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The Linear ModelThe Linear Model

Y: explained variable
X: explanatory or regressor variableX: explanatory or regressor variable
The model describes the data-generating process of Y

under the condition X

A simple linear regression model
Y = α + βX

β: coefficient of Xβ: coefficient of X
α: intercept

A multiple linear regression modelA multiple linear regression model
Y = β1 + β2X2 + … + βΚXΚ
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Fitting a Model to DataFitting a Model to Data

Choice of values b1, b2 for model parameters β1, β2 of Y = β1 + β2 X,
given the observations (yi, xi), i = 1,…,Ngiven the observations (yi, xi), i = 1,…,N

Fitted values: ŷi = b1 + b2 xi, i = 1,…,N

Principle of (Ordinary) Least Squares gives the OLS estimators
bi = arg minβ1,β2 S(β1, β2), i=1,2

Objective function: sum of the squared deviations
S(β1, β2) = Σi [yi - ŷi]2 = Σi [yi - (β1 + β2xi)]2 = Σi ei

2

Deviations between observation and fitted values, residuals: 
ei = yi - ŷi = yi - (β1 + β2xi)
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Observations and Fitted Observations and Fitted 
Regression LineRegression Line

Simple linear regression: Fitted line and observation points (Verbeek, 
Figure 2.1) Figure 2.1) 
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OLS EstimatorsOLS Estimators

Equating the partial derivatives of S(β1, β2) to zero: normal equations
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OLS Estimators: The General OLS Estimators: The General 
Case Case 
Model for Y contains K-1 explanatory variables

Y = β1 + β2X2 + … + βKXK = x’βY = β1 + β2X2 + … + βKXK = x’β

with x = (1, X2, …, XK)’ and β = (β1, β2, …, βK)’ 

Observations: [y , x ] = [y , (1, x , …, x )’], i = 1, …, NObservations: [yi, xi] = [yi, (1, xi2, …, xiK)’], i = 1, …, N

OLS-estimates b = (b1, b2, …, bK)’ are obtained by minimizing 
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Matrix NotationMatrix Notation

N observations

(y1,x1), … , (yN,xN)1 1 N N

Model: yi = β1 + β2xi + εi, i = 1, …,N, or

y = Xβ + εy = Xβ + ε

with
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Gauss-Markov Assumptions Gauss-Markov Assumptions 

Observation yi (i = 1, …, N) is a linear function 

yi = xi'β + εiyi = xi'β + εi
of observations xik, k =1, …, K, of the regressor variables and the 

error term εi

A1 E{ε } = 0 for all i

xi = (xi1, …, xiK)'; X = (xik)

A1 E{εi} = 0 for all i

A2 all εi are independent of all xi (exogenous xi)

A3 V{εi} = σ2 for all i (homoskedasticity)

A4 Cov{εi, εj} = 0 for all i and j with i ≠ j (no autocorrelation)A4 Cov{εi, εj} = 0 for all i and j with i ≠ j (no autocorrelation)
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Normality of Error TermsNormality of Error Terms

A5 εi normally distributed for all i

Together with assumptions (A1), (A3), and (A4), (A5) implies

εi ~ NID(0,σ2) for all ii

i.e., all εi are 
� independent drawings 

from the normal distribution N(0,σ2) � from the normal distribution N(0,σ2) 

� with mean 0 

� and variance σ2
� and variance σ2

Error terms are “normally and independently distributed” (NID, n.i.d.)
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Properties of OLS EstimatorsProperties of OLS Estimators

OLS estimator b = (X’X)-1X’y

1. The OLS estimator b is unbiased: E{b} = β1. The OLS estimator b is unbiased: E{b} = β

2. The variance of the OLS estimator is given by
V{b} = σ2(Σi xi xi’ )-1i i i

3. The OLS estimator b is a BLUE (best linear unbiased estimator) 
for β

4. The OLS estimator b is normally distributed with mean β and 4. The OLS estimator b is normally distributed with mean β and 
covariance matrix V{b} = σ2(Σi xi xi’ )-1

Properties Properties 

� 1., 2., and 3. follow from Gauss-Markov assumptions 

� 4. needs in addition the normality assumption (A5)� 4. needs in addition the normality assumption (A5)
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Distribution of t-statisticDistribution of t-statistic

t-statistic
k

k

b
t =

follows 
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1. the t-distribution with N-K d.f. if the Gauss-Markov assumptions 
(A1) - (A4) and the normality assumption (A5) hold 

2. approximately the t-distribution with N-K d.f. if the Gauss-Markov 2. approximately the t-distribution with N-K d.f. if the Gauss-Markov 
assumptions (A1) - (A4) hold but not the normality assumption 
(A5) (A5) 

3. asymptotically (N → ∞) the standard normal distribution N(0,1)

4. approximately the standard normal distribution N(0,1)4. approximately the standard normal distribution N(0,1)

The approximation errors decrease with increasing sample size N
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OLS Estimators: ConsistencyOLS Estimators: Consistency

The OLS estimators b are consistent,  

plimN → ∞ b = β,plimN → ∞ b = β,

� if (A2) from the Gauss-Markov assumptions and the assumption 
(A6) are fulfilled

� if the assumptions (A7) and (A6) are fulfilled

Assumptions (A6) and (A7): 
xx

A6 1/N ΣN
i=1 xi xi’ converges with growing N to a finite, 

nonsingular matrix Σxx

A7 The error terms have zero mean and are uncorrelated 
with each of the regressors: E{xi εi} = 0
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Estimation ConceptsEstimation Concepts

OLS estimator: minimization of objective function S(β) gives 
� K first-order conditions Σi (yi – xi’b) xi = Σi ei xi = 0, the normal 

equations
i i i i i i i

equations
� Moment conditions 

E{(y – x ’ β) x } = E{ε x } = 0E{(yi – xi’ β) xi} = E{εi xi} = 0
� OLS estimators are solution of the normal equations
IV estimator: Model allows derivation of moment conditions IV estimator: Model allows derivation of moment conditions 

E{(yi – xi’ β) zi} = E{εi zi} = 0
which are functions of

� observable variables yi, xi, instrument variables zi, and unknown 
parameters β

� Moment conditions are used for deriving IV estimators� Moment conditions are used for deriving IV estimators
� OLS estimators are special case of IV estimators
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Estimation Concepts, cont’dEstimation Concepts, cont’d

GMM estimator: generalization of the moment conditions
E{f(wi, zi, β)} = 0i i

� with observable variables wi, instrument variables zi, and unknown 
parameters β

� Allows for non-linear models� Allows for non-linear models
� Under weak regularity conditions, the GMM estimators are

� consistent� consistent
� asymptotically normal

Maximum likelihood estimation 
Basis is the distribution of y conditional on regressors x� Basis is the distribution of yi conditional on regressors xi

� Depends on unknown parameters β
� The estimates of the parameters β are chosen so that the distribution � The estimates of the parameters β are chosen so that the distribution 

corresponds as well as possible to the observations yi and xi
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Example: Urn ExperimentExample: Urn Experiment

Urn experiment:
� The urn contains red and yellow balls 
� Proportion of red balls: p (unknown)
� N random draws

Random draw i: y = 1 if ball i is red, 0 otherwise; P{y = 1} = p� Random draw i: yi = 1 if ball i is red, 0 otherwise; P{yi = 1} = p
� Sample: N1 red balls, N-N1 yellow balls
� Probability for this result: � Probability for this result: 

P{N1 red balls, N-N1 yellow balls} = pN1 (1 – p)N-N1

Likelihood function: the probability of the sample result, interpreted as Likelihood function: the probability of the sample result, interpreted as 
a function of the unknown parameter p
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Urn Experiment: Likelihood Urn Experiment: Likelihood 
FunctionFunction
Likelihood function: the probability of the sample result, interpreted as 

a function of the unknown parameter p
L(p) = pN1 (1 – p)N-N1L(p) = pN1 (1 – p)N-N1

Maximum likelihood estimator: that value     of p which maximizes 
L(p)

p̂
L(p)

Calculation of    : maximization algorithmsp̂

)(maxargˆ pLp p=

� As the log-function is monotonous, extremes of L(p) and log L(p) 
coincide 

� Use of log-likelihood function is often more convenient

p̂

� Use of log-likelihood function is often more convenient
log L(p) = N1 log p + (N - N1) log (1 – p)
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Urn Experiment: Likelihood Urn Experiment: Likelihood 
Function, cont’dFunction, 

Verbeek, Fig.6.1Verbeek, Fig.6.1

xx

March 2, 2012 Hackl, Econometrics 2, Lecture 1 21



Urn Experiment: ML EstimatorUrn Experiment: ML Estimator

Maximizing log L(p) with respect to p gives the first-order condition 

0
)(log 11 =−−= NNNpLd

Solving this equation for p gives the maximum likelihood estimator 

0
1

)(log 11 =
−
−−=
p

NN

p

N

dp

pLd

Solving this equation for p gives the maximum likelihood estimator 
(ML estimator)

N
p 1ˆ =

For N = 100, N1 = 44, the ML estimator for the proportion of red balls 
is     = 0.44

N
p̂ =

p̂is     = 0.44p̂
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Maximum Likelihood Maximum Likelihood 
Estimator: The IdeaEstimator: The Idea
� Specify the distribution of the data (of y or y given x) 
� Determine the likelihood of observing the available sample as a 

function of the unknown parametersfunction of the unknown parameters
� Choose as ML estimates those values for the unknown parameters 

that give the highest likelihoodthat give the highest likelihood
� In general, this leads to 

� consistent 
� asymptotically normal
� efficient estimators 
provided the likelihood function is correctly specified, i.e., provided the likelihood function is correctly specified, i.e., 
distributional assumptions are correct
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Example: Normal Linear Example: Normal Linear 
RegressionRegression
Model

yi = β1 + β2xi + εii 1 2 i i

with assumptions (A1) – (A5)
From the normal distribution of εi follows: contribution of  observation i

to the likelihood function:to the likelihood function:
2

2 1 2

22
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i i
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σπσ
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Normal Linear Regression, cont’dNormal Linear Regression, cont’d

Maximizing log L w.r.t. β and σ2 gives the ML estimators 

{ } { }xVxyCov2 /),β̂ =

which coincide with the OLS estimators, and

{ } { }
xy

xVxyCov

21

2

ˆˆ

/),

ββ

β

−=

=

which coincide with the OLS estimators, and

∑=
i ie

N

22 1σ̂

which is biased and underestimates σ²!
Remarks:

∑iN

Remarks:
� The results are obtained assuming normally and independently 

distributed (NID) error terms 
ML estimators are consistent but not necessarily unbiased; see the � ML estimators are consistent but not necessarily unbiased; see the 
properties of ML estimators below 
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ML Estimator: NotationML Estimator: Notation

Let the density (or probability mass function) of yi, given xi, be given by 
f(yi|xi,θ) with K-dimensional vector θ of unknown parameters

Given independent observations, the likelihood function for the sample Given independent observations, the likelihood function for the sample 
of size N is

∏∏ == iiiii xyfxyLXyL );|(),|(),|( θθθ
The ML estimators are the solutions of

maxθ log L(θ) = maxθ Σi log Li(θ)

∏∏ ==
i iii iii xyfxyLXyL );|(),|(),|( θθθ

maxθ log L(θ) = maxθ Σi log Li(θ)
or the solutions of the first-order conditions 

0|
)(log

|
)(log

)ˆ( ˆˆ =∂=∂= ∑
θθθ iLL

s

s(θ) = Σi si(θ), the vector of gradients, also denoted as score vector
Solution of s(θ) = 0 

0||)ˆ( ˆˆ =
∂

=
∂

= ∑ θθ θθ
θ

i
s

Solution of s(θ) = 0 
� analytically (see examples above) or
� by use of numerical optimization algorithms
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Matrix DerivativesMatrix Derivatives

The scalar-valued function

1( | , ) ( | , ) ( ,..., | , )i i i Ki
L y X L y x L y Xθ θ θ θ= =∏

or – shortly written as log L(θ) – has the K arguments θ1, …, θK

� K-vector of partial derivatives or gradient vector or gradient

1i i i Ki∏

′ 

� KxK matrix of second derivatives or Hessian matrix
1

log ( ) log ( ) log ( )
,...,

K

L L Lθ θ θ
θ θ θ

′ ∂ ∂ ∂=  ∂ ∂ ∂ 
� KxK matrix of second derivatives or Hessian matrix

2 2log ( ) log ( )L Lθ θ
θ θ θ θ
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ML Estimator: PropertiesML Estimator: Properties

The ML estimator 
1. is consistent
2. is asymptotically efficient
3. is asymptotically normally distributed:

ˆ( ) N(0, )N Vθ θ− →
V: asymptotic covariance matrix of 

ˆ( ) N(0, )N Vθ θ− →
ˆNθ
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The Information MatrixThe Information Matrix

Information matrix I(θ)
� I(θ) is the limit (for N → ∞) of

� For the asymptotic covariance matrix V can be shown: V = I(θ)-1

22 log ( )1 log ( ) 1 1
( ) ( )i

ii i

LL
I E E I

N N N

θθθ θ
θ θ θ θ

   ∂∂= − = − =   ′ ′∂ ∂ ∂ ∂   
∑ ∑

� For the asymptotic covariance matrix V can be shown: V = I(θ)-1

� I(θ)-1 is the lower bound of the asymptotic covariance matrix for 
any consistent, asymptotically normal estimator for θ: Cramèr-Rao 

   

any consistent, asymptotically normal estimator for θ: Cramèr-Rao 
lower bound 

Calculation of Ii(θ) can also be based on the outer product of the score 
vector

i
vector

{ }
2 log ( )

( ) ( ) ( ) ( )i
i i i i

L
I E E s s J

θθ θ θ θ
θ θ

 ∂ ′= − = = ′∂ ∂ 
for a misspecified likelihood function, Ji(θ) can deviate from Ii(θ)

θ θ ′∂ ∂ 
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Covariance Matrix V: Covariance Matrix V: 
Calculation
Two ways to calculate V:
� A consistent estimate is based on the information matrix I(θ): 

1
2 θ

−
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1
2

1

ˆ

log ( )1 ˆˆ | ( )i
H i

L
V I

N θ

θ θ
θ θ

−
− ∂= − = ′∂ ∂ 

∑

index “H”: the estimate of V is based on the Hessian matrix
� The BHHH (Berndt, Hall, Hall, Hausman) estimator 

 

1
1

−


with score vector s(θ); index “G”: the estimate of V is based on 

1

)ˆ()ˆ(
1ˆ

−





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

 ′= ∑ θθ ii iG ss
N

V

with score vector s(θ); index “G”: the estimate of V is based on 
gradients
� also called: OPG (outer product of gradient) estimator� also called: OPG (outer product of gradient) estimator
� E{si(θ) si(θ)’} coincides with Ii(θ) if f(yi| xi,θ) is correctly specified
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Urn Experiment: Once moreUrn Experiment: Once more

Likelihood contribution of the i-th observation 
log Li(p) = yi log p + (1 - yi) log (1 – p)i i i

This gives scores
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The asymptotic variance of the ML estimator V = I-1 = p(1-p)
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Urn Experiment and Binomial Urn Experiment and Binomial 
DistributionDistribution
The asymptotic distribution is

( ))1(,0)ˆ( ppNppN −→−
� Small sample distribution:

N ~ B(N, p)

( ))1(,0)ˆ( ppNppN −→−

p̂N ~ B(N, p)

� Use of the approximate normal distribution for portions  

rule of thumb:

p̂

p̂

rule of thumb:

N p (1-p) > 9
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Example: Normal Linear Example: Normal Linear 
Regression
Model

yi = xi’β + εii i i

with assumptions (A1) – (A5)
Log-likelihood function

∑ ′−−−= N 222 1 βπσσβ
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The first-order conditions – setting both components of Σs (β,σ²) to 

2
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2 42
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L y xβ σ β
σ σσ

   ∂ ′− + −    ∂ 

The first-order conditions – setting both components of Σisi(β,σ²) to 
zero – give as ML estimators: the OLS estimator for β, the average 
squared residuals for σ²:
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Normal Linear Regression, cont’dNormal Linear Regression, cont’d

( ) 221
)ˆ(

1
ˆ,ˆ βσβ ∑∑∑ ′−=′= −

i iii iii ii xy
N

yxxx

Asymptotic covariance matrix: Likelihood contribution of the i-th
observation (E{εi} = E{εi3} = 0, E{εi2} = σ², E{εi4} = 3σ4)

1 1β σ β σ β σ  ′ ′= =
gives

2 2 2

2 4

1 1
( , ) { ( , ) ( , ) } diag ,

2
i i i i iI E s s x xβ σ β σ β σ

σ σ
 ′ ′= =  
 

V = I(β,σ²)-1 = diag (σ²Σxx
-1, 2σ4)

with Σxx = lim (Σixixi‘)/N

For finite samples: covariance matrix of ML estimators for β

( ) 1
2ˆˆ ˆ( ) i ii

V x xβ σ
−

′= ∑
similar to OLS results 

( )i∑
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Diagnostic TestsDiagnostic Tests

Diagnostic tests based on ML estimators
Test situation:
� K-dimensional parameter vector θ = (θ1, …, θK)’
� J ≥ 1 linear restrictions (K ≥ J)

H : R θ = q with JxK matrix R, full rank; J-vector q� H0: R θ = q with JxK matrix R, full rank; J-vector q
Test principles based on the likelihood function:
1. Wald test: Checks whether the restrictions are fulfilled for the 1. Wald test: Checks whether the restrictions are fulfilled for the 

unrestricted ML estimator for θ; test statistic ξW
2. Likelihood ratio test: Checks whether the difference between the 

log-likelihood values with and without the restriction is close to log-likelihood values with and without the restriction is close to 
zero; test statistic ξLR

3. Lagrange multiplier test (or score test): Checks whether the first-3. Lagrange multiplier test (or score test): Checks whether the first-
order conditions (of the unrestricted model) are violated by the 
restricted ML estimators; test statistic ξLM
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Likelihood and Test StatisticsLikelihood and Test Statistics

AlogL

logL, g(β) g(β) = 0: restriction
log L: log-likelihoodA

LR

B
LM

logLR

logLmax
log L: log-likelihood

logL

LM

g(β)

0
W

g(β~)
C

0
ββ~β~R
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The Asymptotic TestsThe Asymptotic Tests

Under H0, the test statistics of all three tests 
� follow asymptotically, for finite sample size approximately, the Chi-

square distribution with J dfsquare distribution with J df
� The tests are asymptotically (large N) equivalent
� Finite sample size: the values of the test statistics obey the relation� Finite sample size: the values of the test statistics obey the relation

ξW ≥ ξLR ≥ ξLM
Choice of the test: criterion is computational effortChoice of the test: criterion is computational effort
1. Wald test: Requires estimation only of the unrestricted model; 

e.g., testing for omitted regressors: estimate the full model, test 
whether the coefficients of potentially omitted regressors are whether the coefficients of potentially omitted regressors are 
different from zero

2. Lagrange multiplier test: Requires estimation only of the restricted 2. Lagrange multiplier test: Requires estimation only of the restricted 
model

3. Likelihood ratio test: Requires estimation of both the restricted  
and the unrestricted model
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Wald TestWald Test

Checks whether the restrictions are fulfilled for the unrestricted ML 
estimator for θ

Asymptotic distribution of the unrestricted ML estimator:Asymptotic distribution of the unrestricted ML estimator:

Hence, under H : R θ = q, 
),0()ˆ( VNN →−θθ

Hence, under H0: R θ = q, 

The test statistic

),0()ˆ()ˆ( RRVNqRNRRN ′→−=− θθθ
The test statistic

under H , ξ is expected to be close to zero

[ ] )ˆ(ˆ)ˆ(
1

qRRVRqRNW −′′−=
−

θθξ
� under H0, ξW is expected to be close to zero
� p-value to be read from the Chi-square distribution with J df
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Wald Test, cont’dWald Test, cont’d

Typical application: tests of linear restrictions for regression 
coefficients
Test of H : β = 0 � Test of H0: βi = 0 

ξW = bi
2/[se(bi)2]

� ξW follows the Chi-square distribution with 1 df� ξW follows the Chi-square distribution with 1 df
� ξW is the square of the t-test statistic

� Test of the null-hypothesis that a subset of J of the coefficients β
are zerosare zeros

ξW = (eR’eR – e’e)/[e’e/(N-K)] 
� e: residuals from unrestricted model� e: residuals from unrestricted model
� eR: residuals from restricted model
� ξW follows the Chi-square distribution with J dfW

� ξW is related to the F-test statistic by ξW = FJ
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Likelihood Ratio TestLikelihood Ratio Test

Checks whether the difference between the ML estimates obtained 
with and without the restriction is close to zero 
for nested modelsfor nested models

� Unrestricted ML estimator:    
� Restricted ML estimator:    ; obtained by minimizing the log-

θˆ
θ~� Restricted ML estimator:    ; obtained by minimizing the log-

likelihood subject to R θ = q
Under H0: R θ = q, the test statistic 

θ

0

� is expected to be close to zero

( ))~(log)ˆ(log2 θθξ LLLR −=
� is expected to be close to zero
� p-value to be read from the Chi-square distribution with J df
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Likelihood Ratio Test, cont’dLikelihood Ratio Test, cont’d

Test of linear restrictions for regression coefficients
� Test of the null-hypothesis that J linear restrictions of the 

coefficients β are validcoefficients β are valid
ξLR = N log(eR’eR/e’e) 

� e: residuals from unrestricted model� e: residuals from unrestricted model
� eR: residuals from restricted model 
� ξLR follows the Chi-square distribution with J df
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Lagrange Multiplier TestLagrange Multiplier Test

Checks whether the derivative of the likelihood for the constrained ML 
estimator is close to zero

Based on the Lagrange constrained maximization methodBased on the Lagrange constrained maximization method
Lagrangian, given θ = (θ1’, θ2’)’ with restriction θ2 = q, J-vectors θ2, q

H(θ, λ) = Σ log L (θ) – λ‘(θ-q)H(θ, λ) = Σi log L i(θ) – λ‘(θ-q)
First-order conditions give the constrained ML estimators  

and 
),

~
(

~
1

′′′= qθθ
λ~and λ

∑∑ ==
∂

∂
i ii

i s
L

0)
~
(|

)(log
1~

1

θ
θ

θ
θ

λ measures the extent of violation of the restriction, basis for ξ

∑∑ =
∂

∂=
i ii

i s
L

)
~
(|

)(log~
2~

2

1

θ
θ

θλ θ

λ measures the extent of violation of the restriction, basis for ξLM
si are the scores; LM test is also called score test 

2
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Lagrange Multiplier Test, cont’dLagrange Multiplier Test, cont’d

Lagrange multiplier test statistic

λθλξ ~
)
~
(ˆ

~ 221 INLM
′= −

has under H0 an asymptotic Chi-square distribution with J df
is the block diagonal of the estimated inverted information 

matrix, based on the constrained estimators for θ

λθλξ )(INLM
′=

)
~
(ˆ22 θI

matrix, based on the constrained estimators for θ
Calculation of ξLM
� Outer product gradient (OPG) version of the LM test:� Outer product gradient (OPG) version of the LM test:

( ) 1
1( ) ' ( ) ( ) ' ( ) ' ( ' ) 'LM i i i ii i i

s s s s i S S S S iξ θ θ θ θ
− −= =∑ ∑ ∑% % % %

θ~� Auxiliary regression of a N-vector i = (1, …, 1)’ on the scores si(  ) 
with restricted estimates for θ, no intercept; S’ = [s1(  ), …, sN(  )]

� Test statistic is ξ = N R² with the uncentered R² of the auxiliary 

θ~
θ~ θ~

� Test statistic is ξLM = N R² with the uncentered R² of the auxiliary 
regression

� Other ways for computing ξLM: see below
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An IllustrationAn Illustration

The urn experiment: test of H0: p = p0 (J = 1, R = I)
The likelihood contribution of the i-th observation is

log Li(p) = yi log p + (1 - yi) log (1 – p)
This gives 

s (p) = y /p – (1-y )/(1-p) and I (p) = [p(1-p)]-1si(p) = yi/p – (1-yi)/(1-p) and Ii(p) = [p(1-p)]-1

Wald test:

[ ]
2 2

1 0 1 0
ˆ( ) ( )

ˆ ˆ ˆ ˆ( ) (1 ) ( )
p p N Np

N p p p p p p N Nξ − − −= − − − = =
Likelihood ratio test:

[ ] 0 1 0
0 0

1

( ) ( )
ˆ ˆ ˆ ˆ( ) (1 ) ( )

ˆ ˆ(1 ) ( )
W

p p N Np
N p p p p p p N N

p p N N N
ξ − −= − − − = =

− −

( ))~(log)ˆ(log2 pLpL −=ξ
with 

( ))~(log)ˆ(log2 pLpLLR −=ξ

)/1log()()/log()ˆ(log 1111 NNNNNNNpL −−+=
)1log()()log()~(log

)/1log()()/log()ˆ(log

0101

1111

pNNpNpL

NNNNNNNpL

−−+=
−−+=
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An Illustration, cont’dAn Illustration, cont’d

Lagrange multiplier test:
with

1 01 1( ) |
N NpN N N

s pλ −−= = − =∑%

and the inverted information matrix [I(p)]-1 = p(1-p), calculated for 

0

1 01 1

0 0 0 0

( ) |
1 (1 )

i pi

N NpN N N
s p

p p p p
λ −−= = − =

− −∑%

and the inverted information matrix [I(p)] = p(1-p), calculated for 
the restricted case, the LM test statistic is

~
)]1([

~
00

1 ppNLM −= − λλξ

Example 

)ˆ()]1()[ˆ( 0

1

000 ppppppN −−−= −

Example 
� In a sample of N = 100 balls, 44 are red
� H0: p0 = 0.5 

ξ = 1.46, ξ = 1.44, ξ = 1.44� ξW = 1.46, ξLR = 1.44, ξLM = 1.44
� Corresponding p-values are 0.227, 0.230, and 0.230
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Normal Linear Regression: Normal Linear Regression: 
Scores
Log-likelihood function

∑ ′−−−=
i ii xy

N
L 2

2

22 )(
2

1
)2log(

2
),(log β

σ
πσσβ

Scores:
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i ii xyL
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2
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σ
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L y x
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β σ β
β σβ σ
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Covariance matrix

2
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L y xβ σ β
σ σσ

   ∂ ′− + −    ∂ 

Covariance matrix
V = I(β,σ²)-1 = diag(σ²Σxx

-1, 2σ4) 
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Testing for Omitted RegressorsTesting for Omitted Regressors

Model: yi = xi’β + zi’γ + εi, εi ~ NID(0,σ²)

Test whether the J regressors zi are erroneously omitted:Test whether the J regressors zi are erroneously omitted:

� Fit the restricted model 

� Apply the LM test to check H0: γ = 00

First-order conditions give the scores
2

2 2 2 4

1 1 1
0, , 0

2 2

i
i i i ii i i

N
x z

εε ε
σ σ σ σ

= − + =∑ ∑ ∑
%

% %

with constrained ML estimators for β and σ²; ML-residuals 

� Auxiliary regression of N-vector i = (1, …, 1)’ on the scores 

2 2 2 4
0, , 0

2 2
i i i ii i i
x zε ε

σ σ σ σ
= − + =∑ ∑ ∑% %

% % % %
ˆ'i i iy xε β= −%

,x zε ε% %� Auxiliary regression of N-vector i = (1, …, 1)’ on the scores 
gives the uncentered R² 

� The LM test statistic is ξLM = N R² 

,i i i ix zε ε% %

� The LM test statistic is ξLM = N R² 

� An asymptotically equivalent LM test statistic is NRe² with Re² 
from the regression of the ML residuals on xi and zi
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Testing for HeteroskedasticityTesting for Heteroskedasticity

Model: yi = xi’β + εi, εi ~ NID, V{εi} = σ² h(zi’α), h(.) > 0 but unknown, 
h(0) = 1, ∂/∂α{h(.)} ≠ 0, J-vector zii

Test for homoskedasticity: Apply the LM test to check H0: α = 0 

First-order conditions with respect to σ² and α give the scores
z′−− )~~(,~~ 2222 σεσε

with constrained ML estimators for β and σ²; ML-residuals 

� Auxiliary regression of N-vector i = (1, …, 1)’ on the scores 

iii z′−− )~~(,~~ 2222 σεσε
iε%

� Auxiliary regression of N-vector i = (1, …, 1)’ on the scores 
gives the uncentered R² 

� LM test statistic ξLM = NR²; a version of Breusch-Pagan test� LM test statistic ξLM = NR²; a version of Breusch-Pagan test

� An asymptotically equivalent version of the Breusch-Pagan test 
is based on NRe² with Re² from the regression of the squared is based on NRe² with Re² from the regression of the squared 
ML residuals on zi and an intercept

� Attention: no effect of the functional form of h(.) 
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Testing for AutocorrelationTesting for Autocorrelation

Model: yt = xt’β + εt, εt = ρεt-1 + vt, vt ~ NID(0,σ²)

LM test of H0: ρ = 0 LM test of H0: ρ = 0 

First-order conditions give the scores

1
~~,~

−′
tttt x εεε

with constrained ML estimators for β and σ²

� The LM test statistic is ξLM = (T-1) R² with R² from the 
auxiliary regression of the ML residuals on the lagged auxiliary regression of the ML residuals on the lagged 
residuals; Breusch-Godfrey test

� An asymptotically equivalent version of the Breusch-Godfrey � An asymptotically equivalent version of the Breusch-Godfrey 
test is based on NRe² with Re² from the regression of the ML 
residuals on xt and the lagged residualst
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Quasi ML EstimatorQuasi ML Estimator

The quasi-maximum likelihood estimator

� refers to moment conditions� refers to moment conditions

� does not refer to the entire distribution 

� uses the GMM concept 

Derivation of the ML estimator as a GMM estimator

� weaker conditions

� consistency applies
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Generalized Method of Generalized Method of 
Moments (GMM)
The model is characterized by R moment conditions

E{f(wi, zi, θ)} = 0E{f(wi, zi, θ)} = 0

� f(.): R-vector function

� wi: vector of observable variables, zi: vector of instrument � wi: vector of observable variables, zi: vector of instrument 
variables

� θ: K-vector of unknown parameters
Substitution of the moment conditions by sample equivalents:

gN(θ) = (1/N) Σi f(wi, zi, θ) = 0
Minimization wrt θ of the quadratic form Minimization wrt θ of the quadratic form 

QN(θ) = gN(θ)‘ WN gN(θ)
with the symmetric, positive definite weighting matrix WNwith the symmetric, positive definite weighting matrix WN
gives the GMM estimator

)(minargˆ θθ θ NQ=

Hackl, Econometrics 2, Lecture 1 56March 2, 2012



Quasi-ML EstimatorQuasi-ML Estimator

The quasi-maximum likelihood estimator

� refers to moment conditions� refers to moment conditions

� does not refer to the entire distribution 

� uses the GMM concept

ML estimator can be interpreted as GMM estimator: first-order 
conditions 

log ( )log ( )ˆ LL θθ ∂∂
∑ ∑

correspond to sample averages based on theoretical moment 

ˆ ˆ ˆ

log ( )log ( )ˆ( ) | | ( ) | 0i
ii i

LL
s sθ θ θ

θθθ θ
θ θ

∂∂= = = =
∂ ∂∑ ∑

correspond to sample averages based on theoretical moment 
conditions

Starting point is

E{si(θ)} = 0

valid for the K-vector θ if the likelihood is correctly specified
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E{si(θ)} = 0E{si(θ)} = 0

From ∫f(yi|xi;θ) dyi = 1 follows

0
);|( =∂

∫ ii dy
xyf θ

Transformation 

0
);|( =

∂
∂
∫ i

ii dy
xyf

θ
θ

gives

( | ; ) log ( | ; )
( | ; ) ( ) ( | ; )i i i i
i i i i i

f y x f y x
f y x s f y x

θ θ θ θ θ
θ θ

∂ ∂= =
∂ ∂

gives

This  theoretical moment for the scores is valid for any density f(.)

{ } 0)();|()( ==∫ θθθ iiiii sEdyxyfs

This  theoretical moment for the scores is valid for any density f(.)
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Quasi-ML Estimator, cont’dQuasi-ML Estimator, cont’d

Use of the GMM idea – substitution of moment conditions by 
sample equivalents – suggests to transform E{si(θ)} = 0 into its 
sample equivalent and solve the first-order conditions

i

sample equivalent and solve the first-order conditions

∑ =
i is

N
0)(

1 θ

This reproduces the ML estimator

Example: For the linear regression yi = xi’β + εi, application of the 

∑iN

Example: For the linear regression yi = xi’β + εi, application of the 
Quasi-ML concept starts from the sample equivalents of

E{(yi - xi’β) xi} = 0E{(yi - xi’β) xi} = 0

this corresponds to the moment conditions of the OLS and the 
first-order condition of the ML estimators

� does not depend of the normality assumption of εi!

Hackl, Econometrics 2, Lecture 1 59March 2, 2012



Quasi-ML Estimator, cont’dQuasi-ML Estimator, cont’d

� Can be based on a wrong likelihood assumption

� Consistency is due to starting out from E{si(θ)} = 0� Consistency is due to starting out from E{si(θ)} = 0

� Hence, “quasi-ML” (or “pseudo ML”) estimator

Asymptotic distribution: 

� May differ from that of the ML estimator:

),0()ˆ( VNN →−θθ
� Using the asymptotic distribution of the GMM estimator gives

( )11 )()()(,0)ˆ( −−→− θθθθθ IJINN

with J(θ) = lim (1/N)ΣiE{si(θ) si(θ)’} 

and I(θ) = lim (1/N)ΣiE{-∂si(θ)/∂θ’} 

( )

i i

� For linear regression: heteroskedasticity-consistent 
covariance matrix
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Your HomeworkYour Homework

1. Open the Greene sample file “greene7_8, Gasoline price and 
consumption”, offered within the Gretl system. The variables to 
be used in the following are: G = total U.S. gasoline be used in the following are: G = total U.S. gasoline 
consumption, computed as total expenditure divided by price 
index; Pg = price index for gasoline; Y = per capita disposable index; Pg = price index for gasoline; Y = per capita disposable 
income; Pnc = price index for new cars; Puc = price index for 
used cars; Pop = U.S. total population in millions. Perform the 
following analyses and interpret the results: following analyses and interpret the results: 
a. Produce and interpret the scatter plot of the per capita (p.c.) 

gasoline consumption (Gpc) over the p.c. disposable income. gasoline consumption (Gpc) over the p.c. disposable income. 

b. Fit the linear regression for log(Gpc) with regressors log(Y), Pg, Pnc
and Puc to the data and give an interpretation of the outcome.
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Your Homework, cont’dYour Homework, cont’d

c. Test for autocorrelation of the error terms using the LM test statistic 
ξLM = (T-1) R² with R² from the auxiliary regression of the ML 
residuals on the lagged residuals with appropriately chosen lags.residuals on the lagged residuals with appropriately chosen lags.

d. Test for autocorrelation using NRe² with Re² from the regression of 
the ML residuals on xt and the lagged residuals.t

2. Assume that the errors εt of the linear regression yt = β1 + β2xt + 
εt are NID(0, σ2) distributed. (a) Determine the log-likelihood 
function of the sample for t = 1, …,T; (b) show that the first-order function of the sample for t = 1, …,T; (b) show that the first-order 
conditions for the ML estimators have expectations zero for the 
true parameter values; (c) derive the asymptotic covariance true parameter values; (c) derive the asymptotic covariance 
matrix on the basis (i) of the information matrix and (ii) of the 
score vector; (d) derive the matrix S of scores for the omitted 
variable LM test [cf. eq. (6.38) in Veebeek].variable LM test [cf. eq. (6.38) in Veebeek].
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