A Toolkit for Analyzing Nonlinear
Dynamac Stochastic Models Fasily

Harald Uhlig*

CentER, University of Tilburg, and CEPR

ABSTRACT

Often, researchers wish to analyze nonlinear dynamic discrete-time stochastic models. This chapter
provides a toolkit for solving such models easily, building on log-linearizing the necessary equa-
tions characterizing the equilibrium and solving for the recursive equilibrium law of motion with
the method of undetermined coefficients. This chapter contains nothing substantially new. In-
stead, the chapter simplifies and unifies existing approaches to make them accessible for a wide
audience, showing how to log-linearizing the nonlinear equations without the need for explicit
differentiation, how to use the method of undetermined coefficients for models with a vector of
endogenous state variables, to provide a general solution by characterizing the solution with a
matrix quadratic equation and solving it, and to provide frequency-domain techniques to cal-
culate the second order properties of the model in its HP-filtered version without resorting to
simulations. Since the method is an Euler-equation based approach rather than an approach
based on solving a social planners problem, models with externalities or distortionary taxation
do not pose additional problems. MATLAB programs to carry out the calculations in this chap-
ter are made available. This chapter should be useful for researchers and Ph.D. students alike.

Corresponding address:
CentER for Economic Research, Tilburg University,
Postbus 90153, 5000 LE Tilburg, The Netherlands, e-mail: uhlig@kub.nl

*I am grateful to Michael Binder, Toni Braun, Jan Magnus, Ellen McGrattan and Yexiao Xu
for helpful comments. 1 am grateful to Andrew Atkeson for pointing out to me a significant im-
provement of subsection 6.3. This chapter was completed while visiting the Institute for Empirical
Macroeconomics at the Federal Reserve Bank of Minneapolis: I am grateful for its hospitality. Any
views expressed here are those of the authors and not necessarily those of the Federal Reserve Bank
of Minneapolis or the Federal Reserve System. This version is an updated version of the Discussion
Paper 101 at the Institute for Empirical Macroeconomics and of the CentER DP 9597.



1 Introduction

Often, researchers wish to analyze nonlinear dynamic discrete-time stochastic mod-
els. This chapter provides a toolkit for solving such models easily, building on log-
linearizing the necessary equations characterizing the equilibrium and solving for the
recursive equilibrium law of motion with the method of undetermined coefficients?

This chapter contains nothing substantially new. Instead, the point of this chapter
is to simplify and unify existing methods in order to make them accessible to a large
audience of researchers, who may have always been interested in analyzing, say, real
business cycle models on their own, but hesitated to make the step of learning the
numerical tools involved. This chapter reduces the pain from taking that step. The
methods here can be used to analyze most of the models studied in the literature. We
discuss how to log-linearizing the nonlinear equations without the need for explicit
differentiation and how to use the method of undetermined coefficients for models
with a vector of endogenous state variables. The methods explained here follow di-
rectly from McCallum (1983), King, Plosser and Rebelo (1987) and Campbell (1994),
among others?. We provide a general solution built on solving matrix-quadratic equa-
tions, see also Binder and Pesaran (1996), and provide frequency-domain techniques,
building on results in King and Rebelo (1993), to calculate the second-order mo-
ments of the model in its HP-filtered version without resorting to simulations. Since
the method is an Euler-equation based approach rather than an approach based on
solving a social planners problem, solving models with externalities or distortionary
taxation does not pose additional problems. Since the (nonlinear) Euler equations
usually need to be calculated in any case in order to find the steady state, applying the
method described in this chapter requires little in terms of additional manipulations
by hand, given some preprogrammed routines to carry out the matrix calculations of
section 6. MATLAB programs to carry out these calculations, given the log-linearized
system, are available at my home page®. The method in this chapter therefore allows
to solve nonlinear dynamic stochastic models easily.

Numerical solution methods for solving nonlinear stochastic dynamic models have
been studied extensively in the literature, see in particular Kydland and Prescott (1982),

INote that the nonlinear model is thus replaced by a linearized approximate model. “Essential”
nonlinearities like chaotic systems are unlikely to be handled well by the methods in this chapter.

ZCampbell even touts the approach followed in his paper as “analytical”, but note that in his
case as well as in our case, one needs to linearize equations and solve quadratic equations. Camp-
bell presumably attaches the attribute “analytical” to this numerical procedure, since it is rather
straightforward indeed and carrying it out by hand is actually feasible in many cases. Otherwise,
every numerical calculation anywhere could be called “analytical”, since it could in principle be
carried out and analyzed by hand - it would just take very long.

3http://cwis.kub.nl/~few5/center/STAFF /uhlig/toolkit.dir/toolkit.htm is the address of the

web site for the programs.



the comparison by Taylor and Uhlig (1990) and the methods proposed by various au-
thors in the same issue, Judd (1991), Hansen and Prescott (1995) and Danthine
and Donaldson (1995). The literature on solving linear-quadratic dynamic stochastic
models or linear stochastic difference equations is even larger. The key paper here
is Blanchard and Kahn (1980). Furthermore, there are the textbook treatment in
Sargent (1987), Chapters X and XI, as well as, say, Muth (1961), McGrattan (1994)
or Hansen, McGrattan and Sargent (1994), to name a random few. Subject to ap-
plicability, all the methods relying on a log-linear approximation to the steady state
have in common that they will find the same recursive equilibrium law of motion as
the method described in this chapter, since the linear space approximating a nonlin-
ear differentiable function is unique and “immune” to differentiable transformations
of the parameter space. But while McGrattan (1994) and Hansen, McGrattan and
Sargent (1994) focus on solving models via maximizing a quadratic objective func-
tion, and while Blanchard and Kahn (1980) solve linear systems by searching for the
stable manifold in the entire system of necessary equations describing the equilib-
rium relationships, this chapter by contrast solves directly for the desired recursive
equilibrium law of motion. This approach is very natural. The stability condition
is imposed at the point, where a certain matrix quadratic equation is solved. It is
shown how this matrix quadratic equation can be reduced to a standard eigenvalue
problem of another matrix with twice as many dimensions.

Three related contributions are McCallum (1983), which is the key reference for
the method of undetermined coefficients, Ceria and Rios-Rull (1992) and Binder and
Pesaran (1996). These contributions also derive the recursive equilibrium law of mo-
tion. McCallum (1983) reduces the coefficient-finding problem to a problem solvable
with the methods in Blanchard and Kahn (1980), whereas Ceria and Rios-Rull (1992)
reduce the problem to one of solving a matrix-quadratic equation as do we, but do
not reduce the matrix-quadratic equation problem to a standard eigenvalue problem.
Binder and Pesaran (1996) finally may be most closely related in that they reduce the
matrix quadratic equation characterizing the solution to an eigenvalue problem as we
do. These three contributions, however, for most parts do not distinguish between
endogenous variables which have to be part of the state vector, and other endogenous
variables. Thus applying these models in somewhat larger system can either result
in unnecessary large and computationally demanding eigenvalue problems in which
“bubble solutions” have to be removed in a painstaking fashion, or one is always
forced to reduce the system beforehand to make it fit their description®.

But all these technical differences to the existing literature are not in any way

4Furthermore, McCallum (1983) uses eigenvalue methods also to solve some other equations in his
method, which are solved here by a simple linear-equation-solution techniques, compare his solution
for equation (A.6) in his paper to equation (6.14).



essential. It shall be stressed again that the main purpose and merit of this chapter
is to make solving nonlinear dynamic stochastic models easy. In fact, this chapter
describes the entire method as a “cookbook recipe”, which should be of great practical
use to Ph.D. students and researchers alike. Since the focus here is entirely on the
computational aspect of studying these models, some issues are left aside entirely. In
particular, the issue of existence or multiplicity of equilibria as well as the reasons
for concentrating on stable solutions is not discussed. The methods in this chapter
should therefore not be applied blindly, but only in light of, say, McCallum (1983),
Stokey, Lucas with Prescott (1989) and the related literature.

The outline of the chapter will be evident from the description of the general
procedure in the next section. In particular, section 4 shows, how to do everything

by hand in the stochastic neoclassical growth model.

2 The general procedure

The general procedure to solve and analyze nonlinear dynamic stochastic models takes
the following steps.

1. Find the necessary equations characterizing the equilibrium, i.e. constraints,

first-order conditions, etc., see sections 4 and 5.
2. Pick parameters and find the steady state(s), see sections 4 and 5.

3. Log-linearize the necessary equations characterizing the equilibrium of the sys-
tem to make the equations approximately linear in the log-deviations from the

steady state, see sections 3, 4 and 5.

4. Solve for the recursive equilibrium law of motion via the method of undeter-
mined coefficients, employing the formulas of section 6. Also, see section 4,
where all the calculations are done “by hand” and explained in detail.

5. Analyze the solution via impulse-response analysis, see section 4 and 7, and
second-order-properties, possibly taking account of, say, the Hodrick-Prescott-
Filter. This can be done without having to simulate the model, see section 7.

The next section skips directly to step 3 of the procedure outlined above and
describes how to log-linearize nonlinear equations without explicit differentiation.
Sections 4 and 5 then provide two prototype examples, in which calculating the Eu-
ler equations, the steady state and the log-linearization is carried out to see how
this method works. Section 4 analyzes the stochastic neoclassical growth model and
states and explains the general modelling approach, all the details of the calcula-
tions including the calculation of the recursive equilibrium law of motion “by hand”,



whereas section 5 studies the real business cycle model of Hansen (1985), deriving
the log-linearized version fairly quickly: once, a linearized system has been obtained,
the methods in section 6 provide the desired recursive equilibrium law of motion.

Those, who wish faster access should skip section 4 and go to section 5 after
reading section 3. Readers who are familiar enough with log-linearization are advised
to skip even more and go directly to section 6 now.

3 Log-linearization

Log-linearizing the necessary equations characterizing the equilibrium is a well-known
technique. In the context of real business cycle models, log-linearization has been
proposed in particular by King, Plosser and Rebelo (1987) and Campbell (1994).
Log-linearization also appears frequently in text books, see e.g. Obstfeld and Rogoft,
p. 503-505. Nonetheless, the technique often seems to create more headaches than
it should. It is thus useful for the purpose of this chapter to review how it is done.
The next two sections simplify the approach of Campbell (1994). Looking ahead
at the many equations in particular of section 4 to follow, this claim may not seem
entirely credible. However, these equations were stated to spell out each step in
detail. When studying Campbell (1994), one might be under the impression, that
magic and quite a bit of cleverness is involved in deriving the results. The point of
in particular sections 3, 4 and 5 is to show, that one does not need to be as clever
as John Campbell to use these methods. On the contrary, everything is remarkably
straightforward, and, as long as one proceeds carefully, practically nothing can go
wrong. Different choices in places where choices can be made still result in the same
final outcome.

The principle of log-linearization is to use a Taylor approximation around the
steady state to replace all equations by approximations, which are linear functions in
the log-deviations of the variables.

Formally, let X; be the vector of variables, X their steady state and

z; = log X; —log X

the vector of log-deviations. The vector 100 - z; tells us, by how much the variables
differ from their steady state levels in period ¢ in per cent. The necessary equations
characterizing the equilibrium can be written as

1 = flay,xi1) (3.1)
1 = Efg(wiq,2,)] (3.2)



where f(0,0) =1 and ¢(0,0) = 1, i.e. the left-hand side of (3.1) and (3.2). Taking

first-order approximations around (zy, x¢—y) = (0,0) yields®

0 ~ firxze+ forai
0 ~ Flg1-xi1+ g2 24

One obtains a linear system in x; and z;_; in the deterministic equations and x;14
and w; in the expectational equations. This linear system can be solved with the
method of undetermined coefficients, described in section 6.

In the large majority of cases, there is no need to differentiate the functions f and
g explicitely. Instead, the log-linearized system can usually be obtained as follows.
Multiply out everything before log-linearizing. Replace a variable X; with X; = Xe®,
where x; is a real number close to zero. Let likewise y; be a real number close to zero.
Take logarithms, where both sides of an equation only involve products, or use the
following three building blocks, where @ is some constant:

eLetaye oy 1+ + ay,
zyy ~ 0

Ei[ae™] &~ Fy[ax,4q] up to a constant .
For example, these building blocks yield

e o~ 14+
aX: =~ aX:z;t up to a constant

(X;+a)Y; ~ XYa;+ (X 4 a)Yy, up to a constant

¢

Constants drop out of each equation in the end, since they satisfy steady state re-
lationships, but they are important in intermediate steps: compare for example the

5 An alternative to approximate (3.2) rewrites it as

0 = log(Fy[exp (§(x41,21))])

where § = logg. Assuming x; and x:41 to be (approximately) conditionally jointly normally dis-
tributed with an (approximately) constant conditional variance-covariance matrix, and assuming

that )
log ¢(0,0) & =Vary [§1 - 141 + G2 - 4], (3.3)

[\]

independent of ¢ (rather than log g(0,0) = 0) yields

0 = logFy[exp (§(0,0)+ g1 - Teq1 + o - 7))
o By w1+ Go - oxe],

using EleX] = BIXI+Var(xl/2 go, normally distributed variables. The two ways of approximating
(3.2) differ essentially only in their choice for ¢(0,0), since g1 = g1, if g(0,0) = 1.



two equations above. Rather than describing the general principles further, it is
fruitful to consider specific examples instead. The first example in section 4 studies
the neoclassical growth model in great detail and performs all the calculations “by
hand”. That section can also be used as a supplement to introducing students into
modern dynamic macroeconomic theory. Advanced readers may wish to skip instead
right away to section 5, which analyzes Hansens (1985) real business cycle model and
which is more compact than section 4.

4 Doing by hand: the neoclassical growth model.

In this section, the stochastic neoclassical growth model shall be studied. This is
useful, since all the calculations for this model can actually be done “by hand,” i.e.
with just pencil, paper and perhaps a pocket calculator. Furthermore, it serves as a
benchmark paradigm in much of the modern macroeconomic literature. We therefore
also take this opportunity to review the modelling principles for this literature before
returning to the computational focus of this chapter. For a book-length perspective
on these principles, the reader is advised to study Sargent (1987).

4.1 Modelling principles.

Theories are usually analyzed in order to answer a particular question or to theoreti-
cally understand a particularly interesting fact or set of facts. Modern macroeconomic
theory is applied dynamic general equilibrium analysis. To spell out such a theory,
one needs to explicitely specify the environment:

1. preferences,
2. technologies,
3. endowments,

4. and information.
Furthermore, one needs to state the object of study. Available choices are usually

1. The social planners problem. In that case, one needs to specify the planners
objective function.

2. The competitive equilibrium. In that case, one needs to specify the markets and
provide a definition of an equilibrium. In particular, one needs to spell out the
precise extent of market powers.

3. The game. In that case, one needs to specify the rules and to provide a definition
of an equilibrium.



4.2 The environment

For the stochastic neoclassical growth model, the environment is as follows.

1. Preferences: The representative agent experiences utility according to

Zﬂcln ]

— 11—

where C; is consumption®, 0 < 8 < 1 is the discount factor and > 0 is the
coefficient of relative risk aversion.

2. Technologies: We assume a Cobb-Douglas production function”

Ci+ K, = Z K[ N7+ (1= 6Ky

where K; is capital, IV; is labor, 0 < p < 1 (“capital share”) and 0 < 6 < 1
(“depreciation rate”) are parameters and where Z;, the total factor productivity,
is exogenously evolving according to ,

log Zy = (1 — ) log Z +plog Zi_y + ¢, ¢ ~ i.0.d.N(0;0%),
Here, 0 < ¢ < 1, Z are parameters.

3. Endowment: Each period, the representative agent is endowed with one unit of
time, N; = 1. Furthermore, he is endowed with capital K_; before ¢ = 0.

4. Information: Cy, Ny and K; need to be chosen based on all information Z; up
to time t.

4.3 The social planners problem.

The objective of the social planner is to maximize the utility of the representative
agent subject to feasibility, i.e.

max ElZﬂt 77_1]

(Cr K) i, =0 L — n

5We use capital letters to denote “levels” of variables, and use small letters to denote log-
deviations. This should not be confused with the more common notational usage in other parts
of the literature, where capital letters are usually reserved for aggregate variables, while small let-
ters denote individual variables.

"We use the date ¢ — 1 rather than the more commonly used date ¢ as subscript for capital in
the production function. This is just a notational difference, which we find useful, however, With
the notation here, the date of a variable refers to the point in time, when it is actually chosen. Put
differently, it refers to the information, with respect to which a variable is measurable. This turns
out to be particularly convenient, once one needs to solve for the dynamics with the theorems in
section 6. If the more commonly used notation is used instead, one needs to much more careful in
order to not introduce mistakes at that point



s.t. [(_1, Zo,
Ct —|— ](t - Zt[(tp_l —|— (1 - 5)[(15_1
logZ;, = (1 —1)logZ +log Zi 1 + ¢,

¢ ~  1.4.dN(0;0%)

To solve it, one should use the techniques of dynamic programming. Stokey, Lucas,
with Prescott (1989) provide the standard textbook on this technique. Here, we
bypass the dynamic programming foundations, and proceed directly to the necessary
first order conditions of optimality. To calculate them, form the Lagrangian:

I Py @t
= max T —
(CeK)Z, 150 L—n

N (Cy+ Ky — ZKE, — (1 — 8) K1)

The first order conditions are:

oL

0 . 0 = Ct —|— ](t - Zt[(tp_l - (1 — 5)[(15_1

I

oL »

— = — A

aCt 0 Ct 13

oL o )\ +sE Newr (pZen KP4+ (1 6))] (4.4)
oK, : t t | A+ 414y .

To the uninitiated, the equation (4.4) for % may seem tricky. To check it, write out

the terms for ¢ and ¢ + 1 in the objective function,

13 Ctl_n - 1 - ~p e
+ 6 ﬁ - )‘t (Ct + [Xt - Ztlxt_l - (1 — 5)[&15_1)

C -1

1 — 1 — A1 (Copr + K1 — Zea K — (1 — 5)[(15))

_I_ 6t—l—1 (
_I_

and differentiate with respect to K to get (4.4). The expectation F; comes in, because
information of date ¢4 1 is not yet known at date ¢, when choosing K;. The first-order
conditions are often also called Fuler equations.

One also obtains the transversality condition

0= lim Eo[BTCT K] (4.5)

obtained from a limiting Kuhn-Tucker condition, i.e. from summing just to T rather
than oo in the social planners solution, substituting C; with Z, K/ ; —(1—6)K;_1 — K;
everywhere, taking the derivative with respect to Kp, multiplying with K7, and



setting the result to zero while taking the limit for T' — oco. Another interpretation is
given in the next subsection 4.4. It is the transversality condition which (essentially)
rules out explosive solutions: this is what we shall keep in mind.

To solve for the steady state, rewrite the necessary conditions:

1.
C; = ZK!, +(1—8K,_4,—K,
2,
R, = pZK[7'+(1-6)
3.
- () n
4,

logZ; = (1 —)logZ +plog Zi 1 + €, € ~ i.0.d.N(0;0%)

Equation (4.6) is the Lucas asset pricing equation, see Lucas (1978), which typically
arises in these models. Dropping the time indices yields

C = ZK'+(1-6)K — K
R o= pZE" (1)
1 = BR
or
_ 1
R = —
3
P pZ 1/(1—p)
 \R—-1+4¢
(hence:ff = ZR’”)
C = Y —6K

It is possible to reduce the first three of these equations to just two or just one by
eliminating some of the variables. Quite popular is the reduction to a system in C;
and K, 1, which we will discuss in section 4.6, or to a system in just K; at leads
and lags, which we will discuss in subsection 4.7. However, there is no particular
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reason to make such a reduction: we therefore choose to carry all the equations with
us, since it will then also be easier to keep seeing the economic interpretation of the
log-linearizations.

While one could now start to analyze the dynamics, it may be interesting to do
a “detour” via studying the competitive equilibrium: as one shall expect from the
welfare theorems, the solution to the competitive equilibrium yields the same alloca-
tion as the solution to the social planners problem. A reader who is just interested
in analyzing the dynamics of the social planners problem should skip directly to
subsection 4.5.

4.4 The competitive equilibrium

Let us define a competitive equilibrium to be a sequence (Cy, Ny, Ky, Ry, W1)32,, so
that

1. Given® K(_Sl) and market wages W; and returns R;, the representative agent
solves

o0 1—77 _ 1
max F [Z ﬂtti]
=0

(Co. )3, 1—n
S.t. Nt(S) = 17
C,+ KY = wN? + RKY,

plus the no-Ponzi-game condition

£
0 = tli}};lo Eos_l_[lRt_ll(t

2. Given (Wy, R,):2,, the representative firm solves?

max_ 7, (K)" (N 4 (1= )k, — wiN® - Rk

CUEE
where

log Z; = (1 — ) log Z + b log Z; 1 + €, ¢ ~ 1.5.d.N(0;07),
1s exogeneous.

3. Markets clear :

8The superseript (*) on Kt(i)1 and Nt(s) 1s meant to indicate “supply”.

9The superscript (9 on Kt(i)l and Nt(d) 1s meant to indicate “demand”.
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(a) The labor market,
(b) The capital market,

(¢) The goods market,
Ct —|— ](t - Zt[(tp_l —|— (1 - 5)[(15_1

We need only two out of these three conditions by Walras’ law.

Another way to define a competitive equilibrium is to drop R; and introduce history-
contingent prices P; for consumption goods of time ¢ in terms of consumption goods
at date = 0. This has the advantage of turning the sequence of budget constraints
of the consumer into one infinite-horizon budget constraint, clarifying the role of
the no-Ponzi-game condition: the no-Ponzi-game condition stipulates, that in net
present value terms, the agent should neither have capital left over at infinity or
borrow anything at infinity. Using the first order conditions below, a close look at the
no-Ponzi-game condition reveals, that it is essentially nothing but the transversality
condition 4.5 of the social planners problem.

To analyze the competitive equilibrium, proceed as follows. The representative
firm solves

1—
ax 7 (K2) (M) "+ (1= ) KD~ WN — RK,

m
K@ ND
The first order conditions of the firm (“demand curves”) are
Ad)\P d)\ P
We = (- 2 (KEB) (N
-1 1—
R = pZ (K%)" (M) T+ (1-9)

Rewrite this, dropping (d)

and using
Yo = ZK{ N
on obtains, as usual for Cobb-Douglas

1. that the wage payments equal the labor share,

WiNe = (1-p)Y;
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2. and that the returns equal the capital share plus one minus depreciation,
Rt[(t—l = /ﬂ/t —|— (1 - 5)[(15_1

The interest rate is By — 1:

-4
PR

For the representative agent, form the Lagrangian:

L E[iﬂt(q}_n -1
= max P E—
(Co, K1), +=0 L — n

M (Cr+ Ky — Wy — Ry K1)

The first order conditions are

oL

a—)\t : 0= Ct + ](t — Wt — Rt[(t—l
oL _

— = —A

aCt 0 Ct 13

oL

oK, 0= =X+ BE M1 Riga]

Using, what one already knows for R; and W; yields

1.
C;, = ZK!,+(1—6K_ —K,
2,
R = pZKIT +(1—6)
3.
- () e
1,

logZ; = (1 —)logZ +logZi 1+ ¢, ¢ ~i.2.dN(0;0%)

These are the same equations as for social planners problem! Thus, whether one
studies a competitive equilibrium or the social planners problem, one ends up with

the same allocation of resources.
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4.5 Solving for the dynamics.

Let us return to the problem of solving for the dynamics in the stochastic neoclassical
growth model. As stated in section 3, one needs to do five things:

1. Find the constraints and the first-order conditions: done!
2. Find the steady state: done!
3. Log-linearize the constraints and the first-order conditions.

4. Solve for the recursive equilibrium law of motion via the method of undeter-
mined coefficients.

5. Analyze the solution via impulse-response analysis and second-order-properties.

4.5.1 Log-Linearization

To apply what was stated already in section 3, let e.g. ¢; denote the logarithmic
deviation of C; from its steady state value C. Formally:

¢y = log(Cy) — log(C).

Interpretation: If ¢; = 0.03, then C} is approximately 3 percent above its steady state
value. Write

Cy=Ce =~ C(1 +¢)
If there is a magic trick, then this is it! More examples:
ZiKP ., = ZKPe okt g ZKP(1 + 2z + phy_q) (4.7)
Ci+ K, =Ce*+Kett ~C+K+Ce+ Kk
If there are products, then it is easier to first multiply them out and to combine

products of exponential terms before one log-linearizes. E.g., equation (4.7 is easier
than

Kl = ZKPeteffi
ZKp(l + Zt)(l + Pkt—l)
ZKp(l + Zt + Pkt—1)7

%

%

although one gets the same final result, of course. Just in case, one needs to keep in
mind, that products of “small letters” are approximately zero, e.g.

Ztkt—l ~ 0.

Doing this for the constraints and the first-order conditions of the model yields
the following.
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1. For the first equation, the feasibility constraint, one obtains:

Co = ZK[,+(1— 8K — K,
Ce® = ZRPestrki—1 4 (1- 5)Kekt—1 — Keht
Ct+Ce ~ ZE"+(1—8)K — K
HZK (2 + phi_1) + (1 — 8)Kki_y — Kk

Use the steady state relationships

Q=
|

N

=

to get
Cct ~ ZKP(Zt+pkt_1)+(1 —5)Kkt_1 —Kkt

or, simplified, because we want to solve for the dynamics by hand,

One can still see the economic interpretation of this equation. If productivity
z, or productive capital k;_; is above its steady state level, total production
is higher, and thus, higher consumption can be afforded. On the other hand,
higher investment in the form of higher k; decrease consumption ceteris paribus.
To convert percentage changes of any of these variables into percentage changes
of consumption, one needs to multiply with the corresponding steady state

ratios of the levels.
2. For the second equation, the calculation of the return, one gets
R = pZK/T +1—6
Re™ = pZR’p_lezt"'(p_l)kf—l +1-—-46
R4+ Rry ~ pZK'4+1-56
+pZ K 2+ (p = Dkt
Use the steady state relationship
1

to get

Rr;, ~ pZR’p_l(zt—l—(p—l)kt_l)
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or, simplified, because we want to solve for the dynamics by hand,

o (1= B(1= 6)(z— (1= phkicy)

Economically, this equation states a relationship between the interest rate on
the left hand side and the marginal product of capital on the right-hand side,
which is increasing in z; and decreasing in k;_;. This is exactly what one should

expect.

3. For the third equation, the the Lucas asset pricing equation, one gets

Ce \"
1 = E [ﬂ (m) Rt+1]
CGCt_CtH e T+l
1 = E [ﬁ (T) Re ]
1 ~ E [6E’ + BR(n(e: — i) + Tt+1)]

Use the steady state relationship

to get
0 ~ FEilnlee — ca) + ey

One can see that percentage deviations of the marginal rate of substitution
from its steady state level, given by n(c¢; — ¢i41), need to equal the negative of
the interest rate r;11 in expectation. In particular, high expected interest rates
coincide with low marginal rates of substitution, i.e. with an expected rise in
consumption. This makes sense: if a rise in consumption is expected, only a
high interest rate can prevent agents from borrowing against that future rise.

4. For the fourth equation:
logZ; = (1—1)logZ +log Z; 1 + ¢,
log(Ze*) = (1 —1)logZ + log(Ze™ ) + e,
2 = Yz + e,
holding exactly.
Collect the equations obtained:

1.
Y K K

¢ = =u+ =k — =k

ct T30 C
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2.
re = (1= 81 =0))(z— (1= p)ki)
3.
0 = Eifnle — copr) +repal
4.

7 = Yzt

Here too, it is possible to reduce the first three of these equations to just two or just
one by eliminating some of the variables. In particular, we will discuss the popular
reduction to a system in ¢; and k;_; in subsection 4.6, and the reduction to a second-
order difference equation in just k; in subsection 4.7. However, there is no particular
reason to make such a reduction here: we therefore keep on carrying all the equations
with us. The final result is, of course, the same.

4.5.2 Solve for the dynamics with the method of undetermined coeffi-
cients.

What is given at time ¢ are the state variables k;—y and z;. What we need to find are

ke, and ¢;. We postulate a linear recursive law of motion,

ke = vipkio1 + viezy
e o= Vppkioy vz
¢ = Vepkio1r + vz

The task is to solve for the as of yet “undetermined” coefficients

VikysVizy Viky Vrzy Veky Vez

This can be done directly, employing the formulas of section 6, but it is instructive
to go through this example “by hand” to get a feel for the details. These coefficients
can be interpreted as elasticities: if e.g. v = 0.5 and K;_4 is 10 percent above its
steady state level, then C; should be set 5 percent above its steady state level.

To solve for the coefficients vii, Vi., Vrky Visy Vers Ve, substitute the postulated lin-
ear recursive law of motion into the equations we have obtained until only k;_; and

z; remain and compare coefficients, noting that

Et[Zt-l—l] = ¢Zt

Thus,



17

. for the first equation (“feasibility”):

K K K
¢ = (1 + 55) Z¢ + 6—C,kt—1 - Ekt

Y 1 K K
Vephio1 + Ver 2zt = 5215 + E — Vgk Ekt—l — El/kzzt

Since this needs to be satisfied for any value of k;_; and z;, we must have

(L NE
Ve = 6 Vik C,

Y K
Vez = C, C,sz

. For the second equation (“calculation of the return”),

re = (L=8(1=68)(ze — (1 = p)hki-1)
Vigkior + veeze = (L= (1 —0)(z— (1 — p)kiq)

Comparing coefficients, we get

v = —(1=p5(1—=6))(1—p)
vy = 1—=p(1-=296)

. For the third equation (“asset pricing”),

0 = FEinlc — cig1) + riga]
= En((venkio1 + veezt) — (Wbt + Ver2e41))
+vrikt 4+ Viazig]
= (Vpk — ek )b+ Verkioy + (Ve — nre) + nre) 2
= ((Vrk — NVek )VEk + Vel ) kt—1
F((Vrk — NVek)Vhz + (Ve — e ) + 1z )2

Note, that we needed to plug things in twice here! This is typical for the log-
linearized Lucas asset pricing equation. Comparing coefficients, we get

0 = (Vok — NVer)Vrk + NV
0 = (voh — Ve )Vis + (Vs — e )t + e
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Collecting, we get the equations from comparing the coefficients on k;_q,

Ve, = (% — ka) g (48)
v, = —(1=8(1=98)(1—p) (4.9)
0 = (Vrk — NVek )Vik + NVek (4.10)
(4.11)

and the equations from comparing the coefficients on z;,

_ Y K (4.12)

Vez = C, C,sz .
v = 1—B(1-6) (4.13)
0 = (Vrk - nl/ck)l/kz + (1/7’2 - nycz)¢ + NVes (414)

One now needs to solve for vg,. This is indeed the “crucial” coefficient, since it
relates the new value k; of the endogenous state variable to its old value k;_q, i.e.
captures the essence of the dynamics of the system. Once v is known, all other
coefficients can easily be computed, as we shall see.

To solve for vy, substitute out v and v, in equation (4.10) with (4.9) and (4.8):

Q\| =

1 K 1
0= (== =an =g = () b (5 - )
Simplify: divide by 5K /C, sort powers of v, to get

0=vi— e + >

p

where
v o= (1—ﬂ(1—5))(1—p)n(};+1+% (4.15)
_ 0=BU=O)1 - =G+ -p) | L

npp 3

The solution to this quadratic equation is given by

= L _ (1)2_1
2 2 3

Note that v > 0. The product of the two roots is 1 /3. We are looking for a root which
is stable, i.e. is smaller than one in absolute value. The stable root must therefore
be the smaller of the two roots.

In order to solve for the other coefficients, proceed as follows.
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1. The other coefficients v, and v, on k;_y can be found from rewriting euuations

(4.8) and (4.9) as
e = (1= BL- )1 - )

1 K
V. = — — v —

2. For the coefficients on z;, directly calculate
vy = 1—=p(1-=296)

Now, equations (4.14) and (4.12) are a system of two linear equations in the
two unknowns v.. and vg., which can be solved easily. The solution is perhaps
a bit ugly, but can be stated without much problem:

VTZ¢ + 77(1 - ¢)%

Viz =

v+ e + (1 — ) B
Y K
Vez = C, C,sz

4.5.3 Some results

After all this hard work, here are some results. “Calibrated” parameters are (“quar-

terly data”): 8 =1/1.01 ~0.99, p = 0.36, n = 1.0, § = 0.025, Z = 1. We get

vie = 0.965, v, = 0.075
ver = 0.618, v, = 0.305
vp = —0.022, v, = 0.035

Using the formulas obtained above, one can do some sensitivity analysis, see tables 1
and 2.

What one can do now is to

1. trace out, what happens if the initial capital is, say, approximately 20 percent
below steady state, k_; = —0.2, and there are otherwise no shocks (z; = 0).
Then, k; = vif'k_y. With | vp |< 1, we get convergence back to the steady
state.

2. trace out what happens to all the other variables along the way. This can
be done in two different ways. Either, one uses the log-linearized system and
calculates ¢; = v.ki_q, for example. This is always done in the programs
described in the appendix A. Or, one calculates the level K; = K exp(k;) from
the obtained path for &; and likewise the level of Z;, and computes the level for
the original variables using the original nonlinear equations. For example, one

gets Ct = Zt[(tp_l + (1 — 5)[(15_1 — ](t
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Vkk ° n=001|n=05|n=11]n=2|n=1000
6=0 0.8804 | 0.9857 | 0.9909 | 0.9944 | 1.0000
60 =0.025 | 0.6759 | 0.9496 | 0.9654 | 0.9766 | 0.9998
6=0.1 0.3238 | 0.8489 | 0.8918 | 0.9235 | 0.9987
6=1.0 0.0086 | 0.2480 | 0.3600 | 0.4789 | 0.9711

Table 1: Some sensitivity analysis in the neoclassical growth model. If depreciation 6
is less or if the intertemporal elasticity of substitution 1/n is smaller, the speed 1 —npy,
of convergence back to the steady state is slower.

Vg * n=001|n=05|n=1|n=2|n=1000
6=0 0.1395 | 0.0256 | 0.0238 | 0.0231 | 0.0231
6 =10.025 || 0.4458 | 0.0847 | 0.0752 | 0.0718 | 0.0808
6=0.1 0.9876 | 0.2412 | 0.2003 | 0.1804 | 0.2496
6=1.0 1.4722 | 1.1433 | 1.0000 | 0.8611 | 1.5772

Table 2: Some sensitivity analysis in the neoclassical growth model. If depreciation 6
is less or if the intertemporal elasticity of substitution 1/n is smaller, the reaction ny.
of the new capital stock, i.e. of investment, is generally smaller too, except for very
low levels of 1/n (compare the last two columns).
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3. simulate the model: simulate €}s, pick some initial k_; and zy. Then, calculate

recursively
z = Yzt
ki = virkio1 + vpoze

With that, obtain all other variables.

4. trace out what happens to all the variables after ¢g =1, ¢, = 0 for £ > 1, when
starting from the steady state. This is called an impulse response analysis.
Impulse responses for the neoclassical growth model are shown in figure 1.

Impulse responses to shock in technology
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Figure 1: This figure shows the impulse response for the stochastic neoclassical growth

model. The parameters are as stated in the text.

4.6 The relationship to a state-space approach.

In this section, we will discuss the popular reduction to a system in ¢; and k;_; for
the log-linearized system or to a system in C; and K;_; in the original system: this
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yields the state-space approach. To start with the log-linearized system, eliminate r;
from the first three of the four equations characterizing the dynamics, and set z; = 0
for the purpose of this discussion. We get the two equations

K K
Cy = 6—01615_1 — Ekt (416)
0 = nles = copn) = (1 = BL=8))(1 = p)k (4.17)

Furthermore, for the purposes of this subsection, it is convenient to solve the first
equation for k; and use it to eliminate k; in the second!. Slightly rewriting the
result, one gets

1 C
kt — kt—l = (E — 1) kt—l — ?Ct (418)
1 c 1
Ciy1 — G = ;(1 — 6(1 — 5))(1 — p) (?Ct — Ekt_l) (419)

In the state space approach, one looks at the equations (4.18) and (4.19) as a dynamic
system in the two-dimensional vector (k:—1,¢;), and analyzes its properties as follows.

First, one needs to solve for the steady state from these two equations: as we
know already, it is given by ¢; = 0 and k; = 0. Seen differently, set k; = k;_y = k and
¢; = ¢ in (4.18) to get the first steady state equation,

c—(l—1)£ (4.20)
- \s pC '

Proceed likewise with ¢;_1 = ¢; = ¢ in (4.19) to get the second steady state equation
K
c= ﬁ_C*k (4.21)
These two steady state equations describe two curves in the two-dimensional (k;—1, ¢;)-
plane, cutting that plane into four quadrants: see figure 2.

Any point (ki—1,¢;) in that plane can in principle occur from the perspective of
the state space approach. Next, one thus seeks to predict the changes k; — k;_; and
¢tr1 — ¢ when starting from any such point. The signs of these changes depend on
the quadrant in which the point lies. For example, in the upper left quadrant, we
are “above” the curve describing the first equation (4.20). Thus, for a point (ki_1,¢;)
above that curve, we get k; — k;—; < 0 from equation (4.18). This is indicated by an

10This manipulation is necessary because we are in a discrete-time framework, while in a
continuous-time framework, one essentially has k; = k;_g4. For the same reason, the state space dia-
gram for the discrete-time framework looks slightly different from those familiar from the continuous-
time analysis.
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Neoclassical growth model: State Space Diagram (Log—Deviations)
10 T T T T T ’ T T T T

—

Steady state equation

c(t) in Percent

Second steady state equation .

_10 | | | | ‘ | | | | |
-10 -8 -6 -4 -2 0 2 4 6 8 10
k(t-1) in Percent

Figure 2: This figure shows the state space diagram for the log-linearized neoclassical
growth model. The two steady state equations cut the plane into four quadrants,
which differ qualitatively in their dynamics as indicated by the arrows at right angles.
The stable arm s the function ¢; = vepki_1, which was derived with the method of
undetermined coefficients.

arrow pointing to the left. Furthermore, in the upper left quadrant, we are “to the
left” of the curve describing the second equation (4.21). Thus, for a point (ki—1,¢;) to
the left of that curve, we get ¢;41 — ¢; > 0 from equation (4.19). Thus, consumption is
increasing there, indicated by the arrows pointing upwards. In this manner, one can
analyze the dynamic behaviour at every point in the plane. Looking at these arrows,
one can see that the system is saddle-point stable: it diverges away from the origin
in the upper left quadrant and the lower right quadrant, and may have a chance to
converge towards it in the lower left quadrant and the upper right quadrant. Finally,
one can trace out trajectories of the dynamic system, starting it at any point (ki_1, ¢;)
and letting it evolve according to the equations (4.18) and (4.19). It turns out that
these trajectories will converge to the steady state & = 0,¢ = 0, if and only if the
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trajectories were started from a point on the stable arm. Further analysis reveals, that
the stable arm is given by ¢; = n.1k:—1. In other words, the method of undetermined
coefficients delivers the calculation of the stable arm for saddle-point stable systems.

Rather than looking at the system in log-deviation form, one can also look at the

original, nonlinear system and reduce it to a system in C; and K;_q, setting 7, = Z
for the sake of this argument:

Ct - Z[(tp_l —|— (1 - 5)[(15_1 - ](t

S

As above, solve the first equation for K; and use the result to replace K; in the second

equation'!, yielding with slight rewriting
](t - [(t—l - Z[(tp_l - 5[(15_1 - Ct

Cgl = (ﬁ (pZ (ZKL + (1= 8K — ) 4 (1 - 5)))

1/n

Again, one obtains two steady state relationships for K;_ 1 = K; = K and (44 =
Ct = C:
C = ZK’—-6K

o7 1/(1-p)
(1/8) =1+ 5)

These two relationships can be plotted into the (K;_1, C})-plane, dissecting that plane

C = ZK”—I—(l—(S)K—(

into four quadrants, see figure 3. The analysis proceeds exactly as above. As stable
arm, we have used the relationship C; = C exp(v., log(K;_1/K)), which according to
our log-linear analysis is approximately correct.

The state-space approach is certainly useful for gaining insights into small systems
such as the neoclassical growth model we have studied here. However, for larger

models, it becomes impractical very quickly.

4.7 The relationship to second-order difference equations.

In this subsection, we will discuss the popular reduction to a second-order difference
equation. Further discussion can also be found in subsection 6.4. As in the previous
subsection, we ignore the stochastic term z; for the purpose of the discussion here
by setting it identical to zero. The four log-linearized equations characterizing the
dynamics can be reduced to a single second-order equation in k;. One way of seeing

11 Again, this manipulation is not necessary in a continuous-time framework.
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Neoclassical growth model: State Space Diagram (Levels)

6 T T T T T T

5 - i \ -
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First steady state equation
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Second steady state equation
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0 10 20 30 40 50 60 70 80
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Figure 3: This figure shows the state space diagram for the neoclassical growth model
in its original, nonlinear form. The two steady state equations cut the plane into four
quadrants, which differ qualitatively in their dynamics as indicated by the arrows at

right angles.

this is to use equation (4.16) from the previous subsection to eliminate ¢; and ¢;41 in

equation (4.17). The result is the second-order difference equation

1
0 = kt-l—l - "}/kt —|— Bkt_l (422)

with 4 given in equation (4.15). To solve this second-order difference equations gen-

erally, define the characteristic polynomial

1
0=0v?—yv+ —.
B

see e.g. Sargent, 1987. The two solutions to this equation are given by

v 7V 1
— L4 (L) ==
Ty (2) 3
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We then have the following well-known proposition.

Proposition 1 If 1y # va, then the general solution to (4.22) is the two-dimensional
space, given by

ky = al/i5 + bl/; (4.23)
for arbitrary constants a and b.

Proof: Suppose, k; is given by (4.23). Substituting it into (4.22) yields

1
kiyr — vk + Bkt—l

as desired. Conversely, let any solution to (4.22) be given. Note, that it is enough to
just know ko and ki, say, since all other k; can then be calculated recursively from

(4.22). Find a and b such that

ko = Cl—|—b
kl = Cll/1—|—bl/2

There is a unique solution, since vy # vy. Then, the given solution to (4.22) must
coincide with (4.23) for these values of a and b. e

Since the general solution to equation (4.23) is a two-dimensional space, one needs
two constraints to pin down a unique solution. One constraint is the initial value for
capital k_q (or ko, if one starts time in the neoclassical growth model at t = 1). The
second constraint is the stability condition, that

0= thm kt

This constraint helps, if exactly one of the roots, v, say, is stable: in that case, we
must have b = 0 in (4.23). Furthermore, we now have the recursive equilibrium law
of motion

kt = l/lkt—l- (424)

In other words, for second-order difference equations with exactly one stable root, the
method of undetermined coefficients finds the stable solution with vy = vy.
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Note, that the stability condition does not help, if both roots are stable. In that
case, one still has a one-dimensional space of general solutions. Such systems can give
rise to sunspot dynamics, see Farmer and Guo (1994) for further discussion. One then
has to be careful with the interpretation of the results of the method of undetermined
coefficients, since that method, given one endogenous state variable, imposes the
restriction on the solution of the system to be of form (4.24), which is no longer
valid. A remedy is to enlarge the state space to include k;_y and k;_5: the method
of undetermined coefficients then correctly searches for a recursive equilibrium law of
motion of the type

ki = vikikio1 + Vira ko
with vgr = v and vy = —1/ as a stable and simple-to-find solution. More generally,
enlarging the state space leads to more complicated matrix algebra, which is dealt
with in section 6. The point here is to keep in mind, that one should be very caretul,
if one finds “too many” (or, likewise, “too few”) stable roots, when applying the
method of undetermined coefficients.

4.8 A quick review.
It may be useful at this point to step back and to provide a quick review:

1. We have found the necessary conditions.
2. We log-linearized these conditions and the constraints. E.g. we got
0 = Eilnlee — coqa) + i1
3. We postulated a linear law of motion, e.g.
ki = viekio1 + vz
and solved for the “undetermined coefficients” vy, v, etc..

4. Tt all boiled down to solving a quadratic equation for the coefficient vy, given

9 1
0= Vik — VVkk T 5

p

where ~ is given in equation (4.15).

5. The resulting equations could then be used to analyze the model by e.g. cal-
culating the coefficient v for particular parameter choices, doing sensitivity
analysis with respect to these choices, analyzing the speed of convergence back
to the steady state, simulating the model or looking at impulse response func-
tions.
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6. We have compared the method of undetermined coefficients to a state space

approach as well as to solving second order difference equations.

In looking back, we can also see that finding the necessary conditions, finding the
steady state, as well as log-linearizing these conditions and the constraints was com-
paratively easy. Painful, however, was to have to solve for v4. and the other co-
efficients. For larger models or, worse, for models with multiple endogenous state
variables, solving for everything by hand looks quite unattractive.

However, this pain can be avoided by applying directly the theorems in section 6.
The easiest way to apply these theorems is to obtain MATLAB routines applying
them. They are described in appendix A and are available together with some docu-

mentation and examples at the following web site:

http://cwis.kub.nl/~few5/center/STAFF /uhlig/toolkit.dir/toolkit.htm.

5 An example: Hansens real business cycle model.

The next example is Hansens (1985) real business cycle model. It is explained there
in detail. Here, the mathematical description shall suffice. The main point of this
example is to explain how to perform the first three steps of the general procedure as
stated in section 3. In many ways, the model here is just an extension of the stochastic
neoclassical growth model of section 4 above: the main difference is to endogenize
the labor supply. In fact, it is possible to also solve through that model by hand just
as was done above for the stochastic neoclassical growth model. However, here, we
want to go through the analysis of this model rather quickly to show how to get to
the log-linearized version of the model ready for the analysis with the theorems of
section 6 and the MATLAB programs mentioned there.
The social planner solves the problem of the representative agent

1—77_1

max F Z Ik (0157 — ANt)
t=1 1 - 77

s.t.

Ci+ I, = Y, (5.1)
Ko = L+(1—8)K.
Y, = ZK[ N'*
logZ; = (1 —)logZ +plog Ziy + e, € ~ 1.0.d.N(0;0%),

where (Y is consumption, V; is labor, [, is investment, Y; is production, K is capital Z;
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is the total factor productivity and A, 3,71,6, p, Z,%» and o? are parameters. Hansen
only considered the case n = 1, so that the objective function is

E Z ﬂt(log Ct — ANt)
t=0

As in Campbell (1994), there is no difficulty in considering arbitrary 5, since no
growth trend is assumed.
The first order conditions are

- Y
A = C7"(1—p)~s
Ct ( p) Nt
C n
1 - 6Et [(C—t) Rt+1] y (52)
t+1
Y:
= 1—6. .
Rt p[(t_l + (5 3)

Equation (5.2) is the Lucas asset pricing equations, see Lucas (1978), which typically
arises in these models.

In contrast to some of the real business cycle literature and to avoid confusion in
the application of the method in section 6, it is very useful to stick to the following
dating convention. A new date starts with the arrival of new information. If a variable
is chosen and/or (eventually) known at date ¢, it will be indexed with t. Use only
variables dated t and t — 1 in deterministic equations and variables dated ¢ 4+ 1, ¢ and
t — 1 in equations involving expectations F[-].

The steady state for the real business cycle model above is obtained by drop-
ping the time subscripts and stochastic shocks in the equations above, characterizing
the equilibrium. Formally, this amounts to finding steady state values such that
f(0,0) = 1 and ¢(0,0) = 1 in the notation of the previous section'?. For example,
equations (5.2) and (5.3) result in

1 = AR

Y
—11-4
p[(—l_ Y

where bars over variables denote steady state values. One needs to decide what one
wants to solve for. If one fixes 3 and §, these two equations will imply values for R and
Y /K. Conversely, one can fix R and Y /K and then these two equations yield values
for 3 and 6. The latter procedure maps observable characteristics of the economy
into "deep parameters,” and is the essence of calibration, see Kydland and Prescott

(1991).

12 Alternatively, find the steady state so that (3.3) is satisfied. This is, however, rarely done.
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Introduce small letters to denote log-deviations, i.e. write
C, = Ce
for example. The resource constraint (5.1) then reads
Ce + e =YeH
This can be written approximately as
Cl+c)+1(1+4)=Y(1+y)

Since C'+ I = Y due to the definition of the steady state, the constant terms drop
out'® and one obtains

Cct —|— jlt = Yyt (54)

The resource constraint is now stated in terms of percentage deviations: the steady
state levels in this equation rescale the percentage deviations to make them compa-
rable. Note that no explicit differentiation is required to obtain the log-linearized
version of the resource constraint: log-linearization is obtained just by using the
building blocks described in the previous section.

Similarly log-linearizating the other equations yields

Kk = Tig+(1—6)Khy
Yy = 2+ phior + (1 —p)ny
ze = Yz te
0 = —na+y—mny
0 = FEinle: — 1) + rega]

_ Y
Rry = Pf(yt—kt—l)-

To find the state variables, one needs to find all (linear combinations of) variables
dated ¢ — 1 in these equations: the endogenous state variable is capital, k;_; whereas
the exogenous state variable is the technology parameter z;_;. Note that there are as
many expectational equations as there are endogenous state variables. The coefficients
of the equations above need to be collected in the appropriate matrices to restate these
equations in the form required for section 6: this is a straightforward exercise.

I3 Another way to see that constants can in the end be dropped is to note that the steady state
is characterized by ¢; = ky = y; = ky—1 = 0. If one replaces all log-deviations with zero, only the
constant terms remain, and that equation can be subtracted from the equation for general ¢;, k¢, ¥4
and k;_1 above.
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6 Solving recursive stochastic linear systems with

the method of undetermined coefficients

This section describes how to find the solution to the recursive equilibrium law of
motion in general, using the method of undetermined coefficients. MATLAB pro-
grams performing the calculations in this section are available at my home page'*.
The idea is to write all variables as linear functions (the “recursive equilibrium law of
motion”) of a vector of endogenous variables x;_; and exogenous variables z;, which
are given at date ¢, i.e. which cannot be changed at date ¢{. These variables are often
called state variables or predetermined variables. In the real business cycle example
of section 5, these are at least k;_; and z;, since they are clearly unchangeable as of
date t and, furthermore, show up in the linearized equations system. In principle,
any endogenous variable dated ¢ — 1 or earlier could be considered a state variable.
Thus, in subsection 6.1 below, we use “brute force” and simply declare all endoge-
nous variables to be state variables, whereas in subsection 6.2, we try to be a bit more
sensitive and exploit more of the available structure. The latter is typically done in
practice, see e.g. Campbell (1994). Both subsections will characterize the solution
with a matrix quadratic equation, see also Ceria and Rios-Rull (1992) and Binder
and Pesaran (1996). Subsection 6.3 shows, how to solve that equation. For models
with just one endogenous state variable, such as the real business cycle model of
section 5 when analyzed with the more structured approach in subsection 6.2 below,
the matrix quadratic equation is simply a quadratic equation in a real number. In
that case, the solution to the quadratic equation is obviously known from high-school
algebra: it is contained as a special case of the general solution in section 6.3. In

subsection 6.4 we discuss our solution method, and compare it in particular to the

Blanchard-Kahn (1980) approach.

6.1 With brute force...

As a first cut, and with somewhat brute force, one may simply use all variables
without distinction as a vector of endogenous state variables'® a;_; of size m x 1 or
as a vector of exogenous stochastic processes z; of size k x 1. It is assumed that the
log-linearized equilibrium relationships can be written in the following form

0 = Et[Fxt-I—l + GfL’t + th—l + LZt-I—l + MZt] (61)
YMhttp://cwis.kub.nl/~few5/center /STAFF /uhlig/toolkit.dir/toolkit.htm is the address of the

web site for the programs.
15To make this work really generally, one should actually not only include all the variables dated

t — 1 but also all the variables dated ¢ — 2 as part of the state vector x;_1. More is even required,
if the equations already contain further lags of endogenous variables, see also the next footnote.
Usually, however, this isn’t necessary.
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ziv1 = Nz + €1 Filea] =0, (6.2)

where F', GG, H, [ and M and matrices, collecting the coefficients. It is assumed that
N has only stable eigenvalues. The real business cycle example above can be easily
written in this form. For example, the resource constraint (5.4) would be

0= Et[C'ct + jlt — Yyt]

since ¢, 1; and y; are already known at date £ and hence nothing changes when one
takes their expectations given all information up to date . Note that /"= L = 0 for
this equation. Of course, there are other equations in the real business cycle model,
and one of them involves nonzero entries for F' and L.

What one is looking for is the recursive equilibrium law of motion

Ty = th—l + QZt (63)

i.e. matrices P and () , so that the equilibrium described by these rules is stable. The
solution is characterized in the following theorem, see also Binder and Pesaran (1996).
The characterization involves a matrix quadratic equation, see equation (6.4). Sub-
section 6.3 discusses, how it can be solved. For the purpose of that section, let m be
the length of the vector z;, and let [ =n = 0.

Theorem 1 [f there is a recursive equilibrium law of motion solving equations (6.1),
and (6.2), then the following must be true.

1. P satisfies the (matriz) quadratic equation
0=FP*+GP+H (6.4)

The equilibrium described by the recursive equilibrium law of motion (6.3) and
(6.2) is stable iff all eigenvalues of P are smaller than unity in absolute value.

2. Given P, let V denote the matriz
V=NQ@F+1,0(FP+d),

Then,
VQ = —vec(LN + M) (6.5)

where vee(-) denotes columnwise vectorization.

Obviously, if the matrix V in this theorem is invertible, then multiplication of equation
(6.5) with V=1 yields the unique solution for (). Proof: Plugging the recursive
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equilibrium law of motion (6.3) into equation (6.1) twice and using (6.2) to calculate

the expectations yields

0 = (FP+G)P+ H)ayy + (6.6)
(FQ+ L)N 4+ (FP+G)Q + M)z

The coefficient matrices on x;_y and z; need to be zero. Equating the coefficient on
x-1 to zero yields equation (6.4) for P. Taking the columnwise vectorization of the
coefficient matrices of z; in this equation and collecting terms in vec(Q)) yields the

equation (6.5) for ). e

6.2 ... or with sensitivity.

We now exploit more of the structure in the linearized model. Analyzing the equations
of the real business cycle example of section 5, one sees that the only endogenous
variable dated ¢ — 1 which shows up in any of the equations is capital, k;_1. It is
thus a reasonably guess to treat k;_; as the only endogenous state variable together
with the exogenous state variable z;. This principle is general: in the vast majority

of cases, this is how one can identify the vector of state variables!®.

In practice,
one often sees researchers exploiting some of the equilibrium equations to “get rid”
of some variables, and have only a few variables remaining. For the real business
cycle example of section 5, it is actually possible to reduce everything to a single
equation for the endogenous variables, containing only k;yq, k; and k;—;. Often, one
sees reductions to a system involving two equations in two endogenous variables such
as ¢; and k;_q, see e.g. Campbell (1994), presumably because this allows thinking in
terms of a state space diagram, see e.g. Blanchard and Fisher (1989), chapter 2. The
analysis below follows this often-used procedure. However, there is no reason to go
through the hassle of “eliminating” variables by hand, using some of the equations:

since this is all just simple linear algebra applied to a system of equations, it is far

16There are exceptions. In richer models, the state variables need to include variables chosen at
a date earlier than ¢ — 1 as well because these lagged variables appear in the equations. One can
recast this into the desired format as follows. The list of state variables might consist out of lagged
values of the capital stock, k;_; and k;_5. This can and should be rewritten as k; ;1 and k2 ;4
with &y ;1 replacing k;_; and where the additional equation k3 ; = k; ;—1 needs to be added to the
system. With that notation, k- ; is “chosen” at date ¢, satisfying the “dating convention” stated in
section 5. One may also need to add additional variables like e.g. ¢;_1 or ky_o as state variables,
even though they don’t show up in the equations with these dates, when the model exhibits sun
spot dynamics. This can be done in the same manner, but one needs to be careful with interpreting
the results. The reader is advised to read Farmer and Guo (1994) for an example as well for the
appropriate interpretation for such a case.
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easier to leave all the equations in, and leave it to the formulas to sort it all out. That
is what is done below.

We thus make the following assumptions'”. There is an endogenous state vector
xy, size m x 1, a list of other endogenous variables (“jump variables”) y;, size n x 1, and
a list of exogenous stochastic processes z;, size k x 1. The equilibrium relationships
between these variables are

0 = A[Et + th—l + Cyt + DZt (67)
0 = Ef[Feup+Gey+ Hegoy + Jyep + Ky + Lz + Mz (6.8)
Zigr = Nzt ey Eilega] =0,

where it is assumed that C is of size [ x n, [ > n and'® of rank n, that F is of
size (m +mn — 1) x n, and that N has only stable eigenvalues. Note, that one could
have written all equations (6.7) in the form of equation (6.8) with the corresponding
entries in the matrices F', J and L set to zero. Essentially, that is what is done in
subsection 6.1. Instead, the point here is to somehow exploit the structure inherent
in equations of the form (6.7), which do not involve taking expectations.

What one is looking for is the recursive equilibrium law of motion

Ty = th—l + QZt (610)
Y = Rl’t_l + SZt, (611)

i.e. matrices P, (), R and S, so that the equilibrium described by these rules is stable.
The solution is characterized in the next theorem. To calculate the solution, one needs
to solve a matrix quadratic equation: how this is done, is explained in subsection 6.3.

The important special case [ = n is treated in corrolary 1. The special case
[ =n = 0 was the topic of subsection 6.1 .

Theorem 2 [f there is a recursive equilibrium law of motion solving equations (6.7),
(6.8) and (6.9), then the coefficient matrices can be found as follows. Let Ct be the
pseudo-inverse'? of C'. Let C° be an (I —n) x | matriz, whose rows form a basis of
the null space*® of C".

1"Note that the notation differs from the notation in section 3

18The case [ < n can be treated as well: the easiest approach is to simply “redeclare” some other
endogenous variables to be state variables instead, i.e. to raise m and thus lower n, until [ = n.

19The pseudo-inverse of the matrix C' is the n x [ matrix Ct satisfying CTCCT = C*t and
CCHC = C. Since it is assumed that rank(C) > n, one gets CT = (C'C)~1C", see Strang (1980),
p. 138. The MATLAB command to compute the pseudo-inverse is pinv(C').

20CY can be found via the singular value decomposition of C”, see Strang (1980), p. 142. The
MATLAB command for computing C? is (null(C"))".
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1. P satisfies the (matriz) quadratic equations

0= C°AP + C°B (6.12)
0= (F—JCTAP? —(JCTB-G+ KCTA)P - KCtB+ H (6.13)

The equilibrium described by the recursive equilibrium law of motion (6.10),
(6.11) and by (6.9) is stable iff all eigenvalues of P are smaller than unity in
absolute value.

2. R is given by
R=—-CT(AP + B)

3. Given P and R, let V be the matrix

I NQF+Lo(FP+JR+G), NoJ+LoK |

where [, is the identity matriz of size k x k. Then

g e ) B L

where vee(-) denotes columnwise vectorization.

Obviously, if the matrix V in this theorem is invertible, then multiplication of equation
(6.14) with V= yields the unique solution for Q.
Proof: Plug the recursive equilibrium law of motion into equation (6.7). This
vields
(AP+CR+ B)xi_1 + (AQ+CS+ D)z =0, (6.15)

which has to hold for arbitrary x,_1 and z;. Thus, the coefficient matrices on x;_; and
z; in (6.15) are zero. Plugging the recursive equilibrium law of motion into equation

(6.8) twice and using (6.9) yields

0 = (FP+JR+G)P+ KR+ H)xey + (6.16)
(FQ+JSH+ LN+ (FP+JR+G)Q+KS+ M)z

Again, the coefficient matrices on x;_1 and z; need to be zero. Taking the column-
wise vectorization of the coefficient matrices of z; in equations (6.15) and (6.16) and
collecting terms in vec(Q) and vec(S) yields the formula for () and S.

To find P and thus R, rewrite the coefficient matrix on x;—1 in equation (6.15) as

R = —CY(AP+ B) (6.17)
0 = CYAP+(C°B,
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noting that the matrix [(C'1), (C°)] is nonsingular and that C°C = 0, see Strang (1980),
p. 88. Use (6.17) to replace R in the coefficient matrix on x,—1 in (6.16), yielding
(6.13). Note finally that the stability of the equilibrium is determined by the stability
of P, since N has stable roots by assumption. e

Corollary 1 Suppose that | = n, i.e. that there are as many expectational equations
as there are endogenous state variables. If there is a recursive equilibrium law of
motion solving equations (6.7), (6.8) and (6.9), then their coefficient matrices can be

found as follows.

1. P satisfies the (matriz) quadratic equation
(F—JC' AP - (JCT'B-G+ KCT'A)P — KC™'B+ H=0. (6.18)

The equilibrium described by the recursive equilibrium law of motion (6.10),
(6.11) and by (6.9) is stable iff all eigenvalues of P are smaller than unity in
absolute value.

2. R is given by
R=—-C7Y(AP + B)

3. Q) satisfies

(N'@(F-JCT'A)+ [ @ (JR+ FP+ G — KC™"A))vec(Q)
vec((JC'D — L)N + KC™'D — M), (6.19)

where Iy is the identity matriz of size k X k, provided the matriz which needs to
be inverted in this formula is indeed invertible.

4. S is given by
S=—-C"YAQ + D)

Proof: This corollary can be obtained directly by inspecting the formulas of the-
orem 2 above for the special case | = n. In particular, Ct is just the inverse of C.
Alternatively, a direct proof can be obtained directly by following the same proof
strategy as above: there is no need to repeat it.

The formulas in these theorems become simpler yet, it m = 1 or £ = 1. If

m = 1, there is just one endogenous state variable and the matrix quadratic equation
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above becomes a quadratic equation in the real number P, which can be solved using
high-school algebra: this is the case for the real business cycle model and thus the
case which Campbell (1994) analyzes. If k = 1, there is just one exogenous state
variables, in which case the Kronecker product (i.e. “®7”) in the formulas above
becomes multiplication, and in which case vec(Q) = @) and vec(S) = 5, since ) and
S are already vectors rather than matrices.

6.3 Solving the matrix quadratic equation.

To generally solve the matrix quadratic equations (6.4) or (6.12), (6.13) for P, write
them generally as

VPP TP -0 =0. (6.20)
For equations (6.12) and (6.13), define

. [ Ol—n,m
Vo= | —JCTA ]
N C°A

| JCTB-G4+ KCTA
o — [ (B

- | kctB-m,

where 0, is a (I — n) X m matrix with only zero entries. In the special case [ = n,
the formulas for ¥, I" and © become slightly simpler:

UV = F—JC'A
I' = JC'B-—G+ KC™tA
© = KC'B—-H

For equation (6.4), simply use ¥ = F, I'= —G and © = —H.
Equation (6.20) can now be solved by turning it into a generalized eigenvalue and
eigenvector problem?!, for which most mathematical packages have preprogrammed

22

routines®“. Recall, that a generalized eigenvalue A and eigenvector s of a matrix =

with respect to a matrix A are defined to be a vector and a value satisfying

AMs = =5 (6.21)

2LAn earlier version of the chapter proposed to study an altered version of these equations by
postmultiplying equation (6.12) with P. This altered equation together with (6.13) can then often
be reduced to a standard rather than a generalized eigenvalue problem, but had the drawback of
introducing spurious zero roots. The version presented here does not involve this alteration, and
thus does not introduce spurious zero roots. This update is due to Andy Atkeson (1997), and T am
very grateful to him for pointing it out to me. Any errors here are mine, of course.

22The Matlab command for finding the generalized eigenvalues and eigenvectors is eig(Z,A).
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A standard eigenvalue problem is obtained, if A is the identity matrix. More gener-

ally, the generalized eigenvector problem can be reduced to a standard one, it A is

invertible, by calculating standard eigenvalues and eigenvectors for A™1= instead.
Theorem 3 To solve the quadratic matrix equation
Up?2 TP -0 =0, (6.22)

for the m x m matriz P, given m x m matrices I' and O, define the 2m X 2m matrices

_ [r e
- ]m Om,m 7

v 0
A — m,m
[ Om,m ]m ] 7

= and A\ via
and

where I, is the identily matriz of size m, and where 0, ,, s the m x m matric with
only zero entries.

1. If s is a generalized eigenvector and X the corresponding generalized eigenvalue
of = with respect to A, then s can be written as s’ = [Az', '] for some © € R™.

2. If there are m generalized eigenvalues A, ..., N, together with generalized eigen-
vecltors s1,...,8, of = with respect to A, written as s, = [Nz}, xl] for some
z; € R™, and if (x1,...,2,) is linearly independent, then

P=QA07"

is a solution to the matriz quadratic equation (6.22), where Q = [x1, ..., 2] and

A =diag(X, ..., ). The solution P is stable if | \; |< 1 foralli=1,...,m.

Conversely, any diagonalizable solution P to (6.22) can be written in this way.

3. If m =1, then the solutions P to equation (6.22) are given by

1 ————
PLQ - E(F:I: F2—|—4\I}®)

if U #0 and

if U =0andl #0.
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Proof: First, examine the last m rows of equation (6.21) to see that any eigenvector
s for some eigenvalue A of the matrix = with respect to A can indeed be written as

=17

for some x € R™ because of the special form of = and A. Examining the first m rows
of equation (6.21) then shows that

MUy — Az —0Ox =0 (6.23)

It follows that
UOA2 —TOA —0OQ =0

and hence

UPP—TP—-0=0

as claimed, after multiplying with Q=1 from the right.
Reversing the steps shows that any diagonalizable solution P to (6.22) can be
written in this way. e

Some additional properties of a solution P to (6.20) are stated in the following

theorem??:

Theorem 4 1. The eigenvalues X of = are the solutions to the equation
det (AW — AI' — ©) = 0.
The lower half x of the eigenvector s to X satisfies
(MW —AI'-0) 2 =0
2. If U s invertible and if P is a real-valued solution to the matriz-quadratic

equation (6.18), then
tr(40710 + (UT'T)?) > 0.

Proof: The claim about A follows from

det([ i_W) ?A]m D = det (=A\(I' = \U) — O),

21 am grateful to Jan Magnus for pointing these out to me. Furthermore, Ceria and Rios-Rull,
1992, point to additional literature on this subject, which found and concentrated on part 1 of
theorem 4, but did not study the more useful theorem 3.
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which follows from inspecting the formula for the determinant. The claim about the
eigenvector piece x is just (6.23). For the last claim, calculate that

0=1tr(P2— U 'TP —U'0) = tr((P — %qur)? — (0O + i(xp—lr)?)).

The conclusion follows since tr((P — %\I/_lf)z) >0.0

6.4 Discussion.

Theorem 3 links the approach used here to Blanchard and Kahn (1980), which is
the key reference for solving linear difference equations. Consider solving the second

order difference equation
\I}xt-I—I — F(Et — @(Et_l =0. (624)

The approach in Blanchard and Kahn (1980) amounts to finding the stable roots of
= by instead analyzing the dynamics of the “stacked” system s} = [z}, 2} _,] ,

Ast-|-1 = =S¢,

i.e. by reducing (6.24) to a first-order difference equation. The approach here solves
for the matrix P in the recursive equilibrium law of motion zyy; = Px;. Theorem 3
above states that both approaches amount to the same problem. The advantage of
the method here is that it is easily applied to the entire system (6.7), (6.8) and (6.9),
reducing it to (6.24) eventually, while finding the stable roots in the entire system
given by these equations and at the same time taking care of the expectation opera-
tors, using the Blanchard-Kahn (1980) procedure, is often perceived as complicated.
Fundamentally, there is no difference.

To apply theorem 3, one needs to select m out of 2m possible eigenvalues. Note
that P has only nonzero eigenvalues if the state space was chosen to be of minimal
size: thus attention can be restricted to the roots | A; |> 0 in that case. In gen-
eral, there may be quite a bit of choice left. In practice, however, there will often

be exactly m stable eigenvalues remaining so that the stable solution is unique®.

24 Another approach to select a unique solution is in McCallum (1983), who suggests to use those
roots that can be obtained continuously from the zero roots of the equation ¥P? — TP — a® for
a = 0, as « changes from 0 to 1. However, not only is following these roots as functions of «
computationally very demanding, it is also the case that uniqueness gets lost once two or more such
paths cross each other. If these paths do not cross in a particular application, and if additionally
all roots for all o are positive real numbers, say, then the McCallum proposal simply amounts to
using the roots of minimal value. The MATLAB programs supplied by the author use the roots of
minimal absolute value subject to eliminating spurious zero roots and tries to use complex roots in
conjugate pairs, as described below.



41

For a one-dimensional vector of endogenous state variables, this condition is called
saddle-point stability. The literature on solving linear rational expectations equilibria
typically assumes this condition to hold or shows it to hold in social planning prob-
lems under reasonable conditions, see Blanchard and Kahn (1980), Kollintzas (1985)
and Hansen, McGrattan and Sargent (1994). If there are fewer stable eigenvalues
than endogenous state variables, the equilibrium might be inherently unstable. The
method above then still permits calculation of an equilibrium which satisfies the non-
linear equilibrium conditions at least locally. In particular, in models involving more
than one agent or sectors or countries, one may find as many unit roots as there are
more agents (sectors, countries) than one since shocks may affect the relative wealth
(capital) of any two agents (sectors, countries) and thus may result in permanent
changes in their consumption paths (or capital stocks): in these cases, the method
above allowing for unit roots still gives useful results, which obviously should then be
used with some care. These unit roots typically already show up as an indetermined
steady state: any of the possible steady states can then serve as a starting point for
the dynamic calculation, keeping in mind that a simulation based on the dynamics
calculated here will eventually wander away too far to be numerically useful. If there
are more stable eigenvalues than endogenous state variables, enlarging the number of
endogenous state variables by including further lagged values might help. Nonethe-
less, the presence of an excess of stable roots then may point to the existence of
sunspots or endogenous fluctuations, see e.g. Farmer and Guo (1994).

If not all eigenvalues of = are distinct, P in turn might have repeated eigenvalues.
Since the eigenspace for a repeated eigenvalue is (usually) multidimensional, there
will be infinitely many choices for the eigenvectors and hence infinitely many choices
for P in that case. Note, for example, that for any given A and any three real numbers
a, b, c satisfying a® 4 bc = A?, all matrices

p_ a b
e —a
solve ,
A0
P 0]

These cases are rare in practice, since = is diagonalizable with distinct eigenvalues
generically in the coefficients of the system (6.7), (6.8) and (6.9).

More disconcerting is the possibility that some of the roots may be complex rather
than real. Consider, for example, ¥ = [, I' = —I5 and

o 0.23  0.64
| —0.64 0.23 |°
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Using the theorem above, one obtains exactly two stable roots, which happen to
be complex, A\j 5 = 0.3 £ 0.4: = 0.5¢**, where where a &~ 0.9273. Their associated
eigenvectors are complex, too. Calculating P results in a matrix with only real entries,

however, given by

—-0.4 0.3 —sina  Cos o

P:[ 0.3 0.4]:0‘5l COs & smoz]‘

Since = is a real-valued matrix, complex eigenvalues only arise in complex-conjugate
pairs. When using both roots of a complex-conjugate pair to calculate A and thus
P, the resulting solution should be a real-valued matrix. In order to do this, one
may have to enlarge the state space of endogenous state variables to be at least two-
dimensional, see again Farmer and Guo (1994) for an example. The complex roots

then give rise to endogenous damped cycles of frequency a.

7 Interpreting the results
The results obtained, i.e. the recursive equilibrium law of motion
vy = Priq + Q2

ye = Ray_q + Sz
z=Nzi1 + &

can be used to examine model implications. Since x, y; and z; are log-deviations,
the entries in P, @), R, S and N can be understood as elasticities and interpreted
accordingly, see e.g. Campbell (1994).

Impulse responses to a particular shock €; can be calculated by setting g = 0,y =
0 and zo = 0, as well as ¢ = 0 for ¢t > 2, and recursively calculating z; and then z;
and y;, given x;_1, %1, 2t—1 and & for t = 1,...,T with the recursive equilibrium law
of motion and the law of motion for z;. This was already described for the stochastic
neoclassical growth model in subsubsection 4.5.3. For the real business cycle model
of section 5, the impulse response functions (excluding the response of investment,
since it reacts quite strongly) to a technology shock can be seen in figure 4.

To find the second moment properties of the model such as variances and autocor-
relations of certain variables as well as the small sample properties of their estimators,
simulation methods are often used. Before calculating these moments, the Hodrick-
Prescott filter is typically applied (short: HP-Filter). This section demonstrates a
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Impulse responses to shock in technology
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Figure 4: Impulse responses for Hansens (1985) real business cyele model, using his

parameters.

frequency-domain technique to obtain these moments (albeit without the small sam-
ple properties of their estimators) without the need for any simulations®®. Obviously,
the methods here do not deliver properties of the small sample distribution, which
may be necessary for testing.

The matrix-valued spectral density for [z}, z]]" is given by

1 (]m — Pe_i‘”)_lQ —swny—1

= — Iy — Ne7™)7° X

e = o (= Ne)
(]k . N/eiw)—l [Q/(]m . Pleiw)—l7 ]k]

where [ and [, are the identity matrices of dimension k and m, see Hamilton (1994),

formula (10.4.43). Two ways to calculate the matrix-valued spectral density for the

25Some of these methods were originally contained in an early version of Uhlig and Xu (1996),
but were eventually cut from that paper.
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entire vector of variables s, = [}, y], 2]’ are

: ' I, Rev 0,
gw) = | Re7™ S | f(w) ) *
O0pm S I
Opm Ik ’
]m7 Om,k
= Wf(w)W', where W =| RPT, S—RPTQ |,
0k, m» 1,

where PT is the pseudo-inverse of P and where the last equality exploits s; =
Wizl 2], replacing z,_y with PTz, — P*Qz; in the recursive equilibrium law of
motion for y;. The HP filter aims at removing a smooth trend 7, from some given
data s; by solving

T
HEHZ ((St —7)* F A (71 — ) — (72 — Tt—l))z)
=1
The solution is a linear lag polynomial r; = s; — 7 = h(L)s; which has the transfer
function

. A1 - cos(w))?
hw) = L+4X0(1 - cos(w))Q7

see King and Rebelo (1993). Thus, the matrix spectral density of the HP-filtered
vector is simply

gup(w) = 712(60)9(@)7

from which one can obtain the autocorrelations of r; in time domain via an inverse
Fourier transformation,

| gup(w)e o = Bl

see formula (10.4.4) in Hamilton (1994). Inverse Fourier transformations are part of
many numerical packages.

For Hansens (1985) real business cycle model studied in section 5, tables 3 and
4 report the standard deviations as well as the cross-correlations with GNP for the
HP-filtered series in the model. These tables are often used in the real business cycle
literature as a first cut for evaluating the fit of a model to the data.
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capital 0.50
consumption | 0.52
output 1.80
labor 1.37
interest 0.06
investment | 5.74
technology | 0.93

Table 3: Model standard deviations of the HP-filtered series for Hansens (1985) real

business cycle model, studied in section 5.

capital 0.68 | 0.64 | 0.54 | .35 | .07 |-0.15 | 0.30
consumption | 0.54 | 0.66 | 0.77 | 0.87 | 0.52 | .24 | 0.02
output 0.27 | .47 1 0.71 ] .00 | 0.71 | 0.47 | 0.27
labor 0.15| .37 | 0.64 | .98 | 0.74] 0.53 | 0.35
interest 0.09 | 0.32 1 0.60 | 0.96 | 0.74 | 0.54 | 0.38
investment | 0.19 | 0.40 | 0.67 | .99 | 0.73 | 0.51 | 0.32
technology | .26 | 0.46 | 0.71 | 1.00 | 0.72 | 0.48 | 0.28
] -3 -2 -1 0 1 2 3

Table 4:  Cross-correlations corr(v(t + j),GNP(t)) for the HP-filtered series for

Hansens (1985) real business cycle model, studied in section 5.
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8 Conclusions

We have provided a toolkit to analyze nonlinear dynamic stochastic models easily.
The main contribution of this chapter is to simplify and unify existing approaches,
showing how to log-linearize the necessary equations characterizing the equilibrium
without explicit differentiation, to provide a general solution to a linearized system
using the method of undetermined coefficients, allowing in particular for a vector of
endogenous states, and to provide simulation-free frequency-domain based method
to calculate the the model implications in its HP-filtered version. These methods
are easy to use if a numerical package such as MATLAB or GAUSS is available.
This chapter should therefore be useful for anybody interested in analyzing nonlinear
stochastic dynamic models.

Appendix

A Description of the MATLAB programs.

MATLAB programs to carry out the calculations for sections 6 and 7 are available at
the following web site:
http://cwis.kub.nl/~few5/center/STAFF /uhlig/toolkit.dir/toolkit.htm

They shall briefly be described here. The easiest way to learn about these pro-
grams is to store all of them, start MATLAB from the directory, where they are
stored and type “readme”. This will execute the readme.m-file, providing some
documentation.

As of this writing, the newest version of the files are “version 2”. To see how
they differ from the previous version, which was distributed until spring 1997, type
“whatsnew” within MATLAB, which executes the file whatsnew.m, printing rele-
vant messages as a result. To see quickly, how these files work, start MATLAB and
type “exampl0” to calculate through example 0, which is the stochastic neoclassical
growth model of section 4, or type “exampll” to calculate through example 1, which
is Hansens (1985) real business cycle model of section 5. There are more examples,
enumerated “exampINN”, where NN stands for their number. To see what any par-
ticular example, say, exampll.m, does, type “help exampll” within MATLAB. Use
the example files as templates for your own work. Alternatively, declare all needed
matrices and type in “do_it” to do all calculations. All the examplNN.m-files call
“do_t” at the very end.

The files which perform all the calculations (i.e. all the files aside from the
examplNN.m-files, the readme.m-file and the whatsnew.m-file) are:



47

do_it.m: does it all, once all needed matrices are defined. This file calls all the
other programs. Thus, examining this file will tell you, in which sequence all
the other calculations are performed.

enlarge.m: allows you to manipulate letter sizes on plots and other properties of
plots. Useful for producing slides or plots for publication.

impresp.m: calculates and shows impulse responses to shocks, see section 7.
mom _out.m: produces output. To be called after moments.m
moments.m: calculates second moment properties, see section 7.

options.m: sets the options for all programs. It is called by do_it and needs to be
called, if any of the following routines is used in isolation.

sol_out.m: produces output. To be called after solve.m

solve.m: solves for the recursive equilibrium law of motion with the theorems of
section 6.

All files are extensively documented. Type, say, “help impresp” in MATLAB to
get more information on what the program impresp.m does. Note that these files set
some additional variables, which you may have used before: thus, be careful not to
use names appearing in the programs. If you have a question, please read this chapter
and the documentation carefully. These files are provided as a free externality, and I
am not prepared to provide “technical support.” However, if there are serious flaws
or serious ways to improve on these programs, I would like to learn about them. Feel
free to copy and modify these files, and use them at your own risk. There is absolutely
no guarantee that they work the way they are supposed to.

References

[1] Atkeson, A.(1997), “A modification of Harald’s program,” class notes, University
of Pennsylvania.

[2] Binder, Michael and Hashem M. Pesaran (1994), “Multivariate Rational Ex-
pectations Models and Macroeconomic Modeling: A Review and Some New
Results,”, University of Cambridge Department of Applied Economics Working
Paper, 9415, Handbook of Applied Econometrics (forthcoming).

[3] Blanchard, Olivier Jean and Charles M. Kahn (1980), “The Solution of Linear
Difference Models under Rational Expectations,” Econometrica, 48(5), 1305-11.



[4]

[11]

[12]

[13]

[14]

[15]

[16]

48

Blanchard, Oliviers and Stanley Fisher, 1989, Lectures on Macroeconomics, MIT
Press.

Brock, W.A. and L. Mirman (1972), ”Optimal economic growth and uncertainty:
the discounted case,” Journal of Economic Theory Vol. 4, No. 3, pp. 479-513.

Campbell, J. (1994), "Inspecting the mechanism: an analytical approach to the
stochastic growth model,” Journal of Monetary Economics Vol. 33, No. 3, pp.
463-506.

Campbell, J. and J. Cochrane (1994), "By force of habit: A consumption-based
explanation of aggregate stock market behavior,” draft, Harvard University.

Ceria, S. and J.V. Rios-Rull (1992), “On the Existence, Uniqueness, and Com-
putability of Nonoptimal Recursive Equilibria in Linear Quadratic Economies,”
draft, Carnegie-Mellon University,

Danthine, J.-P. and J.B. Donaldson (1995), ”Computing equilibria of nonoptimal
economics,” in T. Cooley (ed.), Frontiers of Business Cycle Research, Princeton
University Press, pp. 65-97.

Farmer, Roger E. A. and Jang-Ting Guo (1994), “Real Business Cycles and the
Animal Spirits Hypothesis,” Journal of Fconomic Theory 63, 42-72.

Hamilton, J.D. (1994), Time Series Analysis, Princeton University Press.

Hansen, G.D. (1985), "Indivisible labor and the business cycle,” Journal of Mon-
etary Economics Vol. 16, pp. 309-327.

Hansen, G.D. and E.C. Prescott (1995), ”Recursive methods for computing equi-
libria of business cycle models,” in T.C. Cooley (ed.), Frontiers of Business Cycle
Research, Princeton University, pp. 39-64.

Hansen, L., E.R. McGrattan and T.J. Sargent (1994), “Mechanics of forming and
estimating linear economies,” Federal Reserve Bank of Minneapolis Staff Report

182,

King, R.G., C.I. Plosser and S.T. Rebelo (1987), "Production, growth and busi-

Y

ness cycles: technical appendix,” working paper, University of Rochester.

King, R.G. and S.T. Rebelo (1993), “Low Frequency Filtering and Real Business
Cycles,” Journal of Economic Dynamics and Control vol. 17, no. 1-2, 207-231,



49

[17] Judd, K.L. (1991), "Minimum weighted residual methods for solving dynamic
economic models,” Federal Reserve Bank of Minneapolis Discussion Paper No.

99.

[18] Kollintzas, Tryphon, “The Symmetric Linear Rational Expectations Model,”
Econometrica, vol. 53, no. 4, 963-976.

[19] Kydland, F. and E.C. Prescott (1982), "Time to build and aggregate fluctua-
tions,” Econometrica, vol. 50, 1345-1370.

[20] Kydland, F. and E.C. Prescott (1991), "The econometrics of the general equilib-
rium approach to business cycles,” Scandinavian Journal of Fconomics Vol. 93,

pp- 161-178.

[21] Lettau, M. and H. Uhlig (1995), "By force of habit: asset pricing puzzles versus
consumption volatility,” draft, CentER, Tilburg University.

[22] Lucas, R.E., Jr., (1978), ”Asset prices in an exchange economy, Fconometrica

Vol. 46, pp. 1429-1445.

[23] McCallum, B. T. (1983), “On non-uniqueness in rational expectations models,”
Journal of Monetary Economics, vol. 11, 139-168.

[24] Muth, J. F., “Rational Expectations and the Theory of Price Movements,”
Econometrica, vol. 29, 315-335.

[25] Obstfeld, M. and K. Rogoff (1996), Foundations of International Macroeco-

nomics, MIT Press.
[26] Sargent, T.J. (1987), Macroeconomic Theory, 2nd edition, Academic Press.

[27] Stokey, N.L. and R.E. Lucas, Jr., with E.C. Prescott (1989), Recursive Methods

in Fconomic Dynamics, Harvard University Press,

[28] Strang, G. (1980), Linear Algebra and Its Applications, 2nd edition, Academic
Press,

[29] Taylor, J. and H. Uhlig (1990), ”Solving nonlinear stochastic growth models: a
comparison of alternative solution methods,” Journal of Business and Fconomic
Statisties Vol. 8, pp. 1-19.

[30] Uhlig, H. and Y. Xu (1996), "Effort and the cycle: Cyclical Implications of
Efficiency Wages”, CentER DP 9649, Tilburg University.



