Econometrics 2 - Lecture 6

Multivariate Time Series Models (part 2)

Contents

- Non-stationary Time Series
- Cointegration
- VAR Models
- VAR Models and Cointegration
- VEC Model: Cointegration Tests
- VEC Model: Specification and Estimation

Regression and Time Series

Stationary variables are a crucial prerequisite for

- estimation methods
- testing procedures
- applied to regression models
- Specifying a relation between non-stationary variables may result in a nonsense or spurious regression

Spurious Regression: Example

Generation of Y_t by

$$Y_{t} = Y_{t-1} + \varepsilon_{t}$$

i.e., Y_t is a random walk, $Y_t \sim I(1)$; similarly $X_t \sim I(1)$ Model to be estimated:

 $Y_t = \alpha + \beta X_t + \varepsilon_t$

it follows (in general) that $\varepsilon_t \sim I(1)$, i.e., the error terms are non-stationary

- (Asymptotic) distributions of *t* and *F* -statistics are different from those for stationarity
- R² indicates explanatory potential
- DW statistic converges for growing *N* to zero

Avoiding Spurious Regression

- Identification of non-stationarity: unit-root tests
- Models for non-stationary variables
 - Elimination of stochastic trends: differencing, specifying the model for differences
 - Inclusion of lagged variables may result in stationary error terms
 - Explained and explanatory variables may have a common stochastic trend, are cointegrated: equilibrium relation, error-correction models
- Example: ADL(1,1) model with $Y_t \sim I(1)$, $X_t \sim I(1)$

 $Y_t = \delta + \theta Y_{t-1} + \varphi_0 X_t + \varphi_1 X_{t-1} + \varepsilon_t$

• The error terms are stationary if $\theta = 1$, $\phi_0 = \phi_1 = 0$

 $\varepsilon_t = Y_t - (\delta + \theta Y_{t-1} + \varphi_0 X_t + \varphi_1 X_{t-1}) \sim I(0)$

□ Common trend implies an equilibrium relation, i.e., $Y_{t-1} - \beta X_{t-1} \sim I(0)$; the ADL(1,1) model has an error-correction form

$$\Delta Y_{t} = \varphi_{0} \Delta X_{t} - (1 - \theta) (Y_{t-1} - \alpha - \beta X_{t-1}) + \varepsilon_{t}$$

Contents

- Non-stationary Time Series
- Cointegration
- VAR Models
- VAR Models and Cointegration
- VEC Model: Cointegration Tests
- VEC Model: Specification and Estimation

Cointegration

Non-stationary variables *X*, *Y*:

 $X_{t} \sim I(1), Y_{t} \sim I(1)$

if a β exists such that

 $Z_t = Y_t - \beta X_t \sim I(0)$

- X_t and Y_t have a common stochastic trend
- X_t and Y_t are called "cointegrated"
- β: cointegration parameter
- (1, β)': cointegration vector

Cointegration implies a long-run equilibrium; cf. Granger's representation theorem

Error-correction Model

Granger's Representation Theorem (Engle & Granger, 1987): If a set of variables is cointegrated, then an error-correction (EC) relation of the variables exists

non-stationary processes $Y_t \sim I(1)$, $X_t \sim I(1)$ with cointegrating vector (1, - β)': error-correction representation

 $\Theta(L)\Delta Y_t = \delta + \Phi(L)\Delta X_{t-1} - \gamma(Y_{t-1} - \beta X_{t-1}) + \alpha(L)\varepsilon_t$

with white noise ε_t , lag polynomials $\theta(L)$ (with $\theta_0=1$), $\Phi(L)$, and $\alpha(L)$

- Error-correction model: describes
 - the short-run behavior
 - consistently with the long-run equilibrium
- Converse statement: if $Y_t \sim I(1)$, $X_t \sim I(1)$ have an error-correction representation, then they are cointegrated

An Example

The model

 $\Delta Y_{t} = \delta + \varphi_{1} \Delta X_{t-1} - \gamma (Y_{t-1} - \beta X_{t-1}) + \varepsilon_{t}$

is a special case of

 $\theta(L)\Delta Y_{t} = \delta + \Phi(L)\Delta X_{t-1} - \gamma(Y_{t-1} - \beta X_{t-1}) + \alpha(L)\varepsilon_{t}$

with $\theta(L) = 1$, $\Phi(L) = \phi_1 L$, and $\alpha(L) = 1$

• No change steady state equilibrium for $\Delta Y_t = \Delta X_{t-1} = 0$:

 $Y_t - \beta X_t = \delta / \gamma$ or $Y_t = \alpha + \beta X_t$ if $\alpha = \delta / \gamma$

the EC model can be written as

 $\Delta Y_{t} = \varphi_{1} \Delta X_{t-1} - \gamma (Y_{t-1} - \alpha - \beta X_{t-1}) + \varepsilon_{t}$

• If $\alpha = \delta/\gamma + \lambda$, $\lambda \neq 0$:

 $\Delta Y_{t} = \lambda + \varphi_{1} \Delta X_{t\text{-}1} - \gamma (Y_{t\text{-}1} - \alpha - \beta X_{t\text{-}1}) + \varepsilon_{t}$

deterministic trends for Y_t and X_t , long run equilibrium corresponding to growth paths $\Delta Y_t = \Delta X_{t-1} = \lambda/(1 - \varphi_1)$

May 6, 2011

EC Model: Estimation

Model

$$\Delta Y_{t} = \delta + \varphi_{1} \Delta X_{t-1} - \gamma (Y_{t-1} - \beta X_{t-1}) + \varepsilon_{t} \qquad (A)$$

with cointegrating relation

$$Y_{t-1} = \beta X_{t-1} + u_t$$

- Cointegration vector (1, β)' known: OLS estimation of δ, φ₁, and γ from (A), standard properties
- Unknown cointegration vector:
 - **Parameter** β from (B) superconsistently estimated by OLS
 - OLS estimation of δ, $φ_1$, and γ from (A) is not affected by using the estimate for β

Model specification

- Choice of orders of lag polynomials
- Theory is symmetric in treating X_t and Y_t

Example: Purchasing Power Parity

- Verbeek's dataset ppp: price indices and exchange rates for France and Italy, T = 186 (1/1981-6/1996)
- Variables: LNIT (log price index Italy), LNFR (log price index France), LNX (log exchange rate France/Italy)
- Purchasing power parity (PPP): exchange rate between the currencies (Franc, Lira) equals the ratio of price levels of the countries
- Relative PPP: equality fulfilled only in the long run; equilibrium or cointegrating relation

 $LNX_t = \alpha + \beta LNP_t + \varepsilon_t$ with $LNP_t = LNIT_t - LNFR_t$, i.e., the log of the price index ratio France/Italy

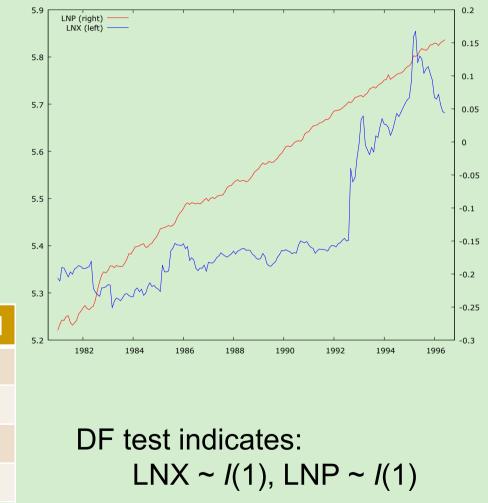
Purchasing Power Parity

Test for unit roots (nonstationarity) of

- LNX (log exchange rate France/Italy)
- LNP = LNIT LNFR, i.e., the log of the price index ratio France/Italy

Results from DF tests:

		const.	+trend
LNP	DF stat	-0.99	-2.96
	<i>p</i> -value	0.76	0.14
LNX	DF stat	-0.33	-1.90
	<i>p</i> -value	0.92	0.65



PPP: Equilibrium Relations

As discussed by Verbeek:

- 1. If PPP holds in long run, real exchange rate is stationary $LNX_t (LNIT_t LNFR_t) = \varepsilon_t$
- 2. Change of relative prices correspond to the change of exchange rate, i.e., short run deviations are stationary

 $LNX_t - \beta (LNIT_t - LNFR_t) = \varepsilon_t$

3. Generalization of case 2:

```
LNX_t = \alpha + \beta_1 LNIT_t - \beta_2 LNFR_t + \epsilon_t
with \epsilon_t \sim I(0)
```

Equilibrium Relation 2

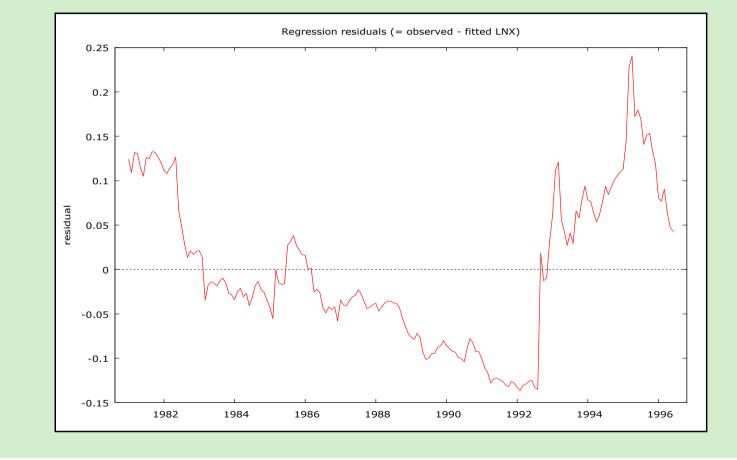
OLS estimation of

 $LNX_t = \alpha + \beta LNP_t + \varepsilon_t$

Model 2: OLS, using observations 1981:01-1996:06 (T = 186) Dependent variable: LNX								
coefficient std. error t-ratio p-value								
const LNP	5,48720 0,982213	0,00677678 0,0513277	809,7 19,14	0,0000 * 1,24e-045	**			
Mean dependent var Sum squared resid R-squared F(1, 184) Log-likelihood Schwarz criterion rho		5,439818 1,361936 0,665570 366,1905 193,3435 -376,2355 0,967239	S.E. of re	R-squared) iterion Quinn	0,148368 0,086034 0,663753 1,24e-45 -382,6870 -380,0726 0,055469			

Equilibrium Relation 2

Residuals = $LNX_t - (a + b LNP_t)$ with OLS estimates *a*, *b*



PPP: Tests for Cointegration

Residuals from $LNX_t = \alpha + \beta LNP_t + \varepsilon_t$:

- Time series plot indicates non-stationary residuals
- Tests for cointegration, H_0 : residuals have unit root, no cointegration
 - DF test statistic (with constant): -1.90, 5% critical value: -3.37
 - CRDW test: DW statistic: 0.055 < 0.20, the 5% critical value for two variables, 200 observations
- Both tests suggest: H_0 cannot be rejected, no evidence for cointegration

Same result for equilibrium relations 1 and 3; reasons could be:

- Time series too short
- No PPP between France and Italy

Attention: equilibrium relation 3 has three variables; two cointegration relations are possible

Contents

- Non-stationary Time Series
- Cointegration
- VAR Models
- VAR Models and Cointegration
- VEC Model: Cointegration Tests
- VEC Model: Specification and Estimation

Example: Income and Consumption

Model for income (Y) and consumption (C)

 $Y_{t} = \delta_{1} + \theta_{11}Y_{t-1} + \theta_{12}C_{t-1} + \varepsilon_{1t}$ $C_{t} = \delta_{2} + \theta_{21}C_{t-1} + \theta_{22}Y_{t-1} + \varepsilon_{2t}$

with (possibly correlated) white noises ϵ_{1t} and ϵ_{1t}

Notation: $Z_t = (Y_t, C_t)^{\circ}$, 2-vectors δ and ϵ , and (2x2)-matrix $\Theta = (\theta_{ij})$, the model is

$$\begin{pmatrix} Y_t \\ C_t \end{pmatrix} = \begin{pmatrix} \delta_1 \\ \delta_2 \end{pmatrix} + \begin{pmatrix} \theta_{11} & \theta_{12} \\ \theta_{21} & \theta_{22} \end{pmatrix} \begin{pmatrix} Y_{t-1} \\ C_{t-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{pmatrix}$$

in matrix notation

 $Z_{t} = \delta + \Theta Z_{t-1} + \varepsilon_{t}$

- Represents each component of Z as a linear combination of lagged variables
- Extension of the AR-model to the 2-vector Z_t: vector autoregressive model of order 1, VAR(1) model

The VAR(p) Model

VAR(*p*) model: generalization of the AR(*p*) model for *k*-vectors Y_t Y_t = δ + Θ₁Y_{t-1} + ... + Θ_pY_{t-p} + ε_t with *k*-vectors Y_t, δ, and ε_t and *kxk*-matrices Θ₁, ..., Θ_p
Using the lag-operator L: Θ(L)Y_t = δ + ε_t with matrix lag polynomial Θ(L) = I - Θ₁L - ... - Θ_pL^p

- $\Box \quad \Theta(L) \text{ is a } k \times k \text{-matrix}$
- Each matrix element of $\Theta(L)$ is a lag polynomial of order p

Error terms ε_t

- \square have covariance matrix Σ ; allows for contemporaneous correlation
- are independent of Y_{t-j} , j > 0, i.e., of the past of the components of Y_t

The VAR(p) Model, cont'd

VAR(p) model for the *k*-vector Y_t

$$Y_{t} = \delta + \Theta_{1}Y_{t-1} + \ldots + \Theta_{p}Y_{t-p} + \varepsilon_{t}$$

• Vector of expectations of Y_t : assuming stationarity $E\{Y_t\} = \delta + \Theta_1 E\{Y_t\} + ... + \Theta_p E\{Y_t\}$

gives

 $\mathsf{E}\{Y_t\} = \mu = (\mathsf{I}_k - \Theta_1 - \dots - \Theta_p)^{-1}\delta = \Theta(1)^{-1}\delta$

i.e., stationarity requires that the $k \times k$ -matrix $\Theta(1)$ is invertible

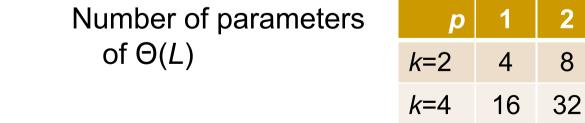
- In deviations $y_t = Y_t \mu$, the VAR(*p*) model is $\Theta(L)y_t = \varepsilon_t$
- MA representation of the VAR(p) model, given that $\Theta(L)$ is invertible $Y_t = \mu + \Theta(L)^{-1}\varepsilon_t = \mu + \varepsilon_t + A_1\varepsilon_{t-1} + A_2\varepsilon_{t-2} + \dots$
- VARMA(*p*,*q*) Model: Extension of the VAR(*p*) model by multiplying ε_t (from the left) with a matrix lag polynomial of order *q*

Reasons for Using a VAR Model

VAR model represents a set of univariate ARMA models, one for each component

- Reformulation of simultaneous equation models as dynamic models
- To be used instead of simultaneous equation models:
 - No need to distinct a priori endogenous and exogenous variables
 - No need for a priori identifying restrictions on model parameters
- Simultaneous analysis of the components: More parsimonious, fewer lags, simultaneous consideration of the history of all included variables
- Allows for non-stationarity and cointegration

Attention: the number of parameters to be estimated increases with *k* and *p*



3

12

48

Simultaneous Equation Models in VAR Form

Model with *m* endogenous variables (and equations), *K* regressors

 $Ay_{t} = \Gamma z_{t} + \varepsilon_{t} = \Gamma_{1} y_{t-1} + \Gamma_{2} x_{t} + \varepsilon_{t}$

with *m*-vectors y_t and ε_t , *K*-vector z_t , $(m \times m)$ -matrix A, $(m \times K)$ -matrix Γ , and $(m \times m)$ -matrix $\Sigma = V{\varepsilon_t}$;

- *z*_t contains lagged endogenous variables *y*_{t-1} and exogenous variables *x*_t
- Rearranging gives

 $y_t = \Theta y_{t-1} + \delta_t + v_t$ with $\Theta = A^{-1} \Gamma_1$, $\delta_t = A^{-1} \Gamma_2 x_t$, and $v_t = A^{-1} \varepsilon_t$

Extension of y_t by regressors x_t: the matrix δ_t becomes a vector of intercepts

Example: Income and Consumption

Model for income (Y_t) and consumption (C_t) $Y_{t} = \delta_{1} + \theta_{11}Y_{t-1} + \theta_{12}C_{t-1} + \varepsilon_{1t}$ $C_{t} = \delta_{2} + \theta_{21}C_{t-1} + \theta_{22}Y_{t-1} + \varepsilon_{2t}$ with (possibly correlated) white noises ε_{1t} and ε_{1t} Matrix form of the simultaneous equation model: A $(Y_{t}, C_{t})^{\prime} = \Gamma (1, Y_{t-1}, C_{t-1})^{\prime} + (\varepsilon_{1t}, \varepsilon_{2t})^{\prime}$ with $\mathbf{A} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \Gamma = \begin{pmatrix} \delta_1 \\ \theta_{11} \\ \theta_{12} \\ \delta_2 \\ \theta_{21} \\ \theta_{22} \end{pmatrix}$ VAR(1) form: $Z_t = \delta + \Theta Z_{t-1} + \varepsilon_t$ or $\begin{pmatrix} Y_t \\ C \end{pmatrix} = \begin{pmatrix} \delta_1 \\ \delta \end{pmatrix} + \begin{pmatrix} \theta_{11} & \theta_{12} \\ \theta & \theta \end{pmatrix} \begin{pmatrix} Y_{t-1} \\ C \end{pmatrix} + \begin{pmatrix} \varepsilon_{1t} \\ \varepsilon \end{pmatrix}$

VAR Model: Estimation

VAR(p) model for the *k*-vector Y_t

$$Y_{t} = \delta + \Theta_{1}Y_{t-1} + \ldots + \Theta_{p}Y_{t-p} + \varepsilon_{t}, \forall \{\varepsilon_{t}\} = \Sigma$$

• Each component of Y_t : a linear combination of lagged variables

- Error terms: Possibly contemporaneously correlated, covariance matrix Σ, uncorrelated over time
- SUR model

Estimation, given the order *p* of the VAR model

- OLS estimates of parameters in $\Theta(L)$ are consistent
- Estimation of Σ based on residual vectors $e_t = (e_{1t}, ..., e_{kt})$ ':

$$S = \frac{1}{T-p} \sum_{t} e_t e_t'$$

 GLS estimator coincides with OLS estimator: same explanatory variables for all equations

VAR Model: Estimation, cont'd

Choice of the order *p* of the VAR model

- Estimation of VAR models for various orders p
- Choice of *p* based on Akaike or Schwarz information criterion

Income and Consumption

AWM data base, 1970:1-2003:4: *PCR* (real private consumption), *PYR* (real disposable income of households); respective annual growth rates: *C*, *Y*

Fitting $Z_t = \delta + \Theta Z_{t-1} + \varepsilon_t$ with Z = (Y, C)' gives

		δ	Y1	C ₋₁	adj.R ²
Y	θ_{ij}	0.001	0.825	0.082	0.80
	$t(\Theta_{ij})$	0.91	12.09	1.07	
С	Θ_{ij}	0.003	0.061	0.826	0.78
	$t(\Theta_{ij})$	2.36	0.97	11.69	

with AIC = -14.40; for the VAR(2) model: AIC = -14.35 In GRETL: OLS equation-wise, VAR estimation, SUR estimation give very similar results

Impulse-response Function

MA representation of the VAR(p) model

 $Y_t = \Theta(1)^{-1}\delta + \varepsilon_t + A_1\varepsilon_{t-1} + A_2\varepsilon_{t-2} + \dots$

- Interpretation of A_s : the (*i*,*j*)-element of A_s represents the effect of a one unit increase of ε_{it} upon the *i*-th variable $Y_{i,t+s}$ in Y_{t+s}
- Dynamic effects of a one unit increase of ε_{jt} upon the *i*-th component of Y_t are corresponding to the (*i*,*j*)-th elements of I_k , A_1 , A_2 , ...
- The plot of these elements over *s* represents the impulse-response function of the *i*-th variable in Y_{t+s} on a unit shock to ε_{it}

Stationarity

AR(1) process $Y_t = \theta Y_{t-1} + \varepsilon_t$

is stationary, if the root z of the characteristic polynomial

 $\Theta(z) = 1 - \theta z = 0$

fulfills |z| > 1, i.e., $|\theta| < 1$;

- \Box $\Theta(z)$ is invertible, i.e., $\Theta(z)^{-1}$ can derived such that $\Theta(z)^{-1}\Theta(z) = 1$
- □ Y_t can be represented by a MA(∞) process: $Y_t = \Theta(z)^{-1}\varepsilon_t$
- is non-stationary, if

z = 1 or $\theta = 1$

i.e., $Y_t \sim I(1)$, Y_t has a stochastic trend

VAR Models, Stationarity, and Cointegration

VAR(1) model for the k-vector Y_t

 $Y_t = \delta + \Theta_1 Y_{t-1} + \varepsilon_t$

• If $\Theta(L)$ is invertible,

 $Y_t = \Theta(1)^{-1}\delta + \Theta(L)^{-1}\varepsilon_t = \mu + \varepsilon_t + A_1\varepsilon_{t-1} + A_2\varepsilon_{t-2} + \dots$

i.e., each variable in Y_t is a linear combination of white noises, is a stationary I(0) variable

- If Θ(L) is not invertible, not all variables in Y_t can be stationary I(0) variables: at least one variable must have a stochastic trend
 - If all k variables have independent stochastic trends, all k variables are l(1) and no cointegrating relation exists; e.g., for k = 2:

$$\Theta(1) = \begin{pmatrix} 1 - \theta_{11} & \theta_{12} \\ \theta_{21} & 1 - \theta_{22} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

i.e., $\theta_{11} = \theta_{22} = 1$, $\theta_{12} = \theta_{21} = 0$

The more interesting case: at least one cointegrating relation; number of cointegrating relations equals the rank $r\{\Theta(1)\}$ of matrix $\Theta(1)$

Example: A VAR(1) Model

VAR(1) model for *k*-vector Y in differences with $\Theta(L) = I - \Theta_1 L$

 $\Delta Y_t = -\Theta(1)Y_{t-1} + \delta + \varepsilon_t$

 $r = r\{\Theta(1)\}$: rank of $(k \times k)$ matrix $\Theta(1) = I_k - \Theta_1$

- 1. r = 0: then $\Delta Y_t = \delta + \varepsilon_t$, i.e., Y is a *k*-dimensional random walk, each component is *I*(1), no cointegrating relationship
- 2. r < k: (k r)-fold unit root, $(k \times r)$ -matrices γ and β can be found, both of rank r, with

 $\Theta(1) = \gamma \beta'$

the *r* columns of β are the cointegrating vectors of *r* cointegrating relations (β in normalized form, i.e., the main diagonal elements of β being ones)

3. r = k: VAR(1) process is stationary, all components of Y are I(0)

Cointegration Space

Given a set of *k* variables, the components of the *k*-vector $Y_t \sim I(1)$ Cointegration space:

- Among the *k* variables, $r \le k-1$ independent linear relations $\beta_j Y_t$, j = 1, ..., *r*, are possible so that $\beta_j Y_t \sim I(0)$
- Individual relations can be combined with others and these are again *I*(0), i.e., not the individual cointegrating relations are identified but only the *r*-dimensional space
- Cointegrating relations should have an economic interpretation
 Cointegration matrix β:
- The $k_x r$ matrix $\beta = (\beta_1, ..., \beta_r)$ of vectors β_j that state the cointegrating relations $\beta_j Y_t \sim I(0), j = 1, ..., r$
- Cointegrating rank: the rank of matrix β : r{ β } = r

Contents

- Non-stationary Time Series
- Cointegration
- VAR Models
- VAR Models and Cointegration
- VEC Model: Cointegration Tests
- VEC Model: Specification and Estimation

Granger's Representation Theorem

Granger's Representation Theorem (Engle & Granger, 1987): If a set of *I*(1) variables is cointegrated, then an error-correction (EC) relation of the variables exists

Extends to VAR models: if the I(1) variables of the *k*-vector Y_t are cointegrated, then an error-correction (EC) relation of the variables exists

Granger's Representation Theorem for VAR Models

VAR(p) model for the *k*-vector Y_t

$$Y_{t} = \delta + \Theta_{1}Y_{t-1} + \dots + \Theta_{p}Y_{t-p} + \varepsilon_{t}$$

transformed into

 $\Delta Y_{t} = \delta + \Gamma_{1} \Delta Y_{t-1} + \dots + \Gamma_{p-1} \Delta Y_{t-p+1} + \Pi Y_{t-1} + \varepsilon_{t}$

 $\square \Pi = -\Theta(1) = -(I_k - \Theta_1 - ... - \Theta_p): "long-run matrix", determines the long$ run dynamics of Y_t

 \Box $\Gamma_1, ..., \Gamma_{p-1}$ matrices which are functions of $\Theta_1, ..., \Theta_p$

• ΠY_{t-1} is stationary: ΔY_t and ε_t are I(0)

Three cases

- 1. $r{\Pi} = r$ with 0 < r < k: there exist *r* stationary linear combinations of Y_t , i.e., *r* cointegrating relations
- 2. $r{\Pi} = 0$: then $\Pi = 0$, equation (A) is a VAR(*p*) model for stationary variables ΔY_t
- 3. $r{\Pi} = k$: all variables in Y_t are stationary, $\Pi = -\Theta(1)$ is invertible

(A)

Vector Error-Correction Model

VAR(p) model for the *k*-vector Y_t

$$Y_{t} = \delta + \Theta_{1}Y_{t-1} + \dots + \Theta_{p}Y_{t-p} + \varepsilon_{t}$$

transformed into

$$\Delta Y_{t} = \delta + \Gamma_{1} \Delta Y_{t-1} + \dots + \Gamma_{p-1} \Delta Y_{t-p+1} + \Pi Y_{t-1} + \varepsilon_{t}$$

with $r{\Pi} = r$ and $\Pi = \gamma\beta'$ gives

$$\Delta Y_{t} = \delta + \Gamma_{1} \Delta Y_{t-1} + \dots + \Gamma_{p-1} \Delta Y_{t-p+1} + \gamma \beta' Y_{t-1} + \varepsilon_{t}$$
(B)

- *r* cointegrating relations $\beta' Y_{t-1}$
- Adaptation parameters γ measure the portion or speed of adaptation of Y_t in compensation of the equilibrium error $Z_{t-1} = \beta' Y_{t-1}$
- Equation (B) is called the vector error-correction (VEC) model

Example: Bivariate VAR Model

VAR(1) model for the 2-vector $Y_t = (Y_{1t}, Y_{2t})'$

$$Y_{t} = \Theta Y_{t-1} + \varepsilon_{t}$$

Long-run matrix

$$\Pi = -\Theta(1) = \begin{pmatrix} \theta_{11} - 1 & \theta_{12} \\ \theta_{21} & \theta_{22} - 1 \end{pmatrix}$$

• $\Pi = 0$, if $\theta_{11} = \theta_{22} = 1$, $\theta_{12} = \theta_{21} = 0$, i.e., Y_{1t} , Y_{2t} are random walks

• r{Π} < 2, if (θ₁₁ − 1)(θ₂₂ − 1) − θ₁₂ θ₂₁ = 0; cointegrating vector: β' = (θ₁₁ − 1, θ₁₂), long-run matrix

$$\Pi = \gamma \beta' = \begin{pmatrix} 1 \\ \theta_{21} / (\theta_{11} - 1) \end{pmatrix} (\theta_{11} - 1 - \theta_{12})$$

The error-correction form is

$$\begin{pmatrix} \Delta Y_{1t} \\ \Delta Y_{2t} \end{pmatrix} = \begin{pmatrix} 1 \\ \theta_{21} / (\theta_{11} - 1) \end{pmatrix} \begin{bmatrix} (\theta_{11} - 1) Y_{1,t-1} + \theta_{12} Y_{2,t-1} \end{bmatrix} + \begin{pmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{pmatrix}$$

Deterministic Component

VEC(p) model for the *k*-vector Y_t

 $\Delta Y_{t} = \delta + \Gamma_{1} \Delta Y_{t-1} + \dots + \Gamma_{p-1} \Delta Y_{t-p+1} + \gamma \beta' Y_{t-1} + \varepsilon_{t}$ (B) The deterministic component (intercept) δ :

- 1. $E{\Delta Y_t} = 0$, i.e., no deterministic trend in any component of Y_t : given that $\Gamma = I_k \Gamma_1 \dots \Gamma_{p-1}$ has full rank:
 - $\Box \quad \Gamma \in \{\Delta Y_t\} = \delta + \gamma \in \{Z_{t-1}\} = 0 \text{ with equilibrium error } Z_{t-1} = \beta' Y_{t-1}$
 - E{ Z_{t-1} } corresponds to the intercepts of the cointegrating relations; with *r*-dimensional vector E{ Z_{t-1} } = α

$$\Delta Y_{t} = \Gamma_{1} \Delta Y_{t-1} + \dots + \Gamma_{p-1} \Delta Y_{t-p+1} + \gamma(-\alpha + \beta' Y_{t-1}) + \varepsilon_{t}$$
(C)

 Intercepts only in the cointegrating relations, i.e., no deterministic trend in the model

Deterministic Component, cont'd

VEC(p) model for the *k*-vector Y_t

 $\Delta Y_{t} = \delta + \Gamma_{1} \Delta Y_{t-1} + \dots + \Gamma_{p-1} \Delta Y_{t-p+1} + \gamma \beta' Y_{t-1} + \varepsilon_{t}$ (B) The deterministic component (intercept) δ :

2. Addition of a *k*-vector λ with identical components to (C)

 $\Delta Y_t = \lambda + \Gamma_1 \Delta Y_{t-1} + \dots + \Gamma_{p-1} \Delta Y_{t-p+1} + \gamma(-\alpha + \beta' Y_{t-1}) + \varepsilon_t$

- Long-run equilibrium: steady state growth with growth rate $E{\Delta Y_t} = \Gamma^{-1}\lambda$
- Deterministic trends cancel out in the long run, so that no deterministic trend in the error-correction term; cf. (B)
- Addition of k-vector λ can be repeated: up to k-r separate deterministic trends can cancel out in the error-correction term
- The general notation is equation (B) with δ containing *r* intercepts of the long-run relations and *k*-*r* deterministic trends in the variables of Y_t

The Five Cases

Based on empirical observation and economic reasoning, choice between:

- 1) Unrestricted constant: variables show deterministic linear trends
- 2) Restricted constant: variables not trended but mean distance between them not zero; intercept in the error-correction term
- 3) No constant

Generalization: deterministic component contains intercept and trend

- Constant + restricted trend: cointegrating relationships include a trend but the first differences of the variables in question do not
- Constant + unrestricted trend: trend in both the cointegration relationships and the first differences, corresponding to a quadratic trend in the variables (in levels)

Contents

- Non-stationary Time Series
- Cointegration
- VAR Models
- VAR Models and Cointegration
- VEC Model: Cointegration Tests
- VEC Model: Specification and Estimation

Choice of the Cointegrating Rank

Based on *k*-vector $Y_t \sim I(1)$

Estimation procedure needs as input the cointegrating rank r

- Engle-Granger procedure
- Johansen's R3 method

Engle-Granger Approach

Non-stationary processes $Y_t \sim I(1)$, $X_t \sim I(1)$; to be estimated:

 $Y_t = \alpha + \beta X_t + \varepsilon_t$

- Step 1: OLS-fitting
- Tests for cointegration based on residuals, e.g., DF test with special critical values; H₀: no cointegration
- If H₀ is rejected,
 - OLS fitting in step 1 gives consistent estimates of the cointegrating vector
 - Step 2: OLS estimation of the EC model based on the cointegrating vector from step 1
- Can be extended to k-vector Y_t , given that at most one cointegrating relation exists

Engle-Granger Cointegration Test: Problems

Residual based cointegration tests can be misleading

- Test results depend on specification
 - Which variables are included
 - Normalization of the cointegrating vector
- Test may be inappropriate due to wrong specification of cointegrating relation
- Test power suffers from inefficient use of information (dynamic interactions not taken into account)

Johansen's R3 Method

Reduced rank regression or R3 method: an iterative method for specifying the cointegrating rank *r*

- Also called Johansen's test
- The test is based on the k eigenvalues λ_i ($\lambda_1 > \lambda_2 > ... > \lambda_k$) of

 $Y_1 Y_1 - Y_1 \Delta Y (\Delta Y' \Delta Y)^{-1} \Delta Y' Y_1,$

with ΔY : (*Txk*) matrix of differences ΔY_t , Y_1 : (*Txk*) matrix of Y_{t-1}

- □ eigenvalues λ_i fulfill $0 \le \lambda_i < 1$
- □ if $r{\Theta(1)} = r$, the *k*-*r* smallest eigenvalues obey log(1- λ_i) = λ_i = 0, *j* = *r*+1, ..., *k*
- Iterative test procedures
 - Trace test
 - Maximum eigenvalue test or max test

Trace and Max Test: The Procedures

LR tests, based on the assumption of normally distributed errors

■ Trace test: for $r_0 = 0, 1, ...,$ test of H_0 : $r \le r_0$ (r_0 or fewer cointegrating relations) against H_1 : $r_0 < r \le k$

 $\lambda_{\text{trace}}(r_0) = -T \Sigma_{j=r0+1}^k \log(1 - \hat{l}_j)$

- $\Box \quad \hat{l}_{j}$: estimator of λ_{j}
- $\square \quad H_0 \text{ is rejected for large values of } \lambda_{\text{trace}}(r_0)$
- Stops when H_0 is not rejected for the first time
- Critical values from simulations
- Max test: tests for $r_0 = 0, 1, ...: H_0$: $r = r_0$ (the eigenvalue λ_{r0+1} is different from zero) against H_1 : $r = r_0+1$

 $\lambda_{\max}(r_0) = -T \log(1 - \hat{I}_{r0+1})$

- Stops when H_0 is not rejected for the first time
- Critical values from simulations

Trace and Max Test: Critical Limits

Critical limits are shown in Verbeek's Table 9.9 for both tests

- Depend on presence of trends and intercepts
 - Case 1: no deterministic trends, intercepts in cointegrating relations
 - Case 2: k unrestricted intercepts in the VAR model, i.e., k r deterministic trends, r intercepts in cointegrating relations
- Depend on k r
- Need small sample correction, e.g., factor (*T-pk*)/*T* for the test statistic: avoids too large values of *r*

Example: Purchasing Power Parity

- Verbeek's dataset ppp: price indices and exchange rates for France and Italy, T = 186 (1/1981-6/1996)
- Variables: LNIT (log price index Italy), LNFR (log price index France), LNX (log exchange rate France/Italy)
- Purchasing power parity (PPP): exchange rate between the currencies (Franc, Lira) equals the ratio of price levels of the countries
- Relative PPP: equality fulfilled only in the long run; equilibrium or cointegrating relation

 $LNX_t = \alpha + \beta LNP_t + \varepsilon_t$

with $LNP_t = LNIT_t - LNFR_t$, i.e., the log of the price index ratio France/Italy

Generalization:

 $LNX_t = \alpha + \beta_1 LNIT_t - \beta_2 LNFR_t + \varepsilon_t$

PPP: Cointegrating Rank r

As discussed by Verbeek: Johansen test for k = 3 variables, maximal lag order p = 3

r ₀	eigen- value	$\lambda_{\rm tr}(r_0)$	<i>p</i> -value	$\lambda_{\max}(r_0)$	<i>p</i> -value
0	0.301	93.9	0.0000	65.5	0.0000
1	0.113	28.4	0.0023	22.0	0.0035
2	0.034	6.37	0.169	6.4	0.1690

 H_0 not rejected that smallest eigenvalue equals zero: series are nonstationary

Both the trace and the max test suggest r = 2

Contents

- Non-stationary Time Series
- Cointegration
- VAR Models
- VAR Models and Cointegration
- VEC Model: Cointegration Tests
- VEC Model: Specification and Estimation

Estimation of VEC Models

Estimation of

 $\Delta Y_{t} = \delta + \Gamma_{1} \Delta Y_{t-1} + \dots + \Gamma_{p-1} \Delta Y_{t-p+1} + \Pi Y_{t-1} + \varepsilon_{t}$

requires finding (*k*×*r*)-matrices α and β with $\Pi = \alpha\beta^{\circ}$

- \square β : matrix of cointegrating vectors
- \square α : matrix of adjustment coefficients
- Identification problem: linear combinations of cointegrating vectors are also cointegrating vectors
- Unique solutions for α and β require restrictions
- Minimum number of restrictions which guarantee identification is r^2
- Normalization
 - Phillips normalization
 - Manual normalization

Phillips Normalization

Cointegrating vector

 $\beta' = (\beta_1', \beta_2')$

 $β_1$: (*r*x*r*)-matrix with rank *r*, $β_2$: [(*k*-*r*)x*r*]-matrix

Normalization consists in transforming β into

$$\hat{\beta} = \begin{pmatrix} I \\ \beta_2 \beta_1^{-1} \end{pmatrix} = \begin{pmatrix} I \\ -B \end{pmatrix}$$

with matrix B of unrestricted coefficients

- The r cointegrating relations express the first r variables as functions of the remaining k r variables
- Fulfills the condition that at least r² restrictions are needed to guarantee identification
- Resulting equilibrium relations may be difficult to interpret
- Alternative: manual normalization

Example: Money Demand

Verbeek's data set "money": US data 1:54 – 12:1994 (*T*=164)

- m: log of real M1 money stock
- infl: quaterly inflation rate (change in log prices, % per year)
- cpr: commercial paper rate (% per year)
- y: log real GDP (billions of 1987 dollars)
- tbr: treasury bill rate

Money Demand: Cointegrating Vectors

- ML estimates, lag order p = 6, cointegration rank r = 2, restricted constant
- Cointegrating vectors β₁ and β₂ and standard errors (s.e.), Phillips normalization

	m	infl	cpr	у	tbr	const
β ₁	1.00	0.00	0.61	-0.35	-0.60	-4.27
(s.e.)	(0.00)	(0.00)	(0.12)	(0.12)	(0.12)	(0.91)
β_2	0.00	1.00	-26.95	-3.28	-27.44	39.25
(s.e.)	(0.00)	(0.00)	(4.66)	(4.61)	(4.80)	(35.5)

Estimation of VEC Models: k=2

Estimation procedure consists of the following steps

- 1. Test the variables in the 2-vector Y_t for stationarity using the usual ADF tests; VEC models need I(1) variables
- 2. Determine the order *p*
- 3. Specification of
 - deterministic trends of the variables in Y_t
 - intercept in the cointegrating relation
- 4. Cointegration test
- 5. Estimation of cointegrating relation, normalization
- 6. Estimation of the VEC model

Example: Income and Consumption

Model:

 $\begin{array}{l} Y_{t} = \delta_{1} + \theta_{11}Y_{t-1} + \theta_{12}C_{t-1} + \varepsilon_{1t} \\ C_{t} = \delta_{2} + \theta_{21}C_{t-1} + \theta_{22}Y_{t-1} + \varepsilon_{2t} \\ \text{With } Z = (Y, C)^{\prime}, \text{ 2-vectors } \delta \text{ and } \varepsilon, \text{ and } (2x2)\text{-matrix } \Theta, \text{ the VAR(1)} \\ \text{model is} \\ Z_{t} = \delta + \Theta Z_{t-1} + \varepsilon_{t} \\ \text{Represents each component of } Z \text{ as a linear combination of lagged} \end{array}$

variables

Income and Consumption: VEC(1) Model

- AWM data base: *PCR* (real private consumption), *PYR* (real disposable income of households); logarithms: *C*, *Y*
- 1. Check whether C and Y are non-stationary:

 $C \sim I(1), Y \sim I(1)$

2. Johansen test for cointegration: given that C and Y have no trends and the cointegrating relationship has an intercept:

 $r = 1 \ (p < 0.05)$

the cointegrating relationship is

C = 8.55 - 1.61Y

```
with t(Y) = 18.2
```

Income and Consumption: VEC(1) Model, cont'd

3. VEC(1) model (same specification as in 2.) with Z = (Y, C)'

 $\Delta Z_{t} = -\gamma(\beta' Z_{t-1} + \delta) + \Gamma \Delta Z_{t-1} + \varepsilon_{t}$

		coint	ΔY_{-1}	∆ C _1	adj.R ²	AIC
ΔY	Y _{ij}	0.029	0.167	0.059	0.14	-7.42
	t(γ _{ij})	5.02	1.59	0.49		
ΔC	Y _{ij}	0.047	0.226	-0.148	0.18	-7.59
	t(γ _{ij})	2.36	2.34	1.35		

The model explains growth rates of *PCR* and *PYR*; AIC = -15.41 is smaller than that of the VAR(1)-Modell (AIC = -14.45)

Estimation of VEC Models

Estimation procedure consists of the following steps

- 1. Test of the k variables in Y_t for stationarity: ADF test
- 2. Determination of the number *p* of lags in the cointegration test (order of VAR): AIC or BIC
- 3. Specification of
 - deterministic trends of the variables in Y_t
 - intercept in the cointegrating relations
- 4. Determination of the number *r* of cointegrating relations: trace and/or max test
- 5. Estimation of the coefficients β of the cointegrating relations and the adjustment α coefficients; normalization; assessment of the cointegrating relations
- 6. Estimation of the VEC model

VEC Models in GRETL

Model > Time Series > VAR lag selection...

 Calculates information criteria like AIC and BIC from VARs of order 1 to the chosen maximum order of the VAR

Model > Time Series > Cointegration test > Johansen...

Calculates eigenvalues, test statistics for the trace and max tests, and estimates of the matrices α , β , and $\Pi = \alpha\beta'$

Model > Time Series > VECM

Estimates the specified VEC model for a given cointegration rank: (1) cointegrating vectors and standard errors, (2) adjustment vectors, (3) coefficients and various criteria for each of the equations of the VEC model

Your Homework

- 1. Perform the steps 1 6 for estimating a VEC model for Verbeek's dataset "model"; choose p = 2 and r = 2 for estimating the VEC model. Explain the steps and interpret the results of each step.
- 2. Derive the VEC form of the VAR(3) model

 $Y_t = \delta + \Theta_1 Y_{t-1} + \ldots + \Theta_3 Y_{t-3} + \varepsilon_t$

assuming a k-vector Y_t and appropriate orders of the other vectors and matrices.