Econometrics 2 - Lecture 5

Multi-equation Models

Contents

- $\overline{\mathcal{A}}$ Systems of Regression Equations
- $\overline{\mathcal{A}}$ Multivariate Regression Models
- \mathcal{L}^{max} SUR Model: Estimation
- $\overline{\mathcal{A}}$ Simultaneous Equation Models
- $\overline{\mathcal{A}}$ Simultaneous Equation Models: Identification
- $\overline{\mathcal{A}}$ Identification: Criteria
- $\mathcal{C}^{\mathcal{A}}$ Single Equation Estimation Methods
- $\mathcal{C}^{\mathcal{A}}$ System Estimation Methods

Multiple Dependent Variables

In general, economic processes involve a multiple set of variables which show a simultaneous and interrelated development

Examples:

- $\overline{\mathbb{R}^n}$ Households consume a set of commodities (food, durables, etc.); the demanded quantities depend on the prices of commodities, the household income, the number of persons living in the household, etc. A consumption model includes a set of dependent variables and a common set of explanatory variables.
- $\mathcal{L}_{\mathcal{A}}$ The market of a product is characterized by (a) the demanded and supplied quantity and (b) the price of the product; a model for the market consists of equations representing the development and interdependencies of these variables.
- $\mathcal{L}^{\mathcal{L}}$ An economy consists of markets for commodities, labor, finances, etc. A model for a sector or the full economy contains descriptions of the development of the relevant variables and their interactions.

Systems of Regression **Equations**

 Economic processes involve the simultaneous developments as well as interrelations of a set of dependent variables

For modeling an economic process a system of relations, typically in the form of regression equations: multi-equation model

Example: Two dependent variables y_{t1} and y_{t2} are modeled as

 $y_{t1} = x_{t1}^4 \beta_1 + \varepsilon_{t1}$ $y_{t2} = x_{t2}^4 \beta_2 + \varepsilon_{t2}$ with $\forall {\{\epsilon_{\sf ti}\}} = \sigma_i^2$ for $i = 1, 2, \text{Cov}\{\epsilon_{\sf t1}, \epsilon_{\sf t2}\} = \sigma_{12} \neq 0$ Typical situations:

- 1. The set of regressors x_{t1} and x_{t2} coincide
- 2. The set of regressors x_{t1} and x_{t2} differ, may overlap
- 3. Regressors contain one or both dependent variables
- 4. Regressors contain lagged variables

Types of Multi-equation Models

Multivariate regression or multivariate multi-equation model

- H. A set of regression equations, each explaining one of the dependent variables
	- \Box Possibly common explanatory variables
	- \Box Seemingly unrelated regression (SUR) model: each equation is a valid specification of a linear regression, related to other equations only by the error terms
	- □ See cases 1 and 2 of "typical situations" (slide 4) \Box

Simultaneous equation models

- **Describe the relations within the system of economic variables** H.
	- \Box in form of model equations
	- \Box See cases 3 and 4 of "typical situations" (slide 4)

Error terms: dependence structure is specified by means of second moments or as joint probability distribution

Capital Asset Pricing Model

Capital asset pricing (CAP) model: describes the return R_{i} of asset i

 $R_{\sf i}$ - $R_f = \beta_i(E\{R_m\})$ $R_f = \beta_i (E\{R_m\} - R_f) + \varepsilon_i$

with

- \Box $R_{\rm f}$: return of a risk-free asset
- \Box $R_{\rm m}$: return of the market portfolio
- β_i: indicates how strong fluctuations of the returns of asset *i* are H determined by fluctuations of the market as a whole
- п **K** Knowledge of the return difference R_i the return difference $R_{\rm j}$ - $R_{\rm f}$ of asset j , - R_{f} will give information on R_{f} of asset j , at least for some assets
- . Analysis of a set of assets $i = 1, ..., s$
	- \Box \Box The error terms ε _i, *i* = 1, ..., *s*, represent common factors, have a common dependence structure
	- \Box Efficient use of information: simultaneous analysis

A Model for Investment

Grunfeld investment data [Greene, (2003), Chpt.13; Grunfeld & Griliches (1960)]: Panel data set on gross investments *I*_{it} of firms
exer 20 years and related data over 20 years and related data

IDED 12 Investment decisions are assumed to be determined by

 $I_{it} = \beta_{i1} + \beta_{i2}F_{it} + \beta_{i3}C_{it} + \varepsilon_{it}$

with

- \Box F_{it} : market value of firm at the end of year *t*-1
- □ C_{it}: value of stock of plant and equipment at the end of year *t*-1
- H Simultaneous analysis of equations for the various firms: efficient use of information
	- \Box Error terms for the firms include common factors such as economic climate
	- \Box Coefficients may be the same for the firms

The Hog Market

Model equations:

 $Q^d = \alpha_1 + \alpha_2 P + \alpha_3 Y + \epsilon_1$ (demand equation) $Q^s = \beta_1 + \beta_2 P + \beta_3 Z + \epsilon_2$ (supply equation) $Q^d = Q^s$ (equilibrium condition)

with Q^d: demanded quantity, Q^s: supplied quantity, P: price, Y:
income, and Z: ceate of production, or, income, and Z: costs of production, or

 $Q = \alpha_1 + \alpha_2 P + \alpha_3 Y + \epsilon_1$ (demand equation)

 $Q = \beta_1 + \beta_2 P + \beta_3$ $2P + β$ $3^2 + ε^2$ $_2$ (supply equation)

- П Model describes the equilibrium transaction quantity and price
- П ■ Model determines simultaneously Q and P, given Y and Z
- H Error terms
	- \Box \Box May be correlated: Cov{ε₁, ε₂} ≠ 0
- H Simultaneous analysis necessary for efficient use of information

Klein's Model I

- 1. $C_t = \alpha_1 + \alpha_2 P_t + \alpha_3 P_{t-1} + \alpha_4 (W_t^{p+} W_t^{g}) + \epsilon_{t1}$ (consumption)
- 2. $I_t = \beta_1 + \beta_2 P_t + \beta_3 P_{t-1} + \beta_4 P_t$ $_{2}P_{t}$ + β₃ P_{t-1} + β $_2P_{\rm t}$ + β $_3P_{\rm t\text{-}1}$ + β $_4\mathcal{K}_{\rm t\text{-}1}$ + ε $_{\rm t2}$ (investment)
- 3. $W_{t}^{p} = \gamma_{1} + \gamma_{2}X_{t} + \gamma_{3}X_{t-1} + \gamma_{4}t + \epsilon_{t3}$ (wages)
- 4. $X_t = C_t + I_t + G_t$
- 5. $K_t = I_t + K_{t-1}$
- 6. $P_t = X_t W_t^p T_t$
- with C (consumption), P (profits), W^p (private wages), W^g $\frac{1}{2}$ imant) K (capital stor
	- (governmental wages), / (investment), $K_{\text{-}1}$ (capital stock), X (national product), *G* (governmental demand), *T* (taxes) and *t* [time
(veer 1036)] (year-1936)]
- H Model determines simultaneously C, I, W^p , X, K, and P
- H Simultaneous analysis necessary in order to take dependence structure of error terms into account: efficient use of information

Examples of Multi-equation Models

Multivariate regression models

- **Capital asset pricing (CAP) model: for all assets, return** R_i **is a** H. function of $\mathrm{E}\{R_\mathsf{m}\}$ caused by commo caused by common variables – $R_{\rm f}$; dependence structure of the error terms
>> veriables mf
- $\overline{\mathcal{M}}$ ■ Model for investment: firm-specific regressors, dependence structure of the error terms like in CAP model
- H. Seemingly unrelated regression (SUR) models

Simultaneous equation models

- Hog market model: endogenous regressors, dependence structure Π of error terms
- Klein's model I: endogenous regressors, dynamic model, $\mathcal{L}(\mathcal{A})$ dependence of error terms from different equations and possibly over time

Single- vs. Multi-equation Models

Complications for estimation of parameters of multi-equation models:

- Π Dependence structure of error terms
- **Number 1** Violation of exogeneity of regressors H.

Example: Hog market model, demand equation

 $Q = \alpha_1 + \alpha_2 P + \alpha_3 Y + \epsilon_1$

- P is not exogenous: Cov{P, ε_1 } = (σ₁² σ₁₂)/(β₂ α₂) ≠ 0
- $\overline{}$ Covariance matrix of $\epsilon = (\epsilon_1, \epsilon_2)'$

$$
Cov{\varepsilon} = \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{pmatrix}
$$

Statistical analysis of multi-equation models requires methods adapted to these features

Analysis of Multi-equation Models

Issues of interest:

- Π Estimation of parameters
- **Interpretation of model characteristics, prediction, etc.** H.
- Estimation procedures
- H. Multivariate regression models
	- □ GLS , FGLS, ML
- **Simultaneous equation models**
	- \Box Single equation methods: indirect least squares (ILS), two stage least squares (TSLS), limited information ML (LIML)
	- \Box System methods of estimation: three stage least squares (3SLS), full information ML (FIML)
	- \Box Dynamic models: estimation methods for vector autoregressive (VAR) and vector error correction (VEC) models

Contents

- $\overline{\mathcal{M}}$ Systems of Regression Equations
- $\overline{\mathcal{A}}$ Multivariate Regression Models
- \mathcal{L}^{max} SUR Model: Estimation
- $\overline{\mathcal{A}}$ Simultaneous Equation Models
- $\overline{\mathcal{A}}$ Simultaneous Equation Models: Identification
- $\overline{\mathcal{A}}$ Identification: Criteria
- \mathbb{R}^n Single Equation Estimation Methods
- $\mathcal{C}^{\mathcal{A}}$ System Estimation Methods

The SUR Model

Seemingly unrelated regression model

Multivariate regression model: the general case, m equations ϵ

$$
y_{t1} = x'_{t1} \beta_1 + \varepsilon_{t1}
$$

 $y_{tm} = x'_{tm} \beta_m + \varepsilon$ m T ^ tmPm ' ^ctm
໌ 、 、 ? ໌ with V{ε_{ti}} = σ $_i^2$ for $i = 1,...,m$; Cov{ε_{ti}, ε_{tj}} = σ_{ij} with V{ɛ $_{\mathfrak{ti}}$ } = $\sigma_{\mathfrak{i}}^2$ for i = 1,…, m ; Cov{ɛ $_{\mathfrak{ti}}$, ɛ $_{\mathfrak{tj}}$ } = $\sigma_{\mathfrak{ij}}$ ≠ 0 for i ≠ j , i , j =
1,…, m , and t = 1,…, T , i.e., contemporaneously correlated erro d $t = 1, ..., T$, i.e., contemporaneously correlated error terms

Regressors

…

- H. Can be specific for each equation
- H. Multivariate regression with common regressors

$$
x_{ti} = x_t \text{ for } i = 1,...,m
$$

e.g., the CAP model

Example: Investment Model

Investment model based on the Grunfeld data set [Greene, (2003), Chpt.13; Grunfeld & Griliches (1960)]

$$
I_{it} = \beta_{i1} + \beta_{i2}F_{it} + \beta_{i3}C_{it} + \varepsilon_{it}
$$

with

- \Box $I_{\sf it}$: gross investment $I_{\sf it}$ of firm I
- \Box F_it : market value of firm at the end of year *t*-1
- \Box $C_{\sf it}$: value of stock of plant and equipment at the end of year *t*-1
- **Explanatory variables observed for firm i may affect other firms due** H to the dependence structure of the error terms
- H Estimation methods
	- □ Each equation separately using OLS \Box
	- □ Generalized least squares estimation may take dependence structure of \Box the error terms into account

The SUR Model: Notation

For m = 2 \sim

- Π With T-vectors y_i , ε_i , and (T_xK) -matrix X_i $y_i = X_i \beta_i + \varepsilon_i, i = 1, 2$ and $V\{\epsilon_{ti}\} = \sigma_i^2$, Cov $\{\epsilon_{t1}, \epsilon_{t2}\} = \sigma_{12} \neq 0$ for $t = 1, ..., T$, 21 V_{12} 2 $V\{\varepsilon_{t}\} = \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{pmatrix} = \Sigma$
- Π With 2T-vectors

With 27-vectors
\n
$$
\overline{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} X_1 & 0 \\ 0 & X_2 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \end{pmatrix} = \overline{X} \overline{\beta} + \overline{\varepsilon}
$$
\nand $V = V\{\overline{\varepsilon}\} = \Sigma \otimes I_T = \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{pmatrix} \otimes I_T$

The Kronecker Product

Definition of the Kronecker product of matrices *A* (order *n*x*m*) and *B*
(arder n_c) (order pxq)

$$
A = \begin{pmatrix} a_{11} & \dots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nm} \end{pmatrix}, B = \begin{pmatrix} b_{11} & \dots & b_{1q} \\ \vdots & \ddots & \vdots \\ b_{p1} & \dots & b_{pq} \end{pmatrix}
$$

$$
A \otimes B = \begin{pmatrix} a_{11}B & \dots & a_{1m}B \\ \vdots & \ddots & \vdots \\ a_{n1}B & \dots & a_{nm}B \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} & \dots & a_{1m}b_{1q} \\ \vdots & \ddots & \vdots \\ a_{n1}b_{p1} & \dots & a_{nm}b_{pq} \end{pmatrix}
$$

The product matrix has the order *np*x*mq* Some rules: (i) $(A \otimes B)(C \otimes D) = AC \otimes BD$, suitable A, B, C, D (i) $(A \otimes B)(C \otimes D) = AC \otimes BD$, suitable
 (ii) $(A \otimes B)' = A' \otimes B'$
 (iii) $(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$, square A, B $(ii) (A \otimes B)' = A' \otimes B'$

Contents

- $\overline{\mathbb{R}^n}$ Systems of Regression Equations
- $\overline{\mathbb{R}^n}$ Multivariate Regression Models
- $\overline{\mathcal{A}}$ SUR Model: Estimation
- $\overline{\mathcal{A}}$ Simultaneous Equation Models
- $\overline{\mathbb{R}^n}$ Simultaneous Equation Models: Identification
- $\overline{\mathcal{A}}$ Identification: Criteria
- \mathbb{R}^n Single Equation Estimation Methods
- $\mathcal{C}^{\mathcal{A}}$ System Estimation Methods

Parameter Estimation

For m = 2 \sim

OLS estimators for $\boldsymbol{\beta}_1$ and β 2₂ on basis of $y_i = X_i \beta_i + \varepsilon_i$, *i* = 1, 2

$$
b_i = (X_i'X_i)^{-1} X_i'Y_i, i = 1, 2
$$

or
$$
\overline{b} = (b_1', b_2')' = (\overline{X}', \overline{X})^{-1} \overline{X}', \overline{y}
$$

With \overline{M}

$$
\bullet \quad \text{With } \forall \{b_i\} = \sigma_i^2(X_i^*X_i)^{-1}
$$

H. Ignores $\Sigma \neq I$, i.e., the contemporaneous correlation of error terms

GLS estimators

$$
\widetilde{\overline{\beta}} = (\widetilde{\beta}_1, \widetilde{\beta}_2) = (\overline{X}^{\prime} V^{-1} \overline{X})^{-1} \overline{X}^{\prime} V^{-1} \overline{Y}
$$

■ with {
{ Analogous for any number *m* of equations }
} $\mathbf{V} \Big\{ \overline{\mathbf{B}} \Big\} = (\overline{X}^{\prime} V^{-1} \overline{X})^{-1}$

Investment Model

Investment models

 $I_{it} = \beta_1 + \beta_2 F_{it} + \beta_3 C_{it} + \varepsilon_{it}$

for General Motors, Chrysler, and General Electric

F: market value, C: value of stock

The General SUR Model

SUR model with m equations

 $\overline{\mathcal{A}}$ ■ The *i*-the equation: *T*-vectors $y_{\mathsf{i}}, \, \varepsilon_{\mathsf{i}},$ and (*T*_×K_i)-matrix X_{i}

$$
y_{i} = X_{i} \beta_{i} + \varepsilon_{i}, \quad i = 1, ..., m
$$

$$
V\{\varepsilon_{ti}\} = \sigma_{i}^{2}, \text{Cov}\{\varepsilon_{ti}, \varepsilon_{tj}\} = \sigma_{ij} \neq 0 \text{ for } i, j = 1, ..., m, t = 1, ..., T,
$$

 \mathcal{L}^{max} Full model

$$
\overline{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} X_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & X_m \end{pmatrix} \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_m \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_m \end{pmatrix} = \overline{X}\overline{\beta} + \overline{\varepsilon}
$$

with $V = V\{\overline{\varepsilon}\} = \Sigma \otimes I_n = \begin{pmatrix} \sigma_1^2 & \cdots & \sigma_{1m} \\ \vdots & \ddots & \vdots \\ \sigma_{1m} & \cdots & \sigma_m^2 \end{pmatrix} \otimes I_n$

FGLS Estimator

2-step procedure: estimation of GLS estimators

$$
\widetilde{\overline{\beta}} = (\widetilde{\beta}_1', \widetilde{\beta}_2')' = (\overline{X}'V^{-1}\overline{X})^{-1}\overline{X}'V^{-1}\overline{y}
$$

requires knowledge of covariance matrix V of the error terms

requires knowledge of covariance matrix V of the error terms
1. OLS estimation of each of the *m* equations; calculation of the *m*-
2. equated matrix $S = F' F' T$ estimator of \overline{S} , using the *Tym* matrix F squared matrix S ⁼ E'E/T, estimator of Σ, using the Txm matrix E ⁼ (e₁, …, e_m) of OLS residuals, with elements $s_{\sf ij}$ of S

$$
s_{ij} = (\Sigma_t e_{ti} e_{ti})/T
$$

for i,j = 1, …, m ; suitable degree of freedom correction

2. GLS estimation using instead of V the estimated matrix \tilde{V} $V = S \otimes I_m$ i.e., *V* with s_{ij} substituted for σ_{ij} for *i, j* = 1, …, *m* $\tilde{\overline{b}} = (\tilde{b_1}^{\prime}, \tilde{b_2}^{\prime})^{\prime} = (\overline{X}^{\prime} \tilde{V}^{-1} \overline{X})^{-1} \overline{X}^{\prime} \tilde{V}^{-1} \overline{Y}$ $(\widetilde{\phi}_1^-, \widetilde{\phi}_2^-)^{\ast} \! = \! (\bar{X}^{\mathsf{\scriptscriptstyle T}}\!\widetilde{V}^{-1}\bar{X})^{-1} \bar{X}^{\mathsf{\scriptscriptstyle T}}\!\widetilde{V}^{-1}$ $1, 2, 7$ $(1, 7, 1)$ $(1, 7, 7)$

GLS and OLS Estimators

GLS estimators

 $\overline{\mathbf{\beta}} = (\widetilde{\mathbf{\beta}}_1^{\prime}, \widetilde{\mathbf{\beta}}_2^{\prime})^{\prime} = (\overline{X}^{\prime} \widetilde{V}^{-1} \overline{X})^{-1} \overline{X}^{\prime} \widetilde{V}^{-1} \overline{Y}$ $\tilde{}$ $\tilde{\bm{\beta}}_1$ ', $\tilde{\bm{\beta}}_2$ ') ' $=(\bar{X}^{'}\tilde{V}^{-1}\bar{X})^{-1}\bar{X}^{'}\tilde{V}^{-1}$

- H. More efficient than OLS estimators
- П Efficiency gain increases
	- \Box with growing correlation of error terms
	- \Box with shrinking correlation of regressors
- \mathbb{R}^n ■ GLS estimator for $β_i$ coincides with OLS estimator b_i if
	- \Box \Box matrix $X_{\sf i}$ of regressors is the same for all equations: $X_{\sf i}$ = X
	- \Box \quad $\epsilon_{\rm ti}$ is uncorrelated with all $\epsilon_{\rm tj}$, $j\neq i$
- **FGLS estimates are consistent, asymptotically efficient** $\overline{\mathcal{M}}$

Goodness of Fit Measures

Definition of an R²-like measure: $\tilde{}$

$$
R_I^2 = 1 - \frac{S_g(\overline{\beta})}{S_g(0)} = 1 - \frac{\text{tr}(S^{-1}\tilde{\Sigma})}{\text{tr}(S^{-1}S_{yy})}
$$

 $^{-1}\Sigma),\,\Sigma$ = with $S_{\text{\tiny R}}(b) = (\overline{v}\text{-}\overline{\mathrm{X}}\overline{\tilde{b}}\,)"\tilde{V}^{-1}(\overline{v}\text{-}\overline{\mathrm{X}}\overline{\tilde{b}}\,)$: $(\widetilde{\mathbb{Z}}^{-1}(\overline{\mathbb{V}}\text{-}\overline{\mathbb{X}}\overline{b}\,)=T\,\text{tr}(S^{-1}\tilde{\Sigma})\,,\,\tilde{\Sigma}{=}(\tilde{E}\,{}^{\scriptscriptstyle{\mathrm{T}}}\tilde{E})/2$ using the T x*m* matrix $E = (e_1, \ldots, e_m)$ of FGLS residuals and ϵ analogously the m x m matrix S_{yy} of sample covariances of the y_{\parallel} An alternative measure isg $S_{\rm g}(b) = (\overline{y} - Xb')V^{-1}(\overline{y} - Xb) = T\operatorname{tr}(S^{-1}\Sigma), \Sigma = (E'E)/T$ 1 $E = (\tilde{e}_1, \ldots, \tilde{e}_m)$
matrix S of samr m $\tilde{}$ $\tilde{e}_{_1},\ldots,\tilde{e}_{_m}$) x*m* matrix \mathcal{S}_{yy} or sample covariances or the y_{ti}

$$
R_*^2 = 1 - \frac{m}{\text{tr}(S^{-1}S_{yy})}
$$

SUR Model in GRETL

Model > simultaneous equation …

- $\mathcal{L}^{\mathcal{L}}$ to be specified
	- \Box the simultaneous equations
	- \Box option for estimator: Seemingly Unrelated Regression (sur)
- **FGLS** estimation

Contents

- $\overline{\mathbb{R}^n}$ Systems of Regression Equations
- $\overline{\mathbb{R}^n}$ Multivariate Regression Models
- \mathcal{L}^{max} SUR Model: Estimation
- $\overline{\mathcal{A}}$ Simultaneous Equation Models
- $\overline{\mathbb{R}^n}$ Simultaneous Equation Models: Identification
- $\overline{\mathcal{A}}$ Identification: Criteria
- \mathbb{R}^n Single Equation Estimation Methods
- $\mathcal{C}^{\mathcal{A}}$ System Estimation Methods

Example: Two-equation Model

Dependent variables $\mathsf{Y}_1, \ \mathsf{Y}_2;$ the model is

$$
Y_1 = \alpha_1 + \alpha_2 Y_2 + \alpha_3 X_1 + \varepsilon_1 \text{ (equation A)}
$$

 $Y_2 = \beta_1 + \beta_2$ ₂Y₁ + β₃X₂ + ε₂ $_2$ (equation B)

- 1. Violation of assumption A2 (exogeneity of regressors): a positive $ε₁$
	- \Box \Box results in an increase of Y_1 (see equation A)
	- \Box **O** Consequence of this (see equation B) is, given a positive β₂, an increase of Y_2
	- \Box i.e., ε_1 and Y_2 are correlated
- 2. Biased OLS estimators
	- \Box **□** Large values of Y_1 are observed – due to positive values of ε₁ – together with large values of Y_2 together with large values of Y_2
	- \Box \lnot Overestimated α $_2$

Example: Market Model

Describes the transactions in the market of a commodity, e.g., hogs $Q^d = \alpha_1 + \alpha_2 P + \alpha_3 Y + \epsilon_1$ (demand equation) $Q^s = \beta_1 + \beta_2 P + \beta_3 Z + \epsilon_2$ (supply equation) $Q^d = Q^s$ (equilibrium condition, market clearing assumption) with Q^d: demanded quantity, Q^s: supplied quantity, P: price, Y:
income, and Z: ceate of production, or, income, and Z: costs of production, or $Q = \alpha_1 + \alpha_2 P + \alpha_3 Y + \epsilon_1$ (demand equation) $Q = \beta_1 + \beta_2 P + \beta_3$ $2P + β$ $3^2 + ε^2$ $_2$ (supply equation)

- \Box ■ Model describes the equilibrium transaction quantity Q and price P
- п ■ Exogeneity assumption for variables Y, Z
	- □ Model determines simultaneously Q and P, given Y and Z \Box
	- \Box □ Endogenous variables: Q, *P*

Market Model

Structural form of the model

 $Q = \alpha_1 + \alpha_2 P + \alpha_3 Y + \epsilon_1$ (demand equation) $Q = β_1 + β_2P + β_1$ $e^{\displaystyle P+\beta}$ Corresponding reduced form₃Z + ε₂ $_2$ (supply equation) Q = π₁₁ + π₁₂Y + π₁₃Z + *u*₁ $P = \pi_{21} + \pi_{22}Y + \pi_{23}Z + u_2$ with $\pi_{11} = (\alpha_1 \beta_2 - \alpha_2 \beta_1)/(\beta_2 - \alpha_2 \beta_2)$ $-\alpha_2$ β₁)/(β $-\alpha_2$), $u_1 = (\beta_2 \varepsilon_1 - \alpha_2 \varepsilon_2)/(\beta_1)$ ₁₁ = (α₁ β₂-α₂ β₁)/(β₂-α₂), *u*₁ = (β₂ ε₁-α₂ ε₂)/(β₂-α₂), etc. H ■ Given values for Y and Z, values for Q and P can be calculated \Box Parameter estimation:

- \Box Estimates from structural form parameters are biased, inconsistent; see above
- \Box Reduced form equations are a SUR model; FGLS estimates are consistent, asymptotically efficient

Simultaneous Equation Models: Estimation

Issues:

- Π **E**stimation problem: What methods can be applied to multi equation model, what properties will the estimates have?
- $\overline{}$ Identification problem: Given estimates of reduced form parameters, can from them structural parameters be derived?

Types of Variables

Endogenous variables

- H. Determined by the model
- Exogenous variables
- Π Determined from outside the model
- H. Types of exogenous variables
	- \Box Strictly exogenous variables: uncorrelated with past, actual, and future error terms
	- \Box Predetermined variables: uncorrelated with actual and future error terms, e.g., lagged endogenous variables

Complete system of equations: number of equations equals the number of endogenous variables

Structural and Reduced Form

Structural form: represents relations between endogenous variables and exogenous (and predetermined) variables according to economic theory

- Reduced form: describes the dependence of endogenous variables upon exogenous or predetermined variables
- Coefficients of
- H. Structural form: Interpretation as structural parameters corresponding to economic theory
- $\overline{\mathbb{R}^n}$ Reduced form: Interpretation as impact multiplicator, indicating the effects of changes of the predetermined variables on endogenous variables

Market Model: Structural Form

Structural form of the 2-equation model

 $Q_t = \alpha_1 + \alpha_2 P_t + \alpha_3 Y_t + \epsilon_{t1}$ (demand equation) $Q_t = \beta_1 + \beta_2 P_t + \beta_3 Z_t + \varepsilon_t$ $_{2}P_{t}$ + β $_{3}Z_{t}$ + ε_{t2} (supply equation) with $\varepsilon_t = (\varepsilon_{t1}, \varepsilon_{t2})$; bivariate white noise with $V\{\varepsilon_{t}\} = \Sigma = \begin{pmatrix} \sigma_{1}^{2} & \sigma_{12} \\ \sigma_{12} & \sigma_{2}^{2} \end{pmatrix}$

Structural form in matrix notation:

$$
Ay_t = \Gamma z_t + \varepsilon_t
$$

with

$$
y_t = (Q_t, P_t)^t, z_t = (1, Y_t, Z_t)^t
$$

$$
A = \begin{pmatrix} 1 & -\alpha_2 \\ 1 & -\beta_2 \end{pmatrix}, \Gamma = \begin{pmatrix} \alpha_1 & \alpha_3 & 0 \\ \beta_1 & 0 & \beta_3 \end{pmatrix}
$$

Market Model: Reduced Form

Reduced form in matrix notation $y_t = A^{-1} \Gamma z_t + A^{-1} \varepsilon_t = \Pi z_t + u_t$ with $\frac{\alpha_1\beta_2-\alpha_2\beta_1}{\beta_2-\alpha_2} \frac{\alpha_3\beta_2}{\beta_2-\alpha_2} \frac{-\alpha_2\beta_3}{\beta_2-\alpha_2}$ 2 ω_2 ω_2 ω_2 ω_2 ω_2 $\frac{1}{1}$ $\Pi =$ = $\begin{pmatrix} p_2 - \alpha_2 & p_2 - \alpha_2 & p_2 - \alpha_2 \\ \frac{\alpha_1 - \beta_1}{\beta_2 - \alpha_2} & \frac{\alpha_3}{\beta_2 - \alpha_2} & \frac{\beta_3}{\beta_2 - \alpha_2} \end{pmatrix}$ and Ω = V{ u_t } = A⁻¹ Σ(A⁻¹)['] 2 ω_2 ω_2 ω_2 ω_2 ω_2 $\begin{pmatrix} \beta_2 - \alpha_2 & \beta_2 - \alpha_2 & \beta_2 - \alpha_2 \end{pmatrix}$
' $\{u_t\} = A^{-1} \Sigma (A^{-1})$ ' Reduced form equations:

$$
Q_{t} = \pi_{11} + \pi_{12}Y_{t} + \pi_{13}Z_{t} + u_{t1}
$$

$$
P_{t} = \pi_{21} + \pi_{22}Y_{t} + \pi_{23}Z_{t} + u_{t2}
$$

Multi-equation Model: General Structural Form

Model with m endogenous variables (and equations), K regressors
محمد حسد $Ay_t = \Gamma z_t + ε_t$

with *m*-vectors y_t and $ε_t$, *K*-vector z_t , (*m*x*m*)-matrix A, (*m*x*K*)-matrix Γ, and $(mx m)$ -matrix Σ = V{ε_t}

Structure of the multi-equation model: $(A, Γ, Σ)$

Structural parameters: Elements of A and Γ

Normalized matrix A: $\alpha_{\rm ii}$ = 1 for all *i*

Complete multi-equation model: A is a square matrix with full rank,

i.e., A is invertible

Recursive multi-equation model: A is a lower triangular matrix, i.e., y_{ti} can be regressor in equations j with j > i only

Contents

- $\overline{\mathbb{R}^n}$ Systems of Regression Equations
- $\overline{\mathbb{R}^n}$ Multivariate Regression Models
- \mathcal{L}^{max} SUR Model: Estimation
- $\overline{\mathcal{M}}$ Simultaneous Equation Models
- $\overline{\mathbb{R}^n}$ Simultaneous Equation Models: Identification
- \mathcal{L}^{max} Identification: Criteria
- \mathbb{R}^n Single Equation Estimation Methods
- $\mathcal{C}^{\mathcal{A}}$ System Estimation Methods
Example: A Simple Market Model

Structural form of the 2-equation model

 $Q_t = \alpha_1 + \alpha_2 P_t + \varepsilon_{t1}$ (demand equation)

 $Q_t = \beta_1 + \beta_2 P_t + \varepsilon_t$ $_{2}P_{\rm t}$ + ε_{t2} (supply equation)

- **Observations** (Q_t, P_t) **,** $t = 1, ..., T$ **,** $\mathcal{L}_{\mathcal{A}}$
	- \Box A cloud of points in the scatter diagram
	- □ OLS estimation gives slope and intercept: not clear whether these \Box parameters correspond to demand or supply equation
	- \Box Demand and supply equations are "not identified"
- \mathbf{r} Reduced form equations

 $Q_t = \pi_{11} + u_{t1}, P_t = \pi_{21} + u_{t2}$ with $\pi_{11} = (\alpha_1\beta_2 - \alpha_2\beta_1)/(\beta_2 - \alpha_1)$ $-\alpha_2\beta_1$)/(β₂ $-\alpha_2$), $\pi_{21} = (\alpha_1 - \beta_1)/(\beta_2)$ $\mathsf{\alpha }_{2})$

A Simple Market Model, cont'd

 $\overline{\mathcal{A}}$ Given estimates for π_{11} and π_{21} , the two equations

$$
\pi_{11} = (\alpha_1 \beta_2 - \alpha_2 \beta_1) / (\beta_2 - \alpha_2)
$$

$$
\pi_{21} = (\alpha_1 - \beta_1)/(\beta_2 - \alpha_2)
$$

have no unique solution for four structural parameters $α_1$, $α_2$, $β_1$, and $\boldsymbol{\beta}_2$

- **I** "Identifying" the demand or supply equation from the data is linked $\mathcal{L}^{\text{max}}_{\text{max}}$ to a unique solution for the structural parameters
- \mathbf{r} Both the demand and supply equations are not identified or unidentified

A Modified Market Model

 $Q_t = \alpha_1 + \alpha_2 P_t + \alpha_3 Y_t + \varepsilon_{t1}$ (demand equation)

 $Q_t = \beta_1 + \beta_2 P_t + \varepsilon_t$ $Q_t = \beta_1 + \beta_2 P_t + \varepsilon_{t2}$ (supply equation)

Coefficients of the reduced form

$$
\pi_{11} = (\alpha_1 \beta_2 - \alpha_2 \beta_1) / (\beta_2 - \alpha_2), \ \pi_{12} = \alpha_3 \beta_2 / (\beta_2 - \alpha_2)
$$

$$
\pi_{21} = (\alpha_1 - \beta_1) / (\beta_2 - \alpha_2), \ \pi_{22} = \alpha_3 / (\beta_2 - \alpha_2)
$$

with OLS estimates ρ_{ij} , *i, j* =1, 2, *j*=1, 2

■ Supply equation: estimates for β₁, β₂ $_{\rm 2}$ are uniquely determined

$$
b_2 = p_{12}/p_{22}, b_1 = p_{11} - p_{21}b_2
$$

H. **Demand equation: only two equations for** $\alpha_1, ..., \alpha_3$

$$
a_1 = p_{11} - p_{21}a_2, a_3 = p_{22}(b_2 - a_2)
$$

No unique solutions

H. The supply equation is identified, the demand equation is unidentified

One more Market Model

 $Q_t = \alpha_1 + \alpha_2 P_t + \alpha_3 Y_t + \varepsilon_{t1}$ (demand equation)

 $Q_t = \beta_1 + \beta_2 P_t + \beta_3$ $Q_t = \beta_1 + \beta_2 P_t + \beta_3 Z_t + \varepsilon_{t2}$ (supply equation)

OLS estimates for reduced form parameters p_{ij} , *i*=1, 2, *j*=1, ..., 3, give estimates

 $a_2 = p_{13}/p_{23}, b_2 = p_{12}/p_{22}$

H. The parameters of the demand equation are uniquely determined:

> $a_3 = p_{22}(b_2)$ (a_2) , $a_1 = p_{11} - p_{21}a_2$

H. The supply equation parameters are uniquely determined:

$$
b_3 = -p_{23}(b_2 - a_2), b_1 = p_{11} - p_{21}b_2
$$

H. Both the supply equation and the demand equation are identified

Contents

- $\overline{\mathbb{R}^n}$ Systems of Regression Equations
- $\overline{\mathbb{R}^n}$ Multivariate Regression Models
- \mathcal{L}^{max} SUR Model: Estimation
- $\overline{\mathcal{A}}$ Simultaneous Equation Models
- $\overline{\mathbb{R}^n}$ Simultaneous Equation Models: Identification
- $\overline{\mathcal{M}}$ Identification: Criteria
- \mathbb{R}^n Single Equation Estimation Methods
- $\mathcal{C}^{\mathcal{A}}$ System Estimation Methods

Counting the Parameters

 $\overline{\mathcal{M}}$ Number of structural parameters:

- \Box □ A: *mxm* non-singular matrix, i.e., *m*² parameters
- **□ Γ:** *m***xK matrix, i.e.,** *mK* **parameters** \Box
- **□** Σ: *m*x*m* symmetric, positive definite matrix, i.e., *m*(*m*+1)/2 parameters \Box
- **Number of reduced form parameters:** $\overline{\mathbb{R}^n}$
	- \Box **□** Π: *m*x*K* matrix, i.e., *mK* parameters
	- ם Ω: *mxm* symmetric, positive definite matrix , i.e., *m(m*+1)/2 parameters \Box

 Number of structural parameters exceeds that of reduced form parameters by m^2

IDENTIFICATE IS A LACK INTERFIET CONTINUITY IS CONTINUITY Interactions for H. parameters

Identification: Parameter Restrictions

 Restrictions on structural parameters: reduce the number of parameters to be estimated, so that equations are identified

- **Normalization: in each structural equation, one coefficient is a "1"**
- H. Exclusion: the omission of a regressor in an equation results in a zero in A or Γ, i.e., reduces the number of structural parameters
- $\overline{\mathbb{R}^n}$ Identities, like equations 4 through 6 in Klein's I model, reduce the number of structural parameters to be estimated
- H. Linear – or non-linear – restrictions on structural parameters, restrictions on the elements of Σ also, reduce the number of structural parameters to be estimated

Check of identification

- П Order condition
- H. Rank condition

Order Condition

Model with m endogenous variables (and equations), K regressors

 $Ay_t = \Gamma z_t + ε_t$

- **E**quation *j*:
	- \Box m_i : number of explanatory endogenous variables
	- \Box m_{j}^{\ast} : number of excluded endogenous variables ($m_{j}^{\ast}=m-m_{j}-1)$

 $\overline{16}$ $\Box\quad$ $\mathsf{K}_{\mathsf{j}}^{\ast}\colon$ number of excluded exogenous variables ($\mathsf{K}_{\mathsf{j}}^{\ast}$ = $\mathsf{K} \mathsf{K}_{\mathsf{j}}$)

 $\overline{\mathcal{A}}$ **Order Condition: Equation** *j* is identified if

 $\mathsf{K}_{\mathsf{j}}^{\star}$ \geq m_{j}

i.e., the number of exogenous variables excluded from equation j is at least as large as the number of explanatory endogenous variables included in the equation

H. The order condition is a necessary but not sufficient condition for identification

Market Model

Model:

 $Q_t = \alpha_1 + \alpha_2 P_t + \alpha_3 Y_t + \epsilon_{t1}$ (demand equation) $Q_t = \beta_1 + \beta_2 P_t + \varepsilon_{t2}$ (sup $_{2}P_{\rm t}$ + ε_{t2} (supply equation) $m = 2 (Q, P), K = 2 (1$ for the intercept, Y)

Supply equation $(j = 2)$:

 ${m_2}^\star$ = 0, $m_2^{}$ K_2 = 1, K_2 * = 1, K_2 = 1

Order condition is fulfilled: $K_2^* = 1 = m_2$ $_{2}$ = 1; the supply equation is identified

 $\mathcal{L}(\mathcal{A})$ Demand equation $(j = 1)$:

 $m_1^* = 0$, $m_1 = 1$, $K_1^* = 0$, $K_1 = 2$

Order condition is not fulfilled: $K_1^* = 0 < m_1 = 1$; the demand equation is not identified is not identified

Rank Condition

Model with m endogenous variables (and equations), K regressors

 $Ay_t = \Gamma z_t + ε_t$

- **E**quation *j*:
	- \Box □ A^{*}: obtained by deleting from A the *j*-th row and all column with a nonzero element in the *j*-th row
	- **□** Γ^{*}: obtained by deleting from Γ the *j*-th row and all column with a non- \blacksquare zero element in the *j*-th row
- **Rank Condition: Equation** *j* is identified if

r(A*| Γ*) ≥ m– -1

 i.e., the rank of the matrix (A*| Γ*) is at least as large as the number of endogenous variables minus 1

 \mathcal{L}^{max} The order condition is a sufficient condition for identification of equation *j*

IS-LM Model

$$
C_{t} = \gamma_{11} - \alpha_{14}Y_{t} + \varepsilon_{t1}
$$

\n
$$
I_{t} = \gamma_{21} - \alpha_{23}R_{t} + \varepsilon_{t2}
$$

\n
$$
R_{t} = -\alpha_{34}Y_{t} + \gamma_{32}M_{t} + \varepsilon_{t3}
$$

\n
$$
Y_{t} = C_{t} + I_{t} + Z_{t}
$$

п Equation 1: C: consumption, *I*: investments, *R*: interest rate, Y: production/income, M: money, Z: autonomous expenditures

endo.: C,I,R,Y (m=4); exo.: 1,M,Z (K=3)

- \Box **Order condition:** $K_1^* = 2 \ge m_1 = 1$
- \Box \Box Rank condition: $r(A^*|\Gamma^*) = 3 \ge m - 1 = 3$

$$
(A \t\Gamma) = \begin{pmatrix} 1 & 0 & 0 & \alpha_{14} & \gamma_{11} & 0 & 0 \\ 0 & 1 & \alpha_{23} & 0 & \gamma_{21} & 0 & 0 \\ 0 & 0 & 1 & \alpha_{34} & 0 & \gamma_{32} & 0 \\ -1 & -1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}, \quad (A^* \t\Gamma^*) = \begin{pmatrix} 1 & \alpha_{23} & 0 & 0 \\ 0 & 1 & \gamma_{32} & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix}
$$

Both conditions are fulfilled, equation 1 is identified

Identification Checking: The Practice

- 1. A multi-equation model is identified if each equation is identified
- 2. Most equations which fulfill the order condition also fulfill the rank condition
- 3. Identification checking for small models is usually easy; equations of large models usually are identified (large models contain large numbers of predetermined variables)
- 4. Addition of an equation to an identified model: the resulting model is identified if the new equation contains at least one additional variable

Identification: More Notation

Equation *j* is

- 1. Exactly identified: $\mathcal{K}_{\mathfrak{j}}^{\star}$ = $m_{\mathfrak{j}}$ and rank condition is met
- 2. Overidentified: $\mathcal{K}_{\mathfrak{j}}^{\star}$ > $m_{\mathfrak{j}}$ and rank condition is met
- 3. Underidentified: $\mathcal{K}_{\mathfrak{j}}^{\star} < m_{\mathfrak{j}}$ or rank condition fails

Contents

- $\overline{\mathbb{R}^n}$ Systems of Regression Equations
- $\overline{\mathbb{R}^n}$ Multivariate Regression Models
- \mathcal{L}^{max} SUR Model: Estimation
- $\overline{\mathcal{M}}$ Simultaneous Equation Models
- $\overline{\mathbb{R}^n}$ Simultaneous Equation Models: Identification
- $\overline{}$ Identification: Criteria
- $\overline{\mathbb{R}^n}$ Single Equation Estimation Methods
- $\mathcal{C}^{\mathcal{A}}$ System Estimation Methods

Simultaneous Equation Models: Estimation Methods

- Single equation methods, also limited information methods1.
	- \Box Indirect least squares estimation (ILS)
	- \Box Two stage least squares estimation (2SLS or TSLS)
	- \Box Limited information ML estimation (LIML)
- 2. (Complete) system methods, also full information methods
	- \Box Three stage least squares estimation (3SLS)
	- □ Full information ML estimation (FIML)

The Modified Market Model

Estimator for $\boldsymbol{\beta}_2$ $_2$ from

 $Q_t = \alpha_2 P_t + \alpha_3 Y_t + \epsilon_{t1}$ (demand equation) $Q_t = \beta_2 P_t + \varepsilon_{t2}$ (supply equation)

with contemporaneously correlated error terms

 T -vectors ρ and q ;

- $\overline{\mathbb{R}^n}$ ■ OLS estimate for $β_2$ $_{\rm 2}$ from the supply equation: $b_{\rm 2}$ $_{2} = (p^{2}p)^{-1}p^{2}q$; is biased
- $\overline{\mathcal{M}}$ **■** IV estimate for $β_2$ $_{\rm 2}$ with instrumental variable *Y*: $b_{\rm 2}$ $W = (y'p)^{-1}y'q$; is consistent

\n- ILS estimate:
$$
b_2^{\parallel L_S} = p_2/p_1 = (y^t p)^{-1} y^t q
$$
 with OLS estimates *p*₁ and *p*₂ for π₁ and π₂ from the reduced form $P = \pi_1 Y + u_1$
\n- $Q = \pi_2 Y + u_2$
\n

Modified Market Model,cont'd

4. 2SLS estimate for $β_2$ $_{\rm 2}$ of the supply equation

 \Box □ Step 1: Regression of the explanatory variable P on the instrumental variable Y, calculation of fitted values

 \hat{p} = [(y'y)⁻¹y'p] y

Step 2: OLS estimation of β_2 from $Q_t = \beta_2 \hat{P}_t + V_t$ ■ Step 2: OLS estimation of β₂ from Q_t = β₂ \hat{P}_t + v_t $b_2^{2SLS} = (\hat{p}^{\dagger} \hat{p})^{-1} \hat{p}^{\dagger} q$ $b_2^{2SLS} = (\hat{p} \, ' \, \hat{p})^{-1} \, \hat{p} \, ' q$ $=$ $D \dot{D}$

OLS Estimation

OLS estimators of structural parameters: in general

- \Box biased
- □ not consistent
- Π But often a feasible alternative
	- \Box OLS estimator is efficient, i.e., has minimal variance; may be a good estimator in spite of unbiasedness
	- \Box \Box Tends to be robust against not fulfilled assumptions
	- \Box May be advantageous for small or moderate sample sizes; not depending upon asymptotics
- **DRUS** estimators for parameters of recursive simultaneous equation models: asymptotically unbiased
- $\overline{\mathcal{A}}$ OLS technique: important procedure in all estimation methods for simultaneous equation models

Indirect Least Squares (ILS) Estimation

Model with *m* endogenous variables (and equations), *K* regressors

H. Structural form

 $Ay_t = \Gamma z_t + \varepsilon_t$, $\forall {\varepsilon_t} = \Sigma$

Π Reduced form

 $y_t = A^{-1} \Gamma z_t + A^{-1} \varepsilon_t = \Pi z_t + u_t, V \{u_t\} = \Omega$

Estimation of the structural parameters of equation $\emph{j}:$

- \Box Step 1: OLS estimation of reduced form parameters Π
- Step 2: Calculation of estimates for structural parameters, solving AΠ = \Box Γ for the structural parameters of equation \bm{j}
- **E** Estimation of structural parameters of equation j : equation j needs to be identified

Two Stage Least Squares (2SLS) Estimation

Estimation of structural parameters of equation \bm{j}

 $y_j = X_j \beta_j + \varepsilon_j = Y_j \alpha_i + Z_j \gamma_j + \varepsilon_j$

with $\lambda_{\rm j}$: [Tx(m_j-1+K_j)]-matrix of explanatory variables, Y_j: [Tx(m_j-1)]matrix of explanatory endogenous variables, Z_j: (TxK_j)-matrix of exogenous variables

2SLS (or TSLS) estimation in two steps:

 \Box Step 1: OLS estimation of reduced form parameters Π, calculation of predictions $\hat{\boldsymbol{Y}}_{\!j}$

 \Box Step 2: OLS estimation of structural parameters β_i , using

 $y_j = X_{j} \beta_j + v_j$ with $\hat{{X}}_{j}^{}= (\hat{Y}_{j}^{}Z_{j}^{})$ \hat{X} \sum_j \sum_j

2SLS (or TSLS) estimation of structural parameters of equation *j* requires the equation to be identified

Example: Hog Market

US hog market 1922-1941 (Merill & Fox, 1971): P: retail price for hog (US cents p.lb.), Q: hog-consumption p.c., Y: income p.c. (USD), Z: exogenous production factor

Hog Market: The Model

Model with endogenous variables Q, P , exogenous variables Y, Z

 $Q_t = \alpha_1 + \alpha_2 P_t + \alpha_3 Y_t + \epsilon_{t1}$ (demand equation)

 $Q_t = \beta_1 + \beta_2 P_t + \beta_3 Z_t + \varepsilon_t$ $_{2}P_{t}$ + β $_{3}Z_{t}$ + ε_{t2} (supply equation)

both equations are exactly identified

Coefficients of demand and supply equation estimated by three single equation methods

- \Box Separate OLS estimation of both equations
- H ILS estimation
- **2SLS** estimation

Example: Hog Market

Comparison of three single equation estimation methods

- П Strong coincidence of ILS and 2SLS estimates
- H OLS estimates of demand equation deviates substantially from ILS and 2SLS estimates

2SLS Estimator: Properties

2SLS (or TSLS) estimation of structural parameters of equation \jmath requires the equation to be identified

- Π Order condition $K_j^* \ge m_j$: number of excluded exogenous variables (K_{j}^{\ast}) is at least the number of explanatory endogenous variables
(m) $\left(m_{\rm j} \right)$. j
- H. i.e., the number of potential instrumental variables is at least the number of variables to be substituted by predictions

Properties: 2SLS estimators are

- H. **Consistent**
- H. Asymptotically normally distributed

LIML Estimator

Limited information ML (LIML) estimation:

- H. Maximization of the likelihood function derived from the system of
	- \Box one structural equation
	- \Box reduced form equations for the remaining endogenous variables
	- \Box Assumes normally distributed error terms

Application:

- H. Asymptotic distribution of LIML estimator equivalent to that of the 2SLS estimator
- $\overline{\mathcal{A}}$ Wrt computational effort, 2SLS estimation is much easier to use
- \mathbb{R}^n In practical applications, LIML estimation is hardly used

Contents

- $\mathcal{C}^{\mathcal{A}}$ Systems of Regression Equations
- $\overline{\mathcal{A}}$ Multivariate Regression Models
- $\mathcal{L}(\mathcal{A})$ SUR Model: Estimation
- $\overline{\mathcal{A}}$ Simultaneous Equation Models
- $\overline{\mathcal{M}}$ Simultaneous Equation Models: Identification
- $\overline{\mathcal{L}^{\mathcal{A}}_{\mathcal{A}}}$ Identification: Criteria
- Single Equation Estimation Methods $\overline{\mathcal{A}}$
- $\overline{\mathbb{R}^n}$ System Estimation Methods

Why System Estimation Methods?

 Single equation (limited information) estimation methods ignore the contemporaneous correlation of error terms

- System (full information, complete system) estimation methods take contemporaneous correlation of error terms into account
- \mathcal{L}^{max} Estimation of equation parameters is more efficient: estimation of coefficients of equation j makes use information contained in other equations
- Π Estimation methods
	- □ 3SLS estimation
	- \Box Iterative 3SLS estimation
	- \Box Full information ML (FIML) estimation

3SLS Estimator

The *m* equations of the full model in matrix notation

$$
\overline{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} X_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & X_m \end{pmatrix} \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_m \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_m \end{pmatrix} = \overline{X}\overline{\beta} + \overline{\varepsilon}
$$

with $V = V\{\overline{\varepsilon}\} = \sum \otimes I_n = \begin{pmatrix} \sigma_1^2 & \cdots & \sigma_{1m} \\ \vdots & \ddots & \vdots \\ \sigma_{1m} & \cdots & \sigma_m^2 \end{pmatrix} \otimes I_n$
3SLS estimation: FGLS estimation based on

- $\mathcal{L}(\mathcal{A})$ **2SLS residuals for each of the** *m* **equations**
- $\overline{}$ estimate for Σ obtained from these residuals

3SLS Estimator: Three Steps

The steps of the 3SLS estimation are

- 1. Based on the reduced form equations, calculation of predicted values for all explanatory endogenous variables; cf. the first stage of 2SLS estimation
- 2. For the *j*-th equation, $j = 1, ..., m$,
	- \Box Calculation of 2SLS estimators b_{j} and
	- □ 2SLS residuals $e_{\rm j}$ = $y_{\rm j}$ $X_{\rm j}b_{\rm j}$

Estimation of elements $\sigma_{_{\text{ij}}}$ = Cov{ε_{ti}, ε_{tj}} of Σ: s_{ij} = (e_j'e_j)/*T*

3. Calculation of the 3SLS estimator

 $b^{3SLS} = [\overline{X}^{\prime}(S^{-1} \otimes P_{z})\overline{X}]^{-1}\overline{X}^{\prime}(S^{-1} \otimes P_{z})\overline{Y}$

with the projection matrix P_z = Z(ZʻZ)⁻¹Zʻ, S the estimated matrix Σ

3SLS Estimator: Properties

3SLS estimation requires all equations of the system to be identifiedProperties: 3SLS estimators are

- H. **Consistent**
- Π Asymptotically normally distributed
- 3SLS estimates coincide with 2SLS estimates if
- $\overline{\mathcal{A}}$ All equations are exactly identified
- H. The error terms are contemporaneously uncorrelated, i.e., Σ is diagonal

Example: Hog Market

Comparison of 2SLS and 3SLS estimation

- П Strong coincidence of 3SLS and 2SLS estimates
- H Smaller p -values of most 3SLS estimate indicate higher efficiency

More System Estimators

Iterative 3SLS estimator

- **3SLS** estimates b^{3SLS} of structural parameters (or A^{3SLS} and Γ^{3SLS}) give
	- \Box revised reduced form parameters $(A^{-1} \Gamma = \Pi)$ and
	- \Box predictions of the explanatory endogenous variables;
- $\overline{\mathcal{A}}$ Iterative 3SLS estimator: starting with an initial 3SLS estimator, the following iterations are repeatedly executed until convergence is reached
	- \Box Outer iteration: step 1 of 3SLS estimation resulting in improved predictions of the predetermined variables,
	- \Box Inner iteration: step 2 of 3SLS estimation, resulting in improved 2SLS residuals and estimate S for Σ, and step 3, resulting in improved 3SLS estimators *b*^{3SLS}
	- \Box □ The inner iteration can be repeated using 3SLS residuals for estimate S

More System Estimators, cont'd

Full information ML (FIML) estimator:

- $\mathcal{C}^{\mathcal{A}}$ Assumes normally distributed error terms
- \Box Maximizes likelihood function with respect to structural parameters

Simultaneous Equation Models in GRETL

Model > Simultaneous Equations …

- П choice of estimator
	- SUR
	- □ 2SLS
	- LIML
	- □ 3SLS
	- FIML
- $\mathcal{L}^{\text{max}}_{\text{max}}$ Specification of equations, instrumental variables, endogenous variables, and identities

Your Homework

Klein's model I consists of the following equations (see the GRETL data file "klein"):

 $C_t = \alpha_1 + \alpha_2 P_t + \alpha_3 P_{t-1} + \alpha_4 W_t + \varepsilon_{t1}$ (consumption)
 $C_t = \alpha_1 + \alpha_2 P_t + \alpha_3 P_{t-1} + \alpha_4 W_t + \varepsilon_{t1}$ (investment) t^{1} α_{3} t_{-1} α_{4} α_{t} α_{t1} $I_t = \beta_1 + \beta_2 P_t + \beta_3 P_{t-1} + \beta_4 K_{t-1} + \varepsilon_{t2}$ (investment) W_{t} ^p = γ₁ + γ₂X_t + γ₃X_{t-1} + γ₄ t + ε_{t3} (wages) $W_t = W_t^{p+} W_t^{q}$ $X_t = C_t + I_t + G_t$ $K_{t} = I_{t} + K_{t-1}$ $P_{t} = X_{t} - W_{t}^{p} - T_{t}$

Endogenous variables are: C / Wp X W K P

- 1. Which of the equations are identified? Use (a) order and (b) rank conditions in answering the question.
- 2. Estimate the structural parameters using (a) OLS, (b) SUR, (c) 2SLS, (d) 3SLS, and (e) FIML; compare the results and explain pros and cons of the methods.

Your Homework,cont'd

3. The goodness of fit measure $\tilde{}$

$$
R_I^2 = 1 - \frac{S_g(\overline{\beta})}{S_g(0)} = 1 - \frac{\text{tr}(S^{-1}\tilde{\Sigma})}{\text{tr}(S^{-1}S_{yy})}
$$

makes use of

 $(\overline{\mathbf{y}}\text{-}\overline{\mathbf{X}}\tilde{\overline{b}})'\tilde{\mathbf{V}}^{-1}(\overline{\mathbf{y}}\text{-}\overline{\mathbf{X}}\tilde{\overline{b}})=T\,\text{tr}(\overline{S}^{-1}\tilde{\Sigma}),\,\tilde{\Sigma}=(\tilde{E}^{\,\prime}\tilde{E})/2$ g $S_{\rm g}(b) = (\overline{y} - \overline{X}\overline{b})' \tilde{V}^{-1} (\overline{y} - \overline{X}\overline{b}) = T \text{tr}(S^{-1}\tilde{\Sigma}), \ \tilde{\Sigma} = (\tilde{E} \cdot \tilde{E})/T$

with the Txm matrix $E = (e_1, \ldots, e_m)$ of FGLS residuals and analogously the mum matrix S of sample equationeers of the d 1 $E = (\tilde{e}_1, \ldots, \tilde{e}_m)$ m $\tilde e_1^{},\ldots,\tilde e_m^{}\rangle$ analogously the m x m matrix S_{yy} of sample covariances of the straingle constances of the straining \sim analogously the *m*x*m* matrix S_{yy} or sample covariances or the y_{ti} .
Show for T = *m* = 2 that the two numerators in the definition of R_I² , $\mathcal{S}_\mathsf{g}(.)$ and tr(.), coincide.