Econometrics 2 - Lecture 5

Multi-equation Models

Contents

- Systems of Equations
- VAR Models
- Simultaneous Equations and VAR Models
- VAR Models and Cointegration
- VEC Model: Cointegration Tests
- VEC Model: Specification and Estimation

Multiple Dependent Variables

Economic processes: simultaneous and interrelated development of a multiple set of variables

Examples:

- Households consume a set of commodities (food, durables, etc.); the demanded quantities depend on the prices of commodities, the household income, the number of persons living in the household, etc.; a consumption model includes a set of dependent variables and a common set of explanatory variables.
- The market of a product is characterized by (a) the demanded and supplied quantity and (b) the price of the product; a model for the market consists of equations representing the development and interdependencies of these variables.
- An economy consists of markets for commodities, labour, finances, etc.; a model for a sector or the full economy contains descriptions of the development of the relevant variables and their interactions.

Systems of Regression Equations

Economic processes involve the simultaneous developments as well as interrelations of a set of dependent variables

 For modelling an economic process a system of relations, typically in the form of regression equations: multi-equation model

Example: Two dependent variables y_{t1} and y_{t2} are modelled as

 $y_{t1} = x_{t1}^{\prime}\beta_{1} + \varepsilon_{t1}$ $y_{t2} = x_{t2}^{\prime}\beta_{2} + \varepsilon_{t2}$ with V{ ε_{ti} } = σ_{i}^{2} for i = 1, 2, Cov{ $\varepsilon_{t1}, \varepsilon_{t2}$ } = $\sigma_{12} \neq 0$ Typical situations:

- 1. The set of regressors x_{t1} and x_{t2} coincide
- 2. The set of regressors x_{t1} and x_{t2} differ, may overlap
- 3. Regressors contain one or both dependent variables
- 4. Regressors contain lagged variables

Types of Multi-equation Models

Multivariate regression or multivariate multi-equation model

- A set of regression equations, each explaining one of the dependent variables
 - Possibly common explanatory variables
 - Seemingly unrelated regression (SUR) model: each equation is a valid specification of a linear regression, related to other equations only by the error terms
 - □ See cases 1 and 2 of "typical situations" (slide 4)

Simultaneous equations models

- Describe the relations within the system of economic variables
 - in form of model equations
 - □ See cases 3 and 4 of "typical situations" (slide 4)

Error terms: dependence structure is specified by means of second moments or as joint probability distribution

Capital Asset Pricing Model

Capital asset pricing (CAP) model: describes the return R_i of asset *i*

 $R_{i} - R_{f} = \beta_{i}(E\{R_{m}\} - R_{f}) + \varepsilon_{i}$

with

- $R_{\rm f}$: return of a risk-free asset
- $R_{\rm m}$: return of the market portfolio
- β_i: indicates how strong fluctuations of the returns of asset *i* are determined by fluctuations of the market as a whole
- Knowledge of the return difference R_i R_f will give information on the return difference R_i - R_f of asset j, at least for some assets
- Analysis of a set of assets *i* = 1, ..., s
 - The error terms ε_i , *i* = 1, ..., *s*, represent common factors, have a common dependence structure
 - Efficient use of information: simultaneous analysis

A Model for Investment

Grunfeld investment data [Greene, (2003), Chpt.13; Grunfeld & Griliches (1960)]: Panel data set on gross investments *I*_{it} of firms *i* = 1, ..., 6 over 20 years and related data

Investment decisions are assumed to be determined by

 $I_{it} = \beta_{i1} + \beta_{i2}F_{it} + \beta_{i3}C_{it} + \varepsilon_{it}$

with

- F_{it} : market value of firm at the end of year *t*-1
- C_{it} : value of stock of plant and equipment at the end of year *t*-1
- Simultaneous analysis of equations for the various firms *i*: efficient use of information
 - Error terms for the firms include common factors such as economic climate
 - Coefficients may be the same for the firms

The Hog Market

Model equations:

 $\begin{array}{l} Q^{d} = \alpha_{1} + \alpha_{2}P + \alpha_{3}Y + \varepsilon_{1} \quad (\text{demand equation}) \\ Q^{s} = \beta_{1} + \beta_{2}P + \beta_{3}Z + \varepsilon_{2} \quad (\text{supply equation}) \\ Q^{d} = Q^{s} \quad (\text{equilibrium condition}) \end{array}$ with Q^{d} : demanded quantity, Q^{s} : supplied quantity, P: price, Y: income, and Z: costs of production, or $\begin{array}{c} Q = \alpha_{1} + \alpha_{2}P + \alpha_{3}Y + \varepsilon_{1} \quad (\text{demand equation}) \\ Q = \beta_{1} + \beta_{2}P + \beta_{3}Z + \varepsilon_{2} \quad (\text{supply equation}) \end{array}$

- Model describes quantity and price of the equilibrium transactions
- Model determines simultaneously Q and P, given Y and Z
- Error terms
 - May be correlated: $Cov{\epsilon_1, \epsilon_2\} \neq 0$
- Simultaneous analysis necessary for efficient use of information

Klein's Model I

- 1. $C_t = \alpha_1 + \alpha_2 P_t + \alpha_3 P_{t-1} + \alpha_4 (W_t^p + W_t^g) + \varepsilon_{t1}$ (consumption)
- 2. $I_t = \beta_1 + \beta_2 P_t + \beta_3 P_{t-1} + \beta_4 K_{t-1} + \varepsilon_{t2}$ (investment)
- 3. $W_t^p = \gamma_1 + \gamma_2 X_t + \gamma_3 X_{t-1} + \gamma_4 t + \varepsilon_{t3}$ (wages)
- **4.** $X_t = C_t + I_t + G_t$
- 5. $K_{\rm t} = I_{\rm t} + K_{\rm t-1}$

6.
$$P_{t} = X_{t} - W_{t}^{p} - T_{t}$$

- with C (consumption), P (profits), W^p (private wages), W^g
 - (governmental wages), *I* (investment), K_{-1} (capital stock), *X* (national product), *G* (governmental demand), *T* (taxes) and *t* [time (year-1936)]
- Model determines simultaneously C, I, W^p, X, K, and P
- Simultaneous analysis necessary in order to take dependence structure of error terms into account: efficient use of information

Examples of Multi-equation Models

Multivariate regression models

- Capital asset pricing (CAP) model: for all assets, return R_i is a function of E{R_m} R_f; dependence structure of the error terms caused by common variables
- Model for investment: firm-specific regressors, dependence structure of the error terms like in CAP model
- Seemingly unrelated regression (SUR) models

Simultaneous equations models

- Hog market model: endogenous regressors, dependence structure of error terms
- Klein's model I: endogenous regressors, dynamic model, dependence of error terms from different equations and possibly over time

Single- vs. Multi-equation Models

Complications for estimation of parameters of multi-equation models:

- Dependence structure of error terms
- Violation of exogeneity of regressors

Example: Hog market model, demand equation

$$Q = \alpha_1 + \alpha_2 P + \alpha_3 Y + \varepsilon_1$$

• Covariance matrix of
$$\varepsilon = (\varepsilon_1, \varepsilon_2)'$$

$$\operatorname{Cov} \{ \varepsilon \} = \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{pmatrix}$$

P is not exogenous: Cov{*P*,ε₁} = (σ₁² - σ₁₂)/(β₂ - α₂) ≠ 0
 Statistical analysis of multi-equation models requires methods adapted to these features

Analysis of Multi-equation Models

Issues of interest:

- Estimation of parameters
- Interpretation of model characteristics, prediction, etc.

Estimation procedures

- Multivariate regression models
 - GLS , FGLS, ML
- Simultaneous equations models
 - Single equation methods: indirect least squares (ILS), two stage least squares (TSLS), limited information ML (LIML)
 - System methods of estimation: three stage least squares (3SLS), full information ML (FIML)
 - Dynamic models: estimation methods for vector autoregressive (VAR) and vector error correction (VEC) models

Contents

- Systems of Equations
- VAR Models
- Simultaneous Equations and VAR Models
- VAR Models and Cointegration
- VEC Model: Cointegration Tests
- VEC Model: Specification and Estimation

Example: Income and Consumption

Model for income (Y) and consumption (C)

$$Y_{t} = \delta_{1} + \theta_{11}Y_{t-1} + \theta_{12}C_{t-1} + \varepsilon_{1t}$$

$$C_{t} = \delta_{2} + \theta_{21}C_{t-1} + \theta_{22}Y_{t-1} + \varepsilon_{2t}$$

with (possibly correlated) white noises ε_{1t} and ε_{2t} Notation: $Z_t = (Y_t, C_t)^{\prime}$, 2-vectors δ and ε , and (2x2)-matrix $\Theta = (\theta_{ij})$, the model is

$$\begin{pmatrix} Y_t \\ C_t \end{pmatrix} = \begin{pmatrix} \delta_1 \\ \delta_2 \end{pmatrix} + \begin{pmatrix} \theta_{11} & \theta_{12} \\ \theta_{21} & \theta_{22} \end{pmatrix} \begin{pmatrix} Y_{t-1} \\ C_{t-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{pmatrix}$$

in matrix notation

 $Z_{t} = \delta + \Theta Z_{t-1} + \varepsilon_{t}$

- Represents each component of Z as a linear combination of lagged variables
- Extension of the AR-model to the 2-vector Z_t: vector autoregressive model of order 1, VAR(1) model

The VAR(p) Model

VAR(*p*) model: generalization of the AR(*p*) model for *k*-vectors Y_t
Y_t = δ + Θ₁Y_{t-1} + ... + Θ_pY_{t-p} + ε_t
with *k*-vectors Y_t, δ, and ε_t and kxk-matrices Θ₁, ..., Θ_p
Using the lag-operator L:

 $\Theta(L)Y_t = \delta + \varepsilon_t$

with matrix lag polynomial $\Theta(L) = I - \Theta_1 L - \dots - \Theta_p L^p$

- $\Box \quad \Theta(L) \text{ is a } k \times k \text{-matrix}$
- Each matrix element of $\Theta(L)$ is a lag polynomial of order p
- Error terms ε_t
 - have covariance matrix Σ (for all *t*); allows for contemporaneous correlation
 - are independent of Y_{t-i} , j > 0, i.e., of the past of the components of Y_t

The VAR(p) Model, cont'd

VAR(p) model for the *k*-vector Y_t

$$Y_{t} = \delta + \Theta_{1}Y_{t-1} + \ldots + \Theta_{p}Y_{t-p} + \varepsilon_{t}$$

• Vector of expectations of Y_t : assuming stationarity $E{Y_t} = \delta + \Theta_1 E{Y_t} + ... + \Theta_p E{Y_t}$

gives

 $\mathsf{E}\{Y_t\} = \mu = (\mathsf{I}_k - \Theta_1 - \dots - \Theta_p)^{-1}\delta = \Theta(1)^{-1}\delta$

i.e., stationarity requires that the $k \times k$ -matrix $\Theta(1)$ is invertible

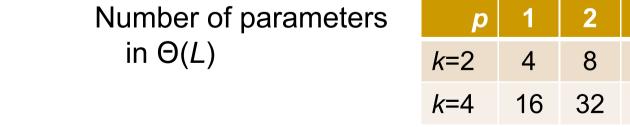
- In deviations $y_t = Y_t \mu$, the VAR(*p*) model is $\Theta(L)y_t = \varepsilon_t$
- MA representation of the VAR(p) model, given that $\Theta(L)$ is invertible $Y_t = \mu + \Theta(L)^{-1}\varepsilon_t = \mu + \varepsilon_t + A_1\varepsilon_{t-1} + A_2\varepsilon_{t-2} + \dots$
- VARMA(*p*,*q*) Model: Extension of the VAR(*p*) model by multiplying ε_t (from the left) with a matrix lag polynomial A(*L*) of order *q*
- VAR(p) model with m-vector X_t of exogenous variables, kxm-matrix Γ
 Y_t = Θ₁Y_{t-1} + ... + Θ_pY_{t-p} + ΓX_t + ε_t

Reasons for Using a VAR Model

VAR model represents a set of univariate ARMA models, one for each component

- Reformulation of simultaneous equations models as dynamic models
- To be used instead of simultaneous equations models:
 - No need to distinct a priori endogenous and exogenous variables
 - No need for a priori identifying restrictions on model parameters
- Simultaneous analysis of the components: More parsimonious, fewer lags, simultaneous consideration of the history of all included variables
- Allows for non-stationarity and cointegration

Attention: the number of parameters to be estimated increases with *k* and *p*



3

12

48

Contents

- Systems of Equations
- VAR Models
- Simultaneous Equations and VAR Models
- VAR Models and Cointegration
- VEC Model: Cointegration Tests
- VEC Model: Specification and Estimation

Simultaneous Equations Models in VAR Form

Model with *m* endogenous variables (and equations), *K* regressors

 $Ay_{t} = \Gamma z_{t} + \varepsilon_{t} = \Gamma_{1} y_{t-1} + \Gamma_{2} x_{t} + \varepsilon_{t}$

with *m*-vectors y_t and ε_t , *K*-vector z_t , $(m \times m)$ -matrix A, $(m \times K)$ -matrix Γ , and $(m \times m)$ -matrix $\Sigma = V{\varepsilon_t}$;

- *z*_t contains lagged endogenous variables *y*_{t-1} and exogenous variables *x*_t
- Rearranging gives

 $y_t = \Theta y_{t-1} + \delta_t + v_t$ with $\Theta = A^{-1} \Gamma_1$, $\delta_t = A^{-1} \Gamma_2 x_t$, and $v_t = A^{-1} \varepsilon_t$

• Extension of y_t by regressors x_t : the matrix δ_t becomes a vector of deterministic components (intercepts)

Example: Income and Consumption

Model for income (Y_t) and consumption (C_t) $Y_{t} = \delta_{1} + \theta_{11}Y_{t-1} + \theta_{12}C_{t-1} + \varepsilon_{1t}$ $C_{t} = \delta_{2} + \theta_{21}C_{t-1} + \theta_{22}Y_{t-1} + \varepsilon_{2t}$ with (possibly correlated) white noises ε_{1t} and ε_{2t} Matrix form of the simultaneous equations model: A $(Y_{t}, C_{t})^{\circ} = \Gamma (1, Y_{t-1}, C_{t-1})^{\circ} + (\varepsilon_{1t}, \varepsilon_{2t})^{\circ}$ with $\mathbf{A} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \Gamma = \begin{pmatrix} \delta_1 \\ \theta_{11} \\ \theta_{12} \\ \delta_2 \\ \theta_{21} \\ \theta_{22} \end{pmatrix}$ VAR(1) form: $Z_t = \delta + \Theta Z_{t-1} + \varepsilon_t$ or $\begin{pmatrix} Y_t \\ C \end{pmatrix} = \begin{pmatrix} \delta_1 \\ \delta_1 \end{pmatrix} + \begin{pmatrix} \theta_{11} & \theta_{12} \\ \theta_1 & \theta_2 \end{pmatrix} \begin{pmatrix} Y_{t-1} \\ C \end{pmatrix} + \begin{pmatrix} \varepsilon_{1t} \\ \varepsilon_2 \end{pmatrix}$

VAR Model: Estimation

VAR(p) model for the *k*-vector Y_t

$$Y_{t} = \delta + \Theta_{1}Y_{t-1} + \ldots + \Theta_{p}Y_{t-p} + \varepsilon_{t}, \forall \{\varepsilon_{t}\} = \Sigma$$

- Components of Y_t: linear combinations of lagged variables
- Error terms: Possibly contemporaneously correlated, covariance matrix Σ, uncorrelated over time
- SUR model

Estimation, given the order *p* of the VAR model

- OLS estimates of parameters in $\Theta(L)$ are consistent
- Estimation of Σ based on residual vectors $e_t = (e_{1t}, ..., e_{kt})$ ':

$$S = \frac{1}{T-p} \sum_{t} e_t e_t'$$

 GLS estimator coincides with OLS estimator: same explanatory variables for all equations

VAR Model: Estimation, cont'd

Choice of the order *p* of the VAR model

- Estimation of VAR models for various orders p
- Choice of *p* based on Akaike or Schwarz information criterion

Income and Consumption

AWM data base, 1971:1-2003:4: *PCR* (real private consumption), *PYR* (real disposable income of households); respective annual growth rates of logarithms: *C*, *Y*

Fitting $Z_t = \delta + \Theta Z_{t-1} + \varepsilon_t$ with Z = (Y, C)' gives

		δ	Y_1	C ₋₁	adj.R ²
Y	θ_{ij}	0.001	0.815	0.106	0.82
	$t(\Theta_{ij})$	0.39	11.33	1.30	
С	Θ_{ij}	0.003	0.085	0.796	0.78
	$t(\Theta_{ij})$	2.52	1.23	10.16	

with AIC = -14.60; for the VAR(2) model: AIC = -14.55 In GRETL: OLS equation-wise, VAR estimation, SUR estimation give very similar results

Impulse-response Function

MA representation of the VAR(p) model

 $Y_t = \Theta(1)^{-1}\delta + \varepsilon_t + A_1\varepsilon_{t-1} + A_2\varepsilon_{t-2} + \dots$

- Interpretation of A_s : the (*i*,*j*)-element of A_s represents the effect of a one unit increase of ε_{it} upon the *i*-th variable $Y_{i,t+s}$ in Y_{t+s}
- Dynamic effects of a one unit increase of ε_{jt} upon the *i*-th component of Y_t are corresponding to the (*i*,*j*)-th elements of I_k , A_1 , A_2 , ...
- The plot of these elements over *s* represents the impulse-response function of the *i*-th variable in Y_{t+s} on a unit shock to ε_{it}

Contents

- Systems of Equations
- VAR Models
- Simultaneous Equations and VAR Models
- VAR Models and Cointegration
- VEC Model: Cointegration Tests
- VEC Model: Specification and Estimation

Stationarity and Non-stationarity

AR(1) process $Y_t = \theta Y_{t-1} + \varepsilon_t$

is stationary, if the root z of the characteristic polynomial

 $\Theta(z) = 1 - \theta z = 0$

fulfils |z| > 1, i.e., $|\theta| < 1$;

- \Box $\Theta(z)$ is invertible, i.e., $\Theta(z)^{-1}$ can be derived such that $\Theta(z)^{-1}\Theta(z) = 1$
- □ Y_t can be represented by a MA(∞) process: $Y_t = \Theta(z)^{-1}\varepsilon_t$
- is non-stationary, if

 $z = 1 \text{ or } \theta = 1$

i.e., $Y_t \sim I(1)$, Y_t has a stochastic trend

VAR Models, Non-stationarity, and Cointegration

VAR(1) model for the k-vector Y_t

$$Y_t = \delta + \Theta_1 Y_{t-1} + \varepsilon_t$$

• If $\Theta(L) = I - \Theta_1 L$ is invertible,

 $Y_t = \Theta(1)^{-1}\delta + \Theta(L)^{-1}\varepsilon_t = \mu + \varepsilon_t + A_1\varepsilon_{t-1} + A_2\varepsilon_{t-2} + \dots$

i.e., each variable in Y_t is a linear combination of white noises, is a stationary I(0) variable

- If Θ(L) is not invertible, not all variables in Y_t can be stationary I(0) variables: at least one variable must have a stochastic trend
 - If all k variables have independent stochastic trends, all k variables are l(1) and no cointegrating relation exists; e.g., for k = 2:

$$\Theta(1) = \begin{pmatrix} 1 - \theta_{11} & \theta_{12} \\ \theta_{21} & 1 - \theta_{22} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

i.e., $\theta_{11} = \theta_{22} = 1$, $\theta_{12} = \theta_{21} = 0$

The more interesting case: at least one cointegrating relation; number of cointegrating relations equals the rank $r\{\Theta(1)\}$ of matrix $\Theta(1)$

Example: A VAR(1) Model

VAR(1) model for *k*-vector Y in differences with $\Theta(L) = I - \Theta_1 L$

 $\Delta Y_t = -\Theta(1)Y_{t-1} + \delta + \varepsilon_t$

 $r = r\{\Theta(1)\}$: rank of $(k \times k)$ matrix $\Theta(1) = I_k - \Theta_1$

- 1. r = 0: then $\Delta Y_t = \delta + \varepsilon_t$, i.e., Y is a *k*-dimensional random walk, each component is *I*(1), no cointegrating relationship
- 2. r < k: (k r)-fold unit root, $(k \times r)$ -matrices γ and β can be found, both of rank r, with

 $\Theta(1) = \gamma \beta'$

the *r* columns of β are the cointegrating vectors of *r* cointegrating relations (β in normalized form, i.e., the main diagonal elements of β being ones)

3. r = k: VAR(1) process is stationary, all components of Y are I(0)

Cointegrating Space

Y_t: *k*-vector, each component *I*(1)

Cointegrating space:

- Among the *k* variables, $r \le k-1$ independent linear relations $\beta_j Y_t, j = 1$, ..., *r*, are possible so that $\beta_j Y_t \sim I(0)$
- Individual relations can be combined with others and these are again *I*(0), i.e., not the individual cointegrating relations are identified but only the *r*-dimensional space
- Cointegrating relations should have an economic interpretation
 Cointegrating matrix β:
- The $k_x r$ matrix $\beta = (\beta_1, ..., \beta_r)$ of vectors β_j that state the cointegrating relations $\beta_j Y_t \sim I(0), j = 1, ..., r$
- Cointegrating rank: the rank of matrix β : r{ β } = r

Granger's Representation Theorem

Granger's Representation Theorem (Engle & Granger, 1987): If a set of *I*(1) variables is cointegrated, then an error-correction (EC) relation of the variables exists

Extends to VAR models: if the I(1) variables of the *k*-vector Y_t are cointegrated, then an error-correction (EC) relation of the variables exists

Granger's Representation Theorem for VAR Models

VAR(p) model for the *k*-vector Y_t

$$Y_{t} = \delta + \Theta_{1}Y_{t-1} + \dots + \Theta_{p}Y_{t-p} + \varepsilon_{t}$$

transformed into

 $\Delta Y_{t} = \delta + \Gamma_{1} \Delta Y_{t-1} + \dots + \Gamma_{p-1} \Delta Y_{t-p+1} + \Pi Y_{t-1} + \varepsilon_{t}$ (A)

- $\square \Pi = -\Theta(1) = -(I_k \Theta_1 ... \Theta_p): \text{ "long-run matrix", } k_x k, \text{ determines the long-run dynamics of } Y_t$
- □ Γ_1 , ..., Γ_{p-1} (*k*×*k*)-matrices, functions of Θ_1 ,..., Θ_p
- ΠY_{t-1} is stationary: ΔY_t and ε_t are I(0)

Three cases

- 1. $r{\Pi} = r$ with 0 < r < k: there exist *r* stationary linear combinations of Y_t , i.e., *r* cointegrating relations
- 2. $r{\Pi} = 0$: $\Pi = 0$, no cointegrating relation, equation (A) is a VAR(*p*) model for stationary variables ΔY_t
- 3. $r{\Pi} = k$: all variables in Y_t are stationary, $\Pi = -\Theta(1)$ is invertible

Vector Error-Correction Model

VAR(p) model for the *k*-vector Y_t

$$Y_{t} = \delta + \Theta_{1}Y_{t-1} + \dots + \Theta_{p}Y_{t-p} + \varepsilon_{t}$$

transformed into

$$\Delta Y_{t} = \delta + \Gamma_{1} \Delta Y_{t-1} + \dots + \Gamma_{p-1} \Delta Y_{t-p+1} + \Pi Y_{t-1} + \varepsilon_{t}$$

with $r{\Pi} = r$ and $\Pi = \gamma\beta'$ gives

$$\Delta Y_{t} = \delta + \Gamma_{1} \Delta Y_{t-1} + \dots + \Gamma_{p-1} \Delta Y_{t-p+1} + \gamma \beta' Y_{t-1} + \varepsilon_{t}$$
(B)

- *r* cointegrating relations $\beta' Y_{t-1}$
- Adaptation parameters γ measure the portion or speed of adaptation of Y_t in compensation of the equilibrium error $Z_{t-1} = \beta' Y_{t-1}$
- Equation (B) is called the vector error-correction (VEC) model

Example: Bivariate VAR Model

VAR(1) model for the 2-vector $Y_t = (Y_{1t}, Y_{2t})'$

$$Y_t = \Theta Y_{t-1} + \varepsilon_t$$

Long-run matrix

$$\Pi = -\Theta(1) = \begin{pmatrix} \theta_{11} - 1 & \theta_{12} \\ \theta_{21} & \theta_{22} - 1 \end{pmatrix}$$

• $\Pi = 0$, if $\theta_{11} = \theta_{22} = 1$, $\theta_{12} = \theta_{21} = 0$, i.e., Y_{1t} , Y_{2t} are random walks

■ r{Π} < 2, if $(\theta_{11} - 1)(\theta_{22} - 1) - \theta_{12} \theta_{21} = 0$; cointegrating vector: β' = $(\theta_{11} - 1, \theta_{12})$, long-run matrix

$$\Pi = \gamma \beta' = \begin{pmatrix} 1 \\ \theta_{21} / (\theta_{11} - 1) \end{pmatrix} (\theta_{11} - 1 - \theta_{12})$$

The error-correction form is

$$\begin{pmatrix} \Delta Y_{1t} \\ \Delta Y_{2t} \end{pmatrix} = \begin{pmatrix} 1 \\ \theta_{21} / (\theta_{11} - 1) \end{pmatrix} \begin{bmatrix} (\theta_{11} - 1) Y_{1,t-1} + \theta_{12} Y_{2,t-1} \end{bmatrix} + \begin{pmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{pmatrix}$$

Deterministic Component

VEC(p) model for the *k*-vector Y_t

 $\Delta Y_{t} = \delta + \Gamma_{1} \Delta Y_{t-1} + \dots + \Gamma_{p-1} \Delta Y_{t-p+1} + \gamma \beta' Y_{t-1} + \varepsilon_{t}$ (B) The deterministic component (intercept) δ :

- 1. $E{\Delta Y_t} = 0$, i.e., no deterministic trend in any component of Y_t : given that $\Gamma = I_k \Gamma_1 \dots \Gamma_{p-1}$ has full rank:
 - $\Box \quad \Gamma \in \{\Delta Y_t\} = \delta + \gamma \in \{Z_{t-1}\} = 0 \text{ with equilibrium error } Z_{t-1} = \beta' Y_{t-1}$
 - E{ Z_{t-1} } corresponds to the intercepts of the cointegrating relations; with *r*-dimensional vector E{ Z_{t-1} } = α

$$\Delta Y_{t} = \Gamma_{1} \Delta Y_{t-1} + \dots + \Gamma_{p-1} \Delta Y_{t-p+1} + \gamma(-\alpha + \beta' Y_{t-1}) + \varepsilon_{t}$$
(C)

 Intercepts only in the cointegrating relations, i.e., no deterministic trend in the model

Deterministic Component, cont'd

VEC(p) model for the *k*-vector Y_t

 $\Delta Y_{t} = \delta + \Gamma_{1} \Delta Y_{t-1} + \dots + \Gamma_{p-1} \Delta Y_{t-p+1} + \gamma \beta' Y_{t-1} + \varepsilon_{t}$ (B) The deterministic component (intercept) δ :

2. Addition of a *k*-vector λ with identical components to (C)

 $\Delta Y_t = \lambda + \Gamma_1 \Delta Y_{t-1} + \dots + \Gamma_{p-1} \Delta Y_{t-p+1} + \gamma(-\alpha + \beta' Y_{t-1}) + \varepsilon_t$

- Long-run equilibrium: steady state growth with growth rate $E{\Delta Y_t} = \Gamma^{-1}\lambda$
- Deterministic trends cancel out in the long run, so that no deterministic trend in the error-correction term; cf. (B)
- Addition of *k*-vector λ can be repeated: up to *k*-*r* separate deterministic trends can cancel out in the error-correction term
- The general notation is equation (B) with δ containing *r* intercepts of the long-run relations and *k*-*r* deterministic trends in the variables of Y_t

The Five Cases

Based on empirical observation and economic reasoning, choice between:

- 1) Unrestricted constant: variables show deterministic linear trends
- 2) Restricted constant: variables not trended but mean distance between them not zero; intercept in the error-correction term
- 3) No constant

Generalization: deterministic component contains intercept and trend

- Constant + restricted trend: cointegrating relations include a trend but the first differences of the variables in question do not
- Constant + unrestricted trend: trend in both the cointegrating relations and the first differences, corresponding to a quadratic trend in the variables (in levels)

Contents

- Systems of Equations
- VAR Models
- Simultaneous Equations and VAR Models
- VAR Models and Cointegration
- VEC Model: Cointegration Tests
- VEC Model: Specification and Estimation

Choice of the Cointegrating Rank

Based on *k*-vector $Y_t \sim I(1)$

Estimation procedure needs as input the cointegrating rank r

Testing for cointegration

- Engle-Granger approach
- Johansen's R3 method

The Engle-Granger Approach

Non-stationary processes $Y_t \sim I(1)$, $X_t \sim I(1)$; the model is

 $Y_t = \alpha + \beta X_t + \varepsilon_t$

- Step 1: OLS-fitting
- Test for cointegration based on residuals, e.g., DF test with special critical values; H₀: residuals are *I*(1), no cointegration
- If H₀ is rejected,
 - OLS fitting in step 1 gives consistent estimate of the cointegrating vector
 - Step 2: OLS estimation of the EC model based on the cointegrating vector from step 1

Can be extended to k-vector $Y_t = (Y_{1t}, ..., Y_{kt})$ ':

- Step 1 applied to $Y_{1t} = \alpha + \beta_1 Y_{2t} + ... + \beta_1 Y_{2t} + \beta_k Y_{kt} + \varepsilon_t$
- DF test of H_0 : residuals are I(1), no cointegration

Engle-Granger Cointegration Test: Problems

Residual based cointegration tests can be misleading

- Test results depend on specification
 - Which variables are included
 - Normalization of the cointegrating vector, which variable on left hand side
- Test may be inappropriate due to wrong specification of cointegrating relation
- Test power suffers from inefficient use of information (dynamic interactions not taken into account)
- Test gives no information about the rank r

Johansen's R3 Method

Reduced rank regression or R3 method: an iterative method for specifying the cointegrating rank *r*

- Also called Johansen's test
- The test is based on the k eigenvalues λ_i ($\lambda_1 > \lambda_2 > ... > \lambda_k$) of

 $\mathbf{Y}_{1}^{\mathbf{\cdot}}\mathbf{Y}_{1}^{\mathbf{\cdot}} - \mathbf{Y}_{1}^{\mathbf{\cdot}}\Delta\mathbf{Y}(\Delta\mathbf{Y}^{\mathbf{\cdot}}\Delta\mathbf{Y})^{-1}\Delta\mathbf{Y}^{\mathbf{\cdot}}\mathbf{Y}_{1}^{\mathbf{\cdot}},$

with ΔY : (*Txk*) matrix of differences ΔY_t , Y_1 : (*Txk*) matrix of Y_{t-1}

- □ eigenvalues λ_i fulfil 0 ≤ λ_i < 1
- if $r\{\Theta(1)\} = r$, the *k*-*r* smallest eigenvalues obey

 $\log(1-\lambda_j) = \lambda_j = 0, \ j = r+1, \ \dots, \ k$

- Johansen's iterative test procedures
 - Trace test
 - Maximum eigenvalue test or max test

Trace and Max Test: The Procedures

LR tests, based on the assumption of normally distributed errors

■ Trace test: for $r_0 = 0, 1, ...,$ test of H_0 : $r \le r_0$ (r_0 or fewer cointegrating relations) against H_1 : $r_0 < r \le k$

 $\lambda_{\text{trace}}(r_0) = -T \Sigma_{j=r0+1}^k \log(1 - \hat{l}_j)$

- $\Box \quad \hat{l}_{j}$: estimator of λ_{j}
- $\square \quad H_0 \text{ is rejected for large values of } \lambda_{\text{trace}}(r_0)$
- Stops when H_0 is not rejected for the first time
- Critical values from simulations
- Max test: tests for $r_0 = 0, 1, ...: H_0$: $r \le r_0$ (the eigenvalue $\lambda_{r_{0+1}}$ is different from zero) against H_1 : $r = r_0+1$

 $\lambda_{\max}(r_0) = - T \log(1 - \hat{I}_{r0+1})$

- Stops when H_0 is not rejected for the first time
- Critical values from simulations

Trace and Max Test: Critical Limits

Critical limits are shown in Verbeek's Table 9.9 for both tests

- Depend on presence of trends and intercepts
 - Case 1: no deterministic trends, intercepts in cointegrating relations
 - Case 2: k unrestricted intercepts in the VAR model, i.e., k r deterministic trends, r intercepts in cointegrating relations
- Depend on k r
- Need small sample correction, e.g., factor (*T-pk*)/*T* for the test statistic: avoids too large values of *r*

Example: Purchasing Power Parity

- Verbeek's dataset ppp: Price indices and exchange rates for France and Italy, T = 186 (1/1981-6/1996)
- Variables: LNIT (log price index Italy), LNFR (log price index France), LNX (log exchange rate France/Italy)
- Purchasing power parity (PPP): exchange rate between the currencies (Franc, Lira) equals the ratio of price levels of the countries
- Relative PPP: equality fulfilled only in the long run; equilibrium or cointegrating relation

 $LNX_t = \alpha + \beta LNP_t + \varepsilon_t$

with $LNP_t = LNIT_t - LNFR_t$, i.e., the log of the price index ratio France/Italy

Generalization:

 $LNX_t = \alpha + \beta_1 LNIT_t - \beta_2 LNFR_t + \varepsilon_t$

PPP: Cointegrating Rank r

As discussed by Verbeek: Johansen test for k = 3 variables, maximal lag order p = 3

H ₀	H ₁	eigen- value	$\lambda_{tr}(r_0)$	<i>p</i> -value	$\lambda_{\max}(r_0)$	<i>p</i> -value
<i>r</i> = 0	<i>r</i> = 1	0.301	93.9	0.0000	65.5	0.0000
<i>r</i> ≤ 1	<i>r</i> = 2	0.113	28.4	0.0023	22.0	0.0035
$r \leq 2$	<i>r</i> = 3	0.034	6.4	0.169	6.4	0.1690

 H_0 not rejected that smallest eigenvalue equals zero: series are nonstationary

Both the trace and the max test suggest r = 2

Contents

- Systems of Equations
- VAR Models
- Simultaneous Equations and VAR Models
- VAR Models and Cointegration
- VEC Model: Cointegration Tests
- VEC Model: Specification and Estimation

Estimation of VEC Models

Estimation of

 $\Delta Y_{t} = \delta + \Gamma_{1} \Delta Y_{t-1} + \dots + \Gamma_{p-1} \Delta Y_{t-p+1} + \Pi Y_{t-1} + \varepsilon_{t}$

requires finding (*k*×*r*)-matrices α and β with $\Pi = \alpha\beta^{\circ}$

- \square β : matrix of cointegrating vectors
- \square α : matrix of adjustment coefficients
- Identification problem: linear combinations of cointegrating vectors are also cointegrating vectors
- Unique solutions for α and β require restrictions
- Minimum number of restrictions which guarantee identification is r^2
- Normalization
 - Phillips normalization
 - Manual normalization

Phillips Normalization

Cointegrating vector

 $\beta' = (\beta_1', \beta_2')$

 $β_1$: (*r*x*r*)-matrix with rank *r*, $β_2$: [(*k*-*r*)x*r*]-matrix

Normalization consists in transforming β into

$$\hat{\beta} = \begin{pmatrix} I \\ \beta_2 \beta_1^{-1} \end{pmatrix} = \begin{pmatrix} I \\ -B \end{pmatrix}$$

with matrix B of unrestricted coefficients

- The r cointegrating relations express the first r variables as functions of the remaining k r variables
- Fulfils the condition that at least r² restrictions are needed to guarantee identification
- Resulting equilibrium relations may be difficult to interpret
- Alternative: manual normalization

Example: Money Demand

Verbeek's data set "money": US data 1:54 – 12:1994 (*T*=164)

- m: log of real M1 money stock
- infl: quarterly inflation rate (change in log prices, % per year)
- cpr: commercial paper rate (% per year)
- y: log real GDP (billions of 1987 dollars)
- tbr: treasury bill rate

Money Demand: Cointegrating Relations

Intuitive choice of long-run behaviour relations Money demand $m_{t} = \alpha_{1} + \beta_{14} y_{t} + \beta_{15} trb_{t} + \varepsilon_{1t}$ Expected: $\beta_{14} \approx 1$, $\beta_{15} < 0$ Fisher equation $infl_t = \alpha_2 + \beta_{25} trb_t + \varepsilon_{2t}$ Expected: $\beta_{25} \approx 1$ Stationary risk premium $cpr_t = \alpha_3 + \beta_{35} trb_t + \varepsilon_{3t}$ Stationarity of difference between cpr and trb; expected: $\beta_{35} \approx 1$

Money Demand: Cointegrating Vectors

- ML estimates, lag order p = 6, cointegration rank r = 2, restricted constant
- Cointegrating vectors β₁ and β₂ and standard errors (*s.e.*), Phillips normalization

	m	infl	cpr	у	tbr	const
β ₁	1.00	0.00	0.61	-0.35	-0.60	-4.27
(s.e.)	(0.00)	(0.00)	(0.12)	(0.12)	(0.12)	(0.91)
β ₂	0.00	1.00	-26.95	-3.28	-27.44	39.25
(s.e.)	(0.00)	(0.00)	(4.66)	(4.61)	(4.80)	(35.5)

Estimation of VEC Models: k=2

Estimation procedure consists of the following steps

- 1. Test the variables in the 2-vector Y_t for stationarity using the usual ADF tests; VEC models need I(1) variables
- 2. Determine the order *p*
- 3. Specification of
 - deterministic trends of the variables in Y_t
 - intercept in the cointegrating relation
- 4. Cointegration test
- 5. Estimation of cointegrating relation, normalization
- 6. Estimation of the VEC model

Example: Income and Consumption

Model:

 $\begin{array}{l} Y_{t} = \delta_{1} + \theta_{11}Y_{t-1} + \theta_{12}C_{t-1} + \epsilon_{1t} \\ C_{t} = \delta_{2} + \theta_{21}C_{t-1} + \theta_{22}Y_{t-1} + \epsilon_{2t} \end{array}$ With Z = (Y, C)', 2-vectors δ and ϵ , and (2x2)-matrix Θ , the VAR(1) model is $Z_{t} = \delta + \Theta Z_{t-1} + \epsilon_{t}$ Represents each component of Z as a linear combination of lagged variables

Income and Consumption: VEC(1) Model

- AWM data base: *PCR* (real private consumption), *PYR* (real disposable income of households); logarithms: *C*, *Y*
- 1. Check whether C and Y are non-stationary:

 $C \sim I(1), Y \sim I(1)$

2. Johansen test for cointegration: given that C and Y have no trends and the cointegrating relationship has an intercept:

 $r = 1 \ (p < 0.05)$

the cointegrating relationship is

C = 8.55 - 1.61Y

```
with t(Y) = 18.2
```

Income and Consumption: VEC(1) Model, cont'd

3. VEC(1) model (same specification as in 2.) with Z = (Y, C)'

 $\Delta Z_{t} = -\gamma(\beta' Z_{t-1} + \delta) + \Gamma \Delta Z_{t-1} + \varepsilon_{t}$

			coint	ΔY_{-1}	∆ C _1	adj.R ²	AIC
	$\Delta \mathbf{Y}$	Y _{ij}	0.029	0.167	0.059	0.14	-7.42
ΔY	ΔΥ	<i>t</i> (γ _{ij})	5.02	1.59	0.49		
	ΔC	Y _{ij}	0.047	0.226	-0.148	0.18	-7.59
		<i>t</i> (γ _{ij})	2.36	2.34	1.35		

The model explains growth rates of *PCR* and *PYR*; AIC = -15.41 is smaller than that of the VAR(1)-Modell (AIC = -14.45)

Estimation of VEC Models

Estimation procedure consists of the following steps

- 1. Test of the k variables in Y_t for stationarity: ADF test
- 2. Determination of the number *p* of lags in the cointegration test (order of VAR): AIC or BIC
- 3. Specification of
 - deterministic trends of the variables in Y_t
 - intercept in the cointegrating relations
- 4. Determination of the number *r* of cointegrating relations: trace and/or max test
- 5. Estimation of the coefficients β of the cointegrating relations and the adjustment α coefficients; normalization; assessment of the cointegrating relations
- 6. Estimation of the VEC model

VEC Models in GRETL

Model > Time Series > VAR lag selection...

 Calculates information criteria like AIC and BIC from VARs of order 1 to the chosen maximum order of the VAR

Model > Time Series > Cointegration test > Johansen...

Calculates eigenvalues, test statistics for the trace and max tests, and estimates of the matrices α, β, and Π = αβ⁴

Model > Time Series > VECM

Estimates the specified VEC model for a given cointegration rank: (1) cointegrating vectors and standard errors, (2) adjustment vectors, (3) coefficients and various criteria for each of the equations of the VEC model

Your Homework

 Read section 9.6 of Verbeek's book. Perform the steps 1 – 6 for estimating a VEC model for Verbeek's dataset "money". Is the choice p = 2 appropriate? Compare the VEC(2) models for r = 1 and 2.

2. Derive the VEC form of the VAR(2) model

 $Y_{t} = \delta + \Theta_{1}Y_{t-1} + \Theta_{2}Y_{t-2} + \varepsilon_{t}$

assuming a k-vector Y_t and appropriate orders of the other vectors and matrices.