

 R2 is about 0.45 although Yt random walk without trend

 Granger & Newbold, 1974

April 16, 2010
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How to Model Trends? 

Specification of

 Deterministic trend, e.g., Yt = α + βt + εt: risk of wrong decisions

 Stochastic trend: analysis of differences ΔYt if a random walk, i.e., 
a unit root, is suspected

Consequences of spurious regression are more serious 

Consequences of modeling differences: 

 Autocorrelated errors

 Consistent estimators 

 Asymptotically normally distributed estimators 

 HAC correction of standard errors

April 16, 2010
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Elimination of a Trend

In order to cope with non-stationarity

 Trend stationary process: the process can be transformed in a 

stationary process by subtracting the deterministic trend 

 Difference stationary process, or integrated process: stationary 

process can be derived by differencing

Integrated process: stochastic process Y is called

 integrated of order one if the first differences yield a stationary 

process: Y ~ I(1)

 integrated of order d, if the d-fold differences yield a stationary 

process: Y ~ I(d)

April 16, 2010
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Trend-Elimination: Examples

Random walk Yt = δ + Yt-1 + εt with white noise εt

ΔYt = Yt – Yt-1 = δ + εt

 Yt is a stationary process

 A random walk is a difference-stationary or I(1) process

Linear trend Yt = α + βt + εt

 Subtracting the trend component α + βt provides a stationary 

process 

 Yt is a trend-stationary process

April 16, 2010
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Integrated Stochastic 
Processes
Random walk Yt = δ + Yt-1 + εt with white noise εt is a difference-

stationary or I(1) process

Many economic time series show stochastic trends

From the AWM Database

ARIMA(p,d,q) process: d-th differences follow an ARIMA(p,q) process

April 16, 2010

Variable d

YER GDP,  real 1

PCR Consumption, real 1-2

PYR Household's Disposable Income, real 1-2

PCD Consumption Deflator 2



Advanced Econometrics -
Lecture 5
 Time Series

 Stochastic Processes 

 Stationary Processes 

 The ARMA Process

 Deterministic and Stochastic Trends

 Models with Trend

 Unit Root Tests

 Estimation of ARMA Models

 ARCH and GARCH Models

April 16, 2010 Hackl, Advanced Econometrics, Lecture 5 37

x



Hackl, Advanced Econometrics, Lecture 5 38

Unit Root Test

AR(1) process Yt = δ + θYt-1 + εt with white noise εt

OLS Estimator for θ:

Distribution of DF

 If |θ| < 1: approximately t(T-1)

 If θ = 1: critical values of Dickey & Fuller 

DF test for testing H0: θ = 1 against H1: θ < 1 

 θ = 1: characteristic polynomial has unit root

April 16, 2010
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Dickey-Fuller Critical Values

Monte Carlo estimates of critical values for

DF0: Dickey-Fuller test without intercept

DF: Dickey-Fuller test with intercept

DFη: Dickey-Fuller test with time trend

April 16, 2010

T p = 0.01 p = 0.05 p = 0.10

25 DF0 -2.66 -1.95 -1.60

DF -3.75 -3.00 -2.63

DFη -4.38 -3.60 -3.24

100 DF0 -2.60 -1.95 -1.61

DF -3.51 -2.89 -2.58

DFη -4.04 -3.45 -3.15

N(0,1) -2.33 -1.65 -1.28
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Unit Root Test: The Practice

AR(1) process Yt = δ + θYt-1 + εt with white noise εt

can be written with π = θ-1 as 

ΔYt = δ + πYt-1 + εt

DF tests H0: π = 0 against H1: π < 0 

DF test statistic 

Distribution of DF

Two steps:

1. Regression of ΔYt on Yt-1: OLS-estimator for π  = θ - 1

2. Test of H0: π = 0 against H1: π < 0 based on DF; critical values of 

Dickey & Fuller 

April 16, 2010
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Unit Root Test: Extensions

DF test for model with intercept: ΔYt = δ + πYt-1 + εt

DF test for model without intercept: ΔYt = πYt-1 + εt

DF test for model with intercept and trend: ΔYt = δ + γt + πYt-1 + εt

DF tests in all cases H0: π = 0 against H1: π < 0 

Test statistic in all cases 

Critical values depend on cases

April 16, 2010
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ADF Test

Extended model according to an AR(p) process: 

ΔYt = δ + πYt-1 + β1Δyt-1 + … + βpΔyt-p+1 + εt

Example: AR(2) process Yt = δ + θ1Yt-1 + θ2Yt-2 + εt can be written as

ΔYt = δ + (θ1+ θ2 - 1)Yt-1 – θ2ΔYt-1 + εt

the characteristic equation (1 - ϕ1L)(1 - ϕ2L) = 0 has roots θ1 = ϕ1 + 

ϕ2 and θ2 = - ϕ1ϕ2

a unit root implies ϕ1 = θ1+ θ2 =1: 

Augmented DF (ADF) test

 Test of H0: π = 0 against H1: π < 0

 Needs its own critical values

 Extensions similar to the DF-test

 Phillips-Perron test: alternative method; uses HAC-corrected 

standard errors

April 16, 2010
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Example: Price/Earnings Ratio

Data set PE: annual time series data on price index and the composite 

earnings index of the S&P500, 1871-2002

Price/earnings ratio

 Mean 14.6

 Min 6.1

 Max 36.7

 Std 5.1

April 16, 2010
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Price/Earnings Ratio, cont’d

Extended model according to an AR(2) process gives: 

ΔYt = 0.366 – 0.136Yt-1 + 0.152Δyt-1 - 0.093Δyt-2

with t-statistics -2.487 (Yt-1), 1.667 (Δyt-1) and -1.007 (Δyt-2) and 

p-values 0.014, 0.098 and 0.316

p-value of the DF statistic 0.121; 

1% critical value: -3.48

5% critical value: -2.88

10% critical value: -2.58

Non-stationarity cannot be rejected for the log PE ratio

Unit root test for first differences: DF statistic -7.31, p-value 0.000 (1% 

critical value: -3.48)

log PE ratio is I(1)

However: for sample 1871-1990: DF statistic -3.52, p-value 0.009 

2
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ARMA Models: Application

Application of the ARMA(p,q) model in data analysis: Three steps

1. Model specification, i.e., choice of p, q (and d if an ARIMA model is 

specified) 

2. Parameter estimation

3. Diagnostic checking 

April 16, 2010



Hackl, Advanced Econometrics, Lecture 5 47

Estimation of ARMA Models

The estimation methods are 

 OLS estimation

 ML estimation

AR models: the explanatory variables are 

 Lagged Yt

 Uncorrelated with εt

 OLS estimation

April 16, 2010
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MA Models: OLS Estimation

MA models:

 Minimization of sum of squared deviations is not straightforward

 E.g., for an MA(1) model, S(μ,α) = Σt[Yt - μ - αΣj=0(- α)j(Yt-j-1 – μ)]2

 S(μ,α) is a nonlinear function of parameters 

 needs Yt-j-1 for j=0,1,…, i.e., historical Ys, s < 0

 Approximate solution from minimization of 

S*(μ,α) = Σt[Yt - μ - αΣj=0
t-2(- α)j(Yt-j-1 – μ)]2

 Nonlinear minimization, grid search

ARMA models combine AR part with MA part

April 16, 2010
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ML Estimation

Needs an assumption on the distribution of εt; usual normality 

Log likelihood function, conditional on initial value

log L(α,θ,μ,ζ²) = - (T-1)log(2πζ²)/2 – (1/2) Σt εt²/ζ²

εt are functions of the parameters

 AR(1): εt = yt - θ1yt-1

 MA(1): εt = Σj=0
t-1(- α)jyt-j

Initial values: y1 for AR, ε0 = 0 for MA

Extension for exact ML estimator

Again, estimation for AR models easier

ARMA models combine AR part with MA part

April 16, 2010
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Model Specification

Based on the form of 

 Autocorrelation function (ACF)

 Partial Autocorrelation function (PACF)

Structure of AC and PAC functions typical for AR and MA processes

Example: 

 MA(1) process: ρ0 = 1, ρ1 = α/(1-α²); ρi = 0, i = 2, 3, …

 AR(1) process: ρk = θk, k = 0, 1,…

April 16, 2010
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ARMA(p,q)-Processes

Condition for
AR(p)

θ(L)Yt = εt

MA(q)

Yt = α(L) εt

ARMA(p,q)

θ(L)Yt=α(L) εt

Stationarity
roots zi of 

θ(z)=0: |zi| > 1 
always stationary

roots zi of 

θ(z)=0: |zi| > 1 

Invertibility always invertible
roots zi of 

α(z)=0: |zi| > 1

roots  zi of 

α(z)=0: |zi| > 1

AC function damped, infinite k = 0 for k > q damped, infinite

PAC 

function kk = 0 for k > p damped, infinite damped, infinite

April 16, 2010
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Empirical AC and PAC Function

Estimation of the AC and PAC functions 

AC ρk:

PAC θkk: coefficient of Yt-k in regression of Yt on Yt-1, …, Yt-k

MA(q) process: standard errors for rk, k > q from

√T(rk – ρk) → N(0, vk)

with vk = 1 + 2ρ1² + … + 2ρk²

 test of H0: ρ1 = 0: compare √Tr1 with critical value from N(0,1), etc.

AR(p) process: test of H0: ρk = 0 for k > p based on asymptotic 

distribution

April 16, 2010
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Diagnostic Checking

ARMA(p,q): Adequacy of choices p and q

Analysis of residuals from fitted model: 

 Correct specification: residuals are realizations of white noise

 Portmanteau test: for a ARMA(p,q) process 

follows the Chi-squared distribution with K-p-q df

Overfitting

 Starting point: a general model 

 Comparison with a model with reduced number of parameters: AIC

or BIC

 AIC: tends to result asymptotically in overparameterized models 

April 16, 2010
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ARCH Processes

Autoregressive Conditional Heteroskedasticity (ARCH):

 Special case of heteroskedasticity

 Error variance: autoregressive behavior

 Allows to model successive periods with high, other periods with 

small volatility

 Typical for asset markets

Example:

yt = xt’θ+ εt

with εt = ζtvt, vt ~ NID(0,1)

 the conditional error variance, given the information It-1, is ζt² 

 ARCH(1) process 

ζt² = E{εt²|It-1} = ϖ + αεt-1²

 It-1 is the information set containing all past including εt-1
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The ARCH(1) Process

ARCH(1) process describes the conditional error variance, i.e., the 

variance conditional on information dated t-1 and earlier

ζt² = E{εt²|It-1} = ϖ + αεt-1²

 It-1 is the information set containing all past including εt-1

 Conditions for ζt² ≥ 0: ϖ ≥ 0, α ≥ 0 

 A big shock at t-1, i.e., a large value |εt-1|, 

 Induces high volatility, i.e., large ζt²

 makes large values |εt| more likely at t (and later)

 ARCH process does not imply correlation!

The unconditional variance of εt is

ζ² = E{εt²} = ϖ + αE{εt-1²} = ϖ/(1 - α)

given that 0 ≤ α < 1

 The εt process is stationary

April 16, 2010



Hackl, Advanced Econometrics, Lecture 5 57

More ARCH Processes

Various generalizations

ARCH(p) process

ζt² = ϖ + α1εt-1² + … αpεt-p
2 = ϖ + α(L)εt-1² 

with lag polynomial α(L) of order p-1

 Conditions for ζt² ≥ 0: ϖ ≥ 0; αi ≥ 0, i = 1,…p

 Condition for stationarity: α(1) < 1

GARCH(p,q) process

 „Generalized ARCH“

 Similar to the ARMA representation of levels

ζt² = ϖ + α1εt-1² + … αpεt-p
2 + β1ζt-1² + … + βqζt-q² =

= ϖ + α(L)εt-1² + β(L)ζt-1² 

E.g., GARCH(1,1): ζt² = ϖ + αεt-1² + βζt-1²; with “surprises“ vt = εt-1² - ζt²:

εt² = ϖ + (α + β)εt-1² + vt - βvt-1², i.e. εt² follow ARMA(1,1)
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Test for ARCH Processes

Null hypothesis of homoskedasticity, to be tested against the alternative 

ARCH(q)

1. Estimate the model of interest using OLS: residuals et

2. Auxiliary regression of squared residuals et
2 on a constant and q 

lagged et
2

3. Test statistic TRe
2 with Re

2 from the auxiliary regression, p-value 

from the chi squared distribution with q df
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More ARCH Processes, cont’d

EGARCH or exponential GARCH

log ζt² = ϖ + βζt-1² + γεt-1/ζt-1 + α|εt-1|/ζt-1

 Asymmetric if γ ≠ 0

 γ < 0: positive shocks („good news“) reduce volatility
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Time Series Models in GRETL

Model > Time Series > ARIMA

 Estimates an ARMA model, with or without exogenous regressors

Model > Time Series > ARCH

 Estimates the specified model allowing for ARCH: (1) model 

estimated via OLS, (2) auxiliary regression of the squared residual on 

its own lagged values, (3) weighted least squares estimation

Model > Time Series > GARCH

 Estimates a GARCH model, with or without exogenous regressors
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Exercise

Answer questions a. to e. of Exercise 8.2 of Verbeek 

 data from the data sets “SP500” containing daily returns on Standard 

& Poor's 500 index from January 1981 to April 1991, computed as the 

change in log index
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