Back to Index

9 References

1
 Blanchard, P. Complex Analytic Dynamics on the Riemann Sphere, B.A.M.S. Vol. II, No.1, 1984, 85-141.
2
 Branner, B. The Mandelbrot Set. In Chaos and Fractals: The Mathematics Behind the Computer Graphics. Amer. Math. Soc. (1989), 75-106.
3
 Devaney, R. L. An Introduction to Chaotic Dynamical Systems Second Edition. Addison-Wesley Co., Redwood City, Calif., 1989.
4
 Devaney, R. L. Chaos, Fractals, and Dynamics: Computer Experiments in Mathematics Addison-Wesley Co., Menlo Park, Calif., 1989.
5
 Devaney, R. L. (ed.) Complex Analytic Dynamics: The Mathematics Behind the Mandelbrot and Julia SetsAmerican Mathematical Society, Providence, 1994.
6
 Devaney, R. L. The Orbit Diagram and the Mandelbrot Set. The College Mathematics Journal. 22 (1991), 23-38.
7
 Devaney, R. L. The Fractal Geometry of the Mandelbrot Set. II: How to Add and How to Count. Also part of the Dynamical Systems and Technology Page.
8
 Devaney, R. L. Professor Devaney Explains the Fractal Geometry of the Mandelbrot Set. A one hour videotape describing some of the details of this paper.
9
 Devaney, R. L. The Mandelbrot Set Explorer.
10
 Devaney, R. L. and Keen, L., eds. Chaos and Fractals: The Mathematics Behind the Computer Graphics American Mathematical Society, Providence, 1989.
11
 Fatou, P., Sur l'Itération des fonctions transcendentes Entières, Acta Math. 47 (1926), 337-370.
12
 Georges, J., Johnson, D., and Devaney, R. A First Course in Chaotic Dynamical Systems Software Addison-Wesley, Reading, MA 1992.
13
 Julia, G. Iteration des Applications Fonctionelles, J. Math. Pures Appl. (1918), 47-245.
14
 Keen, L. Julia Sets. In Chaos and Fractals: The Mathematics Behind the Computer Graphics. Amer. Math. Soc. (1989), 57-74.
15
 Mandelbrot, B., The Fractal Geometry of Nature, Freeman Co., San Francisco, 1982.

Back to Index