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Multiple Dependent Variables

In general, economic processes involve a multiple set of variables
which show a simultaneous and interrelated development

Examples:

Households consume a set of commodities (food, durables, etc.);
the demanded quantities depend on the prices of commodities, the
household income, the number of persons living in the household,
etc. A consumption model includes a set of dependent variables
and a common set of explanatory variables.

The market of a product is characterized by (a) the demanded and
supplied quantity and (b) the price of the product; a model for the
market consists of equations representing the development and
interdependencies of these variables.

An economy consists of markets for commodities, labor, finances,
etc. A model for a sector or the full economy contains descriptions
of the development of the relevant variables and their interactions.
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Systems of Regression
Equations

Economic processes involve the simultaneous developments as well
as interrelations of a set of dependent variables

For modeling an economic process a system of relations, typically
in the form of regression equations: multi-equation model

Example: Two dependent variables y,, and y,, are modeled as

Y = XyBy + &
Yio = X282 + €

with V{e,} = a2 fori=1, 2, Cov{e,, £,} =0, #0

Typical situations:

1. The set of regressors x;; and x,, coincide

2. The set of regressors x,,; and x,, differ, may overlap

3. Regressors contain one or both dependent variables

4. Regressors contain lagged variables
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Types of Multi-equation Models

Multivariate regression or multivariate multi-equation model

A set of regression equations, each explaining one of the
dependent variables
o Possibly common explanatory variables

o Seemingly unrelated regression (SUR) model: each equation is a
valid specification of a linear regression, related to other equations

only by the error terms
0 See cases 1 and 2 of “typical situations” (slide 4)
Simultaneous equation models
Describe the relations within the system of economic variables
o in form of model equations
0 See cases 3 and 4 of “typical situations” (slide 4)

Error terms: dependence structure is specified by means of second
moments or as joint probability distribution
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Capital Asset Pricing Model

Capital asset pricing (CAP) model: describes the return R, of asset i
R - Re = Bi(E{Rm} — Ry) + &
with
0 R return of a risk-free asset
o R, return of the market portfolio

B:: indicates how strong fluctuations of the returns of asset / are
determined by fluctuations of the market as a whole

Knowledge of the return difference R, - R; will give information on
the return difference Rj - R; of asset j , at least for some assets

Analysis of a setof assets /=1, ..., s

o Theerrortermse,i=1, ..., s, represent common factors, have a
common dependence structure

o Efficient use of information: simultaneous analysis
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A Model for Investment

Grunfeld investment data [Greene, (2003), Chpt.13; Grunfeld &

Griliches (1960)]: Panel data set on gross investments /; of firms
over 20 years and related data

Investment decisions are assumed to be determined by
Iy = Big + BioFie + BisCit + &
with
o Fy: market value of firm at the end of year ¢-1
o Cy: value of stock of plant and equipment at the end of year -1

Simultaneous analysis of equations for the various firms: efficient
use of information

o Error terms for the firms include common factors such as economic
climate

o Coefficients may be the same for the firms
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The Hog Market

Model equations:
Q=a, +a,P+a,Y+¢, (demand equation)
Qs =B, +B,P+BZ+¢e, (supplyequation)
Q4 = Qs (equilibrium condition)
with Q9: demanded quantity, Q®: supplied quantity, P: price, Y-
income, and Z: costs of production, or
Q=a,+a,P+a;Y+¢, (demand equation)
Q=B+ B,P+B3Z+¢€, (supplyequation)
Model describes the equilibrium transaction quantity and price
Model determines simultaneously Q and P, given Y and Z
Error terms
o May be correlated: Cov{e,, €,} # 0

Simultaneous analysis necessary for efficient use of information

April 29, 2011 Hackl, Econometrics 2, Lecture 5




Klein's Model I

C,=a, +a,P, + o3P, + a,(WP+ WS) + g, (consumption)
Iy =Bq + BoPi+ BsPry + BsKiy + € (investment)
WP =yq v X+ vaXiq t V4t + €5 (Wages)
Xi=Ct+ i+ G
Ki =l + K
P =X~ Wp~T,

with C (consumption), P (profits), WP (private wages), W8
(governmental wages), / (investment), K, (capital stock), X
(national product), G (governmental demand), T (taxes) and ¢ [time
(year-1936)]

Model determines simultaneously C, I, WF, X, K, and P

Simultaneous analysis necessary in order to take dependence
structure of error terms into account: efficient use of information
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Examples of Multi-equation
Models

Multivariate regression models

Capital asset pricing (CAP) model: for all assets, return R; is a
function of E{R, } — R;; dependence structure of the error terms
caused by common variables

Model for investment: firm-specific regressors, dependence
structure of the error terms like in CAP model

Seemingly unrelated regression (SUR) models
Simultaneous equation models

Hog market model: endogenous regressors, dependence structure
of error terms

Klein’s model |: endogenous regressors, dynamic model,
dependence of error terms from different equations and possibly
over time
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Single- vs. Multi-equation
Models

Complications for estimation of parameters of multi-equation models:
Dependence structure of error terms
Violation of exogeneity of regressors
Example: Hog market model, demand equation
Q=0a,+a,P+aY+¢,
P is not exogenous: Cov{P, €,} = (0,2 - 0,)/(B,-a,) # 0
Covariance matrix of € = (g,, €,)’
2
Cov{e} = (01 0122]
0-12 0-2

Statistical analysis of multi-equation models requires methods
adapted to these features
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Analysis of Multi-equation
Models

Issues of interest:

Estimation of parameters

Interpretation of model characteristics, prediction, etc.
Estimation procedures

Multivariate regression models
o GLS, FGLS, ML
Simultaneous equation models

0 Single equation methods: indirect least squares (ILS), two stage least
squares (TSLS), limited information ML (LIML)

o System methods of estimation: three stage least squares (3SLS), full
information ML (FIML)

o Dynamic models: estimation methods for vector autoregressive (VAR)
and vector error correction (VEC) models
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The SUR Model

Seemingly unrelated regression model
Multivariate regression model: the general case, m equations

Y = XyBy + €

ytm - X‘thm + 8tm
with V{eg} = o2 fori=1,...,m; Cov{gy, g} =0; #0fori#j,ij=
1,....m,and t=1,...,T, i.e., contemporaneously correlated error
terms

Regressors
Can be specific for each equation
Multivariate regression with common regressors
X; =X fori=1,....m
e.g., the CAP model
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Example: Investment Model

Investment model based on the Grunfeld data set [Greene, (2003),
Chpt.13; Grunfeld & Griliches (1960)]

i = By + BioFi + BisCit + &
with
o Il gross investment [, of firm i
o Fi: market value of firm at the end of year ¢-1

o Cy: value of stock of plant and equipment at the end of year ¢-1

Explanatory variables observed for firm i may affect other firms due
to the dependence structure of the error terms

Estimation methods
o Each equation separately using OLS

o Generalized least squares estimation may take dependence structure of
the error terms into account
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The SUR Model: Notation

Form=2

With T-vectors y,, €, and ( TxK)-matrix X,
Yi=XiBitg i=1,2

and V{g,} = 02, Cov{e,, e, =0, #0fort=1,...,T,

2
Vie,} =£Gl G] =3
O-12 O-2
With 2T-vectors

—_ N X, 0 Bl & \l_ o5, =
T e
O, Op

2
and V:V{€}:ZD[T=[ ]DIT
O-12 O-2
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The Kronecker Product

Definition of the Kronecker product of matrices A (order nxm) and B
(order pxq)

/all alm\ (bll blq\
A=| : . : |,B=| : :
\dy - A, \bpl bpq)
/aHB almB\ (anbn almblq )
AOB=| : : = : :
4,8 ... a,B) \a,b, .. a,b, |

The product matrix has the order npxmq
Some rules: (i) (AU B)(CUD)=ACUBD, suitable A, B, C, D

(i) (A0 B)' = A'T B’
(i) (AOB)' =47 0B, square A, B
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Parameter Estimation

Form=2
OLS estimators for 3, and B, on basisof y, = X3, +¢€, i=1,2

b = (X X)' Xy, i=1,2

Orb =(b'\b,)' =(X'X)"' X'y

With V{b} = 0(X"X))"

Ignores 2 # |, i.e., the contemporaneous correlation of error terms
GLS estimators

B=@B,\B,) =XV X)"XVy

with V{B} =XV 'x)"

Analogous for any number m of equations
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Investment Model

Investment models
¢ = By + Bofy + B3Cy + €

for General Motors, Chrysler, and General Electric

OLS GLS OLS GLS

GM -149.8 -133.6 0.119 0.115
p-val. 0.175 0.178 0.0002 0.0001
Crysler -6.190 -3.266 0.078 0.073

OLS GLS
0.371 0.376 0.92
1.5E-8 3.1E-9

0316 0.320 0.91

p-val. 0.653 0.794 0.0011 0.0009 4.0E-9 8.6E-10

GE 996 -11.96 0.027 0.028
p-val. 0.755 0.680 0.106 0.067

F: market value, C: value of stock
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The General SUR Model

SUR model with m equations
The i-the equation: T-vectors y,, €, and ( TxKi)-matrix X
yvi=XBiteg, i=1,....m
V{ey} = 62, Covigy, gy =0 #0fori, j=1,...,m t=1,.,T
Full model

/yl\ /Xl O\/Bl\ /81\

)_/: . : . . . : + . :XB+E
kym/ \O Xm/\Bm) \En /
WithV:V{g}:ZD[n: D]n
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FGLS Estimator

2-step procedure: estimation of GLS estimators
NR—/NR'"Q N\N'—( VTl Vvl
B=0"B) =XV "X) XV"y
requires knowledge of covariance matrix V of the error terms

OLS estimation of each of the m equations; calculation of the m-
squared matrix S = E'E/T, estimator of Z, using the Txm matrix E =
(€4, ---, €y) of OLS residuals, with elements s; of S

S; = (¢ egey)/ T
forij=1, ..., m; suitable degree of freedom correction
GLS estimation using instead of V the estimated matrix 17 =S1[1]/]
l.e., V!vith Si substituted for oft fori,j=1,...,m "

b=(b'\b,")=(XV'X)'XV 'y
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GLS and OLS Estimators

GLS estlmators
B=B"\B) =XV X)XV "y
More efficient than OLS estimators
Efficiency gain increases
o with growing correlation of error terms
o with shrinking correlation of regressors
GLS estimator for 3; coincides with OLS estimator b, if
o matrix X; of regressors is the same for all equations: X, = X

0 g is uncorrelated with all g, j # i
FGLS estimates are consistent, asymptotically efficient
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Goodness of Fit Measures

Definition of an R2-Iil~<e measure:

S (B _,_ tr(s73)
-1

S . (0) tr(S S yy)

R’ =1-

with S, (b) = (7-Xb) V' (7-Xb)=Ttr(S™'2), 2=(E"E)/T

using the Txm matrix £ =(é,,...,€,) of FGLS residuals and

analogously the mxm matrix S,, of sample covariances of the y;
An alternative measure is

RP=1-—2"1"
* -1
tr(S7'S,,)
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SUR Model in GRETL

Model > simultaneous equation ...
to be specified
o the simultaneous equations

o option for estimator: Seemingly Unrelated Regression (sur)
FGLS estimation
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Example: Two-equation Model

Dependent variables Y,, Y,; the model is
Y,=a,+a,Y, + azX, + €, (equation A)
Y2 =By +ByYy + BaX; + €, (equation B)
Violation of assumption A2 (exogeneity of regressors): a positive &,

o results in an increase of Y, (see equation A)

o Consequence of this (see equation B) is, given a positive [3,, an
increase of Y,

o i.e., g and Y, are correlated
Biased OLS estimators

o Large values of Y, are observed — due to positive values of €, —
together with large values of Y,

o Overestimated a,
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Example: Market Model

Describes the transactions in the market of a commodity, e.g., hogs
Q=a, +a,P+a,Y+¢, (demand equation)
Qs =B, +B,P+BZ+¢e, (supplyequation)
Q4 = @3 (equilibrium condition, market clearing assumption)
with Q4: demanded quantity, Qs: supplied quantity, P: price, Y:
income, and Z: costs of production, or
Q=a,+a,P+a;Y+¢, (demand equation)
Q=B+ B,P+B3Z+¢€, (supplyequation)
Model describes the equilibrium transaction quantity Q and price P
Exogeneity assumption for variables Y, Z
0 Model determines simultaneously Q and P, given Y and Z
o Endogenous variables: Q, P
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Market Model

Structural form of the model
Q=a,+a,P+a;Y+¢, (demand equation)
Q=B+ B,P+B3Z+¢€, (supplyequation)
Corresponding reduced form
Q=1 + MY+ 1327+ U,
P=1, +TY+ 7+ U,
with Ty = (aq B—0, 51)/(B—02), Uy = (B, €4-05 €5)/(B—01,), ete.
Given values for Y and Z, values for Q and P can be calculated

Parameter estimation:

o Estimates from structural form parameters are biased, inconsistent;
see above

0 Reduced form equations are a SUR model; FGLS estimates are
consistent, asymptotically efficient
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Simultaneous Equation
Models: Estimation

Issues:

Estimation problem: What methods can be applied to multi-
equation model, what properties will the estimates have?

|dentification problem: Given estimates of reduced form
parameters, can from them structural parameters be derived?
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Types of Variables

Endogenous variables

Determined by the model
Exogenous variables

Determined from outside the model

Types of exogenous variables

o Strictly exogenous variables: uncorrelated with past, actual, and future
error terms

o Predetermined variables: uncorrelated with actual and future error
terms, e.g., lagged endogenous variables

Complete system of equations: number of equations equals the
number of endogenous variables
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Structural and Reduced Form

Structural form: represents relations between endogenous variables
and exogenous (and predetermined) variables according to
economic theory

Reduced form: describes the dependence of endogenous variables
upon exogenous or predetermined variables

Coefficients of

Structural form: Interpretation as structural parameters
corresponding to economic theory

Reduced form: Interpretation as impact multiplicator, indicating the
effects of changes of the predetermined variables on endogenous
variables
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Market Model: Structural Form

Structural form of the 2-equation model
Q =a, +a,P, +a,Y, + €, (demand equation)
Q =P+ BP + B3Zi + €, (supply equation)
with &, = (g4, &5)": bivariate white noise with

o’ O
Vigj=g=| ' ©
012 0-2

Structural form in matrix notation:
Ay =Tz + g
with
“B=(Q, P), z,=(1, Y, £)

1 —a, a, a, 0
A = I =
(1 _sz (Bl 0 B3]
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Market Model: Reduced Form

Reduced form in matrix notation
i =A1Tz +Ale, =Mz + u,

with .
a,p, —a,p 0,03, —a,p, )
M= B, -a, B,-a, B,-aq,
a, -B A, —B,
\ B, -a, B,-a, Bz_azj

and Q = V{u} =ATZ(AY
Reduced form equations:
Q= Tqq + oYy + TegZ, + Uy
Py =Ty + Ty Yy + TMysZi + Uy
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Multi-equation Model: General
Structural Form

Model with m endogenous variables (and equations), K regressors
A =Tz + ¢
with m-vectors y, and ¢g,, K-vector z,, (mxm)-matrix A, (mxK)-matrix
[, and (mxm)-matrix Z = V{&,}
Structure of the multi-equation model: (A, T, 2)
Structural parameters: Elements of Aand I
Normalized matrix A: a; = 1 for all /

Complete multi-equation model: A is a square matrix with full rank,
l.e., Alis invertible

Recursive multi-equation model: A is a lower triangular matrix, i.e., y;
can be regressor in equations j with j > j only
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Example: A Simple Market
Model

Structural form of the 2-equation model
Q= a, + a,P, + g, (demand equation)
Q, = B4 + B,P + €, (supply equation)
Observations (Q,, P,), t=1, ..., T,
o A cloud of points in the scatter diagram

o OLS estimation gives slope and intercept: not clear whether these
parameters correspond to demand or supply equation

o Demand and supply equations are “not identified”
Reduced form equations
Q= Ty + Uy, Py =TTy + Uy
with 144 = (0B, — axB4)/(Bo— ay), Tyy = (&g = B)/(B,— ay)
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A Simple Market Model, cont'd

Given estimates for 1,4, and 1,4, the two equations

1 = (4B — 0 )/(By— ay)

My = (04 — B)/(By— ay)
have no unique solution for four structural parameters a,, a,, B4,
and [3,

“Identifying” the demand or supply equation from the data is linked
to a unique solution for the structural parameters

Both the demand and supply equations are not identified or
unidentified
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A Modified Market Model

Q =a,+a,P, +a,Y; + €, (demand equation)
Q= B4 + B,P; + €, (supply equation)
Coefficients of the reduced form

Mg = (0B — axB4)/(B2— ), Ty, = a3,/ (B, — ay)
Ty = (0 = B4)/(By— 0y), Ty = a5/(By— )

with OLS estimates Pij; I, j=1,2,=1,2

Supply equation: estimates for 3,, 3, are uniquely determined
b, = P12/P22: by = P1y— P21bs

Demand equation: only two equations for a,, ..., a;
81 = P1q — P18y, 83 = Ppo(b; — &)

No unique solutions

The supply equation is identified, the demand equation is unidentified
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One more Market Model

Q =a,+a,P, +a,Y; + €, (demand equation)
Q =By + BoP + B3 + €, (supply equation)

OLS estimates for reduced form parameters p;, i=1, 2, j=1, ..., 3, give
estimates

a, = P13/P23: by = P12/Pa2

The parameters of the demand equation are uniquely determined:
az = Pp(by— ay), a4 = Py — P,

The supply equation parameters are uniquely determined:
bs = = Pa3(by— a3), by = Py — P21b;

Both the supply equation and the demand equation are identified
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Counting the Parameters

Number of structural parameters:

o A: mxm non-singular matrix, i.e., m? parameters

o [ mxK matrix, i.e., mK parameters

o 2 mxm symmetric, positive definite matrix, i.e., m(m+1)/2 parameters
Number of reduced form parameters:

o [l mxK matrix, i.e., mK parameters

o Q: mxm symmetric, positive definite matrix , i.e., m(m+1)/2 parameters

Number of structural parameters exceeds that of reduced form
parameters by m?

|dentification requires further information such as restrictions for
parameters
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Identification: Parameter
Restrictions

Restrictions on structural parameters: reduce the number of
parameters to be estimated, so that equations are identified

Normalization: in each structural equation, one coefficient is a “1”

Exclusion: the omission of a regressor in an equation results in a
zeroin Aorl,i.e., reduces the number of structural parameters

|dentities, like equations 4 through 6 in Klein’s | model, reduce the
number of structural parameters to be estimated

Linear — or non-linear — restrictions on structural parameters,
restrictions on the elements of 2 also, reduce the number of
structural parameters to be estimated

Check of identification
Order condition
Rank condition
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Order Condition

Model with m endogenous variables (and equations), K regressors
A =Tz + ¢
Equation J:
o m;: number of explanatory endogenous variables
o m;": number of excluded endogenous variables (m*=m—-m, - 1)
o K*: number of excluded exogenous variables (K" = K- K|)

Order Condition: Equation j is identified if

K* 2z m.
J J

l.e., the number of exogenous variables excluded from equation j is
at least as large as the number of explanatory endogenous

variables included in the equation

The order condition is a necessary but not sufficient condition for
identification
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Market Model

Model:
Q =a, +a,P, +a,Y, + €, (demand equation)
Q= B4 + B, + €, (supply equation)
m=2(Q, P), K= 2 (1 for the intercept, Y)
Supply equation (j = 2):
m*=0,m,=1, K, =1, K, =1
Order condition is fulfilled: K,* =1 = m, = 1, the supply equation is
identified
Demand equation (j = 1):
m*=0,m=1,K*=0,K, =2

Order condition is not fulfilled: K;* = 0 < m, = 1; the demand equation

IS not identified
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Rank Condition

Model with m endogenous variables (and equations), K regressors
A =Tz + ¢
Equation J:
o A*: obtained by deleting from A the j-th row and all column with a non-
zero element in the j-th row

o [*: obtained by deleting from I the j-th row and all column with a non-
zero element in the j-th row

Rank Condition: Equation j is identified if

r(A*| I*y=2m-1
l.e., the rank of the matrix (A*| ['*) is at least as large as the number
of endogenous variables minus 1
The order condition is a sufficient condition for identification of
equation j
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IS-LM Model

C,=V1— 0, Y, + €, C: consumption, /: investments, R:
interest rate, Y: production/income,
M: money, Z: autonomous expendi-
e S tures
=C, +/ +
t =t endo.: C,/,R,Y (m=4); exo.: 1,M,Z (K=3)

Equation 1:
o  Order condition: K;*=22m, =1
o Rank condition: r(A*|T*)=32m-1=3
(10 0a,y, 00

0 la, 0y, 00

001a,0y,O0
\—-1-10 1 0 01
Both conditions are fulfilled, equation 1 is identified

Iy =¥y — QxR + €
{ = — Ogy Vi + YoM + €3

1 a,, 0 0)
(4 T)=[0 1y, 0

(4 T)=
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Identification Checking: The
Practice

A multi-equation model is identified if each equation is identified
Most equations which fulfill the order condition also fulfill the rank
condition

|dentification checking for small models is usually easy; equations
of large models usually are identified (large models contain large
numbers of predetermined variables)

Addition of an equation to an identified model: the resulting model is
identified if the new equation contains at least one additional

variable
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Identification: More Notation

Equation j is
Exactly identified: K* = m, and rank condition is met
Overidentified: K* > m, and rank condition is met
Underidentified: Ki* < m, or rank condition fails
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Simultaneous Equation
Models: Estimation Methods

Single equation methods, also limited information methods
o Indirect least squares estimation (ILS)
o Two stage least squares estimation (2SLS or TSLS)
o Limited information ML estimation (LIML)

(Complete) system methods, also full information methods
o Three stage least squares estimation (3SLS )
o Full information ML estimation (FIML)
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The Modified Market Model

Estimator for 3, from
Q, = a,P, + a;Y, + €, (demand equation)
Q, = B,P, + €, (supply equation)
with contemporaneously correlated error terms
T-vectors p and q,

OLS estimate for 3, from the supply equation: b, = (p'p)'p'q; is
biased

IV estimate for 3, with instrumental variable Y: b,V = (y'p)'y'q; is
consistent

ILS estimate: b,'~> = p./p, = (V'p)'y'q

with OLS estimates p, and p, for 1, and 1T, from the reduced form
P=1m,Y+u,
Q=1,Y + u,
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Modified Market Model, cont'd

2SLS estimate for 3, of the supply equation

o Step 1: Regression of the explanatory variable P on the instrumental
variable Y, calculation of fitted values

p=lyyy'yely A
o Step 2: OLS estimation of B, from Q; = B,P + v,
b =(p'p) " p'q
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OLS Estimation

OLS estimators of structural parameters: in general
o biased
o not consistent
But often a feasible alternative

o OLS estimator is efficient, i.e., has minimal variance; may be a good
estimator in spite of unbiasedness

o Tends to be robust against not fulfilled assumptions

o May be advantageous for small or moderate sample sizes; not
depending upon asymptotics

OLS estimators for parameters of recursive simultaneous equation

models: asymptotically unbiased

OLS technique: important procedure in all estimation methods for
simultaneous equation models
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Indirect Least Squares (ILS)
Estimation

Model with m endogenous variables (and equations), K regressors
Structural form
Ay, =Tz +¢, Vg =2
Reduced form
Vi = ATl z + Ale =Nz + u, V{ug =0
Estimation of the structural parameters of equation J:
o Step 1: OLS estimation of reduced form parameters I1

o Step 2: Calculation of estimates for structural parameters, solving Al'l =
[ for the structural parameters of equation j

Estimation of structural parameters of equation j: equation j needs
to be identified
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Two Stage Least Squares
(2SLS) Estimation

Estimation of structural parameters of equation j
Y= XiBy+ & = Yo+ Zyy; t &
with X;: [Tx(m-1+K;)]-matrix of explanatory variables, Y;: [Tx(m;-1)]-
matrix of explanatory endogenous variables, Z;: (TxK;)-matrix of
exogenous variables
2SLS (or TSLS) estimation in two steps:

o Step 1: OLS estimation of reduced form parameters [1, calculation of
predictions Y,

o Step 2: OLS estimation of structural parameters f3;, using
Y =AXjBJ' Y
with X]. = (Vj Z;)
2SLS (or TSLS) estimation of structural parameters of equation j requires the
equation to be identified
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Example: Hog Market

US hog market 1922-1941 (Merill & Fox, 1971): P: retail price for hog

(US cents p.Ib.), Q: hog-consumption p.c., Y: income p.c. (USD), Z:

exogenous production factor

100

Q —

80

TN

1922 1924 1926 1928 1930 1932 1934 1936 1938 1940
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Hog Market: The Model

Model with endogenous variables Q, P, exogenous variables Y, Z
Q =a, +a,P, +a,Y, + €, (demand equation)
Q =P+ BP + B3Zi + €, (supply equation)
both equations are exactly identified

Coefficients of demand and supply equation estimated by three single
equation methods

Separate OLS estimation of both equations
ILS estimation
2SLS estimation
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Example: Hog Market

Comparison of three single equation estimation methods
Strong coincidence of ILS and 2SLS estimates
OLS estimates of demand equation deviates substantially from ILS

and 2SLS estimates

const

OLS coeff 56.962
p-val 8.7e-9
2SLS coeff 60.885
p-val 4.2e-9

ILS coeff 60.885

April 29, 2011

p
-1.410
0.002
-3.088
0.001

-3.088

Y
0.080
0.003
0.149
0.000
0.149
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const

15.355

0.004
8.318
0.241
8.318

P Z
-0.030 0.744
0.701 1.4e-10
0.177  0.770
0.222 2.9e-24
0.177  0.770
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25LS Estimator: Properties

2SLS (or TSLS) estimation of structural parameters of equation j
requires the equation to be identified

Order condition K* 2 m;: number of excluded exogenous variables
(K) is at least the number of explanatory endogenous variables

(my)
i.e., the number of potential instrumental variables is at least the
number of variables to be substituted by predictions

Properties: 2SLS estimators are
Consistent
Asymptotically normally distributed
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LIML Estimator

Limited information ML (LIML) estimation:

Maximization of the likelihood function derived from the system of
o one structural equation

o reduced form equations for the remaining endogenous variables

o Assumes normally distributed error terms

Application:

Asymptotic distribution of LIML estimator equivalent to that of the
2SLS estimator

Wrt computational effort, 2SLS estimation is much easier to use
In practical applications, LIML estimation is hardly used
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Why System Estimation
Methods?

Single equation (limited information) estimation methods ignore the
contemporaneous correlation of error terms

System (full information, complete system) estimation methods take
contemporaneous correlation of error terms into account

Estimation of equation parameters is more efficient: estimation of
coefficients of equation j makes use information contained in other
equations

Estimation methods

o 3SLS estimation

o lterative 3SLS estimation

o Full information ML (FIML) estimation
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3SLS Estimator

The m equations of the full model in matrix notation

/)ﬁ\
y=|

kym/

with V=V{& =307 =

/Xl

L0

0 )

\O-lm

(B
E

\Bm)

g )

Im

2

/51\

O'm/

\Em/

17

n

3SLS estimation: FGLS estimation based on
2SLS residuals for each of the m equations
estimate for 2 obtained from these residuals

April 29, 2011
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3SLS Estimator: Three Steps

The steps of the 3SLS estimation are

Based on the reduced form equations, calculation of predicted
values for all explanatory endogenous variables; cf. the first stage

of 2SLS estimation
For the j-th equation, j=1, ..., m,
o Calculation of 2SLS estimators b, and
0 2SLSresiduals e; = y; — Xib,
Estimation of elements o;; = Cov{gy, €;} of 2: s; = (¢/'¢))/ T
Calculation of the 3SLS estimator
P =[X(ST OP)XT' XS OP)y
with the projection matrix P, = Z(Z'2)'Z‘, S the estimated matrix
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3SLS Estimator: Properties

3SLS estimation requires all equations of the system to be identified
Properties: 3SLS estimators are

Consistent

Asymptotically normally distributed
3SLS estimates coincide with 2SLS estimates if

All equations are exactly identified

The error terms are contemporaneously uncorrelated, i.e., 2 is
diagonal
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Example: Hog Market

Comparison of 2SLS and 3SLS estimation

Strong coincidence of 3SLS and 2SLS estimates
Smaller p-values of most 3SLS estimate indicate higher efficiency

const P Y
3SLS coeff 60.885 -3.088 0.149
p-val 1.8e-10 0.002 6.9e-5
2SLS coeff 60.885 -3.088 0.149
p-val 4.2e-9 0.001 0.000
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const
8.318
0.204
8.318
0.241

P
0.177
0.186
0.177
0.222

Z
0.770
2.9e-28
0.770
2.9e-24
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More System Estimators

lterative 3SLS estimator
3SLS estimates b3SLS of structural parameters (or A3SLS and [3SLS)
give
o revised reduced form parameters (A-'l' = M) and
o predictions of the explanatory endogenous variables;
lterative 3SLS estimator: starting with an initial 3SLS estimator, the

following iterations are repeatedly executed until convergence is
reached

o Outer iteration: step 1 of 3SLS estimation resulting in improved
predictions of the predetermined variables,

o Inner iteration: step 2 of 3SLS estimation, resulting in improved 2SLS
residuals and estimate S for 2, and step 3, resulting in improved 3SLS
estimators b3SLS

o The inner iteration can be repeated using 3SLS residuals for estimate S
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More System Estimators, cont'd

Full information ML (FIML) estimator:
Assumes normally distributed error terms
Maximizes likelihood function with respect to structural parameters
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Simultaneous Equation Models
in GRETL

Model > Simultaneous Equations ...
choice of estimator

a

oL O O O

SUR
2SLS
LIML
3SLS
FIML

Specification of equations, instrumental variables, endogenous
variables, and identities
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Your Homework

Klein’s model | consists of the following equations (see the GRETL data
file “klein”):
C,=a, + P+ a;P. 4, + a,W, + g, (consumption)
Iy =By + BoPyt BsPyy + ByKiq + &y  (investment)
WP =¥y + VX + V3 Xiy + Vut + €5 (Wages)

Wi =W+ W
Xi=Ci+ L+ G,
K= I+ Ky

P= X~ Wp~T,
Endogenous variables are: CI Wp X W K P

Which of the equations are identified? Use (a) order and (b) rank
conditions in answering the question.

Estimate the structural parameters using (a) OLS, (b) SUR, (c)
2SLS, (d) 3SLS, and (e) FIML; compare the results and explain pros
and-cons-of the methods.
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Your Homework, cont’d

The goodness of fit measure

- S.(B) _ i tr(S7'2)

1 -1
S ¢ (0) tr(S S yy)
makes use of - -
(= VLAVl VR — -1 S ('L
S, (b)=(-Xb)V " (y-Xb)=Ttr(S"'%), 2=(E"'E)/T
with the Txm matrix £ = (81,- .. ,em) of FGLS residuals and
analogously the mxm matrix S, of sample covariances of the ;.

Show for T = m = 2 that the two numerators in the definition of R;,
Sq(-) and tr(.), coincide.
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