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Private Consumption, contd
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Disposable Income
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Time Series

|s a time-ordered sequence of observations of a random variable

Examples:

Annual values of private consumption
Changes in expenditure on private consumption

Quarterly values of personal disposable income
Monthly values of imports

Notation:
Random variable Y
Sequence of observations Y,, Y, ..., Y5
Deviations from the mean: y, = Y, - E{Y} =Y,
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Components of a Time Series

Components or characteristics of a time series are
Trend

Seasonality
Irregular fluctuations

Time series model: represents the characteristics as well as possible
Purpose of modeling

Describing the time series
Forecasting the future

Example: Y, =Bt + 2,y,D; + &
with D, = 1 if t corresponds to /i-th quarter, D;, = 0 otherwise
for describing the development of the disposable income
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Stochastic Process

Time series: realization of a stochastic process
Stochastic process is a sequence of random variables Y;, e.g.,

{Yot=1, ..., n}
{Y, t= -, ..., =}

Joint distribution of the Y, ..., Y
VZP 7y

Of special interest
Evolution of the expectation p, = E{Y,} over time
Dependence structure over time

Example: Extrapolation of a time series as a tool for forecasting
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AR(1)-Process

States the dependence structure between consecutive observations as
Yi=0+08Y, +¢g, [0]<1
with g.: white noise, i.e., serially uncorrelated, mean zero, V{g.} = 02
“Autoregressive process of order 1”
From Y, =0 +08Y,, + ¢, =0+00 +0%0 +... +¢,+ B¢, + B%¢, +... follows
E{Y} = p = 5(1-6)"
In deviations from y, y. = Y; - u, the model is

Ye = Oy + &
Autocovariances vy, = Cov{Yt,Yt )

k=1:y, = COV{ytayt 1} = E{BY1+e)yiq} = 8V{y 4} = 60%(1-6%)1
In general: y, = Cov{Y,, Y;,} = 6x0?(1-6)1
Depends of k, not of !
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MA(1)-Process

States the dependence structure between consecutive observations as
Yi= W+ g+ ag,
with g: white noise, V{g;} = 0>
Moving average process of order 1
E{Y}=u
Autocovariances y, = Cov{Y,, Y.}
k=0: Yo = V{Y} = 0%(1+0?)
k=1:vy, = Cov{Y, Y.} = a0?
Ve =0fork=2,3, ...
Depends of k, not of !
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AR-Representation of MA-
Process

The AR(1) can be represented as MA-process of infinite order
Ye= 0y + &= 27 0 g,
given that |0] < 1
Similarly, the AR representation of the MA(1) process
Vi = QY — 0o + o & = 2% (-1) aly 4 + &
given that |a| < 1
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Stationary Processes

Refers to the joint distribution of Y|’s, in particular to second moments

A process is called strictly stationary if its stochastic properties are
unaffected by a change of the time origin

The joint probability distribution at any set of times is not affected
by an arbitrary shift along the time axis

Covariance function:

Yik = Cov{Y, Yiud k=0, 1,...
Properties:

Yik = Ytk

Weak stationary process:
E{Y} =y forall t
Cov{Y, Yt =V k=0, 1,...forall tand all k

Also called covariance stationary process
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AC and PAC Function

Autocorrelation function (AC function, ACF) is independent of the scale
of Y

for a stationary process:
P = Cor{Y,, Yt = VilYo, k=0, 1,...
Properties:
ol = 1
Pk = P«
Po =1
Correlogram: graphical presentation of the AC function
Partial autocorrelation function (PAC function, PACF):
0 = Corr{Y,, Yiul Yiise-es Yersr k=0, 1, ...
6, is obtained from Y;=0,5 + 8, Y, + ... + B, Yix
Partial correlogram: graphical representation of the PAC function
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AC and PAC Function, contd

Examples for the AC and PAC functions

White noise
Po =B =1
Pk=6,=0,ifk#0

AR(1) process, Y, =0 + 08Y,, + ¢
P, =0K k=0, 1,..
0p=1,60,,=6,08,=0fork>1

MA(1) process, Y, = + g + ag,
po=1,p,=—0a/(1+0a?),p,=0fork>1

PAC function: damped exponential if 6 > 0, otherwise alternating
and damped exponential
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AC and PAC Function:
Estimates

Estimating of AC and PAC function
Estimator for p,:

_ Zt Y. T YIY g T V)
k 2 v,y

Estimator for 8,,: coefficient of Y, in the regression of Y,on Y., ..., Yi«
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MA(1) Processes, verbeek, p.275
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The ARMA(p,q) Process

Generalization of the AR and MA processes: ARMA(p,q) process
Vi=0Y 4t ... F prt_p et OyE t L O
with g white noise
Lag (or shift) operator L (Ly,= yi.1, L% = Iy; = Vi LPYi= Vi)
ARMA(p,q) process on operator notation
O(L)y; = a(L)e,
with operator polynomials 6(L) and a(L)
O(L)=/-04L-...-6,LP,a(L)=1+a,L+ .. +q,lLf

April 16, 2010 Hackl, Advanced Econometrics, Lecture 5

21



Lag Operator

Lag (or shift) operator L
Ly, = Yi1, Lo = Iy, = ¥y, LPy, = Yip
Algebra of polynomials in L like algebra of variables
Examples:
(1 - &4LYI - oL) = 1 = (dg+ Po)L + dyp,L2
MA(«) representation of the AR(1) process
yi = (- BL) g,
the infinite sum needs (e.qg., finite variance) |8 < 1
MA() representation of the ARMA(p,q) process
v = [0 (L)I"a(L)g,
similarly the AR(«) representations; invertibility condition:
restrictions on parameters

April 16, 2010 Hackl, Advanced Econometrics, Lecture 5
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Invertibility of Lag Polynomials

Invertibility condition for /- 6L: |6] < 1

Invertibility condition for / - 8,L - 6,L2:
O(L) =1-04L - 8,L2 = (/- d4L)(/ - L) with o4+, =6, and -, =
0,
Invertibility conditions: both (/- ¢4L) and (/ — ¢,L) invertible; [d4| <
1, |y <1
Characteristic equation: 6(z) = (1- ¢42) (1- $,z) =0
Characteristic roots: solutions z,, z, from (1- ¢,2) (1- $,z) =0
Invertibility conditions: |z,| > 1, |z,| > 1

Can be generalized to lag polynomials of higher order

Unit root: a characteristic root of value 1
Polynomial 6(z) evaluated atz=1:0(1) =0, if 2,6, = 1
Simple check, no need to solve characteristic equation
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Types of Trend

Trend: The expected value of a process Y, increases or decreases with
time
Deterministic trend: a function f(t) of the time, describing the
evolution of E{Y} over time
Y, = f(t) + €, €: white noise
Example: Y, = a + Bt + ¢, describes a linear trend of Y; an
increasing trend correspondsto 3 >0
Stochastic trend: Y, =0+ Y, + g 0r
AY,=Y,— Y., =0+ ¢, & white noise
o describes an irregular or random fluctuation of the differences
AY, around the expected value
o AR(1) —or AR(p) — process with unit root

0 ‘random walk with trend”
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‘ Example: Private Consumption

Private consumption, AWM database; level values (PCR) and first
differences (PCR _D)
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Trends: Random Walk and AR
Process

Random walk: Y, = Y., *+ g; random walk with trend: Y,= 0.1 +Y,, + &;
AR(1) process: Y;=0.2 + 0.7Y,, + &; g simulated from N(0,1)

20

16 -

12 -

o_ ot

10 20 30 40 50 60 70 80 90 100

random walk
random walk m. Trend
— AR((1)-Prozess
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Random Walk with Trends

The random walk with trend Y, =0 + Y, ; + € can be written as
Yi= Yo+ 0+ 24§

O: trend parameter

Components of the process
Deterministic growth path Y, + ot
Cumulative errors 2, €

Properties:
Expectation Y, + 0t is not a fixed value!
V{Y,} = o*t becomes arbitrarily large!
Corr{Y, Y,,} = V(1-k/t)
Non-stationary

April 16, 2010 Hackl, Advanced Econometrics, Lecture 5
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Random Walk with Trends, contd

From Corr{Y,, Y.} = V(1-k/t) follows
For fixed k,Y, and Y., are the stronger correlated, the larger ¢
With increasing k, correlation tends to zero, but the slower the
larger t (long memory property)

Comparison of random walk with the AR(1) process Y, =0 +0Y,, + ¢,
AR(1) process: g, has the lesser weight, the larger i
AR(1) process similar to random walk when 0 is close to one
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Non-Stationarity: Consequences

AR(1) process Y, =0Y,_, + ¢
OLS Estimator for 0:

2 v
2 v

For |8| < 1: the estimator is
Consistent
Asymptotically normally distributed
For 8 = 1 (unit root)
0 is underestimated
Estimator not normally distributed
Spurious regression problem

0
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Spurious Regression

Random walk without trend: Y, = Y, ; + &, €: white noise

Y, is a non-stationary process, stochastic trend?
V{Y.}: a multiple of ¢
Specified model: Y, = a + Bt + ¢
Deterministic trend
Constant variance
Misspecified model!
Consequences for OLS estimator for [3
t- and F-statistics: wrong critical limits, rejection probability too large
R? is about 0.45 although Y, random walk without trend
Granger & Newbold, 1974
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How to Model Trends?

Specification of
Deterministic trend, e.g., Y, = a + Bt + ¢;: risk of wrong decisions

Stochastic trend: analysis of differences AY, if a random walk, i.e.,
a unit root, is suspected

Consequences of spurious regression are more serious
Consequences of modeling differences:
Autocorrelated errors
Consistent estimators
Asymptotically normally distributed estimators
HAC correction of standard errors
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Elimination of a Trend

In order to cope with non-stationarity

Trend stationary process: the process can be transformed in a
stationary process by subtracting the deterministic trend

Difference stationary process, or integrated process: stationary
process can be derived by differencing

Integrated process: stochastic process Y is called
integrated of order one if the first differences yield a stationary
process: Y~ I(1)
integrated of order d, if the d-fold differences yield a stationary
process: Y ~ I(d)

April 16, 2010 Hackl, Advanced Econometrics, Lecture 5
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Trend-Elimination: Examples

Random walk Y, =0 + Y., + & with white noise ¢,
AY,= Y- Y =8+
Y, is a stationary process
A random walk is a difference-stationary or /(1) process
Linear trend Y, = a + Bt + ¢

Subtracting the trend component a + 3t provides a stationary
process

Y, is a trend-stationary process

April 16, 2010 Hackl, Advanced Econometrics, Lecture 5
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‘ Integrated Stochastic

Processes

Random walk Y, =0 + Y, + g with white noise ¢, is a difference-
stationary or /(1) process

Many economic time series show stochastic trends
From the AWM Database

N

YER
PCR
PYR
PCD

GDP, real 1
Consumption, real 1-2
Household's Disposable Income, real 1-2
Consumption Deflator 2

ARIMA(p,d,q) process: d-th differences follow an ARIMA(p,q) process

April 16,2010
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Unit Root Test

AR(1) process Y, =0 + 8Y,, + g with white noise ¢,
OLS Estimator for 0:

2 v
2 v

Distribution of DF
6 — 7

0

DF =
se (9,

If 6] < 1: approximately {(7-1)
If © = 1: critical values of Dickey & Fuller
DF test for testing H,: 6 = 1 against H;: 6 < 1
0 = 1: characteristic polynomial has unit root

April 16, 2010 Hackl, Advanced Econometrics, Lecture 5
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‘ Dickey-Fuller Critical Values

Monte Carlo estimates of critical values for
DF,: Dickey-Fuller test without intercept
DF: Dickey-Fuller test with intercept
DF: Dickey-Fuller test with time trend

DF,  -2.66 -1.95 -1.60

DF  -3.75 -3.00 -2.63

DF,  -4.38 -3.60 -3.24

100 DF,  -2.60 -1.95 -1.61
DF  -3.51 -2.89 -2.58

DF,  -4.04 -3.45 -3.15

N(0,1) -2.33 -1.65 -1.28
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Unit Root Test: The Practice

AR(1) process Y, =0 + 8Y,, + g with white noise ¢,
can be written with m = 0-1 as
AY, =8+ TY,, +g
DF tests H,: =0 against H;: m <0

DF test statistic
Distribution of DF
0— T
DF = =
se(V)  se(?,
Two steps:

Regression of AY, on Y, ;: OLS-estimator form =0 - 1

Test of H,: m = 0 against H,: ™ < 0 based on DF; critical values of
Dickey & Fuller
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Unit Root Test: Extensions

DF test for model with intercept: AY, =0 + Y, + ¢,

DF test for model without intercept: AY, = 1Y, + ¢

DF test for model with intercept and trend: AY, =0 + yt + TY, , + ¢
DF tests in all cases H,: m =0 against H,;: T <0

Test statistic in all cases

0-
DF =

se (‘9)
Critical values depend on cases

April 16, 2010 Hackl, Advanced Econometrics, Lecture 5
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ADF Test

Extended model according to an AR(p) process:
AY; =0+ 1Y+ BiAyis + ... + BAViper + &
Example: AR(2) process Y;,=0 +0,Y,_, + 0,Y,, + € can be written as
AY; =0+ (0,4 0,-1)Y1 —BAY, + ¢
the characteristic equation (1 - ¢,L)(1 - ¢,L) = 0 has roots 8, = ¢, +
¢, and 6, = - ¢4,

a unit root implies ¢, =08,+ 6, =1:
Augmented DF (ADF) test

Test of Hy: =0 against H,;: T <0

Needs its own critical values

Extensions similar to the DF-test

Phillips-Perron test: alternative method; uses HAC-corrected
standard errors
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Example: Price/Earnings Ratio

Data set PE: annual time series data on price index and the composite
earnings index of the S&P500, 1871-2002

Price/earnings ratio
Mean 14.6
Min 6.1
Max 36.7
Std 5.1

PE
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Price/Earnings Ratio, contd

Extended model according to an AR(2) process gives:
AY,=0.366 - 0.136Y,_, + 0.152Ay, , - 0.093Ay,,
with t-statistics -2.487 (Y, 4), 1.667 (Ay, () and -1.007 (Ay,,) and
p-values 0.014, 0.098 and 0.316
p-value of the DF statistic 0.121;
1% critical value: -3.48
5% critical value: -2.88
10% critical value: -2.58
Non-stationarity cannot be rejected for the log PE ratio

Unit root test for first differences: DF statistic -7.31, p-value 0.000 (1%
critical value: -3.48)

log PE ratio is /(1)
However: for sample 1871-1990: DF statistic -3.52, p-value 0.009
2
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ARMA Models: Application

Application of the ARMA(p,q) model in data analysis: Three steps

Model specification, i.e., choice of p, g (and d if an ARIMA model is
specified)

Parameter estimation

Diagnostic checking
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Estimation of ARMA Models

The estimation methods are
OLS estimation
ML estimation
AR models: the explanatory variables are
Lagged Y,
Uncorrelated with g,
OLS estimation

April 16, 2010 Hackl, Advanced Econometrics, Lecture 5
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MA Models: OLS Estimation

MA models:
Minimization of sum of squared deviations is not straightforward
E.g., for an MA(1) model, S(u,a) = Z[Y; - p - aZio(- aP( Yy 4 — M)J?
o S(M,a) is a nonlinear function of parameters
Q needs Yt_j_1 for j=0,1,..., i.e., historical Y, s<0
Approximate solution from minimization of
S*(M,a) = Z{Y; - W - aZig"(- aP(Yiyq — M)P
Nonlinear minimization, grid search
ARMA models combine AR part with MA part
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ML Estimation

Needs an assumption on the distribution of ¢;; usual normality
Log likelihood function, conditional on initial value
log L(a,0,u,0%) = - (T-1)log(2mo?)/2 — (1/2) %, e2/0?

g, are functions of the parameters

AR(1): & = ¥ - B1¥14

MA(1): & = Zj=o" (- o)y,
Initial values: y, for AR, g, = 0 for MA
Extension for exact ML estimator
Again, estimation for AR models easier
ARMA models combine AR part with MA part
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Model Specification

Based on the form of

Autocorrelation function (ACF)

Partial Autocorrelation function (PACF)
Structure of AC and PAC functions typical for AR and MA processes
Example:

MA(1) process: p, =1, p, = a/(1-0?); p;=0,i1=2, 3, ...

AR(1) process: p, = 6%, k=0, 1,...

April 16, 2010 Hackl, Advanced Econometrics, Lecture 5

50



ARMA(p,qg)-Processes

g AR(p) MA(q) ARMA(p,q)
Condition for ’
H B(L)Y, = ¢, Y, = a(L) ¢, B(L)Yi=a(L) ¢,
Stationarit roots z of always stationar roots z of
y 0(z)=0: |z| > 1 y y 8(z)=0: |z| > 1
Invertibility | always invertible | °°!S % Of roots z; of
a(z)=0: |z|>1 |a(2)=0: |z]| > 1
AC function | damped, infinite |p,=0fork>q damped, infinite
PAC _ L L
function b =0fork>p damped, infinite | damped, infinite

April 16, 2010
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Empirical AC and PAC Function

Estimation of the AC and PAC functions
AC p,:
Y TN T Y)
_
k —\ 2
Zt Y, 7 Y)
PAC 0,,: coefficient of Y., in regression of Y,on Y,,, ..., Y.
MA(q) process: standard errors for r,, k > q from
VT(r.— p) — N(O, v)
withv, =1+ 2p2+ ... +2p2
test of Hy: p, = 0: compare \Tr, with critical value from N(0,1), etc.

AR(p) process: test of H,: p, = 0 for k > p based on asymptotic
distribution

Jr6, > v(0,))
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Diagnostic Checking

ARMA(p,q): Adequacy of choices p and q
Analysis of residuals from fitted model:
Correct specification: residuals are realizations of white noise

Portmanteau test: for a ARMA(p,q) process

L

y

Oy =TT+, ——
follows the Chi-squared distribution with K-p-q df
Overfitting
Starting point: a general model

Comparison with a model with reduced number of parameters: AIC
or BIC

AIC: tends to result asymptotically in overparameterized models
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ARCH Processes

Autoregressive Conditional Heteroskedasticity (ARCH):
Special case of heteroskedasticity
Error variance: autoregressive behavior

Allows to model successive periods with high, other periods with
small volatility

Typical for asset markets
Example:
Vi = X0+ g
with €, = o, v, ~ NID(0,1)
o the conditional error variance, given the information L, ,, is 0,2
o ARCH(1) process
o = E{e’|Iq} = @ + agy4°
o I, is the information set containing all past including ¢, ,
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The ARCH(1) Process

ARCH(1) process describes the conditional error variance, i.e., the
variance conditional on information dated t-1 and earlier

o = E{ef|Li 4} = @ + ag4®
I, , is the information set containing all past including ¢ ,
Conditions foro?=20:w=0,a=0
A big shock at t-1, i.e., a large value [g, 4],
o Induces high volatility, i.e., large o,
o makes large values |g,| more likely at t (and later)
ARCH process does not imply correlation!
The unconditional variance of g, is
0’ =E{e? = + aE{e. *} = ®/(1 - Q)
giventhat0<a <1
The €, process is stationary
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More ARCH Processes

Various generalizations
ARCH(p) process
O =@ + 04g ¢ + ... O& 2 =@ + a(L)g 42
with lag polynomial a(L) of order p-1
Conditions foro?20: w20;0,20,/i=1,...p
Condition for stationarity: a(1) < 1
GARCH(p,q) process
,Generalized ARCH"
Similar to the ARMA representation of levels
O =@ + O4g 2 + ... 0§ 2+ B0 2+ ... + B0 2=
=w + a(l)e.* + B(L)o4®
E.g., GARCH(1,1): 02 = @w + ag_,*> + Bo, 4% with “surprises” v, = €,_,% - 02
e2=w+ (a+ P >+ Vv -Bv.,> ie. g follow ARMA(1,1)
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Test for ARCH Processes

Null hypothesis of homoskedasticity, to be tested against the alternative
ARCH(q)

Estimate the model of interest using OLS: residuals e,

Auxiliary regression of squared residuals e on a constant and q
lagged e/

Test statistic TR,? with R.,2 from the auxiliary regression, p-value
from the chi squared distribution with g df
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More ARCH Processes, contd

EGARCH or exponential GARCH
log 0" = @ + B0 4* + Y€1/ + Qlg4]/04
Asymmetricify # 0
o Yy < 0: positive shocks (,good news®) reduce volatility
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Time Series Models in GRETL

Model > Time Series > ARIMA

Estimates an ARMA model, with or without exogenous regressors
Model > Time Series > ARCH

Estimates the specified model allowing for ARCH: (1) model
estimated via OLS, (2) auxiliary regression of the squared residual on
its own lagged values, (3) weighted least squares estimation

Model > Time Series > GARCH
Estimates a GARCH model, with or without exogenous regressors

April 16, 2010 Hackl, Advanced Econometrics, Lecture 5 60



Exercise

Answer questions a. to e. of Exercise 8.2 of Verbeek

data from the data sets “SP500” containing daily returns on Standard
& Poor's 500 index from January 1981 to April 1991, computed as the
change in log index
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