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Regression and Time Series Regression and Time Series 

Stationary variables are a crucial prerequisite for 

� estimation methods

� testing procedures

applied to regression models

Specifying a relation between non-stationary variables may result in a 

nonsense or spurious regression
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Spurious Regression: ExampleSpurious Regression: Example

Generation of Yt by

Yt = Yt-1 + εtYt = Yt-1 + εt

i.e., Yt is a random walk, Yt ~ I(1); similarly Xt ~ I(1) 

Model to be estimated:

Yt = α + βXt + εt

it follows (in general) that εt ~ I(1), i.e., the error terms are non-
stationary 

t

stationary 

� (Asymptotic) distributions of t- and F -statistics are different from 

those for stationarity those for stationarity 

� R2 indicates explanatory potential 

� DW statistic converges for growing N to zero� DW statistic converges for growing N to zero
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Avoiding Spurious RegressionAvoiding Spurious Regression

� Identification of non-stationarity: unit-root tests

� Models for non-stationary variables� Models for non-stationary variables

� Elimination of stochastic trends: differencing, specifying the model for 

differences

Inclusion of lagged variables may result in stationary error terms� Inclusion of lagged variables may result in stationary error terms

� Explained and explanatory variables may have a common stochastic 

trend, are cointegrated: equilibrium relation, error-correction modelstrend, are cointegrated: equilibrium relation, error-correction models

� Example: ADL(1,1) model with Yt ~ I(1), Xt ~ I(1) 

Yt = δ + θYt-1 + φ0Xt + φ1Xt-1 + εtYt = δ + θYt-1 + φ0Xt + φ1Xt-1 + εt
� The error terms are stationary if θ =1, φ0 = φ1 = 0 

εt = Yt – (δ + θYt-1 + φ0Xt + φ1Xt-1) ~ I(0)
Common trend implies an equilibrium relation, i.e.,Y – βX ~ I(0); the � Common trend implies an equilibrium relation, i.e.,Yt-1 – βXt-1 ~ I(0); the 
ADL(1,1) model has an error-correction form

∆Yt = φ0∆Xt – (1 – θ)(Yt-1 – α – βXt-1) + εt
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CointegrationCointegration

Non-stationary variables X, Y:

Xt ~ I(1), Yt ~ I(1)Xt ~ I(1), Yt ~ I(1)

if a β exists such that 

Zt = Yt - βXt ~ I(0)t t t 

� Xt and Yt have a common stochastic trend 

� Xt and Yt are called “cointegrated”t t

� β: cointegration parameter 

� (1, - β)’: cointegration vector

Cointegration implies a long-run equilibrium; cf. Granger’s representation 

theorem 

Hackl, Econometrics 2, Lecture 6 7May 6, 2011



Error-correction ModelError-correction Model

Granger’s Representation Theorem (Engle & Granger, 1987): If a set of 

variables is cointegrated, then an error-correction (EC) relation of the 

variables existsvariables exists

non-stationary processes Yt ~ I(1), Xt ~ I(1) with cointegrating vector 
(1, -β)’: error-correction representation (1, -β)’: error-correction representation 

θ(L)∆Yt = δ + Φ(L)∆Xt-1 - γ(Yt-1 – βXt-1) + α(L)εt
with white noise ε , lag polynomials θ(L) (with θ =1), Φ(L), and α(L)with white noise εt, lag polynomials θ(L) (with θ0=1), Φ(L), and α(L)

� Error-correction model: describes

� the short-run behavior � the short-run behavior 

� consistently with the long-run equilibrium

� Converse statement: if Yt ~ I(1), Xt ~ I(1) have an error-correction Converse statement: if Yt ~ I(1), Xt ~ I(1) have an error-correction 
representation, then they are cointegrated
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An ExampleAn Example

The model

∆Yt = δ + φ1∆Xt-1 - γ(Yt-1 – βXt-1) + εt∆Yt = δ + φ1∆Xt-1 - γ(Yt-1 – βXt-1) + εt

is a special case of 

θ(L)∆Yt = δ + Φ(L)∆Xt-1 - γ(Yt-1 – βXt-1) + α(L)εtθ(L) Yt = δ + Φ(L) Xt-1 - γ(Yt-1 – βXt-1) + α(L)εt
with θ(L) = 1, Φ(L) = φ1L, and α(L) = 1

� No change steady state equilibrium for ∆Yt = ∆Xt-1 = 0:t t-1

Yt – βXt = δ/γ or Yt = α + βXt if α = δ/γ 

the EC model can be written as

∆ ∆∆Yt = φ1∆Xt-1 – γ(Yt-1 – α – βXt-1) + εt

� If α = δ/γ + λ, λ ≠ 0: 

∆Y = λ + φ ∆X – γ(Y – α – βX ) + ε∆Yt = λ + φ1∆Xt-1 – γ(Yt-1 – α – βXt-1) + εt

deterministic trends for Yt and Xt, long run equilibrium corresponding 

to growth paths ∆Y = ∆X = λ/(1 - φ )
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EC Model: EstimationEC Model: Estimation

Model 

∆Yt = δ + φ1∆Xt-1 - γ(Yt-1 – βXt-1) + εt (A)∆Yt = δ + φ1∆Xt-1 - γ(Yt-1 – βXt-1) + εt (A)

with cointegrating relation 

Yt-1 = βXt-1 + ut (B)t-1 t-1 t

� Cointegration vector (1, - β)’ known: OLS estimation of δ, φ1, and γ 

from (A), standard properties

Unknown cointegration vector: � Unknown cointegration vector: 

� Parameter β from (B) superconsistently estimated by OLS

OLS estimation of δ, φ , and γ from (A) is not affected by using the � OLS estimation of δ, φ1, and γ from (A) is not affected by using the 

estimate for β 

Model specification Model specification 

� Choice of orders of lag polynomials

� Theory is symmetric in treating Xt andYt
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Example: Purchasing Power Example: Purchasing Power 
ParityParity
Verbeek’s dataset ppp: price indices and exchange rates for France and 

Italy, T = 186 (1/1981-6/1996)

� Variables: LNIT (log price index Italy), LNFR (log price index France), 

LNX (log exchange rate France/Italy) 

Purchasing power parity (PPP): exchange rate between the currencies Purchasing power parity (PPP): exchange rate between the currencies 

(Franc, Lira) equals the ratio of price levels of the countries 

� Relative PPP: equality fulfilled only in the long run; equilibrium or � Relative PPP: equality fulfilled only in the long run; equilibrium or 

cointegrating relation

LNXt = α + β LNPt + εtLNXt = α + β LNPt + εt
with LNPt = LNITt – LNFRt, i.e., the log of the price index ratio 

France/Italy
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Purchasing Power ParityPurchasing Power Parity

Test for unit roots (non-

stationarity) of

LNX (log exchange rate 
 5.8
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 0.2
LNP (right)

LNX (left)

� LNX (log exchange rate 

France/Italy) 

� LNP = LNIT – LNFR, i.e.,  5.6

 5.7

 0
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� LNP = LNIT – LNFR, i.e., 

the log of the price 

index ratio France/Italy
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Results from DF tests:

const. +trend
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const. +trend

LNP DF stat -0.99 -2.96

p-value 0.76 0.14

 5.2

 1982  1984  1986  1988  1990  1992  1994  1996

-0.3

LNX DF stat -0.33 -1.90

p-value 0.92 0.65

DF test indicates:

LNX ~ I(1), LNP ~ I(1)
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PPP: Equilibrium RelationsPPP: Equilibrium Relations

As discussed by Verbeek:

1. If PPP holds in long run, real exchange rate is stationary  

LNXt – (LNITt – LNFRt) = εt
2. Change of relative prices correspond to the change of exchange 

rate, i.e., short run deviations are stationary rate, i.e., short run deviations are stationary 

LNXt – β (LNITt – LNFRt) = εt
3. Generalization of case 2:

LNX = α + β LNIT – β LNFR + εLNXt = α + β1 LNITt – β2 LNFRt + εt
with εt ~ I(0) 
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Equilibrium Relation 2Equilibrium Relation 2

OLS estimation of 

LNXt = α + β LNPt + εtLNXt = α + β LNPt + εt

Model 2: OLS, using observations 1981:01-1996:06 (T = 186)

Dependent variable: LNX

coefficient   std. error   t-ratio    p-value 

---------------------------------------------------------

const       5,48720      0,00677678   809,7     0,0000    ***

LNP         0,982213     0,0513277     19,14    1,24e-045 ***LNP         0,982213     0,0513277     19,14    1,24e-045 ***

Mean dependent var 5,439818   S.D. dependent var 0,148368

Sum squared resid 1,361936   S.E. of regression   0,086034

R-squared            0,665570   Adjusted R-squared   0,663753

F(1, 184)            366,1905   P-value(F)           1,24e-45F(1, 184)            366,1905   P-value(F)           1,24e-45

Log-likelihood       193,3435   Akaike criterion    -382,6870

Schwarz criterion   -376,2355   Hannan-Quinn        -380,0726

rho                  0,967239   Durbin-Watson        0,055469
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Equilibrium Relation 2Equilibrium Relation 2

Residuals = LNXt – (a + b LNPt) with OLS estimates a, b

Regression residuals (= observed - fitted LNX)
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PPP: Tests for Cointegration PPP: Tests for Cointegration 

Residuals from LNXt = α + β LNPt + εt: 

� Time series plot indicates non-stationary residuals� Time series plot indicates non-stationary residuals

� Tests for cointegration, H0: residuals have unit root, no cointegration

� DF test statistic (with constant): -1.90, 5% critical value: -3.37 

� CRDW test: DW statistic: 0.055 < 0.20, the 5% critical value for two 

variables, 200 observations 

� Both tests suggest: H0 cannot be rejected, no evidence for � Both tests suggest: H0 cannot be rejected, no evidence for 
cointegration

Same result for equilibrium relations 1 and 3; reasons could be:

� Time series too short� Time series too short

� No PPP between France and Italy

Attention: equilibrium relation 3 has three variables; two cointegration Attention: equilibrium relation 3 has three variables; two cointegration 
relations are possible
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Example: Income and Example: Income and 
ConsumptionConsumption
Model for income (Y) and consumption (C) 

Yt = δ1 + θ11Yt-1 + θ12Ct-1 + ε1tYt = δ1 + θ11Yt-1 + θ12Ct-1 + ε1t
Ct = δ2 + θ21Ct-1 + θ22Yt-1 + ε2t

with (possibly correlated) white noises ε1t and ε1t
Notation: Z = (Y , C )‘, 2-vectors δ and ε, and (2x2)-matrix Θ = (θ ), the Notation: Zt = (Yt, Ct)‘, 2-vectors δ and ε, and (2x2)-matrix Θ = (θij), the 

model is

1 11 11 12 εδ θ θt t tY Y −        
= + +

in matrix notation

1 11 11 12

1 22 21 22

εδ θ θ

εδ θ θ

t t t

t t t

Y Y

C C

−

−

        
= + +        
        

in matrix notation

Zt = δ + ΘZt-1 + εt
� Represents each component of Z as a linear combination of lagged 

variables
Represents each component of Z as a linear combination of lagged 
variables

� Extension of the AR-model to the 2-vector Zt: vector autoregressive 
model of order 1, VAR(1) model
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The VAR(p) ModelThe VAR(p) Model

VAR(p) model: generalization of the AR(p) model for k-vectors Yt

Yt = δ + Θ1Yt-1 + … + ΘpYt-p + εt
with k-vectors Y , δ, and ε and k k-matrices Θ , …, Θwith k-vectors Yt, δ, and εt and kxk-matrices Θ1, …, Θp

� Using the lag-operator L: 
Θ(L)Yt = δ + εtΘ(L)Yt = δ + εt

with matrix lag polynomial Θ(L) = I – Θ1L - … - ΘpLp

� Θ(L) is a kxk-matrix
Each matrix element of Θ(L) is a lag polynomial of order p� Each matrix element of Θ(L) is a lag polynomial of order p

� Error terms εt
� have covariance matrix Σ; allows for contemporaneous correlation 

� are independent of Yt-j, j > 0, i.e., of the past of the components of Yt
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The VAR(p) Model, cont’dThe VAR(p) Model, cont’d

VAR(p) model for the k-vector Yt

Yt = δ + Θ1Yt-1 + … + ΘpYt-p + εt
Vector of expectations of Y : assuming stationarity� Vector of expectations of Yt: assuming stationarity

E{Yt} = δ + Θ1 E{Yt} + … + Θp E{Yt}

gives gives 
E{Yt} = µ = (Ik – Θ1 - … - Θp)

-1δ = Θ(1)-1δ
i.e., stationarity requires that the kxk-matrix Θ(1) is invertible
In deviations y = Y – µ, the VAR(p) model is� In deviations yt = Yt – µ, the VAR(p) model is

Θ(L)yt = εt
� MA representation of the VAR(p) model, given that Θ(L) is invertible � MA representation of the VAR(p) model, given that Θ(L) is invertible 

Yt = µ + Θ(L)-1εt = µ + εt + A1εt-1 + A2εt-2 + … 

� VARMA(p,q) Model: Extension of the VAR(p) model by multiplying 
ε (from the left) with a matrix lag polynomial of order qεt (from the left) with a matrix lag polynomial of order q

Hackl, Econometrics 2, Lecture 6 20May 6, 2011



Reasons for Using a VAR ModelReasons for Using a VAR Model

VAR model represents a set of univariate ARMA models, one for each 
component

� Reformulation of simultaneous equation models as dynamic models� Reformulation of simultaneous equation models as dynamic models

� To be used instead of simultaneous equation models: 
� No need to distinct a priori endogenous and exogenous variables

� No need for a priori identifying restrictions on model parameters

� Simultaneous analysis of the components: More parsimonious, fewer 
lags, simultaneous consideration of the history of all included lags, simultaneous consideration of the history of all included 
variables 

� Allows for non-stationarity and cointegration

Attention: the number of parameters to be estimated increases with kAttention: the number of parameters to be estimated increases with k
and p

Number of parameters

of Θ(L) 
p 1 2 3

of Θ(L) k=2 4 8 12

k=4 16 32 48
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Simultaneous Equation Models Simultaneous Equation Models 
in VAR Formin VAR Form
Model with m endogenous variables (and equations), K regressors

Ayt = Γzt + εt = Γ1 yt-1 + Γ2 xt + εtAyt = Γzt + εt = Γ1 yt-1 + Γ2 xt + εt
with m-vectors yt and εt, K-vector zt, (mxm)-matrix A, (mxK)-matrix Γ, 
and (mxm)-matrix Σ = V{εt}; t

� zt contains lagged endogenous variables yt-1 and exogenous 
variables xt
Rearranging gives� Rearranging gives

yt = Θ yt-1 + δt + vt
with Θ = = = = A-1 Γ , δ = A-1 Γ x , and v = A-1 εwith Θ = = = = A-1 Γ1, δt = A

-1 Γ2 xt, and vt = A-1 εt

� Extension of yt by regressors xt: the matrix δt becomes a vector of 
interceptsintercepts
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Example: Income and Example: Income and 
ConsumptionConsumption
Model for income (Yt) and consumption (Ct) 

Yt = δ1 + θ11Yt-1 + θ12Ct-1 + ε1tt 1 11 t-1 12 t-1 1t

Ct = δ2 + θ21Ct-1 + θ22Yt-1 + ε2t
with (possibly correlated) white noises ε1t and ε1t

� Matrix form of the simultaneous equation model: � Matrix form of the simultaneous equation model: 

A (Yt, Ct)‘ = Γ (1, Yt-1, Ct-1)‘ + (ε1t, ε2t)’ 

with
δ θ θ10   

VAR(1) form: Z = δ + ΘZ + ε or 

1 11 12

2 21 22

δ θ θ10
A ,

δ θ θ01

  
= Γ =   
   

� VAR(1) form: Zt = δ + ΘZt-1 + εt or 

1 11 11 12 εδ θ θt t tY Y −        
= + +        

   

1 11 11 12

1 22 21 22

εδ θ θ

εδ θ θ

t t t

t t t

Y Y

C C

−

−

        
= + +        
        
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VAR Model: EstimationVAR Model: Estimation

VAR(p) model for the k-vector Yt

Yt = δ + Θ1Yt-1 + … + ΘpYt-p + εt, V{εt} = Σ

� Each component of Yt: a linear combination of lagged variables

� Error terms: Possibly contemporaneously correlated, covariance 

matrix Σ, uncorrelated over timematrix Σ, uncorrelated over time

� SUR model

Estimation, given the order p of the VAR modelEstimation, given the order p of the VAR model

� OLS estimates of parameters in Θ(L) are consistent 

� Estimation of Σ based on residual vectors e = (e , …, e )’: � Estimation of Σ based on residual vectors et = (e1t, …, ekt)’: 
1

't tt
S e e

T p
=

− ∑

� GLS  estimator  coincides with OLS estimator: same explanatory 

variables for all equations

T p−
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VAR Model: Estimation, cont’dVAR Model: Estimation, cont’d

Choice of the order p of the VAR model 

� Estimation of VAR models for various orders p� Estimation of VAR models for various orders p

� Choice of p based on Akaike or Schwarz information criterion
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Income and ConsumptionIncome and Consumption

AWM data base, 1970:1-2003:4: PCR (real private consumption), PYR
(real disposable income of households); respective annual growth 
rates: C, Yrates: C, Y

Fitting Zt = δ + ΘZt-1 + εt with Z = (Y, C)‘ gives

δ Y-1 C-1 adj.R2

Y
θij 0.001 0.825 0.082 0.80

Y
t(θij) 0.91 12.09 1.07

C
Θij 0.003 0.061 0.826 0.78

with AIC = -14.40; for the VAR(2) model: AIC = -14.35 

C
t(θij) 2.36 0.97 11.69

with AIC = -14.40; for the VAR(2) model: AIC = -14.35 

In GRETL: OLS equation-wise, VAR estimation, SUR estimation give 
very similar results
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Impulse-response FunctionImpulse-response Function

MA representation of the VAR(p) model 
Yt = Θ(1)

-1δ + εt + A1εt-1 + A2εt-2 + … Yt = Θ(1) δ + εt + A1εt-1 + A2εt-2 + … 

� Interpretation of As: the (i,j)-element of As represents the effect of a 
one unit increase of εjt upon the i-th variable Yi,t+s in Yt+s

Dynamic effects of a one unit increase of ε upon the i-th component � Dynamic effects of a one unit increase of εjt upon the i-th component 
of Yt are corresponding to the (i,j)-th elements of Ik, A1, A2, …

� The plot of these elements over s represents the impulse-response � The plot of these elements over s represents the impulse-response 
function of the i-th variable in Yt+s on a unit shock to εjt
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StationarityStationarity

AR(1) process Yt = θYt-1 + εt

� is stationary, if the root z of the characteristic polynomial� is stationary, if the root z of the characteristic polynomial

Θ(z) = 1 - θz = 0

fulfills |z| > 1, i.e., |θ| < 1; fulfills |z| > 1, i.e., |θ| < 1; 
� Θ(z) is invertible, i.e., Θ(z)-1 can derived such that Θ(z)-1Θ(z) = 1 

� Yt can be represented by a MA(∞) process: Yt = Θ(z)-1εt
� is non-stationary, if 

z = 1 or θ = 1

i.e.,Y ~ I(1), Y has a stochastic trendi.e.,Yt ~ I(1), Yt has a stochastic trend
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VAR Models, Stationarity, and VAR Models, Stationarity, and 
Cointegration 
VAR(1) model for the k-vector Yt

Yt = δ + Θ1Yt-1 + εt
If Θ(L) is invertible, � If Θ(L) is invertible, 

Yt = Θ(1)
-1δ + Θ(L)-1εt = µ + εt + A1εt-1 + A2εt-2 + …

i.e., each variable in Yt is a linear combination of white noises, is a i.e., each variable in Yt is a linear combination of white noises, is a 
stationary I(0) variable 

� If Θ(L) is not invertible, not all variables in Yt can be stationary I(0) 
variables: at least one variable must have a stochastic trendvariables: at least one variable must have a stochastic trend
� If all k variables have independent stochastic trends, all k variables are 

I(1) and no cointegrating relation exists; e.g., for k = 2:

1-θ θ 00   

i.e., θ = θ = 1, θ = θ = 0

11 12

21 22

1-θ θ 00
(1)

θ 1-θ 00

   
Θ = =   

  
i.e., θ11 = θ22 = 1, θ12 = θ21 = 0

� The more interesting case: at least one cointegrating relation; number of 
cointegrating relations equals the rank r{Θ(1)} of matrix Θ(1)
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Example: A VAR(1) ModelExample: A VAR(1) Model

VAR(1) model for k-vector Y in differences with Θ(L) = I - Θ1L

∆Yt = - Θ(1)Yt-1 + δ + εt∆Yt = - Θ(1)Yt-1 + δ + εt

r = r{Θ(1)}: rank of (kxk) matrix Θ(1) = Ik - Θ1

1. r = 0: then ∆Yt = δ + εt, i.e., Y is a k-dimensional random walk, each 1. r = 0: then ∆Yt = δ + εt, i.e., Y is a k-dimensional random walk, each 
component is I(1), no cointegrating relationship

2. r < k: (k - r)-fold unit root, (kxr)-matrices γ and β can be found, both of 2. r < k: (k - r)-fold unit root, (kxr)-matrices γ and β can be found, both of 
rank r, with

Θ(1) = γβ'

the r columns of β are the cointegrating vectors of r cointegrating the r columns of β are the cointegrating vectors of r cointegrating 
relations (β in normalized form, i.e., the main diagonal elements of β 

being ones)being ones)

3. r = k: VAR(1) process is stationary, all components of Y are I(0)
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Cointegration SpaceCointegration Space

Given a set of k variables, the components of the k-vector Yt ~ I(1)

Cointegration space: Cointegration space: 

� Among the k variables, r ≤ k-1 independent linear relations βj‘Yt, j = 1, 
…, r, are possible so that βj‘Yt ~ I(0)j t

� Individual relations can be combined with others and these are again 

I(0), i.e., not the individual cointegrating relations are identified but 
only the r-dimensional spaceonly the r-dimensional space

� Cointegrating relations should have an economic interpretation 

Cointegration matrix β:Cointegration matrix β:

� The kxr matrix β = (β1, …, βr) of vectors βj that state the cointegrating 

relations βj‘Yt ~ I(0), j = 1, …, rrelations βj‘Yt ~ I(0), j = 1, …, r

� Cointegrating rank: the rank of matrix β: r{β} = r
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Granger‘s Representation Granger‘s Representation 
TheoremTheorem
Granger’s Representation Theorem (Engle & Granger, 1987): If a set of 

I(1) variables is cointegrated, then an error-correction (EC) relation of I(1) variables is cointegrated, then an error-correction (EC) relation of 
the variables exists

Extends to VAR models: if the I(1) variables of the k-vector Yt are t

cointegrated, then an error-correction (EC) relation of the variables 

exists
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Granger‘s Representation Granger‘s Representation 
Theorem for VAR ModelsTheorem for VAR Models
VAR(p) model for the k-vector Yt

Yt = δ + Θ1Yt-1 + … + ΘpYt-p + εtYt = δ + Θ1Yt-1 + … + ΘpYt-p + εt

transformed into 

∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + ΠYt-1 + εt (A)∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + ΠYt-1 + εt (A)

� Π = – Θ(1) = – (Ik – Θ1 – … – Θp): „long-run matrix“, determines the long-
run dynamics of Yt

Γ , …, Γ matrices which are functions of Θ ,…, Θ� Γ1, …, Γp-1 matrices which are functions of Θ1,…, Θp

� ΠYt-1 is stationary: ∆Yt and εt are I(0)

� Three cases� Three cases

1. r{Π} = r with 0 < r < k: there exist r stationary linear combinations of Yt, 
i.e., r cointegrating relations

2. r{Π} = 0: then Π = 0, equation (A) is a VAR(p) model for stationary 
variables ∆Yt

3. r{Π} = k: all variables in Yt are stationary, Π = - Θ(1) is invertible 
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Vector Error-Correction ModelVector Error-Correction Model

VAR(p) model for the k-vector Yt

Yt = δ + Θ1Yt-1 + … + ΘpYt-p + εtYt = δ + Θ1Yt-1 + … + ΘpYt-p + εt

transformed into 

∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + ΠYt-1 + εt∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + ΠYt-1 + εt

with r{Π} = r and Π = γβ' gives 

∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + γβ'Yt-1 + εt (B)∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + γβ'Yt-1 + εt (B)

� r cointegrating relations β'Yt-1

� Adaptation parameters γ measure the portion or speed of adaptation � Adaptation parameters γ measure the portion or speed of adaptation 

of Yt in compensation of the equilibrium error Zt-1 = β'Yt-1

� Equation (B) is called the vector error-correction (VEC) model
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Example: Bivariate VAR ModelExample: Bivariate VAR Model

VAR(1) model for the 2-vector Yt = (Y1t, Y2t)’

Yt = ΘYt-1 + εtYt = ΘYt-1 + εt
� Long-run matrix

11 12θ 1 θ
(1)

θ θ 1

− 
Π = −Θ =  −

� Π = 0, if θ11 = θ22 = 1, θ12 = θ21 = 0, i.e., Y1t, Y2t are random walks

r{Π} < 2, if (θ – 1)(θ – 1) – θ θ = 0; cointegrating vector: β‘ = 

21 22

(1)
θ θ 1

Π = −Θ =  − 

� r{Π} < 2, if (θ11 – 1)(θ22 – 1) – θ12 θ21 = 0; cointegrating vector: β‘ = 
(θ11 – 1, θ12), long-run matrix

( )1
γβ ' θ 1 θ

 
Π = = − 

� The error-correction form is 

( )11 12

21 11

1
γβ ' θ 1 θ

θ / (θ 1)

 
Π = = − − 

∆ 1 1

11 1, 1 12 2, 1

2 221 11

ε1
(θ 1) θ

εθ / (θ 1)

t t

t t

t t

Y
Y Y

Y
− −

∆    
 = − + +      ∆ −    
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Deterministic ComponentDeterministic Component

VEC(p) model for the k-vector Yt

∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + γβ'Yt-1 + εt (B)∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + γβ'Yt-1 + εt (B)

The deterministic component (intercept) δ:

1. E{∆Yt} = 0, i.e., no deterministic trend in any component of Yt: given 1. E{∆Yt} = 0, i.e., no deterministic trend in any component of Yt: given 

that Γ = Ik – Γ1 – … – Γp-1 has full rank: 

� Γ E{∆Yt} = δ + γE{Zt-1} = 0 with equilibrium error Zt-1 = β'Yt-1t t-1 t-1 t-1

� E{Zt-1} corresponds to the intercepts of the cointegrating relations; with r-
dimensional vector E{Zt-1} = α 

∆Y = Γ ∆Y + … + Γ ∆Y + γ(- α + β'Y ) + ε (C)∆Yt = Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + γ(- α + β'Yt-1) + εt (C)

� Intercepts only in the cointegrating relations, i.e., no deterministic  trend in 

the modelthe model
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Deterministic Component, cont’dDeterministic Component, cont’d

VEC(p) model for the k-vector Yt

∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + γβ'Yt-1 + εt (B)∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + γβ'Yt-1 + εt (B)

The deterministic component (intercept) δ:

2. Addition of a k-vector λ with identical components to (C)2. Addition of a k-vector λ with identical components to (C)
∆Yt = λ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + γ(- α + β'Yt-1) + εt

� Long-run equilibrium: steady state growth with growth rate E{∆Yt} = Γ
-1λ� Long-run equilibrium: steady state growth with growth rate E{∆Yt} = Γ λ

� Deterministic trends cancel out in the long run, so that no deterministic 

trend in the error-correction term; cf. (B)

Addition of k-vector λ can be repeated: up to k-r separate deterministic � Addition of k-vector λ can be repeated: up to k-r separate deterministic 
trends can cancel out in the error-correction term 

� The general notation is equation (B) with δ containing r intercepts of the � The general notation is equation (B) with δ containing r intercepts of the 
long-run relations and k-r deterministic trends in the variables of Yt
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The Five CasesThe Five Cases

Based on empirical observation and economic reasoning, choice 

between:between:

1) Unrestricted constant: variables show deterministic linear trends

2) Restricted constant: variables not trended but mean distance 2) Restricted constant: variables not trended but mean distance 

between them not zero; intercept in the error-correction term

3) No constant

Generalization: deterministic component contains intercept and trend

4) Constant + restricted trend: cointegrating relationships include a 

trend but the first differences of the variables in question do nottrend but the first differences of the variables in question do not

5) Constant + unrestricted trend: trend in both the cointegration 

relationships and the first differences, corresponding to a quadratic relationships and the first differences, corresponding to a quadratic 

trend in the variables (in levels)
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Choice of the Cointegrating Choice of the Cointegrating 
Rank Rank 
Based on k-vector Yt ~ I(1) 

Estimation procedure needs as input the cointegrating rank r Estimation procedure needs as input the cointegrating rank r 

� Engle-Granger procedure 

� Johansen‘s R3 method� Johansen‘s R3 method
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Engle-Granger ApproachEngle-Granger Approach

Non-stationary processes Yt ~ I(1), Xt ~ I(1) ; to be estimated: 

Yt = α + βXt + εtYt = α + βXt + εt

� Step 1: OLS-fitting 

� Tests for cointegration based on residuals, e.g., DF test with special � Tests for cointegration based on residuals, e.g., DF test with special 

critical values; H0: no cointegration 

� If H0 is rejected, 

� OLS fitting in step 1 gives consistent estimates of the cointegrating vector

� Step 2: OLS estimation of the EC model based on the cointegrating 

vector from step 1vector from step 1

Can be extended to k-vector Yt, given that at most one cointegrating 

relation existsrelation exists
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Engle-Granger Cointegration Engle-Granger Cointegration 
Test: Problems Test: Problems 
Residual based cointegration tests can be misleading

� Test results depend on specification � Test results depend on specification 

� Which variables are included

� Normalization of the cointegrating vector

� Test may be inappropriate due to wrong specification of cointegrating  

relation

Test power suffers from inefficient use of information (dynamic � Test power suffers from inefficient use of information (dynamic 

interactions not taken into account)
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Johansen‘s R3 MethodJohansen‘s R3 Method

Reduced rank regression or R3 method: an iterative method for 

specifying the cointegrating rank rspecifying the cointegrating rank r

� Also called Johansen's test

� The test is based on the k eigenvalues λi (λ1> λ2>…> λk) ofi 1 2 k

Y1‘Y1 – Y1∆Y(∆Y‘∆Y)
-1∆Y‘Y1, 

with ∆Y: (Txk) matrix of differences ∆Yt, Y1: (Txk) matrix of Yt-1

� eigenvalues λi fulfill 0 ≤ λi < 1

� if r{Θ(1)} = r, the k-r smallest eigenvalues obey 

log(1- λj) = λj = 0,  j = r+1, …, k

� Iterative test procedures

Trace test� Trace test

� Maximum eigenvalue test or max test
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Trace and Max Test: The Trace and Max Test: The 
ProceduresProcedures
LR tests, based on the assumption of normally distributed errors

� Trace test: for r0 = 0, 1, …, test of H0: r ≤ r0 (r0 or fewer cointegrating � Trace test: for r0 = 0, 1, …, test of H0: r ≤ r0 (r0 or fewer cointegrating 
relations) against H1: r0 < r ≤ k

λtrace(r0) = - T Σk
j=r0+1log(1- Îj) trace 0 j=r0+1 j

� Îj: estimator of λj
� H0 is rejected for large values of λtrace(r0)

Stops when H is not rejected for the first time� Stops when H0 is not rejected for the first time

� Critical values from simulations

� Max test: tests for r0 = 0, 1, …: H0: r = r0 (the eigenvalue λr0+1 is � Max test: tests for r0 = 0, 1, …: H0: r = r0 (the eigenvalue λr0+1 is 
different from zero) against H1: r = r0+1 

λmax(r0) = - T log(1 - Îr0+1)λmax(r0) = - T log(1 - Îr0+1)
� Stops when H0 is not rejected for the first time

� Critical values from simulations
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Trace and Max Test: Critical Trace and Max Test: Critical 
LimitsLimits
Critical limits are shown in Verbeek’s Table 9.9 for both tests

� Depend on presence of trends and intercepts� Depend on presence of trends and intercepts

� Case 1: no deterministic trends, intercepts in cointegrating relations

� Case 2: k unrestricted intercepts in the VAR model, i.e., k - r deterministic 
trends, r intercepts in cointegrating relationstrends, r intercepts in cointegrating relations

� Depend on k – r

Need small sample correction, e.g., factor (T-pk)/T for the test � Need small sample correction, e.g., factor (T-pk)/T for the test 

statistic: avoids too large values of r

Hackl, Econometrics 2, Lecture 6 46May 6, 2011



Example: Purchasing Power Example: Purchasing Power 
ParityParity
Verbeek’s dataset ppp: price indices and exchange rates for France and 

Italy, T = 186 (1/1981-6/1996)

� Variables: LNIT (log price index Italy), LNFR (log price index France), 

LNX (log exchange rate France/Italy) 

Purchasing power parity (PPP): exchange rate between the currencies Purchasing power parity (PPP): exchange rate between the currencies 

(Franc, Lira) equals the ratio of price levels of the countries 

� Relative PPP: equality fulfilled only in the long run; equilibrium or � Relative PPP: equality fulfilled only in the long run; equilibrium or 

cointegrating relation

LNXt = α + β LNPt + εtLNXt = α + β LNPt + εt
with LNPt = LNITt – LNFRt, i.e., the log of the price index ratio 

France/Italy

Generalization:� Generalization:

LNXt = α + β1 LNITt – β2 LNFRt + εt
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PPP: Cointegrating Rank rPPP: Cointegrating Rank r

As discussed by Verbeek: Johansen test for k = 3 variables, maximal 
lag order p = 3

r0
eigen-

value
λtr(r0) p-value λmax(r0) p-value

0 0.301 93.9 0.0000 65.5 0.00000 0.301 93.9 0.0000 65.5 0.0000

1 0.113 28.4 0.0023 22.0 0.0035

2 0.034 6.37 0.169 6.4 0.1690

H0 not rejected that smallest eigenvalue equals zero: series are non-

stationary

2 0.034 6.37 0.169 6.4 0.1690

stationary

Both the trace and the max test suggest r = 2
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Estimation of VEC ModelsEstimation of VEC Models

Estimation of

∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + ΠYt-1 + εt∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + ΠYt-1 + εt

requires finding (kxr)-matrices α and β with Π = αβ‘ 
� β: matrix of cointegrating vectors 

� α: matrix of  adjustment coefficients

� Identification problem: linear combinations of cointegrating vectors 

are also cointegrating vectors are also cointegrating vectors 

� Unique solutions for α and β require restrictions 

Minimum number of restrictions which guarantee identification is r2� Minimum number of restrictions which guarantee identification is r2

� Normalization

� Phillips normalization � Phillips normalization 

� Manual normalization 
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Phillips NormalizationPhillips Normalization

Cointegrating vector 

β’ = (β1’, β2’) β’ = (β1’, β2’) 

β1: (rxr)-matrix with rank r, β2: [(k-r)xr]-matrix

� Normalization consists in transforming β into� Normalization consists in transforming β into

1

1

2

β̂
β β

I I

B
−

   
= =   −  

with matrix B of unrestricted coefficients

� The r cointegrating relations express the first r variables as functions 

12β β B−  

of the remaining k - r variables 

� Fulfills the condition that at least r2 restrictions are needed to 
guarantee identificationguarantee identification

� Resulting equilibrium relations may be difficult to interpret 

� Alternative: manual normalization 
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Example: Money DemandExample: Money Demand

Verbeek’s data set “money”: US data 1:54 – 12:1994 (T=164) 
� m: log of real M1 money stock

infl: quaterly inflation rate (change in log prices, % per year)� infl: quaterly inflation rate (change in log prices, % per year)

� cpr: commercial paper rate (% per year)

� y: log real GDP (billions of 1987 dollars)� y: log real GDP (billions of 1987 dollars)

� tbr: treasury bill rate

Hackl, Econometrics 2, Lecture 6 52May 6, 2011



Money Demand: Cointegrating Money Demand: Cointegrating 
VectorsVectors
ML estimates, lag order p = 6, cointegration rank r = 2, restricted 

constant

� Cointegrating vectors β and β and standard errors (s.e.), Phillips � Cointegrating vectors β1 and β2 and standard errors (s.e.), Phillips 
normalization

m infl cpr y tbr const

β1 1.00 0.00 0.61 -0.35 -0.60 -4.27

(s.e.) (0.00) (0.00) (0.12) (0.12) (0.12) (0.91)

β2 0.00 1.00 -26.95 -3.28 -27.44 39.25

(s.e.) (0.00) (0.00) (4.66) (4.61) (4.80) (35.5)

Hackl, Econometrics 2, Lecture 6 53May 6, 2011



Estimation of VEC Models: k=2Estimation of VEC Models: k=2

Estimation procedure consists of the following steps

1. Test the variables in the 2-vector Yt for stationarity using the usual 1. Test the variables in the 2-vector Yt for stationarity using the usual 

ADF tests; VEC models need I(1) variables

2. Determine the order p

3. Specification of

� deterministic trends of the variables in Yt

� intercept in the cointegrating relation

4. Cointegration test

5. Estimation of cointegrating relation, normalization5. Estimation of cointegrating relation, normalization

6. Estimation of the VEC model
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Example: Income and Example: Income and 
ConsumptionConsumption
Model: 

Yt = δ1 + θ11Yt-1 + θ12Ct-1 + ε1tt 1 11 t-1 12 t-1 1t

Ct = δ2 + θ21Ct-1 + θ22Yt-1 + ε2t
With Z = (Y, C)‘, 2-vectors δ and ε, and (2x2)-matrix Θ, the VAR(1) 

model ismodel is

Zt = δ + ΘZt-1 + εt
Represents each component of Z as a linear combination of lagged 

variablesvariables
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Income and Consumption: Income and Consumption: 
VEC(1) ModelVEC(1) Model
AWM data base: PCR (real private consumption), PYR (real disposable 

income of households); logarithms: C, Yincome of households); logarithms: C, Y

1. Check whether C and Y are non-stationary: 

C ~ I(1), Y ~ I(1)

2. Johansen test for cointegration: given that C and Y have no trends 

and the cointegrating relationship has an intercept: 

r = 1 (p < 0.05) r = 1 (p < 0.05) 

the cointegrating relationship is 

C = 8.55 – 1.61Y C = 8.55 – 1.61Y 

with t(Y) = 18.2
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Income and Consumption: Income and Consumption: 
VEC(1) Model, cont’dVEC(1) Model, 
3. VEC(1) model (same specification as in 2.) with Z = (Y, C)’

∆Zt = - γ(β‘Zt-1 + δ) + Γ∆Zt-1 + εt∆Zt = - γ(β‘Zt-1 + δ) + Γ∆Zt-1 + εt

coint ∆∆∆∆Y-1 ∆∆∆∆C-1 adj.R2 AIC

γij 0.029 0.167 0.059 0.14 -7.42
∆Y

γij 0.029 0.167 0.059 0.14 -7.42

t(γij) 5.02 1.59 0.49

γ 0.047 0.226 -0.148 0.18 -7.59
∆C

γij 0.047 0.226 -0.148 0.18 -7.59

t(γij) 2.36 2.34 1.35

The model explains growth rates of PCR and PYR; AIC = -15.41 is 
smaller than that of the VAR(1)-Modell (AIC = -14.45)smaller than that of the VAR(1)-Modell (AIC = -14.45)

Hackl, Econometrics 2, Lecture 6 57May 6, 2011



Estimation of VEC ModelsEstimation of VEC Models

Estimation procedure consists of the following steps

1. Test of the k variables in Yt for stationarity: ADF test 1. Test of the k variables in Yt for stationarity: ADF test 

2. Determination of the number p of lags in the cointegration test (order 

of VAR): AIC or BIC

3. Specification of 

� deterministic trends of the variables in Yt

� intercept in the cointegrating relations

4. Determination of the number r of cointegrating relations: trace and/or 
max testmax test

5. Estimation of the coefficients β of the cointegrating relations and the 

adjustment α coefficients; normalization; assessment of the adjustment α coefficients; normalization; assessment of the 

cointegrating relations 

6. Estimation of the VEC model
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VEC Models in GRETLVEC Models in GRETL

Model > Time Series > VAR lag selection…

� Calculates information criteria like AIC and BIC from VARs of order 1 

to the chosen maximum order of the VARto the chosen maximum order of the VAR

Model > Time Series > Cointegration test > Johansen…

� Calculates eigenvalues, test statistics for the trace and max tests, � Calculates eigenvalues, test statistics for the trace and max tests, 

and estimates of the matrices α, β, and Π = αβ‘ 

Model > Time Series > VECMModel > Time Series > VECM

� Estimates the specified VEC model for a given cointegration rank: (1) 

cointegrating vectors and standard errors, (2) adjustment vectors, (3) cointegrating vectors and standard errors, (2) adjustment vectors, (3) 

coefficients and various criteria for each of the equations of the VEC 

model
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Your HomeworkYour Homework

1. Perform the steps 1 – 6 for estimating a VEC model for Verbeek’s 

dataset “model”; choose p = 2 and r = 2 for estimating the VEC dataset “model”; choose p = 2 and r = 2 for estimating the VEC 
model. Explain the steps and interpret the results of each step.

2. Derive the VEC form of the VAR(3) model 

Y = δ + Θ Y + … + Θ Y + εYt = δ + Θ1Yt-1 + … + Θ3Yt-3 + εt

assuming a k-vector Yt and appropriate orders of the other vectors 

and matrices.and matrices.
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