
risk that investors actually anticipated, from 

historical data. (There is an old saying that 

forecasting the future is even more difficult 

than forecasting the past.) In this chapter, 

we present the essential tools for estimating 

expected returns and risk from the historical 

record and consider the implications of this 

record for future investments. 

 We begin by discussing interest rates 

and investments in safe assets and examine 

the history of risk-free investments in the 

U.S over the last 80 years. Moving to risky 

assets, we begin with scenario analysis of 

risky investments and the data inputs nec-

essary to conduct it. With this in mind, we 

develop statistical tools needed to make 

inferences from historical time series of port-

folio returns. We present a global view of the 

history of returns over 100 years from stocks 

and bonds in various countries and analyze 

the historical record of five broad asset-class 

portfolios. We end the chapter with discus-

sions of implications of the historical record 

for future investments and a variety of risk 

measures commonly used in the industry.  

 LEARNING ABOUT RETURN 
AND RISK FROM THE HISTORICAL 

RECORD  PA
RT

 II  5  

C H A P T E R  F I V E

   CASUAL OBSERVATION AND    formal research 

both suggest that investment risk is as impor-

tant to investors as expected return. While 

we have theories about the relationship 

between risk and expected return that would 

prevail in rational capital markets, there is no 

theory about the levels of risk we should find 

in the marketplace. We can at best estimate 

the level of risk likely to confront investors 

by analyzing historical experience. 

 This situation is to be expected because 

prices of investment assets fluctuate in 

response to news about the fortunes of 

corporations, as well as to macroeconomic 

developments that affect interest rates. 

There is no theory about the frequency and 

importance of such events; hence we cannot 

determine a “natural” level of risk. 

 Compounding this difficulty is the fact that 

neither expected returns nor risk are directly 

observable. We observe only  realized  rates 

of return after the fact. Hence, to make fore-

casts about future expected returns and risk, 

we first must learn how to “forecast” their 

 past  values, that is, the expected returns and 
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  Interest rates and forecasts of their future values are among the most important inputs into 
an investment decision. For example, suppose you have $10,000 in a savings account. The 
bank pays you a variable interest rate tied to some short-term reference rate such as the 
30-day Treasury bill rate. You have the option of moving some or all of your money into a 
longer-term certificate of deposit that offers a fixed rate over the term of the deposit. 

 Your decision depends critically on your outlook for interest rates. If you think rates 
will f all, you will want to lock in the current higher rates by investing in a relatively long-
term CD. If you expect rates to rise, you will want to postpone committing any funds to 
long-term CDs. 

 Forecasting interest rates is one of the most notoriously difficult parts of applied macro-
economics. Nonetheless, we do have a good understanding of the fundamental factors that 
determine the level of interest rates:

   1. The supply of funds from savers, primarily households.  

  2. The demand for funds from businesses to be used to finance investments in plant, 
equipment, and inventories (real assets or capital formation).  

  3. The government’s net supply of or demand for funds as modified by actions of the 
Federal Reserve Bank.    

 Before we elaborate on these forces and resultant interest rates, we need to distinguish 
real from nominal interest rates.  

   Real and Nominal Rates of Interest 

 An interest rate is a promised rate of return denominated in some unit of account (dollars, 
yen, euros, or even purchasing power units) over some time period (a month, a year, 20 
years, or longer). Thus, when we say the interest rate is 5%, we must specify both the unit 
of account and the time period. 

 Assuming there is no default risk, we can refer to the promised rate of interest as a 
risk-free rate for that particular unit of account and time period. But if an interest rate is 
risk-free for one unit of account and time period, it will not be risk-free for other units or 
periods. For example, interest rates that are absolutely safe in dollar terms will be risky 
when evaluated in terms of purchasing power because of inflation uncertainty. 

 To illustrate, consider a 1-year dollar (nominal) risk-free interest rate.   Suppose exactly 
1 year ago you deposited $1,000 in a 1-year time deposit guaranteeing a rate of interest of 
10%. You are about to collect $1,100 in cash. What is the real return on your investment? 
That depends on what money can buy these days, relative to what you  could  buy a year 
ago. The consumer price index (CPI) measures purchasing power by averaging the prices 
of goods and services in the consumption basket of an average urban family of four. 

 Suppose the rate of inflation (the percent change in the CPI, denoted by  i ) for the last 
year amounted to  i   �  6%. This tells you that the purchasing power of money is reduced by 
6% a year. The value of each dollar depreciates by 6% a year in terms of the goods it can 
buy. Therefore, part of your interest earnings are offset by the reduction in the purchasing 
power of the dollars you will receive at the end of the year. With a 10% interest rate, after 
you net out the 6% reduction in the purchasing power of money, you are left with a net 
increase in purchasing power of about 4%. Thus we need to distinguish between a    nomi-
nal interest rate   —the growth rate of your money—and a    real interest rate   —the growth 

   5.1 DETERMINANTS OF THE LEVEL OF INTEREST RATES 
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rate of your purchasing power. If we call  R  the nominal rate,  r  the real rate, and  i  the infla-
tion rate, then we conclude

     r � R � i   (5.1)  

In words, the real rate of interest is the nominal rate reduced by the loss of purchasing 
power resulting from inflation. If inflation turns out higher than 6%, your  realized  real 
return will be lower than 4%; if inflation is lower, your real rate will be higher. 

 In fact, the exact relationship between the real and nominal interest rate is given by

     1 � r �   1 � R ______ 
1 � i

     (5.2)   

 This is because the growth factor of your purchasing power, 1  �   r,  equals the growth 
factor of your money, 1  �   R,  divided by the new price level, that is, 1  �   i  times its value in 
the previous period. The exact relationship can be rearranged to

     r �   R � i _____ 
1 � i

     (5.3)  

which shows that the approximation rule overstates the real rate by the factor 1  �   i.  

  EXAMPLE 5.1   Approximating the Real Rate 

 If  the nominal interest rate on a 1-year CD is 8%, and you expect inflation to be 5% over the 
coming year, then using the approximation formula, you expect the real rate of interest to be

 r   �  8%  �  5%  �  3%. Using the exact formula, the real rate is     r �   .08 � .05 ________ 
1 � .05

   � .0286,   or

2.86%. Therefore, the approximation rule overstates the expected real rate by only .14% (14 
basis points). The approximation rule is more exact for small inflation rates and is perfectly 
exact for continuously compounded rates. We discuss further details in the next section.  

 Before the decision to invest, you should realize that conventional certificates of deposit 
offer a guaranteed  nominal  rate of interest. Thus you can only infer the expected real rate 
on these investments by subtracting your expectation of the rate of inflation. 

 It is always possible to calculate the real rate after the fact. The inflation rate is pub-
lished by the Bureau of Labor Statistics (BLS). The future real rate, however, is unknown, 
and one has to rely on expectations. In other words, because future inflation is risky, the 
real rate of return is risky even when the nominal rate is risk-free.  

  The Equilibrium Real Rate of Interest 

 Three basic factors—supply, demand, and government actions—determine the  real  interest 
rate. The nominal interest rate, which is the rate we actually observe, is the real rate plus 
the expected rate of inflation. So a fourth factor affecting the interest rate is the expected 
rate of inflation. 

 Although there are many different interest rates economywide (as many as there are 
types of securities), these rates tend to move together, so economists frequently talk as if 
there were a single representative rate. We can use this abstraction to gain some insights 
into the real rate of interest if we consider the supply and demand curves for funds. 

  Figure 5.1  shows a downward-sloping demand curve and an upward-sloping supply 
curve. On the horizontal axis, we measure the quantity of funds, and on the vertical axis, 
we measure the real rate of interest. 
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 The supply curve slopes 
up from left to right because 
the higher the real interest 
rate, the greater the supply 
of household savings. The 
as  sumption is that at higher 
real interest rates house -
holds will choose to postpone 
some current consumption 
and set aside or invest more 
of their disposable income 
for future use.  1  

  The demand curve slopes 
down from left to right 
because the lower the real 
interest rate, the more busi-
nesses will want to invest in 
physical capital. Assuming 
that businesses rank projects 

by the expected real return on invested capital, firms will undertake more projects the 
lower the real interest rate on the funds needed to finance those projects.     

 Equilibrium is at the point of intersection of the supply and demand curves, point  E  in 
 Figure 5.1 . 

 The government and the central bank (the Federal Reserve) can shift these supply and 
demand curves either to the right or to the left through fiscal and monetary policies. For 
example, consider an increase in the government’s budget deficit. This increases the gov-
ernment’s borrowing demand and shifts the demand curve to the right, which causes the 
equilibrium real interest rate to rise to point  E  � . That is, a forecast that indicates higher than 
previously expected government borrowing increases expected future interest rates. The 
Fed can offset such a rise through an expansionary monetary policy, which will shift the 
supply curve to the right. 

 Thus, although the fundamental determinants of the real interest rate are the propen-
sity of households to save and the expected productivity (or we could say profitability) of 
investment in physical capital, the real rate can be affected as well by government fiscal 
and monetary policies.  

  The Equilibrium Nominal Rate of Interest 

 We’ve seen that the real rate of return on an asset is approximately equal to the nomi-
nal rate minus the inflation rate. Because investors should be concerned with their real 
returns—the increase in their purchasing power—we would expect that as the inflation 
rate increases, investors will demand higher nominal rates of return on their invest-
ments. This higher rate is necessary to maintain the expected real return offered by an 
investment. 

 Irving Fisher (1930) argued that the nominal rate ought to increase one-for-one with 
increases in the expected inflation rate. If we use the notation  E ( i ) to denote the current 

Interest Rate

Equilibrium
Real Rate

of Interest

Equilibrium Funds Lent

Funds

E

E'

Demand

Supply

F I G U R E  5.1 Determination of the equilibrium real rate of interest

1There is considerable disagreement among experts on the extent to which household saving does increase in 
response to an increase in the real interest rate.
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expectation of the inflation rate that will prevail over the coming period, then we can state 
the so-called Fisher equation formally as

     R � r � E(i)   (5.4)  

The equation implies that if real rates are reasonably stable, then increases in nomi-
nal rates ought to predict higher inflation rates. This relationship has been debated and 
empirically investigated. The results are mixed; although the data do not strongly sup-
port this relationship, nominal interest rates seem to predict inflation as well as alterna-
tive methods, in part because we are unable to forecast inflation well with any method. 

 One reason it is difficult to determine the empirical validity of the Fisher hypothesis 
that changes in nominal rates predict changes in future inflation rates is that the real 
rate also changes unpredictably over time. Nominal interest rates can be viewed as the 
sum of the required real rate on nominally risk-free assets, plus a “noisy” forecast of 
inflation. 

 In Part Four we discuss the relationship between short- and long-term interest rates. 
Longer rates incorporate forecasts for long-term inflation. For this reason alone, interest 
rates on bonds of different maturity may diverge. In addition, we will see that prices of 
longer-term bonds are more volatile than those of short-term bonds. This implies that 
expected returns on longer-term bonds may include a risk premium, so that the expected 
real rate offered by bonds of varying maturity also may vary. 

CONCEPT 
CHECK

1

a. Suppose the real interest rate is 3% per year and the expected inflation rate is 8%. What is 
the nominal interest rate?

b. Suppose the expected inflation rate rises to 10%, but the real rate is unchanged. What 
happens to the nominal interest rate?

   

  Taxes and the Real Rate of Interest 

 Tax liabilities are based on  nominal  income and the tax rate determined by the investor’s 
tax bracket. Congress recognized the resultant “bracket creep” (when nominal income 
grows due to inflation and pushes taxpayers into higher brackets) and mandated index-
linked tax brackets in the Tax Reform Act of 1986. 

 Index-linked tax brackets do not provide relief from the effect of inflation on the taxa-
tion of savings, however. Given a tax rate ( t ) and a nominal interest rate ( R ), the after-tax 
interest rate is  R (1  �   t ). The real after-tax rate is approximately the after-tax nominal rate 
minus the inflation rate:

     R(1 � t) � i � (r � i )(1 � t) � i � r(1 � t) � it   (5.5)   

 Thus the after-tax real rate of return falls as the inflation rate rises. Investors suffer 
an inflation penalty equal to the tax rate times the inflation rate. If, for example, you 
are in a 30% tax bracket and your investments yield 12%, while inflation runs at the 
rate of 8%, then your before-tax real rate is approximately 4%, and you  should,  in 
an inflation-protected tax system, net after taxes a real return of 4%(1  �  .3)  �  2.8%. 
But the tax code does not recognize that the first 8% of your return is no more than 
compensation for inflation—not real income—and hence your after-tax return is 
reduced by 8%  �  .3  �  2.4%, so that your after-tax real interest rate, at .4%, is almost 
wiped out.    



118 PART II Portfolio Theory and Practice

  Consider an investor who seeks a safe investment, for example, in U.S. Treasury securi-
ties.  2   Suppose we observe zero-coupon Treasury securities with several different maturi-
ties. Zero-coupon bonds, discussed more fully in Chapter 14, are bonds that are sold at a 
discount from par value and provide their entire return from the difference between the 
purchase price and the ultimate repayment of par value.  3   Given the price,  P ( T ), of a Trea-
sury bond with $100 par value and maturity of  T  years, we calculate the total risk-free 
return as the percentage increase in the value of the investment over the life of the bond.

   rf  (T) �   100 _____ 
P(T )

   � 1   (5.6)  

For  T   �  1,  Equation 5.6  provides the risk-free rate for an investment horizon of 1 year. 

  5.2  COMPARING RATES OF RETURN FOR DIFFERENT 
HOLDING PERIODS 

2Yields on Treasury bills and bonds of various maturities are widely available on the Web, for example at Yahoo! 
Finance, MSN Money, or directly from the Federal Reserve.
3The U.S. Treasury issues T-bills, which are pure discount (or zero-coupon) securities with maturities of up to 1 
year. However, financial institutions create zero-coupon Treasury bonds called Treasury strips with maturities 
up to 30 years by buying coupon-paying T-bonds, “stripping” off the coupon payments, and selling claims to the 
coupon payments and final payment of face value separately. See Chapter 14 for further details.

  EXAMPLE 5.2   Annualized Rates of Return 

 Suppose prices of zero-coupon Treasuries with $100 face value and various maturities are 
as follows. We find the total return of each security by using  Equation 5.6 :

Horizon, T Price, P(T)  [100/ P (T)] � 1
Risk-Free Return 
for Given Horizon

Half-year $97.36 100/97.36 � 1 �   .0271 rf (.5)   � 2.71%

1 year $95.52 100/95.52 � 1 �   .0469 rf (1)    � 4.69%

25 years $23.30 100/23.30 � 1 � 3.2918 rf (25) � 329.18%

   Not surprisingly, longer horizons in  Example 5.2  provide greater total returns. How 
should we compare the returns on investments with differing horizons? This requires that 
we re-express each  total  return as a  rate  of return for a common period. We typically 
express all investment returns as an    effective annual rate (EAR),    defined as the percent-
age increase in funds invested over a 1-year horizon. 

 For a 1-year investment, the EAR equals the total return,  r   f   (1), and the gross return, 
(1  �  EAR), is the terminal value of a $1 investment. For investments that last less 
than 1 year, we compound the per-period return for a full year. For example, for the 
6-month bill in  Example 5.2 , we compound the 2.71% half-year return for two semian-
nual periods to obtain a terminal value of 1  �  EAR  � (1.0271) 2   �  1.0549, implying that 
EAR  �  5.49%. 

 For investments longer than a year, the convention is to express the EAR as the annual 
rate that would compound to the same value as the actual investment. For example, the 
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investment in the 25-year bond in  Example 5.2  grows by its maturity date by a factor of 
4.2918 (i.e., 1  �  3.2918), so its EAR is

    (1 � EAR)25 � 4.2918

1 � EAR � 4.29181/25 � 1.0600  

In general, we can relate EAR to the total return,  r   f    ( T  ), over a holding period of length  T  
by using the following equation:    

 1 � EAR � [1 � rf  (T )]1/T   (5.7)  

We can illustrate with an example. 

  EXAMPLE 5.3   Equivalent Annual Return versus Total Return 

 For the 6-month Treasury in  Example 5.2 ,  T   �  ½, and 1/ T   �  2. Therefore,

    1 � EAR � (1.0271)2 � 1.0549 and EAR � 5.49%   

 For the 25-year Treasury in  Example 5.2 ,  T   �  25. Therefore,

    1 � EAR � 4.29181/25 � 1.060 and EAR � 6.0%    

  Annual Percentage Rates 

 Rates on short-term investments (by convention,  T  < 1 year) often are annualized using 
simple rather than compound interest. These are called  annual percentage rates,  or  APRs.  
For example, the APR corresponding to a monthly rate such as that charged on a credit 
card is calculated by multiplying the monthly rate by 12. More generally, if there are  n  
compounding periods in a year, and the per-period rate is  r   f   ( T ), then the APR  �   n   �   r   f  ( T ). 
Conversely, you can find the true per-period rate from the APR as  r   f  ( T )  �   T   �  APR. 

 Using this procedure, the APR of the 6-month bond in  Example 5.2  (which had 
a 6-month rate of 2.71%) is 2  �  2.71  �  5.42%. To generalize, note that for short-term 
investments of length  T,  there are  n   �  1/ T  compounding periods in a year. Therefore, the 
relationship among the compounding period, the EAR, and the APR is

     1 � EAR � [1 � rf (T)]n � [1 � rf (T)]1/T � [1 � T � APR]1/T   (5.8)   

 Equivalently,

    APR �   
(1 � EAR)T � 1

  ______________ 
T

     

  EXAMPLE 5.4   EAR versus APR 

 We use  Equation 5.8  to find the APR corresponding to an EAR of 5.8% with various com-
mon compounding periods, and, conversely, the values of EAR implied by an APR of 
5.8%. The results appear in  Table 5.1 .   

  Continuous Compounding 

 It is evident from  Table 5.1  (and  Equation 5.8 ) that the difference between APR and EAR 
grows with the frequency of compounding. This raises the question, How far will these 
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two rates diverge as the compounding frequency continues to grow? Put differently, what 
is the limit of [1  �   T   �  APR] 1/T ,   as  T  gets ever smaller? As  T  approaches zero, we effec-
tively approach  continuous compounding (CC),  and the relation of EAR to the annual 
percentage rate, denoted by  r   cc   for the continuously compounded case, is given by the 
exponential function

     1 � EAR � exp (rcc) � ercc   (5.9)  

where  e  is approximately 2.71828.                                 
 To find  r   cc   from the effective annual rate, we solve  Equation 5.9  for  r   cc   as follows:

    ln(1 � EAR) � rcc  

where ln (•) is the natural logarithm function, the inverse of exp (•). Both the exponen-
tial and logarithmic functions are available in Excel, and are called LN() and EXP(), 
respectively. 

Compounding 
Period T

EAR � [1 � rf (T)]1/T � 1 � .058 APR � rf (T )*(1/T ) � .058

 rf (T )  APR � [(1 � EAR)^T � 1]/T  rf (T )  EAR � (1 � APR*T )^(1/T ) �1

1 year 1.0000 .0580 .05800 .0580 .05800
6 months 0.5000 .0286 .05718 .0290 .05884
1 quarter 0.2500 .0142 .05678 .0145 .05927
1 month 0.0833 .0047 .05651 .0048 .05957
1 week 0.0192 .0011 .05641 .0011 .05968
1 day 0.0027 .0002 .05638 .0002 .05971
Continuous  rcc � ln(1 � EAR) � .05638  EAR � exp (rcc) � 1 � .05971

TA B L E  5.1

Annual percentage rate (APR) and effective annual rates (EAR). In the first 
set of columns, we hold the equivalent annual rate (EAR) fixed at 5.8%, 
and find APR for each holding period. In the second set of columns, we hold 
APR fixed and solve for EAR.

eXce l
Please visit us at 

www.mhhe.com/bkm

  EXAMPLE 5.5   Continuously Compounded Rates 

 The continuously compounded annual percentage rate,  r   cc,   that provides an EAR of 5.8% 
is 5.638% (see  Table 5.1 ). This is virtually the same as the APR for daily compound-
ing. But for less frequent compounding, for example, semiannually, the APR necessary to 
provide the same EAR is noticeably higher, 5.718%. With less frequent compounding, a 
higher APR is necessary to provide an equivalent effective return.  

 While continuous compounding may at first seem to be a mathematical nuisance, work-
ing with such rates in many cases can actually simplify calculations of expected return 
and risk. For example, given a continuously compounded rate, the total return for any 
period  T,   r   cc  ( T ), is simply exp( T   �   r   cc  ).  4   In other words, the total return scales up in direct 

4This follows from Equation 5.9. If 1 � EAR � ercc, then (1 � EAR)T � erccT.
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proportion to the time period,  T.  This is far simpler than working with the exponents 
that arise using discrete period compounding. As another example, look again at  Equa-
tion 5.1 . There, the relationship between the real rate,  r,  the nominal rate  R,  and the infla-
tion rate  i,   r  �  R   �   i,  was only an approximation, as demonstrated by  Equation 5.3 . But 
if we express all rates as continuously compounded, then  Equation 5.1  is exact,  5   that is, 
 r   cc  (real)  �   r   cc  (nominal)  �   i   cc.                          

CONCEPT 
CHECK

2

A bank offers you two alternative interest schedules for a savings account of $100,000 locked 
in for 3 years: (a) a monthly rate of 1%; (b) an annually, continuously compounded rate (rcc) of 
12%. Which alternative should you choose?

  In this chapter we will often work with a history that begins in 1926, and it is fair to ask 
why. The reason is simply that January 1, 1926, is the starting date of the most widely 
available accurate return database. 

  Table 5.2  summarizes the history of short-term interest rates in the U.S., the inflation 
rate, and the resultant real rate. You can find the entire post-1926 history of the annual rates 
of these series on the text’s Web site,   www.mhhe.com/bkm   (link to the student material 
for Chapter 5). The annual rates on T-bills are computed from rolling over twelve 1-month 
bills during each year. The real rate is computed from the annual T-bill rate and the percent 
change in the CPI according to  Equation 5.2 . 

  Table 5.2  shows the averages, standard deviations, and the first-order serial correlations 
for the full 80-year history (1926–2005) as well as for various subperiods. The first-order 
serial correlation measures the relationship between the interest rate in one year with the 
rate in the preceding year. If this correlation is positive, then a high rate tends to be fol-
lowed by another high rate, whereas if it is negative, a high rate tends to be followed by a 
low rate. 

 The discussion of equilibrium real rates of interest in Section 5.1 suggests that we should 
start with the series of real rates. The average real rate for the full 80-year period, .72%, is 
quite different from the average over the 40-year period 1966–2005, which is 1.25%. We 
see that the real rate has been steadily rising, reaching a level of 2.28% for the generation 
of 1981–2005. The standard deviation of the real rate over the whole period, 3.97%, was 
driven by much higher variability in the early years. The real rate was far more stable in the 
period of 1981–2005, with a standard deviation of only 2.35%. 

 We can attribute a good part of these trends to policies of the Federal Reserve Board. 
Since the early 1980s, the Fed has adopted a policy of maintaining a low rate of inflation 
and a stable real rate. Some believe that the higher level of real rates in recent years may 
also be attributable to increased productivity of capital, particularly investments in infor-
mation technology when applied to a better educated labor force. 

  5.3 BILLS AND INFLATION, 1926–2005 
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 In the same vein, we 
observe that average rates of 
inflation in the years 1966 
through 2005 were higher 
than in the early twentieth 
century because of deflation 
in the early period. In line 
with modern Fed policies, 
the standard deviation of 
the rate of inflation moder-
ated significantly to a level 
of 1.62% from 1981 through 
2005. Of course, no one can 
rule out more extreme tem-
porary fluctuations as a result 
of possible severe shocks to 
the economy. 

 We have seen that fluctua-
tions in short-term interest 
rates are determined by vari-
ation in real interest rates 
and the expected short-term 
rate of inflation. In recent 
years, for which there has 
been less variability in the 
real rate, inflation has been 
the driving force. This is 
clear in  Figure 5.2 , where 
we see that short-term inter-
est rates have tracked infla-
tion quite closely since the 
1950s. Indeed, the correla-
tion between the T-bill rate 
and the inflation rate is .41 
for the full 80-year history, 
.69 for the later 40 years, 
and 0.72 for the most recent 
generation, 1981–2005.   

  Figure 5.3  shows the 
progression of the nominal and real value of $1 invested in T-bills at the beginning of 1926, 
accumulated to 2005. The progression of the value of a $1 investment is called a  wealth 
index.  The wealth index in a current year is obtained by compounding the portfolio value 
from the end of the previous year by 1  �   r,  the gross rate of return in the current year. 
Deviations of the curve of the nominal wealth index in  Figure 5.3  from a smooth exponen-
tial line are due to variation over time in the rate of return. The lines in  Figure 5.3 , which 
grow quite smoothly, clearly demonstrate that short-term interest rate risk (real as well as 
nominal) is small even for long-term horizons. It certainly is less risky by an order of mag-
nitude than investments in stocks, as we will soon see.       

 One important lesson from this history is the effect of inflation when compounded over 
long periods. The average inflation rate was 3.02% between 1926 and 2005, and 4.29% 

F I G U R E  5.2 Interest and inflation rates, 1926–2005
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between 1966 and 2005. These rates may not seem impressive, but are sufficient to reduce 
the terminal value of $1 invested in 1966 from a nominal value of $10.08 in 2005 to a real 
(constant purchasing power) value of only $1.63.   

   Holding-Period Returns 

 You are considering investing in a stock-index fund. The fund currently sells for $100 per 
share. With an investment horizon of 1 year, the realized rate of return on your investment 
will depend on ( a ) the price per share at year’s end and ( b ) the cash dividends you will col-
lect over the year. 

 Suppose the price per share at year’s end is $110 and cash dividends over the year 
amount to $4. The realized return, called the  holding-period return,  HPR (in this case, the 
holding period is 1 year), is defined as

     HPR �   
Ending price of a share � Beginning price � Cash dividend

     _________________________________________________   
Beginning price

     (5.10)   

 In our case we have

    HPR �   $110 � $100 � $4  ________________ 
$100

   � .14, or 14%   

 This definition of the HPR assumes the dividend is paid at the end of the holding period. 
To the extent that dividends are received earlier, the HPR ignores reinvestment income 
between the receipt of the payment and the end of the holding period. The percent return 
from dividends is called the    dividend yield,    and so the dividend yield plus the capital gains 
yield equals the HPR.  

  Expected Return and Standard Deviation 

 There is considerable uncertainty about the price of a share plus dividend income 1 year 
from now, however, so you cannot be sure about your eventual HPR. We can quantify our 
beliefs about the state of the economy and the stock market in terms of three possible sce-
narios with probabilities as presented in columns A through E of  Spreadsheet 5.1 . 

 How can we evaluate this probability distribution? Throughout this book we will char-
acterize probability distributions of rates of return in terms of their expected or mean return, 
 E ( r ), and their standard deviation,  � . The expected rate of return is a probability-weighted 
average of the rates of return in each scenario. Calling  p ( s ) the probability of each scenario 
and  r ( s ) the HPR in each scenario, where scenarios are labeled or “indexed” by  s,  we may 
write the expected return as

   
E r p s r s

s
( ) � ( ) ( )∑

 
  (5.11)

  

Applying this formula to the data in  Spreadsheet 5.1 , we find that the expected rate of 
return on the index fund is

    E(r) � (0.30 � 34%) � (.5 � 14%) � [0.20 � (�16%)] � 14%  

 Spreadsheet 5.1  shows that this sum can be evaluated easily in Excel, using the SUM-
PRODUCT function, which first calculates the products of a series of number pairs, and 

  5.4 RISK AND RISK PREMIUMS 
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then sums the products. Here, the number pair is the probability of each scenario and the 
rate of return. 

 The standard deviation of the rate of return ( � ) is a measure of risk. It is defined as the 
square root of the variance, which in turn is the expected value of the squared deviations 
from the expected return. The higher the volatility in outcomes, the higher will be the aver-
age value of these squared deviations. Therefore, variance and standard deviation measure 
the uncertainty of outcomes. Symbolically,

 
� � �

2 p s r s E r
s

( ) [ ( ) ( )]2∑
   

  (5.12)       

 Therefore, in our example

    �2 � 0.3(34 � 14)2 � .5(14 � 14)2 � 0.2(�16 � 14)2 � 300,  

and

� � �300 17.32%     

 Clearly, what would trouble potential investors in the index fund is the downside risk of 
a  � 16% rate of return, not the upside potential of a 34% rate of return. The standard devia-
tion of the rate of return does not distinguish between these two; it treats both simply as 
deviations from the mean. As long as the probability distribution is more or less symmetric 
about the mean,  �  is an adequate measure of risk. In the special case where we can assume 
that the probability distribution is normal—represented by the well-known bell-shaped 
curve— E ( r ) and  �  are perfectly adequate to characterize the distribution.  

  Excess Returns and Risk Premiums 

 How much, if anything, should you invest in the index fund? First, you must ask how much 
of an expected reward is offered for the risk involved in investing money in stocks. 

 We measure the reward as the difference between the  expected  HPR on the index stock 
fund and the    risk-free rate,    that is, the rate you can earn by leaving money in risk-free 
assets such as T-bills, money market funds, or the bank. We call this difference the    risk 
premium    on common stocks. If the risk-free rate in the example is 6% per year, and the 

A B C D E F G H

Rates of return expressed as decimals
Purchase Price = $100

State of the
Economy Probability

0.28Boom 4.50 0.34
0.08

0.08

Normal growth 4.00 0.14

0.14
−0.22Recession

0.3
0.5
0.2 3.50 −0.16

Standard deviation of HPR

Standard deviation of excess return
Risk premium

Expected value (mean)

Price
Year-end

129.50
110.00
80.50

Cash
Dividends

T-bill Rate = 0.06

HPR

Squared
Deviations
from Mean

0.040
0.000
0.090

0.1732

0.040
0.000
0.090

0.1732

Excess
Returns

Squared
Deviations
from Mean

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

SUMPRODUCT(B9:B11, E9:E11) =
SUMPRODUCT(B9:B11, F9:F11)^.5 =

SUMPRODUCT(B9:B11, H9:H11)^0.5 =
SUMPRODUCT(B9:B11, G9:G11) =

S P R E A D S H E E T  5 . 1

Distribution of HPR on the stock-index fund
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expected index fund return is 14%, then the risk premium on stocks is 8% per year. The 
difference in any particular period between the  actual  rate of return on a risky asset and the 
risk-free rate is called    excess return.    Therefore, the risk premium is the expected value of 
the excess return, and the standard deviation of the excess return is an appropriate measure 
of its risk. (See  Spreadsheet 5.1  for these calculations.) 

 The degree to which investors are willing to commit funds to stocks depends on    risk 
aversion.    Financial analysts generally assume investors are risk averse in the sense that, 
if the risk premium were zero, people would not be willing to invest any money in stocks. 
In theory, then, there must always be a positive risk premium on stocks in order to induce 
risk-averse investors to hold the existing supply of stocks instead of placing all their money 
in risk-free assets. 

 Although this sample scenario analysis illustrates the concepts behind the quantifica-
tion of risk and return, you may still wonder how to get a more realistic estimate of  E ( r ) 
and  �  for common stocks and other types of securities. Here, history has insights to offer. 
Analysis of the historical record of portfolio returns, however, makes use of a variety of 
important statistical tools and concepts, and so we first turn to a preparatory discussion.        

CONCEPT 
CHECK

3

You invest $27,000 in a corporate bond selling for $900 per $1,000 par value. Over the coming 
year, the bond will pay interest of $75 per $1,000 of par value. The price of the bond at year’s 
end will depend on the level of interest rates that will prevail at that time. You construct the 
following scenario analysis:

Your alternative investment is a T-bill that yields a sure rate of return of 5%. Calculate the HPR 
for each scenario, the expected rate of return, and the risk premium on your investment. What 
is the expected end-of-year dollar value of your investment?

Interest Rates Probability Year-End Bond Price

High .2 $850

Unchanged .5 915

Low .3 985

   Time Series versus Scenario Analysis 

 In a forward-looking scenario analysis we determine a set of relevant scenarios and associ-
ated investment outcomes (rates of return), assign probabilities to each, and conclude by 
computing the risk premium (the reward) and standard deviation (the risk) of the proposed 
investment. In contrast, asset and portfolio return histories come in the form of time series 
of past realized returns that do not explicitly provide investors’ original assessments of 
the probabilities of those observed returns; we observe only dates and associated HPRs. 
We must infer from this limited data the probability distributions from which these returns 
might have been drawn or, at least, some of its characteristics such as expected return and 
standard deviation.  

  Expected Returns and the Arithmetic Average 

 When we use historical data, we treat each observation as an equally likely “scenario.” So 
if there are  n  observations, we substitute equal probabilities of magnitude 1/ n  for each  p ( s ) 

  5.5 TIME SERIES ANALYSIS OF PAST RATES OF RETURN 
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in  Equation 5.11 . The expected return,  E ( r ), is then estimated by the arithmetic average of 
the sample rates of return:

    

E r p s r s
n

r s
s

n

s

n
( )

arithmetic a

� �

�

��
( ) ( ) ( )

1
11 ∑∑

vverageof ratesof return  

  (5.13)
   

  EXAMPLE 5.6   Arithmetic Average and Expected Return 

  Spreadsheet 5.2  presents a (short) time series of annual holding-period returns for the S&P 
500 index over the period 2001–2005. We treat each HPR of the  n   �  5 observations in 
the time series as an equally likely annual outcome during the sample years and assign it 
an equal probability of 1/5, or .2. Column B in  Spreadsheet 5.2  therefore uses .2 as prob-
abilities, and Column C shows the annual HPRs. Applying  Equation 5.13  (using Excel’s 
SUMPRODUCT function) to the time series in  Spreadsheet 5.2  demonstrates that adding 
up the products of probability times HPR amounts to taking the arithmetic average of the 
HPRs (compare cells C10 and C11).                

  Example 5.6  illustrates the logic for the wide use of the arithmetic average in invest-
ments. If the time series of historical returns fairly represents the true underlying probabil-
ity distribution, then the arithmetic average return from a historical period provides a good 
forecast of the investment’s expected HPR.  

  The Geometric (Time-Weighted) Average Return 

 We saw that the arithmetic average provides an unbiased estimate of the  expected  rate of 
return. But what does the time series tell us about the  actual  performance of the portfolio 
over the full sample period? Column F in  Spreadsheet 5.2  shows the wealth index from 
investing $1 in an S&P 500 index fund at the beginning of 2001. The value of the wealth 
index at the end of 2005, $1.0275, is the terminal value of the $1 investment, which implies 
a  5 - year  holding-period return (HPR) of 2.75%. 
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A B C D E F

Period
Implicitly Assumed
Probability = 1/5

Squared
Deviation

Gross HPR =
1 + HPR

Wealth
Index*

2001 .2 −0.1189 0.0196
0.0586
0.0707
0.0077

0.1774

0.0008

0.1983

0.8811 0.8811
0.6864
0.8833
0.9794
1.0275

Check:

1.0054^5=

0.7790
1.2869
1.1088
1.0491

0.0054 1.0275

−0.2210
0.2869
0.1088
0.0491
0.0210

0.0210

HPR (decimal)

.2

.2

.2

.2

2002
2003
2004
2005

Arithmetic average

Expected HPR SUMPRODUCT(B5:B9, C5:C9) =

SUMPRODUCT(B5:B9, D5:D9)^.5 =

STDEV(C5:C9) =

Geometric average return

*The value of $1 invested at the beginning of the sample period (1/1/2001).

GEOMEAN(E5:E9) − 1 =

Standard deviation

AVERAGE(C5:C9) =

S P R E A D S H E E T  5 . 2

Time series of HPR for the S&P 500
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 An intuitive measure of performance over the sample period is the (fixed) annual HPR 
that would compound over the period to the same terminal value as obtained from the 
sequence of actual returns in the time series. Denote this rate by  g,  so that

     Terminal value � (1 � r1) � (1 � r2) � � � � � (1 � r5) � 1.0275

 (1 � g)n � Terminal value � 1.0275     (cell F9 in Spreadsheet 5.2) (5.14)
 g � Terminal value1/n � 1 � 1.02751/5 � 1 � .0054 � .54%     (cell E14)    

where 1  �   g  is the geometric average of the gross returns (1  �   r ) from the time series 
(which can be computed with Excel’s GEOMEAN function) and  g  is the annual HPR that 
would replicate the final value of our investment. 

 Practitioners of investments also call  g  the  time-weighted  (as opposed to dollar-weighted) 
average return, to emphasize that each past return receives an equal weight in the process 
of averaging. This distinction is important because investment managers often experience 
significant changes in funds under management as investors purchase or redeem shares. 
Rates of return obtained during periods when the fund is large produce larger dollar profits 
than rates obtained when the fund is small. We discuss this distinction further in the chap-
ter on performance evaluation. 

  EXAMPLE 5.7   Geometric versus Arithmetic Average 

 The geometric average in  Example 5.6  (.54%) is substantially less than the arithmetic 
average (2.10%). This discrepancy sometimes is a source of confusion. It arises from the 
asymmetric effect of positive and negative rates of returns on the terminal value of the 
portfolio. 

 Observe the returns in years 2002 (−.2210) and 2003 (.2869). The arithmetic average 
return over the 2 years is (−.2210  �  .2869)/2  �  .03295 (3.295%). However, if you had 
invested $100 at the beginning of 2002, you would have only $77.90 at the end of the year. 
In order to simply break even, you would then have needed to earn $21.10 in 2003, which 
would amount to a whopping return of 27.09% (21.10/77.90). Why is such a high rate 
necessary to break even, rather than the 22.10% you lost in 2002? Because your base for 
2003 was much smaller than $100; the lower base means that it takes a greater subsequent 
percentage gain to just break even. Even a rate as high as the 28.69% realized in 2003 
yields a portfolio value in 2003 of $77.90  �  1.2869  �  $100.25, barely greater than $100. 
This implies a 2-year annually compounded rate (the geometric average) of only .12%, 
significantly less than the arithmetic average of 3.295%.  

 The larger the swings in rates of return, the greater the discrepancy between the arith-
metic and geometric averages, that is, between the compound rate earned over the sample 
period and the average of the annual returns. If returns come from a normal distribution, 
the difference exactly equals half the variance of the distribution, that is,

     Geometric average � Arithmetic average � 1/2 �2   (5.15)  

(A warning: to use  Equation 5.15 , you must express returns as decimals, not percentages.)  

  Variance and Standard Deviation 

 When thinking about risk, we are interested in the likelihood of deviations from the  expected  
return. In practice, we usually cannot directly observe expectations, so we estimate the 
variance by averaging squared deviations from our estimate of the expected return, the 
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arithmetic average,  
_
 r .       Adapting  Equation 5.12  for historic data, we again use equal proba-

bilities for each observation, and use the sample average in place of the unobservable  E ( r ).

Variance expectedvalue of squared deviatio� nns

� � �
2 2p s r s E r( ) [ ( ) ( )]∑      

 Using historical data with  n  observations, we  estimate  variance as

   
� � �

�

2 2

1

1
n

r s r
s

n

[ ( ) ]∑    (5.16)
   

  EXAMPLE 5.8   Variance and Standard Deviation 

 Take another look at  Spreadsheet 5.2 . Column D shows the square deviations from the 
arithmetic average, and cell D12 gives the standard deviation as the square root of the sum 
of products of the (equal) probabilities times the squared deviations (.1774).  

 The variance estimate from  Equation 5.16  is downward biased, however. The reason is 
that we have taken deviations from the sample arithmetic average,   

_
 r        , instead of the unknown, 

true expected value,  E ( r ), and so have introduced a bit of estimation error. This is sometimes 
called a degrees of freedom bias. We can eliminate the bias by multiplying the arithmetic 
average of squared deviations by the factor  n /( n   �  1). The variance and standard deviation 
then become
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  (5.17)

  

Cell D13 shows that the unbiased estimate of the standard deviation is .1983, which is a bit 
higher than the .1774 value obtained in cell D12.  

  The Reward-to-Volatility (Sharpe) Ratio 

 Finally, it is worth noting that investors presumably are interested in the expected  excess  
return they can earn over the T-bill rate by replacing T-bills with a risky portfolio as well 
as the risk they would thereby incur. While the T-bill rate is not fixed each period, we still 
know with certainty what rate we will earn if we purchase a bill and hold it to maturity. 
Other investments typically entail accepting some risk in return for the prospect of earning 
more than the safe T-bill rate. Investors price risky assets so that the risk premium will be 
commensurate with the risk of that expected  excess  return, and hence it’s best to measure 
risk by the standard deviation of excess, not total, returns. 

 The importance of the trade-off between reward (the risk premium) and risk (as mea-
sured by standard deviation or SD) suggests that we measure the attraction of an invest-
ment portfolio by the ratio of its risk premium to the SD of its excess returns.

     Sharpe ratio (for portfolios) �   
Risk premium

  ________________  
SD of excess return

     (5.18)  

This reward-to-volatility measure (first proposed by William Sharpe and hence called the 
 Sharpe ratio ) is widely used to evaluate the performance of investment managers. 
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  EXAMPLE 5.9   Sharpe Ratio 

 Take another look at  Spreadsheet 5.1 . The scenario analysis for the proposed investment 
in the stock-index fund resulted in a risk premium of 8%, and standard deviation of excess 
returns of 17.32%. This implies a Sharpe ratio of .46, a value that is pretty much in line 
with past performance of stock-index funds. We elaborate on this important measure in 
future chapters and show that while it is an adequate measure of the risk–return trade-
off for diversified portfolios (the subject of this chapter), it is inadequate when applied 
to individual assets such as shares of stock that may be held as part of larger diversified 
portfolios.               

CONCEPT 
CHECK

4

Using the annual returns for years 2003–2005 in Spreadsheet 5.2,

a. Compute the arithmetic average return.

b. Compute the geometric average return.

c. Compute the standard deviation of returns.

d. Compute the Sharpe ratio assuming the risk-free rate was 6% per year.

  The bell-shaped    normal distribution    appears naturally in many applications. For example, 
heights and weights of the population are well described by the normal distribution. In fact, 
many variables that are the end result of multiple random influences will exhibit a normal 
distribution. By the same logic, if return expectations implicit in asset prices are rational, 
actual rates of return realized should be normally distributed around these expectations. 

 To see why the normal curve is “normal,” consider a newspaper stand that turns a profit 
of $100 on a good day and breaks even on a bad day, with equal probabilities of .5. Thus, 
the mean daily profit is $50 dollars. We can build a tree that compiles all the possible out-
comes at the end of any period. Here is an    event tree    showing outcomes after 2 days: 

  5.6 THE NORMAL DISTRIBUTION 

Two good days, profit = $200

Two bad days, profit = 0

One good and one bad day, profit = $100
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     Notice that 2 days can produce three different outcomes and, in general,  n  days can pro-
duce  n   �  1 possible outcomes. The most likely 2-day outcome is “one good and one bad 
day,” which can happen in two ways (first a good day, or first a bad day). The probability of 
this outcome is .5. Less likely are the two extreme outcomes (both good days or both bad 
days) with probability .25 each. 

 What is the distribution of profits at the end of many business days? For example, after 
200 days, there are 201 possible outcomes and, again, the midrange outcomes are the more 
likely because there are more sequences that lead to them. For example, while there is only 
one sequence that results in 200 consecutive bad days, there are an enormous number of 
sequences that result in 100 good days and 100 bad days. The probability distribution will 
eventually take on the appearance of the bell-shaped normal distribution, with midrange 
outcomes most likely, and extreme outcomes least likely.  6               

  Figure 5.4  is a graph of the normal curve with mean of 10% and standard deviation of 
20%. The graph shows the theoretical probability of rates of return within various ranges 
given these parameters. A smaller SD means that possible outcomes cluster more tightly 
around the mean, while a higher SD implies more diffuse distributions. The likelihood of 
realizing any particular outcome when sampling from a normal distribution is fully deter-
mined by the number of standard deviations that separate that outcome from the mean. 
Put differently, the normal distribution is completely characterized by two parameters, the 
mean and SD. 

 Investment management is far more tractable when rates of return can be well approxi-
mated by the normal distribution. First, the normal distribution is symmetric, that is, the 
probability of any positive deviation above the mean is equal to that of a negative devia-
tion of the same magnitude. Absent symmetry, measuring risk as the standard deviation 
of returns is inadequate. Second, the normal distribution belongs to a special family of 

6As a historical footnote, early descriptions of the normal distribution in the eighteenth century were based on the 
outcomes of a “binomial tree” like the one we have drawn for the newspaper stand, extended out to many periods. 
This representation is used in practice to price many option contracts, as we will see in Chapter 21. For a nice 
demonstration of how the binomial distribution quickly approximates the normal, go to www.jcu.edu/math/isep/
Quincunx/Quincunx.html.

F I G U R E  5.4 The normal distribution
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distributions characterized as “stable,” because of the following property: When assets with 
normally distributed returns are mixed to construct a portfolio, the portfolio return also is 
normally distributed. Third, scenario analysis is greatly simplified when only two param-
eters (mean and SD) need to be estimated to obtain the probabilities of future scenarios. 

 How closely must actual return distributions fit the normal curve to justify its use in 
investment management? Clearly, the normal curve cannot be a perfect description of 
reality. For example, actual returns cannot be less than  � 100%, which the normal distri-
bution would not rule out. But this does not mean that the normal curve cannot still be 
useful. A similar issue arises in many other contexts. For example, shortly after birth, 
a baby’s weight is typically evaluated by comparing it to a normal curve of newborn 
weights. This may seem surprising, because a normal distribution admits values from 
minus to plus infinity, and surely no baby is born with a negative weight. The normal 
distribution still is useful in this application because the SD of the weight is small rela-
tive to its mean, and the likelihood of a negative weight would be too trivial to matter.  7   
In a similar spirit, we must identify criteria to determine the adequacy of the normality 
assumption for rates of return.         

7In fact, the standard deviation is 511 grams while the mean is 3,958 grams. A negative weight would therefore 
be 7.74 standard deviations below the mean, and according to the normal distribution would have probability of 
only 4.97 � 10�15. The issue of negative birth weight clearly isn’t a practical concern.

  To assess the adequacy of the assumption of normality we focus on deviations from nor-
mality that would invalidate the use of standard deviation as an adequate measure of risk. 
Our first criterion is symmetry. A measure of asymmetry called    skew    uses the ratio of the 

    5.7 DEVIATIONS FROM NORMALITY 

EXAMPLE 5.10 Normal Distribution Function in Excel

Suppose the monthly rate of return on the S&P 500 is approximately normally distrib-
uted with a mean of 1% and standard deviation of 6%. What is the probability that the 
return on the index in any month will be negative? We can use Excel’s built-in func-
tions to quickly answer this question. The probability of observing an outcome less than 
some cutoff according to the normal distribution function is given as NORMDIST(cutoff, 
mean, standard deviation, TRUE). In this case, we want to know the probability of an out-
come below zero, when the mean is 1% and the standard deviation is 6%, so we compute 
NORMDIST(0, 1, 6, TRUE) � .4338. We could also use Excel’s built-in standard normal 
function and ask for the probability of an outcome 1/6 of a standard deviation below the 
mean. This would be the same: NORMSDIST(�1/6) � .4338.

CONCEPT 
CHECK

5

What is the probability that the return on the index in Example 5.10 will be below �15%?
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average  cubed  deviations from the mean, called 
the third moment, to the cubed standard devia-
tion to measure any asymmetry or “skewness” 
of a distribution.

Skew �   
E[r(s) � E(r)]3

  _____________ 
�3

     (5.19)  

Cubing deviations maintains their sign (for 
example, the cube of a negative number is nega-
tive). Thus, if the distribution is “skewed to the 
right,” as is the dark curve in  Figure 5.5A , the 
extreme positive values, when cubed, will domi-
nate the third moment, resulting in a positive 
measure of skew. If the distribution is “skewed 
to the left,” the cubed extreme negative values 
will dominate, and the skew will be negative. 

 When the distribution is positively skewed 
(the skew is greater than zero), the standard 
deviation overestimates risk, because extreme 
positive deviations from expectation (which are 
not a source of concern to the investor) nevertheless increase the estimate of volatility. 
Conversely, and more importantly, when the distribution is negatively skewed, the SD will 
underestimate risk.     

 Another potentially important deviation from normality concerns the likelihood of 
extreme values on either side of the mean at the expense of a smaller fraction of moderate 
deviations. Graphically speaking, when the tails of a 
distribution are “fat,” there is more probability mass 
in the tails of the distribution than predicted by the 
normal distribution, at the expense of “slender shoul-
ders,” that is, less probability mass near the center 
of the distribution.  Figure 5.5B  superimposes a “fat-
tailed” distribution on a normal with the same mean 
and SD. Although symmetry is still preserved, the SD 
will underestimate the likelihood of extreme events: 
large losses as well as large gains. 

  Kurtosis    is a measure of the degree of fat tails. In 
this case, we use the expectation of deviations from 
the mean raised to the  fourth  power and standardize 
by dividing by the fourth power of the SD, that is,

    Kurtosis �   
E[r(s) � E(r)]4

  _____________ 
�4   �3                 (5.20)  

We subtract 3 from the ratio in  Equation 5.20 , because 
the ratio for a normal distribution would be 3. Thus, 
the kurtosis of a normal distribution is defined as zero, 
and any kurtosis above zero is a sign 
of fatter tails than would be observed 
in a normal distribution. The kurto-
sis of the distribution in  Figure 5.5B , 
which has visible fat tails, is .36.           

CONCEPT 
CHECK

6

Estimate the skew and kurtosis of the five rates in 
Spreadsheet 5.2.
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  We took a long road to reach this section, but now we are in a position to derive useful 
insights from the historical record. We examine the time series of five broadly diversified 
risky portfolios. The World portfolio of large stocks includes the market-index portfolios 
of large stocks in 40 countries, weighted by the market capitalization (total market value) 
of the country indexes. The rates of return on this (and the World bond) portfolio are based 
on  dollar  wealth indexes, that is, they include gains/losses from changes in the value of 
the foreign currencies relative to the U.S. dollar. Thus, the picture we present is from the 
standpoint of a U.S. investor. 

 U.S. large stocks make up a significant part, approximately 40%, of the World portfo-
lio of large stocks. Along with the World large equities, we show results for a portfolio 
of large U.S. stocks, specifically, the S&P 500 index. The riskier portfolio composed of 
smaller U.S. stocks shows up next. Finally, we present statistics for two long-term bond 
portfolios. “World bonds” averages the return on long-term government bond indexes of 
16 countries, weighted by the GDP of these countries. Here, too, U.S. Treasury bonds 
make up a significant, although somewhat smaller, fraction of the portfolio returns.  

   Average Returns and Standard Deviations 

  Table 5.3  compiles the average rates of return and their standard deviations over gen-
erational periods of 25 years, as well as summaries for the overall period of 80 years 
and the recent 40 years since 1966.  Figure 5.6  presents frequency distributions of those 
returns. As we have seen, averages and standard deviations of raw annual returns should 
be interpreted with caution. First, standard deviations of total returns are affected by 
variation in the risk-free rate and thus do not measure the true source of risk, namely, 
the uncertainty surrounding  excess  returns. Second, annual rates that compound over a 
whole year exhibit meaningful amounts of skewness, and estimates of kurtosis also may 
be misleading. 

 Nevertheless, these simple statistics still reveal much about the nature of returns for 
these asset classes. For example, the asset classes with higher volatility (standard devia-
tion) have provided higher average returns, supporting the idea that investors demand a 
risk premium to bear risk. Observe, for example, the consistently larger average return 
as well as standard deviations of small compared with large stocks, or stock compared to 
bond portfolios. In fact, for every generation, the average returns on the stock portfolios 
were higher than the T-bill rate. 

 Another feature (also observed for T-bill and inflation rates) is that the nature of returns 
around the world and in the U.S. seems to have changed since the 1960s. Standard devia-
tions of stock portfolios have fallen, particularly for small stocks, but have remained about 
the same for bonds.          

  Other Statistics of the Risky Portfolios 

  Table 5.4  summarizes the essential statistics of the annual  excess  returns of the five risky 
portfolios. The statistics from which we can make inferences about the nature of the return 
distributions—skew, kurtosis, and serial correlation—are computed from the excess con-
tinuously compounded rates, that is, the difference between the continuously compounded 
rates on the risky portfolios and the continuously compounded T-bill rate.  

  5.8  THE HISTORICAL RECORD OF RETURNS ON EQUITIES 
AND LONG-TERM BONDS 
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  Sharpe Ratios 

 The reward-to-volatility (Sharpe) ratios of the five risky portfolios are of the same order of 
magnitude. The Sharpe ratios of the more recent 40 years, 1966–2005, are somewhat lower 
and generally more uniform across portfolios, in the range of .30 to .34. Notice, however, 
that the portfolio of U.S. long-term T-bonds has a significantly lower Sharpe measure (.21) 
than the other four, possibly for a good reason. Although the year-to-year rate of return on 
these bonds will vary, these bonds may serve as “the” risk-free choice for investors with 
long-term horizons. Consider a pension fund that must provide a known future cash flow to 
pay beneficiaries. The only risk-free vehicle to accomplish this objective would be to invest 
in a portfolio of U.S. T-bonds providing cash flows that match the pension fund’s obliga-
tions. Hence, investors with a long horizon may not demand a risk premium commensurate 
with the risk as measured by the standard deviation of short-term returns.  

  Serial Correlation 

 In well-functioning capital markets, we would expect excess returns from successive years 
to be uncorrelated, that is, the serial correlation of excess returns should be nearly zero. 
Suppose, for example, that the serial correlation of the annual rate of return on a stock 

F I G U R E  5.6 Frequency distributions of rates of return for 1926–2005
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index were negative and that the index fell last year. Investors therefore could predict that 
stock prices are more likely than usual to rise in the coming year. But armed with this 
insight, they would  immediately  buy shares and bid up stock prices, thereby eliminating 
the prospect of an above-normal return in the coming year. We elaborate on this mecha-
nism in the chapter on market efficiency. 

 Such a consideration does not apply to the T-bill rate, whose return is known in advance. 
The positive serial correlation of T-bill rates (.83 for the last 40 years) indicates that the 
short-term rate follows periods in which it predictably tends to rise or fall. However, this 
predictability in the baseline risk-free rate is not a source of abnormal profits (i.e., exces-
sive profits relative to risk borne). This is a reason why the serial correlation of the  total  
return on risky assets will be “contaminated” by that of the risk-free rate, and why we 
instead prefer to measure serial correlation from excess rates. Indeed, we find that the 
serial correlation is practically zero for four of the five portfolios. The serial correlation 
for World bond portfolio returns is somewhat high, but the fact that it was negative for the 
most recent years 1981–2005 suggests it is not economically significant.  

  Skewness and Kurtosis 

 Skewness and kurtosis are computed from the continuously compounded rate. Therefore, 
if the true underlying distribution of continuously compounded returns is normal, both 
should be zero. In fact, the skews of the large stock portfolios are significantly negative, 
 � .62 for the World and  � .70 to  � .80 for the U.S. This negative skew may result from 
“lumpiness” of bad news (compared with good news) that produces occasional but large 
negative “jumps” in prices. It appears that the much larger standard deviation of the small 
stock portfolio reduces the relative impact of such negative jumps, and so the negative 
skew of the distribution is less pronounced (in the range of  � .22 to  � .30). Returns on the 
World and U.S. government bond portfolios are slightly positively skewed.     

 Negative skews imply that the standard deviation underestimates the actual level of 
risk. Take another look at  Figure 5.5A ; it shows two distributions with identical annual 
means (6%) and standard deviations (17%), similar to those of the excess returns of U.S. 
large stocks. But the skews of  � .75 and .75 suggest a significant difference in risk, as is 
evident from the magnitude of possible losses. The probability of an annual loss greater 
than 40% is significantly higher for the negatively skewed distribution than for the normal 
distribution with the same mean and standard deviation. 

 Concern expressed in the literature about the presence of fat tails in stock return distri-
butions does not manifest itself in this history. It appears that observed fat tails are largely 
due to older history. The most recent 40 years show no kurtosis for the large stock index, 
and only a small value for small stocks.  

  Estimates of Historical Risk Premiums 

 The striking observation here, again, is that the average excess return was positive for every 
generation over the entire 80-year history. In fact, research shows that this pattern character-
izes periods as short as decades. Average excess returns of large stocks are somewhat lower 
in the more recent 40-year history and, overall, suggest a risk premium of 6–8%. Average 
excess returns for small U.S. stocks, as well as their standard deviation, were much lower 
over the recent 40-year history than over the full 80-year period. 

 An often-overlooked fact about the precision of estimates of expected returns and stan-
dard deviation needs to be clarified. Suppose we observe the time series of a stock price 
over 10 years. We compute the 10-year HPR from the price at the beginning,  P (0), and 
at the end of the 10 years,  P (10), by  r (10)  �   P (10)/ P (1)  �  1. We can then annualize the 
10-year return. Notice from this calculation that we obtain the average return  solely  from 
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the start and ending prices. Prices from more frequent observations  during  the 10-year 
period would change neither the final value of the stock nor, therefore, our estimate of its 
expected return. The only way to increase the precision of this estimate of the expected 
annual return would be to obtain a sample longer than 10 years. But as we dig deeper into 
the past to obtain a longer sample, we have to ask whether the return distribution of more-
distant history is representative of more-recent periods. This is precisely the dilemma we 
face when we observe a large difference between 80-year and 40-year historical averages. 

 Interestingly, this limitation does  not  apply to estimates of variance and standard devia-
tion. Increasing the number of observations by slicing a 10-year sample into progressively 
shorter intervals does increase the accuracy of the estimate of the standard deviation of annual 
returns, even if the overall sample period remains 10 years. This is because we learn about 
volatility by observing fluctuations of returns within the sample period. (In contrast, intra-
period fluctuations do not teach us about the general trend of stock prices, which is the basis 
of the estimate of expected return.) For this reason, estimates of risk (standard deviation) can 
be made more reliable than estimates of expected returns by sampling more frequently.  8       

 Our estimate of risk may also sharpen our estimates of expected return. For example, when 
we observe that broadly diversified portfolios show similar Sharpe ratios, we have more con-
fidence in the estimates of their expected returns from historical averages. Similarly, when we 
observe that the average return of small stocks fell in tandem with their standard deviation (the 
latter was 39% from 1926 to 2005 but only 29% between 1966 and 2005), we have more con-
fidence that the more recent averages better estimate expected returns for the near future.  

  A Global View of the Historical Record 

 As financial markets around the world grow and become more transparent, U.S. investors 
look to improve diversification by investing internationally. Foreign investors that tradition-
ally used U.S. financial markets as a safe haven to supplement home-country investments 
also seek international diversification to reduce risk. The question arises as to how historical 
U.S. experience compares with that of stock markets around the world. 

  Figure 5.7  shows a century-long history (1900–2000) of average nominal and real 
returns in stock markets of 16 developed countries. We find the United States in fourth 
place in terms of average real returns, behind Sweden, Australia, and South Africa.  Fig-
ure 5.8  shows the standard deviations of real stock and bond returns for these same coun-
tries. We find the United States tied with four other countries for third place in terms of 
lowest standard deviation of real stock returns. So the United States has done well, but not 
abnormally so, compared with these countries.       

 One interesting feature of these figures is that the countries with the worst results, 
measured by the ratio of average real returns to standard deviation, are Italy, Belgium, 
Germany, and Japan—the countries most devastated by World War II. The top-performing 
countries are Australia, Canada, and the United States, the countries least devastated by the 
wars of the twentieth century. Another, perhaps more telling feature, is the insignificant 
difference between the real returns in the different countries. The difference between the 
highest average real rate (Sweden, at 7.6%) from the average return across the 16 countries 
(5.1%) is 2.5%. Similarly, the difference between the average and the lowest country return 
(Belgium, at 2.5%) is 2.6%. Using the average standard deviation of 23%, the  t -statistic for 
a difference of 2.6% with 100 observations is

t- Statistic
Differencein mean

Standard devi
�

aation/

2.6

23/ 100
1.3

n
� �

    

8The 10-year average return r(10) is a geometric average. We know from Equation 5.15 that the arithmetic aver-
age is greater by ½ �2. Any improved accuracy in estimating �2 will still leave us with the original imprecision in 
the geometric average return.
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F I G U R E  5.7 Nominal and real equity returns around the world, 1900–2000

Source: Elroy Dimson, Paul Marsh, and Mike Staunton, Triumph of the Optimists: 101 Years of Global Investment Returns (Princeton 
University Press, 2002), p. 50. Reprinted by permission of the Princeton University Press.
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which is far below conventional levels of statistical significance. We conclude that the U.S. 
experience cannot be dismissed as an outlier case. Hence, using the U.S. stock market as a 
yardstick for return characteristics may be reasonable. 

 These days, practitioners and scholars are debating whether the historical U.S. average 
risk-premium of large stocks over T-bills of 8.39% ( Table 5.4 ) is a reasonable forecast 
for the long term. This debate centers around two questions: First, do economic factors 
that prevailed over that historic period (1926–2005) adequately represent those that may 
prevail over the forecasting horizon? Second, is the arithmetic average from the available 
history a good yardstick for long-term forecasts?    

*The material in this and the next subsection addresses important and ongoing debates about risk and return, 
but is more challenging. It may be skipped in shorter courses without impairing the ability to understand later 
chapters.

       Consider an investor saving $1 today toward retirement in 25 years, or 300 months. Invest-
ing the dollar in a risky stock portfolio (reinvesting dividends until retirement) with an 
expected rate of return of 1% per month, this retirement “fund” is expected to grow almost 
20-fold to a terminal value of (1  �  .01) 300   �  $19.79 (providing total growth of 1,879%). 
Compare this impressive result to an investment in a 25-year Treasury bond with a risk-
free EAR of 6% (.407% per month) that yields a retirement fund of 1.06 25   �  $4.29. We 
see that a monthly risk premium of just .593% produces a retirement fund that is more than 
four times that of the risk-free alternative. Such is the power of compound interest. Why, 
then, would anyone invest in Treasuries? Obviously, this is an issue of trading excess 
return for risk. What is the nature of this return-to-risk trade-off? The risk of an investment 
that compounds at fluctuating rates over the long run is widely misunderstood, and it is 
important to figure it out. 

 We can construct the probability distribution of the stock-fund terminal value from a 
binomial tree just as we did earlier for the newspaper stand, except that instead of  adding  
monthly profits, the portfolio value  compounds  monthly by a rate drawn from a given dis-
tribution. For example, suppose we can approximate the portfolio monthly distribution as 
follows: Each month the rate of return is either 5.54% or –3.54%, with equal probabilities 
of .5. This configuration generates an expected return of 1% per month. The portfolio risk is 
measured as the monthly standard deviation:

 .5 (5.54 1) .5 ( 3.54 ) 4.54%.2 2
� �� � � � �1  

After 2 months, the event tree looks like this: 

  5.9 LONG-TERM INVESTMENTS  *  

Portfolio value = $1 × 1.0554 × 1.0554 = $1.1139

Portfolio value = $1 × 1.0554 × .9646 = $1.0180

Portfolio value = $1 × .9646 × .9646 = $.9305
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     “Growing” the tree for 300 months 
will result in 301 different possible 
outcomes. The probability of each 
outcome can be obtained from Excel’s 
BINOMDIST function. From the 301 
possible outcomes and associated 
probabilities we compute the mean 
($19.79) and the standard deviation 
($18.09) of the terminal value. Can 
we use this standard deviation as a 
measure of risk to be weighed against 
the risk premium of 19.79  �  4.29  �  
15.5 (1,550%)? Recalling the effect 
of asymmetry on the validity of stan-
dard deviation as a measure of risk, 
we must first view the shape of the 
probability distribution at the end of 
the tree. 

  Figure 5.9  plots the probability of 
possible outcomes against the terminal value. The asymmetry of the distribution is striking. 
The highly positive skewness suggests the standard deviation of terminal value will not be 
useful in this case. Indeed, the binomial distribution, when period outcomes compound, 
converges to a lognormal, rather than a normal, distribution. The lognormal describes the 
distribution of a variable whose  logarithm  is normally distributed.      

   Risk in the Long Run and the Lognormal Distribution 

 When the continuously compounded rate of return on an asset is normally distributed at 
every instant, the effective rate of return, the actual HPR, will be lognormally distributed. 
We should say at the outset that for short periods of up to 1 month, the difference between 
the normal and lognormal distribution is sufficiently small to be safely ignored. This is so 
because for low rates of return (either negative or positive),  r   cc    �  ln (1  �   r ) �  r,  that is,  r   cc   
is very close to  r.  But when concerned with longer periods, it is important to take account 
of the fact that it is the continuously compounded rates that are normally distributed, while 
the observed HPR is lognormally distributed. 

 Suppose that the annually, continuously compounded rate,  r   cc,   is normally distributed 
with an annual geometric mean of  g  and standard deviation  � . Remember that the geo-
metric mean is the annual rate that will compound to the observed terminal value of a 
portfolio. 

 If the continuously compounded rate is normally distributed, the arithmetic mean, 
which gives the expected annual return, will be larger than the geometric mean by exactly 
half the variance. Thus, the expected return of the continuously compounded rate will be 
(restating  Equation 5.15 )

     m � g � 1 2 �2   (5.21)  

Therefore, we can write the expected EAR as

 1 � E(r) � eg�1⁄2�2
       (5.22)  

The convenience of working with continuously compounded rates now becomes evident. 
Because the rate of return on an investment compounds at the expected annual rate of  E ( r ) ,  

F I G U R E  5.9 Probability of investment outcomes after 25 years 
with a lognormal distribution (approximated from a binomial tree)
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the terminal value after  T  years will be [1  �   E ( r )]   T.   We can write the terminal value in 
terms of the continuously compounded rate with an annual mean,  m,  and standard devia-
tion,  � , as

 [1 � E(r)]T � [eg�1⁄2�2
]T � egT�1⁄2�2T     (5.23)   

 Notice that the mean of the continuously compounded rate ( mT ) and the variance ( �  2  T ) 
both grow in direct proportion to the investment horizon  T.  It follows that the standard 
deviation grows in time at the rate of T . This is the source of what  appears  to be a 
mitigation of investment risk in the long run: Because the expected return increases with 
horizon at a faster rate than the standard deviation, the expected return of a long-term, 
risky investment becomes ever larger relative to its standard deviation. This applies to the 
long-term investment we have examined with the binomial tree.     

EXAMPLE 5.11 Shortfall Risk in the Short Run and the Long Run

Suppose we wish to estimate the probability that an indexed stock portfolio provides a 
rate of return less than that on risk-free T-bills. This is called a return shortfall. In line with 
historical experience, we will assume the monthly HPR on the investment is drawn from 
a lognormal distribution with an expected continuously compounded rate of rcc � .96% 
and monthly standard deviation of � � 4.5%. The monthly risk-free rate is taken to be 
.5%. The index underperforms bills if its return during the month is less than .5%, which is 
(.96 � .50)/4.5 � .102 standard deviations below its mean. The probability of this event if 
returns are normally distributed is .46.

Now consider the probability of shortfall for a 25-year (300-month) horizon. The mean 
25-year continuously compounded total return is .96 � 300 � 2.88 (i.e., 288%), and 
the standard deviation is .045 300 .779(77.9%)� � . At the same time, the monthly 
risk-free rate of .5% is equivalent to a 25-year continuously compounded total return of 
300 � .5% � 150%.

Because the 25-year continuously compounded rate is also normally distributed, we can 
easily find the probability that the terminal value of the risky portfolio will be below that 
of the risk-free investment. The expected total return on the index portfolio exceeds that on 
bills by 288% � 150% � 138%, and the standard deviation of the 25-year return is 77.9%. 
Therefore, stocks would have to fall short of their expected return by 138/77.9 � 1.722 
standard deviations before they would underperform bills. The probability of this outcome 
is only 3.8%. The far lower probability of a shortfall appears to vindicate those who advo-
cate that investment in the stock market is less risky in the long run. After all, the argument 
goes, 96.2% of the time, the stock fund will outperform the safe investment, while its 
expected terminal value is almost four times higher.

 A warning: The probability of a shortfall is an incomplete measure of investment risk. 
Such probability does not take into account the  size  of potential losses, which for some of 
the possible outcomes (however unlikely) amount to complete ruin. The worst-case sce-
narios for the 25-year investment are  far  worse than for the 1-month investment. We dem-
onstrate the build-up of risk over the long run graphically in Figures 5.10 and 5.11. 

 A better way to quantify the risk of a long-term investment would be the market price of 
insuring it against a shortfall. An insurance premium must take into account both the prob-
ability of possible losses and the magnitude of these losses. We show in later chapters how 
the fair market price of portfolio insurance can be estimated from option-pricing models. 
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 Despite the low probability that a portfolio insurance policy would have to pay up (only 
3.8% for the 25-year policy), the magnitude and timing  9   of possible losses would make 
such long-term insurance surprisingly costly. For example, standard option-pricing models 
suggest that the value of insurance against shortfall risk over a 10-year horizon would cost 
nearly 20% of the initial value of the portfolio. And contrary to any intuition that a longer 
horizon reduces shortfall risk, the value of portfolio insurance increases dramatically with 
the maturity of the contract. For example, a 25-year policy would be about 50% more 
costly, or about 30% of the initial portfolio value.      

  The Sharpe Ratio Revisited 

 The Sharpe ratio (the reward-to-volatility ratio) divides average excess return by its stan-
dard deviation. You should be aware, however, that the Sharpe ratio has a time dimension, 
in that the Sharpe ratio for any given portfolio will vary systematically with the assumed 
investment holding period. 

 We have seen that as the holding period grows longer, the average continuously com-
pounded return grows proportionally to the investment horizon (this is approximately true 
as well for short-term effective rates). The standard deviation, however, grows at a slower 
pace, the square root of time. Therefore, the Sharpe ratio  grows  with the length of the 
holding period at the rate of the square root of time. Hence, when comparing Sharpe ratios 
from a series of monthly rates to those from a series of annual rates, we must first multiply 
the monthly Sharpe ratio by the square root of 12.      

  Simulation of Long-Term Future Rates of Return 

 The frequency distributions in  Figure 5.6  provide only rough descriptions of the nature of 
the return distributions and are even harder to interpret for long-term investments. A good 
way to use history to learn about the distribution of long-term future returns is to simulate 
these future returns from the available sample. A popular method to accomplish this task 
is called  bootstrapping.  

 Bootstrapping is a procedure that avoids any assumptions about the return distribution, 
except that all rates of return in the sample history are equally likely. For example, we 
could simulate a 25-year sample of possible future returns by sampling (with replacement) 
25 randomly selected returns from our available 80-year history. We compound those 25 
returns to obtain one possible 25-year holding-period return. This procedure is repeated 
thousands of times to generate a probability distribution of long-term total returns that is 
anchored in the historical frequency distribution. 

9By “timing,” we mean that a decline in stock prices is associated with a bad economy when extra income would 
be most important to an investor. The fact that the insurance policy would pay off in these scenarios contributes 
to its market value.

EXAMPLE 5.12 Sharpe Ratios

For the long-term risky portfolio (with a monthly expected return of 1% and standard devia-
tion of 5%), given a risk-free rate of .5%, the Sharpe ratio is (1 � .5)/5 � .10. The expected 
annual return would be 12% and annual standard deviation would be 5% 12 16.6%� �

so the Sharpe ratio using annual returns would be (12 � 6)/16.6 � .36, similar to values 
we find in the historical record of well-diversified portfolios.
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 The cardinal decision when embarking on a bootstrapping exercise is the choice of how 
far into the past we should go to draw observations for “future” return sequences. We will 
use our entire 80-year sample so that we are more likely to include low probability events 
of extreme value. 

 One important objective of this exercise is to assess the potential effect of deviations 
from the normality assumption on the probability distribution of a long-term investment 
in U.S. stocks. For this purpose, we simulate a 25-year distribution of annual returns for 
large and small stocks and contrast these samples to similar samples drawn from normal 
distributions that (due to compounding) result in lognormally distributed long-term total 
returns. Results are shown in  Figure 5.10 . Panel A shows the frequency distributions of the 
paired samples of large U.S. stocks, constructed by sampling both from actual returns and 
from the normal distribution. Panel B shows the same frequency distributions for small 
U.S. stocks. The boxes inside  Figure 5.10  show the statistics of the distributions.     

 We first review the results for large stocks in panel A. Viewing the frequency distribu-
tions, we see that the difference between the simulated history and the normal draw is 
small but distinct. Despite the very small differences between the averages of 1-year and 

F I G U R E  5.10 Annually compounded, 25-year HPRs from bootstrapped history and a normal distribu-
tion (50,000 observations)
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25-year annual returns, as well as between the standard deviations, the small differences 
in skewness and kurtosis combine to produce significant differences in the probabilities of 
shortfalls and losses, as well as in the potential terminal loss. For small stocks, shown in 
panel B, the smaller differences in skewness and kurtosis lead to almost identical figures 
for the probability and magnitude of losses. 

 What about risk for investors with other long-term horizons?  Figure 5.11  compares 
25-year to 10-year investments in large and small stocks. For an appropriate comparison, 
we must account for the fact that the 10-year investment will be supplemented with a 
15-year investment in T-bills. To accomplish this comparison, we bootstrap 15-year sam-
ples from the 80-year history of T-bill rates and augment each sample with 10 annual rates 
drawn from the history of the risky investment. Panels A1 and A2 in  Figure 5.11  show the 
comparison for large stocks. The frequency distributions reveal a substantial difference 
in the risks of the terminal portfolio. This difference is clearly manifested in the portfolio 
performance statistics. The same picture arises in panels B1 and B2 for small stocks.     

F I G U R E  5.11 Annually compounded, 25-year HPRs from bootstrapped history (50,000 observations)
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A2: 10 Years in Large Stocks and 15 Years in T-bills
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  Figure 5.12  shows the trajec-
tories of the wealth indexes of 
possible outcomes of a 25-year 
investment in large stocks, com-
pared with the wealth index of the 
average outcome of a T-bill port-
folio. The outcomes of the stock 
portfolio in  Figure 5.12  range from 
the worst, through the bottom 1% 
and 5% of terminal value, and up 
to the mean and median terminal 
values. The bottom 5% still results 
in a significant shortfall relative 
to the T-bill portfolio. In sum, 
the analysis clearly demonstrates 
that the notion that investments 
in stocks become less risky in the 
long run must be rejected. 

 Yet many practitioners hold 
on to the view that investment 
risk is less pertinent to long-term 
investors. A typical demonstration 
shown in the nearby box relies on 
the fact that the standard deviation (or range of likely outcomes) of  annualized  returns is 
lower for longer-term horizons. But the demonstration is silent on the range of  total  returns.      

  Forecasts for the Long Haul 

 We use arithmetic averages to forecast future rates of return because they are unbiased 
estimates of expected rates over equivalent holding periods. But the arithmetic average of 
short-term returns can be misleading when used to forecast long-term cumulative returns. 
This is because sampling errors in the estimate of expected return will have asymmetric 
impact when compounded over long periods. Positive sampling variation will compound 
to greater upward errors than negative variation.     

 Jacquier, Kane, and Marcus  10   show that an unbiased forecast of total return over long 
horizons requires compounding at a weighted average of the arithmetic and geometric 
historical averages. The proper weight applied to the geometric average equals the ratio 
of the length of the forecast horizon to the length of the estimation period. For example, if 
we wish to forecast the cumulative return for a 25-year horizon from a 80-year history, an 
unbiased estimate would be to compound at a rate of    

Geometric average �   25 ___ 
80

   � Arithmetic average �   
(80 � 25)

 __________ 
80

      

This correction would take about .6% off the historical arithmetic average risk premium 
on large stocks and about 2% off the arithmetic average of small stocks. A forecast for 
the next 80 years would require compounding at only the geometric average, and for lon-
ger horizons at an even lower number. The forecast horizons that are relevant for current 
middle-aged investors would depend on their life expectancies.    

FIGURE 5.12 Wealth indexes of selected outcomes of large stock 
portfolios and the average T-bill portfolio. Inset: Focus on worst, 1%, 
and 5% outcomes versus bills.

0
0 5 10 15 20 25

2

4

6

8

10

12

14

16

Worst 1% 5% Average Median T-bills

Years

W
e

al
th

 I
n

d
e

x

0
0 5 10 15 20 25

0.5
1

1.5
2

2.5
3

Worst 1% 5% T-bills
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TIME VS. RISK

MANY BEGINNING INVESTORS eye the stock mar-
ket with a bit of suspicion. They view equity investing 
as an anxious game of Russian roulette: The longer 
they stay in, the greater their chance of experiencing 
more losses. In fact, history shows that the opposite is 
true. The easiest way to reduce the risk of investing in 
equities—and improve the gain—is to increase the 
time you hang on to your portfolio.

See for yourself. The demonstration below uses his-
torical data from 1950 through 2005 to compare invest-
ment returns over different lengths of time for small-cap 
stocks, large caps, long-term bonds and T-bills.

The graph starts out showing results for investments 
held over one-year periods. There’s no doubt about 

it: Over such short intervals, small-cap stocks are defi-
nitely the riskiest bet.

But what about investing for more than a year? If 
you move the slider at the bottom right of the graph, 
you can see the range of returns for longer time peri-
ods. Even investing for two years instead of one cuts 
your risk significantly. As the length of time increases, 
the volatility of equities decreases sharply—so much so 
that you may need to click the “zoom in” button to 
get a closer view. Over 10-year periods, government 
bonds look safer than large-cap equities on the down-
side. Click the “adjust for inflation” box, however, and 
you’ll see that bond “safety” can be illusory. Inflation 
has an uncanny ability to erode the value of securities 
that don’t grow fast enough.

Now move the slider all the way to the right to see 
the results of investing for 20-year intervals. Adjusting 
for inflation, the best 20-year gain a portfolio of long-
term Treasury bonds could muster is much lower than 
that achieved by small- and large-cap stocks. And con-
trary to popular belief, over their worst 20-year period, 
long-term bonds actually lost money when adjusted 
for inflation. Meanwhile, small-cap investors still had 
gains over a 20-year-period, even when stocks were at 
their worst.

Source: Abridged from www.smartmoney.com/university/
Investing101/RiskvsReward/index.cfm?story�timevsrisk, accessed 
October 15, 2007.
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  The realization that rates of return on stock portfolios are not quite normally distributed, 
and that as a result, standard deviations may not adequately measure risk, has preoccupied 
practitioners for quite some time. As we have seen, this concern is indeed well placed. 
Three methods to augment the measurement of risk are common in the industry: Value at 
Risk (VaR), Conditional Tail Expectations (CTE), and Lower Partial Standard Deviation 
(LPSD). We show these statistics for the bootstrapped distributions, contrasted with those 
for the normal distribution in  Table 5.5 .                

   Value at Risk (VaR) 

 Professional investors extensively use a risk measure that highlights the potential loss from 
extreme negative returns, called value at risk, denoted by VaR (to distinguish it from VAR 
or Var, commonly used to denote variance). The VaR is another name for the  quantile  of a 
distribution. The quantile ( q ) of a distribution is the value below which lie  q % of the val-
ues. Thus the median of the distribution is the 50% quantile. Practitioners commonly use 
the 5% quantile as the VaR of the distribution. It tells us that, with a probability of 5%, we 

  5.10  MEASUREMENT OF RISK WITH NON-NORMAL 
DISTRIBUTIONS 
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can expect a loss equal to or greater than the VaR. For a normal distribution, which is com-
pletely described by its mean and standard deviation, the 5% VaR always lies 1.65 standard 
deviations below the mean, and thus, while it may be a convenient benchmark, it adds no 
information about risk. But if the distribution is not adequately described by the normal, 
the VaR does give useful information about the magnitude of loss we can expect in a “bad” 
(e.g., 5% quantile) scenario. 

 The first four lines in  Table 5.5  show the VaR from the bootstrapped distributions and 
the paired normal samples. The VaR values provide important input for investments in 
large stocks. The commonly used 5% VaR for large stocks is a 25-year annual holding- 
period return of 1.16%, compared with 1.27% for the paired normal distribution. The dis-
tribution of the portfolio of small stocks is more reasonably approximated by the normal, 
as is evident in the similarity of the VaR values.  

  Conditional Tail Expectation (CTE) 

 The 5%    conditional tail expectation (CTE)    provides the answer to the question, “Assum-
ing the terminal value of the portfolio falls in the bottom 5% of possible outcomes, what is 
its expected value?” This value for large stocks is a 25-year holding-period return of .46%. 
Notice the difference from the 5% VaR (1.16%). The 5% VaR is in fact the outcome at the 
upper boundary of these worst-case outcomes. This is of course the highest holding-period 
return among the 5% worst-case scenarios, and by construction is higher than the CTE. 
CTE improves on VaR, as it is more like an expected value that accounts for the entire tail 
of the distribution, in particular worst-case scenarios, and thus provides a fuller sense of 
potential losses from low-probability events.  

  Lower Partial Standard Deviation (LPSD) 

 An appropriate measure of risk for non-normal distributions is the standard deviation com-
puted solely from values below the expected return. This is a measure of “downside risk” 
and is called the    lower partial standard deviation (LPSD).    Some practitioners even go 
as far as using the LPSD in place of the regular standard deviation to compute the Sharpe 

Large U.S. Stocks Small U.S. Stocks

History Normal History Normal

Value at Risk

VaR 1% 0.02% 0.18% –0.63% –0.64%
VaR 5% 1.16 1.27 0.17 0.13
VaR 10% 2.17 2.26 1.13 1.04
VaR 50% 10.58 10.29 16.41 15.99

Conditional Tail Expectation

CTE 1% –0.28% –0.14% –0.77% –0.76%
CTE 5% 0.46 0.62 –0.33 –0.35
CTE 10% 1.07 1.20 0.16 0.12
CTE 50% 5.07 4.99 5.80 5.49

Lower Partial Standard Deviation

LPSD of 25-year HPR 4.34% 4.23% 7.09% 7.14%
LPSD of 1-year HPR 21.71 21.16 35.45 35.72

Average 1-year HPR 12.13 12.15 17.97 17.95

TA B L E  5 . 5

Risk measures for 
non-normal distributions
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ratio. The LPSD for the large and small stock portfolios are not very different from values 
from the normal distribution because the skews are similar to those from the normal (see 
 Table 5.5 ). For large stocks, for example, assuming a T-bill rate of 6%, the Sharpe ratio 
from the LPSD would be (12.13  �  6)/21.71  �  0.28, compared with 0.29 from the normal 
distribution. Therefore, the Sharpe ratios calculated from the LPSD are not economically 
different from the conventional Sharpe ratio.     

   1. The economy’s equilibrium level of real interest rates depends on the willingness of households 
to save, as reflected in the supply curve of funds, and on the expected profitability of business 
investment in plant, equipment, and inventories, as reflected in the demand curve for funds. It 
depends also on government fiscal and monetary policy.  

  2. The nominal rate of interest is the equilibrium real rate plus the expected rate of inflation. In gen-
eral, we can directly observe only nominal interest rates; from them, we must infer expected real 
rates, using inflation forecasts.  

  3. The equilibrium expected rate of return on any security is the sum of the equilibrium real rate of 
interest, the expected rate of inflation, and a security-specific risk premium.  

  4. Investors face a trade-off between risk and expected return. Historical data confirm our intuition 
that assets with low degrees of risk provide lower returns on average than do those of higher risk.  

  5. Assets with guaranteed nominal interest rates are risky in real terms because the future inflation 
rate is uncertain.  

  6. Historical rates of return over the twentieth century in developed capital markets suggest the U.S. 
history of stock returns is not an outlier compared to other countries.  

  7. Investments in risky portfolios  do not  become safer in the long run. On the contrary, the longer a 
risky investment is held, the greater the risk. The basis of the argument that stocks are safe in the 
long run is the fact that the probability of a shortfall becomes smaller. However, probability of short-
fall is a poor measure of the safety of an investment. It ignores the magnitude of possible losses.  

  8. Historical returns on stocks exhibit more frequent large negative deviations from the mean than 
would be predicted from a normal distribution. The lower partial standard deviation (LPSD) and 
the skewness of the actual distribution quantify the deviation from normality. The LPSD, instead 
of the standard deviation, is sometimes used by practitioners as a measure of risk.  

  9. Widely used measures of risk are value at risk (VaR) and conditional tail expectations (CTE). VaR 
measures the loss that will be exceeded with a specified probability such as 5%. The VaR does not 
add new information when returns are normally distributed. When negative deviations from the 
average are larger and more frequent than the normal distribution, the 5% VaR will be more than 
1.65 standard deviations below the average return. Conditional tail expectations (CTE) measure the 
expected rate of return conditional on the portfolio falling below a certain value. Thus, 1% CTE is 
the expected return of all possible outcomes in the bottom 1% of the distribution.

   SUMMARY 

Related Web sites for 

this chapter are available 

at www.mhhe.com/bkm

   nominal interest rate  
  real interest rate  
  effective annual rate (EAR)  
  annual percentage rate (APR)  
  dividend yield  
  risk-free rate  
  risk premium  

  excess return  
  risk aversion  
  normal distribution  
  event tree  
  skew  
  kurtosis  

  lognormal distribution  
  value at risk (VaR)  
  conditional tail expectation 

(CTE)  
  lower partial standard 

deviation (LPSD)    
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      1. The Fisher equation tells us that the real interest rate approximately equals the nominal rate minus 
the inflation rate. Suppose the inflation rate increases from 3% to 5%. Does the Fisher equation 
imply that this increase will result in a fall in the real rate of interest? Explain.  

  2. You’ve just stumbled on a new dataset that enables you to compute historical rates of return on 
U.S. stocks all the way back to 1880. What are the advantages and disadvantages in using these 
data to help estimate the expected rate of return on U.S. stocks over the coming year?  

  3. You are considering two alternative 2-year investments: You can invest in a risky asset with a 
positive risk premium and returns in each of the 2 years that will be identically distributed and 
uncorrelated, or you can invest in the risky asset for only 1 year and then invest the proceeds in 
a risk-free asset. Which of the following statements about the first investment alternative (com-
pared with the second) are true?

   a. Its 2-year risk premium is the same as the second alternative.  
  b. The standard deviation of its 2-year return is the same.  
  c. Its annualized standard deviation is lower.  
  d. Its Sharpe ratio is higher.  
  e. It is relatively more attractive to investors who have lower degrees of risk aversion.          

   4. You have $5,000 to invest for the next year and are considering three alternatives:

    a.  A money market fund with an average maturity of 30 days offering a current yield of 6% per 
year.  

   b.  A 1-year savings deposit at a bank offering an interest rate of 7.5%.  
   c.  A 20-year U.S. Treasury bond offering a yield to maturity of 9% per year.    

  What role does your forecast of future interest rates play in your decisions?  

  5. Use  Figure 5.1  in the text to analyze the effect of the following on the level of real interest rates:

    a.  Businesses become more pessimistic about future demand for their products and decide to 
reduce their capital spending.  

   b.  Households are induced to save more because of increased uncertainty about their future 
Social Security benefits.  

   c.  The Federal Reserve Board undertakes open-market purchases of U.S. Treasury securities in 
order to increase the supply of money.     

  6. You are considering the choice between investing $50,000 in a conventional 1-year bank CD 
offering an interest rate of 5% and a 1-year “Inflation-Plus” CD offering 1.5% per year plus the 
rate of inflation.

    a.  Which is the safer investment?  
   b.  Which offers the higher expected return?  
   c.  If you expect the rate of inflation to be 3% over the next year, which is the better investment? 

Why?  
   d.  If we observe a risk-free nominal interest rate of 5% per year and a risk-free real rate of 1.5% 

on inflation-indexed bonds, can we infer that the market’s expected rate of inflation is 3.5% 
per year?     

  7. Look at  Spreadsheet 5.1  in the text. Suppose you now revise your expectations regarding the 
stock price as follows:               

State of the Economy Probability Ending Price HPR (including dividends)

Boom .35 $140 44.5%

Normal growth .30 110 14.0

Recession .35 80 �16.5

  Use  Equations 5.11  and  5.12  to compute the mean and standard deviation of the HPR on stocks. 
Compare your revised parameters with the ones in the spreadsheet.  
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   8. Derive the probability distribution of the 1-year HPR on a 30-year U.S. Treasury bond with an 
8% coupon if it is currently selling at par and the probability distribution of its yield to maturity 
a year from now is as follows:               

State of the Economy Probability YTM

Boom .20 11.0%

Normal growth .50 8.0

Recession .30 7.0

  For simplicity, assume the entire 8% coupon is paid at the end of the year rather than every 6 
months.  

   9. What is the standard deviation of a random variable  q  with the following probability distribution:

                

Value of q Probability

0 .25

1 .25

2 .50

  10. The continuously compounded annual return on a stock is normally distributed with a mean of 
20% and standard deviation of 30%. With 95.44% confidence, we should expect its actual return 
in any particular year to be between which pair of values? Hint: look again at Figure 5.4.

   a.  � 40.0% and 80.0%  
  b.  � 30.0% and 80.0%  
  c.  � 20.6% and 60.6%  
  d.  � 10.4% and 50.4%     

  11.   Using historical risk premiums over the 1926–1995 period as your guide, what would be your 
estimate of the expected annual HPR on the S&P 500 stock portfolio if the current risk-free 
interest rate is 6%?  

  12. You can find annual holding-period returns for several asset classes at our Web site (  www.
mhhe.com/bkm  ); look for links to Chapter 5. Compute the means, standard deviations, skew-
ness, and kurtosis of the annual HPR of large stocks and long-term Treasury bonds using only 
the 30 years of data between 1976 and 2005. How do these statistics compare with those com-
puted from the data for the period 1926–1941? Which do you think are the most relevant statis-
tics to use for projecting into the future?  

  13. During a period of severe inflation, a bond offered a nominal HPR of 80% per year. The infla-
tion rate was 70% per year.

    a.  What was the real HPR on the bond over the year?  
   b.  Compare this real HPR to the approximation  r  �  R   �   i.      

  14. Suppose that the inflation rate is expected to be 3% in the near future. Using the historical data 
provided in this chapter, what would be your predictions for:

    a.  The T-bill rate?  
   b.  The expected rate of return on large stocks?  
   c.  The risk premium on the stock market?     

  15. An economy is making a rapid recovery from steep recession, and businesses foresee a need for 
large amounts of capital investment. Why would this development affect real interest rates?         

Challenge Problems 16 and 17 are more difficult. You may need to review the defini-
tions of call and put options in Chapter 2.  

   16. You are faced with the probability distribution of the HPR on the stock market index fund given 
in  Spreadsheet 5.1  of the text. Suppose the price of a put option on a share of the index fund 
with exercise price of $110 and time to expiration of 1 year is $12.

    a.  What is the probability distribution of the HPR on the put option?  
   b.  What is the probability distribution of the HPR on a portfolio consisting of one share of the 

index fund and a put option?  

Challenge 
Problems
Challenge 
Problems

eXce l
Please visit us at 

www.mhhe.com/bkm
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   c.  In what sense does buying the put option constitute a purchase of insurance in this case?  

  17. Take as given the conditions described in the previous problem, and suppose the risk-free interest 
rate is 6% per year. You are contemplating investing $107.55 in a 1-year CD and simultaneously 
buying a call option on the stock market index fund with an exercise price of $110 and expiration 
of 1 year. What is the probability distribution of your dollar return at the end of the year?       

      1.   Given $100,000 to invest, what is the expected risk premium in dollars of investing in equities 
versus risk-free T-bills (U.S. Treasury bills) based on the following table?

   

Action Probability Expected Return

Invest in equities .6   $ 50,000

.4 –$ 30,000

Invest in risk-free T-bill 1.0   $   5,000

                       2.   Based on the scenarios below, what is the expected return for a portfolio with the following return 
profile?

   

Market Condition

Bear Normal Bull

Probability .2 .3 .5

Rate of return –25% 10% 24%

                              Use the following scenario analysis for Stocks X and Y to answer CFA Problems 3 
through 6 (round to the nearest percent). 

   

Bear Market Normal Market Bull Market

Probability 0.2 0.5 0.3

Stock X –20% 18% 50%

Stock Y –15% 20% 10%

                               3.   What are the expected rates of return for Stocks X and Y?  

  4.   What are the standard deviations of returns on Stocks X and Y?  

  5.   Assume that of your $10,000 portfolio, you invest $9,000 in Stock X and $1,000 in Stock Y. What 
is the expected return on your portfolio?  

  6.   Probabilities for three states of the economy and probabilities for the returns on a particular stock 
in each state are shown in the table below.

   

State of Economy
Probability of 

Economic State
Stock 
Performance

Probability of 
Stock Performance

in Given
Economic State

Good .3 Good .6

Neutral .3

Poor .1

Neutral .5 Good .4
Neutral .3

Poor .3

Poor .2 Good .2
Neutral .3

Poor .5
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                              What is the probability that the economy will be neutral  and  the stock will experience poor 
performance?  

  7.   An analyst estimates that a stock has the following probabilities of return depending on the state 
of the economy:

   

State of Economy Probability Return

Good .1 15%

Normal .6 13

Poor .3 7

                            What is the expected return of the stock?    

Inflation and Rates

The Federal Reserve Bank of St. Louis has information available on interest rates 
and economic conditions. A publication called Monetary Trends contains graphs and 
tables with information about current conditions in the capital markets. Go to the 
Web site www.stls.frb.org and click on Economic Research on the menu at the top 
of the page. Find the most recent issue of Monetary Trends in the Recent Data Pub-
lications section and answer these questions.

1. What is the professionals’ consensus forecast for inflation for the next 2 years? 
(Use the Federal Reserve Bank of Philadelphia line on the graph to answer this.)

2.  What do consumers expect to happen to inflation over the next 2 years? (Use 
the University of Michigan line on the graph to answer this.)

3. Have real interest rates increased, decreased, or remained the same over the last 
2 years?

4. What has happened to short-term nominal interest rates over the last 2 years? 
What about long-term nominal interest rates?

5. How do recent U.S. inflation and long-term interest rates compare with those of 
the other countries listed?

6. What are the most recently available levels of 3-month and 10-year yields on 
Treasury securities?

E-Investments
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  Go to   www.mhhe.com/edumarketinsight   (bookmark this page!) and link to  Company. 

Choose a few companies of interest and record their ticker symbols.  Under Excel Analyt-
ics, go to  Market Data  and find Monthly Adjusted Prices for each firm, which you should 
download into a spreadsheet. Calculate the standard deviation, skew, and kurtosis of the 
recent history of returns for each firm. How do they compare to the values for the S&P 500? 
Try repeating the exercise for other firms. Can you reach any conclusions about the pattern 
of these statistics for individual firms versus the diversified market index? Do returns for 
the index appear to be better described by the normal distribution than the returns of the 
individual firms?  
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   1.      a.  1  �   R   �  (1  �   r )(1  �   i )  �  (1.03)(1.08)  �  1.1124 

    R   �  11.24%  

   b.  1  �   R   �  (1.03)(1.10)  �  1.133 

    R   �  13.3%     

  2.      a.  EAR  �  (1  �  .01) 12   �  1  �  .1268  �  12.68%  

   b.  EAR  �   e  .12   �  1  �  .1275  �  12.75%    

  Choose the continuously compounded rate for its higher EAR.  

  3. Number of bonds bought is 27,000/900  �  30                                    

  SOLUTIONS TO CONCEPT CHECKS 

Interest Rates Probability
Year-end

Bond Price HPR End-of-Year Value

High .2  $850 (75 � 850)/900 – 1 � .0278 (75 � 850)30 � $27,750

Unchanged .5 915 .1000 $29,700

Low .3 985 .1778 $31,800

Expected rate of return .1089

Expected end-of-year 
 dollar value $29,940

Risk premium .0589

  4.      a.  Arithmetic return  �  (1/3)(.2869)  �  (1/3)(.1088)  �  (1/3)(0.0491)  �  .1483  �  14.83%  

   b.      Geometric average 1.2869 1.1088� � � � �1.0491 1 .3 11439 14.39%�     

   c.  Standard deviation  �  12.37%  

   d.  Sharpe ratio  �  (14.83  �  6.0)/12.37  �  .71     

  5. The probability of a more extreme bad month, with return below  � 15%, is much lower: NORM-
DIST( � 15,1,6,TRUE)  �  .00383. Alternatively, we can note that  � 15% is 16/6 standard deviations 
below the mean return, and use the standard normal function to compute NORMSDIST( � 16/6)  �  
.00383.  

  6. If the probabilities in Spreadsheet 5.2 represented the true return distribution, we would use 
Equations 5.19 and 5.20 to obtain: Skew � 0.0931; Kurtosis � �1.2081. However, in this case, 
the data in the table represent a (short) historical sample, and correction for degrees-of-freedom 
bias is required (in a similar manner to our calculations for standard deviation). You can use Excel 
functions to obtain: SKEW(C5:C9)  �  0.1387;  KURT(C5:C9) �  � 0.2832   .      
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