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Using the Uhlig Toolbox1 – Handout

This handout derives the systems of linear equations for the examples
No. 0 and 1 in the Uhlig toolbox. These examples are contained in the
files exampl0.m and exampl1.m. Before you start using Uhlig toolbox type
readme in the Matlab command window.2

1 Example 0 – Neoclassical Stochastic Growth

Model

The model we want to solve is

max
{Ct,Kt}∞t=0

E

[
∞∑

t=0

βt

(
C1−η

t − 1

1− η

)]
,

s.t.

Ct +Kt = ZtK
ρ
t−1 + (1− δ)Kt−1

log(Zt) = (1− ψ) log(Z̄) + ψ log(Zt−1) + εt,

εt ∼ i.i.d. N(0, σ2
ε)

First order conditions generate the following Euler Equation

C−η
t = βE

[
C−η

t+1(ρZt+1K
ρ−1
t + (1− δ))

]
As we want to solve the model for five variables (C,K, Y,R, Z) we need

1Available at http://www2.wiwi.hu-berlin.de/institute/wpol
2Don’t forget to put the folder with the toolbox on Matlab’s search path either by the

command addpath – then put it on the top of the search path by the argument -begin –
or by copying the toolbox in your working directory.
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five equations3, which are

Rt = ρZtK
ρ−1
t−1 + (1− δ) (1.1)

Ct = Yt + (1− δ)Kt−1 −Kt (1.2)

Yt = ZtK
ρ
t−1 (1.3)

1 = βE

[(
Ct

Ct+1

)η

Rt+1

]
(1.4)

logZt = ψ log Z̄ + (1− ψ) logZt−1 + ε (1.5)

Eliminating the time subscripts we can solve for steady state4

K̄ =

(
ρZ̄

R̄− 1 + δ

) 1
1−ρ

(1.6)

Ȳ = Z̄K̄ρ (1.7)

C̄ = Ȳ − δK̄ (1.8)

R̄ = ρZ̄K̄ρ−1 + (1− δ) (1.9)

1 = βR̄ (1.10)

To use the Uhlig toolbox we have to linearize the system of equations
(1.1)-(1.5) first. Define the lowercase variables as ct ≡ logCt−log C̄, similarly
for all the other variables. By construction we have Ct = C̄ect and using the
first order Taylor approximation5 it follows C̄ect ≈ C̄(1 + ct).

Using this substitution in equation (1.1) gives

R̄ + R̄rt ≈ ρZ̄K̄ρ−1 + (1− δ) + ρZ̄K̄ρ−1(zt + (ρ− 1)kt−1)

using (1.9)

R̄rt ≈ (R̄− (1− δ))(zt + (ρ− 1)kt−1)

which after substituting (1.10) becomes

rt ≈ (1− β(1− δ))zt − (1− β(1− δ))kt−1 (1.11)

3We could alternatively use smaller number of equations and compute the other vari-
ables later substituting the solution. However, the algorithm can handle more equations
easily and there is thus no reason to reduce the system. It is,in fact, convenient to solve
for all the variables simultaneously.

4Z̄ is an arbitrary parameter.
5Recall that ex ≈ e0 + e0(x− 0).
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The second equation is linearized as follows

C̄ + C̄ct ≈ Z̄K̄ρ + Z̄K̄ρ(zt + ρkt−1) + (1− δ)K̄ + (1− δ)K̄kt−1 − K̄kt − K̄

using (1.8)

ct ≈
Ȳ

C̄
zt +

(
ρ
Ȳ

C̄
+ (1− δ)

K̄

C̄

)
kt−1 −

K̄

C̄
kt

further, using the fact that K̄
C̄

[
ρ Ȳ

C̄
+ (1− δ)

]
= K̄

C̄
R̄ we get

ct ≈
(

1 +
δK̄

C̄

)
zt +

K̄

C̄β
kt−1 −

K̄

C̄
kt (1.12)

The third equation becomes

Ȳ + Ȳ yt ≈ Z̄K̄ρ + Z̄K̄ρ(zt + ρkt−1)

which reduces to

yt ≈ zt + ρkt−1 (1.13)

The Euler Equation yields

1 ≈ βE

[
(
C̄ect

C̄ect+1
)η ¯R(1 + rt+1)

]
1 ≈ E

[
βR̄(1 + η(ct − ct+1) + rt+1 + η(ct − ct+1)rt+1)

]
since the last term in the brackets is negligible and using again (1.10) we get

0 ≈ E [η(ct − ct+1) + rt+1] (1.14)

The last equation can be transformed as

log(Z̄ezt) = (1− ψ) log Z̄ + ψ log(Z̄ezt−1) + εt

log Z̄ + zt = log Z̄ + ψzt−1 + εt

zt = ψzt−1 + εt (1.15)

The last step before running the toolbox is to rewrite the system of linear
equations (1.11)-(1.15) in the form

0 = Ax(t) + Bx(t− 1) + Cy(t) + Dz(t)

0 = Et [Fx(t + 1) + Gx(t) + Hx(t− 1) + Jy(t + 1) + Ky(t) + Lz(t + 1) + Mz(t)]

z(t + 1) = Nz(t) + ε(t+ 1)

where x is the vector of endogenous state variables, y is the vector of other
endogenous variables, and z is the vector of exogenous state variables. Ob-
viously, x = k, y = [c, r, y], and z = z. After feeding the toolbox with the
required matrices we are done.
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2 Example 1 – Hansen’s RBC Model

The model we want to solve reads

max
{Ct,Kt,Nt,It}∞t=0

E

[
∞∑

t=0

βt (logCt − ANt)

]
,

s.t.

Ct + It = Yt

Yt = ZtK
ρ
t−1N

1−ρ
t

Kt = It + (1− δ)Kt−1

log(Zt) = (1− ψ) log(Z̄) + ψ log(Zt−1) + εt,

εt ∼ i.i.d. N(0, σ2
ε)

The first order conditions yield

A =
1

Ct

(1− ρ)ZtK
ρ
t−1N

−ρ
t

1

Ct

= βE

[
1

Ct+1

(ρZt+1K
ρ−1
t N1−ρ

t+1 + (1− δ))

]
We have the following seven equations describing the model

Ct = Yt − It (2.1)

Kt = It + (1− δ)Kt−1 (2.2)

Yt = ZtK
ρ
t−1N

1−ρ
t (2.3)

A =
1

Ct

(1− ρ)ZtK
ρ
t−1N

−ρ
t (2.4)

Rt = ρZtK
ρ−1
t−1 N

1−ρ
t + (1− δ) (2.5)

1 = βE

[(
Ct

Ct+1

)η

Rt+1

]
(2.6)

logZt = ψ log Z̄ + (1− ψ) logZt−1 + ε (2.7)
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The steady state values are given by6

Ī = δK̄ (2.8)

C̄ = Ȳ − δK̄ (2.9)

Ȳ = Z̄K̄ρN̄1−ρ (2.10)

R̄ =
1

β
(2.11)

Ȳ

K̄
=

ρ

R̄ + δ − 1
(from (2.10)) (2.12)

K̄ =

(
Ȳ
K̄

Z̄

) 1
ρ−1

N̄ (from (2.3)) (2.13)

A =
(1− ρ)Ȳ

C̄N̄
(from (2.4) and using (2.10)) (2.14)

Now we have to linearize the system of equations (2.1)-(2.7). By the same
procedure as in the previous example the first three equations simply

C̄ct ≈ Ȳ yt − Īit (2.15)

K̄kt ≈ Īit + (1− δ)K̄kt−1 (2.16)

yt ≈ zt + ρkt−1 + (1− ρ)nt (2.17)

Using eq. (2.17) the eq. (2.4) becomes

ct ≈ yt − nt (2.18)

The expression for interest rate (eq. (2.5)) can be approximated as

R̄ + R̄rt ≈ ρZ̄K̄ρ1−N̄1−ρ + (1− δ) + ρZ̄K̄ρ1−N̄1−ρ(zt + (ρ− 1)kt−1 + (1− ρ)nt)

which after using eqs. (2.11) and (2.17) becomes

R̄rt ≈ ρ
Ȳ

K̄
yt − ρ

Ȳ

K̄
kt−1 (2.19)

The last two equations are the same as in the previous example and they
read

0 ≈ E [η(ct − ct+1) + rt+1] (2.20)

zt = ψzt−1 + εt (2.21)

The vectors x,y and z now become x = k, y = [c, y, n, r, i], and z = z.

6Following Uhlig’s example we take N̄ as a parameter and solve for the steady state
value of A. Usually, however, A is calibrated and N̄ is derived. This would give

N̄ = 1−ρ
A

Ȳ
K̄

Ȳ
K̄
−δ

.
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