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Private Consumption 
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Private consumption 
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Private Consumption, cont’d 
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Yearly growth of private  

consumption in EURO  

area (16 members), AWM  
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Disposable Income 
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Time Series 
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Time-ordered sequence of observations of a random variable 

 

Examples: 

 Annual values of private consumption  

 Changes in expenditure on private consumption 

 Quarterly values of personal disposable income  

 Monthly values of imports 

 

Notation: 

 Random variable Y 

 Sequence of observations Y1, Y2, ... , YT 

 Deviations from the mean: yt = Yt – E{Yt} = Yt – μ 



Components of a Time Series 
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Components or characteristics of a time series are 

 Trend 

 Seasonality 

 Irregular fluctuations 

Time series model: represents the characteristics as well as possible 
interactions 

Purpose of modeling  

 Description of the time series  

 Forecasting the future 
 

Example: Yt = βt + ΣiγiDit + εt 

  with Dit = 1 if t corresponds to i-th quarter, Dit = 0 otherwise  

 for describing the development of the disposable income 
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Stochastic Process 

Time series: realization of a stochastic process 

Stochastic process is a sequence of random variables Yt, e.g., 

  {Yt, t = 1, ..., n} 

  {Yt, t = -∞, ..., ∞}  

Joint distribution of the Y1, ... , Yn:  

  p(y1, …., yn) 

Of special interest 

 Evolution of the expectation t = E{Yt} over time 

 Dependence structure over time 
   

Example: Extrapolation of a time series as a tool for forecasting  

April 6, 2012 
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White Noise Process 

White noise process xt, t = -∞, ..., ∞  

 E{xt} = 0  

 V{xt} = ζ²  

 Cov{xt, xt-s} = 0 for all (positive or negative) integers s  

i.e., a mean zero, serially uncorrelated, homoskedastic process 

April 6, 2012 
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AR(1)-Process 

States the dependence structure between consecutive observations as 

  Yt = δ + θYt-1 + εt,   |θ| < 1 

 with εt: white noise, i.e., V{εt} = ζ² (see next slide)   

 Autoregressive process of order 1 

From Yt = δ + θYt-1 + εt = δ+θδ +θ²δ +… +εt + θεt-1 + θ²εt-2 +… follows 

   E{Yt} = μ = δ(1-θ)-1 

 |θ| < 1 needed for convergence! Invertibility condition  

In deviations from μ, yt = Yt – :  

   yt = θyt-1 + εt 

April 6, 2012 
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AR(1)-Process, cont’d 

Autocovariances γk = Cov{Yt,Yt-k} 

 k=0: γ0 = V{Yt} = θ²V{Yt-1} + V{εt} = … = Σi θ
2i ζ² = ζ²(1-θ²)-1 

 k=1: γ1 = Cov{Yt,Yt-1} = E{(θyt-1+εt)yt-1} = θV{yt-1} = θζ²(1-θ²)-1 

 In general:  

  γk = Cov{Yt,Yt-k} = θkζ²(1-θ²)-1, k = 0, 1, …  

 depends upon k, not upon t! 

April 6, 2012 
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MA(1)-Process 

States the dependence structure between consecutive observations as 

  Yt = μ + εt + αεt-1 

 with εt: white noise, V{εt} = ζ² 

Moving average process of order 1 

  E{Yt} = μ 

Autocovariances γk = Cov{Yt,Yt-k} 

 k=0: γ0 = V{Yt} = ζ²(1+α²) 

 k=1: γ1 = Cov{Yt,Yt-1} = αζ² 

 γk = 0 for k = 2, 3, … 

 Depends upon k, not upon t! 
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AR-Representation of MA-
Process 
The AR(1) can be represented as MA-process of infinite order 

  yt = θyt-1 + εt = Σ∞
i=0 θ

i εt-i  

 given that |θ| < 1 

Similarly, the AR representation of the MA(1) process 

  yt = αyt-1 – α²yt-2 + … εt = Σ∞
i=0 (-1)i αi+1yt-i-1 + εt 

 given that |α| < 1 

April 6, 2012 
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Stationary Processes 

Refers to the joint distribution of Yt’s, in particular to second moments 

A process is called strictly stationary if its stochastic properties are 

unaffected by a change of the time origin 

 The joint probability distribution at any set of times is not affected by 

an arbitrary shift along the time axis 

Covariance function:  

  γt,k = Cov{Yt, Yt+k}, k = 0, 1,… 

Properties:  

  γt,k = γt,-k 

Weak stationary process:  

  E{Yt} = μ for all t  

  Cov{Yt, Yt+k} = γk, k = 0, 1, … for all t and all k 

Also called covariance stationary process 

April 6, 2012 
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AC and PAC Function 

Autocorrelation function (AC function, ACF) 

Independent of the scale of Y 

 For a stationary process:  

  ρk = Corr{Yt,Yt-k} = γk/γ0, k = 0, 1,… 

 Properties:  

 |ρk| ≤ 1 

 ρk = ρ-k  

 ρ0 = 1  

 Correlogram: graphical presentation of the AC function 

Partial autocorrelation function (PAC function, PACF):   

  θkk = Corr{Yt, Yt-k|Yt-1,...,Yt-k+1}, k = 0, 1, … 

 θkk is obtained from Yt = θk0 + θk1Yt-1 + ... + θkkYt-k  

 Partial correlogram: graphical representation of the PAC function 

April 6, 2012 
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AC and PAC Function: 
Examples 
Examples for the AC and PAC functions 

 White noise 

  ρ0 = θ00 = 1 

  ρk = θkk = 0, if k ≠ 0 

 AR(1) process, Yt = δ + θYt-1 + εt 

  ρk = θk, k = 0, 1,… 

 θ00 = 1, θ11 = θ, θkk = 0 for k > 1 

 MA(1) process, Yt = μ + εt + αεt-1 

  ρ0 = 1, ρ1 α/(  α2), ρk = 0 for k > 1  

 PAC function: damped exponential if α > 0, otherwise alternating 

    and damped exponential  
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AC and PAC Function: 
Estimates 
 Estimator for the AC function ρk: 

 
 

 

 Estimator for the PAC function θkk: coefficient of Yt-k in the regression 

of Yt on Yt-1, …, Yt-k 
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AR(1) Processes, Verbeek, Fig. 8.1 
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MA(1) Processes, Verbeek, Fig. 8.2 
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The ARMA(p,q) Process 

Generalization of the AR and MA processes: ARMA(p,q) process 

  yt = θ1yt-1 + … + θpyt-p + εt + α1εt-1 + … + αqεt-q 

 with white noise εt  

Lag (or shift) operator L (Lyt = yt-1, L
0yt = Iyt = yt, L

pyt = yt-p) 

ARMA(p,q) process in operator notation 

  θ(L)yt = α(L)εt 

 with operator polynomials θ(L) and α(L) 

   θ(L) = I - θ1L - … - θpL
p  

  α(L) = I + α1L + … + αqL
q 
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Lag Operator 

Lag (or shift) operator L 

 Lyt = yt-1, L
0yt = Iyt = yt, L

pyt = yt-p 

 Algebra of polynomials in L like algebra of variables 

Examples:  

 (I - ϕ1L)(I - ϕ2L) = I – (ϕ1+ ϕ2)L + ϕ1ϕ2L
2 

 (I - θL)-1 = Σ∞
i=0θ

i Li  

 MA(∞) representation of the AR(1) process 

   yt = (I - θL)-1εt 

 the infinite sum defined only (e.g., finite variance) |θ| < 1 

 MA(∞) representation of the ARMA(p,q) process 

  yt = [θ (L)]-1α(L)εt 

 similarly the AR(∞) representations; invertibility condition: restrictions 

on parameters 

April 6, 2012 
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Invertibility of Lag Polynomials 

Invertibility condition for I - θL: |θ| < 1 

Invertibility condition for I - θ1L - θ2L
2: 

 θ(L) = I - θ1L - θ2L
2 = (I - ϕ1L)(I - ϕ2L) with ϕ1+ϕ2 = θ1 and -ϕ1ϕ2 = θ2  

 Invertibility conditions: both (I – ϕ1L) and (I – ϕ2L) invertible; |ϕ1| < 1, 

|ϕ2| < 1 

 Characteristic equation: θ(z) = (1- ϕ1z) (1- ϕ2z) = 0  

 Characteristic roots: solutions z1, z2 from (1- ϕ1z) (1- ϕ2z) = 0  

 Invertibility conditions: |z1| > 1, |z2| > 1 

Can be generalized to lag polynomials of higher order 

Unit root: a characteristic root of value 1 

 Polynomial θ(z) evaluated at z = 1: θ(1) = 0, if Σiθi = 1 

 Simple check, no need to solve characteristic equation 

April 6, 2012 
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Types of Trend 

Trend: The expected value of a process Yt increases or decreases with 

time 

 Deterministic trend: a function f(t) of the time, describing the evolution 

of E{Yt} over time 

   Yt = f(t) + εt, εt: white noise  

 Example: Yt = α + βt + εt describes a linear trend of Y; an increasing 

trend corresponds to β > 0 

 Stochastic trend: Yt = δ + Yt-1 + εt or  

  ΔYt = Yt – Yt-1 = δ + εt, εt: white noise 

 describes an irregular or random fluctuation of the differences ΔYt around 

the expected value δ 

 AR(1) – or AR(p) – process with unit root 

 “random walk with trend” 

   

April 6, 2012 
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Example: Private Consumption 

Private consumption, AWM database; level values (PCR) and first 

differences (PCR_D) 
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Trends: Random Walk and AR 
Process 
Random walk: Yt = Yt-1 + εt; random walk with trend: Yt = 0.1 +Yt-1 + εt; 

AR(1) process: Yt = 0.2 + 0.7Yt-1 + εt; εt simulated from N(0,1)  

   

April 6, 2012 
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Random Walk with Trend 

The random walk with trend Yt = δ + Yt-1 + εt can be written as 

   Yt = Y0 + δt + Σi≤t εi  

  δ: trend parameter  

Components of the process 

 Deterministic growth path Y0 + δt  

 Cumulative errors Σi≤t εi  

Properties:  

 Expectation Y0 + δt is not a fixed value! 

 V{Yt} = ζ²t becomes arbitrarily large! 

 Corr{Yt,Yt-k} = √(1-k/t) 

 Non-stationarity 

April 6, 2012 
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Random Walk with Trend, cont’d 

From  

   

 

 follows 

 For fixed k,Yt and Yt-k are the stronger correlated, the larger t 

 With increasing k, correlation tends to zero, but the slower the larger t 

(long memory property) 

Comparison of random walk with the AR(1) process Yt = δ + θYt-1 + εt 

 AR(1) process: εt-i has the lesser weight, the larger i  

 AR(1) process similar to random walk when θ is close to one 

April 6, 2012 
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Non-Stationarity: Consequences  

AR(1) process Yt = θYt-1 + εt 

 OLS Estimator for θ: 

 

 

 

 For |θ| < 1: the estimator is 

 Consistent 

 Asymptotically normally distributed 

 For θ = 1 (unit root) 

 θ is underestimated 

 Estimator not normally distributed 

 Spurious regression problem 

t t

t tt

y
yy
2
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Spurious Regression 

Random walk without trend: Yt = Yt-1 + εt, εt: white noise  

 Realization of Yt: is a non-stationary process, stochastic trend? 

 V{Yt}: a multiple of t 

Specified model: Yt = α + βt + εt  

 Deterministic trend 

 Constant variance 

 Misspecified model! 

Consequences for OLS estimator for β 

 t- and F-statistics: wrong critical limits, rejection probability too large 

 R2 indicates explanatory potential although Yt random walk without 
trend 

 Granger & Newbold, 1974 

April 6, 2012 
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How to Model Trends?  

Specification of 

 Deterministic trend, e.g., Yt = α + βt + εt: risk of wrong decisions 

 Stochastic trend: analysis of differences ΔYt  if a random walk, i.e., a 
unit root, is suspected 

Consequences of spurious regression are more serious  

Consequences of modeling differences ΔYt:  

 Autocorrelated errors 

 Consistent estimators  

 Asymptotically normally distributed estimators  

 HAC correction of standard errors 

April 6, 2012 
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Elimination of a Trend 

In order to cope with non-stationarity 

 Trend-stationary process: the process can be transformed in a 

stationary process by subtracting the deterministic trend  

 Difference-stationary process, or integrated process: stationary 

process can be derived by differencing 

Integrated process: stochastic process Y is called 

 integrated of order one if the first differences yield a stationary 

process: Y ~ I(1) 

 integrated of order d, if the d-fold differences yield a stationary 

process: Y ~ I(d) 

April 6, 2012 
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Trend-Elimination: Examples 

Random walk Yt = δ + Yt-1 + εt with white noise εt 

   ΔYt = Yt – Yt-1 = δ + εt 

 ΔYt is a stationary process 

 A random walk is a difference-stationary or I(1) process 

Linear trend Yt = α + βt + εt  

 Subtracting the trend component α + βt  provides a stationary 

process  

 Yt is a trend-stationary process 

April 6, 2012 
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Integrated Stochastic 
Processes 
Random walk Yt = δ + Yt-1 + εt with white noise εt is a difference-

stationary or I(1) process 

Many economic time series show stochastic trends 

From the AWM Database 

 

 

 

 

 

 

 

 

 

ARIMA(p,d,q) process: d-th differences follow an ARMA(p,q) process 
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Variable d 

YER GDP,  real 1 

PCR Consumption, real 1-2 

PYR Household's Disposable Income, real 1-2 

PCD Consumption Deflator 2 
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Unit Root Tests 

AR(1) process Yt = δ + θYt-1 + εt with white noise εt 

 Dickey-Fuller or DF test (Dickey & Fuller, 1979) 

 Test of H0: θ = 1 against H1: θ < 1 

 KPSS test (Kwiatkowski, Phillips, Schmidt & Shin, 1992)  

  Test of H0: θ < 1 against H1: θ = 1 

 Augmented Dickey-Fuller or ADF test 

 extension of DF test 

 Various modifications like Phillips-Perron test, Dickey-Fuller GLS test, 

etc. 
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Dickey-Fuller‘s Unit Root Test 

AR(1) process Yt = δ + θYt-1 + εt with white noise εt 

OLS Estimator for θ: 

    

 
Distribution of DF 

 

 

 If |θ| < 1: approximately t(T-1) 

 If θ = 1: Dickey & Fuller critical values  

DF test for testing H0: θ = 1 against H1: θ < 1  

 θ = 1: characteristic polynomial has unit root 

April 6, 2012 
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Dickey-Fuller Critical Values 

Monte Carlo estimates of critical values for 

 DF0: Dickey-Fuller test without intercept 

 DF: Dickey-Fuller test with intercept  

 DFη: Dickey-Fuller test with time trend 

April 6, 2012 

T p = 0.01 p = 0.05 p = 0.10 

25 DF0 -2.66 -1.95 -1.60 

DF -3.75 -3.00 -2.63 

DFη -4.38 -3.60 -3.24 

100 DF0 -2.60 -1.95 -1.61 

DF -3.51 -2.89 -2.58 

DFη -4.04 -3.45 -3.15 

N(0,1) -2.33 -1.65 -1.28 
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Unit Root Test: The Practice 

AR(1) process Yt = δ + θYt-1 + εt with white noise εt 

 can be written with π = θ -1 as  

   ΔYt = δ + πYt-1 + εt 

DF tests H0: π = 0 against H1: π < 0  

 test statistic for testing π = θ -1 = 0 identical with DF statistic 

 

 

Two steps: 

1. Regression of ΔYt on Yt-1: OLS-estimator for π  = θ - 1 

2. Test of H0: π = 0 against H1: π < 0 based on DF; critical values of 

Dickey & Fuller  

April 6, 2012 
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Example: Price/Earnings Ratio 

Verbeek’s data set PE: annual time series data on composite stock price 

and earnings indices of the S&P500, 1871-2002 

 PE: price/earnings ratio 

 Mean 14.6 

 Min 6.1 

 Max 36.7 

 St.Dev. 5.1 

 Log(PE) 

 Mean 2.63 

 Min 1.81 

 Max 3.60 

 St.Dev. 0.33 

April 6, 2012 
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Price/Earnings Ratio, cont’d 

Fitting an AR(1) process to the log PE ratio data gives:  

  ΔYt = 0.335 – 0.125Yt-1 

 with t-statistic -2.569 (Yt-1) and p-value 0.1021 

 p-value of the DF statistic (-2.569): 0.102  

 1% critical value: -3.48 

 5% critical value: -2.88 

 10% critical value: -2.58 

 H0: θ = 1 (non-stationarity) cannot be rejected for the log PE ratio 

Unit root test for first differences: DF statistic -7.31, p-value 0.000 (1% 

critical value: -3.48) 

 log PE ratio is I(1) 

However: for sample 1871-1990: DF statistic -3.65, p-value 0.006 
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Unit Root Test: Extensions 

DF test so far for a model with intercept: ΔYt = δ + πYt-1 + εt 

Tests for alternative or extended models 

 DF test for model without intercept: ΔYt = πYt-1 + εt 

 DF test for model with intercept and trend: ΔYt = δ + γt + πYt-1 + εt 

DF tests in all cases H0: π = 0 against H1: π < 0  

Test statistic in all cases  

 

 

Critical values depend on cases; cf. Table on slide 42 
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)̂(
1ˆ

se
DF



Hackl, Econometrics 2, Lecture 3  47 

KPSS Test 

A process Yt = δ + εt with white noise εt 

 Test of H0: no unit root (Yt is stationary), against H1: Yt ~ I(1)  

 Under H0:  

 Average ẏ is a consistent estimate of δ  

 Long-run variance of εt is a well-defined number 

 KPSS (Kwiatkowski, Phillips, Schmidt, Shin) test statistic 

 

 

 with St
2 = Σi

t ei and the variance estimate s2 of the residuals ei =Yt -ẏ  

 Bandwidth or lag truncation parameter m for estimating s2 

 

 

 Critical values from Monte Carlo simulations 
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ADF Test 

Extended model according to an AR(p) process:  

  ΔYt = δ + πYt-1 + β1ΔYt-1 + … + βpΔYt-p+1 + εt 

Example: AR(2) process Yt = δ + θ1Yt-1 + θ2Yt-2 + εt can be written as 

   ΔYt = δ + (θ1+ θ2 - 1)Yt-1 – θ2ΔYt-1 + εt  

 the characteristic equation (1 - ϕ1L)(1 - ϕ2L) = 0 has roots θ1 = ϕ1 + 

ϕ2 and θ2 = - ϕ1ϕ2  

 a unit root implies ϕ1 = θ1+ θ2 =1:  

Augmented DF (ADF) test 

 Test of H0: π = 0 against H1: π < 0 

 Needs its own critical values 

 Extensions (intercept, trend) similar to the DF-test 

 Phillips-Perron test: alternative method; uses HAC-corrected 

standard errors 
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Price/Earnings Ratio, cont’d 

Extended model according to an AR(2) process gives:  

  ΔYt = 0.366 – 0.136Yt-1 + 0.152ΔYt-1 - 0.093ΔYt-2 

 with t-statistics -2.487 (Yt-1), 1.667 (ΔYt-1) and -1.007 (ΔYt-2) and  

 p-values 0.119, 0.098 and 0.316 

 p-value of the DF statistic 0.121  

 1% critical value: -3.48 

 5% critical value: -2.88 

 10% critical value: -2.58 

 Non-stationarity cannot be rejected for the log PE ratio 

Unit root test for first differences: DF statistic -7.31, p-value 0.000 (1% 

critical value: -3.48) 

 log PE ratio is I(1) 

However: for sample 1871-1990: DF statistic -3.52, p-value 0.009 
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Unit Root Tests in GRETL 

For marked variable: 

 Variable > Unit root tests > Augmented Dickey-Fuller test  

 Performs the  

 DL test (choose zero for “lag order for ADL test”) or the  

 ADL test  

 with or without constant, trend, squared trend 

 Variable > Unit root tests > ADF-GLS test 

 Performs the  

 DL test (choose zero for “lag order for ADL test”) or the  

 ADL test  

 with or without a trend, which are estimated by GLS  

 Variable > Unit root tests > KPSS test 

 Performs the KPSS test with or without a trend 
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ARMA Models: Application 

Application of the ARMA(p,q) model in data analysis: Three steps 

1. Model specification, i.e., choice of p, q (and d if an ARIMA model is 

specified)  

2. Parameter estimation 

3. Diagnostic checking  

April 6, 2012 



Hackl, Econometrics 2, Lecture 3  53 

Estimation of ARMA Models 

The estimation methods are  

 OLS estimation 

 ML estimation 

AR models: the explanatory variables are  

 Lagged values of the explained variable Yt 

 Uncorrelated with error term εt 

 OLS estimation  

April 6, 2012 
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MA Models: OLS Estimation 

MA models: 

 Minimization of sum of squared deviations is not straightforward 

 E.g., for an MA(1) model, S(μ,α) = Σt[Yt - μ - αΣj=0(- α)j(Yt-j-1 – μ)]2  

 S(μ,α) is a nonlinear function of parameters 

 Needs Yt-j-1 for j=0,1,…, i.e., historical Ys, s < 0 

 Approximate solution from minimization of  

  S*(μ,α) = Σt[Yt - μ - αΣj=0
t-2(- α)j(Yt-j-1 – μ)]2 

 Nonlinear minimization, grid search 

ARMA models combine AR part with MA part 
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ML Estimation 

Assumption of normally distributed εt 

Log likelihood function, conditional on initial values 

  log L(α,θ,μ,ζ²) = - (T-1)log(2πζ²)/2 – (1/2) Σt εt²/ζ² 

 εt are functions of the parameters 

 AR(1): εt = yt - θ1yt-1   

 MA(1): εt = Σj=0
t-1(- α)jyt-j 

Initial values: y1 for AR, ε0 = 0 for MA 

 Extension to exact ML estimator 

 Again, estimation for AR models easier 

 ARMA models combine AR part with MA part 

April 6, 2012 



Hackl, Econometrics 2, Lecture 3  56 

Model Specification 

Based on the 

 Autocorrelation function (ACF) 

 Partial Autocorrelation function (PACF) 

Structure of AC and PAC functions typical for AR and MA processes 

Example:  

 MA(1) process: ρ0 = 1, ρ1 = α/(1-α²); ρi = 0, i = 2, 3, …; θkk = αk, k = 0, 

1, … 

 AR(1) process: ρk = θk, k = 0, 1,…; θ00 = 1, θ11 = θ, θkk = 0 for k > 1 

Empirical ACF and PACF give indications on the process underlying the 

time series 
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ARMA(p,q)-Processes 

  
Condition for 

AR(p)  

θ(L)Yt = εt 

MA(q)  

Yt = α(L) εt 

ARMA(p,q) 

θ(L)Yt=α(L) εt 

Stationarity 
roots zi of 

θ(z)=0: |zi| > 1  
always stationary 

roots zi of 

θ(z)=0: |zi| > 1  

Invertibility always invertible 
roots zi of 

α(z)=0: |zi| > 1 

roots  zi of 

α(z)=0: |zi| > 1 

AC function damped, infinite k = 0 for k > q damped, infinite 

PAC 

function 
θkk = 0 for k > p damped, infinite damped, infinite 

April 6, 2012 



Hackl, Econometrics 2, Lecture 3  58 

Empirical AC and PAC Function 

Estimation of the AC and PAC functions  

AC ρk: 

 

 

 

PAC θkk: coefficient of Yt-k in regression of Yt on Yt-1, …, Yt-k 

MA(q) process: standard errors for rk, k > q, from 

  √T(rk – ρk) → N(0, vk) 

 with vk = 1 + 2ρ1² + … + 2ρk²   

 test of H0: ρ1 = 0: compare √Tr1 with critical value from N(0,1), etc. 

AR(p) process: test of H0: ρk = 0 for k > p based on asymptotic 

distribution 
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Diagnostic Checking 

ARMA(p,q): Adequacy of choices p and q 

Analysis of residuals from fitted model:  

 Correct specification: residuals are realizations of white noise 

 Box-Ljung Portmanteau test: for a ARMA(p,q) process  

 

 

 follows the Chi-squared distribution with K-p-q df 

Overfitting 

 Starting point: a general model  

 Comparison with a model with reduced number of parameters: 

choose model with smallest BIC or AIC 

 AIC: tends to result asymptotically in overparameterized models  
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Example: Price/Earnings Ratio 

Data set PE: PE = price/earnings, LOGPE = log(PE)  

 Log(PE) 

 Mean 2.63 

 Min 1.81 

 Max 3.60 

 Std 0.33 
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PE Ratio: AC and PAC Function 

April 6, 2012 

At level 0.05 significant values: 

 ACF: k = 4 

 PACF: k = 2, 4 

   suggests MA(4), but not very clear   



PE Ratio: MA (4) Model 

MA(4) model for differences log PEt - log PEt-1  
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Function evaluations: 37 

Evaluations of gradient: 11 

 

Model 2: ARMA, using observations 1872-2002 (T = 131) 

Estimated using Kalman filter (exact ML) 

Dependent variable: d_LOGPE 

Standard errors based on Hessian 

 

              coefficient    std. error    t-ratio    p-value 

  ------------------------------------------------------- 

  const        0,00804276   0,0104120     0,7725    0,4398  

  theta_1      0,0478900     0,0864653     0,5539    0,5797  

  theta_2     -0,187566      0,0913502     -2,053     0,0400  ** 

  theta_3     -0,0400834   0,0819391     -0,4892    0,6247  

  theta_4     -0,146218     0,0915800     -1,597     0,1104  

 

Mean dependent var    0,008716    S.D. dependent var    0,181506 

Mean of innovations  -0,000308    S.D. of innovations   0,174545 

Log-likelihood        42,69439    Akaike criterion     -73,38877 

Schwarz criterion    -56,13759    Hannan-Quinn         -66,37884 



PE Ratio: AR(4) Model 

AR(4) model for differences log PEt - log PEt-1  
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Function evaluations: 36 

Evaluations of gradient: 9 

 

Model 3: ARMA, using observations 1872-2002 (T = 131) 

Estimated using Kalman filter (exact ML) 

Dependent variable: d_LOGPE 

Standard errors based on Hessian 

 

              coefficient    std. error    t-ratio    p-value 

  ------------------------------------------------------- 

  const       0,00842210    0,0111324     0,7565    0,4493  

  phi_1       0,0601061     0,0851737     0,7057    0,4804  

  phi_2      -0,202907      0,0856482    -2,369     0,0178  ** 

  phi_3      -0,0228251     0,0853236    -0,2675    0,7891  

  phi_4      -0,206655      0,0850843    -2,429     0,0151  ** 

 

Mean dependent var    0,008716    S.D. dependent var    0,181506 

Mean of innovations  -0,000315    S.D. of innovations   0,173633 

Log-likelihood        43,35448    Akaike criterion     -74,70896 

Schwarz criterion    -57,45778    Hannan-Quinn         -67,69903 
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PE Ratio: Various Models 

Diagnostics for various competing models: Δyt = log PEt - log PEt-1  

Best fit for 

 BIC: MA(2) model Δyt = 0.008 + et – 0.250 et-2  

 AIC: AR(2,4) model Δyt = 0.008 – 0.202 Δyt-2 – 0.211 Δyt-4 + et  
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Model Lags AIC BIC Q12 p-value 

MA(4) -73.389 -56.138  5.03 0.957 

AR(4) -74.709 -57.458 3.74 0.988 

MA 2, 4 -76.940 -65.440 5.48 0.940 

AR 2, 4 -78.057 -66.556 4.05 0.982 

MA -76.072 -67.447 9.30 0.677 

AR 2 -73.994 -65.368 12.12 0.436 
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Time Series Models in GRETL 

Variable > Unit root tests > (a) Augmented Dickey-Fuller test, (b) ADL-

GLS test, (c) KPSS test   

a) DF test or ADL test with or without constant, trend and squared trend 

b) DF test or ADL test with or without trend, GLS estimation for 

demeaning and detrending 

c) KPSS (Kwiatkowski, Phillips, Schmidt, Shin) test 

Model > Time Series > ARIMA 

 Estimates an ARMA model, with or without exogenous regressors 
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Your Homework 

1. Use Verbeek’s data set INCOME (quarterly data for the total 

disposable income and for consumer expenditures for 1/1971 to 

2/1985 in the UK) and answer the questions a., b., c., d., e., and f. of 

Exercise 8.3 of Verbeek. Confirm your finding in question c. using 

the KPSS test. 

2. For the AR(2) model yt = θ1yt-1 + θ2yt-2 + εt, show that (a) the model 

can be written as Δyt = δyt-1 - θ2 Δyt-1 + εt with δ = θ1 + θ2 – 1, and 

that (b) θ1 + θ2 = 1 corresponds to a unit root of the characteristic 

equation θ(z) = 1 - θ1z - θ2z
2 = 0. 
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