Econometrics 2 - Lecture 3

Univariate Time Series Models

Contents

- Time Series
- Stochastic Processes
- **Stationary Processes**
- **The ARMA Process**
- **Deterministic and Stochastic Trends**
- **Nodels with Trend**
- **Unit Root Tests**
- Estimation of ARMA Models

Private Consumption

Private Consumption, cont'd

Disposable Income

Time Series

Time-ordered sequence of observations of a random variable

Examples:

- **Annual values of private consumption**
- Changes in expenditure on private consumption
- Quarterly values of personal disposable income
- **Nonthly values of imports**

Notation:

- Random variable *Y*
- Sequence of observations *Y*₁, *Y*₂, ..., *Y*_T
- **Deviations from the mean:** $y_t = Y_t E(Y_t) = Y_t \mu$

Components of a Time Series

Components or characteristics of a time series are

- Trend
- **Seasonality**
- Irregular fluctuations
- Time series model: represents the characteristics as well as possible interactions

Purpose of modeling

- Description of the time series
- Forecasting the future

Example: $Y_t = \beta t + \sum_i Y_i D_{it} + \varepsilon_t$

with $D_{it} = 1$ if *t* corresponds to *i*-th quarter, $D_{it} = 0$ otherwise for describing the development of the disposable income

Contents

- **Time Series**
- Stochastic Processes
- **Stationary Processes**
- **The ARMA Process**
- **Deterministic and Stochastic Trends**
- **Nodels with Trend**
- **Unit Root Tests**
- Estimation of ARMA Models

Stochastic Process

Time series: realization of a stochastic process

Stochastic process is a sequence of random variables Y_t, e.g.,

$$
\{Y_t, t = 1, ..., n\}
$$

$$
\{Y_t, t = -\infty, ..., \infty\}
$$

Joint distribution of the *Y*₁, ..., *Y*_n:

$$
p(y_1, \ldots, y_n)
$$

Of special interest

- **Explution of the expectation** $\mu_t = E\{Y_t\}$ **over time**
- **Dependence structure over time**

Example: Extrapolation of a time series as a tool for forecasting

White Noise Process

White noise process x_t , $t = -\infty$, ..., ∞

- $E\{x_t\} = 0$
- $V\{x_t\} = \sigma^2$
- Cov $\{x_t, x_{t-s}\} = 0$ for all (positive or negative) integers *s*
- i.e., a mean zero, serially uncorrelated, homoskedastic process

AR(1)-Process

States the dependence structure between consecutive observations as

 $Y_t = \delta + \theta Y_{t-1} + \varepsilon_t$, $|\theta| < 1$

with ε_t: white noise, i.e., V{ε_t} = σ^2 (see next slide)

Autoregressive process of order 1

From
$$
Y_t = \delta + \theta Y_{t-1} + \varepsilon_t = \delta + \theta \delta + \theta^2 \delta + \dots + \varepsilon_t + \theta \varepsilon_{t-1} + \theta^2 \varepsilon_{t-2} + \dots
$$
 follows
\n
$$
E\{Y_t\} = \mu = \delta (1-\theta)^{-1}
$$

 \blacksquare $|\theta|$ < 1 needed for convergence! Invertibility condition In deviations from μ , $y_t = Y_t - \mu$:

$$
y_t = \theta y_{t-1} + \varepsilon_t
$$

AR(1)-Process, cont'd

Autocovariances γ_k = Cov{Y_t,Y_{t-k}}

$$
k = 0: \gamma_0 = V\{Y_t\} = \theta^2 V\{Y_{t-1}\} + V\{\epsilon_t\} = \dots = \sum_i \theta^{2i} \sigma^2 = \sigma^2 (1-\theta^2)^{-1}
$$

$$
k=1: \gamma_1 = Cov\{Y_t, Y_{t-1}\} = E\{(\theta y_{t-1} + \varepsilon_t)y_{t-1}\} = \theta V\{y_{t-1}\} = \theta \sigma^2 (1-\theta^2)^{-1}
$$

In general:

$$
y_k = \text{Cov}\{Y_t, Y_{t-k}\} = \theta^k \sigma^2 (1-\theta^2)^{-1}, k = 0, 1, ...
$$

depends upon *k*, not upon *t*!

MA(1)-Process

States the dependence structure between consecutive observations as

 $Y_t = \mu + \varepsilon_t + \alpha \varepsilon_{t-1}$ with ε_t: white noise, V{ε_t} = σ^2 Moving average process of order 1 $E{Y_t} = \mu$

Autocovariances γ_k = Cov{Y_t, Y_{t-k}}

- **k**=0: $y_0 = V{Y_t} = σ^2(1+\alpha^2)$
- **■** $k=1$: $γ_1 = Cov{Y_t, Y_{t-1}} = ασ^2$
- $y_k = 0$ for $k = 2, 3, ...$
- Depends upon *k*, not upon *t*!

AR-Representation of MA-Process

The AR(1) can be represented as MA-process of infinite order

$$
y_t = \theta y_{t-1} + \varepsilon_t = \sum_{i=0}^{\infty} \theta^i \varepsilon_{t-i}
$$

given that $|\theta|$ < 1

Similarly, the AR representation of the MA(1) process

 $y_t = \alpha y_{t-1} - \alpha^2 y_{t-2} + \dots \varepsilon_t = \sum_{i=0}^{\infty} (-1)^i \alpha^{i+1} y_{t-i-1} + \varepsilon_t$ given that |α| < 1

Contents

- **Time Series**
- **Stochastic Processes**
- **Stationary Processes**
- **The ARMA Process**
- **Deterministic and Stochastic Trends**
- **Nodels with Trend**
- **Unit Root Tests**
- Estimation of ARMA Models

Stationary Processes

Refers to the joint distribution of Y_t 's, in particular to second moments

A process is called strictly stationary if its stochastic properties are unaffected by a change of the time origin

The joint probability distribution at any set of times is not affected by an arbitrary shift along the time axis

Covariance function:

$$
Y_{t,k} = Cov\{Y_t, Y_{t+k}\}, k = 0, 1,...
$$

Properties:

$$
\gamma_{t,k} = \gamma_{t,-k}
$$

Weak stationary process:

$$
E\{Y_t\} = \mu \text{ for all } t
$$

Cov $\{Y_t, Y_{t+k}\} = Y_k, k = 0, 1, ...$ for all *t* and all *k*

Also called covariance stationary process

AC and PAC Function

Autocorrelation function (AC function, ACF) Independent of the scale of *Y*

For a stationary process:

$$
\rho_k = \text{Corr}\{Y_t, Y_{t-k}\} = \gamma_k / \gamma_0, k = 0, 1, ...
$$

- Properties:
	- \Box $|\rho_k| \leq 1$
	- $\rho_k = \rho_{-k}$
	- $ρ₀ = 1$
- Correlogram: graphical presentation of the AC function

Partial autocorrelation function (PAC function, PACF):

 θ_{kk} = Corr{ Y_t , $Y_{t-k} | Y_{t-1},..., Y_{t-k+1}$ }, $k = 0, 1, ...$

- **β**_{kk} is obtained from $Y_t = \theta_{k0} + \theta_{k1}Y_{t-1} + ... + \theta_{kk}Y_{t-k}$
- **Partial correlogram: graphical representation of the PAC function**

AC and PAC Function: Examples

Examples for the AC and PAC functions

White noise

$$
\rho_0 = \theta_{00} = 1
$$

$$
\rho_k = \theta_{kk} = 0, \text{ if } k \neq 0
$$

• AR(1) process,
$$
Y_t = \delta + \theta Y_{t-1} + \varepsilon_t
$$

$$
\rho_k = \Theta^k, k = 0, 1, \ldots
$$

$$
\theta_{00} = 1
$$
, $\theta_{11} = \theta$, $\theta_{kk} = 0$ for $k > 1$

■ MA(1) process,
$$
Y_t = \mu + \varepsilon_t + \alpha \varepsilon_{t-1}
$$

$$
\rho_0 = 1
$$
, $\rho_1 = -\alpha/(1 + \alpha^2)$, $\rho_k = 0$ for $k > 1$

PAC function: damped exponential if $\alpha > 0$, otherwise alternating and damped exponential

AC and PAC Function: **Estimates**

Estimator for the AC function ρ_k :

$$
W_k = \sum_{i} y_i \frac{\partial}{\partial x_i} \frac{\partial}{\partial y_i} \frac{\partial}{\partial y_i} \frac{\partial}{\partial y_i} \frac{\partial}{\partial y_i}
$$

E Estimator for the PAC function θ_{kk} : coefficient of Y_{t-k} in the regression of *Y*_t on *Y*_{t-1}, …, *Y*_{t-k}

AR(1) Processes, Verbeek, Fig. 8.1

First-order autoregressive processes: data series and autocorrelation functions Figure 8.1

MA(1) Processes, Verbeek, Fig. 8.2

Figure 8.2 First-order moving average processes: data series and autocorrelation functions

Contents

- **Time Series**
- **Stochastic Processes**
- **E** Stationary Processes
- **The ARMA Process**
- **Deterministic and Stochastic Trends**
- **Nodels with Trend**
- **Unit Root Tests**
- Estimation of ARMA Models ■ Models with Trend
■ Unit Root Tests
■ Estimation of ARMA Models
April 6, 2012 *I*lackl, Econometrics 2, Lecture 3 22

The ARMA(p,q) Process

Generalization of the AR and MA processes: ARMA(*p*,*q*) process

$$
y_t = \theta_1 y_{t-1} + ... + \theta_p y_{t-p} + \varepsilon_t + \alpha_1 \varepsilon_{t-1} + ... + \alpha_q \varepsilon_{t-q}
$$

with white noise ε_t

Lag (or shift) operator *L* (*Ly*_t = y_{t-1} , *L*⁰*y*_t = *Iy*_t = *y*_t, *L*^p*y*_t = *y*_{t-p}) ARMA(*p*,*q*) process in operator notation

 $\Theta(L)y_t = \alpha(L)\varepsilon_t$

with operator polynomials θ(*L*) and α(*L*)

$$
\theta(L) = I - \theta_1 L - \dots - \theta_p L^p
$$

$$
\alpha(L) = I + \alpha_1 L + \dots + \alpha_q L^q
$$

Lag Operator

Lag (or shift) operator *L*

- $L y_t = y_{t-1}$, $L^0 y_t = I y_t = y_t$, $L^p y_t = y_{t-p}$
- Algebra of polynomials in *L* like algebra of variables Examples:

$$
(I - \phi_1 L)(I - \phi_2 L) = I - (\phi_1 + \phi_2)L + \phi_1 \phi_2 L^2
$$

$$
(I - \theta L)^{-1} = \sum_{i=0}^{\infty} \theta^i L^i
$$

■ MA(∞) representation of the AR(1) process

$$
y_{t} = (I - \theta L)^{-1} \varepsilon_{t}
$$

the infinite sum defined only (e.g., finite variance) $|\theta|$ < 1

MA(∞) representation of the ARMA(*p*,*q*) process

*y*_t = $[θ (L)]^{-1}α(L)ε_t$

similarly the $AR(\infty)$ representations; invertibility condition: restrictions on parameters

Invertibility of Lag Polynomials

Invertibility condition for *I* - θ*L*: |θ| < 1 Invertibility condition for $I - \theta_1 L - \theta_2 L^2$:

- $θ(L) = I θ₁L θ₂L² = (I φ₁L)(I φ₂L)$ with $φ₁+φ₂ = θ₁$ and $-φ₁φ₂ = θ₂$
- **I** Invertibility conditions: both $(I \phi_1 L)$ and $(I \phi_2 L)$ invertible; $|\phi_1| < 1$, $|\phi_2|$ < 1
- **Characteristic equation:** $\theta(z) = (1 \phi_1 z) (1 \phi_2 z) = 0$
- **Characteristic roots: solutions** z_1 **,** z_2 **from** $(1 \phi_1 z) (1 \phi_2 z) = 0$
- **I** Invertibility conditions: $|z_1| > 1$, $|z_2| > 1$

Can be generalized to lag polynomials of higher order Unit root: a characteristic root of value 1

- Polynomial $\theta(z)$ evaluated at $z = 1$: $\theta(1) = 0$, if $\Sigma_i \theta_i = 1$
- **Simple check, no need to solve characteristic equation**

Contents

- **Time Series**
- **Stochastic Processes**
- **E** Stationary Processes
- **F** The ARMA Process
- **Deterministic and Stochastic Trends**
- **Nodels with Trend**
- **Unit Root Tests**
- Estimation of ARMA Models ■ Models with Trend
■ Unit Root Tests
■ Estimation of ARMA Models
April 6, 2012 *Hackl, Econometrics 2, Lecture 3* 26

Types of Trend

Trend: The expected value of a process Y_t increases or decreases with time

■ Deterministic trend: a function $f(t)$ of the time, describing the evolution of E{*Y*_t} over time

 $Y_t = f(t) + \varepsilon_t$, ε_t : white noise

Example: $Y_t = \alpha + \beta t + \varepsilon_t$ describes a linear trend of *Y*; an increasing trend corresponds to $β > 0$

stochastic trend: $Y_t = \delta + Y_{t-1} + \varepsilon_t$ or

 $\Delta Y_t = Y_t - Y_{t-1} = \delta + \varepsilon_t$, ε_t: white noise

- describes an irregular or random fluctuation of the differences Δ*Y*_t around the expected value δ
- \Box AR(1) or AR(*p*) process with unit root
- \Box *"*random walk with trend"

Example: Private Consumption

Private consumption, AWM database; level values (PCR) and first differences (PCR_D)

Trends: Random Walk and AR Process

Random walk: $Y_t = Y_{t-1} + \varepsilon_t$; random walk with trend: $Y_t = 0.1 + Y_{t-1} + \varepsilon_t$; AR(1) process: $Y_t = 0.2 + 0.7Y_{t-1} + \varepsilon_t$; ε_t simulated from $N(0,1)$

Random Walk with Trend

The random walk with trend $Y_t = \delta + Y_{t-1} + \varepsilon_t$ can be written as

*Y*_t = *Y*₀ + δ*t* + Σ_{i≤t} ε_i

δ: trend parameter

Components of the process

- Deterministic growth path $Y_0 + \delta t$
- Cumulative errors $\Sigma_{i\leq t}$ ε_i

Properties:

- Expectation Y_0 + δt is not a fixed value!
- $V(Y_t) = \sigma^2 t$ becomes arbitrarily large!
- Corr ${Y_t, Y_{t-k}} = \sqrt{(1-k/t)}$
- **Non-stationarity**

Random Walk with Trend, cont'd

From

$$
Cov Y_t Y_{-} = - \frac{1}{2} \frac{1}{2}
$$

follows

- For fixed *k*, Y_t and Y_{t-k} are the stronger correlated, the larger *t*
- With increasing *k*, correlation tends to zero, but the slower the larger *t* (long memory property) **April 6, 2012**
April 6, 2012
April 6,

Comparison of random walk with the AR(1) process $Y_t = \delta + \theta Y_{t-1} + \epsilon_t$

- AR(1) process: ε_{t-i} has the lesser weight, the larger *i*
- $AR(1)$ process similar to random walk when θ is close to one

Non-Stationarity: Consequences

 $AR(1)$ process $Y_t = \theta Y_{t-1} + \varepsilon_t$

OLS Estimator for θ:

$$
\hat{\theta} = \frac{\sum_{t} y_t^2 y_t}{\sum_{t} y_t^2}
$$

- For $|\theta|$ < 1: the estimator is
	- Consistent
	- Asymptotically normally distributed
- For θ = 1 (unit root)
	- \Box θ is underestimated
	- □ Estimator not normally distributed
	- □ Spurious regression problem

Spurious Regression

Random walk without trend: $Y_t = Y_{t-1} + \varepsilon_t$, ε_t : white noise

- Realization of Y_t: is a non-stationary process, stochastic trend?
- V{Y_t}: a multiple of *t*
- Specified model: $Y_t = \alpha + \beta t + \varepsilon_t$
- Deterministic trend
- Constant variance
- Misspecified model!

Consequences for OLS estimator for β

- *t* and *F*-statistics: wrong critical limits, rejection probability too large
- R^2 indicates explanatory potential although Y_t random walk without trend
- Granger & Newbold, 1974

Contents

- **Time Series**
- **Stochastic Processes**
- **E** Stationary Processes
- **F** The ARMA Process
- **Deterministic and Stochastic Trends**
- **Nodels with Trend**
- **Unit Root Tests**
- Estimation of ARMA Models ■ Models with Trend
■ Unit Root Tests
■ Estimation of ARMA Models
April 6, 2012
April 6, 2012
April 6, 2012

How to Model Trends?

Specification of

- **■** Deterministic trend, e.g., $Y_t = \alpha + \beta t + \varepsilon_t$: risk of wrong decisions
- Stochastic trend: analysis of differences ΔY_t if a random walk, i.e., a unit root, is suspected
- Consequences of spurious regression are more serious

Consequences of modeling differences ΔY_t:

- Autocorrelated errors
- Consistent estimators
- **Asymptotically normally distributed estimators**
- HAC correction of standard errors

Elimination of a Trend

In order to cope with non-stationarity

- **Trend-stationary process: the process can be transformed in a** stationary process by subtracting the deterministic trend
- **Difference-stationary process, or integrated process: stationary** process can be derived by differencing

Integrated process: stochastic process *Y* is called

- integrated of order one if the first differences yield a stationary process: *Y* ~ *I*(1)
- integrated of order *d*, if the *d*-fold differences yield a stationary process: *Y* ~ *I*(*d*)

Trend-Elimination: Examples

Random walk $Y_t = \delta + Y_{t-1} + \varepsilon_t$ with white noise ε_t

 $\Delta Y_t = Y_t - Y_{t-1} = \delta + \varepsilon_t$

- **ΔY_t** is a stationary process
- A random walk is a difference-stationary or *I*(1) process

Linear trend $Y_t = \alpha + \beta t + \varepsilon_t$

- Subtracting the trend component α + β*t* provides a stationary process
- *Y*_t is a trend-stationary process

Integrated Stochastic Processes

Random walk $Y_t = \delta + Y_{t-1} + \varepsilon_t$ with white noise ε_t is a differencestationary or *I*(1) process

Many economic time series show stochastic trends

From the AWM Database

ARIMA(*p*,*d*,*q*) process: *d-*th differences follow an ARMA(*p*,*q*) process

Contents

- **Time Series**
- **Stochastic Processes**
- **E** Stationary Processes
- **F** The ARMA Process
- **Deterministic and Stochastic Trends**
- **Nodels with Trend**
- **Unit Root Tests**
- Estimation of ARMA Models ■ Models with Trend
■ Unit Root Tests
■ Estimation of ARMA Models
April 6, 2012 *Hackl, Econometrics 2, Lecture 3* 39

Unit Root Tests

AR(1) process $Y_t = \delta + \theta Y_{t-1} + \epsilon_t$ with white noise ϵ_t

- Dickey-Fuller or DF test (Dickey & Fuller, 1979) Test of H_0 : θ = 1 against H_1 : θ < 1
- KPSS test (Kwiatkowski, Phillips, Schmidt & Shin, 1992) Test of H_0 : θ < 1 against H_1 : θ = 1
- **Augmented Dickey-Fuller or ADF test** extension of DF test
- **Number 1** Various modifications like Phillips-Perron test, Dickey-Fuller GLS test, etc.

Dickey-Fuller's Unit Root Test

AR(1) process $Y_t = \delta + \theta Y_{t-1} + \epsilon_t$ with white noise ϵ_t OLS Estimator for θ:

 \overline{a}

$$
\hat{\theta} = \frac{\sum_{t} y_t^2 y_t}{\sum_{t} y_t^2}
$$

Distribution of *DF*

$$
D\Gamma_{\leftarrow} = \frac{1}{\epsilon \rho}
$$

- If $|\theta|$ < 1: approximately $t(T-1)$
- If θ = 1: Dickey & Fuller critical values

DF test for testing H_0 : θ = 1 against H_1 : θ < 1

 θ = 1: characteristic polynomial has unit root

Dickey-Fuller Critical Values

Monte Carlo estimates of critical values for

- *DF*⁰ : Dickey-Fuller test without intercept
- *DF*: Dickey-Fuller test with intercept
- *DF*^η : Dickey-Fuller test with time trend

Unit Root Test: The Practice

AR(1) process $Y_t = \delta + \theta Y_{t-1} + \epsilon_t$ with white noise ϵ_t can be written with $\pi = \theta - 1$ as $\Delta Y_t = \delta + \pi Y_{t-1} + \varepsilon_t$ DF tests H_0 : π = 0 against H_1 : π < 0 test statistic for testing π = θ -1 = 0 identical with *DF* statistic $\overline{A} = \overline{A}$ $\frac{1}{\pi}$ π $\frac{1}{2}$ igouright -0 - -0 identically $\bar{v}_A = \frac{\pi}{3}$ *DF*

Two steps:

- 1. Regression of ΔY_t on Y_{t-1} : OLS-estimator for $\pi = \theta 1$
- 2. Test of H_0 : π = 0 against H_1 : π < 0 based on *DF*; critical values of Dickey & Fuller $\mathcal{L}I = \frac{1}{k} \mathcal{L}$

Two steps:

1. Regression of ΔY_t on Y_{t-1} : OLS-estimator

2. Test of H_0 : $\pi = 0$ against H_1 : $\pi < 0$ based

Dickey & Fuller

April 6, 2012

Hackl, Econometries 2, Lecture 3

Example: Price/Earnings Ratio

Verbeek's data set PE: annual time series data on composite stock price and earnings indices of the S&P500, 1871-2002

PE: price/earnings ratio

Price/Earnings Ratio, cont'd

Fitting an AR(1) process to the log PE ratio data gives:

 $\Delta Y_t = 0.335 - 0.125Y_{t-1}$

with *t*-statistic -2.569 (*Y*t-1) and *p*-value 0.1021

- *p*-value of the DF statistic (-2.569): 0.102
	- \Box 1% critical value: -3.48
	- \Box 5% critical value: -2.88
	- □ 10% critical value: -2.58
- H_0 : θ = 1 (non-stationarity) cannot be rejected for the log PE ratio

Unit root test for first differences: DF statistic -7.31, *p*-value 0.000 (1% critical value: -3.48)

log PE ratio is *I*(1)

However: for sample 1871-1990: DF statistic -3.65, *p*-value 0.006

Unit Root Test: Extensions

DF test so far for a model with intercept: $\Delta Y_t = \delta + \pi Y_{t-1} + \varepsilon_t$ Tests for alternative or extended models

DF test for model without intercept: $\Delta Y_t = \pi Y_{t-1} + \varepsilon_t$

DF test for model with intercept and trend: $\Delta Y_t = \delta + \gamma t + \pi Y_{t-1} + \varepsilon_t$ DF tests in all cases H_0 : π = 0 against H_1 : π < 0

Test statistic in all cases

$$
D\vec{l} = \vec{l}
$$
\n
$$
\vec{l}
$$
\n
$$
Critical values depend on cases; cf. Table on slide 42\n\n
$$
A\vec{l}
$$
\n
$$
A\vec{l}
$$
\n
$$
A\vec{l}
$$
\n
$$
B\vec{l}
$$
\n
$$
B\vec
$$
$$

KPSS Test

A process $Y_t = \delta + \varepsilon_t$ with white noise ε_t

- **Test of** H_0 **: no unit root (** Y_t **is stationary), against** $H_1: Y_t \sim I(1)$
- **Under** H_0 :
	- \Box Average *ý* is a consistent estimate of δ
	- **Long-run variance of** ε_t **is a well-defined number**
- KPSS (Kwiatkowski, Phillips, Schmidt, Shin) test statistic 2002 - Paul Barnett, amerikansk politiker
2002 - Paul Barnett, amerikansk politiker
2002 - Paul Barnett, amerikansk politiker **T**

with $S_t^2 = \sum_i^t e_i$ and the variance estimate *s*² of the residuals $e_i = Y_t - j\delta$ 2 2

■ Bandwidth or lag truncation parameter *m* for estimating s²

$$
S^2 = \sum_{i=1}^{n} S_i
$$

 Critical values from Monte Carlo simulations *t t S KPSS T s* **1 +** ε_t with white noise ε_t

b unit root (Y_t is stationary), age

s a consistent estimate of δ

ariance of ε_t is a well-defined numk

kowski, Phillips, Schmidt, Shin)
 $\sum_{\substack{\mathsf{e}_i \text{ and the variance estimate } s^2}}$

lag tr $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \mathbf{f}(\mathbf{x}_i - \mathbf{f}) = \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \mathbf{f}(i) = \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \mathbf{f}(i) = \sum_{i=1}^{n} \sum_{i=1}^{n} \mathbf{f}(i) = \sum_{i=1}^{n} \mathbf{f}(i) = \sum_{i=1}^{n} \mathbf{f}(i) = \sum_{i=1}^{n} \mathbf{f}(i) = \sum_{i=1$

ADF Test

Extended model according to an AR(*p*) process:

 $\Delta Y_t = \delta + \pi Y_{t-1} + \beta_1 \Delta Y_{t-1} + ... + \beta_p \Delta Y_{t-p+1} + \varepsilon_t$ Example: AR(2) process $Y_t = \delta + \theta_1 Y_{t-1} + \theta_2 Y_{t-2} + \varepsilon_t$ can be written as $\Delta Y_t = \delta + (\theta_1 + \theta_2 - 1)Y_{t-1} - \theta_2 \Delta Y_{t-1} + \varepsilon_t$ the characteristic equation $(1 - \phi_1 L)(1 - \phi_2 L) = 0$ has roots $\theta_1 = \phi_1 +$ ϕ_2 and θ_2 = - $\phi_1\phi_2$ a unit root implies $\phi_1 = \theta_1 + \theta_2 = 1$:

Augmented DF (ADF) test

- **■** Test of H_0 : π = 0 against H_1 : π < 0
- **Needs its own critical values**
- **Extensions (intercept, trend) similar to the DF-test**
- Phillips-Perron test: alternative method; uses HAC-corrected standard errors

Price/Earnings Ratio, cont'd

Extended model according to an AR(2) process gives:

 Δ Y_t = 0.366 – 0.136 Y_{t-1} + 0.152ΔY_{t-1} - 0.093ΔY_{t-2}

with *t*-statistics -2.487 (Υ_{t-1}), 1.667 (ΔΥ_{t-1}) and -1.007 (ΔΥ_{t-2}) and

p-values 0.119, 0.098 and 0.316

- *p*-value of the DF statistic 0.121
	- \Box 1% critical value: -3.48
	- 5% critical value: -2.88
	- □ 10% critical value: -2.58
- Non-stationarity cannot be rejected for the log PE ratio
- Unit root test for first differences: DF statistic -7.31, *p*-value 0.000 (1% critical value: -3.48)
- log PE ratio is *I*(1)

However: for sample 1871-1990: DF statistic -3.52, *p*-value 0.009

Unit Root Tests in GRETL

For marked variable:

- Variable > Unit root tests > Augmented Dickey-Fuller test Performs the
	- □ DL test (choose zero for "lag order for ADL test") or the
	- ADL test
	- with or without constant, trend, squared trend
- Variable > Unit root tests > ADF-GLS test

Performs the

- □ DL test (choose zero for "lag order for ADL test") or the
- ADL test
- □ with or without a trend, which are estimated by GLS
- Variable > Unit root tests > KPSS test Performs the KPSS test with or without a trend

Contents

- **Time Series**
- **Stochastic Processes**
- **E** Stationary Processes
- **F** The ARMA Process
- **Deterministic and Stochastic Trends**
- **Nodels with Trend**
- **Unit Root Tests**
- Estimation of ARMA Models ■ Models with Trend
■ Unit Root Tests
■ **Estimation of ARMA Models**
April 6, 2012 **Hackl, Econometrics 2, Lecture 3** 51

ARMA Models: Application

Application of the ARMA(*p*,*q*) model in data analysis: Three steps

- Model specification, i.e., choice of p, q (and d if an ARIMA model is specified)
- 2. Parameter estimation
- 3. Diagnostic checking

Estimation of ARMA Models

The estimation methods are

- OLS estimation
- **ML** estimation

AR models: the explanatory variables are

- **Lagged values of the explained variable Y_t**
- **Uncorrelated with error term** ϵ_t
- **CLS** estimation

MA Models: OLS Estimation

MA models:

- **Ninimization of sum of squared deviations is not straightforward**
- **■** E.g., for an MA(1) model, $S(\mu, \alpha) = \sum_{t} [Y_t \mu \alpha \sum_{j=0} (-\alpha)^j (Y_{t-j-1} \mu)]^2$
	- \Box S(μ , α) is a nonlinear function of parameters
	- □ Needs Y_{t-j-1} for *j*=0,1,..., i.e., historical *Y*_s, *s* < 0
- **Approximate solution from minimization of**

S*(μ,α) = Σ_t[Y_t - μ - αΣ_{j=0}^{t-2}(- α)^j(Y_{t-j-1} – μ)]²

Nonlinear minimization, grid search

ARMA models combine AR part with MA part

ML Estimation

Assumption of normally distributed ϵ_t

Log likelihood function, conditional on initial values

log L(α,θ,μ,σ²) = - (*T*-1)log(2πσ²)/2 – (1/2) Σ_t ε_t²/σ²

 ϵ_t are functions of the parameters

$$
\blacksquare \quad \mathsf{AR}(1): \varepsilon_t = y_t - \theta_1 y_{t-1}
$$

$$
\blacksquare \quad \mathsf{MA}(1): \varepsilon_t = \Sigma_{j=0}^{t-1} (-\alpha)^j y_{t-j}
$$

Initial values: y_1 for AR, ε_0 = 0 for MA

- Extension to exact ML estimator
- Again, estimation for AR models easier
- ARMA models combine AR part with MA part

Model Specification

Based on the

- **Autocorrelation function (ACF)**
- **Partial Autocorrelation function (PACF)**

Structure of AC and PAC functions typical for AR and MA processes Example:

- **■** MA(1) process: $ρ_0 = 1$, $ρ_1 = α/(1-α^2)$; $ρ_i = 0$, $i = 2, 3, ...$; $θ_{kk} = α^k$, $k = 0$, 1, …
- **■** AR(1) process: $ρ_k = θ^k$, $k = 0, 1,...; θ_{00} = 1$, $θ_{11} = θ$, $θ_{kk} = 0$ for $k > 1$

Empirical ACF and PACF give indications on the process underlying the time series

ARMA(*p*,*q*)-Processes

Empirical AC and PAC Function

Estimation of the AC and PAC functions

AC ρ_{k} :

$$
W_k = \sum_{i} y_i y_i y_j \frac{\psi_{i,k}}{\psi_{i,k}} \frac{\psi_{i,k}}{\psi_{i,k}}
$$

PAC θ_{kk}: coefficient of *Y*_{t-k} in regression of *Y*_t on *Y*_{t-1}, …, *Y*_{t-k} $MA(q)$ process: standard errors for r_k , $k > q$, from

$$
\sqrt{T}(r_k - \rho_k) \rightarrow N(0, v_k)
$$

with $v_k = 1 + 2\rho_1^2 + ... + 2\rho_k^2$

■ test of H_0 : ρ_1 = 0: compare $\sqrt{T}r_1$ with critical value from N(0,1), etc. AR(p) process: test of H_0 : ρ_k = 0 for $k > p$ based on asymptotic distribution FAC θ_{kk} : coefficient of Y_{t-k} in regression of Y_t of

MA(q) process: standard errors for r_k , $k > q$, from $\sqrt{T}(r_k - \rho_k) \rightarrow N(0, v_k)$

with $v_k = 1 + 2\rho_1^2 + ... + 2\rho_k^2$

Lest of $H_0: \rho_1 = 0$: compare $\sqrt{T}r_1$ with cri

$$
\sqrt{T}\theta \rightarrow \infty
$$

Diagnostic Checking

ARMA(*p*,*q*): Adequacy of choices *p* and *q*

Analysis of residuals from fitted model:

- Correct specification: residuals are realizations of white noise
- Box-Ljung Portmanteau test: for a ARMA(p,q) process

g. Jating T of the data test. For a *Newton* (p,q) process

$$
Q_k = T(T + 2) \sum_{k=1}^{K} \frac{1}{T} k^k
$$

follows the Chi-squared distribution with *K*-*p*-*q df*

Overfitting

- Starting point: a general model
- Comparison with a model with reduced number of parameters: choose model with smallest *BIC* or *AIC*
- *AIC*: tends to result asymptotically in overparameterized models

Example: Price/Earnings Ratio

PE Ratio: AC and PAC Function

PE Ratio: MA (4) Model

PE Ratio: AR(4) Model

PE Ratio: Various Models

Diagnostics for various competing models: $\Delta y_t = \log PE_t - \log PE_{t-1}$ Best fit for

- **BIC:** MA(2) model $\Delta y_t = 0.008 + e_t 0.250 e_{t-2}$
- AIC: AR(2,4) model $\Delta y_t = 0.008 0.202 \Delta y_{t-2} 0.211 \Delta y_{t-4} + e_t$

Time Series Models in GRETL

Variable > Unit root tests > (a) Augmented Dickey-Fuller test, (b) ADL-GLS test, (c) KPSS test

- a) DF test or ADL test with or without constant, trend and squared trend
- b) DF test or ADL test with or without trend, GLS estimation for demeaning and detrending
- c) KPSS (Kwiatkowski, Phillips, Schmidt, Shin) test

Model > Time Series > ARIMA

Estimates an ARMA model, with or without exogenous regressors

Your Homework

- 1. Use Verbeek's data set INCOME (quarterly data for the total disposable income and for consumer expenditures for 1/1971 to 2/1985 in the UK) and answer the questions a., b., c., d., e., and f. of Exercise 8.3 of Verbeek. Confirm your finding in question c. using the KPSS test.
- 2. For the AR(2) model $y_t = \theta_1 y_{t-1} + \theta_2 y_{t-2} + \varepsilon_t$, show that (a) the model can be written as $\Delta y_t = \delta y_{t-1} - \theta_2 \, \Delta y_{t-1} + \varepsilon_t$ with $\delta = \theta_1 + \theta_2 - 1$, and that (b) $\theta_1 + \theta_2 = 1$ corresponds to a unit root of the characteristic equation θ(*z*) = 1 - θ₁*z* - θ₂*z*² = 0.