Back
to Index
9 References
-
1
-
Blanchard, P. Complex Analytic Dynamics on the Riemann Sphere, B.A.M.S.
Vol. II, No.1, 1984, 85-141.
-
2
-
Branner, B. The Mandelbrot Set. In Chaos and Fractals: The Mathematics
Behind the Computer Graphics. Amer. Math. Soc. (1989), 75-106.
-
3
-
Devaney, R. L. The
Mandelbrot and Julia Sets: A Toolkit of Dynamics Activities Key
Curriculum Press, Emeryville, CA.
-
4
-
Devaney, R. L. Chaos,
Fractals, and Dynamics: Computer Experiments in Mathematics Addison-Wesley
Co., Menlo Park, Calif., 1989.
-
5
-
Devaney, R. L. (ed.) Complex
Analytic Dynamics: The Mathematics Behind the Mandelbrot and Julia Sets
American Mathematical Society, Providence, 1994.
-
6
-
Devaney, R. L. The Orbit Diagram and the Mandelbrot Set. The College
Mathematics Journal. 22 (1991), 23-38.
-
7
-
Devaney, R. L. The Fractal Geometry of the Mandelbrot Set. I: The
Periods of the Bulbs. Available as hypertext at
http://math.bu.edu/DYSYS/FRACGEOM/FRACGEOM.html
-
8
-
Devaney, R. L. The Fractal Geometry of the Mandelbrot Set. II: How
to Add and How to Count. Fractals 3 No. 4, 1995, 629-640.
-
9
-
Devaney, R. L. The Mandelbrot Set, the Farey Tree, and the Fibonacci
Sequence. Amer. Math. Monthly 106 (1999), 289-302.
-
10
-
Devaney, R. L. and Keen, L., eds. Chaos
and Fractals: The Mathematics Behind the Computer Graphics
American Mathematical Society, Providence, 1989.
-
11
-
Fatou, P., Sur l'Itération des fonctions transcendentes Entières,
Acta
Math. 47 (1926), 337-370.
-
12
-
Georges, J., Johnson, D., and Devaney, R. A
First Course in Chaotic Dynamical Systems Software Addison-Wesley,
Reading, MA 1992.
-
13
-
Julia, G. Iteration des Applications Fonctionelles, J. Math. Pures
Appl. (1918), 47-245.
-
14
-
Keen, L. Julia Sets. In Chaos and Fractals: The Mathematics Behind
the Computer Graphics. Amer. Math. Soc. (1989), 57-74.
-
15
-
Mandelbrot, B., The Fractal Geometry of Nature, Freeman &
Co., San Francisco, 1982.
Back to Index