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ARCH ProcessesARCH Processes

Autoregressive Conditional Heteroskedasticity (ARCH):

� Special case of heteroskedasticity

Volatility (error variance) show autoregressive behavior: large errors � Volatility (error variance) show autoregressive behavior: large errors 
induce a period of large volatility

� Allows to model successive periods with high, other periods with low � Allows to model successive periods with high, other periods with low 
volatility

� Typical for asset markets like stock markets, in particular for high � Typical for asset markets like stock markets, in particular for high 
frequencies like daily data 

Idea: The variance of the errors (or innovations) εt is allowed to depend Idea: The variance of the errors (or innovations) εt is allowed to depend 
upon its history, follows an autoregressive process

ARCH models developed by Robert Engle in the 1980ies; Nobel 
Memorial Prize in Economic Sciences, 2003Memorial Prize in Economic Sciences, 2003
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Example: Exchange Rate Example: Exchange Rate 

Verbeek‘s data set GARCH 

1867 daily observa- .061867 daily observa-
tions on exchange 
rates of the US 
dollar against the 

.04

.05

.06

dollar against the 
DM .02

.03

-.01

.00

.01

-.03

-.02

-.01

250 500 750 1000 1250 1500 1750

log exchange rate USD/DM, daily changes

Hackl, Econometrics 2, Lecture 4 4April 1, 2011



Exchange Rate: A Model Exchange Rate: A Model 

Daily log exchange rate yt of the US dollar against the DM

yt = θ + εt
ε = σ v with v ~ NID(0,1)εt = σtvt with vt ~ NID(0,1)

where σt² follows the ARCH model

σ ² = E{ε ²|I } = ϖ + αε ²σt² = E{εt²|It-1} = ϖ + αεt-1²

� Error terms εt are uncorrelated

Volatility (error variance) show autoregressive behavior

ϖ

� Volatility (error variance) show autoregressive behavior
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The ARCH(1) ProcessThe ARCH(1) Process

ARCH(1) process describes the conditional error variance, i.e., the 
variance conditional on information dated t-1 and earlier

σ ² = E{ε ²|I } = ϖ + αε ²σt² = E{εt²|It-1} = ϖ + αεt-1²

� It-1 is the information set containing all past including εt-1
� Conditions for σ ² ≥ 0: ϖ ≥ 0, α ≥ 0 

ϖ

� Conditions for σt² ≥ 0: ϖ ≥ 0, α ≥ 0 

� A big shock at t-1, i.e., a large value |εt-1|, 
� induces high volatility, i.e., large σt²� induces high volatility, i.e., large σt²

� makes large values |εt| more likely at t (and later)

� ARCH process does not imply correlation of the errors! 

ϖ ϖ

� ARCH process does not imply correlation of the errors! 

The unconditional variance of εt is

σ² = E{εt²} = ϖ + αE{εt-1²} = ϖ/(1 - α)σ² = E{εt²} = ϖ + αE{εt-1²} = ϖ/(1 - α)

given that 0 ≤ α < 1

� The εt process is stationary
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ARCH-Model: EstimationARCH-Model: Estimation

Model yt = xt’θ + εt with conditional error variance σt² following an ARCH 
process, i,.e., εt = σtvt, vt ~ NID(0,1) with

σ ² = E{ε ²|I } = ϖ + αε ²σt² = E{εt²|It-1} = ϖ + αεt-1²

� Conditional upon It-1, εt ~ N(0, σt²)

� Contribution of y to the likelihood function

ϖ

� Contribution of yt to the likelihood function

ϖ
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� Estimates for θ, α and ϖ by maximizing the log likelihood function
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Exchange Rate: ARCH ModelExchange Rate: ARCH Model

ARCH model for differences DMM of log exchange rate US dollar 
against DMagainst DM

Model 5: WLS (ARCH), using observations 3-1867 (T = 1865)
Dependent variable: DDM
Variable used as weight: 1/sigmayt = θ + εt

σ ² = α + α ε ² coefficient    std. error    t-ratio    p-value 
-----------------------------------------------------------
const      -5.487e-05   0.0001769   -0.3101   0.7565   

alpha(0)    5.382e-05   3.1787e-06   16.93     6.17e-060 ***

σt² = α0 + α1εt-1²

alpha(0)    5.382e-05   3.1787e-06   16.93     6.17e-060 ***
alpha(1)    0.108035      0.0230333    4.690    2.93e-06  ***

Statistics based on the weighted data:
Sum squared resid 1848.942   S.E. of regression   0.995953Sum squared resid 1848.942   S.E. of regression   0.995953
R-squared            0.000000   Adjusted R-squared   0.000000
Log-likelihood      -2638.257   Akaike criterion     5278.513
Schwarz criterion    5284.044   Hannan-Quinn         5280.552
rho                 -0.059930   Durbin-Watson        2.119846rho                 -0.059930   Durbin-Watson        2.119846

Statistics based on the original data:
Mean dependent var -0.000020   S.D. dependent var 0.007770
Sum squared resid 0.112543   S.E. of regression   0.007770 
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3-Step Estimation Procedure3-Step Estimation Procedure

Model yt = xt’θ + εt with conditional error variance σt² following an ARCH 
process, i,.e., εt = σtvt, vt ~ NID(0,1) with

σ ² = E{ε ²|I } = ϖ + αε ²

ϖ

σt² = E{εt²|It-1} = ϖ + αεt-1²

Estimation of θ, α and ϖ in 3 steps

1. OLS estimation of the regression model, residuals e

ϖ

ϖ

1. OLS estimation of the regression model, residuals et
2. Auxiliary regression of the squared residuals et² on its own lagged 

valuesvalues

3. Weighted least squares estimation; weights are the reciprocals of the 
fitted error variances from the auxiliary regressionfitted error variances from the auxiliary regression
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More ARCH ProcessesMore ARCH Processes

Various generalizations

� ARCH(p) process

GARCH(p,q) process, Generalized ARCH� GARCH(p,q) process, Generalized ARCH

� EGARCH or exponential GARCH

Etc.� Etc.

ARCH(p) process

σ ² = ϖ + α ε ² + … α ε 2 = ϖ + α(L)ε ² σt² = ϖ + α1εt-1² + … αpεt-p2 = ϖ + α(L)εt-1² 

with lag polynomial α(L) of order p-1

� Conditions for σ ² ≥ 0: ϖ ≥ 0; α ≥ 0, i = 1,…p

ϖ ϖ

� Conditions for σt² ≥ 0: ϖ ≥ 0; αi ≥ 0, i = 1,…p

� Condition for stationarity: α(1) < 1
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GARCH ProcessGARCH Process

GARCH(p,q) process

� „Generalized ARCH“

Similar to the ARMA representation of levels

ϖ

� Similar to the ARMA representation of levels

σt² = ϖ + α1εt-1² + … αpεt-p2 + β1σt-1² + … + βqσt-q² =

= ϖ + α(L)ε ² + β(L)σ ² 

ϖ

= ϖ + α(L)εt-1² + β(L)σt-1² 

Example: GARCH(1,1) 

σ ² = ϖ + αε ² + βσ ² 

ϖ

σt² = ϖ + αεt-1² + βσt-1² 

� “surprises“ vt = εt-1² - σt²

ε ² = ϖ + (α + β)ε ² + v - βv

ϖ

εt² = ϖ + (α + β)εt-1² + vt - βvt-1
� i.e. εt² follow ARMA(1,1)

� v : uncorrelated, but heteroskedastic� vt: uncorrelated, but heteroskedastic
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EGARCH ProcessEGARCH Process

ϖ

EGARCH or exponential GARCH

log σt² = ϖ + β log σt-1² + γεt-1/σt-1 + α|εt-1|/σt-1

Asymmetric: for γ < 0

ϖ

� Asymmetric: for γ < 0
� positive shocks reduce volatility

negative shocks incease volatility� negative shocks incease volatility

� Allows for larger impacts on volatility 
� of drops in price („bad news“) than� of drops in price („bad news“) than

� increases in price („good news“)
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Test for ARCH ProcessesTest for ARCH Processes

Null hypothesis of homoskedasticity, to be tested against the alternative 
ARCH(p)

1. Estimate the model of interest using OLS: residuals e1. Estimate the model of interest using OLS: residuals et
2. Auxiliary regression of squared residuals et2 on a constant and p 

lagged et2lagged et2

3. Test statistic TRe
2 with Re

2 from the auxiliary regression, p-value from 
the chi squared distribution with p dfthe chi squared distribution with p df
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Exchange Rate: Test for Exchange Rate: Test for 
HomoskedasticityHomoskedasticity

Auxiliary regression of squared residuals et2 on a constant and et-12;
residuals are differences of DMM from their mean (yt = θ + εt)residuals are differences of DMM from their mean (yt = θ + εt)

Model 11: OLS, using observations 3-1867 (T = 1865)
Dependent variable: usq10yt = θ + εt

σ ² = α + α ε ²
coefficient   std. error    t-ratio    p-value 

----------------------------------------------------------
const      5.382e-05   3.17866e-06   16.93     6.20e-060 ***
usq10_1    0.108035      0.0230333      4.690    2.93e-06  ***

σt² = α0 + α1εt-1²

usq10_1    0.108035      0.0230333      4.690    2.93e-06  ***

Mean dependent var 0.000060   S.D. dependent var 0.000124
Sum squared resid 0.000028   S.E. of regression   0.000123
R-squared            0.011671   Adjusted R-squared   0.011140R-squared            0.011671   Adjusted R-squared   0.011140
F(1, 1863)           21.99959   P-value(F)           2.93e-06
Log-likelihood       14139.08   Akaike criterion    -28274.16
Schwarz criterion   -28263.10   Hannan-Quinn        -28270.09
rho                 -0.008175   Durbin's h          -3.352472

TRe
2 = (1865)x(0.011671) = 21.77; p-value = 3.08E-6

rho                 -0.008175   Durbin's h          -3.352472

April 1, 2011 Hackl, Econometrics 2, Lecture 4 14



GARCH Models in GRETLGARCH Models in GRETL

Model > Time Series > ARCH

� Estimates the specified model allowing for ARCH: (1) model 
estimated via OLS, (2) auxiliary regression of the squared residuals estimated via OLS, (2) auxiliary regression of the squared residuals 
on its own lagged values, (3) weighted least squares estimation

Model > Time Series > GARCHModel > Time Series > GARCH

� Estimates a GARCH model, with or without exogenous regressors
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The Lüdeke Model for GermanyThe Lüdeke Model for Germany

1. Consumption function
Ct = α1 + α2Yt + α3Ct-1 + ε1tt 1 2 t 3 t-1 1t

2. Investment function
It = β1 + β2Yt + β3Pt-1 + ε2t

3. Import function3. Import function
Mt = γ1 + γ2Yt + γ3 Mt-1 + ε3t

4. Identity relation4. Identity relation
Yt = Ct + It - Mt-1 + Gt

with C: private consumption, Y: GDP, I: investments, P: profits, M: 
imports, G: governmental spendingimports, G: governmental spending

Variables:
� Endogenous: C, Y, I, M� Endogenous: C, Y, I, M
� Exogenous, predetermined: G, P-1
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Econometric ModelsEconometric Models

Basis is the multiple linear regression model
Model extensions
� Dynamic models, i.e., models which contain lagged variables
� Systems of regression relations, i.e., models which describe more 

than one dependent variablethan one dependent variable
Example: Lüdeke Model 
� Consists of four dynamic equations� Consists of four dynamic equations
� for the four dependent variables C, Y, I, M
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Dynamic Models: ExamplesDynamic Models: Examples

Demand model: describes the quantity Q demanded of a product as a 
function of its price P and the income Y of households

Demand is determined byDemand is determined by
� Current price and current income (static model): 

Q = β + β P + β Y + εQt = β1 + β2Pt + β3Yt + εt
� Current price and income of the previous period (dynamic model): 

Qt = β1 + β2Pt + β3Yt-1 + εtQt = β1 + β2Pt + β3Yt-1 + εt
� Current price and demand of the previous period (dynamic 

autoregressive model): 
Q = β + β P + β Q + εQt = β1 + β2Pt + β3Qt-1 + εt 
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The Dynamic of ProcessesThe Dynamic of Processes

Static processes: immediate reaction to changes in regressors, the 
adjustment of the dependent variables to the realizations of the 
independent variables will be completed within the current period, independent variables will be completed within the current period, 
the process seems to be always in equilibrium

Static models are often inappropriateStatic models are often inappropriate

� Some processes are determined by the past, e.g., energy 
consumption depends on past investments into energy-consuming consumption depends on past investments into energy-consuming 
systems and equipment 

� Actors in economic processes may respond delayed, e.g., time for 
decision-making and procurement processes exceeds the 
observation period

Expectations: e.g., consumption depends not only on current � Expectations: e.g., consumption depends not only on current 
income but also on the income expectations; modeling the 
expectation may be based on past development
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Elements of Dynamic ModelsElements of Dynamic Models

� Lag structures, distributed lags: linear combinations of current 
and past values of a variable

� Models for expectations: based on lag structures, e.g., adaptive 
expectation model, partial adjustment model

Autoregressive distributed lag (ADL) model: a simple but widely � Autoregressive distributed lag (ADL) model: a simple but widely 
applicable model consisting of an autoregressive part and of a 
finite lag structure of the independent variablesfinite lag structure of the independent variables
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Example: Demand FunctionsExample: Demand Functions

� Demand for durable consumer goods: demand Q depends on 
the price P and on the income Y of the current and two previous 
periods:periods:

Qt = α + β0Yt + β1Yt-1 + β2Yt-2 + γ Pt + εt
Demand for energy:� Demand for energy:

Qt = α + βPt + γKt + ut
with P: price of energy, K: energy-related capital stockwith P: price of energy, K: energy-related capital stock

Kt = θ0 + θ1Pt-1 + θ2Pt-2 + … + δYt + vt
with Y: income; substitution of K results in with Y: income; substitution of K results in 

Qt = α0 + α1Yt + β0Pt + β1Pt-1 + β2Pt-1 + … + εt
with ε = u + γv , α = α + γδ, β = β, and β = γθ , i = 1, 2, …with εt = ut + γvt, α0 = α + γδ, β0 = β, and βi = γθi, i = 1, 2, …
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Models with Lag StructuresModels with Lag Structures

Distributed lag model: describes the delayed effect of one or more 
regressors on the dependent variable; e.g., 
DL(s) model� DL(s) model

Yt = δ + Σs
i=0 φiXt-i + εt

distributed lag of order s modeldistributed lag of order s model
Topics of interest

� Estimation of coefficients� Estimation of coefficients
� Interpretation of parameters
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Example: Consumption Example: Consumption 
FunctionFunction
Data for Austria (1976:1 – 1995:2), logarithmic differences: 

Ĉ = 0.009 + 0.621Y Ĉ = 0.009 + 0.621Y 

with t(Y) = 2.288, R2 = 0.335

DL(2) model, same data:

Ĉ = 0.006 + 0.504Y – 0.026Y-1 + 0.274Y-2

with t(Y) = 3.79, t(Y-1) = – 0.18, t(Y-2) = 2.11, R2 = 0.370 -1 -2

Effect of income on consumption:

� Short term effect, i.e., effect in the current period: 

∆C = 0.504, given a change in income ∆Y = 1

� Overall effect, i.e., cumulative current and future effects

∆C = 0.504 – 0.026 + 0.274 = 0.752, given a change in income ∆C = 0.504 – 0.026 + 0.274 = 0.752, given a change in income 
∆Y = 1
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Multiplier Multiplier 

Describes the effect of a change in explanatory variable Xt by ∆X = 1 on 
current and future values of the dependent variable Y

DL(s) model: Yt = δ + φ0Xt + φ1Xt-1 + … + φsXt-s + εt
� Short run or impact multiplier 

Y∂

effect of the change in the same period, immediate effect of ∆X = 1 on Y: 

0
t

t

Y

X
ϕ∂ =

∂
effect of the change in the same period, immediate effect of ∆X = 1 on Y: 

∆Y = φ0

� Long run multiplier � Long run multiplier 

Effect of ∆X = 1 after 1, …, s periods: 

1 , ...,t t sY Yϕ ϕ+ +∂ ∂= =

Cumulated effect of ∆X = 1 at t over all future on Y: ∆Y = φ0 + … + φs

1
1, ...,

t t s
s

t tX X
ϕ ϕ+ += =

∂ ∂

Hackl, Econometrics 2, Lecture 4 26April 1, 2011



Equilibrium Multiplier Equilibrium Multiplier 

If after a change ∆X an equilibrium occurs within a finite time: Long run 
multiplier is called equilibrium multiplier 

� DL(s) model 

Yt = δ + φ0Xt + φ1Xt-1 + … + φsXt-s + εt 
equilibrium after s periods

� No equilibrium for models with an infinite lag structure 
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Average Lag TimeAverage Lag Time

Characteristic of lag structure 

� Portion of equilibrium effect in the adaptation process� Portion of equilibrium effect in the adaptation process
� At the end of the period t:

w0 = φ0/(φ0 + φ1 + … + φs)

� At the end of the period t +1:

w0 + w1 = (φ0 + φ1)/(φ0 + φ1 + … + φs)

Etc.� Etc.

with weights wi = φi/(φ0 + φ1 + … + φs)

� Average lag time: Σ i w� Average lag time: Σi i wi

� Median lag time: time till 50% of the equilibrium effect is reached, i.e., 
minimal s* with minimal s* with 

w0 + … ws* ≥ 0.5
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Consumption FunctionConsumption Function

For ∆Y = 1, the function 

Ĉ = 0.006 + 0.504Y – 0.026Y-1 + 0.274Y-2Ĉ = 0.006 + 0.504Y – 0.026Y-1 + 0.274Y-2

gives 

� Short run effect: 0.504

� Overall effect: 0.752

� Equilibrium effect : 0.752

� Average lag time: 0.694 quarters, i.e., ~ 2.3 months

� Median lag time: s* = 0; cumulative sums of weights are 0.671, 0.636, 
1.000 1.000 
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Lag Structures: EstimationLag Structures: Estimation

DL(s) model: problems with OLS estimation

� Loss of observations: for a sample size N, only N-s observations are � Loss of observations: for a sample size N, only N-s observations are 
available for estimation; infinite lag structure!

� Multicollinearity

� Order s (mostly) not known

Consequences: 

Large standard errors of estimates� Large standard errors of estimates

� Low power of tests 

Issues:Issues:

� Choice of s

Models for the lag structure with smaller number of parameters, e.g., � Models for the lag structure with smaller number of parameters, e.g., 
polynomial structure 
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Consumption FunctionConsumption Function

Fitted function 

Ĉ = 0.006 + 0.504Y – 0.026Y-1 + 0.274Y-2Ĉ = 0.006 + 0.504Y – 0.026Y-1 + 0.274Y-2

with p-value for coefficient ofY-2: 0.039, adj.R2 = 0.342, AIC = -5.204

s AIC p-Wert adj.R2s AIC p-Wert adj.R2

1 -5.179 0.333 0.316

2 -5.204 0.039 0.342

Models for s ≤ 7

2 -5.204 0.039 0.342

3 -5.190 0.231 0.344

4 -5.303 0.271 0.370

5 -5.264 0.476 0.364

6 -5.241 0.536 0.356

7 -5.205 0.884 0.342
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Koyck’s Lag StructureKoyck’s Lag Structure

Specifies the lag structure of the DL(s) model
Yt = δ + Σs

i=0 φiXt-i + εtt i=0 i t-i t

as an infinite, geometric series (geometric lag structure)
φi = λ0(1 - λ)λi

For 0 < λ < 1  � For 0 < λ < 1  
Σs

i=0 φi = λ0
� Short run multiplier: λ0(1 - λ) � Short run multiplier: λ0(1 - λ) 
� Equilibrium effect: λ0
� Average lag time: λ/(1 - λ) 

λ 0.1 0.3 0.5 0.7

λ/(1-λ) 0.10 0.43 1.00 2.33� Average lag time: λ/(1 - λ) 
� Stability condition 0 < λ < 1 

for λ > 1, the φi and the contributions to the multiplier are 
exponentially growing

λ/(1-λ) 0.10 0.43 1.00 2.33

exponentially growing
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The Koyck ModelThe Koyck Model

� The DL (distributed lag) or MA (moving average) form of the Koyck
model

Y = δ + λ (1 – λ) Σ λiX + εYt = δ + λ0(1 – λ) Σi λiXt-i + εt
� AR (autoregressive) form

Y = δ(1 – λ) + λY + λ (1 – λ)X + uYt = δ(1 – λ) + λYt-1 + λ0(1 – λ)Xt + ut
with ut = εt – λεt-1
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Consumption FunctionConsumption Function

Model with smallest AIC:

Ĉ = 0.003 + 0.595Y – 0.016Y-1 + 0.107Y-2 + 0.003Y-3Ĉ = 0.003 + 0.595Y – 0.016Y-1 + 0.107Y-2 + 0.003Y-3

+ 0.148Y-4

with adj.R2 = 0.370, AIC = -5.303, DW = 1.41

Koyck model in AR form

Ĉ = 0.004 + 0.286 C-1 + 0.556Y-1

with adj.R2 = 0.388, AIC = -5.290, DW = 1.91 
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Koyck Model: Estimation Koyck Model: Estimation 
ProblemsProblems
Parameters to be estimated: δ, λ0, and λ; problems are
� DL form:

� Historical values X0, X-1, … are unknown

� Non-linear estimation problem

AR form� AR form
� Non-linear estimation problem 

� Lagged, endogenous variable used as regressor � Lagged, endogenous variable used as regressor 

� Correlated error terms 
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The ADL(1,1) ModelThe ADL(1,1) Model

� The autoregressive distributed lag (ADL) model: autoregressive 
model with lag structure, e.g., the ADL(1,1) model

Y = δ + θY + φ X + φ X + εYt = δ + θYt-1 + φ0Xt + φ1Xt-1 + εt
� The error correction model:

∆Y = – (1 – θ)(Y – α – βX ) + φ ∆X + ε∆Yt = – (1 – θ)(Yt-1 – α – βXt-1) + φ0 ∆Xt + εt
obtained from the ADL(1,1) model with 

α = δ/(1 – θ)α = δ/(1 – θ)
β = (φ0+φ1)/(1 – θ)

Example: 
� Sales St are determined

� by advertising At and At-1, but also
� by S :� by St-1:

St = µ + θSt-1 + β0At + β1At-1 + εt
∆St = – (1 – θ)[St-1 – µ/(1 – θ) – (β0+β01)/(1 – θ)At-1] + β0∆At + εt
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MultiplierMultiplier

ADL(1,1) model: Yt = δ + θYt-1 + φ0Xt + φ1Xt-1 + εt
Effect of a change ∆X = 1 at time tEffect of a change ∆X = 1 at time t

� Impact multiplier: ∆Y = φ0; see the DL(s) model 

� Long run multiplierLong run multiplier
� Effect after one period 

1
1 0 1

t tY Y

X X
θ ϕ θϕ ϕ+∂ ∂= + = +

∂ ∂
� Effect after two periods 

1 0 1

t tX X
θ ϕ θϕ ϕ= + = +

∂ ∂

( )Y Yθ θ θϕ ϕ+ +∂ ∂= = +

� Cumulated effect over all future on Y

( )2 1
0 1

t t

t t

Y Y

X X
θ θ θϕ ϕ+ +∂ ∂= = +

∂ ∂
� Cumulated effect over all future on Y

φ0 + (θφ0 + φ1) + θ(θφ0 + φ1) + … = (φ0 + φ1)/(1 – θ)

decreasing effects requires |θ|<1, stability condition
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ADL(1,1) Model: EquilibriumADL(1,1) Model: Equilibrium

Equilibrium relation of the ADL(1,1) model: 

� Equilibrium at time t means: E{Yt} = E{Yt-1}, E{Xt } = E{Xt-1} � Equilibrium at time t means: E{Yt} = E{Yt-1}, E{Xt } = E{Xt-1} 

E{Yt} = δ + θ E{Yt} + φ0 E{Xt} + φ1 E{Xt}

or, given the stability condition |θ|<1, 
ϕ ϕδ +

� Equilibrium relation: 

{ } { }0 1

1 1
t tE Y E X

ϕ ϕδ
θ θ

+= +
− −

� Equilibrium relation: 

E{Yt} = α + β E{Xt} 

with α = δ/(1 – θ), β = (φ + φ )/(1 – θ)with α = δ/(1 – θ), β = (φ0 + φ1)/(1 – θ)

� Long run multiplier: change ∆X = 1 of the equilibrium value of X
increases the equilibrium value of Y by (φ0 + φ1)/(1 – θ)increases the equilibrium value of Y by (φ0 + φ1)/(1 – θ)
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The Error Correction ModelThe Error Correction Model

ADL(1,1) model, written as error correction model

∆Yt = φ0 ∆Xt – (1 – θ)(Yt-1 – α – βXt-1) + εt∆Yt = φ0 ∆Xt – (1 – θ)(Yt-1 – α – βXt-1) + εt
� Effects on ∆Y

� due to changes ∆X

� due to equilibrium error, i.e., Yt-1 – α – βXt-1

� Negative adjustment: Yt-1 < E{Yt-1} = α + βXt-1, i.e., a negative 
equilibrium error, increases Y by – (1 – θ)(Y – α – βX )equilibrium error, increases Yt by – (1 – θ)(Yt-1 – α – βXt-1)

� Adjustment parameter: (1 – θ)
� Determines speed of adjustment� Determines speed of adjustment
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The ADL(p,q) ModelThe ADL(p,q) Model

ADL(p,q): generalizes the ADL(1,1) model

θ(L)Yt = δ + Φ(L)Xt + εtθ(L)Yt = δ + Φ(L)Xt + εt
with lag polynomials 

θ(L) = 1 - θ1L - … - θpLp , Φ(L) = φ0 + φ1L + … + φqLq1 p 0 1 q

Given invertibility of θ(L), i.e., θ1 + … + θp < 1,

Yt = θ(1)-1δ + θ(L)-1Φ(L)Xt + θ(L)-1εtt t t

The coefficients of θ(L)-1Φ(L) describe the dynamic effects of X on 
current and future values of Y

equilibrium multiplier� equilibrium multiplier
q

θθ
ϕϕ

φθ
−−−

++
=−

...1

...
)1()1(

01

ADL(0,q): coincides with the DL(q) model; θ(L) = 1

pθθ −−− ...1 1
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ADL Model: EstimationADL Model: Estimation

ADL(p,q) model 

� error terms εt: white noise, independent of  Xt, …, Xt-q and Yt-1, …, Xt-p� error terms εt: white noise, independent of  Xt, …, Xt-q and Yt-1, …, Xt-p

OLS estimators are consistent 
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Expectations in Economic Expectations in Economic 
ProcessesProcesses
Expectations play important role in economic processes

Examples: Examples: 

� Consumption depends not only on current income but also on the 
income expectations; modeling the expectation may be based on 
past developmentpast development

� Investments depend upon expected profits

Interest rates depend upon expected development of the financial � Interest rates depend upon expected development of the financial 
market

� Etc.� Etc.

Expectations

� cannot be observed, but� cannot be observed, but

� can be modeled using assumptions on the mechanism of adapting 
expectations
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Models for Adapting Models for Adapting 
ExpectationsExpectations
� Naive model of adapting expectations: the (for the next period) 

expected value equals the actual value

� Model of adaptive expectation

� Partial adjustment model

The latter two models are based on Koyck’s lag structure
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Adaptive Expectation: ConceptAdaptive Expectation: Concept

Models of adaptive expectation: describe the actual value Yt as function 
of the value Xe

t+1 of the regressor X that is expected for the next 
period

t+1

period

Yt = α + βXe
t+1 + εt

Example: Investments are a function of the expected profitsExample: Investments are a function of the expected profits

Concepts for Xe
t+1:

Naive expectation: Xe = X� Naive expectation: Xe
t+1 = Xt 

� More realistic is a weighted sum of in the past realized profits

Xe = β X + β X + …Xe
t+1 = β0Xt + β1Xt-1 + …

� Geometrically decreasing weights βi
βi = (1-λ) λiβi = (1-λ) λ

with 0 < λ < 1
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Adaptive Mechanism for the Adaptive Mechanism for the 
ExpectationExpectation
With βi = (1- λ) λi, the expected value Xe

t+1 = β0Xt + β1Xt-1 + … results in 

Xe
t+1 = λXe

t + (1 – λ)Xt X t+1 = λX t + (1 – λ)Xt 

or 

Xe
t+1 - Xe

t = (1 – λ)(Xt - Xe
t) t+1 t t t

Interpretation: the change of expectation between t and t+1 is 
proportional to the actual „error in expectation”, i.e., the deviation 
between the actual expectation and the actually realized value between the actual expectation and the actually realized value 

� Extent of the change (adaptation): 100(1 – λ)% of the error

� λ: adaptation parameter� λ: adaptation parameter
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Models of Adaptive ExpectationModels of Adaptive Expectation

� Adaptive expectation model (AR form)
Yt = α(1 – λ) + λYt-1 + β(1 – λ)Xt + vtt t-1 t t

with vt = εt – λεt-1; an ADL(1,0) model
� DL form

Y = α + β(1 – λ)X + β(1 – λ) λ X + … + εYt = α + β(1 – λ)Xt + β(1 – λ) λ Xt-1 + … + εt
Example: Investments (I) as function of the expected profits Pe

t+1 and 
interest rate (r)interest rate (r)

It = α + βPe
t+1 + γrt + εt 

� Assumption of adapted expectation for the profits Pe
t+1:� Assumption of adapted expectation for the profits P t+1:

Pe
t+1 = λPe

t + (1 – λ)Pt

with adaptation parameter λ (0 < λ < 1) with adaptation parameter λ (0 < λ < 1) 

� AR form of the investment function (vt = εt – λεt-1):

It = α(1 – λ) + λIt-1 + β(1 – λ)Pt + γrt – λγrt-1 + vt
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Consumption FunctionConsumption Function

Consumption as function of the expected income 
Ct = α + βYe

t+1 + εtt t+1 t

expected income derived under the assumption of adapted 
expectation 

Ye = λYe + (1 – λ)YYe
t+1 = λYe

t + (1 – λ)Yt

� AR form is
Ct = α(1 – λ) + λCt-1 + β(1 – λ)Yt + vtCt = α(1 – λ) + λCt-1 + β(1 – λ)Yt + vt

with vt = εt – λεt-1 
Example: the estimated model is Example: the estimated model is 

Ĉ = 0.004 + 0.286C-1 + 0.556Y

� adj.R2 = 0.388, AIC = -5.29, DW = 1.91 adj.R = 0.388, AIC = -5.29, DW = 1.91 
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Example: Desired Stock LevelExample: Desired Stock Level

Stock level K and revenues S

� The desired (optimal) stock level K* depends of the revenues S� The desired (optimal) stock level K* depends of the revenues S

K*t = α + βSt + ηt
� Actual stock level Kt-1 in period t-1: deviates from K*t: K*t – Kt-1t-1 t t t-1

� (Partial) adjustment strategy according to

Kt – Kt-1 =  (1 – θ)(K*t – Kt-1) t t-1 t t-1

adaptation parameter θ with 0 < θ < 1

� Substitution for K*t gives the AR form of the model

Kt = Kt-1 + (1 – θ)α  + (1 – θ)βSt – (1 – θ)Kt-1 + (1 – θ)ηt
= δ + θKt-1 + φ0St + εt

δ = (1 – θ)α, φ = (1 – θ)β, ε = (1 – θ)ηδ = (1 – θ)α, φ0 = (1 – θ)β, εt = (1 – θ)ηt
� Model for Kt is an ADL(1,0) model
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Partial Adjustment ModelPartial Adjustment Model

Describes the process of adapting to a desired or planned value Y*t as a 
function of regressor Xtt

Y*t = α + βXt + ηt
� (Partial) adjustment of the actual Yt according to

Yt – Yt-1 =  (1 - θ)(Y*t – Yt-1) 

adaptation parameter θ with 0 < θ < 1

Actual Y : weighted average of Y* and Y� Actual Yt: weighted average of Y*t and Yt-1

Yt = (1 - θ)Y*t + θYt-1

AR form of the model� AR form of the model

Yt = (1 - θ)α  + θYt-1 + (1 - θ)βXt + (1 – θ)ηt
= δ + θY + φ X + ε= δ + θYt-1 + φ0Xt + εt

which is an ADL(1,0) model
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Models in AR FormModels in AR Form

Models in ADL(1,0) form 

1. Koyck’s model1. Koyck’s model

Yt = α (1 – λ) + λYt-1 + β(1 – λ)Xt + vt
with vt = εt – λεt-1t t t-1

2. Model of adaptive expectation
Yt = α(1 – λ) + λYt-1 + β(1 – λ)Xt + vt

with v = ε – λεwith vt = εt – λεt-1
3. Partial adjustment model

Y = (1 - θ)α  + θY + (1 - θ)βX + εYt = (1 - θ)α  + θYt-1 + (1 - θ)βXt + εt
Error terms are 

� White noise for partial adjustment model� White noise for partial adjustment model

� Autocorrelated  for the other two models
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An IllustrationAn Illustration

Independent random walks: Yt = Yt-1 + εyt, Xt = Xt-1 + εxt
εyt, εxt: independent white noises with variances σy² = 2, σx² = 1

Fitting the model
 35

Fitting the model

Yt = α + βXt + εt
gives

 25

 30

 35
yy

xx

gives

Ŷt = - 8.18 + 0.68Xt

t-statistic for X:
 15

 20

 25

t-statistic for X:

t = 17.1 (p-value

= 1.2 E-40)
 5

 10

= 1.2 E-40)

R2 = 0.50, DW = 0.11
-5

 0

-15

-10

 0  50  100  150  200
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Spurious RegressionSpurious Regression

Regression model 

Yt = α + βXt + εt
with two independent random walks with two independent random walks 

Yt = Yt-1 + ε1t, ε1t ~ IIDN(0, σ1² )

X = X + ε , ε ~ IIDN(0, σ ² )Xt = Xt-1 + ε2t, ε2t ~ IIDN(0, σ2² )

ε1t, ε2t mutually independent
Consequences for OLS estimators for α and βConsequences for OLS estimators for α and β
� t-statistic for β indicate explanatory power of Xt

� R2 indicates explanatory potential � R2 indicates explanatory potential 
� Highly autocorrelated residuals 
Nonsense or spurious regression (Granger & Newbold, 1974)Nonsense or spurious regression (Granger & Newbold, 1974)
� Non-stationary time series are trended; this causes an apparent 

relationship
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Models in Non-stationary Time Models in Non-stationary Time 
Series Series 
Non-stationary time series are trended 

Example: random walk with trend Example: random walk with trend 

Yt = δ + Yt-1 + εt or

Yt = Y0 + δt + Σi≤t εit 0 i≤t i

Yt‘s are correlated, show stochastic trend (even for δ = 0)

Given that Xt ~ I(1), Yt ~ I(1) and the modelt t

Yt = α + βXt + εt
it follows in general that εt ~ I(1), i.e., the error terms are non-
stationary stationary 

� R2 indicates explanatory potential 

(Asymptotic) distributions of t- and F -statistics are different from � (Asymptotic) distributions of t- and F -statistics are different from 
those for stationarity 

� DW statistic converges for growing N to zero
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Avoiding Spurious RegressionAvoiding Spurious Regression

� Identification of non-stationarity: unit-root tests

� Models for non-stationary variables� Models for non-stationary variables
� Elimination of stochastic trends: differencing, specifying the model for 

differences

Inclusion of lagged variables may result in stationary error terms� Inclusion of lagged variables may result in stationary error terms

Example: ADL(1,1) model: 

� For Y ~ I(1), the error terms are stationary if θ =1� For Yt ~ I(1), the error terms are stationary if θ =1

εt = Yt – (δ + θYt-1 + φ0Xt + φ1Xt-1) ~ I(0)
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The Drunk and her DogThe Drunk and her Dog
Obrázek nelze zobrazit. V počítači pravděpodobně není k dispozici dostatek paměti pro otevření obrázku nebo byl obrázek poškozen. Restartujte počítač a otevřete příslušný soubor znovu. Pokud se opět zobrazí červený křížek, bude nutné obrázek odstranit a v ložit jej znovu.

M. P. Murray, A drunk 
and her dog: An 
illustration of illustration of 
cointegration and 
error correction. error correction. 
The American 
Statistician, 48
(1997), 37-39(1997), 37-39

drunk: xt – xt-1 = ut
dog: y – y = wdog: yt – yt-1 = wt

Cointegration: 

x –x = u +c(y –x )xt–xt-1 = ut+c(yt-1–xt-1)

yt–yt-1 = wt+d(xt-1–yt-1)
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Cointegrated VariablesCointegrated Variables

Non-stationary variables X, Y:

Xt ~ I(1), Yt ~ I(1)Xt ~ I(1), Yt ~ I(1)

if a β exists such that 

Zt = Yt - βXt ~ I(0)t t t 

� Xt and Yt have a common stochastic trend 

� Xt and Yt are called “cointegrated”t t

� β: cointegration parameter 

� (1, - β)’: cointegration vector

Cointegration implies a long-run equilibrium
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Example: Purchasing Power Example: Purchasing Power 
ParityParity
Verbeek’s dataset PPP: price indices and exchange rates for France 

and Italy, T = 186 (1/1981-6/1996)

� Variables: LNIT (log price index Italy), LNFR (log price index France), 
LNX (log exchange rate France/Italy) 

Purchasing power parity (PPP): exchange rate between the currencies Purchasing power parity (PPP): exchange rate between the currencies 
(Franc, Lira) equals the ratio of price levels of the countries 

� Relative PPP: equality fulfilled only in the long run; equilibrium or � Relative PPP: equality fulfilled only in the long run; equilibrium or 
cointegrating relation

LNXt = α + β LNPt + εtLNXt = α + β LNPt + εt
with LNPt = LNITt – LNFRt, i.e., the log of the price index ratio 
France/Italy
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Purchasing Power ParityPurchasing Power Parity

Test for unit roots (non-
stationarity) of
LNX (log exchange rate 

 5.8

 5.9

 0.15

 0.2
LNP (right)

LNX (left)

� LNX (log exchange rate 
France/Italy) 

� LNP = LNIT – LNFR, i.e.,  5.6

 5.7

 0

 0.05

 0.1

� LNP = LNIT – LNFR, i.e., 
the log of the price 
index ratio France/Italy

 5.4

 5.5

-0.15

-0.1

-0.05

Results from DF tests:

const. +trend

 5.3

 5.4

-0.25

-0.2

-0.15

const. +trend

LNP DF stat -0.99 -2.96

p-value 0.76 0.14

 5.2

 1982  1984  1986  1988  1990  1992  1994  1996

-0.3

LNX DF stat -0.33 -1.90

p-value 0.92 0.65

DF test indicates:
LNX ~ I(1), LNP ~ I(1)
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PPP: Equilibrium RelationPPP: Equilibrium Relation

OLS estimation of 
LNXt = α + β LNPt + εtLNXt = α + β LNPt + εt

Model 2: OLS, using observations 1981:01-1996:06 (T = 186)
Dependent variable: LNX

coefficient   std. error   t-ratio    p-value 
---------------------------------------------------------
const       5,48720      0,00677678   809,7     0,0000    ***
LNP         0,982213     0,0513277     19,14    1,24e-045 ***LNP         0,982213     0,0513277     19,14    1,24e-045 ***

Mean dependent var 5,439818   S.D. dependent var 0,148368
Sum squared resid 1,361936   S.E. of regression   0,086034
R-squared            0,665570   Adjusted R-squared   0,663753
F(1, 184)            366,1905   P-value(F)           1,24e-45F(1, 184)            366,1905   P-value(F)           1,24e-45
Log-likelihood       193,3435   Akaike criterion    -382,6870
Schwarz criterion   -376,2355   Hannan-Quinn        -380,0726
rho                  0,967239   Durbin-Watson        0,055469

DF test statistic for residuals (constant): -1.90, p-value: 0.33 
H0 cannot be rejected: no evidence for cointegration
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Long-run EquilibriumLong-run Equilibrium

Equilibrium defined by 

Yt = α + βXtYt = α + βXt

Equilibrium error: zt = Yt - βXt - α = Zt - α 

Two cases:

1. zt ~ I(0): equilibrium error stationary, fluctuating around zero
� Yt, βXt cointegrated

� Yt = α + βXt describes an equilibrium

2. zt ~ I(1), Yt, βXt not integrated 
z ~ I(1) non-stationary process� zt ~ I(1) non-stationary process

� Yt = α + βXt does not describe an equilibrium

Cointegration, i.e., existence of an equilibrium vector, implies a long-run Cointegration, i.e., existence of an equilibrium vector, implies a long-run 
equilibrium relation
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Identification of Cointegration Identification of Cointegration 

Information about cointegration: 

� Economic theory� Economic theory

� Visual inspection of data

� Statistical tests
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Testing for Cointegration Testing for Cointegration 

Non-stationary variables Xt ~ I(1), Yt ~ I(1)

Yt = α + βXt + εtYt = α + βXt + εt
� Xt and Yt are cointegrated: εt ~ I(0)

� Xt and Yt are not cointegrated: εt ~ I(1)t t t

Tests for cointegration: 

� If β is known, unit root test based on differences Yt - βXtt t

� Test procedures
� Unit root test (DF or ADF) based on residuals et

Cointegrating regression Durbin-Watson (CRDW) test: DW statistic� Cointegrating regression Durbin-Watson (CRDW) test: DW statistic

� Johansen technique: extends the cointegration technique to the 
multivariate casemultivariate case
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DF Test for Cointegration DF Test for Cointegration 

Non-stationary variables Xt ~ I(1), Yt ~ I(1)

Yt = α + βXt + εtYt = α + βXt + εt
� Xt and Yt are cointegrated: εt ~ I(0)

� Residuals et represent εt, show similar pattern, et ~ I(0), residuals are t t t

stationary

Tests for cointegration based on residuals et
∆e = γ + γ e + u∆et = γ0 + γ0et-1 + ut

� H0: γ0 = 0, i.e., residuals have a unit root, et ~ I(1) 

H implies � H0 implies 
� Xt and Yt are not cointegrated 

� Rejection of H suggests that X and Y are cointegrated� Rejection of H0 suggests that Xt and Yt are cointegrated
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DF Test for Cointegration, cont’dDF Test for Cointegration, cont’d

Critical values of DF test for residuals 

� are smaller than those of DF test for observations � are smaller than those of DF test for observations 

� depend upon (see Verbeek, Tab. 9.2)
� number of elements of cointegrating vector, K+1

� number of observations T

� significance level

some asymptotic 
critical values for the DF- 1% 5%critical values for the DF-
test with constant term

1% 5%

Observations -3.43 -2.86

Residuals, K=1 -3.90 -3.34Residuals, K=1 -3.90 -3.34
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Cointegrating Regression Cointegrating Regression 
Durbin-Watson (CRDW) TestDurbin-Watson (CRDW) Test
Non-stationary variables Xt ~ I(1), Yt ~ I(1)

Yt = α + βXt + εtYt = α + βXt + εt
Cointegrating regression Durbin-Watson (CRDW) test: DW statistic from 

OLS-fitting Yt = α + βXt + εt
� Null hypothesis: residuals et have a unit root, i.e., et ~ I(1), i.e., Xt and 

Yt are not cointegrated 

DW statistic converges with T to zero for not cointegrated variables� DW statistic converges with T to zero for not cointegrated variables

� Critical values from Monte Carlo simulations, which depend upon 
(see Verbeek, Tab. 9.4)(see Verbeek, Tab. 9.4)
� Number of regressors plus 1 (dependent variable)

� Number of observations TNumber of observations T

� Significance level
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PPP: Tests for Cointegration PPP: Tests for Cointegration 

Residuals from LNXt = α + β LNPt + εt: 

� Time series plot indicates non-stationarity of residuals� Time series plot indicates non-stationarity of residuals

� Tests for cointegration 
� DF test statistic for residuals: -1.90, p-value: 0.33, no cointegration 

� CRDW test: DW statistic: 0.055 < 0.20, the critical value for two variables, 
200 observations, significance level 0.05, no cointegration 
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OLS Estimation of Equilibrium OLS Estimation of Equilibrium 
RelationRelation
To be estimated: 

Yt = α + βXt + εtYt = α + βXt + εt
cointegrated non-stationary processes Yt ~ I(1), Xt ~ I(1)

εt ~ I(0) t

OLS estimator b for β

� Super consistent:

� T(b – β) converges to zero

� In case of consistency: √T(b – β) converges to zero

� Robust against misspecification in stationary part wrt asymptotic  
distribution of b

Non-standard distribution, non-normal, e.g., t-test misleading� Non-standard distribution, non-normal, e.g., t-test misleading

� Small samples: bias
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OLS Estimation, cont’dOLS Estimation, cont’d

To be estimated: 

Yt = α + βXt + εtYt = α + βXt + εt
non-stationary processes Yt ~ I(1), Xt ~ I(1)

If εt ~ I(1), i.e., Yt and Xt not cointegrated: spurious regressionIf εt ~ I(1), i.e., Yt and Xt not cointegrated: spurious regression

OLS estimator b for β

� Non-standard distribution of b

� Large values of R2, t-statistic

� Highly autocorrelated residuals

� DW statistic close to zero
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Error-correction ModelError-correction Model

Granger’s Representation Theorem (Engle & Granger, 1987): If a set of 
variables is cointegrated, then an error-correction relation of the 
variables existsvariables exists

non-stationary processes Yt ~ I(1), Xt ~ I(1) with cointegrating 
vector (1, -β)’: error-correction representation vector (1, -β)’: error-correction representation 

θ(L)∆Yt = δ + Φ(L)∆Xt-1 - γ(Yt-1 – βXt-1) + α(L)εt
with lag polynomials θ(L) (with θ =1), Φ(L), and α(L)with lag polynomials θ(L) (with θ0=1), Φ(L), and α(L)

E.g., ∆Yt = δ + φ1∆Xt-1 - γ(Yt-1 – βXt-1) + εt
Error-correction model: describesError-correction model: describes

� the short-run behavior

� consistently with the long-run equilibrium� consistently with the long-run equilibrium

Converse statement: if Yt ~ I(1), Xt ~ I(1) have an error-correction 
representation, then they are cointegrated
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representation, then they are cointegrated
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Your HomeworkYour Homework

1. Use Verbeek’s data set INCOME containing quarterly data INCOME 
(total disposable income) and CONSUM (consumer expenditures) for 
1/1971 to 2/1985 in the UK. 1/1971 to 2/1985 in the UK. 
a. Specify a DL(s) model in sd_INCOME (seasonal differences) and choose 

an appropriate s, using (i) R2 and (ii) BIC.an appropriate s, using (i) R and (ii) BIC.

b. Assuming that DL(4) is an appropriate lag structure, calculate (i) the short 
run and (ii) the long run multiplier as well as (iii) the average and (iv) the 
median lag time.median lag time.

c. Specify a consumption function with the actual expected income as 
explanatory variable; estimate the AR form of the model under the 
assumption of adapted expectation.

d. Test (i) whether CONSUM and INCOME are I(1); (ii) estimate the simple 
linear regression of CONSUM on INCOME and test (iii) whether this is an linear regression of CONSUM on INCOME and test (iii) whether this is an 
equilibrium relation; show (iv) the corresponding time series plots. 
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Your Homework, cont’dYour Homework, cont’d

2. Generate 500 random numbers (a) from a random walk with trend: xt
= 0.1 +xt-1 + εt; and (b) from an AR(1) process: yt = 0.2 + 0.7yt-1 + εt; 
for ε use Monte Carlo random numbers from N(0,1). Estimate for εt use Monte Carlo random numbers from N(0,1). Estimate 
regressions of xt and yt on t; report the values for R2. 
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