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Multiple Dependent VariablesMultiple Dependent Variables

Economic processes: simultaneous and interrelated development of a 
multiple set of variables  

Examples:Examples:

� Households consume a set of commodities (food, durables, etc.); 
the demanded quantities depend on the prices of commodities, the the demanded quantities depend on the prices of commodities, the 
household income, the number of persons living in the household, 
etc.; a consumption model includes a set of dependent variables 
and a common set of explanatory variables. and a common set of explanatory variables. 

� The market of a product is characterized by (a) the demanded and 
supplied quantity and (b) the price of the product; a model for the supplied quantity and (b) the price of the product; a model for the 
market consists of equations representing the development and 
interdependencies of these variables.

� An economy consists of markets for commodities, labour, finances, � An economy consists of markets for commodities, labour, finances, 
etc.; a model for a sector or the full economy contains descriptions 
of the development of the relevant variables and their interactions.
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Systems of Regression Systems of Regression 
EquationsEquations
Economic processes involve the simultaneous developments as well 

as interrelations of a set of dependent variables

For modelling an economic process a system of relations, typically � For modelling an economic process a system of relations, typically 
in the form of regression equations: multi-equation model

Example: Two dependent variables yt1 and yt2 are modelled asExample: Two dependent variables yt1 and yt2 are modelled as

yt1 = x‘t1β1 + εt1
yt2 = x‘t2β2 + εt2yt2 = x‘t2β2 + εt2

with V{εti} = σi
2 for i = 1, 2, Cov{εt1, εt2} = σ12 ≠ 0

Typical situations:

1. The set of regressors x and x coincide1. The set of regressors xt1 and xt2 coincide
2. The set of regressors xt1 and xt2 differ, may overlap 

3. Regressors contain one or both dependent variables3. Regressors contain one or both dependent variables

4. Regressors contain lagged variables
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Types of Multi-equation ModelsTypes of Multi-equation Models

Multivariate regression or multivariate multi-equation model

� A set of regression equations, each explaining one of the 
dependent variablesdependent variables

� Possibly common explanatory variables 

� Seemingly unrelated regression (SUR) model: each equation is a � Seemingly unrelated regression (SUR) model: each equation is a 
valid specification of a linear regression, related to other equations 
only by the error terms

� See cases 1 and 2 of “typical situations” (slide 4)  � See cases 1 and 2 of “typical situations” (slide 4)  

Simultaneous equations models

� Describe the relations within the system of economic variables � Describe the relations within the system of economic variables 

� in form of model equations

� See cases 3 and 4 of “typical situations” (slide 4)

Error terms: dependence structure is specified by means of second Error terms: dependence structure is specified by means of second 
moments or as joint probability distribution
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Capital Asset Pricing ModelCapital Asset Pricing Model

Capital asset pricing (CAP) model: describes the return Ri of asset i

Ri - Rf = βi(E{Rm} – Rf) + εiRi - Rf = βi(E{Rm} – Rf) + εi

with 

� Rf: return of a risk-free assetf

� Rm: return of the market portfolio

� βi: indicates how strong fluctuations of the returns of asset i are 
determined by fluctuations of the market as a wholedetermined by fluctuations of the market as a whole

� Knowledge of the return difference Ri - Rf will give information on 

the return difference Rj - Rf of asset j, at least for some assetsthe return difference Rj - Rf of asset j, at least for some assets

� Analysis of a set of assets i = 1, …, s
� The error terms εi, i = 1, …, s, represent common factors, have a � The error terms εi, i = 1, …, s, represent common factors, have a 

common dependence structure  

� Efficient use of information: simultaneous analysis
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A Model for InvestmentA Model for Investment

Grunfeld investment data [Greene, (2003), Chpt.13; Grunfeld & 

Griliches (1960)]: Panel data set on gross investments Iit of firms i = 
1, ..., 6 over 20 years and related data 

it

1, ..., 6 over 20 years and related data 

� Investment decisions are assumed to be determined by

I = β + β F + β C + εIit = βi1 + βi2Fit + βi3Cit + εit

with 

F : market value of firm at the end of year t-1� Fit: market value of firm at the end of year t-1

� Cit: value of stock of plant and equipment at the end of year t-1

� Simultaneous analysis of equations for the various firms i: efficient � Simultaneous analysis of equations for the various firms i: efficient 
use of information 

� Error terms for the firms include common factors such as economic Error terms for the firms include common factors such as economic 

climate 

� Coefficients may be the same for the firms
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The Hog MarketThe Hog Market

Model equations:

Qd = α1 + α2P + α3Y + ε1 (demand equation)

Qs = β + β P + β Z + ε (supply equation)
1 2 3 1

Qs = β1 + β2P + β3Z + ε2 (supply equation)

Qd = Qs (equilibrium condition)

with Qd: demanded quantity, Qs: supplied quantity, P: price, Y: with Qd: demanded quantity, Qs: supplied quantity, P: price, Y: 
income, and Z: costs of production, or

Q = α1 + α2P + α3Y + ε1 (demand equation)Q = α1 + α2P + α3Y + ε1 (demand equation)

Q = β1 + β2P + β3Z + ε2 (supply equation)

� Model describes quantity and price of the equilibrium transactions 

� Model determines simultaneously Q and P, given Y and Z

� Error terms 

� May be correlated: Cov{ε1, ε2} ≠ 0 

� Simultaneous analysis necessary for efficient use of information
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Klein‘s Model IKlein‘s Model I

1. Ct = α1 + α2Pt + α3Pt-1 + α4(Wt
p+ Wt

g) + εt1 (consumption)

2. It = β1 + β2Pt + β3Pt-1 + β4Kt-1 + εt2 (investment)t 1 2 t 3 t-1 4 t-1 t2

3. Wt
p = γ1 + γ2Xt + γ3Xt-1 + γ4t + εt3 (wages)

4. Xt = Ct + It + Gt

5. K = I + K5. Kt = It + Kt-1

6. Pt = Xt – Wt
p – Tt

with C (consumption), P (profits), Wp (private wages), Wgwith C (consumption), P (profits), W (private wages), W
(governmental wages), I (investment), K-1 (capital stock), X
(national product), G (governmental demand), T (taxes) and t [time 

(year-1936)] (year-1936)] 

� Model determines simultaneously C, I, Wp, X, K, and P 

Simultaneous analysis necessary in order to take dependence � Simultaneous analysis necessary in order to take dependence 

structure of error terms into account: efficient use of information 
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Examples of Multi-equation Examples of Multi-equation 
ModelsModels
Multivariate regression models

� Capital asset pricing (CAP) model: for all assets, return Ri is a 
function of E{R } – R ; dependence structure of the error terms 

i

function of E{Rm} – Rf; dependence structure of the error terms 
caused by common variables 

� Model for investment: firm-specific regressors, dependence � Model for investment: firm-specific regressors, dependence 
structure of the error terms like in CAP model 

� Seemingly unrelated regression (SUR) models

Simultaneous equations modelsSimultaneous equations models

� Hog market model: endogenous regressors, dependence structure 
of error termsof error terms

� Klein’s model I: endogenous regressors, dynamic model, 
dependence of error terms from different equations and possibly  
over timeover time
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Single- vs. Multi-equation Single- vs. Multi-equation 
ModelsModels
Complications for estimation of parameters of multi-equation models: 

� Dependence structure of error terms

� Violation of exogeneity of regressors

Example: Hog market model, demand equation 

Q = α + α P + α Y + εQ = α1 + α2P + α3Y + ε1
� Covariance matrix of ε = (ε1, ε2)’

{ }
2σ σ 

=

� P is not exogenous: Cov{P,ε } = (σ 2 - σ )/(β - α ) ≠ 0

{ } 1 12

2

12 2

Cov ε
σ σ
σ σ
 

=  
 

� P is not exogenous: Cov{P,ε1} = (σ1
2 - σ12)/(β2 - α2) ≠ 0

Statistical analysis of multi-equation models requires methods 
adapted to these featuresadapted to these features
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Analysis of Multi-equation Analysis of Multi-equation 
ModelsModels
Issues of interest: 

� Estimation of parameters

� Interpretation of model characteristics, prediction, etc. 

Estimation procedures 

Multivariate regression models � Multivariate regression models 

� GLS , FGLS, ML

� Simultaneous equations models � Simultaneous equations models 

� Single equation methods: indirect least squares (ILS), two stage least 
squares (TSLS), limited information ML (LIML)

� System methods of estimation: three stage least squares (3SLS), full � System methods of estimation: three stage least squares (3SLS), full 
information ML (FIML)

� Dynamic models: estimation methods for vector autoregressive (VAR) 
and vector error correction (VEC) modelsand vector error correction (VEC) models
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Example: Income and Example: Income and 
ConsumptionConsumption
Model for income (Y) and consumption (C) 

Yt = δ1 + θ11Yt-1 + θ12Ct-1 + ε1tYt = δ1 + θ11Yt-1 + θ12Ct-1 + ε1t
Ct = δ2 + θ21Ct-1 + θ22Yt-1 + ε2t

with (possibly correlated) white noises ε1t and ε2t
Notation: Z = (Y , C )‘, 2-vectors δ and ε, and (2x2)-matrix Θ = (θ ), the Notation: Zt = (Yt, Ct)‘, 2-vectors δ and ε, and (2x2)-matrix Θ = (θij), the 

model is

1 11 11 12 εδ θ θt t tY Y −        
= + +

in matrix notation

1 11 11 12

1 22 21 22

εδ θ θ

εδ θ θ

t t t

t t t

Y Y

C C

−

−

        
= + +        
        

in matrix notation

Zt = δ + ΘZt-1 + εt
� Represents each component of Z as a linear combination of lagged 

variables
Represents each component of Z as a linear combination of lagged 
variables

� Extension of the AR-model to the 2-vector Zt: vector autoregressive 
model of order 1, VAR(1) model

Hackl, Econometrics 2, Lecture 5 14

model of order 1, VAR(1) model

April 20, 2012



The VAR(p) ModelThe VAR(p) Model

VAR(p) model: generalization of the AR(p) model for k-vectors Yt

Yt = δ + Θ1Yt-1 + … + ΘpYt-p + εt
with k-vectors Y , δ, and ε and k k-matrices Θ , …, Θwith k-vectors Yt, δ, and εt and kxk-matrices Θ1, …, Θp

� Using the lag-operator L: 
Θ(L)Yt = δ + εtΘ(L)Yt = δ + εt

with matrix lag polynomial Θ(L) = I – Θ1L - … - ΘpLp

� Θ(L) is a kxk-matrix 

Each matrix element of Θ(L) is a lag polynomial of order p� Each matrix element of Θ(L) is a lag polynomial of order p
� Error terms εt

� have covariance matrix Σ (for all t); allows for contemporaneous 
correlation correlation 

� are independent of Yt-j, j > 0, i.e., of the past of the components of Yt
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The VAR(p) Model, cont’dThe VAR(p) Model, cont’d

VAR(p) model for the k-vector Yt

Yt = δ + Θ1Yt-1 + … + ΘpYt-p + εt
Vector of expectations of Y : assuming stationarity� Vector of expectations of Yt: assuming stationarity

E{Yt} = δ + Θ1 E{Yt} + … + Θp E{Yt}

gives gives 
E{Yt} = µ = (Ik – Θ1 - … - Θp)

-1δ = Θ(1)-1δ

i.e., stationarity requires that the kxk-matrix Θ(1) is invertible

In deviations y = Y – µ, the VAR(p) model is� In deviations yt = Yt – µ, the VAR(p) model is
Θ(L)yt = εt

� MA representation of the VAR(p) model, given that Θ(L) is invertible � MA representation of the VAR(p) model, given that Θ(L) is invertible 
Yt = µ + Θ(L)-1εt = µ + εt + A1εt-1 + A2εt-2 + … 

� VARMA(p,q) Model: Extension of the VAR(p) model by multiplying εt
(from the left) with a matrix lag polynomial A(L) of order q(from the left) with a matrix lag polynomial A(L) of order q

� VAR(p) model with m-vector Xt of exogenous variables, kxm-matrix Γ

Yt = Θ1Yt-1 + … + ΘpYt-p + ΓXt + εt
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Reasons for Using a VAR ModelReasons for Using a VAR Model

VAR model represents a set of univariate ARMA models, one for each 
component

� Reformulation of simultaneous equations models as dynamic models� Reformulation of simultaneous equations models as dynamic models

� To be used instead of simultaneous equations models: 
� No need to distinct a priori endogenous and exogenous variables

� No need for a priori identifying restrictions on model parameters

� Simultaneous analysis of the components: More parsimonious, fewer 
lags, simultaneous consideration of the history of all included lags, simultaneous consideration of the history of all included 
variables 

� Allows for non-stationarity and cointegration

Attention: the number of parameters to be estimated increases with kAttention: the number of parameters to be estimated increases with k
and p

Number of parameters

in Θ(L) 
p 1 2 3

in Θ(L) k=2 4 8 12

k=4 16 32 48
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Simultaneous Equations Models Simultaneous Equations Models 
in VAR Formin VAR Form
Model with m endogenous variables (and equations), K regressors

Ayt = Γzt + εt = Γ1 yt-1 + Γ2 xt + εtAyt = Γzt + εt = Γ1 yt-1 + Γ2 xt + εt
with m-vectors yt and εt, K-vector zt, (mxm)-matrix A, (mxK)-matrix Γ, 

and (mxm)-matrix Σ = V{εt}; t

� zt contains lagged endogenous variables yt-1 and exogenous 
variables xt
Rearranging gives� Rearranging gives

yt = Θ yt-1 + δt + vt
with Θ = = = = A-1 Γ , δ = A-1 Γ x , and v = A-1 εwith Θ = = = = A-1 Γ1, δt = A

-1 Γ2 xt, and vt = A-1 εt

� Extension of yt by regressors xt: the matrix δt becomes a vector of 

deterministic components (intercepts)deterministic components (intercepts)
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Example: Income and Example: Income and 
ConsumptionConsumption
Model for income (Yt) and consumption (Ct) 

Yt = δ1 + θ11Yt-1 + θ12Ct-1 + ε1tt 1 11 t-1 12 t-1 1t

Ct = δ2 + θ21Ct-1 + θ22Yt-1 + ε2t
with (possibly correlated) white noises ε1t and ε2t

� Matrix form of the simultaneous equations model: � Matrix form of the simultaneous equations model: 

A (Yt, Ct)‘ = Γ (1, Yt-1, Ct-1)‘ + (ε1t, ε2t)’ 

with
δ θ θ10    1 11 12

2 21 22

δ θ θ10
A ,

δ θ θ01

  
= Γ =   
   

� VAR(1) form: Zt = δ + ΘZt-1 + εt or 

1 11 11 12 εδ θ θt t tY Y −        
= + +        

   

1 11 11 12

1 22 21 22

εδ θ θ

εδ θ θ

t t t

t t t

Y Y

C C

−

−

        
= + +        
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VAR Model: EstimationVAR Model: Estimation

VAR(p) model for the k-vector Yt

Yt = δ + Θ1Yt-1 + … + ΘpYt-p + εt, V{εt} = Σ

� Components of Yt: linear combinations of lagged variables

� Error terms: Possibly contemporaneously correlated, covariance 

matrix Σ, uncorrelated over timematrix Σ, uncorrelated over time

� SUR model

Estimation, given the order p of the VAR modelEstimation, given the order p of the VAR model

� OLS estimates of parameters in Θ(L) are consistent 

� Estimation of Σ based on residual vectors e = (e , …, e )’: � Estimation of Σ based on residual vectors et = (e1t, …, ekt)’: 
1

't tt
S e e

T p
=

− ∑

� GLS  estimator  coincides with OLS estimator: same explanatory 

variables for all equations

T p−
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VAR Model: Estimation, cont’dVAR Model: Estimation, cont’d

Choice of the order p of the VAR model 

� Estimation of VAR models for various orders p� Estimation of VAR models for various orders p

� Choice of p based on Akaike or Schwarz information criterion
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Income and ConsumptionIncome and Consumption

AWM data base, 1971:1-2003:4: PCR (real private consumption), PYR
(real disposable income of households); respective annual growth 
rates of logarithms: C, Yrates of logarithms: C, Y

Fitting Zt = δ + ΘZt-1 + εt with Z = (Y, C)‘ gives

δ Y-1 C-1 adj.R2

Y
θij 0.001 0.815 0.106 0.82

Y
t(θij) 0.39 11.33 1.30

C
Θij 0.003 0.085 0.796 0.78

with AIC = -14.60; for the VAR(2) model: AIC = -14.55 

C
t(θij) 2.52 1.23 10.16

with AIC = -14.60; for the VAR(2) model: AIC = -14.55 

In GRETL: OLS equation-wise, VAR estimation, SUR estimation give 
very similar results
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Impulse-response FunctionImpulse-response Function

MA representation of the VAR(p) model 

Yt = Θ(1)-1δ + εt + A1εt-1 + A2εt-2 + … Yt = Θ(1) δ + εt + A1εt-1 + A2εt-2 + … 

� Interpretation of As: the (i,j)-element of As represents the effect of a 
one unit increase of εjt upon the i-th variable Yi,t+s in Yt+s

Dynamic effects of a one unit increase of ε upon the i-th component � Dynamic effects of a one unit increase of εjt upon the i-th component 
of Yt are corresponding to the (i,j)-th elements of Ik, A1, A2, …

� The plot of these elements over s represents the impulse-response � The plot of these elements over s represents the impulse-response 
function of the i-th variable in Yt+s on a unit shock to εjt
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Stationarity and Non-stationarity Stationarity and Non-stationarity 

AR(1) process Yt = θYt-1 + εt

� is stationary, if the root z of the characteristic polynomial� is stationary, if the root z of the characteristic polynomial

Θ(z) = 1 - θz = 0

fulfils |z| > 1, i.e., |θ| < 1; fulfils |z| > 1, i.e., |θ| < 1; 
� Θ(z) is invertible, i.e., Θ(z)-1 can be derived such that Θ(z)-1Θ(z) = 1 

� Yt can be represented by a MA(∞) process: Yt = Θ(z)-1εt
� is non-stationary, if 

z = 1 or θ = 1

i.e.,Y ~ I(1), Y has a stochastic trendi.e.,Yt ~ I(1), Yt has a stochastic trend
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VAR Models, Non-stationarity, VAR Models, Non-stationarity, 
and Cointegration 
VAR(1) model for the k-vector Yt

Yt = δ + Θ1Yt-1 + εt
If Θ(L) = I – Θ L is invertible, � If Θ(L) = I – Θ1L is invertible, 

Yt = Θ(1)-1δ + Θ(L)-1εt = µ + εt + A1εt-1 + A2εt-2 + …

i.e., each variable in Yt is a linear combination of white noises, is a i.e., each variable in Yt is a linear combination of white noises, is a 
stationary I(0) variable 

� If Θ(L) is not invertible, not all variables in Yt can be stationary I(0) 
variables: at least one variable must have a stochastic trendvariables: at least one variable must have a stochastic trend
� If all k variables have independent stochastic trends, all k variables are 

I(1) and no cointegrating relation exists; e.g., for k = 2:

1-θ θ 00   

i.e., θ = θ = 1, θ = θ = 0

11 12

21 22

1-θ θ 00
(1)

θ 1-θ 00

   
Θ = =   

  
i.e., θ11 = θ22 = 1, θ12 = θ21 = 0

� The more interesting case: at least one cointegrating relation; number of 
cointegrating relations equals the rank r{Θ(1)} of matrix Θ(1)
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Example: A VAR(1) ModelExample: A VAR(1) Model

VAR(1) model for k-vector Y in differences with Θ(L) = I - Θ1L

∆Yt = - Θ(1)Yt-1 + δ + εt∆Yt = - Θ(1)Yt-1 + δ + εt

r = r{Θ(1)}: rank of (kxk) matrix Θ(1) = Ik - Θ1

1. r = 0: then ∆Yt = δ + εt, i.e., Y is a k-dimensional random walk, each 1. r = 0: then ∆Yt = δ + εt, i.e., Y is a k-dimensional random walk, each 

component is I(1), no cointegrating relationship

2. r < k: (k - r)-fold unit root, (kxr)-matrices γ and β can be found, both of 2. r < k: (k - r)-fold unit root, (kxr)-matrices γ and β can be found, both of 

rank r, with
Θ(1) = γβ'

the r columns of β are the cointegrating vectors of r cointegrating the r columns of β are the cointegrating vectors of r cointegrating 
relations (β in normalized form, i.e., the main diagonal elements of β 

being ones)being ones)

3. r = k: VAR(1) process is stationary, all components of Y are I(0)
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Cointegrating SpaceCointegrating Space

Yt: k-vector, each component I(1)

Cointegrating space: Cointegrating space: 

� Among the k variables, r ≤ k-1 independent linear relations βj‘Yt, j = 1, 
…, r, are possible so that βj‘Yt ~ I(0)j t

� Individual relations can be combined with others and these are again 

I(0), i.e., not the individual cointegrating relations are identified but 
only the r-dimensional spaceonly the r-dimensional space

� Cointegrating relations should have an economic interpretation 

Cointegrating matrix β:Cointegrating matrix β:

� The kxr matrix β = (β1, …, βr) of vectors βj that state the cointegrating 

relations βj‘Yt ~ I(0), j = 1, …, rrelations βj‘Yt ~ I(0), j = 1, …, r

� Cointegrating rank: the rank of matrix β: r{β} = r
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Granger‘s Representation Granger‘s Representation 
TheoremTheorem
Granger’s Representation Theorem (Engle & Granger, 1987): If a set of 

I(1) variables is cointegrated, then an error-correction (EC) relation of I(1) variables is cointegrated, then an error-correction (EC) relation of 
the variables exists

Extends to VAR models: if the I(1) variables of the k-vector Yt are t

cointegrated, then an error-correction (EC) relation of the variables 

exists
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Granger‘s Representation Granger‘s Representation 
Theorem for VAR ModelsTheorem for VAR Models
VAR(p) model for the k-vector Yt

Yt = δ + Θ1Yt-1 + … + ΘpYt-p + εtYt = δ + Θ1Yt-1 + … + ΘpYt-p + εt

transformed into 

∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + ΠYt-1 + εt (A)∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + ΠYt-1 + εt (A)

� Π = – Θ(1) = – (Ik – Θ1 – … – Θp): „long-run matrix“, kxk, determines the 
long-run dynamics of Yt

Γ , …, Γ (kxk)-matrices, functions of Θ ,…, Θ� Γ1, …, Γp-1 (kxk)-matrices, functions of Θ1,…, Θp

� ΠYt-1 is stationary: ∆Yt and εt are I(0)

� Three cases� Three cases

1. r{Π} = r with 0 < r < k: there exist r stationary linear combinations of Yt, 
i.e., r cointegrating relations

2. r{Π} = 0: Π = 0, no cointegrating relation, equation (A) is a VAR(p) model 
for stationary variables ∆Yt

3. r{Π} = k: all variables in Yt are stationary, Π = - Θ(1) is invertible 
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Vector Error-Correction ModelVector Error-Correction Model

VAR(p) model for the k-vector Yt

Yt = δ + Θ1Yt-1 + … + ΘpYt-p + εtYt = δ + Θ1Yt-1 + … + ΘpYt-p + εt

transformed into 

∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + ΠYt-1 + εt∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + ΠYt-1 + εt

with r{Π} = r and Π = γβ' gives 

∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + γβ'Yt-1 + εt (B)∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + γβ'Yt-1 + εt (B)

� r cointegrating relations β'Yt-1

� Adaptation parameters γ measure the portion or speed of adaptation � Adaptation parameters γ measure the portion or speed of adaptation 

of Yt in compensation of the equilibrium error Zt-1 = β'Yt-1

� Equation (B) is called the vector error-correction (VEC) model
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Example: Bivariate VAR ModelExample: Bivariate VAR Model

VAR(1) model for the 2-vector Yt = (Y1t, Y2t)’

Yt = ΘYt-1 + εtYt = ΘYt-1 + εt
� Long-run matrix

11 12θ 1 θ
(1)

θ θ 1

− 
Π = −Θ =  −

� Π = 0, if θ11 = θ22 = 1, θ12 = θ21 = 0, i.e., Y1t, Y2t are random walks

r{Π} < 2, if (θ – 1)(θ – 1) – θ θ = 0; cointegrating vector: β‘ = 

21 22

(1)
θ θ 1

Π = −Θ =  − 

� r{Π} < 2, if (θ11 – 1)(θ22 – 1) – θ12 θ21 = 0; cointegrating vector: β‘ = 
(θ11 – 1, θ12), long-run matrix

( )1
γβ ' θ 1 θ

 
Π = = − 

� The error-correction form is 

( )11 12

21 11

1
γβ ' θ 1 θ

θ / (θ 1)

 
Π = = − − 

∆ 1 1

11 1, 1 12 2, 1

2 221 11

ε1
(θ 1) θ

εθ / (θ 1)

t t

t t

t t

Y
Y Y

Y
− −

∆    
 = − + +      ∆ −    
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Deterministic ComponentDeterministic Component

VEC(p) model for the k-vector Yt

∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + γβ'Yt-1 + εt (B)∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + γβ'Yt-1 + εt (B)

The deterministic component (intercept) δ:

1. E{∆Yt} = 0, i.e., no deterministic trend in any component of Yt: given 1. E{∆Yt} = 0, i.e., no deterministic trend in any component of Yt: given 

that Γ = Ik – Γ1 – … – Γp-1 has full rank: 

� Γ E{∆Yt} = δ + γE{Zt-1} = 0 with equilibrium error Zt-1 = β'Yt-1t t-1 t-1 t-1

� E{Zt-1} corresponds to the intercepts of the cointegrating relations; with r-
dimensional vector E{Zt-1} = α 

∆Y = Γ ∆Y + … + Γ ∆Y + γ(- α + β'Y ) + ε (C)∆Yt = Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + γ(- α + β'Yt-1) + εt (C)

� Intercepts only in the cointegrating relations, i.e., no deterministic  trend in 

the modelthe model
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Deterministic Component, cont’dDeterministic Component, cont’d

VEC(p) model for the k-vector Yt

∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + γβ'Yt-1 + εt (B)∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + γβ'Yt-1 + εt (B)

The deterministic component (intercept) δ:

2. Addition of a k-vector λ with identical components to (C)2. Addition of a k-vector λ with identical components to (C)

∆Yt = λ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + γ(- α + β'Yt-1) + εt

� Long-run equilibrium: steady state growth with growth rate E{∆Yt} = Γ
-1λ� Long-run equilibrium: steady state growth with growth rate E{∆Yt} = Γ λ

� Deterministic trends cancel out in the long run, so that no deterministic 

trend in the error-correction term; cf. (B)

Addition of k-vector λ can be repeated: up to k-r separate deterministic � Addition of k-vector λ can be repeated: up to k-r separate deterministic 

trends can cancel out in the error-correction term 

� The general notation is equation (B) with δ containing r intercepts of the � The general notation is equation (B) with δ containing r intercepts of the 
long-run relations and k-r deterministic trends in the variables of Yt
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The Five CasesThe Five Cases

Based on empirical observation and economic reasoning, choice 

between:between:

1) Unrestricted constant: variables show deterministic linear trends

2) Restricted constant: variables not trended but mean distance 2) Restricted constant: variables not trended but mean distance 

between them not zero; intercept in the error-correction term

3) No constant

Generalization: deterministic component contains intercept and trend

4) Constant + restricted trend: cointegrating relations include a trend 

but the first differences of the variables in question do notbut the first differences of the variables in question do not

5) Constant + unrestricted trend: trend in both the cointegrating 

relations and the first differences, corresponding to a quadratic trend relations and the first differences, corresponding to a quadratic trend 

in the variables (in levels)
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Choice of the Cointegrating Choice of the Cointegrating 
Rank Rank 
Based on k-vector Yt ~ I(1) 

Estimation procedure needs as input the cointegrating rank r Estimation procedure needs as input the cointegrating rank r 

Testing for cointegration

� Engle-Granger approach� Engle-Granger approach

� Johansen‘s R3 method
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The Engle-Granger ApproachThe Engle-Granger Approach

Non-stationary processes Yt ~ I(1), Xt ~ I(1); the model is 

Yt = α + βXt + εtYt = α + βXt + εt

� Step 1: OLS-fitting 

� Test for cointegration based on residuals, e.g., DF test with special � Test for cointegration based on residuals, e.g., DF test with special 

critical values; H0: residuals are I(1), no cointegration 

� If H0 is rejected, 

� OLS fitting in step 1 gives consistent estimate of the cointegrating vector

� Step 2: OLS estimation of the EC model based on the cointegrating 

vector from step 1vector from step 1

Can be extended to k-vector Yt = (Y1t, ..., Ykt)’: 

� Step 1 applied to Y1t = α + β1Y2t + ... + β1Y2t + βkYkt + εt� Step 1 applied to Y1t = α + β1Y2t + ... + β1Y2t + βkYkt + εt

� DF test of H0: residuals are I(1), no cointegration 
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Engle-Granger Cointegration Engle-Granger Cointegration 
Test: Problems Test: Problems 
Residual based cointegration tests can be misleading

� Test results depend on specification � Test results depend on specification 

� Which variables are included

� Normalization of the cointegrating vector, which variable on left hand side

� Test may be inappropriate due to wrong specification of cointegrating  

relation

Test power suffers from inefficient use of information (dynamic � Test power suffers from inefficient use of information (dynamic 

interactions not taken into account)

� Test gives no information about the rank r� Test gives no information about the rank r
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Johansen‘s R3 MethodJohansen‘s R3 Method

Reduced rank regression or R3 method: an iterative method for 

specifying the cointegrating rank rspecifying the cointegrating rank r

� Also called Johansen's test

� The test is based on the k eigenvalues λi (λ1> λ2>…> λk) ofi 1 2 k

Y1‘Y1 – Y1‘∆Y(∆Y‘∆Y)
-1∆Y‘Y1, 

with ∆Y: (Txk) matrix of differences ∆Yt, Y1: (Txk) matrix of Yt-1

� eigenvalues λi fulfil 0 ≤ λi < 1

� if r{Θ(1)} = r, the k-r smallest eigenvalues obey 

log(1- λj) = λj = 0,  j = r+1, …, k

� Johansen’s iterative test procedures

Trace test� Trace test

� Maximum eigenvalue test or max test

Hackl, Econometrics 2, Lecture 5 41April 20, 2012



Trace and Max Test: The Trace and Max Test: The 
ProceduresProcedures
LR tests, based on the assumption of normally distributed errors

� Trace test: for r0 = 0, 1, …, test of H0: r ≤ r0 (r0 or fewer cointegrating � Trace test: for r0 = 0, 1, …, test of H0: r ≤ r0 (r0 or fewer cointegrating 
relations) against H1: r0 < r ≤ k

λtrace(r0) = - T Σk
j=r0+1log(1- Îj) trace 0 j=r0+1 j

� Îj: estimator of λj

� H0 is rejected for large values of λtrace(r0)

Stops when H is not rejected for the first time� Stops when H0 is not rejected for the first time

� Critical values from simulations

� Max test: tests for r0 = 0, 1, …: H0: r ≤ r0 (the eigenvalue λr0+1 is � Max test: tests for r0 = 0, 1, …: H0: r ≤ r0 (the eigenvalue λr0+1 is 
different from zero) against H1: r = r0+1 

λmax(r0) = - T log(1 - Îr0+1)λmax(r0) = - T log(1 - Îr0+1)
� Stops when H0 is not rejected for the first time

� Critical values from simulations
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Trace and Max Test: Critical Trace and Max Test: Critical 
LimitsLimits
Critical limits are shown in Verbeek’s Table 9.9 for both tests

� Depend on presence of trends and intercepts� Depend on presence of trends and intercepts

� Case 1: no deterministic trends, intercepts in cointegrating relations

� Case 2: k unrestricted intercepts in the VAR model, i.e., k - r deterministic 

trends, r intercepts in cointegrating relationstrends, r intercepts in cointegrating relations

� Depend on k – r

Need small sample correction, e.g., factor (T-pk)/T for the test � Need small sample correction, e.g., factor (T-pk)/T for the test 

statistic: avoids too large values of r
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Example: Purchasing Power Example: Purchasing Power 
ParityParity
Verbeek’s dataset ppp: Price indices and exchange rates for France and 

Italy, T = 186 (1/1981-6/1996)

� Variables: LNIT (log price index Italy), LNFR (log price index France), 

LNX (log exchange rate France/Italy) 

Purchasing power parity (PPP): exchange rate between the currencies Purchasing power parity (PPP): exchange rate between the currencies 

(Franc, Lira) equals the ratio of price levels of the countries 

� Relative PPP: equality fulfilled only in the long run; equilibrium or � Relative PPP: equality fulfilled only in the long run; equilibrium or 

cointegrating relation

LNXt = α + β LNPt + εtLNXt = α + β LNPt + εt
with LNPt = LNITt – LNFRt, i.e., the log of the price index ratio 

France/Italy

Generalization:� Generalization:

LNXt = α + β1 LNITt – β2 LNFRt + εt
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PPP: Cointegrating Rank rPPP: Cointegrating Rank r

As discussed by Verbeek: Johansen test for k = 3 variables, maximal 
lag order p = 3

H0 H1

eigen-

value
λtr(r0) p-value λmax(r0) p-value

r = 0 r = 1 0.301 93.9 0.0000 65.5 0.0000r = 0 r = 1 0.301 93.9 0.0000 65.5 0.0000

r  ≤ 1 r = 2 0.113 28.4 0.0023 22.0 0.0035

r  ≤ 2 r = 3 0.034 6.4 0.169 6.4 0.1690

H0 not rejected that smallest eigenvalue equals zero: series are non-

stationary

r  ≤ 2 r = 3 0.034 6.4 0.169 6.4 0.1690

stationary

Both the trace and the max test suggest r = 2
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Estimation of VEC ModelsEstimation of VEC Models

Estimation of

∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + ΠYt-1 + εt∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + ΠYt-1 + εt

requires finding (kxr)-matrices α and β with Π = αβ‘ 

� β: matrix of cointegrating vectors 

� α: matrix of  adjustment coefficients

� Identification problem: linear combinations of cointegrating vectors 

are also cointegrating vectors are also cointegrating vectors 

� Unique solutions for α and β require restrictions 

Minimum number of restrictions which guarantee identification is r2� Minimum number of restrictions which guarantee identification is r2

� Normalization

� Phillips normalization � Phillips normalization 

� Manual normalization 
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Phillips NormalizationPhillips Normalization

Cointegrating vector 

β’ = (β1’, β2’) β’ = (β1’, β2’) 

β1: (rxr)-matrix with rank r, β2: [(k-r)xr]-matrix

� Normalization consists in transforming β into� Normalization consists in transforming β into

1

1

2

β̂
β β

I I

B
−

   
= =   −  

with matrix B of unrestricted coefficients

� The r cointegrating relations express the first r variables as functions 

12β β B−  

of the remaining k - r variables 

� Fulfils the condition that at least r2 restrictions are needed to 
guarantee identificationguarantee identification

� Resulting equilibrium relations may be difficult to interpret 

� Alternative: manual normalization 
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Example: Money DemandExample: Money Demand

Verbeek’s data set “money”: US data 1:54 – 12:1994 (T=164) 
� m: log of real M1 money stock

infl: quarterly inflation rate (change in log prices, % per year)� infl: quarterly inflation rate (change in log prices, % per year)

� cpr: commercial paper rate (% per year)

� y: log real GDP (billions of 1987 dollars)� y: log real GDP (billions of 1987 dollars)

� tbr: treasury bill rate
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Money Demand: Cointegrating Money Demand: Cointegrating 
RelationsRelations
Intuitive choice of long-run behaviour relations

� Money demand 

m = α + β y + β trb + εmt = α1 + β14 yt + β15 trbt + ε1t
Expected: β14 ≈ 1, β15 < 0

� Fisher equation� Fisher equation

inflt = α2 + β25 trbt + ε2t
Expected: β25 ≈ 1

Stationary risk premium � Stationary risk premium 

cprt = α3 + β35 trbt + ε3t
Stationarity of difference between cpr and trb; expected: β35 ≈ 1Stationarity of difference between cpr and trb; expected: β35 ≈ 1
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Money Demand: Cointegrating Money Demand: Cointegrating 
VectorsVectors
ML estimates, lag order p = 6, cointegration rank r = 2, restricted 

constant

� Cointegrating vectors β and β and standard errors (s.e.), Phillips � Cointegrating vectors β1 and β2 and standard errors (s.e.), Phillips 
normalization

m infl cpr y tbr const

β1
1.00 0.00 0.61 -0.35 -0.60 -4.27

(s.e.) (0.00) (0.00) (0.12) (0.12) (0.12) (0.91)

β2
0.00 1.00 -26.95 -3.28 -27.44 39.25

(s.e.) (0.00) (0.00) (4.66) (4.61) (4.80) (35.5)
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Estimation of VEC Models: k=2Estimation of VEC Models: k=2

Estimation procedure consists of the following steps

1. Test the variables in the 2-vector Yt for stationarity using the usual 1. Test the variables in the 2-vector Yt for stationarity using the usual 

ADF tests; VEC models need I(1) variables

2. Determine the order p

3. Specification of

� deterministic trends of the variables in Yt

� intercept in the cointegrating relation

4. Cointegration test

5. Estimation of cointegrating relation, normalization5. Estimation of cointegrating relation, normalization

6. Estimation of the VEC model
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Example: Income and Example: Income and 
ConsumptionConsumption
Model: 

Yt = δ1 + θ11Yt-1 + θ12Ct-1 + ε1tt 1 11 t-1 12 t-1 1t

Ct = δ2 + θ21Ct-1 + θ22Yt-1 + ε2t
With Z = (Y, C)‘, 2-vectors δ and ε, and (2x2)-matrix Θ, the VAR(1) 

model ismodel is

Zt = δ + ΘZt-1 + εt
Represents each component of Z as a linear combination of lagged 

variablesvariables
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Income and Consumption: Income and Consumption: 
VEC(1) ModelVEC(1) Model
AWM data base: PCR (real private consumption), PYR (real disposable 

income of households); logarithms: C, Yincome of households); logarithms: C, Y

1. Check whether C and Y are non-stationary: 

C ~ I(1), Y ~ I(1)

2. Johansen test for cointegration: given that C and Y have no trends 

and the cointegrating relationship has an intercept: 

r = 1 (p < 0.05) r = 1 (p < 0.05) 

the cointegrating relationship is 

C = 8.55 – 1.61Y C = 8.55 – 1.61Y 

with t(Y) = 18.2
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Income and Consumption: Income and Consumption: 
VEC(1) Model, cont’dVEC(1) Model, 
3. VEC(1) model (same specification as in 2.) with Z = (Y, C)’

∆Zt = - γ(β‘Zt-1 + δ) + Γ∆Zt-1 + εt∆Zt = - γ(β‘Zt-1 + δ) + Γ∆Zt-1 + εt

coint ∆∆∆∆Y-1 ∆∆∆∆C-1 adj.R2 AIC

γij 0.029 0.167 0.059 0.14 -7.42
∆Y

γij 0.029 0.167 0.059 0.14 -7.42

t(γij) 5.02 1.59 0.49

γ 0.047 0.226 -0.148 0.18 -7.59
∆C

γij 0.047 0.226 -0.148 0.18 -7.59

t(γij) 2.36 2.34 1.35

The model explains growth rates of PCR and PYR; AIC = -15.41 is 
smaller than that of the VAR(1)-Modell (AIC = -14.45)smaller than that of the VAR(1)-Modell (AIC = -14.45)
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Estimation of VEC ModelsEstimation of VEC Models

Estimation procedure consists of the following steps

1. Test of the k variables in Yt for stationarity: ADF test 1. Test of the k variables in Yt for stationarity: ADF test 

2. Determination of the number p of lags in the cointegration test (order 

of VAR): AIC or BIC

3. Specification of 

� deterministic trends of the variables in Yt

� intercept in the cointegrating relations

4. Determination of the number r of cointegrating relations: trace and/or 
max testmax test

5. Estimation of the coefficients β of the cointegrating relations and the 

adjustment α coefficients; normalization; assessment of the adjustment α coefficients; normalization; assessment of the 

cointegrating relations 

6. Estimation of the VEC model
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VEC Models in GRETLVEC Models in GRETL

Model > Time Series > VAR lag selection…

� Calculates information criteria like AIC and BIC from VARs of order 1 

to the chosen maximum order of the VARto the chosen maximum order of the VAR

Model > Time Series > Cointegration test > Johansen…

� Calculates eigenvalues, test statistics for the trace and max tests, � Calculates eigenvalues, test statistics for the trace and max tests, 

and estimates of the matrices α, β, and Π = αβ‘ 

Model > Time Series > VECMModel > Time Series > VECM

� Estimates the specified VEC model for a given cointegration rank: (1) 

cointegrating vectors and standard errors, (2) adjustment vectors, (3) cointegrating vectors and standard errors, (2) adjustment vectors, (3) 

coefficients and various criteria for each of the equations of the VEC 

model
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Your HomeworkYour Homework

1. Read section 9.6 of Verbeek’s book. Perform the steps 1 – 6 for 

estimating a VEC model for Verbeek’s dataset “money”. Is the choice estimating a VEC model for Verbeek’s dataset “money”. Is the choice 

p = 2 appropriate? Compare the VEC(2) models for r = 1 and 2. 

2. Derive the VEC form of the VAR(2) model 

Y = δ + Θ Y + Θ Y + εYt = δ + Θ1Yt-1 + Θ2Yt-2 + εt

assuming a k-vector Yt and appropriate orders of the other vectors 

and matrices.and matrices.
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