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The Linear Model

Y. explained variable

X. explanatory or regressor variable

The model describes the data-generating process of Y
under the condition X

A simple linear regression model
Y=a+pX
3: coefficient of X
a: intercept

A multiple linear regression model
V=B BXo+ o+ B Xy
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Fitting a Model to Data

Choice of values b,, b, for model parameters 3, B, of Y=p; + 3, X
given the observations (y;, x;), i =1,...,N

Fitted values: y;=b, + b, x,, i=1,...,N

Principle of (Ordinary) Least Squares gives the OLS estimators
b; = arg ming, g> S(By, B2), =1,2

Objective function: sum of the squared deviations
S(B1, Bo) = Z i -y = Zilvi - (By *+ Boxp)I* = 2 €7
Deviations between observation and fitted values, residuals:
€ =Vi- - (By + Box)
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‘ Observations and Fitted
Regression Line

Simple linear regression: Fitted line and observation points (Verbeek,
Figure 2.1)
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OLS Estimators

Equating the partial derivatives of S(3,, B,) to zero: normal equations

b, +bzz]-\i X = iJ\;yi

DIERIDIEED WS

OLS estimators b, und b, result in

- S, with mean values X and
22 and second moments
* 1 _ _
bl :)_;—bz)_g Sxy:ﬁzi(xi_x)(yi_y)

2 1 —=\2
S —-— AX, =X
X NZZ( )
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OLS Estimators: The General
Case

Model for Y contains K-1 explanatory variables
Y=0y 4 BoXo + o+ BeXy = X
with x = (1, X, ..., Xi) and B = (B4, By, ---, Bk)’
Observations: [y;, x] = [y, (1, X, -, X)), 1=1, ..., N
OLS-estimates b = (b4, b,, ..., by) are obtained by minimizing
S(B)=3. (v, ~xBy

this results in the OLS estimators

b (Z—l l l) llxl
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Matrix Notation

N observations

(y1’X1)’ ey (yN’XN)
Model: y. =B, + B x. +&,1 =1, ...,N, or

y=XB +¢
with
/yl\ (1 xl\ IB /gl\
y=| oL, X =) ,ﬂ=[1}8= '
B,
\VN / d Xy \En )

OLS estimators
b=(XX)y'Xy
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Gauss-Markov Assumptions

Observation y; (i= 1, ..., N) is a linear function

Yi=XiB+g

of observations x,, k =1, ..., K, of the regressor variables and the

error term ¢,

Xi = (Xiq, ..

, Xik)s X = (X )

A1

E{e} =0 forall/

A2

all & are independent of all x; (exogenous Xx;)

A3

V{&} = o2 for all i (homoskedasticity)

A4

Cov{g;, &} = 0 for all j and j with i # j (no autocorrelation)
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Normality of Error Terms

A5 | & normally distributed for all /

Together with assumptions (A1), (A3), and (A4), (A5) implies
&~ NID(0,0?) for all i
l.e., all & are

o independent drawings
o from the normal distribution N(0,0?)

o with mean O
o and variance o2

Error terms are “normally and independently distributed” (NID, n.i.d.)
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Properties of OLS Estimators

OLS estimator b = (X’ X)Xy

1. The OLS estimator b is unbiased: E{b} = [3

2. The variance of the OLS estimator is given by
V{b} = 0%(Z. x. x )

3. The OLS estimator b is a BLUE (best linear unbiased estimator)
for B

4. The OLS estimator b is normally distributed with mean 3 and
covariance matrix V{b} = ¢?(Z, x, x,” )

Properties
1., 2., and 3. follow from Gauss-Markov assumptions
4. needs in addition the normality assumption (A5)
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Distribution of t-statistic

f-statistic
b k

se(b,)

[, =

follows

the t-distribution with N-K d.f. if the Gauss-Markov assumptions
(A1) - (A4) and the normality assumption (A5) hold

approximately the t-distribution with N-K d.f. if the Gauss-Markov
assumptions (A1) - (A4) hold but not the normality assumption
(AS)

asymptotically (N — «) the standard normal distribution N(0,1)
approximately the standard normal distribution N(0,1)
The approximation errors decrease with increasing sample size N
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OLS Estimators: Consistency

The OLS estimators b are consistent,

plimy_, . b=,
if (A2) from the Gauss-Markov assumptions and the assumption
(AG) are fulfilled

if the assumptions (A7) and (A6) are fulfilled
Assumptions (A6) and (A7):

A6 | 1/N 2N._. x. x. converges with growing N to a finite,
nonsingular matrix 2,

A7 | The error terms have zero mean and are uncorrelated
with each of the regressors: E{x; €} =0

March 2, 2012
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Estimation Concepts

OLS estimator: minimization of objective function S(3) gives

K first-order conditions %, (y, — x;’b) x; = 2, e, x; = 0, the normal
equations

Moment conditions
E{(y; — x'B) x} = E{&; x} = 0
OLS estimators are solution of the normal equations
IV estimator: Model allows derivation of moment conditions
E{yi—-x'B)z}=E{&z} =0
which are functions of

observable variables y;, x;, instrument variables z, and unknown
parameters 3

Moment conditions are used for deriving IV estimators
OLS estimators are special case of |V estimators
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Estimation Concepts, contd

GMM estimator: generalization of the moment conditions
E{f(w;, z, B)} = 0

with observable variables w;, instrument variables z, and unknown
parameters 3

Allows for non-linear models
Under weak regularity conditions, the GMM estimators are
o consistent
o asymptotically normal
Maximum likelihood estimation

Basis is the distribution of y;, conditional on regressors x;
Depends on unknown parameters 3

The estimates of the parameters 3 are chosen so that the distribution
corresponds as well as possible to the observations y; and x;
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Example: Urn Experiment

Urn experiment:
The urn contains red and yellow balls
Proportion of red balls: p (unknown)
N random draws
Random draw i: y; = 1 if ball i is red, O otherwise; P{y, =1} =p
Sample: N, red balls, N-N, yellow balls
Probability for this result:
P{N, red balls, N-N, yellow balls} = pN1 (1 — p)N-N

Likelihood function: the probability of the sample result, interpreted as
a function of the unknown parameter p
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Urn Experiment: Likelihood
Function

Likelihood function: the probability of the sample result, interpreted as
a function of the unknown parameter p

L(p) = p™ (1 — p)™N
Maximum likelihood estimator: that valuefy of p which maximizes

L(p)
p =argmax  L(p)
Calculation of[) . maximization algorithms

As the log-function is monotonous, extremes of L(p) and log L(p)
coincide

Use of log-likelihood function is often more convenient
log L(p) = Nylog p + (N - N,) log (1 - p)
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Urn Experiment: Likelihood
Function, contd

-68.6
Verbeek, Fig.6.1
=) _
!
—133
| [ | I | [ | | I
1 2 3 4 5 .6 7 8 9
P
Figure 6.1 Sample loglikelihood function for N = 100 and N, = 44
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Urn Experiment: ML Estimator

Maximizing log L(p) with respect to p gives the first-order condition

dlogL(p) _ N, _N-N, _0

dp p l-p
Solving this equation for p gives the maximum likelihood estimator
(ML estimator)
p="u
N
For N = 100, N, = 44, the ML estimator for the proportion of red balls
is p =0.44
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Maximum Likelihood
Estimator: The Idea

Specify the distribution of the data (of y or y given x)

Determine the likelihood of observing the available sample as a
function of the unknown parameters

Choose as ML estimates those values for the unknown parameters
that give the highest likelihood

In general, this leads to
o consistent

o asymptotically normal
o efficient estimators

provided the likelihood function is correctly specified, i.e.,
distributional assumptions are correct
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Example: Normal Linear
Regression

Model
Yi=Bq+Bx t g
with assumptions (A1) — (AS)
From the normal distribution of ¢ follows: contribution of observation i
to the likelihood function:

_ _ 2
f]x:B.0%) = 1 eXp 10, ﬁlzﬁzx")
2770'2 2 o
due to independent observations, the log-likelihood function is given
by
log L(8,0%) =log [,/ (1| x;: B.5)

__N oy _ L v —Bi-Bx)
= 2log(2ﬂU) 22 =
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Normal Linear Regression, contd

Maximizing log L w.r.t. § and o2 gives the ML estimators
B, = Coly, )}/ v{x}
B=y-Bx
which coincide with the OLS estimators, and

. 1
52 =

‘ﬁzief

which is biased and underestimates o?2!
Remarks:

The results are obtained assuming normally and independently
distributed (NID) error terms

ML estimators are consistent but not necessarily unbiased; see the
properties of ML estimators below
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ML Estimator: Notation

Let the density (or probability mass function) of y;, given x;, be given by
f(yi|x,0) with K-dimensional vector 8 of unknown parameters

Given independent observations, the likelihood function for the sample
of size N is

L6y, X)=[].L:(O yx) =[],/ (v | %:6)
The ML estimators are the solutions of
maxg log L(8) = maxg 2; log L(O)
or the solutions of the first-order conditions
~ OdlogL(6 dlog L.(6
S(H): g ( )|9:Zl g z( )|A:

06 06 ¢
s(8) = 2, 5(0), the vector of gradients, also denoted as score vector

Solution of s(8) =0
analytically (see examples above) or
by use of numerical optimization algorithms
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Matrix Derivatives

The scalar-valued function
L8]y, X) = [,L,817,,%) = L(8,..6 | y, X)
or — shortly written as log L(0) — has the K arguments 6., ..., 6«
K-vector of partial derivatives or gradient'vector or gradient

dlog L(6) _ [alog L) Odlog L(H)j

00 06 006,
KxK matrix of second derivatives or Hessian matrix
0” log L(6) 0” log L(6)
06086, 0606,
0° log L(6) _ : : :
0606' ' ' '
0° log L(6) 0” log L(6)
06,06 06,006,
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ML Estimator: Properties

The ML estimator
IS consistent
Is asymptotically efficient
Is asymptotically normally distributed:
JN(6-6) - N(,V)

V: asymptotic covariance matrix of VN8
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The Information Matrix

Information matrix /()
1(0) is the limit (for N — o) of

](9):_1E{aﬂogL(é’)}:_;ZlE{azlogLi(H)}:;}Zi]i(e)

N 06806 0606
For the asymptotic covariance matrix V can be shown: V = /()

(6) 1 is the lower bound of the asymptotic covariance matrix for
any consistent, asymptotically normal estimator for 6: Cramer-Rao

lower bound
Calculation of /(0) can also be based on the outer product of the score
vector i
0- log L.(60) ,
1.(0)=-E ’ =E{s.(0)s.(0)} =J.(6
(0) { 3000 } {5,(8)s.(0)} =J,(6)

for a misspecified likelihood function, J,(8) can deviate from /,(9)
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Covariance Matrix V:
Calculation

Two ways to calculate V-
A consistent estimate is based on the information matrix /(0):

-1
A 1 0’ log L.(6) — A
N~ 068086
index “H”: the estimate of V is based on the Hessian matrix
The BHHH (Berndt, Hall, Hall, Hausman) estimator

-1
n 1 A A
VG - (ﬁ Zi Si(g)Si(e) j
with score vector s(0); index “G”: the estimate of V is based on

gradients
o also called: OPG (outer product of gradient) estimator

o E{si(0) s,(9)} coincides with [(8) if f(y| x;,0) is correctly specified
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Urn Experiment: Once more

Likelihood contribution of the /-th observation

log Li(p) = yilog p + (1 - y3) log (1 —p)
This gives scores

dlog L,(p) = s(p) =2 _1-y
dp ’ p l-p

and
0’ 1OgLi(p) __ Vi _ 1_yi
dp* p° (A-p)’
With E{y;} = p, the expected value turns out to be
0°log L, 1 ] ]
1,(p) :E{— : ;(p)} S
Op p 1-p pd-p)
The asymptotic variance of the ML estimator V = ' = p(1-p)
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Urn Experiment and Binomial
Distribution

The asymptotic distribution is

VN(p~-p) - N(0,p(1- p))
Small sample distribution:
Np ~B(N, p)
Use of the approximate normal distribution for portions p
rule of thumb:

Np(1-p)>9
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Example: Normal Linear
Regression

Model
Yi=xB+g
with assumptions (A1) — (A5)
Log-likelihood function

|
l0g L(£,0%) = =~ log(270*) =+ 3", (3, = X/
0— l
Score contributions:
dlog L,(B,0°) Vi =%B
2 ]
Si(lgﬁaz): al f(ﬁlg 2) = 1 01-
08 Li{pP,0 -~ + —xfB)’
- rymird G S)

The first-order conditions — setting both components of 2.s,(8,0?) to
zero — give as ML estimators: the OLS estimator for 3, the average
squared residuals for 0%
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Normal Linear Regression, contd

A AW A 1 A
f= (Zl-xixi) Zixiyia o’ :Nzi(yi _xilg)z
Asymptotic covariance matrix: Likelihood contribution of the /-th
observation (E{e} = E{¢3} = 0, E{¢?} = 02, E{¢*} = 30%)

1(B,0%) = Efs,(B,0%)s,(B,0°)'} = diag (ai e j

. 20
gives
V = I(B,0%)" = diag (0%%
with 2, = lim (Z,x.x,)/N
For finite samples: covariance matrix of ML estimators for [3
(B)=0*(3 xx)

similar to OLS results

-1, 20%)

XX
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Diagnostic Tests

Diagnostic tests based on ML estimators
Test situation:
K-dimensional parameter vector 6 = (64, ..., 6y)
J 2 1 linear restrictions (K = J)
Hy: RO = g with JxK matrix R, full rank; J-vector q
Test principles based on the likelihood function:

Wald test: Checks whether the restrictions are fulfilled for the
unrestricted ML estimator for 0; test statistic ¢,

Likelihood ratio test: Checks whether the difference between the
log-likelihood values with and without the restriction is close to
zero; test statistic ¢,

Lagrange multiplier test (or score test): Checks whether the first-
order conditions (of the unrestricted model) are violated by the
restricted ML estimators; test statistic ¢,

J
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Likelihood and Test Statistics

logL, g(B) g(B) = 0: restriction

logLmax

logLr

a(B)

A log L: log-likelihood

logL

a®
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The Asymptotic Tests

Under H,, the test statistics of all three tests

follow asymptotically, for finite sample size approximately, the Chi-
square distribution with J df

The tests are asymptotically (large N) equivalent
Finite sample size: the values of the test statistics obey the relation
E;W 2 E;LR 2 ‘caLM
Choice of the test: criterion is computational effort

Wald test: Requires estimation only of the unrestricted model;
e.g., testing for omitted regressors: estimate the full model, test

whether the coefficients of potentially omitted regressors are
different from zero

Lagrange multiplier test: Requires estimation only of the restricted
model

Likelihood ratio test: Requires estimation of both the restricted
and the unrestricted model

March 2, 2012 Hackl, Econometrics 2, Lecture 1 40




Wald Test

Checks whether the restrictions are fulfilled for the unrestricted ML
estimator for 6

Asymptotic distribution of the unrestricted ML estimator:
JN(B-6) - NO,V)
Hence, under Hy: R0 = q,
JN(RO-RO) =N (RO-q) - N(O,RVR")
The test statistic T
&, = N(RO-g)|RVR (RO-g)
o under H,, ¢,y is expected to be close to zero
o p-value to be read from the Chi-square distribution with J df
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Wald Test, contd

Typical application: tests of linear restrictions for regression
coefficients

Testof Hy: 3,=0

Sw = bil[se(b)]
o ¢ follows the Chi-square distribution with 1 df
o ¢y Is the square of the t-test statistic

Test of the null-hypothesis that a subset of J of the coefficients [3
are zeros

Sw = (er'er — e'e)/[e’e/(N-K)]
e: residuals from unrestricted model
eg: residuals from restricted model
¢ follows the Chi-square distribution with J df
¢y is related to the F-test statistic by ¢, = FJ

0 0O O O

March 2, 2012 Hackl, Econometrics 2, Lecture 1

42




Likelihood Ratio Test

Checks whether the difference between the ML estimates obtained
with and without the restriction is close to zero

for nested models i
Unrestricted ML estimator: &

Restricted ML estimator: & ; obtained by minimizing the log-
likelihood subjectto R0 =q

Under H,: R 8 = q, the test statistic
£, =2llog L(§) ~1og L(B))

o IS expected to be close to zero
o p-value to be read from the Chi-square distribution with J df
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Likelihood Ratio Test, contd

Test of linear restrictions for regression coefficients

Test of the null-hypothesis that J linear restrictions of the
coefficients 3 are valid
é.r = N log(er’er/e’e)
o e: residuals from unrestricted model
0 eg: residuals from restricted model
o ¢ g follows the Chi-square distribution with J df
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Lagrange Multiplier Test

Checks whether the derivative of the likelihood for the constrained ML
estimator is close to zero

Based on the Lagrange constrained maximization method
Lagrangian, given 6 = (6,’, 6,) with restriction 6, = q, J-vectors 8,, q
H(B, A\) = 2, log L(8) — A'(B-q)
First-order conditions give the constrained ML estimators 0 = (51', q)
and A

dlogL,(8), < 7 _
Zi ag |§_Zisi1(9)_0

7=y alogL (6) =S 5@

A measures the extent of violation of the restriction, basis for ¢,
s; are the scores; LM test is also called score test
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Lagrange Multiplier Test, contd

Lagrange multiplier test statistic
&, =N'ATZ6)A
has under H, an asymptotic Chi-square distribution with J df
[7(8) is the block diagonal of the estimated inverted information
matrix, based on the constrained estimators for 6
Calculation of ¢,
Outer product gradient (OPG) version of the LM test:

N ~ . -l ~ oo
£ =X, 5.0)(3,50)5,0)) X 5,0)=1'S(S'S)"S"

Auxiliary regression of a N-vector i = (1, ..., 1) on the scores s,@)

with restricted estimates for 6, no intercept; S’ = [s,(@), ---, SN(g)]

Test statistic is ¢, = N R? with the uncentered R? of the auxiliary
regression

Other ways for computing ¢, ,,: see below
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An Illustration

The urn experiment: testof Hy: p=p, (J=1, R=1)
The likelihood contribution of the i-th observation is
log Li(p) = yilogp + (1 - y)) log (1 —p)
This gives
si(p) = yip — (1-y)/(1-p) and f(p) = [p(1-p)]"
Wald test: i , ,
(p— D) _N(Nl — Np,)

=N(p-p)|[pA-D)] (p-p)=N =
- &y (& p-o)[p( ] (p-po) si-5 VN -N)
Likelihood ratio test:

é.x = 2(log L(p) ~log L(P))
with
log L(p) = N,log(N,/N)+(N—-N,)log(1-N,/N)

log L(p) = N, log(p,) + (N —N,)log(l1- p,)
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An Illustration, contd

Lagrange multiplier test:
with

TR B L )
o o p, 1=p, po(1=py)

and the inverted information matrix [I(p)] 1= p(1-p), calculated for
the restricted case, the LM test statistic is

Sy =N ‘A [ po(1= po)]/]
=N(p—py)lp,( _po)]_l(ﬁ = Do)
Example
In a sample of N = 100 balls, 44 are red
Hy: py=0.5
cw=146,¢r=144,¢,,=1.44
Corresponding p-values are 0.227, 0.230, and 0.230
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Normal Linear Regression:
Scores

Log-likelihood function

1 ,
l0g L(£,0%) = =~ log(270*) == 3" (3, = X,
0- l
Scores:
along.(IB,a2) Vi _x;ﬂx
2 I
Si(lgaaz): al fl(Bﬁ 2) = 1 01-
og Li(p,0 - + —X'B)
o 52 v i xh)

Covariance matrix
V = I(B,0%)" = diag(c3%,, ", 20%)
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Testing for Omitted Regressors

Model: y, = x/B + z'y + &, & ~ NID(0,6?)

Test whether the J regressors z, are erroneously omitted:
Fit the restricted model
Apply the LM test to check H,: y =0

First-order conditions give the scores

—ng_ ZEZ’ B 2672 ~4:

with constrained ML estimators for B and 0%, ML -residualsé =y —x, '
Auxiliary regression of N-vectori= (1, ..., 1) on the scores é‘ixi,g‘izi
gives the uncentered R?

The LM test statisticis ¢\, = N R?

An asymptotically equivalent LM test statistic is NR_? with R.?
from the regression of the ML residuals on x; and z,
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Testing for Heteroskedasticity

Model: y; = x/'B + &, & ~ NID, V{¢} = 6® h(z'a), h(.) > 0 but unknown,
h(0) =1, dlda{h(.)} # 0, J-vector z
Test for homoskedasticity: Apply the LM test to check Hy: a=0
First-order conditions with respect to 0% and a give the scores
£ =0°, (8 -0°)z
with constrained ML estimators for 8 and o?; ML-residuals &,

Auxiliary regression of N-vectori= (1, ..., 1) on the scores
gives the uncentered R?

LM test statistic ¢, ,, = NR?; a version of Breusch-Pagan test

An asymptotically equivalent version of the Breusch-Pagan test
is based on NR_? with R_? from the regression of the squared
ML residuals on z, and an intercept

Attention: no effect of the functional form of h(.)

March 2, 2012 Hackl, Econometrics 2, Lecture 1 52




Testing for Autocorrelation

Model: y, = x,/B + &, & = p&.4 + V,, V, ~ NID(0,0?)
LM testof Hy: p=0

First-order conditions give the scores
gtxt 3 gtgt—l

with constrained ML estimators for 8 and ¢?

The LM test statistic is ¢, = (T-1) R? with R? from the
auxiliary regression of the ML residuals on the lagged
residuals; Breusch-Godfrey test

An asymptotically equivalent version of the Breusch-Godfrey
test is based on NR_? with R_? from the regression of the ML
residuals on x; and the lagged residuals
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Quasi ML Estimator

The quasi-maximum likelihood estimator
refers to moment conditions
does not refer to the entire distribution
uses the GMM concept
Derivation of the ML estimator as a GMM estimator
weaker conditions
consistency applies
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Generalized Method of
Moments (GMM)

The model is characterized by R moment conditions
E{f(Wia Zi’ e)} = O
o f(.): R-vector function

o w; vector of observable variables, z: vector of instrument
variables

o 0: K-vector of unknown parameters
Substitution of the moment conditions by sample equivalents:
Ine®) = (1/N) 2; flw;, z, 8) = 0
Minimization wrt 6 of the quadratic form
Qu(B) = gn(B) Wy gn(B)

with the symmetric, positive definite weighting matrix W,
gives the GMM estimator

6 =argmin, O, (0)
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Quasi-ML Estimator

The quasi-maximum likelihood estimator
refers to moment conditions
does not refer to the entire distribution
uses the GMM concept
ML estimator can be interpreted as GMM estimator: first-order

conditions
5(0) = Ologg(ﬁ) |9:Z,-alogL (6) ) _Z 5(0)],
correspond to sample averages based on theoretical moment
conditions
Starting point is
E{s(0)} =0

valid for the K-vector 6 if the likelihood is correctly specified
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E{s(B)} =0

From [f(y|x.;8) dy, = 1 follows

j'af(yi |xi;9) dy,- =0
06
Transformation

U (ilx:0) _0log (i [X:0) gy = ¢ (8) £y |x:0)

. 00
gives
[5.0)f (3, 1x:0)dy, = E{s,(6)} = 0
This theoretical moment for the scores is valid for any density f(.)
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Quasi-ML Estimator, contd

Use of the GMM idea — substitution of moment conditions by
sample equivalents — suggests to transform E{s,(8)} = 0 into its
sample equivalent and solve the first-order conditions

%Z%(@):O

This reproduces the ML estimator

Example: For the linear regression y, = x,/8 + &, application of the
Quasi-ML concept starts from the sample equivalents of

E{(yi-xB) x}=0
this corresponds to the moment conditions of the OLS and the
first-order condition of the ML estimators

o does not depend of the normality assumption of &!
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Quasi-ML Estimator, contd

Can be based on a wrong likelihood assumption
Consistency is due to starting out from E{s,(8)} =0

Hence, “quasi-ML" (or “pseudo ML") estimator
Asymptotic distribution:

May differ from that of the ML estimator:
JIN(6-6) - N(O,V)

Using the asymptotic distribution of the GMM estimator gives
JN@-8) - N(0,1(6)" J(0)1(6)")

with J(B) = lim (1/N)Z.E{s;(0) s,(0)’}

and /(0) = lim (1/N)2.E{-0s,(8)/00’}

For linear regression: heteroskedasticity-consistent
covariance matrix
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Your Homework

Open the Greene sample file “greene7_8, Gasoline price and
consumption”, offered within the Gretl system. The variables to
be used in the following are: G = total U.S. gasoline
consumption, computed as total expenditure divided by price
index; Pg = price index for gasoline; Y = per capita disposable
income; Pnc = price index for new cars; Puc = price index for
used cars; Pop = U.S. total population in millions. Perform the
following analyses and interpret the results:

Produce and interpret the scatter plot of the per capita (p.c.)
gasoline consumption (Gpc) over the p.c. disposable income.

Fit the linear regression for log(Gpc) with regressors log(Y), Pg, Pnc
and Puc to the data and give an interpretation of the outcome.
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Your Homework, cont’d

Test for autocorrelation of the error terms using the LM test statistic
¢ v = (T-1) R? with R? from the auxiliary regression of the ML
residuals on the lagged residuals with appropriately chosen lags.

Test for autocorrelation using NR_? with R_? from the regression of
the ML residuals on x, and the lagged residuals.

Assume that the errors ¢, of the linear regression y, = 3, + B,x; +
g,are NID(0, 02) distributed. (a) Determine the log-likelihood
function of the sample fort=1, ..., T; (b) show that the first-order
conditions for the ML estimators have expectations zero for the
true parameter values; (c) derive the asymptotic covariance
matrix on the basis (i) of the information matrix and (ii) of the
score vector; (d) derive the matrix S of scores for the omitted
variable LM test [cf. eq. (6.38) in Veebeek].
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