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ARCH Processes

Autoregressive Conditional Heteroskedasticity (ARCH):
Special case of heteroskedasticity

Volatility (error variance) show autoregressive behavior: large errors
induce a period of large volatility

Allows to model successive periods with high, other periods with low
volatility

Typical for asset markets like stock markets, in particular for high
frequencies like daily data

ldea: The variance of the errors (or innovations) ¢, is allowed to depend
upon its history, follows an autoregressive process

ARCH models developed by Robert Engle in the 1980ies; Nobel
Memorial Prize in Economic Sciences, 2003
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Example: Exchange Rate
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Exchange Rate: A Model

Daily log exchange rate y, of the US dollar against the DM
;=0 +¢
g, = oV, with v, ~ NID(0,1)
where o follows the ARCH model
0 = E{efLiq} = @ + ag4°
Error terms ¢, are uncorrelated
Volatility (error variance) show autoregressive behavior
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The ARCH(1) Process

ARCH(1) process describes the conditional error variance, i.e., the
variance conditional on information dated t-1 and earlier

0 = E{ef|I )} = © + agy®
L. , is the information set containing all past including ¢,
Conditions forc2=0: w=0,a=0
A big shock at -1, i.e., a large value |g 4],

o induces high volatility, i.e., large o
o makes large values |g,| more likely at t (and later)

ARCH process does not imply correlation of the errors!
The unconditional variance of €, is
0?>=E{e’} = © + aE{e, %} = ©w/(1 - Q)
giventhat0<a<1
The g, process is stationary
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ARCH-Model: Estimation

Model y, = x,/0 + €, with conditional error variance o2 following an ARCH
process, i,.e., & = oV, v, ~ NID(0,1) with

0 = E{ef[Liq} = @ + agy®
Conditional upon I 4, & ~ N(O, ¢;?)
Contribution of y, to the likelihood function

2
f(yt ‘waz—l): : eXp{_ gt }

2770'2 2Jt2

t

with €, = y, — X0 and 0 = © + ag._,?
Estimates for 8, a and @ by maximizing the log likelihood function
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Exchange Rate: ARCH Model

ARCH model for differences DMM of log exchange rate US dollar

against DM

Model 5: WLS (ARCH), using observations 3-1867 (T = 1865)
Dependent variable: DDM

yt = e + gt Variable used as weight: 1/sigma
2 — 2
Gt - GO + (11 8'[.1 coefficient  std. error t-ratio p-value
const -5.487e-05 0.0001769 -0.3101 0.7565
alpha(0) 5.382e-05 3.1787e-06 16.93 6.17e-060 ***
alpha(1)  0.108035 0.0230333 4.690 2.93e-06 ***
Statistics based on the weighted data:
Sum squared resid 1848.942 S.E. of regression 0.995953
R-squared 0.000000 Adjusted R-squared 0.000000
Log-likelihood -2638.257  Akaike criterion 5278.513
Schwarz criterion 5284.044 Hannan-Quinn 5280.552
rho -0.059930  Durbin-Watson 2.119846
Statistics based on the original data:
Mean dependent var -0.000020 S.D. dependent var 0.007770
Sum squared resid 0.112543 S.E. of regression 0.007770
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3-Step Estimation Procedure

Model y, = x,/0 + €, with conditional error variance o2 following an ARCH
process, i,.e., & = oV, v, ~ NID(0,1) with
0 = E{ef[Liq} = @ + agy®
Estimation of 6, a and w in 3 steps
OLS estimation of the regression model, residuals e,

Auxiliary regression of the squared residuals e on its own lagged
values

Weighted least squares estimation; weights are the reciprocals of the
fitted error variances from the auxiliary regression
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More ARCH Processes

Various generalizations
ARCHY(p) process
GARCH(p,q) process, Generalized ARCH
EGARCH or exponential GARCH
Etc.

ARCH(p) process

O =@+ g *+ ... A€ ° =@ + a(L)g, 4

with lag polynomial a(L) of order p-1
Conditions foro?20:®20;0,20,/=1,...p
Condition for stationarity: a(1) < 1
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GARCH Process

GARCH(p,q) process
,Generalized ARCH"
Similar to the ARMA representation of levels
0=+ g2+ ... A€ 2 + B0 2+ ... + B0y
= +a(l)e4® + B(L)oy4®
Example: GARCH(1,1)
O =@ + Qg 4* + O 4°
‘surprises” v, = §,_4% - 0
g =+ (a+B)e® + v - By,
l.e. ¢ follow ARMA(1,1)
V. uncorrelated, but heteroskedastic
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EGARCH Process

EGARCH or exponential GARCH
log 0" = @ + [ log 0,4* + YE4/O + Q| 4]/O4
Asymmetric: fory <0
o positive shocks reduce volatility
o negative shocks incease volatility
Allows for larger impacts on volatility

o of drops in price (,bad news®) than
o increases in price (,good news")
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Test for ARCH Processes

Null hypothesis of homoskedasticity, to be tested against the alternative
ARCH(p)

Estimate the model of interest using OLS: residuals e,

Auxiliary regression of squared residuals e on a constant and p
lagged e/

Test statistic TR,? with R 2 from the auxiliary regression, p-value from
the chi squared distribution with p df
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Exchange Rate: Test for
Homoskedasticity

Auxiliary regression of squared residuals e on a constant and e,_,%;
residuals are differences of DMM from ttheir mean (y,=0 + ¢

— e + ¢ Model 11: OLS, using observations 3-1867 (T = 1865)
Wi t Dependent variable: usq10
0 = O + 0€q”
coefficient  std. error t-ratio p-value
const 5.382e-05 3.17866e-06 16.93 6.20e-060 ***
usq10_1  0.108035 0.0230333 4.690 2.93e-06 ***
Mean dependent var 0.000060 S.D. dependent var 0.000124
Sum squared resid 0.000028 S.E. of regression 0.000123
R-squared 0.011671 Adjusted R-squared 0.011140
F(1, 1863) 21.99959 P-value(F) 2.93e-06
Log-likelihood 14139.08 Akaike criterion -28274.16
Schwarz criterion -28263.10 Hannan-Quinn -28270.09
rho -0.008175 Durbin's h -3.352472

TR.2 = (1865)x(0.011671) = 21.77; p-value = 3.08E-6
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GARCH Models in GRETL

Model > Time Series > ARCH

Estimates the specified model allowing for ARCH: (1) model
estimated via OLS, (2) auxiliary regression of the squared residuals
on its own lagged values, (3) weighted least squares estimation

Model > Time Series > GARCH
Estimates a GARCH model, with or without exogenous regressors
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The Ludeke Model for Germany

Consumption function
Ci=ay+a,Y;+azCpq + &y
Investment function
Iy = B4+ ByYy + B3Py + €y
Import function
M= y1+ VoY + Y3 My + €5
|[dentity relation
Yi=Cit |- M, + G
with C: private consumption, Y: GDP, /. investments, P: profits, M:
imports, G: governmental spending
Variables:
Endogenous: C, Y, I, M
Exogenous, predetermined: G, P._,
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Econometric Models

Basis is the multiple linear regression model
Model extensions
Dynamic models, i.e., models which contain lagged variables

Systems of regression relations, i.e., models which describe more
than one dependent variable

Example: Ludeke Model
Consists of four dynamic equations
for the four dependent variables C, Y, |, M
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Dynamic Models: Examples

Demand model: describes the quantity Q demanded of a product as a
function of its price P and the income Y of households

Demand is determined by
Current price and current income (static model):
Q=P+ PP +BsY + g
Current price and income of the previous period (dynamic model):
Q =Bq+ BoP+ BsYiq t g
Current price and demand of the previous period (dynamic
autoregressive model):

Q =By + BoPy + B3 QL + &
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The Dynamic of Processes

Static processes: immediate reaction to changes in regressors, the
adjustment of the dependent variables to the realizations of the
Independent variables will be completed within the current period,
the process seems to be always in equilibrium

Static models are often inappropriate

Some processes are determined by the past, e.g., energy
consumption depends on past investments into energy-consuming
systems and equipment

Actors in economic processes may respond delayed, e.g., time for
decision-making and procurement processes exceeds the
observation period

Expectations: e.g., consumption depends not only on current
Income but also on the income expectations; modeling the
expectation may be based on past development
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Elements of Dynamic Models

Lag structures, distributed lags: linear combinations of current
and past values of a variable

Models for expectations: based on lag structures, e.g., adaptive
expectation model, partial adjustment model

Autoregressive distributed lag (ADL) model: a simple but widely
applicable model consisting of an autoregressive part and of a
finite lag structure of the independent variables
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Example: Demand Functions

Demand for durable consumer goods: demand Q depends on
the price P and on the income Y of the current and two previous

periods:
Q=a+BY;+BYi +BYiotY Pt g
Demand for energy:
Q =a+ PP+ VYK + y
with P: price of energy, K: energy-related capital stock
Ki=0,+0,P+0,P,+..+0Y,+V
with Y: income; substitution of K results in
Q =0ap+0;Y;+ B+ PPy +BPy + ... + &
with e, = u, +yv, ap=a+yd, B, =PB,and B,=vy6, /=1, 2, ...
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Models with Lag Structures

Distributed lag model: describes the delayed effect of one or more
regressors on the dependent variable; e.qg.,

DL(s) model
Yi=0+ 25, 0Xy; + &
distributed lag of order s model

Topics of interest
o Estimation of coefficients
0 Interpretation of parameters
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Example: Consumption
Function

Data for Austria (1976:1 — 1995:2), logarithmic differences:
C =0.009 + 0.621Y
with #(Y) = 2.288, R? = 0.335
DL(2) model, same data:
C =0.006 + 0.504Y — 0.026Y_, + 0.274Y,,
with {(Y) = 3.79, {(Y,) =-0.18, {Y,) = 2.11, R? = 0.370
Effect of income on consumption:
Short term effect, i.e., effect in the current period:
AC = 0.504, given a change in income AY =1
Overall effect, i.e., cumulative current and future effects

AC =0.504 - 0.026 + 0.274 = 0.752, given a change in income
AY =1
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Multiplier

Describes the effect of a change in explanatory variable X, by AX =1 on
current and future values of the dependent variable Y

DL(s) model: Y; =0 + @uX; + @1 X1 + ... + @ X5 + &
Short run or impact multiplier
0, _
x =
effect of the change in the same period, immediate effect of AX=1onY:-:
AY =@,
Long run multiplier

Effect of AX =1 after 1, ..., s periods:
0Y oY

t+] — (+s —
_¢1, coe - g

0X, " 0X,
Cumulated effect of AX' =1 at t over all future on Y: AY =@, + ... + @,
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Equilibrium Multiplier

If after a change AX an equilibrium occurs within a finite time: Long run

multiplier is called equilibrium multiplier
DL(s) model
Yi=0+ @QoXi+ 01Xy + ...+ QX * &
equilibrium after s periods
No equilibrium for models with an infinite lag structure
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Average Lag Time

Characteristic of lag structure

Portion of equilibrium effect in the adaptation process
o At the end of the period t:

Wo = @o/(Pg + @1+ ... + @)
o At the end of the period t +1:

Wo + Wy = (o + @)(Pg + @q + ... + Q)
o Etc.

with weights w, = @/(¢p, + @, + ... + @)
Average lag time: 2,/ w,

Median lag time: time till 50% of the equilibrium effect is reached, i.e.,
minimal s* with

Wo+ ... Wee 2 0.5
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Consumption Function

For AY = 1, the function
C =0.006 + 0.504Y — 0.026Y_, + 0.274Y,,
gives
Short run effect: 0.504
Overall effect: 0.752
Equilibrium effect : 0.752
Average lag time: 0.694 quarters, i.e., ~ 2.3 months

Median lag time: s* = 0; cumulative sums of weights are 0.671, 0.636,

1.000
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Lag Structures: Estimation

DL(s) model: problems with OLS estimation

Loss of observations: for a sample size N, only N-s observations are
available for estimation; infinite lag structure!

Multicollinearity
Order s (mostly) not known
Consequences:
Large standard errors of estimates
Low power of tests
Issues:
Choice of s

Models for the lag structure with smaller number of parameters, e.g.,
polynomial structure
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Consumption Function

Fitted function

C =0.006 + 0.504Y — 0.026Y_, + 0.274Y,,
with p-value for coefficient of Y.,: 0.039, adj.R? = 0.342, AIC = -5.204

Models fors <7

April 1, 2011

s| AIC |p-Wert |adj.R?
1] -5.179 | 0.333 | 0.316
2| -5.204 | 0.039 | 0.342
3]-5190 | 0.231 | 0.344
41 -5.303 | 0.271 | 0.370
5| -5.264 | 0.476 | 0.364
6|-5.241 | 0.536 | 0.356
7| -5.205| 0.884 | 0.342
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Koyck’s Lag Structure

Specifies the lag structure of the DL(s) model

Y =0+ 259X, * &

as an infinite, geometric series (geometric lag structure)

@; = Ag(1 - AN
ForO< A <1
2520 @, = Ag

Short run multiplier: Ay(1 - A)
Equilibrium effect: A,
Average lag time: A/(1 - A)
Stability condition 0 < A < 1

for A > 1, the @, and the contributions to the multiplier are

exponentially growing

A

0.1

0.3

0.5

0.7

M(1-\)

0.10

0.43

1.00

2.33
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The Koyck Model

The DL (distributed lag) or MA (moving average) form of the Koyck
model

Yi =0+ A(1 - A) Z NX + €
AR (autoregressive) form

Yi=0(1=A) + AYyy + A(1 = AN)X +
with u, = €, — Ag,
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Consumption Function

Model with smallest AIC:
C =0.003 + 0.595Y - 0.016Y,, + 0.107Y_, + 0.003Y,
+ 0.148Y,
with adj.R? = 0.370, AIC =-5.303, DW = 1.41
Koyck model in AR form
C =0.004 + 0.286 C_, + 0.556Y
with adj.R? = 0.388, AIC = -5.290, DW = 1.91

April 1, 2011 Hackl, Econometrics 2, Lecture 4

34




Koyck Model: Estimation
Problems

Parameters to be estimated: 0, A,, and A; problems are
DL form:
a Historical values X, X4, ... are unknown

o Non-linear estimation problem
AR form

o Non-linear estimation problem

o Lagged, endogenous variable used as regressor
o Correlated error terms
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The ADL(1,1) Model

The autoregressive distributed lag (ADL) model: autoregressive
model with lag structure, e.g., the ADL(1,1) model

Yi=0+ 0V + QX + @ X4 + &
The error correction model:
AY,=—=(1-0)(Yu —a—=LBX.q) + @y AX, + g
obtained from the ADL(1,1) model with

a=0/(1-06)
B = (®o*+¢4)/(1—-0)
Example:

Sales S, are determined
o by advertising A, and A4, but also
o by S,
Si= U +08S. + BA + BiAL T &
AS;=—(1-0)[Ses — W/(1=8) = (BotBor)/(1 = B)A4] + BAA, + &
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Multiplier

ADL(1,1) model: Y, =0 +0Y_, + X, + X4 *+ &
Effect of a change AX' =1 attime t
Impact multiplier: AY = ¢,; see the DL(s) model

Long run multiplier

o Effect after one period
0Y

t+1 : 0 +
ox aX ¢ =69, + 9,
o Effect after two periods
Y., 0Y
t+ —0 t+l — 0
0X, 0X =0(0, +4)

t
o Cumulated effect over all futureon Y

Qo+ (09 + @) +B(Bp, + @q) + ... = (@ + ¢4)/(1-8)
decreasing effects requires |08|<1, stability condition
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ADL(1,1) Model: Equilibrium

Equilibrium relation of the ADL(1,1) model:
Equilibrium at time t means: E{Y,} = E{Y, 4}, E{X| } = E{X._}
E{Y} =3 + 8 E{Y}} + 9 E{X} + ¢, E{X}
or, given the stability condition |0]<1,

O . 9, t¢
B{r} =2 + 220 b x )

Equilibrium relation:
E{Y}=a+ B E{X}
with a = &/(1—-6), B = (s + ¢,)/(1 —6)
Long run multiplier: change AX = 1 of the equilibrium value of X
increases the equilibrium value of Y by (¢, + ¢,)/(1 — 0)
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The Error Correction Model

ADL(1,1) model, written as error correction model
AY; =@y AX— (1 — B) (Y —a—BXiy) + &
Effects on AY
o due to changes AX
a due to equilibrium error, i.e., Y, 4 —a —BX,,
Negative adjustment: Y., < E{Y,} = a + BX,,, i.e., a negative
equilibrium error, increases Y, by — (1 —0)(Y,., —a—-BX.4)
Adjustment parameter: (1 — 0)
0 Determines speed of adjustment
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The ADL(p,g) Model

ADL(p,q): generalizes the ADL(1,1) model
B(L)Y, =8 + D(L)X; + &
with lag polynomials
O(L)=1-06,L-...-0,LP, P(L) =g+ QL+ ... +@LI
Given invertibility of (L), i.e., 8, + ... + 6, <1,
Y = 8(1)15 + B(L) ' D(L)X, + B(L) e,
The coefficients of 8(L)'®(L) describe the dynamic effects of X on
current and future values of Y
equilibrium multiplier
. Pt
o) qﬂ(l)_l—é’l—...—ﬁp
ADL(0,q): coincides with the DL(q) model; 6(L) = 1
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ADL Model: Estimation

ADL(p,q) model

error terms g, white noise, independent of X,, ..., Xi,and Y4, ...

OLS estimators are consistent
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Expectations in Economic
Processes

Expectations play important role in economic processes
Examples:

Consumption depends not only on current income but also on the
Income expectations; modeling the expectation may be based on
past development

Investments depend upon expected profits

Interest rates depend upon expected development of the financial
market

Etc.
Expectations
cannot be observed, but

can be modeled using assumptions on the mechanism of adapting
expectations
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Models for Adapting
Expectations

Naive model of adapting expectations: the (for the next period)
expected value equals the actual value

Model of adaptive expectation
Partial adjustment model
The latter two models are based on Koyck's lag structure
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Adaptive Expectation: Concept

Models of adaptive expectation: describe the actual value Y, as function
of the value X¢,,, of the regressor X that is expected for the next
period

Yi= 0o+ BXCu + g
Example: Investments are a function of the expected profits
Concepts for X&,,:
Naive expectation: X¢,, = X,
More realistic is a weighted sum of in the past realized profits
Xo1 = BoXi + By Xiq + ...

o Geometrically decreasing weights 3,

B,= (1-A) A
with 0 <A <1
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Adaptive Mechanism for the
Expectation

With B; = (1- A) A, the expected value X8, = B X + BXi; * ... results in
Xo1 = AXE+ (1= AN)X,
or
X1 - X% = (1= A)(X; - X%)
Interpretation: the change of expectation between t and t+1 is

proportional to the actual ,error in expectation”, i.e., the deviation
between the actual expectation and the actually realized value

Extent of the change (adaptation): 100(1 — A)% of the error
A: adaptation parameter
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Models of Adaptive Expectation

Adaptive expectation model (AR form)
Yi=a(1—A) + AV, + B(1 = N)X, + v,
with v, = €, — Ag;4; an ADL(1,0) model
DL form
Yoz a+B(1=NX +B(1=ANAX + ...+
Example: Investments (/) as function of the expected profits P¢,,, and
interest rate (r)
l=a+ pBPe,, +yr+¢g
Assumption of adapted expectation for the profits P&, :
Py = AP+ (1= NP,
with adaptation parameter A (O <A< 1)
AR form of the investment function (v, = €, — Ag4):
Iy =a(1—A)+ Ay + B(1— AP +yr— Ay, + v,
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Consumption Function

Consumption as function of the expected income
C,=a+BYe,, +¢
expected income derived under the assumption of adapted
expectation

You1 =AY+ (1 =AY
AR form is
Ci=a(1-A)+AC, +B(1 =AY, +v,
with v, = g, — Ag 4
Example: the estimated model is
C =0.004 + 0.286C_, + 0.556Y
adj.R? = 0.388, AIC =-5.29, DW = 1.91
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Example: Desired Stock Level

Stock level K and revenues S

The desired (optimal) stock level K* depends of the revenues S
Ki=a+BS +n,

Actual stock level K, , in period t-1: deviates from K*: K* — K, ,

(Partial) adjustment strategy according to
Ki— Kis = (1 -6) (K — Kiy)

adaptation parameter @ with 0 <0 < 1

Substitution for K* gives the AR form of the model
K, =K+ (1-8)a +(1-8)BS,— (1 - 8)Ky, + (1-0)n,

=0+ 0Ky + @pS; + &
60=(1-0)a, ¢, =(1-0)B, &= (1-0)n
Model for K is an ADL(1,0) model
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Partial Adjustment Model|

Describes the process of adapting to a desired or planned value Y* as a

function of regressor X,
= a+BX +n

(Partial) adjustment of the actual Y, according to
Yi— Y= (1-0) (Y%= Yy)

adaptation parameter O with 0 <0 < 1

Actual Y;: weighted average of Y*, and Y,
i=(1-0)Y%+8Y,,

AR form of the model
Yi =(1-0)a +08Yy, +(1-0)BX; + (1-0)n,

=0+ 0Y, QX t g
which is an ADL(1,0) model
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Models in AR Form

Models in ADL(1,0) form
Koyck’s model
Yi=a(1=A)+AY, +B(1=AX + v,
with v, = &, — Ag, 4
Model of adaptive expectation
Yi=a(1—A) +AYy, + B(1 = NX +v,
with v, = €, — Ag, 4
Partial adjustment model
Y, =(1-8)a +8Y,, +(1-0)BX, + ¢,
Error terms are
White noise for partial adjustment model
Autocorrelated for the other two models
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An Illustration

Independent random walks: Y, = Y, + €, Xi = X, + €,

ts

€1 € INdependent white noises withy variances 0,* = 2, 0,* = 1
Fitting the model “n— | | |

Yi=a+BX + g |
gives

Y,=-8.18+0.68X, |
t-statistic for X: |

t=17.1 (p-value

= 1.2 E-40) |

R2 = 0.50, DW = 0.11 L T "
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Spurious Regression

Regression model
Yi=a+ X + ¢
with two independent random walks
Yi= Yiq €y, €4~ 1IDN(O, 04*)
Xi = Xi1 T €g € ~ IIDN(O, 0,%)
€4, €5 Mutually independent
Consequences for OLS estimators for a and 3
t-statistic for B indicate explanatory power of X,
R? indicates explanatory potential
Highly autocorrelated residuals
Nonsense or spurious regression (Granger & Newbold, 1974)

Non-stationary time series are trended; this causes an apparent
relationship
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Models in Non-stationary Time
Series

Non-stationary time series are trended
Example: random walk with trend
Yi,=0+ Y, t¢gor
Yi= Yot Ool+ 24
Y,'s are correlated, show stochastic trend (even for 6 = 0)
Given that X, ~ /(1), Y, ~ /(1) and the model
Yi=a+ X + g
it follows in general that €, ~ I(1), i.e., the error terms are non-
stationary
R? indicates explanatory potential

(Asymptotic) distributions of t- and F -statistics are different from
those for stationarity

DW statistic converges for growing N to zero
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Avoiding Spurious Regression

|dentification of non-stationarity: unit-root tests

Models for non-stationary variables

o Elimination of stochastic trends: differencing, specifying the model for
differences

o Inclusion of lagged variables may result in stationary error terms
Example: ADL(1,1) model:
For Y, ~ I(1), the error terms are stationary if 6 =1
€= Y= (0+0Y + @uX + 9, X 4) ~ /(0)
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The Drunk and her Dog

M. P. Murray, A drunk
and her dog: An
illustration of
cointegration and
error correction.
The American

Statistician, 48 N L S '
(1997), 37-39
D e s s e s s o —_— f.‘“’“. _________

. —_— . LA T LR
drunk: X; — X4 = U; NN R

_ _ O SR, LY
dog: ¥ — Vi1 = W,
COintegration: =1 6.0 - ST RS AT SRRV TATOACTAVERTIT

XX = UHC(Yp—Xq)

_ Figure 1. A drunk and two dogs: How close are the dogs to her?
YY1 = Wit d(Xe—Yiq)

— Her dog. --- My dog.
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Cointegrated Variables

Non-stationary variables X, Y-
X~ (1), Y~ I(1)
if a 3 exists such that
Z,= Y- BX,~ I(0)
X, and Y; have a common stochastic trend
X. and Y, are called “cointegrated”
B: cointegration parameter
(1, - B)": cointegration vector
Cointegration implies a long-run equilibrium
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Example: Purchasing Power
Parity

Verbeek’s dataset PPP: price indices and exchange rates for France
and ltaly, T =186 (1/1981-6/1996)

Variables: LNIT (log price index ltaly), LNFR (log price index France),
LNX (log exchange rate France/ltaly)

Purchasing power parity (PPP): exchange rate between the currencies
(Franc, Lira) equals the ratio of price levels of the countries

Relative PPP: equality fulfilled only in the long run; equilibrium or
cointegrating relation

LNX; = a + B LNP, + ¢,
with LNP, = LNIT,— LNFR,, i.e., the log of the price index ratio
France/Italy
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Purchasing Power Parity

Test for unit roots (non-

stationarity) of
LNX (log exchange rate

France/ltaly)

LNP = LNIT-LNFR, i.e.,
the log of the price
index ratio France/ltaly

Results from DF tests:

LNP  DF stat
p-value
LNX DF stat
p-value

April 1, 2011

-0.99
0.76
-0.33
0.92

-2.96

0.14

21.90 DF test indicates:

0.65 LNX ~ (1), LNP ~ /(1)
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PPP: Equilibrium Relation

OLS estimation of
LNX, = a + B LNP, + ¢,

Model 2: OLS, using observations 1981:01-1996:06 (T = 186)
Dependent variable: LNX
coefficient std. error t-ratio p-value

const 548720 0,00677678 809,7 0,0000 ***

LNP 0,982213 0,0513277 19,14 1,24e-045 ***
Mean dependent var 5,439818 S.D. dependent var 0,148368
Sum squared resid 1,361936 S.E. of regression 0,086034
R-squared 0,665570 Adjusted R-squared 0,663753
F(1, 184) 366,1905 P-value(F) 1,24e-45
Log-likelihood 193,3435 Akaike criterion -382,6870
Schwarz criterion -376,2355 Hannan-Quinn -380,0726
rho 0,967239 Durbin-Watson 0,055469

DF test statistic for residuals (constant): -1.90, p-value: 0.33
H, cannot be rejected: no evidence for cointegration
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Long-run Equilibrium

Equilibrium defined by
Y, = a+BX,
Equilibrium error: z, = Y, - BX,-a =2, - a
Two cases:
z, ~ 1(0): equilibrium error stationary, fluctuating around zero
o Y, BX, cointegrated
o Y, =a+ BX, describes an equilibrium
z,~ (1), Y,, BX, not integrated
oz~ /(1) non-stationary process
o Y, =a+ BX, does not describe an equilibrium

Cointegration, i.e., existence of an equilibrium vector, implies a long-run
equilibrium relation
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‘Identification of Cointegration

Information about cointegration:
o Economic theory

=  Visual inspection of data

= Statistical tests
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Testing for Cointegration

Non-stationary variables X, ~ I(1), Y, ~ /(1)
Yi=a+ X + g
X, and Y, are cointegrated: g, ~ /(0)
X, and Y, are not cointegrated: €, ~ /(1)
Tests for cointegration:
If B is known, unit root test based on differences Y, - BX;

Test procedures
o Unit root test (DF or ADF) based on residuals e,
o Cointegrating regression Durbin-Watson (CRDW) test: DW statistic

o Johansen technique: extends the cointegration technique to the
multivariate case
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DF Test for Cointegration

Non-stationary variables X, ~ I(1), Y, ~ /(1)
Yi=a+ X + g
X, and Y, are cointegrated: g, ~ /(0)
Residuals e, represent g, show similar pattern, e, ~ /(0), residuals are
stationary
Tests for cointegration based on residuals e,
Ae = Yo + Yoy + Uy
Hy: Yo =0, i.e., residuals have a unit root, e, ~ /(1)
H, implies
o X, and Y, are not cointegrated
o Rejection of H, suggests that X, and Y, are cointegrated
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‘ DF Test for Cointegration, contd

Critical values of DF test for residuals
= are smaller than those of DF test for observations

= depend upon (see Verbeek, Tab. 9.2)
o number of elements of cointegrating vector, K+1
o number of observations T
o significance level

some asymptotic

critical values for the DF- [ R 540

test with constant term Observations 343 -2.86
Residuals, K=1 -390 -3.34
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Cointegrating Regression
Durbin-Watson (CRDW) Test

Non-stationary variables X, ~ I(1), Y, ~ /(1)
Yi=a+ X + g
Cointegrating regression Durbin-Watson (CRDW) test: DW statistic from
OLS-fitting Y, = a + BX, + ¢
Null hypothesis: residuals e, have a unit root, i.e., e, ~ (1), i.e., X, and
Y, are not cointegrated
DW statistic converges with T to zero for not cointegrated variables

Critical values from Monte Carlo simulations, which depend upon
(see Verbeek, Tab. 9.4)

o Number of regressors plus 1 (dependent variable)
o Number of observations T

o Significance level
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PPP: Tests for Cointegration

Residuals from LNX; = a + B LNP, + &;:

Time series plot indicates non-stationarity of residuals
Tests for cointegration

o DF test statistic for residuals: -1.90, p-value: 0.33, no cointegration

o CRDW test: DW statistic: 0.055 < 0.20, the critical value for two variables,
200 observations, significance level 0.05, no cointegration

Time series plot
of residuals
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OLS Estimation of Equilibrium
Relation

To be estimated:

Yi=a+ X + g
cointegrated non-stationary processes Y, ~ I(1), X, ~ I(1)
g~ 1(0)

OLS estimator b for 3
Super consistent:
o T(b-B) converges to zero
o In case of consistency: VT(b — B) converges to zero

Robust against misspecification in stationary part wrt asymptotic
distribution of b

Non-standard distribution, non-normal, e.g., t-test misleading
Small samples: bias
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OLS Estimation, contd

To be estimated:
Yi=a+ X +¢g

non-stationary processes Y, ~ (1), X, ~ I(1)
If £, ~ I(1), i.e., Y;and X, not cointegrated: spurious regression
OLS estimator b for 3

Non-standard distribution of b

Large values of R?, t-statistic

Highly autocorrelated residuals

DW statistic close to zero
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Error-correction Model

Granger’'s Representation Theorem (Engle & Granger, 1987): If a set of

variables is cointegrated, then an error-correction relation of the
variables exists

non-stationary processes Y, ~ (1), X, ~ /(1) with cointegrating
vector (1, -B)’: error-correction representation
O(L)AY; =0 + O(L)AX;.1 - V(Y1 — BXiy) + a(l)e
with lag polynomials 6(L) (with 6,=1), ®(L), and a(L)
E.g., AY; =0+ @,AX ;- v(Yi — BX) + &
Error-correction model: describes
the short-run behavior
consistently with the long-run equilibrium

Converse statement: if Y, ~ /(1), X, ~ /(1) have an error-correction
representation, then they are cointegrated
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Your Homework

Use Verbeek’s data set INCOME containing quarterly data INCOME
(total disposable income) and CONSUM (consumer expenditures) for
1/1971 to 2/1985 in the UK.

a. Specify a DL(s) model in sd_INCOME (seasonal differences) and choose
an appropriate s, using (i) R? and (ii) BIC.
b. Assuming that DL(4) is an appropriate lag structure, calculate (i) the short

run and (ii) the long run multiplier as well as (iii) the average and (iv) the
median lag time.

c. Specify a consumption function with the actual expected income as
explanatory variable; estimate the AR form of the model under the
assumption of adapted expectation.

d. Test (i) whether CONSUM and INCOME are /(1); (ii) estimate the simple
linear regression of CONSUM on INCOME and test (iii) whether this is an
equilibrium relation; show (iv) the corresponding time series plots.
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Your Homework, cont’d

Generate 500 random numbers (a) from a random walk with trend: x,
= 0.1 +x._, + €; and (b) from an AR(1) process: y,= 0.2 + 0.7y, , + &;
for €, use Monte Carlo random numbers from N(0,1). Estimate
regressions of x, and y, on t; report the values for R2.

April 1, 2011 Hackl, Econometrics 2, Lecture 4 75




