Back
to Index
9 References
-
1
-
Blanchard, P. Complex Analytic Dynamics on the Riemann Sphere, B.A.M.S.
Vol. II, No.1, 1984, 85-141.
-
2
-
Branner, B. The Mandelbrot Set. In Chaos and Fractals: The Mathematics
Behind the Computer Graphics. Amer. Math. Soc. (1989), 75-106.
-
3
-
Devaney, R. L. An
Introduction to Chaotic Dynamical Systems Second Edition. Addison-Wesley
Co., Redwood City, Calif., 1989.
-
4
-
Devaney, R. L. Chaos,
Fractals, and Dynamics: Computer Experiments in Mathematics Addison-Wesley
Co., Menlo Park, Calif., 1989.
-
5
-
Devaney, R. L. (ed.) Complex
Analytic Dynamics: The Mathematics Behind the Mandelbrot and Julia SetsAmerican
Mathematical Society, Providence, 1994.
-
6
-
Devaney, R. L. The Orbit Diagram and the Mandelbrot Set. The College
Mathematics Journal. 22 (1991), 23-38.
-
7
-
Devaney, R. L. The
Fractal Geometry of the Mandelbrot Set. II: How to Add and How to Count.
Also part of the Dynamical Systems and Technology Page.
-
8
-
Devaney, R. L. Professor
Devaney Explains the Fractal Geometry of the Mandelbrot Set. A one
hour videotape describing some of the details of this paper.
-
9
-
Devaney, R. L. The
Mandelbrot Set Explorer.
-
10
-
Devaney, R. L. and Keen, L., eds. Chaos
and Fractals: The Mathematics Behind the Computer Graphics American
Mathematical Society, Providence, 1989.
-
11
-
Fatou, P., Sur l'Itération des fonctions transcendentes Entières,
Acta
Math. 47 (1926), 337-370.
-
12
-
Georges, J., Johnson, D., and Devaney, R. A First Course in Chaotic
Dynamical Systems Software Addison-Wesley, Reading, MA 1992.
-
13
-
Julia, G. Iteration des Applications Fonctionelles, J. Math. Pures
Appl. (1918), 47-245.
-
14
-
Keen, L. Julia Sets. In Chaos and Fractals: The Mathematics Behind
the Computer Graphics. Amer. Math. Soc. (1989), 57-74.
-
15
-
Mandelbrot, B., The Fractal Geometry of Nature, Freeman Co.,
San Francisco, 1982.
Back to Index