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Multiple Dependent VariablesMultiple Dependent Variables

In general, economic processes involve a multiple set of variables 
which show a simultaneous and interrelated development 

Examples:Examples:

� Households consume a set of commodities (food, durables, etc.); 
the demanded quantities depend on the prices of commodities, the the demanded quantities depend on the prices of commodities, the 
household income, the number of persons living in the household, 
etc. A consumption model includes a set of dependent variables 
and a common set of explanatory variables. and a common set of explanatory variables. 

� The market of a product is characterized by (a) the demanded and 
supplied quantity and (b) the price of the product; a model for the supplied quantity and (b) the price of the product; a model for the 
market consists of equations representing the development and 
interdependencies of these variables.

� An economy consists of markets for commodities, labor, finances, � An economy consists of markets for commodities, labor, finances, 
etc. A model for a sector or the full economy contains descriptions 
of the development of the relevant variables and their interactions.
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Systems of Regression Systems of Regression 
EquationsEquations
Economic processes involve the simultaneous developments as well 

as interrelations of a set of dependent variables

For modeling an economic process a system of relations, typically � For modeling an economic process a system of relations, typically 
in the form of regression equations: multi-equation model

Example: Two dependent variables yt1 and yt2 are modeled asExample: Two dependent variables yt1 and yt2 are modeled as
yt1 = x‘t1β1 + εt1
yt2 = x‘t2β2 + εt2yt2 = x‘t2β2 + εt2

with V{εti} = σi
2 for i = 1, 2, Cov{εt1, εt2} = σ12 ≠ 0

Typical situations:

1. The set of regressors x and x coincide1. The set of regressors xt1 and xt2 coincide
2. The set of regressors xt1 and xt2 differ, may overlap 
3. Regressors contain one or both dependent variables3. Regressors contain one or both dependent variables

4. Regressors contain lagged variables
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Types of Multi-equation ModelsTypes of Multi-equation Models

Multivariate regression or multivariate multi-equation model

� A set of regression equations, each explaining one of the 
dependent variablesdependent variables

� Possibly common explanatory variables 

� Seemingly unrelated regression (SUR) model: each equation is a � Seemingly unrelated regression (SUR) model: each equation is a 
valid specification of a linear regression, related to other equations 
only by the error terms

� See cases 1 and 2 of “typical situations” (slide 4)  � See cases 1 and 2 of “typical situations” (slide 4)  

Simultaneous equation models

� Describe the relations within the system of economic variables � Describe the relations within the system of economic variables 

� in form of model equations

� See cases 3 and 4 of “typical situations” (slide 4)

Error terms: dependence structure is specified by means of second Error terms: dependence structure is specified by means of second 
moments or as joint probability distribution
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Capital Asset Pricing ModelCapital Asset Pricing Model

Capital asset pricing (CAP) model: describes the return Ri of asset i

Ri - Rf = βi(E{Rm} – Rf) + εiRi - Rf = βi(E{Rm} – Rf) + εi

with 

� Rf: return of a risk-free assetf

� Rm: return of the market portfolio

� βi: indicates how strong fluctuations of the returns of asset i are 
determined by fluctuations of the market as a wholedetermined by fluctuations of the market as a whole

� Knowledge of the return difference Ri - Rf will give information on 

the return difference Rj - Rf of asset j , at least for some assetsthe return difference Rj - Rf of asset j , at least for some assets

� Analysis of a set of assets i = 1, …, s
� The error terms εi, i = 1, …, s, represent common factors, have a � The error terms εi, i = 1, …, s, represent common factors, have a 

common dependence structure  

� Efficient use of information: simultaneous analysis
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A Model for InvestmentA Model for Investment

Grunfeld investment data [Greene, (2003), Chpt.13; Grunfeld & 

Griliches (1960)]: Panel data set on gross investments Iit of firms 
over 20 years and related data 

it

over 20 years and related data 

� Investment decisions are assumed to be determined by

I = β + β F + β C + εIit = βi1 + βi2Fit + βi3Cit + εit

with 

F : market value of firm at the end of year t-1� Fit: market value of firm at the end of year t-1

� Cit: value of stock of plant and equipment at the end of year t-1

� Simultaneous analysis of equations for the various firms: efficient � Simultaneous analysis of equations for the various firms: efficient 

use of information 

� Error terms for the firms include common factors such as economic Error terms for the firms include common factors such as economic 

climate 

� Coefficients may be the same for the firms

April 29, 2011 Hackl, Econometrics 2, Lecture 5 7



The Hog MarketThe Hog Market

Model equations:

Qd = α1 + α2P + α3Y + ε1 (demand equation)

Qs = β + β P + β Z + ε (supply equation)
1 2 3 1

Qs = β1 + β2P + β3Z + ε2 (supply equation)

Qd = Qs (equilibrium condition)

with Qd: demanded quantity, Qs: supplied quantity, P: price, Y: with Qd: demanded quantity, Qs: supplied quantity, P: price, Y: 
income, and Z: costs of production, or

Q = α1 + α2P + α3Y + ε1 (demand equation)Q = α1 + α2P + α3Y + ε1 (demand equation)

Q = β1 + β2P + β3Z + ε2 (supply equation)

� Model describes the equilibrium transaction quantity and price

� Model determines simultaneously Q and P, given Y and Z

� Error terms 

� May be correlated: Cov{ε1, ε2} ≠ 0 

� Simultaneous analysis necessary for efficient use of information
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Klein‘s Model IKlein‘s Model I

1. Ct = α1 + α2Pt + α3Pt-1 + α4(Wt
p+ Wt

g) + εt1 (consumption)

2. It = β1 + β2Pt + β3Pt-1 + β4Kt-1 + εt2 (investment)t 1 2 t 3 t-1 4 t-1 t2

3. Wt
p = γ1 + γ2Xt + γ3Xt-1 + γ4t + εt3 (wages)

4. Xt = Ct + It + Gt

5. K = I + K5. Kt = It + Kt-1

6. Pt = Xt – Wt
p – Tt

with C (consumption), P (profits), Wp (private wages), Wgwith C (consumption), P (profits), W (private wages), W
(governmental wages), I (investment), K-1 (capital stock), X
(national product), G (governmental demand), T (taxes) and t [time 
(year-1936)] (year-1936)] 

� Model determines simultaneously C, I, Wp, X, K, and P 

Simultaneous analysis necessary in order to take dependence � Simultaneous analysis necessary in order to take dependence 

structure of error terms into account: efficient use of information 
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Examples of Multi-equation Examples of Multi-equation 
ModelsModels
Multivariate regression models

� Capital asset pricing (CAP) model: for all assets, return Ri is a 
function of E{R } – R ; dependence structure of the error terms 

i

function of E{Rm} – Rf; dependence structure of the error terms 
caused by common variables 

� Model for investment: firm-specific regressors, dependence � Model for investment: firm-specific regressors, dependence 
structure of the error terms like in CAP model 

� Seemingly unrelated regression (SUR) models

Simultaneous equation modelsSimultaneous equation models

� Hog market model: endogenous regressors, dependence structure 
of error termsof error terms

� Klein’s model I: endogenous regressors, dynamic model, 
dependence of error terms from different equations and possibly  
over timeover time

April 29, 2011 Hackl, Econometrics 2, Lecture 5 10



Single- vs. Multi-equation Single- vs. Multi-equation 
ModelsModels
Complications for estimation of parameters of multi-equation models: 

� Dependence structure of error terms

� Violation of exogeneity of regressors

Example: Hog market model, demand equation 

Q = α + α P + α Y + εQ = α1 + α2P + α3Y + ε1
� P is not exogenous: Cov{P, ε1} = (σ1

2 - σ12)/(β2 - α2) ≠ 0

� Covariance matrix of ε = (ε1, ε2)’ � Covariance matrix of ε = (ε1, ε2)’ 

{ }
2

1 12

2

12 2

Cov ε
σ σ
σ σ
 

=  
 

Statistical analysis of multi-equation models requires methods 
adapted to these features

12 2σ σ 

adapted to these features
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Analysis of Multi-equation Analysis of Multi-equation 
ModelsModels
Issues of interest: 

� Estimation of parameters

� Interpretation of model characteristics, prediction, etc. 

Estimation procedures 

Multivariate regression models � Multivariate regression models 

� GLS , FGLS, ML

� Simultaneous equation models � Simultaneous equation models 

� Single equation methods: indirect least squares (ILS), two stage least 
squares (TSLS), limited information ML (LIML)

� System methods of estimation: three stage least squares (3SLS), full � System methods of estimation: three stage least squares (3SLS), full 
information ML (FIML)

� Dynamic models: estimation methods for vector autoregressive (VAR) 
and vector error correction (VEC) modelsand vector error correction (VEC) models
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The SUR ModelThe SUR Model

Seemingly unrelated regression model

Multivariate regression model: the general case, m equations 

yt1 = x‘t1β1 + εt1
…

y = x‘ β + εytm = x‘tmβm + εtm
with V{εti} = σi

2 for i = 1,…,m; Cov{εti, εtj} = σij ≠ 0 for i ≠ j , i,j = 
1,…,m, and t = 1,…,T, i.e., contemporaneously correlated error 1,…,m, and t = 1,…,T, i.e., contemporaneously correlated error 
terms

Regressors 

Can be specific for each equation � Can be specific for each equation 

� Multivariate regression with common regressors

x = x for i = 1,…,mxti = xt for i = 1,…,m
e.g., the CAP model
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Example: Investment ModelExample: Investment Model

Investment model based on the Grunfeld data set [Greene, (2003), 

Chpt.13; Grunfeld & Griliches (1960)]

Iit = βi1 + βi2Fit + βi3Cit + εit

with 

� Iit: gross investment Iit of firm i

� Fit: market value of firm at the end of year t-1

C : value of stock of plant and equipment at the end of year t-1� Cit: value of stock of plant and equipment at the end of year t-1

� Explanatory variables observed for firm i may affect other firms due 
to the dependence structure of the error termsto the dependence structure of the error terms

� Estimation methods

� Each equation separately using OLS

Generalized least squares estimation may take dependence structure of � Generalized least squares estimation may take dependence structure of 
the error terms into account
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The SUR Model: NotationThe SUR Model: Notation

For m = 2

� With T-vectors yi, εi, and (TxK)-matrix Xi� With T-vectors yi, εi, and (TxK)-matrix Xi

yi = Xi βi + εi,  i = 1, 2

and V{εti} = σi
2, Cov{εt1, εt2} = σ12 ≠ 0 for t = 1,…,T,ti i t1 t2 12

2

1 12

2

12 2

V{ }t
 σ σ

ε = = Σ σ σ 
� With 2T-vectors

1 1 1 10y X
y X

β ε      
= = + = β + ε

12 2σ σ 

1 1 1 1

2 2 2 2

0

0

y X
y X

y X

β ε      
= = + = β + ε      β ε      

2 σ σ
and 

2

1 12

2

12 2

V V{ } T TI I
 σ σ

= ε = Σ ⊗ = ⊗ σ σ 
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The Kronecker ProductThe Kronecker Product

Definition of the Kronecker product of matrices A (order nxm) and B
(order pxq)

a a b b  K K11 1 11 1

,

m qa a b b

A B

a a b b

  
  = =   

   

K K

M O M M O M

1 1

11 1 11 11 1 1

n nm p pq

m m q

a a b b

a B a B a b a b

   
   

  
  

K K

K K11 1 11 11 1 1

1 1 1

m m q

n nm n p nm pq

a B a B a b a b

A B

a B a B a b a b

  
  ⊗ = =   

   
   

K K

M O M M O M

K K

The product matrix has the order npxmq
Some rules:                                                 suitable A, B, C, D

1 1 1n nm n p nm pqa B a B a b a b 
   K K

( ) ( )( ) ,i A B C D AC BD⊗ ⊗ = ⊗Some rules:                                                 suitable A, B, C, D

square A, B1 1 1

( ) ( )( ) ,

( ) ( ) ' ' '

( ) ( ) ,

i A B C D AC BD

ii A B A B

iii A B A B− − −

⊗ ⊗ = ⊗
⊗ = ⊗
⊗ = ⊗
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Parameter EstimationParameter Estimation

For m = 2

OLS estimators for β1 and β2 on basis of yi = Xi βi + εi,  i = 1, 2OLS estimators for β1 and β2 on basis of yi = Xi βi + εi,  i = 1, 2

� bi = (Xi‘Xi)
-1 Xi‘yi, i = 1, 2

� Or
1

1 2( ', ') ' ( ' ) 'b b b X X X y−= =
� With V{bi} = σi

2(Xi‘Xi)
-1 

� Ignores Σ ≠ I, i.e., the contemporaneous correlation of error terms 

1 2( ', ') ' ( ' ) 'b b b X X X y= =

GLS estimators
' 1 1 ' 1

1 2( ', ') ' ( )X V X X V y− − −β = β β =% % %

{ }� with 

Analogous for any number m of equations

1 2

{ } ' 1 1V ( )X V X− −β =%

Analogous for any number m of equations
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Investment ModelInvestment Model

Investment models 

Iit = β1 + β2Fit + β3Cit + εitIit = β1 + β2Fit + β3Cit + εit

for General Motors, Chrysler, and General Electric

ββββ1 ββββ2 ββββ3 R2ββββ1 ββββ2 ββββ3 R

OLS GLS OLS GLS OLS GLS

GM -149.8 -133.6 0.119 0.115 0.371 0.376 0.92GM -149.8 -133.6 0.119 0.115 0.371 0.376 0.92

p-val. 0.175 0.178 0.0002 0.0001 1.5E-8 3.1E-9

Crysler -6.190 -3.266 0.078 0.073 0.316 0.320 0.91

p-val. 0.653 0.794 0.0011 0.0009 4.0E-9 8.6E-10

GE -9.96 -11.96 0.027 0.028 0.152 0.152 0.71

F: market value, C: value of stock 

p-val. 0.755 0.680 0.106 0.067 1.7E-5 6.1E-6
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The General SUR ModelThe General SUR Model

SUR model with m equations

� The i-the equation: T-vectors yi, εi, and (TxKi)-matrix Xii i i i

yi = Xi βi + εi,  i = 1, …, m
V{εti} = σi

2, Cov{εti, εtj} = σij ≠ 0 for i, j = 1, …, m, t = 1,…,T,
Full model� Full model

1 1 1 10y X

y X

β ε      
      = = + = β + ε      

L

M M O M M M

0m m m m

y X

y X

      = = + = β + ε      
      β ε      

M M O M M M

L
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2

1 1

V V{ }

m

I I

 σ σ
 = ε = Σ ⊗ = ⊗ 

L

M O Mwith
2

1
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m m
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FGLS EstimatorFGLS Estimator

2-step procedure: estimation of GLS estimators 
' 1 1 ' 1

1 2( ', ') ' ( )X V X X V y− − −β = β β =% % %

requires knowledge of covariance matrix V of the error terms

1. OLS estimation of each of the m equations; calculation of the m-

1 2( ', ') ' ( )X V X X V yβ = β β =% %

1. OLS estimation of each of the m equations; calculation of the m-
squared matrix S = E’E/T, estimator of Σ, using the Txm matrix E = 

(e1, …, em) of OLS residuals, with elements sij of S1 m ij

sij = (Σt etietj)/T

for i,j = 1, …, m; suitable degree of freedom correction

= ⊗%2. GLS estimation using instead of V the estimated matrix                  

i.e., V with sij substituted for σij for i, j = 1, …, m
mV S I= ⊗%

' 1 1 ' 1( ', ') ' ( )b b b X V X X V y− − −= =% % % % %' 1 1 ' 1

1 2( ', ') ' ( )b b b X V X X V y− − −= =% % % % %
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GLS and OLS EstimatorsGLS and OLS Estimators

GLS estimators
' 1 1 ' 1

1 2( ', ') ' ( )X V X X V y− − −β = β β =% % % % %

� More efficient than OLS estimators 

� Efficiency gain increases 

1 2( ', ') ' ( )X V X X V yβ = β β =% % % %

� Efficiency gain increases 

� with growing correlation of error terms

� with shrinking correlation of regressors� with shrinking correlation of regressors

� GLS estimator for βi coincides with OLS estimator bi if 

� matrix Xi of regressors is the same for all equations: Xi = X� matrix Xi of regressors is the same for all equations: Xi = X

� εti is uncorrelated with all εtj, j ≠ i

� FGLS estimates are consistent, asymptotically efficient� FGLS estimates are consistent, asymptotically efficient
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Goodness of Fit MeasuresGoodness of Fit Measures

Definition of an R2-like measure:
1

2
( ) tr( )

1 1
gS S

R
−β Σ= − = −

% %
2

1

( ) tr( )
1 1

(0) tr( )

g

I

g yy

S S
R

S S S−

β Σ= − = −
%

− Σ Σ% %% % %% %with 

using the Txm matrix                              of FGLS residuals and 

analogously the m m matrix S of sample covariances of the y

-1 1

g ( ) = ( -X )' ( -X )= tr( ) , =( ' )/S b y b V y b T S E E T− Σ Σ% %% % %% %

1( , , )mE e e=% % %K
analogously the mxm matrix Syy of sample covariances of the yti

An alternative measure is
m= −

1 m

2

* 1
1
tr( )yy

m
R

S S−= −
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SUR Model in GRETLSUR Model in GRETL

Model > simultaneous equation …

� to be specified � to be specified 

� the simultaneous equations

� option for estimator: Seemingly Unrelated Regression (sur)

� FGLS estimation
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Example: Two-equation Model Example: Two-equation Model 

Dependent variables Y1, Y2; the model is

Y1 = α1 + α2Y2 + α3X1 + ε1 (equation A) Y1 = α1 + α2Y2 + α3X1 + ε1 (equation A) 

Y2 = β1 + β2Y1 + β3X2 + ε2 (equation B)

1. Violation of assumption A2 (exogeneity of regressors): a positive ε11. Violation of assumption A2 (exogeneity of regressors): a positive ε1
� results in an increase of Y1 (see equation A)

� Consequence of this (see equation B) is, given a positive β2, an 

increase of Yincrease of Y2

� i.e., ε1 and Y2 are correlated

2. Biased OLS estimators2. Biased OLS estimators

� Large values of Y1 are observed – due to positive values of ε1 –

together with large values of Y2

� Overestimated α2

April 29, 2011 Hackl, Econometrics 2, Lecture 5 27



Example: Market ModelExample: Market Model

Describes the transactions in the market of a commodity, e.g., hogs

Qd = α1 + α2P + α3Y + ε1 (demand equation)

Qs = β + β P + β Z + ε (supply equation)
1 2 3 1

Qs = β1 + β2P + β3Z + ε2 (supply equation)

Qd = Qs (equilibrium condition, market clearing assumption)

with Qd: demanded quantity, Qs: supplied quantity, P: price, Y: with Qd: demanded quantity, Qs: supplied quantity, P: price, Y: 
income, and Z: costs of production, or

Q = α1 + α2P + α3Y + ε1 (demand equation)Q = α1 + α2P + α3Y + ε1 (demand equation)

Q = β1 + β2P + β3Z + ε2 (supply equation)

� Model describes the equilibrium transaction quantity Q and price P

� Exogeneity assumption for variables Y, Z
� Model determines simultaneously Q and P, given Y and Z

Endogenous variables: Q, P� Endogenous variables: Q, P
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Market ModelMarket Model

Structural form of the model

Q = α1 + α2P + α3Y + ε1 (demand equation)Q = α1 + α2P + α3Y + ε1 (demand equation)

Q = β1 + β2P + β3Z + ε2 (supply equation)

Corresponding reduced form

Q = π11 + π12Y + π13Z + u1
P = π21 + π22Y + π23Z + u2

with π = (α β –α β )/(β –α ), u = (β ε –α ε )/(β –α ), etc.with π11 = (α1 β2–α2 β1)/(β2–α2), u1 = (β2 ε1–α2 ε2)/(β2–α2), etc.

� Given values for Y and Z, values for Q and P can be calculated

Parameter estimation:� Parameter estimation:

� Estimates from structural form parameters are biased, inconsistent; 

see abovesee above

� Reduced form equations are a SUR model; FGLS estimates are 

consistent, asymptotically efficient
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Simultaneous Equation Simultaneous Equation 
Models: EstimationModels: Estimation
Issues: 

� Estimation problem: What methods can be applied to multi-� Estimation problem: What methods can be applied to multi-

equation model, what properties will the estimates have? 

� Identification problem: Given estimates of reduced form 

parameters, can from them structural parameters be derived? parameters, can from them structural parameters be derived? 
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Types of VariablesTypes of Variables

Endogenous variables  

� Determined by the model� Determined by the model

Exogenous variables 

� Determined from outside the modelDetermined from outside the model

� Types of exogenous variables

� Strictly exogenous variables: uncorrelated with past, actual, and future 

error termserror terms

� Predetermined variables: uncorrelated with actual and future error 

terms, e.g., lagged endogenous variablesterms, e.g., lagged endogenous variables

Complete system of equations: number of equations equals the 

number of endogenous variables
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Structural and Reduced FormStructural and Reduced Form

Structural form: represents relations between endogenous variables 

and exogenous (and predetermined) variables according to 

economic theoryeconomic theory

Reduced form: describes the dependence of endogenous variables 

upon exogenous or predetermined variables upon exogenous or predetermined variables 

Coefficients of 

� Structural form: Interpretation as structural parameters � Structural form: Interpretation as structural parameters 

corresponding to economic theory

� Reduced form: Interpretation as impact multiplicator, indicating the � Reduced form: Interpretation as impact multiplicator, indicating the 

effects of changes of the predetermined variables on endogenous 

variables 
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Market Model: Structural FormMarket Model: Structural Form

Structural form of the 2-equation model

Qt = α1 + α2Pt + α3Yt + εt1 (demand equation)Qt = α1 + α2Pt + α3Yt + εt1 (demand equation)

Qt = β1 + β2Pt + β3Zt + εt2 (supply equation)

with εt = (εt1, εt2)‘: bivariate white noise withwith εt = (εt1, εt2)‘: bivariate white noise with
2

1 12

2

12 2

V{ }t
 σ σ

ε = Σ =  σ σ 

Structural form in matrix notation: 

Ayt = Γzt + εt

 

t t t

with 

yt = (Qt, Pt)‘, zt = (1, Yt, Zt)‘
01 α α−α    1 32

2 1 3

01
A ,

1 0

α α−α   
= Γ =   −β β β   
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Market Model: Reduced FormMarket Model: Reduced Form

Reduced form in matrix notation

yt = A-1 Γzt + A-1εt = Πzt + utt t t t t

with 

3 2 2 31 2 2 1
α β −α βα β − α β 

 β − α β − α β − α2 2 2 2 2 2

3 31 1

 β − α β − α β − α
 Π =
 α −βα − β
 β − α β − α β − α

and Ω = V{ut} = A-1 Σ(A-1)’

2 2 2 2 2 2

 β − α β − α β − α 

and Ω = V{ut} = A Σ(A )’

Reduced form equations:

Qt = π11 + π12Yt + π13Zt + ut1t 11 12 t 13 t t1

Pt = π21 + π22Yt + π23Zt + ut2
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Multi-equation Model: General Multi-equation Model: General 
Structural FormStructural Form
Model with m endogenous variables (and equations), K regressors

Ayt = Γzt + εtt t t

with m-vectors yt and εt, K-vector zt, (mxm)-matrix A, (mxK)-matrix 
Γ, and (mxm)-matrix Σ = V{εt}

Structure of the multi-equation model: (A, Γ, Σ)Structure of the multi-equation model: (A, Γ, Σ)

Structural parameters: Elements of A and Γ

Normalized matrix A: α = 1 for all iNormalized matrix A: αii = 1 for all i

Complete multi-equation model: A is a square matrix with full rank, 

i.e., A is invertiblei.e., A is invertible

Recursive multi-equation model: A is a lower triangular matrix, i.e., yti
can be regressor in equations j with j > i onlycan be regressor in equations j with j > i only
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Example: A Simple Market Example: A Simple Market 
ModelModel
Structural form of the 2-equation model

Qt = α1 + α2Pt + εt1 (demand equation)Qt = α1 + α2Pt + εt1 (demand equation)

Qt = β1 + β2Pt + εt2 (supply equation)

� Observations (Qt, Pt), t = 1, …, T, � Observations (Qt, Pt), t = 1, …, T, 
� A cloud of points in the scatter diagram

� OLS estimation gives slope and intercept: not clear whether these 

parameters correspond to demand or supply equationparameters correspond to demand or supply equation

� Demand and supply equations are “not identified”

� Reduced form equations� Reduced form equations

Qt = π11 + ut1, Pt = π21 + ut2
with π11 = (α1β2 – α2β1)/(β2 – α2), π21 = (α1 – β1)/(β2 – α2)with π11 = (α1β2 – α2β1)/(β2 – α2), π21 = (α1 – β1)/(β2 – α2)

April 29, 2011 Hackl, Econometrics 2, Lecture 5 37



A Simple Market Model, cont’dA Simple Market Model, cont’d

� Given estimates for π11 and π21, the two equations 

π11 = (α1β2 – α2β1)/(β2 – α2) 11 1 2 2 1 2 2

π21 = (α1 – β1)/(β2 – α2)

have no unique solution for four structural parameters α1, α2, β1, 

and βand β2

� “Identifying” the demand or supply equation from the data is linked 

to a unique solution for the structural parametersto a unique solution for the structural parameters

� Both the demand and supply equations are not identified or 

unidentifiedunidentified
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A Modified Market ModelA Modified Market Model

Qt = α1 + α2Pt + α3Yt + εt1 (demand equation)

Qt = β1 + β2Pt + εt2 (supply equation)Qt = β1 + β2Pt + εt2 (supply equation)

Coefficients of the reduced form

π11 = (α1β2 – α2β1)/(β2 – α2), π12 = α3β2/(β2 – α2) 11 1 2 2 1 2 2 12 3 2 2 2

π21 = (α1 – β1)/(β2 – α2), π22 = α3/(β2 – α2) 

with OLS estimates pij, i, j =1, 2, j=1, 2

Supply equation: estimates for β , β are uniquely determined� Supply equation: estimates for β1, β2 are uniquely determined

b2 = p12/p22, b1 = p11 – p21b2 
Demand equation: only two equations for α , …, α� Demand equation: only two equations for α1, …, α3

a1 = p11 – p21a2, a3 = p22(b2 – a2)

No unique solutionsNo unique solutions

� The supply equation is identified, the demand equation is unidentified

April 29, 2011 Hackl, Econometrics 2, Lecture 5 39



One more Market ModelOne more Market Model

Qt = α1 + α2Pt + α3Yt + εt1 (demand equation)

Qt = β1 + β2Pt + β3Zt + εt2 (supply equation)Qt = β1 + β2Pt + β3Zt + εt2 (supply equation)

OLS estimates for reduced form parameters pij, i=1, 2, j=1, ..., 3, give 
estimates

a2 = p13/p23, b2 = p12/p22
� The parameters of the demand equation are uniquely determined:

a3 = p22(b2 – a2), a1 = p11 – p21a2
� The supply equation parameters are uniquely determined:

b = – p (b – a ), b = p – p bb3 = – p23(b2 – a2), b1 = p11 – p21b2
� Both the supply equation and the demand equation are identified
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Counting the Parameters Counting the Parameters 

� Number of structural parameters: 

� A: mxm non-singular matrix, i.e., m2 parametersA: m m non-singular matrix, i.e., m parameters

� Γ: mxK matrix, i.e., mK parameters

� Σ: mxm symmetric, positive definite matrix, i.e., m(m+1)/2 parameters

Number of reduced form parameters: � Number of reduced form parameters: 

� Π: mxK matrix, i.e., mK parameters 

Ω: mxm symmetric, positive definite matrix , i.e., m(m+1)/2 parameters � Ω: mxm symmetric, positive definite matrix , i.e., m(m+1)/2 parameters 

Number of structural parameters exceeds that of reduced form 

parameters by m2parameters by m2

� Identification requires further information such as restrictions for 

parametersparameters
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Identification: Parameter Identification: Parameter 
RestrictionsRestrictions
Restrictions on structural parameters: reduce the number of 

parameters to be estimated, so that equations are identified

� Normalization: in each structural equation, one coefficient is a “1”

� Exclusion: the omission of a regressor in an equation results in a 

zero in A or Γ, i.e., reduces the number of structural parameterszero in A or Γ, i.e., reduces the number of structural parameters

� Identities, like equations 4 through 6 in Klein’s I model, reduce the 

number of structural parameters to be estimatednumber of structural parameters to be estimated

� Linear – or non-linear – restrictions on structural parameters, 

restrictions on the elements of Σ also, reduce the number of restrictions on the elements of Σ also, reduce the number of 

structural parameters to be estimated 

Check of identification 

� Order condition 

� Rank condition
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Order ConditionOrder Condition

Model with m endogenous variables (and equations), K regressors

Ayt = Γzt + εtAyt = Γzt + εt
� Equation j: 

� mj: number of explanatory endogenous variables j

� mj*: number of excluded endogenous variables (mj* = m – mj – 1) 

� Kj*: number of excluded exogenous variables (Kj* = K – Kj)

Order Condition: Equation j is identified if � Order Condition: Equation j is identified if 

Kj* ≥ mj

i.e., the number of exogenous variables excluded from equation j is i.e., the number of exogenous variables excluded from equation j is 
at least as large as the number of explanatory endogenous 

variables included in the equationvariables included in the equation

� The order condition is a necessary but not sufficient condition for 

identification
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Market ModelMarket Model

Model: 

Qt = α1 + α2Pt + α3Yt + εt1 (demand equation)Qt = α1 + α2Pt + α3Yt + εt1 (demand equation)

Qt = β1 + β2Pt + εt2 (supply equation)

m = 2 (Q, P), K = 2 (1 for the intercept, Y)  m = 2 (Q, P), K = 2 (1 for the intercept, Y)  

� Supply equation (j = 2): 

m2* = 0, m2 = 1, K2* = 1, K2 = 12 2 2 2

Order condition is fulfilled: K2* = 1 = m2 = 1; the supply equation is 

identified

Demand equation (j = 1): � Demand equation (j = 1): 

m1* = 0, m1 = 1, K1* = 0, K1 = 2

Order condition is not fulfilled: K * = 0 < m = 1; the demand equation Order condition is not fulfilled: K1* = 0 < m1 = 1; the demand equation 

is not identified
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Rank ConditionRank Condition

Model with m endogenous variables (and equations), K regressors

Ayt = Γzt + εtAyt = Γzt + εt
� Equation j: 

� A*: obtained by deleting from A the j-th row and all column with a non-
zero element in the j-th rowzero element in the j-th row

� Γ*: obtained by deleting from Γ the j-th row and all column with a non-
zero element in the j-th rowzero element in the j-th row

� Rank Condition: Equation j is identified if 

r(A*| Γ*) ≥ m – 1 r(A*| Γ*) ≥ m – 1 

i.e., the rank of the matrix (A*| Γ*) is at least as large as the number 

of endogenous variables minus 1

� The order condition is a sufficient condition for identification of 

equation j
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IS-LM ModelIS-LM Model

Ct = γ11 – α14Yt + εt1

It = γ21 – α23Rt + εt2

C: consumption, I: investments, R: 
interest rate, Y: production/income, It = γ21 – α23Rt + εt2

Rt = – α34Yt + γ32Mt + εt3

Yt = Ct + It + Zt

M: money, Z: autonomous expendi-
tures

endo.: C,I,R,Y (m=4); exo.: 1,M,Z (K=3)
Yt = Ct + It + Zt

� Equation 1:

� Order condition: K1* = 2 ≥ m1 = 1

endo.: C,I,R,Y (m=4); exo.: 1,M,Z (K=3)

Order condition: K1* = 2 ≥ m1 = 1

� Rank condition: r(A*| Γ*) = 3 ≥ m – 1 = 3

14 11

23

1 0 0 0 0
1 0 0

α γ  α  

( ) ( )
23

23 21 * *

32

34 32

1 0 0
0 1 0 0 0

, 0 1 0
0 0 1 0 0

1 0 0 1

A A

α  α γ   Γ = Γ = γ  α γ  −   

Both conditions are fulfilled, equation 1 is identified

34 32
1 0 0 1

1 1 0 1 0 0 1
 −   − − 
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Identification Checking: The Identification Checking: The 
PracticePractice
1. A multi-equation model is identified if each equation is identified 

2. Most equations which fulfill the order condition also fulfill the rank 2. Most equations which fulfill the order condition also fulfill the rank 

condition

3. Identification checking for small models is usually easy; equations 

of large models usually are identified (large models contain large of large models usually are identified (large models contain large 

numbers of predetermined variables)

4. Addition of an equation to an identified model: the resulting model is 4. Addition of an equation to an identified model: the resulting model is 

identified if the new equation contains at least one additional 

variable variable 
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Identification: More NotationIdentification: More Notation

Equation j is  

1. Exactly identified: Kj* = mj and rank condition is met1. Exactly identified: Kj* = mj and rank condition is met

2. Overidentified: Kj* > mj and rank condition is met

3. Underidentified: Kj* < mj or rank condition fails3. Underidentified: Kj* < mj or rank condition fails
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Simultaneous Equation Simultaneous Equation 
Models: Estimation MethodsModels: Estimation Methods
1. Single equation methods, also limited information methods

� Indirect least squares estimation (ILS) Indirect least squares estimation (ILS) 

� Two stage least squares estimation (2SLS or TSLS) 

� Limited information ML estimation (LIML)

2. (Complete) system methods, also full information methods2. (Complete) system methods, also full information methods

� Three stage least squares estimation (3SLS ) 

Full information ML estimation (FIML)� Full information ML estimation (FIML)
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The Modified Market ModelThe Modified Market Model

Estimator for β2 from

Qt = α2Pt + α3Yt + εt1 (demand equation)Qt = α2Pt + α3Yt + εt1 (demand equation)

Qt = β2Pt + εt2 (supply equation)

with contemporaneously correlated error termswith contemporaneously correlated error terms

T-vectors p and q;

� OLS estimate for β2 from the supply equation: b2 = (p‘p)-1p‘q; is 2 2

biased

� IV estimate for β2 with instrumental variable Y: b2IV = (y‘p)-1y‘q; is 
consistent consistent 

� ILS estimate: b2ILS = p2/p1 = (y‘p)-1y‘q

with OLS estimates p and p for π and π from the reduced form with OLS estimates p1 and p2 for π1 and π2 from the reduced form 

P = π1Y + u1
Q = π Y + uQ = π2Y + u2
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Modified Market Model, cont’dModified Market Model, cont’d

4. 2SLS estimate for β2 of the supply equation

� Step 1: Regression of the explanatory variable P on the instrumental Step 1: Regression of the explanatory variable P on the instrumental 

variable Y, calculation of fitted values

= [(y‘y)-1y‘p] y

Step 2: OLS estimation of β from Q = β + v

p̂

P̂� Step 2: OLS estimation of β2 from Qt = β2 + vt

x

ˆ
tP

2 1

2
ˆ ˆ ˆ( ' ) 'SLSb p p p q−=

x
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OLS EstimationOLS Estimation

OLS estimators of structural parameters: in general 

� biased biased 

� not consistent 

� But often a feasible alternative

� OLS estimator is efficient, i.e., has minimal variance; may be a good 

estimator in spite of unbiasedness

� Tends to be robust against not fulfilled assumptions� Tends to be robust against not fulfilled assumptions

� May be advantageous for small or moderate sample sizes; not 

depending upon asymptotics

� OLS estimators for parameters of recursive simultaneous equation 

models: asymptotically unbiased

OLS technique: important procedure in all estimation methods for � OLS technique: important procedure in all estimation methods for 

simultaneous equation models
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Indirect Least Squares (ILS) Indirect Least Squares (ILS) 
EstimationEstimation
Model with m endogenous variables (and equations), K regressors

� Structural form� Structural form

Ayt = Γzt + εt, V{εt} = Σ

� Reduced formReduced form

yt = A-1 Γzt + A-1εt = Πzt + ut , V{ut} = Ω 

Estimation of the structural parameters of equation j:
� Step 1: OLS estimation of reduced form parameters Π

� Step 2: Calculation of estimates for structural parameters, solving AΠ = 

Γ for the structural parameters of equation jΓ for the structural parameters of equation j

� Estimation of structural parameters of equation j: equation j needs 
to be identified to be identified 
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Two Stage Least Squares Two Stage Least Squares 
(2SLS) Estimation(2SLS) Estimation
Estimation of structural parameters of equation j

yj = Xjβj + εj = Yjαi + Zjγj + εjyj = Xjβj + εj = Yjαi + Zjγj + εj
with Xj: [Tx(mj-1+Kj)]-matrix of explanatory variables, Yj: [Tx(mj-1)]-

matrix of explanatory endogenous variables, Zj: (TxKj)-matrix of 

exogenous variablesexogenous variables

2SLS (or TSLS) estimation in two steps:

Step 1: OLS estimation of reduced form parameters Π, calculation of � Step 1: OLS estimation of reduced form parameters Π, calculation of 

predictions Ŷj

� Step 2: OLS estimation of structural parameters βj, using� Step 2: OLS estimation of structural parameters βj, using

yj =      βj + vj
with       = (Ŷj Zj)

ˆ
jX

ˆ
jX

2SLS (or TSLS) estimation of structural parameters of equation j requires the 
equation to be identified

j
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Example: Hog MarketExample: Hog Market

US hog market 1922-1941 (Merill & Fox, 1971): P: retail price for hog 
(US cents p.lb.), Q: hog-consumption p.c., Y: income p.c. (USD), Z: 
exogenous production factorexogenous production factor

 100
P

Q

 80

 60

 40

 0

 20
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Hog Market: The ModelHog Market: The Model

Model with endogenous variables Q, P, exogenous variables Y, Z

Qt = α1 + α2Pt + α3Yt + εt1 (demand equation)Qt = α1 + α2Pt + α3Yt + εt1 (demand equation)

Qt = β1 + β2Pt + β3Zt + εt2 (supply equation)

both equations are exactly identified both equations are exactly identified 

Coefficients of demand and supply equation estimated by three single 

equation methods

� Separate OLS estimation of both equations  

� ILS estimation

2SLS estimation� 2SLS estimation
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Example: Hog MarketExample: Hog Market

Comparison of three single equation estimation methods

� Strong coincidence of ILS and 2SLS estimates

OLS estimates of demand equation deviates substantially from ILS � OLS estimates of demand equation deviates substantially from ILS 

and 2SLS estimates

Demand Supply

const P Y const P Zconst P Y const P Z

OLS coeff 56.962 -1.410 0.080 15.355 -0.030 0.744

p-val 8.7e-9 0.002 0.003 0.004 0.701 1.4e-10p-val 8.7e-9 0.002 0.003 0.004 0.701 1.4e-10

2SLS coeff 60.885 -3.088 0.149 8.318 0.177 0.770

p-val 4.2e-9 0.001 0.000 0.241 0.222 2.9e-24p-val 4.2e-9 0.001 0.000 0.241 0.222 2.9e-24

ILS coeff 60.885 -3.088 0.149 8.318 0.177 0.770
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2SLS Estimator: Properties2SLS Estimator: Properties

2SLS (or TSLS) estimation of structural parameters of equation j
requires the equation to be identified

� Order condition Kj* ≥ mj: number of excluded exogenous variables 

(Kj*) is at least the number of explanatory endogenous variables 

(m ) (mj) 

� i.e., the number of potential instrumental variables is at least the 

number of variables to be substituted by predictionsnumber of variables to be substituted by predictions

Properties: 2SLS estimators are 

� Consistent� Consistent

� Asymptotically normally distributed
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LIML EstimatorLIML Estimator

Limited information ML (LIML) estimation: 

� Maximization of the likelihood function derived from the system  of � Maximization of the likelihood function derived from the system  of 

� one structural equation 

� reduced form equations for the remaining endogenous variables 

� Assumes normally distributed error terms

Application: 

Asymptotic distribution of LIML estimator equivalent to that of the � Asymptotic distribution of LIML estimator equivalent to that of the 

2SLS estimator

� Wrt computational effort, 2SLS estimation is much easier to use� Wrt computational effort, 2SLS estimation is much easier to use

� In practical applications, LIML estimation is hardly used 
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Why System Estimation Why System Estimation 
Methods?Methods?
Single equation (limited information) estimation methods ignore the 

contemporaneous correlation of error terms

System (full information, complete system) estimation methods take 

contemporaneous correlation of error terms into account 

Estimation of equation parameters is more efficient: estimation of � Estimation of equation parameters is more efficient: estimation of 

coefficients of equation j makes use information contained in other 
equations equations 

� Estimation methods

� 3SLS estimation� 3SLS estimation

� Iterative 3SLS estimation

� Full information ML (FIML) estimation
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3SLS Estimator3SLS Estimator

The m equations of the full model in matrix notation

1 1 1 10y X β ε      
      

L1 1 1 10

0m m m m

y X

y X

y X

β ε      
      = = + = β + ε      
      β ε      

L

M M O M M M

L

with

0m m m my X      β ε      L

2

1 1

V V{ }

m

I I

 σ σ
 = ε = Σ ⊗ = ⊗

L

M O Mwith
2

1

V V{ } n n

m m

I I
 = ε = Σ ⊗ = ⊗ 
 σ σ 

M O M

L

3SLS estimation: FGLS estimation based on 

� 2SLS residuals for each of the m equations 

 

� estimate for Σ obtained from these residuals
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3SLS Estimator: Three Steps3SLS Estimator: Three Steps

The steps of the 3SLS estimation are

1. Based on the reduced form equations, calculation of predicted 1. Based on the reduced form equations, calculation of predicted 

values for all explanatory endogenous variables; cf. the first stage 

of 2SLS estimation

2. For the j-th equation, j = 1, …, m,2. For the j-th equation, j = 1, …, m,
� Calculation of 2SLS estimators bj and 

� 2SLS residuals e = y – Xb� 2SLS residuals ej = yj – Xjbj
Estimation of elements σij = Cov{εti, εtj} of Σ: sij = (ej‘ej)/T

3. Calculation of the 3SLS estimator 3. Calculation of the 3SLS estimator 

with the projection matrix Pz = Z(Z‘Z)-1Z‘, S the estimated matrix Σ

3 1 1 1[ '( ) ] '( )SLS

z zb X S P X X S P y− − −= ⊗ ⊗
with the projection matrix Pz = Z(Z‘Z)-1Z‘, S the estimated matrix Σ
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3SLS Estimator: Properties3SLS Estimator: Properties

3SLS estimation requires all equations of the system to be identified

Properties: 3SLS estimators are Properties: 3SLS estimators are 

� Consistent

� Asymptotically normally distributedAsymptotically normally distributed

3SLS estimates coincide with 2SLS estimates if

� All equations are exactly identified

� The error terms are contemporaneously uncorrelated, i.e., Σ is 

diagonal
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Example: Hog MarketExample: Hog Market

Comparison of 2SLS and 3SLS estimation

� Strong coincidence of 3SLS and 2SLS estimates

Smaller p-values of most 3SLS estimate indicate higher efficiency � Smaller p-values of most 3SLS estimate indicate higher efficiency 

Demand SupplyDemand Supply

const P Y const P Z

3SLS coeff 60.885 -3.088 0.149 8.318 0.177 0.7703SLS coeff 60.885 -3.088 0.149 8.318 0.177 0.770

p-val 1.8e-10 0.002 6.9e-5 0.204 0.186 2.9e-28

2SLS coeff 60.885 -3.088 0.149 8.318 0.177 0.7702SLS coeff 60.885 -3.088 0.149 8.318 0.177 0.770

p-val 4.2e-9 0.001 0.000 0.241 0.222 2.9e-24
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More System EstimatorsMore System Estimators

Iterative 3SLS estimator

� 3SLS estimates b3SLS of structural parameters (or A3SLS and Γ3SLS) � 3SLS estimates b of structural parameters (or A and Γ ) 

give 

� revised reduced form parameters (A-1Γ = Π) and 

predictions of the explanatory endogenous variables;� predictions of the explanatory endogenous variables;

� Iterative 3SLS estimator: starting with an initial 3SLS estimator, the 

following iterations are repeatedly executed until convergence is following iterations are repeatedly executed until convergence is 

reached

� Outer iteration: step 1 of 3SLS estimation resulting in improved � Outer iteration: step 1 of 3SLS estimation resulting in improved 

predictions of the predetermined variables, 

� Inner iteration: step 2 of 3SLS estimation, resulting in improved 2SLS 

residuals and estimate S for Σ, and step 3, resulting in improved 3SLS residuals and estimate S for Σ, and step 3, resulting in improved 3SLS 
estimators b3SLS

� The inner iteration can be repeated using 3SLS residuals for estimate SThe inner iteration can be repeated using 3SLS residuals for estimate S
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More System Estimators, cont’dMore System Estimators, cont’d

Full information ML (FIML) estimator: 

� Assumes normally distributed error terms � Assumes normally distributed error terms 

� Maximizes likelihood function with respect to structural parameters 
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Simultaneous Equation Models Simultaneous Equation Models 
in GRETLin GRETL
Model > Simultaneous Equations … 

� choice of estimator

SUR� SUR

� 2SLS

� LIML� LIML

� 3SLS

� FIML� FIML

� Specification of equations, instrumental variables, endogenous  

variables, and identities
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Your HomeworkYour Homework

Klein’s model I consists of the following equations (see the GRETL data 

file “klein”): 

C = α + α P + α P + α W + ε (consumption)Ct = α1 + α2Pt + α3Pt-1 + α4Wt + εt1 (consumption)

It = β1 + β2Pt + β3Pt-1 + β4Kt-1 + εt2 (investment)

Wt
p = γ1 + γ2Xt + γ3Xt-1 + γ4t + εt3 (wages)t 1 2 t 3 t-1 4 t3

Wt =Wt
p+ Wt

g

Xt = Ct + It + Gt

K = I + KKt = It + Kt-1

Pt = Xt – Wt
p – Tt

Endogenous variables are: C I Wp X W K PEndogenous variables are: C I Wp X W K P

1. Which of the equations are identified? Use (a) order and (b) rank 

conditions in answering the question. 

2. Estimate the structural parameters using (a) OLS, (b) SUR, (c) 

2SLS, (d) 3SLS, and (e) FIML; compare the results and explain pros 

and cons of the methods.
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Your Homework, cont’dYour Homework, cont’d

3. The goodness of fit measure 
1

2
( ) tr( )

1 1
gS S

R
−β Σ= − = −

% %

makes use of 

2

1
1 1

(0) tr( )
I

g yy

R
S S S−= − = −

% %% % %
makes use of 

with the Txm matrix                              of FGLS residuals and 

-1 1

g ( ) = ( -X )' ( -X )= tr( ) , =( ' )/S b y b V y b T S E E T− Σ Σ% %% % %% %

1( , , )mE e e=% % %K

analogously the mxm matrix Syy of sample covariances of the yti. 
Show for T = m = 2 that the two numerators in the definition of RI

2, 

S (.) and tr(.), coincide.

1 m

Sg(.) and tr(.), coincide.
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