Econometrics 2 - Lecture 2

Models with Limited Dependent Variables

Contents

- Limited Dependent Variable Cases
- Binary Choice Models
- Binary Choice Models: Estimation
- Binary Choice Models: Goodness of Fit
- Multiresponse Models
- Multinomial Models
- Count Data Models
- The Tobit Model
- The Tobit II Model

Cases of Limited Dependent Variable

- Typical situations: function of explanatory variables are of interest to explain
- Dichotomous dependent variable, e.g., ownership of a car (yes/no), employment status (employed/unemployed), etc.
- Ordered response, e.g., qualitative assessment (good/average/bad), working status (full-time/part-time/not working), etc.
- Multinomial response, e.g., trading destinations (Europe/Asia/Africa), transportation means (train/bus/car), etc.
- Count data, e.g., number of orders a company receives in a week, number of patents granted to a company in a year
- Censored data, e.g., expenditures for durable goods, duration of study with drop outs

Example: Car Ownership and Income

What is the probability that a randomly chosen household owns a car?

- Sample of *N*=32 households
 - Proportion of car owning households: 19/32 = 0.59
- But: this probability will differ for rich and poor!
- The sample data has income information:
 - Yearly income: average EUR 20.524, minimum EUR 12.000, maximum EUR 32.517
 - Proportion of car owning households among the 16 households with less than EUR 20.000 income: 9/16 = 0.56
 - Proportion of car owning households among the 16 households with more than EUR 20.000 income: 10/16 = 0.63

Car Ownership and Income, cont'd

How can prediction of car ownership take the income of a household into account?

- Notation: From *N* households
 - dummy y_i for car ownership: $y_i = 1$: household *i* has car
 - income x_{i2}
- For predicting y_i or of P{ y_i =1} , a model is needed that takes the income into account

Modeling Car Ownership

How is car ownership related to the income of a household?

- 1. Linear regression $x_i'\beta + \varepsilon_i = \beta_1 + \beta_2 x_{i2} + \varepsilon_i$ for describing *y*
- With $E{\epsilon_i | x_i} = 0$, the model $y_i = x_i'\beta + \epsilon_i$ gives

 $\mathsf{P}\{y_i = 1 | x_i\} = x_i'\beta$

due to $E\{y_i|x_i\} = 1*P\{y_i = 1|x_i\} + 0*P\{y_i = 0|x_i\} = P\{y_i = 1|x_i\}$

- Model $y_i = x_i'\beta + \varepsilon_i$: $x_i'\beta$ can be interpreted as P{ $y_i = 1 | x_i$ }!
- Problems:
 - $\Box x_i'\beta$ not necessarily in [0,1]
 - Error terms: for a given x_i
 - ϵ_i has only two values, viz. 1- $x_i'\beta$ and $x_i'\beta$
 - $V{\epsilon_i | x_i} = x_i'\beta(1 x_i'\beta)$, heteroskedastic, dependent upon β
- Model for y actually is specifying the probability that y=1 as a function of x

Modeling Car Ownership, cont'd

- 2. Use of a function $G(x_i,\beta)$ with values in the interval [0,1] $P\{y_i = 1 | x_i\} = E\{y_i | x_i\} = G(x_i,\beta)$
- The probability that y_i =1, i.e., the household owns a car, depends on the income (and other characteristics, e.g., family size)
- Use for $G(x_i,\beta)$ the standard logistic distribution function

$$F(z) = L(z) = \frac{e}{1 + e^{z}} = \frac{1}{1 + e^{-z}}$$

F(z) fulfills $\lim_{z\to -\infty} F(z) = 0$, $\lim_{z\to \infty} F(z) = 1$

Interpretation:

• From $P{y_i = 1 | x_i} = p_i = \exp{\{x_i'\beta\}}/(1 + \exp{\{x_i'\beta\}})$ follows

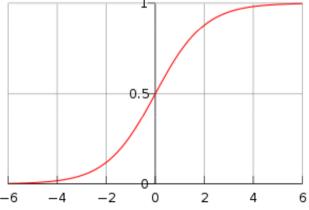
$$\log \frac{p_i}{1 - p_i} = x_i' \beta$$

An increase of x_{i2} by 1 results in a relative change of the odds $p_i/(1-p_i)$ by $β_2$ or by 100 $β_2$ %; cf. the notion semi-elasticity

March 18, 2011

Car Ownership and Income, cont'd

- E.g., $P{y_i = 1|x_i} = 1/(1 + exp(-z_i))$ with z = -0.5 + 1.1*x, the income in EUR 1000 per month
- Increasing income is associated with an increasing probability of owning a car: z goes up by 1.1 for every additional EUR 1000
- For a person with an income of EUR 3000, z = 3.1 and the probability of owning a car is 1/(1+exp(-3.1)) = 0.94
- The standard logistic distribution function, with z on the horizontal and F(z) on the vertical axis



Odds

The odds in favor of an event are the ratio of a pair of integers, the first (the second) representing the relative likelihood that the event will happen (will not happen)

If p is the probability in favor of the event, the probability against the event therefore being 1-p, the odds of the event are the quotient <u>p</u>

1-p

- Example: the odds that a randomly chosen day of the week is a Sunday are 1:6 (say "one to six") because p = P{Sunday} = 1/7, p/(1-p) = (1/7)/(6/7) = 1/6
- In bookmakers language: odds are not in favor but against
 - The bookmaker would say: "The odds that a randomly chosen day of the week is a Sunday are 6:1"
- The logarithm of the odds is the logit of the probability

Contents

- Limited Dependent Variable Cases
- Binary Choice Models
- Binary Choice Models: Estimation
- Binary Choice Models: Goodness of Fit
- Multiresponse Models
- Multinomial Models
- Count Data Models
- The Tobit Model
- The Tobit II Model

Binary Choice Models

Model for probability P{ $y_i = 1 | x_i$ }, function of *K* (numerical or categorical) explanatory variables x_i and unknown parameters β , such as E{ $y_i | x_i$ } = P{ $y_i = 1 | x_i$ } = G(x_i, β)

Typical functions $G(x_i,\beta)$: distribution functions (cdf's) $F(x_i'\beta)$

Probit model: standard normal distribution function; V{z} = 1

$$F(z) = \Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} \exp\left(\frac{1}{2}t^{2}\right) dt$$

 Logit model: standard logistic distribution function; V{z}=π²/3=1,81²
 F(z) = L(z) = e^z/(1+e^z)
 Linear probability model (LPM) F(z) = 0, z < 0 = z, 0 ≤ z ≤ 1

=1, z > 1

Linear Probability Model (LPM)

Assumes that

$$\mathsf{P}\{y_i = 1 | x_i\} = x_i'\beta \text{ for } 0 \le x_i'\beta \le 1$$

but sets

 $P\{y_i = 1 | x_i\} = 0 \text{ for } x_i'\beta < 0$ $P\{y_i = 1 | x_i\} = 1 \text{ for } x_i'\beta > 1$

- Typically, the model is estimated by OLS, ignoring the probability restrictions
- Standard errors should be adjusted using heteroskedasticityconsistent (White) standard errors

Probit Model: Standardization

$$E\{y_i | x_i\} = P\{y_i = 1 | x_i\} = G(x_i, \beta): \text{ assume } G(.) \text{ to be } N(0, \sigma^2)$$
$$P\{y_i = 1 | x_i\} = \Phi\left(\frac{x_i ' \beta}{\sigma}\right)$$

- Given x_i , the ratio β/σ^2 determines $P\{y_i = 1 | x_i\}$
- Standardization restriction $\sigma^2 = 1$: allows unique estimates for β
- Similarly,

Probit vs Logit Model

- Differences between the probit and the logit model:
 - □ Shape of distribution is slightly different, particularly in the tails.
 - Scaling of the distribution is different: The implicit variance for ε_i in the logit model is $\pi^2/3 = (1.81)^2$, while 1 for the probit model
 - Probit model is relatively easy to extend to multivariate cases using the multivariate normal or conditional normal distribution
- In practice, the probit and logit model produce quite similar results
 - The scaling difference makes the values of β not directly comparable across the two models, while the signs are typically the same
 - □ The estimates in the logit model are roughly a factor $\pi/\sqrt{3} \approx 1.81$ larger than those in the probit model

Interpretation of Coefficients

For assessing the effect of changing x_k the

• Coefficient β_k

is of interest, but also related characteristics such as

- Sign
- Slope, i.e., the "average" marginal effect $\partial F(x_i^{\beta})/\partial x_{ik}$

Binary Choice Models: Marginal Effects

Linear regression models: β_k is the marginal effect of a change in x_k

For E{ $y_i | x_i$ } = F($x_i'\beta$): $\frac{\partial E\{y_i | x_i\}}{\partial x_k} = f(x_i'\beta)\beta_k$

with density function f(.)

- The effect of changing the regressor x_k depends upon x_i'β, the shape of F, and β_k
- The marginal effect of changing x_k
 - Probit model: $\phi(x_i'\beta) \beta_k$, with standard normal density function ϕ
 - □ Logit model: $L(x_i'\beta)[1 L(x_i'\beta)]\beta_k$
 - Linear probability model

$$\frac{\partial x_i' \beta}{\partial x_{ik}} = \beta_k, \text{ if } x_i' \beta \in [0,1]$$

Binary Choice Models: Slopes

Interpretation of the effect of a change in x_k

• "Slope", i.e., the gradient of $E\{y_i|x_i\}$ at the sample means of the regressors

$$slope_{k}(\overline{x}) = \frac{\partial F(x_{i} \cdot \beta)}{\partial x_{k}} \bigg|_{\overline{x}}$$

- For a dummy variable D: marginal effect is calculated as the difference of probabilities P{y_i =1|x_(d),D=1} P{y_i =1|x_(d),D=0}; x_(d) stands for the sample means of all regressors except D
- For the logit model:

$$\log \frac{p_i}{1 - p_i} = x_i \, ' \beta$$

The coefficient β_k is the relative change of the odds when increasing x_k by 1 unit

Contents

- Limited Dependent Variable Cases
- Binary Choice Models
- Binary Choice Models: Estimation
- Binary Choice Models: Goodness of Fit
- Multiresponse Models
- Multinomial Models
- Count Data Models
- The Tobit Model
- The Tobit II Model

Binary Choice Models: Estimation

Typically, binary choice models are estimated by maximum likelihood Likelihood function

 $L(\beta) = \prod_{i=1}^{N} P\{y_i = 1 | x_i; \beta\}^{y_i} P\{y_i = 0 | x_i; \beta\}^{1-y_i}$

= $\Pi_{i} F(x_{i}'\beta)^{y_{i}} (1 - F(x_{i}'\beta))^{1-y_{i}}$

Maximization via the log-likelihood function

 $\ell(\beta) = \log L(\beta) = \sum_{i} y_{i} \log F(x_{i}'\beta) + \sum_{i} (1-y_{i}) \log (1-F(x_{i}'\beta))$

First-order conditions of the maximization problem

$$\frac{\partial \ell(\beta)}{\partial \beta} = \sum_{i} \left[\frac{y_i - F(x_i \, \beta)}{F(x_i \, \beta)(1 - F(x_i \, \beta))} f(x_i \, \beta) \right] x_i = \sum_{i} e_i x_i = 0$$

e_i: generalized residuals

Generalized Residuals

The first-order conditions allow to define the generalized residuals From

$$\frac{\partial \ell(\beta)}{\partial \beta} = \sum_{i} \left[\frac{y_i - F(x_i \, \beta)}{F(x_i \, \beta)(1 - F(x_i \, \beta))} f(x_i \, \beta) \right] x_i = \sum_{i} e_i x_i = 0$$

• follows that the generalized residuals *e*_i can assume two values:

$$= e_i = f(x_i'b)/F(x_i'b) \text{ if } y_i = 1$$

•
$$e_i = -f(x_i'b)/(1-F(x_i'b))$$
 if $y_i = 0$

b are the estimates of β

 Generalized residuals are orthogonal to each regressor; cf. the first-order conditions of OLS estimation

Estimation of Logit Model

First-order condition of the maximization problem

$$\frac{\partial \ell(\beta)}{\partial \beta} = \sum_{i} \left[y_{i} - \frac{\exp(x_{i} \beta)}{1 - \exp(x_{i} \beta)} \right] x_{i} = 0$$

gives

$$\hat{p}_i = \frac{\exp(x_i \,'b)}{1 + \exp(x_i \,'b)}$$

- From $\Sigma_i \hat{p}_i x_i = \Sigma_i y_i x_i$ follows given one regressor is an intercept –:
 - The predicted frequency $\Sigma_i \hat{p}_i$ equals the observed frequency $\Sigma_i y_i$
- Similar results for the probit model, due to similarity of logit and probit functions

Properties of ML estimators

Consistent

- Asymptotically efficient
- Asymptotically normally distributed

These properties require that the assumed distribution is correct

- Correct shape
- No autocorrelation and/or heteroskedasticity
- No dependence between errors and regressors
- No omitted regressors

Contents

- Limited Dependent Variable Cases
- Binary Choice Models
- Binary Choice Models: Estimation
- Binary Choice Models: Goodness of Fit
- Multiresponse Models
- Multinomial Models
- Count Data Models
- The Tobit Model
- The Tobit II Model

Goodness-of-Fit Measures

Concepts

- Comparison of the maximum likelihood of the model with that of the naïve model, i.e., a model with only an intercept, no regressors
 - Pseudo-R²
 - McFadden R²
- Index based on proportion of correctly predicted observations
 - Hit rate

McFadden R²

Based on log-likelihood function

- $l(b) = l_1$: maximum log-likelihood of the model to be assessed
- l_0 : maximum log-likelihood of the naïve model, i.e., a model with only an intercept; $l_0 \le l_1$ and l_0 , $l_1 < 0$
 - The larger $l_1 l_0$, the more contribute the regressors
 - $l_1 = l_0, \text{ if all slope coefficients are zero}$
 - $larrow l_1 = 0$, if y_i is exactly predicted for all *i*
- Pseudo-R²: a number in [0,1), defined by

$$pseudo - R^{2} = 1 - \frac{1}{1 + 2(\ell_{1} - \ell_{0}) / N}$$

McFadden R²: a number in [0,1], defined by

$$McFaddenR^{2} = 1 - \ell_{1} / \ell_{0}$$

- Both are 0 if $l_1 = l_0$
- *McFadden* \mathbb{R}^2 attains the upper limit if $\ell_1 = 0$

Hit Rate

Comparison of correct and incorrect predictions

Predicted outcome

$$\hat{y}_i = 1 \text{ if } x_i'b > 0$$

= 0 if x'b < 0

$$= 0 \text{ if } x_i'b \leq 0$$

- Cross-tabulation of actual and predicted outcome
- Proportion of incorrect predictions

$$wr_1 = (n_{01} + n_{10})/N$$

Hit rate: 1 - *wr*₁

proportion of correct predictions

- Comparison with naive model:
 - Predicted outcome of naïve model

 $\hat{y}_i = 1 \text{ if } \hat{p}_i = N_1/N > 0.5, \ \hat{y}_i = 0 \text{ if } \hat{p}_i \le 0.5$

□
$$R_p^2 = 1 - wr_1/wr_0$$

with $wr_0 = 1 - \hat{p}_i$ if $\hat{p}_i > 0.5$, $wr_0 = \hat{p}_i$ if $\hat{p}_i \le 0.5$ in order to avoid $R_p^2 < 0$

	ŷ = 0	ŷ = 1	Σ
<i>y</i> = 0	<i>n</i> ₀₀	<i>n</i> ₀₁	N ₀
<i>y</i> = 1	<i>n</i> ₁₀	n ₁₁	<i>N</i> ₁
Σ	n ₀	<i>n</i> ₁	Ν

Example: Effect of Teaching Method

Study by Spector & Mazzeo (1980); see Greene (2003), Chpt.21 Personalized System of Instruction: new teaching method in economics; has it an effect on student performance in later courses?

Data:

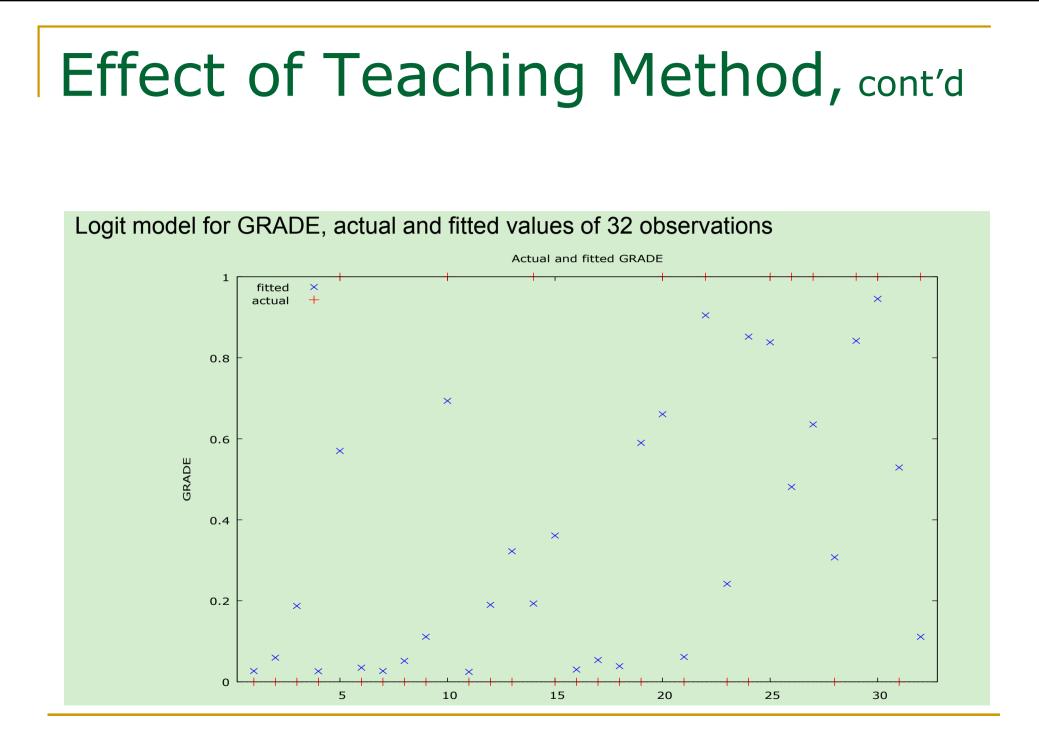
- GRADE (0/1): indicator whether grade was higher than in principal course
- □ PSI (0/1): participation in program with new teaching method
- GPA: grade point average
- TUCE: score on a pretest, entering knowledge
- 32 observations

Effect of Teaching Method, cont'd

Logit model for GRADE, GRETL output

Model 1: Logit, using observations 1-32 Dependent variable: GRADE

const GPA TUCE PSI	Coefficient -13.0213 2.82611 0.0951577 2.37869	<i>Std. Error</i> 4.93132 1.26294 0.141554 1.06456	<i>z-stat</i> -2.6405 2.2377 0.6722 2.2344	Slope* 0.533859 0.0179755 0.456498			
Mean depend McFadden R- Log-likelihood Schwarz crite	ent var squared	0.343750 0.374038 -12.88963 39.64221		S.D. dependent var Adjusted R-squared Akaike criterion Hannan-Quinn	0.188902 0.179786 33.77927 35.72267		
*Number of cases 'correctly predicted' = 26 (81.3%) f(beta'x) at mean of independent vars = 0.189 Likelihood ratio test: Chi-square(3) = 15.4042 [0.0015]							
Actual	Predicted 0 1 0 18 3 1 3 8						



Effect of Teaching Method, cont'd

Comparison of the LPM, logit, and probit model for GRADE
 Estimated models: coefficients and their standard errors

	LPM		Logit		Probit	
	coeff	s.e.	coeff	s.e.	coeff	s.e.
const	-1.498	0.524	-13.02	4.931	-7.452	2.542
GPA	0.464	0.162	2.826	1.263	1.626	0.694
TUCE	0.010	0.019	0.095	0.142	0.052	0.084
PSI	0.379	0.139	2.379	1.065	1.426	0.595

Coefficients of logit model: due to larger variance, larger by factor $\sqrt{(\pi^2/3)}=1.81$ than that of the probit model

Effect of Teaching Method, cont'd

Goodness of fit measures for the logit model

• With $N_1 = 11$ and N = 32

 $\ell_0 = 11 \log(11/32) + 21 \log(21/32) = -20.59$

• As $\hat{p} = N_1/N = 0.34 < 0.5$: the proportion wr_0 of incorrect predictions with the naïve model is

$$wr_0 = \hat{p} = 11/32 = 0.34$$

- From the GRETL output: $l_0 = -12.89$, $wr_1 = 6/32$ Goodness of fit measures
- $R_{p}^{2} = 1 wr_{1}/wr_{0} = 1 6/11 = 0.45$
- McFadden R² = 1 (-12.89)/(-20.59) = 0.374

Example: Utility of Car Owning

Latent variable y_i*: utility difference between owning and not owning a car; unobservable (latent)

- Decision on owning a car
 - $y_i^* > 0$: in favor of car owning
 - □ $y_i^* \le 0$: against car owning
- y_i* depends upon observed characteristics (like income) and unobserved characteristics ε_i

 $y_i^* = x_i'\beta + \varepsilon_i$

• Observation $y_i = 1$ (i.e., owning car) if $y_i^* > 0$

 $\mathsf{P}\{y_i = 1\} = \mathsf{P}\{y_i^* > 0\} = \mathsf{P}\{x_i'\beta + \varepsilon_i > 0\} = 1 - \mathsf{F}(-x_i'\beta) = \mathsf{F}(x_i'\beta)$

last step requires a symmetric distribution function F(.)

Latent variable model: based on a latent variable that represents underlying behavior

Latent Variable Model

Model for the latent variable y_i^*

 $y_i^* = x_i'\beta + \varepsilon_i$

 y_i^* : not necessarily a utility difference

- ϵ_i 's are independent of x_i 's
- ε_i has standardized distribution
 - Probit model if ε_i has standard normal distribution
 - Logit model if ε_i has standard logistic distribution
- Observations
 - $y_i = 1$ if $y_i^* > 0$
 - $\Box \quad y_i = 0 \text{ if } y_i^* \leq 0$
- ML estimation

Binary Choice Models in GRETL

Model > Nonlinear Models > Logit > Binary

- Estimates the specified model using error terms with standard logistic distribution
- Model > Nonlinear Models > Probit > Binary
- Estimates the specified model using error terms with standard normal distribution

Contents

- Limited Dependent Variable Cases
- Binary Choice Models
- Binary Choice Models: Estimation
- Binary Choice Models: Goodness of Fit
- Multiresponse Models
- Multinomial Models
- Count Data Models
- The Tobit Model
- The Tobit II Model

Multiresponse Models

Model for explaining the choice between discrete outcomes

- Examples:
 - a. Working status (full-time/part-time/not working), qualitative assessment (good/average/bad), etc.
 - b. Trading destinations (Europe/Asia/Africa), transportation means (train/bus/car), etc.
- Multiresponse models describe the probability of each of these outcomes, as a function of variables like
 - person-specific characteristics
 - alternative-specific characteristics
- Types of multiresponse models (cf. above examples)
 - Ordered response models: outcomes have a natural ordering
 - Multinomial (unordered) models: ordering of outcomes is arbitrary

Example: Credit Rating

Credit rating: numbers, indicating experts' opinion about (a firm's) capacity to satisfy financial obligations, e.g., credit-worthiness

- Standard & Poor's rating scale: AAA, AA+, AA, AA-, A+, A, A-, BBB+, BBB, BBB-, BB+, BB, BB-, B+, B, B-, CCC+, CCC, CCC-, CC, C, D
- Verbeek's data set CREDIT
 - □ Categories "1", ..., "7" (highest)
 - Investment grade with alternatives "1" (better than category 3) and "0" (category 3 or less, also called "speculative grade")
- Explanatory variables, e.g.,
 - Firm sales
 - Ebit, i.e., earnings before interest and taxes
 - Ratio of working capital to total assets

Ordered Response Model

Choice between *M* alternatives

Observed alternative for sample unit *i*: y_i

Latent variable model

 $y_i^* = x_i'\beta + \varepsilon_i$

with explanatory variables x_i

 $y_i = j$ if $\gamma_{j-1} < y_i^* \le \gamma_j$ for $j = 0, \dots, M$

- boundaries γ_j , j = 0, ..., M, with $\gamma_0 = -\infty, ..., \gamma_M = \infty$
- $ε_i$'s are independent of x_i 's
- ε_i typically follow the
 - standard normal distribution: ordered probit model
 - standard logistic distribution: ordered logit model

Example: Willingness to Work

"How much would you like to work?"

- Potential answers of individual *i*: $y_i = 1$ (not working), $y_i = 2$ (part time), $y_i = 3$ (full time)
- Measure the desired labor supply
- Dependent upon factors like age, education level, husband's income Ordered response model with M = 3

$$y_i^* = x_i'\beta + \varepsilon_i$$

with

$$y_i = 1 \text{ if } y_i^* \le 0$$

$$y_i = 2 \text{ if } 0 < y_i^* \le \gamma$$

$$y_i = 3 \text{ if } y_i^* > \gamma$$

- ϵ_{i} 's with distribution function F(.)
 - y_i^* stands for "willingness to work" or "desired hours of work"

Willingness to Work, cont'd

In terms of observed quantities:

$$P\{y_{i} = 1 | x_{i}\} = P\{y_{i}^{*} \le 0 | x_{i}\} = F(-x_{i}'\beta)$$

$$P\{y_{i} = 3 | x_{i}\} = P\{y_{i}^{*} > \gamma | x_{i}\} = 1 - F(\gamma - x_{i}'\beta)$$

$$P\{y_{i} = 2 | x_{i}\} = F(\gamma - x_{i}'\beta) - F(-x_{i}'\beta)$$

- Unknown parameters: γ and β
- Standardization: wrt location ($\gamma_1 = 0$) and scale (V{ ϵ_i } = 1)
- ML estimation

Interpretation of parameters β

- Wrt y_i^* : willingness to work increases with larger x_k for positive β_k
- Wrt probabilities $P\{y_i = j | x_i\}$, e.g., $P\{y_i = 3 | x_i\}$ increases and $P\{y_i = 1 | x_i\}$ decreases with larger x_k for positive β_k

Example: Credit Rating

Verbeek's data set CREDIT: 921 observations for US firms' credit ratings in 2005, including firm characteristics Rating models:

- Ordered logit model for assignment of categories "1", ...,"7" (highest)
- Binary logit model for assignment of "investment grade" with alternatives "1" (better than category 3) and "0" (category 3 or less, also called "speculative grade")

Credit Rating, cont'd

Verbeek's data set CREDIT

Ratings and characteristics for 921 firms: summary statistics

Table 7.4	Summary s	tatistics		
	average	median	minimum	maximum
credit rating	3.499	3	1	7
investment grade	0.472	0	0	1
book leverage	0.293	0.264	0.000	0.999
working capital/total assets	0.140	0.123	-0.412	0.748
retained earnings/total assets	0.157	0.180	-0.996	0.980
earnings before interest and taxes/t.a	. 0.094	0.090	-0.384	0.652
log sales	7.996	7.884	1.100	12.701

Book leverage: ratio of debts to assets

Credit Rating, cont'd

Verbeek, Table 7.5.

	Bir	nary logit		Ordered logit		
	Estimate	Standard error		Estimate	Standard erro	
constant	-8.214	0.867		_	_	
book leverage	-4.427	0.771		-2.752	0.477	
ebit/ta	4.355	1.440		4.731	0.945	
log <i>sales</i>	1.082	0.096		0.941	0.059	
re/ta	4.116	0.489		3.560	0.302	
wk/ta	-4.012	0.748		-2.580	0.483	
			γ_1	-0.369	0.633	
			γ_2	4.881	0.521	
			γ_3	7.626	0.551	
			γ_4	9.885	0.592	
			γ_5	12.883	0.673	
			γ_6	14.783	0.784	
loglikelihood	-341.08			-965.31		
McFadden R^2	0.465			0.309		
LR test (χ_5^2)	591.8 $(p = 0.000)$			862.9	(p = 0.000)	

Ordered Response Model: Estimation

ML estimation of $\beta_1, ..., \beta_K$ and $\gamma_1, ..., \gamma_{M-1}$

- Loglikelihood function in terms of probabilities
- Numerical optimization
- ML estimators are
 - Consistent
 - Asymptotically efficient
 - Asymptotically normally distributed

Contents

- Limited Dependent Variable Cases
- Binary Choice Models
- Binary Choice Models: Estimation
- Binary Choice Models: Goodness of Fit
- Multiresponse Models
- Multinomial Models
- Count Data Models
- The Tobit Model
- The Tobit II Model

Multinomial Models

Choice between *M* alternatives without natural order Observed alternative for sample unit *i*: *y*_i "Random utility" framework: Individuals

- attach utility levels U_{ii} to each of the alternatives, j = 1,..., M
- choose the alternative with the highest utility level Utility levels U_{ij} , j = 1, ..., M, as a function of characteristics x_{ij} $U_{ij} = x_{ij}'\beta + \varepsilon_{ij}$
- error terms ε_{ii} follow the Type I extreme value distribution:

$$P\{y_{i} = j\} = \frac{\exp\{x_{ij} \mid \beta\}}{\exp\{x_{i1} \mid \beta\} + \dots + \exp\{x_{iM} \mid \beta\}}$$

for $j = 1, \dots, M$
and $\Sigma_{j} P\{y_{j} = j\} = 1$

Variants of the Logit Model

For setting the location: constraint x_{i1} ' $\beta = 0$ or exp{ x_{i1} ' β } = 1 Conditional logit model: for *j* = 1, ..., *M*

$$P\{y_i = j\} = \frac{\exp\{x_{ij} \, | \, \beta\}}{1 + \exp\{x_{i2} \, | \, \beta\} + \dots + \exp\{x_{iM} \, | \, \beta\}}$$

- Alternative-specific characteristics x_{ii}
- E.g., mode of transportation is affected by travel costs, travel duration, etc.

Multinomial logit model: for j = 1, ..., M

$$P\{y_{i} = j\} = \frac{\exp\{x_{i} '\beta_{j}\}}{1 + \exp\{x_{i} '\beta_{j}\} + ... + \exp\{x_{i} '\beta_{j}\}}$$

- Person-specific characteristics x_i
- E.g., mode of transportation is affected by income, gender, etc

Multinomial Logit Model

The term "multinomial logit model" is also used for both the

- the conditional logit model
- the multinomial logit model (see above)
- and also the mixed logit model: combines
 - Alternative-specific characteristics and
 - Person-specific characteristics

Independence of Errors

Independence of the error terms $\boldsymbol{\epsilon}_i$ implies independent utility levels of alternatives

- A restrictive assumption
- Examples: High utility of alternative "travel with red bus" implies high utility of "travel with blue bus"
- Implies that the odds ratio of two alternatives does not depend upon the number of alternatives: "independence of irrelevant alternatives" (IIA)

Multiresponse Models in GRETL

Model > Nonlinear Models > Logit > Ordered

- Estimates the specified model using error terms with standard logistic distribution, assuming ordered alternatives for responses
 Model > Nonlinear Models > Logit > Multinomial
- Estimates the specified model using error terms with standard logistic distribution, assuming alternatives without order

Model > Nonlinear Models > Probit > Ordered / Multinomial

 Estimates the specified model using error terms with standard normal distribution, assuming alternatives with or without order

Contents

- Limited Dependent Variable Cases
- Binary Choice Models
- Binary Choice Models: Estimation
- Binary Choice Models: Goodness of Fit
- Multiresponse Models
- Multinomial Models
- Count Data Models
- The Tobit Model
- The Tobit II Model

Models for Count Data

Describe the number of times an event occurs, depending upon certain characteristics

Examples:

- Number of visits in the library per week
- Number of misspellings in an email
- Number of applications of a firm for a patent, as a function of
 - Firm size
 - R&D expenditures
 - Industrial sector
 - Country, etc.

See Verbeek's data set PATENT

Poisson Regression Model

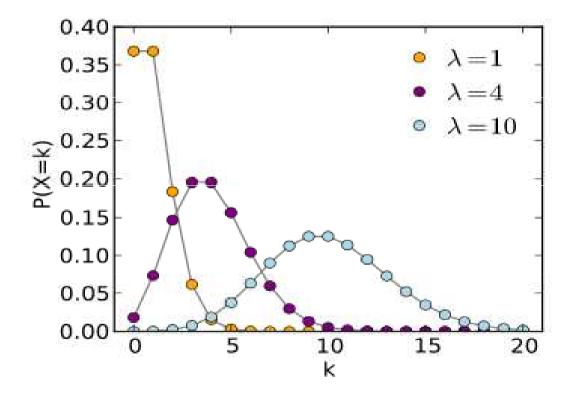
Observed variable for sample unit *i*:

*y*_i: number of possible outcomes 0, 1, ..., *y*, ... Aim: to explain E{*y*_i | *x*_i}, based on characteristics *x*_i E{*y*_i | *x*_i} = exp{*x*_i'β} Poisson regression model $P\{y_i = y | x_i\} = \frac{\lambda_i^y}{y!} \exp{\{\lambda_i\}}, y = 0, 1, ...$

with $\lambda_i = E\{y_i \mid x_i\} = \exp\{x_i'\beta\}$ $y! = 1 \times 2 \times \dots \times y$, 0! = 1

Poisson Distribution

$$P\{X=k\} = \frac{\lambda^k}{k!} \exp\{\lambda\}, k = 0, 1, ...$$



Poisson Regression Model: The Practice

Unknown parameters: coefficients β

Fitting the model to data: ML estimators are

- Consistent
- Asymptotically efficient
- Asymptotically normally distributed

Equidispersion condition

- Poisson distributed X obeys $E{X} = V{X} = \lambda$
- In many situations not realistic
- Overdispersion

Remedies: Alternative distributions, e.g., negative Binomial, and alternative estimation procedures, e.g., Quasi-ML, robust standard errors

Contents

- Limited Dependent Variable Cases
- Binary Choice Models
- Binary Choice Models: Estimation
- Binary Choice Models: Goodness of Fit
- Multiresponse Models
- Multinomial Models
- Count Data Models
- The Tobit Model
- The Tobit II Model

Tobit Models

Tobit models are regression models where the range of the (continuous) dependent variable is non-negative, i.e., censored from below

Examples:

- Expenditures on durable goods as a function of income, age, etc.: a part of units does not spend any money on durable goods
- Hours of work as a function of qualification, age, etc.
- Expenditures on alcoholic beverages and tabacco

Tobit models

- Standard Tobit model or Tobit I model; Tobin (1958) on expenditures on durable goods
- Generalizations: Tobit II to V

Example: Expenditures on Tobacco

Verbeek's data set TOBACCO: expenditures on tobacco in 2724 Belgian households, Belgian household budget survey of 1995/96 Model:

 $y_i^* = x_i^{\beta} + \varepsilon_i$

with optimal expenditures y_i^* on tobacco in household *i*, characteristics x_i of the household, unobserved heterogeneity ε_i (or measurement error or optimization error)

Actual expenditures y_i

 $y_i = y_i^* \text{ if } y_i^* > 0$ = 0 if $y_i^* \le 0$

The Standard Tobit Model

The latent variable y_i^* depends upon characteristics x_i

$$y_i^* = x_i^{\beta} + \varepsilon_l$$

with error terms (or unobserved heterogeneity)

 $\varepsilon_i \sim \text{NID}(0, \sigma^2)$, independent of x_i

Actual outcome of the observable variable y_i

$$y_i = y_i^* \text{ if } y_i^* > 0$$

= 0 if $y_i^* \le 0$

- Standard Tobit model or censored regression model
- Censoring: all negative values are substituted by zero
- Censoring in general
 - Censoring from below (above): all values left (right) from a lower (an upper) bound are substituted by the lower (upper) bound
- OLS produces inconsistent estimators for β

The Standard Tobit Model, cont'd

Standard Tobit model describes

1. The probability $P\{y_i = 0\}$ as a function of x_i

 $\mathsf{P}\{y_i = 0\} = \mathsf{P}\{\varepsilon_i \le -x_i'\beta\} = 1 - \Phi(x_i'\beta/\sigma)$

2. The distribution of y_i given that it is a positive or (by $y_i > 0$) truncated normal distribution

 $\mathsf{E}\{y_i \mid y_i > 0\} = x_i'\beta + \mathsf{E}\{\varepsilon_i \mid \varepsilon_i > -x_i'\beta\} = x_i'\beta + \sigma \lambda(x_i'\beta/\sigma)$ with $\lambda(x_i'\beta/\sigma) = \phi(x_i'\beta/\sigma) / \Phi(x_i'\beta/\sigma) \ge 0$

Attention: a single set β of parameters characterizes both expressions

- The effect of a characteristic
 - on the probability of non-zero observation and
 - on the value of the observation

have the same sign!

The Standard Tobit Model: Interpretation

From

 $P\{y_i = 0\} = 1 - \Phi(x_i'\beta/\sigma)$ $E\{y_i \mid y_i > 0\} = x_i'\beta + \sigma \lambda(x_i'\beta/\sigma)$

follows:

- A positive coefficient means that an increase in the explanatory variable increases the probability of having a positive y_i
- The marginal effect of x_{ik} upon E{ $y_i | y_i > 0$ } is different from β_k
- The marginal effect of x_{ik} upon E{ y_i } is $\beta_k P{y_i > 0}$
 - □ It is close to β_k if P{ $y_i > 0$ } is close to 1, i.e., little censoring
- The marginal effect of x_{ik} upon E{ y_i^* } is β_k

The Standard Tobit Model: Estimation

OLS produces inconsistent estimators for $\boldsymbol{\beta}$

ML estimation based on the log-likelihood

 $\log L_1(\beta, \sigma^2) = \ell_1(\beta, \sigma^2) = \Sigma_{i \in I0} \log \mathsf{P}\{y_i = 0\} + \Sigma_{i \in I1} \log \mathsf{f}(y_i)$

with appropriate expressions for P{.} and f(.), I_0 the set of censored observations, I_1 the set of uncensored observations

For the correctly specified model: estimates are

Consistent

- Asymptotically efficient
- Asymptotically normally distributed
- ML estimation based on observations with $y_i > 0$ only, i.e., on the truncated regression model:

 $\ell_2(\beta, \, \sigma^2) = \Sigma_{\mathsf{i} \in \mathsf{I1}}[\log \mathsf{f}(y_\mathsf{i}) - \log \mathsf{P}\{y_\mathsf{i} > 0\}]$

Estimates based on l_1 are more efficient than those based on l_2

Example: Model for Budget Share for Tobacco

- Verbeek's data set TOBACCO: Belgian household budget survey of 1995/96
- Budget share w_i^* for expenditures on tobacco corresponding to maximal utility: $w_i^* = x_i^{\beta} + \varepsilon_1$
 - x_i : log of total expenditures and various characteristics like
 - □ number of children \leq 2 years old
 - number of adults in household
 - □ age

Actual budget share for expenditures on tobacco

 $w_{i} = w_{i}^{*}$ if $w_{i}^{*} > 0$,

= 0 otherwise

2724 households

Model for Budget Share for Tobacco

Tobit model, GRETL output

Model 2: Tobit, using observations 1-2724 Dependent variable: SHARE1 (Tobacco)						
coefficient	std. error	t-ratio	p-value			
const -0,170417	0,0441114	-3,863	0,0001 ***			
AGE 0,0152120	0,0106351	1,430	0,1526			
NADULTS 0,0280418	0,0188201	1,490	0,1362			
NKIDS -0,0029520	9 0,000794286	-3,717	0,0002 ***			
NKIDS2 -0,0041175	6 0,00320953	-1,283	0,1995			
LNX 0,0134388	0,00326703	4,113	3,90e-05 ***			
AGELNX -0,0009446	68 0,000787573	3 -1,199	0,2303			
NADLNX -0,002180	7 0,00136622	-1,596	0,1105			
WALLOON 0,0041720	2 0,000980745	5 4,254	2,10e-05 ***			
Mean dependent var 0	017828 S.D. de	pendent v	ar 0,021658			
Censored obs 4	66 sigma		0,024344			
Log-likelihood 4	764,153 Akaike	criterion	-9508,306			
	9449,208 Hanna	n-Quinn	-9486,944			

Model for Budget Share for Tobacco, cont'd

Truncated regression model, GRETL output

Model 7: Tobit, using observations 1-2724 (n = 2258) Missing or incomplete observations dropped: 466 Dependent variable: W1 (Tobacco)

C	oefficient	std. error	t-ratio	p-value
const	0,0433570	0,0458419	0,9458	0,3443
AGE	0,00880553	0,0110819	0,7946	0,4269
NADULTS	-0,0129409	0,0185585	-0,6973	0,4856
NKIDS	-0,00222254	0,000826380	-2,689	0,0072 ***
NKIDS2	-0,00261220	0,00335067	-0,7796	0,4356
LNX	-0,00167130	0,00337817	-0,4947	0,6208
AGELNX	-0,000490197	0,000815571	-0,6010	0,5478
NADLNX	0,000806801	0,00134731	0,5988	0,5493
WALLOON	0,00261490	0,000922432	2,835	0,0046 ***
Mean depen Censored ob Log-likelihoo	os 0 d 547	sigma 1,304 Akaike c		0,022062 0,021450 -10922,61 -10901,73
Schwarz crite	erion -108	365,39 Hannan	-Quinn	-10901

Two Models for Budget Share for Tobacco, Comparison

Estimates and standard errors for some coefficients of the Tobit and the truncated regression model

	constant	NKIDS	LNX	WALL
Tobit	-0,1704	-0,0030	0,0134	0,0042
model	0,0441	0,0008	0,0033	0,0010
Truncated	0,0433	-0,0022	-0,0017	0,0026
regression	0,0458	0,0008	0,0034	0,0009

Specification Tests

Various tests based on

generalized residuals

 $\lambda(-x_i'\beta/\sigma)$ if $y_i = 0$

 e_i / σ if $y_i > 0$ (standardized residuals)

with $\lambda(x_i'\beta/\sigma) = \phi(x_i'\beta/\sigma) / \Phi(x_i'\beta/\sigma)$, evaluated for estimates of β , σ

and "second order" generalized residuals corresponding the estimation of σ^2

Tests

- for normality
- for heteroskedasticity
- for omitted variables

Test for normality is standard test in GRETL's TOBIT procedure: consistency requires normality

Contents

- Limited Dependent Variable Cases
- Binary Choice Models
- Binary Choice Models: Estimation
- Binary Choice Models: Goodness of Fit
- Multiresponse Models
- Multinomial Models
- Count Data Models
- The Tobit Model
- The Tobit II Model

An Example: Wage Equation

Wage observations: available only for the working population Model that explains wages as a function of characteristics, e.g., the person's age

- Tobin model: for a positive coefficient of age, an increase of age
 - increases wage
 - increases the probability that the person is working
 - Not always realistic!
- Tobin II model: allows two separate equations
 - for labor force participation and
 - for the wage of a person
- Tobin II model is also called "sample selection model"

Wage Model: Tobit II

Wage equation describes the wage of person i

 $w_i^* = x_{1i}^{\beta}\beta_1 + \varepsilon_{1i}$

with exogenous characteristics (age, education, ...)

Labor force participation or selection equation

 $h_i^* = x_{2i}^{\beta_2} + \varepsilon_{2i}$

Observation rule: w_i actual wage of person i

 $w_{i} = w_{i}^{*}, h_{i} = 1 \text{ if } h_{i}^{*} > 0$

 w_i not observed, $h_i = 0$ if $h_i^* \le 0$

 $h_{\rm i}$: indicator for working

Distributional assumption for ε_{1i} , ε_{2i}

$$\begin{pmatrix} \boldsymbol{\varepsilon}_{1i} \\ \boldsymbol{\varepsilon}_{2i} \end{pmatrix} N \begin{bmatrix} \boldsymbol{0}, \begin{pmatrix} \boldsymbol{\sigma}_1^2 & \boldsymbol{\sigma}_{12} \\ \boldsymbol{\sigma}_{12} & \boldsymbol{\sigma}_2^2 \end{bmatrix}$$

Wage Model: Selection Equation

- Selection equation: a binary choice model; probit model needs standardization ($\sigma_2^2 = 1$)
- Special cases
 - If $\sigma_{12} = 0$, sample selection is exogenous
 - If $x_{1i}^{\prime}\beta_1 = x_{2i}^{\prime}\beta_2$ and $\varepsilon_{1i} = \varepsilon_{2i}$, the Tobit II model coincides with the Tobit I model
- Characteristics x_{1i} and x_{2i} may be different; however,
 - If the selection depends upon w_i^* : x_{2i} is expected to include x_{1i}
 - Because the model describes the joint distribution of w_i and h_i given one set of conditioning variables: x_{2i} is expected to include x_{1i}
 - Sign and value of coefficients of the same variables in x_{1i} and x_{2i} can be different

Wage Model: Wage Equation

Expected value of w_i , given sample selection:

 $\mathsf{E}\{w_{i} \mid h_{i} = 1\} = x_{1i}\beta_{1} + \sigma_{12}\lambda(x_{2i}\beta_{2})$

with the inverse Mill's ratio or Heckman's lambda

 $\lambda(x_{2\mathrm{i}}`\beta_2) = \phi(x_{2\mathrm{i}}`\beta_2) \,/\, \Phi(x_{2\mathrm{i}}`\beta_2)$

- Heckman's lambda
 - Positive and decreasing in its argument
 - The smaller the probability that a person is working, the larger the value of the correction term λ
- Expected value of w_i only equals x_{1i} ' β_1 if $\sigma_{12} = 0$: "no sample selection"

Tobit II Model: Log-likelihood Function

Log-likelihood

 $\ell_{3}(\beta,\sigma_{1}{}^{2},\sigma_{12}) = \sum_{i \in I0} \log P\{h_{i}=0\} + \sum_{i \in I1} [\log f(y_{i}|h_{i}=1) + \log P\{h_{i}=1\}]$ = $\sum_{i \in I0} \log P\{h_{i}=0\} + \sum_{i \in I1} [\log f(y_{i}) + \log P\{h_{i}=1|y_{i}\}]$

with

$$P\{h_{i}=0\} = 1 - \Phi(x_{2i}'\beta_{2})$$

$$f(y_{i}) = \frac{1}{\sqrt{2\pi\sigma_{1}^{2}}} \exp\left\{-\frac{1}{2\sigma_{1}^{2}}(y_{i} - x_{1i}'\beta_{1})^{2}\right\}$$

$$P\{h_{i}=1|y_{i}\} = \Phi\left(\frac{x_{2i}'\beta_{2} + (\sigma_{12}/\sigma_{1}^{2})(y_{i} - x_{1i}'\beta_{1})}{\sqrt{1-\sigma_{12}^{2}/\sigma_{1}^{2}}}\right)$$

Tobit II Model: Estimation

Maximum likelihood estimation, based on the log-likelihood

 $\ell_{3}(\beta,\sigma_{1}{}^{2},\sigma_{12}) = \sum_{i \in I0} \log P\{h_{i}=0\} + \sum_{i \in I1} [\log f(y_{i}|h_{i}=1) + \log P\{h_{i}=1\}]$

- Two step approach (Heckman, 1979)
 - 1. Estimate the coefficients β_2 of the selection equation by standard probit maximum likelihood
 - 2. Compute $\lambda(x_{2i}'b_2) = \phi(x_{2i}'b_2) / \Phi(x_{2i}'b_2) = \lambda_i$
 - 3. Estimate the coefficients β_1 and σ_{12} using OLS

 $w_i = x_{1i}'\beta_1 + \sigma_{12}\lambda_i + \eta_i$

 GRETL: procedure "Heckit" allows both the ML and the two step estimation

Tobit II Model for Budget Share for Tobacco

Heckit ML estimation, GRETL output

	. Heckit, using /ariable: SHA		ns 1-2724	
Selection va	riable: D1 coefficient	std. error	t-ratio	p-value
const	0,0444178	0,049244	,	0,3671
AGE	0,00874370	0,0110272	,	0,4278
NADULTS	,	,	•	0,4295
NKIDS	-0,00221765	0,000585	669 -3,787	0,0002 ***
NKIDS2	-0,00260186	0,002288	12 -1,137	0,2555
LNX	-0,00174557	0,003572	83 -0,4886	0,6251
AGELNX	-0,00048586	6 0,000807	854 -0,6014	0,5476
NADLNX	0,00081782	6 0,001195	0,6839	0,4940
WALLOON	0,00260557	0,000958	504 2,718	0,0066 ***
lambda	-0,00013773	3 0,002915	16 -0,04725	0,9623
Mean depen	ident var 0,0	21507 S.C). dependent va	ar 0,022062
sigma	0,0)21451 rho	•	-0,006431
Log-likelihoo			aike criterion	-8613,231
Schwarz crit		556,008 Ha		-8592,349

Tobit II Model for Budget Share for Tabacco, cont'd

Heckit ML estimation, GRETL output

Dependent v	Model 7: ML Heckit, using observations 1-2724 Dependent variable: SHARE1 Selection variable: D1					
Selection eq	uation					
•	coefficient	std. error	t-ratio	p-value		
const	-16,2535	2,58561	-6,286	3,25e-010 ***		
AGE	0,753353	0,653820	1,152	0,2492		
NADULTS	2,13037	1,03368	2,061	0,0393 **		
NKIDS	-0,0936353	0,0376590	-2,486	0,0129 **		
NKIDS2	-0,188864	0,141231	-1,337	0,1811		
LNX	1,25834	0,192074	6,551	5,70e-011 ***		
AGELNX	-0,0510698	0,0486730	-1,049	0,2941		
NADLNX	-0,160399	0,0748929	-2,142	0,0322 **		
BLUECOL	-0,0352022	0,0983073	-0,3581	0,7203		
WHITECOL	_ 0,0801599	0,0852980	0,9398	0,3473		
WALLOON	0,201073	0,0628750	3,198	0,0014 ***		

Models for Budget Share for Tabacco

Estimates and standard errors for some coefficients of the standard Tobit, the truncated regression and the Tobit II model

	constant	NKIDS	LNX	WALL
Tobit	-0,1704	-0,0030***	0,0134***	0,0042***
model	0,0441	0,0008	0,0033	0,0010
Truncated	0,0433	-0,0022***	-0,0017	0,0026***
regression	0,0458	0,0008	0,0034	0,0009
Tobit II	0,0444	-0,0022***	-0,0017	0,0026***
model	0,0492	0,0006	0,0036	0,0010
Tobit II	-16,2535	-0,0936**	1,2583***	0,2011***
selection	2,5856	0,0377	0,1921	0,0629

Test for Sampling Selection Bias

Error terms of the Tobit II model with $\sigma_{12} \neq 0$: standard errors and test may result in misleading inferences

- Test of H₀: $\sigma_{12} = 0$ in the second step of Heckit, i.e., fitting the regression $w_i = x_{1i}'\beta_1 + \sigma_{12}\lambda_i + \eta_i$
- *t*-test on the coefficient for Heckman's lambda
- Test results are sensitive to exclusion restrictions on x_{1i}

Tobit Models in GRETL

Model > Nonlinear Models > Tobit

- Estimates the Tobit model; censored dependent variable
 Model > Nonlinear Models > Heckit
- Estimates in addition the selection equation (Tobit II), optionally by ML- and by two-step estimation

Your Homework

- Verbeek's data set CREDIT contains credit ratings of 921 US firms, as well as characteristics of the firm; the variable *rating* has categories "1", ..., "7" (highest). Generate the variable GF (good firm) with value 1 if *rating* > 4 and 0 otherwise, and the more detailed variable CR (credit rating) with CR = 1 if *rating* < 3, CR = 2 if *rating* = 3, CR = 3 if *rating* = 4, and CR = 4 otherwise.
 - a. Estimate a binary logit model for the assignment of the GF ratings, and an ordered logit model for assignment CR.
 - b. Compare the effects of the regressors in the models, based on coefficients and slopes.
 - c. What is the percentage of firms correctly rated by GF that are incorrectly rated by CR?
- 2. People buy for y_i^* of an investment fund, with $y_i^* = x_i^{\beta} + \varepsilon_i^{\beta}$ with $\varepsilon_i^{\beta} \sim N(0,1)$; x_i^{β} consists of an intercept and the variables age and income. The dummy $d_i^{\beta} = 1$ if $y_i^* > 0$ and $d_i^{\beta} = 0$ otherwise.

Your Homework, cont'd

- a. Derive the probability for $d_i = 1$ as function of x_i .
- b. Derive the log-likelihood function of the probit model for d_i .
- 3. Verbeek's data set TOBACCO contains also expenditures on alcohol in 2724 Belgian households, taken from the Belgian household budget survey of 1995/96, as well as other characteristics of the households; for the expenditures on alcohol, the dummy D1=1 if the budget share for alcohol SHARE1 differs from 0, and D1=0 otherwise.
 - a. Model the budget share for alcohol, using (i) a Tobit model, (ii) a truncated regression, and (iii) a Tobit II model, using besides other characteristics of the household the dummy FLANDERS.
 - b. Compare the effects of the regressors in the models, based on coefficients and slopes.
 - c. Compare the results for Flanders with that for the Wallonie.