CHAPTER FIVE

LEARNING ABOUT RETURN
AND RISK FROM THE HISTORICAL
N=HGIOIND)

CASUAL OBSERVATION AND formal research
both suggest that investment risk is as impor-
tant to investors as expected return. While
we have theories about the relationship
between risk and expected return that would
prevail in rational capital markets, there is no
theory about the levels of risk we should find
in the marketplace. We can at best estimate
the level of risk likely to confront investors
by analyzing historical experience.

This situation is to be expected because
prices of investment assets fluctuate in
response to news about the fortunes of
corporations, as well as to macroeconomic
developments that affect interest rates.
There is no theory about the frequency and
importance of such events; hence we cannot
determine a “natural” level of risk.

Compounding this difficulty is the fact that
neither expected returns nor risk are directly
observable. We observe only realized rates
of return after the fact. Hence, to make fore-
casts about future expected returns and risk,
we first must learn how to “forecast” their
past values, that is, the expected returns and

risk that investors actually anticipated, from
historical data. (There is an old saying that
forecasting the future is even more difficult
than forecasting the past.) In this chapter,
we present the essential tools for estimating
expected returns and risk from the historical
record and consider the implications of this
record for future investments.

We begin by discussing interest rates
and investments in safe assets and examine
the history of risk-free investments in the
U.S over the last 80 years. Moving to risky
assets, we begin with scenario analysis of
risky investments and the data inputs nec-
essary to conduct it. With this in mind, we
develop statistical tools needed to make
inferences from historical time series of port-
folio returns. We present a global view of the
history of returns over 100 years from stocks
and bonds in various countries and analyze
the historical record of five broad asset-class
portfolios. We end the chapter with discus-
sions of implications of the historical record
for future investments and a variety of risk
measures commonly used in the industry.
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DETERMINANTS OF THE LEVEL OF INTEREST RATES

Interest rates and forecasts of their futakigs are among the most important inputs into
an investment decision.df example, suppose you v@$10,000 in a sangs accountThe
bank pays you aariable interest rate tied to some short-term reference rate such as the
30-dayTreasury bill rateYou hare the option of meaing some or all of your moganto a
longerterm certifcate of deposit that fdrs a ixed rate wer the term of the deposit.

Your decision depends critically on your outlook for interest rates. If you think rates
will fall, you will want to lock in the current higher rates byesting in a relatiely long-
term CD. If you &pect rates to rise, you willant to postpone committing arfiunds to
long-term CDs.

Forecasting interest rates is one of the most notorioudigulifparts of applied macro-
economics. Nonetheless, we doda good understanding of the fundamergeldrs that
determine the kel of interest rates:

1. The supply of funds from sars, primarily households.

2. The demand for funds fronubinesses to be used boance iwestments in plant,
equipment, and irentories (real assets or capital formation).

3. The gwernments net supply of or demand for funds as miedity actions of the
FederaResere Bank.

Before we elaborate on these forces and resultant interest rates, we need to distinguish
real from nominal interest rates.

Real and Nominal Rates of Interest

An interest rate is a promised rate of return denominated in some unit of account (dollars,
yen, euros, orven purchasing peer units) @er some time period (a month, a ye20
years, or longer)Thus, when we say the interest rate is 5%, we must specify both the unit
of account and the time period.

Assuming there is no dailt risk, we can refer to the promised rate of interest as a
risk-free rate for that particular unit of account and time period. But if an interest rate is
risk-free for one unit of account and time period, it will not be risk-free for other units or
periods. Br example, interest rates that are absolutely safe in dollar terms will lye risk
when @aluated in terms of purchasingvper because of inflation uncertainty

To illustrate, consider a 1-year dollar (nominal) risk-free interest &atppose xactly
1 year ago you deposited $1,000 in a 1-year time deposit guaranteeing a rate of interest of
10%.You are about to collect $1,100 in cadtat is the real return on youwestment?

That depends on what mgnean luy these days, relag to what youould buy a year
ago.The consumer price indgCPI) measures purchasingwer by aeraging the prices
of goods and services in the consumption baskan &erage urbanaimily of four

Suppose the rate of inflation (the percent change in the CPI, denotetbbyhe last
year amounted tb= 6%. This tells you that the purchasingvwper of mong is reduced by
6% a yearThe \alue of each dollar depreciates by 6% a year in terms of the goods it can
buy. Therefore, part of your interest earnings arfeeifby the reduction in the purchasing
power of the dollars you will receé at the end of the yed¥ith a 10% interest rate, after
you net out the 6% reduction in the purchasing/groof mong, you are left with a net
increase in purchasing wer of about 4%Thus we need to distinguish betweenaani-
nal interest rate—the gravth rate of your mone—and areal interest rate—the gravth
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rate of your purchasing per. If we callR the nominal rate;, the real rate, anidthe infla-
tion rate, then we conclude

r~R—i (5.1)

In words, the real rate of interest is the nominal rate reduced by the loss of purchasing
power resulting from inflation. If inflation turns out higher than 6%, yoealized real
return will be laver than 4%; if inflation is lver, your real rate will be higher

In fact, the gact relationship between the real and nominal interest ratees gy

_1+R
1+r= T (5.2)

This is because the gwth factor of your purchasing per, 1 + r, equals the gneth
factor of your mong 1 + R, divided by the ne price level, that is, 1+ i times its alue in
the preious periodThe eact relationship can be rearranged to

_R—i
r=T T (5.3)

which shavs that the approximation ruleerstates the real rate by ttaetfor 1+ i.

EXAMPLE 5.1 Approximating the Real Rate

If the nominal interest rate on a 1-year CD is 8%, and ypece inflation to be 5%\er the
coming yearthen using the approximation formula, yogpect the real rate of interest to be

r = 8% — 5% = 3%. Using the xact formula, the real rate is= %= .0286,0r

2.86%.Therefore, the approximation ruleeystates thexpected real rate by only .14% (14
basis points)The approximation rule is moreact for small inflation rates and is perfectly
exact for continuously compounded ratéf&e discuss further details in thexhsection.

Before the decision towest, you should realize that e@mtional certiicates of deposit
offer a guaranteedominal rate of interestThus you can only infer thexpected real rate
on these imestments by subtracting yourpectation of the rate of inflation.

It is alays possible to calculate the real rate after #oe The inflation rate is pub-
lished by the Bureau of Labor Statistics (BLB)e future real rate, eever, is unknavn,
and one has to rely onxgectations. In other erds, because future inflation is nskhe
real rate of return is rigkeven when the nominal rate is risk-free.

The Equilibrium Real Rate of Interest

Three basicdctors—supplydemand, and gernment actions—determine treal interest
rate.The nominal interest rate, which is the rate we actually obs&nthe real rate plus
the xpected rate of inflation. So a fourthctor afecting the interest rate is thgpected
rate of inflation.

Although there are mandifferent interest rates economywide (as ynas there are
types of securities), these rates tend toentmgetherso economists frequently talk as if
there were a single representatrate We can use this abstraction to gain some insights
into the real rate of interest if we consider the supply and demanesdianfunds.

Figure5.1 shavs a devnward-sloping demand cuevand an uperd-sloping supply
cune. On the horizontal axis, we measure the quantity of funds, and oartlealvaxis,
we measure the real rate of interest.
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The supply curg slopes
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FIGURE 5.1 Determination of the equilibrium real rate of interest

down from left to right
because the Wwer the real
interest rate, the moreubi-
nesses will want to irvest in

Equilibrium Funds Lent

physical capital. Assuming
that husinesses rank projects
by the epected real return onvasted capital,ifms will undertale more projects the
lower the real interest rate on the funds needemhamde those projects.

Equilibrium is at the point of intersection of the supply and demandsupwointE in
Figure 5.1

The gowernment and the central bank (the Federal Re}@an shift these supply and
demand cures either to the right or to the left througéchl and monetary policiesoF
example, consider an increase in thegrmments kudget detit. This increases the go
ernments borraving demand and shifts the demand eutw the right, which causes the
equilibrium real interest rate to rise to pdiit That is, a forecast that indicates higher than
previously expected geernment borraving increasesx@ected future interest rateBhe
Fed can dbet such a rise through arpansionary monetary policwhich will shift the
supply cure to the right.

Thus, although the fundamental determinants of the real interest rate are the propen-
sity of households to ga and the )pected productity (or we could say prdagbility) of
investment in physical capital, the real rate can bectfd as well by g@rnment iscal
and monetary policies.

The Equilibrium Nominal Rate of Interest

We've seen that the real rate of return on an asset is approximately equal to the nomi-
nal rate minus the inflation rate. Becauseestors should be concerned with their real
returns—the increase in their purchasingvpo—we would expect that as the inflation
rate increases, westors will demand higher nominal rates of return on theiesi
ments.This higher rate is necessary to maintain theeeted real return fdred by an
investment.

Irving Fisher (1930) gued that the nominal rate ought to increase oneiferwith
increases in thexpected inflation rate. If we use the notatigfi) to denote the current

There is considerable disagreement amoraeks on the xtent to which household wiag does increase in
response to an increase in the real interest rate.
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expectation of the inflation rate that will pal over the coming period, then we can state
the so-called Fisher equation formally as

R=r + E() (5.4)

The equation implies that if real rates are reasonably stable, then increases in nomi-
nal rates ought to predict higher inflation ratékis relationship has been debated and
empirically irnvestigatedThe results are med; although the data do not strongly sup-
port this relationship, nominal interest rates seem to predict inflation as well as alterna-
tive methods, in part because we are unable to forecast inflation well withethod.

One reason it is difcult to determine the empiricahlidity of the Fisher hypothesis
that changes in nominal rates predict changes in future inflation rates is that the real
rate also changes unpredictableotime. Nominal interest rates can beweel as the
sum of the required real rate on nominally risk-free assets, plus a “noisy” forecast of
inflation.

In Part Four we discuss the relationship between short- and long-term interest rates.
Longer rates incorporate forecasts for long-term inflatiam.tRis reason alone, interest
rates on bonds of ddrent maturity may dierge. In addition, we will see that prices of
longerterm bonds are moreolatile than those of short-term bondsis implies that
expected returns on longéerm bonds may include a risk premium, so that #peeted
real rate diered by bonds ofarying maturity also mayary.

[sle)\(eial 2 Suppose the real interest rate is 3% per year and the expected inflation rate is 8%. What is
CHECK the nominal interest rate?

1 b. Suppose the expected inflation rate rises to 10%, but the real rate is unchanged. What
happens to the nominal interest rate?

Taxes and the Real Rate of Interest

Tax liabilities are based amminal income and the tax rate determined by thestors
tax braclet. Congress recognized the resultant “bedakceep” (when nominal income
grows due to inflation and pushes taxpayers into higher btafland mandated inde
linked tax brackts in theTax ReformAct of 1986.

Index-linked tax brac&ts do not prade relief from the déct of inflation on the taxa-
tion of saings, havever. Given a tax ratet( and a nominal interest ratB)( the afteitax
interest rate iR(1 — t). The real aftetax rate is approximately the afterx nominal rate
minus the inflation rate:

RL-0)—i=@+)A—-t)—i=r(l—t)—it (5.5)

Thus the aftetax real rate of returrefls as the inflation rate rises.viestors suer
an inflation penalty equal to the tax rate times the inflation rate. If Xfamele, you
are in a 30% tax braek and your imestments yield 12%, while inflation runs at the
rate of 8%, then your before-tax real rate is approximately 4%, andhaald, in
an inflation-protected tax system, net afteretsua real return of 4%(% .3) = 2.8%.
But the tax code does not recognize that th&t 8% of your return is no more than
compensation for inflation—not real income—and hence your -&dterreturn is
reduced by 8%x .3 = 2.4%, so that your aftdax real interest rate, at .4%, is almost
wipedout.
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52 COMPARING RATES OF RETURN FOR DIFFERENT

HOLDING PERIODS

Consider an iestor who seeks a safev@stment, for ample, in U.STreasury securi-

ties? Suppose we obsegvzero-coupofreasury securities with eeral diferent maturi-

ties. Zero-coupon bonds, discussed more fully in Chapter 14, are bonds that are sold at a
discount from par alue and praide their entire return from the thkfence between the
purchase price and the ultimate repayment of pare? Given the priceP(T), of aTrea-

sury bond with $100 paralue and maturity of years, we calculate the total risk-free
return as the percentage increase in tieevof the imestment wer the life of the bond.

r(T) = %— 1 (5.6)

For T = 1, Equation 5.6rovides the risk-free rate for anviestment horizon of 1 year

EXAMPLE 5.2 Annualized Rates of Return

Suppose prices of zero-coupdreasuries with $10Gte alue and &rious maturities are
as follovs. We find the total return of each security by uskguation 5.6

Risk-Free Return

Horizon, T  Price, P(T) [100/ P(T)] — 1 for Given Horizon
Half-year $97.36 100/97.36 — 1 = .0271 rd.5) =2.71%
1 year $95.52 100/95.52 — 1 = .0469 r1) = 4.69%

25 years $23.30 100/23.30 — 1 = 3.2918 re(25) = 329.18%

Not surprisingly longer horizons irExample5.2 provide greater total returns. Mo
should we compare the returns omeastments with dfering horizons7his requires that
we re-epress eacltotal return as aate of return for a common periodVe typically
express all imestment returns as &ffective annual rate (EAR), defined as the percent-
age increase in fundsviested wer a 1-year horizon.

For a 1-year imestment, the EAR equals the total returfl), and the gross return,
(1 + EAR), is the terminal alue of a $1 imestment. Br investments that last less
than 1 yegrwe compound the pgreriod return for a full yearror example, for the
6-month bill inExample5.2, we compound the 2.71% half-year return foo tsemian-
nual periods to obtain a terminalue of 1+ EAR =(1.0271% = 1.0549, implying that
EAR = 5.49%.

For investments longer than a ye#re comnention is to gpress the EAR as the annual
rate that wuld compound to the samealue as the actualvastment. Br example, the

2Yields onTreasury bills and bonds ofxious maturities are widelyailable on théVeb, for ékample atvahoo!
Finance, MSN Mong or directly from the Federal Reserv

SThe U.S.Treasury issueg-bills, which are pure discount (or zero-coupon) securities with maturities of up to 1
year However, financial institutions create zero-coup®reasury bonds calle@reasury strips with maturities

up to 30 years byuying coupon-paying-bonds, “stripping” dfthe coupon payments, and selling claims to the
coupon payments anthél payment ofdce alue separatelysee Chapter 14 for further details.
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investment in the 25-year bond lixample5.2 grows by its maturity date by adtor of
4.2918 (i.e., I+ 3.2918), so its EAR is

(1 + EARYS = 4.2918
1 + EAR = 4.291825 = 1.0600

In general, we can relate EAR to the total retor(T), over a holding period of length
by using the follving equation:

1+ EAR=[1 + r(T)]V" (5.7)

We can illustrate with anxample.

EXAMPLE 5.3 Equivalent Annual Return versus Total Return

For the 6-montfTreasury inExample 5.2T = Y%, and 1T = 2. Therefore,
1+ EAR = (1.0271F = 1.0549 and EAR= 5.49%
For the 25-yeallreasury inExample 5.2T = 25.Therefore,
1+ EAR = 4.2918/%>= 1.060 and EAR= 6.0%

Annual Percentage Rates

Rates on short-termestments (by camntion, T < 1 year) often are annualized using
simple rather than compound inter8s$tese are calleehnual percentagerates, or APRS.
For example, theAPR corresponding to a monthly rate such as thatgelaon a credit
card is calculated by multiplying the monthly rate by 12. More geneifliigere aren
compounding periods in a yeand the peperiod rate is;(T), then theAPR = n X r(T).
Corversely you caniind the true peperiod rate from thAPR asry(T) = T X APR.

Using this procedure, thAPR of the 6-month bond iftExample5.2 (which had
a 6-month rate of 2.71%) is2 2.71= 5.42%.To generalize, note that for short-term
investments of lengtfi, there aren = 1/T compounding periods in a yedherefore, the
relationship among the compounding period, the EAR, andRifeis

1+ EAR=[1+r(M]"=[1+r (MY =[1+TXAPRM (5.8)
Equivalently,
T
apr_ (Lt E,?I\_R) 1

EXAMPLE 5.4 EAR versus APR

We useEquation5.8to find theAPR corresponding to an EAR of 5.8% witarius com-
mon compounding periods, and, gersely the \alues of EAR implied by aAPR of
5.8%.The results appear fable 5.1

Continuous Compounding

It is evident fromTable5.1 (andEquation5.8) that the diference betweeAPR and EAR
grows with the frequencof compoundingThis raises the question, tdar will these
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. EAR =[1 + r¢(T)]"T - 1 = .058 APR = r¢(T)*(1/T) = .058
Compounding
Period T r(T) APR=[(1+ EAR"T —1)/T re(T) EAR = (1 + APR*T)*(1/T) -1
1 year 1.0000 .0580 .05800 .0580 .05800
6 months 0.5000 .0286 .05718 .0290 .05884
1 quarter 0.2500 .0142 .05678 .0145 .05927
1 month 0.0833 .0047 .05651 .0048 .05957
1 week 0.0192 .0011 .05641 .0011 .05968
1 day 0.0027 .0002 .05638 .0002 .05971
Continuous re = In(1 + EAR) = .05638 EAR = exp (r,) — 1 = .05971
TABLE 5.1
Annual percentage rate (APR) and effective annual rates (EAR). In the first
set of columns, we hold the equivalent annual rate (EAR) fixed at 5.8%, eXce |
and find APR for each holding period. In the second set of columns, we hold  Please visit us at
APR fixed and solve for EAR. www.mhhe.com/bkm

two rates dierge as the compounding frequgrmontinues to gw? Put diferently, what

is the limit of [1+ T X APR]VT, asT gets @er smallerAs T approaches zero, wefet-
tively approachcontinuous compounding (CC), and the relation of EAR to the annual
percentage rate, denoted hy for the continuously compounded case, igegiby the
exponential function

1+ EAR = exp (f,) = €'cc (5.9)

wheree is approximately 2.71828.
To find r, from the efective annual rate, we s@\Equation 5.%or r.. as follovs:

In(1 + EAR) = r,

where In (¢) is the natural logarithm function, theeirse of &p (). Both the gponen-
tial and logarithmic functions arevailable in Excel, and are called LN() and EXP(),
respectiely.

EXAMPLE 5.5 Continuously Compounded Rates

The continuously compounded annual percentagenatéhat pravides an EAR of 5.8%
is 5.638% (sedable5.1). This is virtually the same as t#&PR for daily compound-
ing. But for less frequent compounding, foraeple, semiannuallfheAPR necessary to
provide the same EAR is noticeably highBr718%.With less frequent compounding, a
higherAPR is necessary to priole an equialent efective return.

While continuous compounding may ast seem to be a mathematical nuisanaskw
ing with such rates in mgncases can actually simplify calculations apected return
and risk. ler example, gven a continuously compounded rate, the total return fgr an
periodT, r(T), is simply ep(T X r).* In other words, the total return scales up in direct

“This follows from Equation 5.9. If  EAR = €, then (1+ EAR)" = €T,
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proportion to the time periodl. This is far simpler than warking with the &ponents
that arise using discrete period compounding.another gample, look again atqua-
tion 5.1 There, the relationship between the real natdne nominal ratéR, and the infla-
tion ratei, r = R — i, was only an approximation, as demonstratedqyation5.3. But
if we express all rates as continuously compounded, Ewration5.1 is exact? that is,
r(real) = re(nominal) — i.

C8|-|\|IEC(|:EKPT A bank offers you two alternative interest schedules for a savings account of $100,000 locked
in for 3 years: (a) a monthly rate of 1%; (b) an annually, continuously compounded rate (r..) of
2 12%. Which alternative should you choose?

5.3 BILLS AND INFLATION, 1926—=2005

In this chapter we will often @rk with a history that lggns in 1926, and it isafr to ask
why. The reason is simply that January 1, 1926, is the starting date of the most widely
awailable accurate return database.

Table5.2 summarizes the history of short-term interest rates in the U.S., the inflation
rate, and the resultant real rateu can ind the entire post-1926 history of the annual rates
of these series on thextss Web site,www.mhhe.com/bkm (link to the student material
for Chapter 5)The annual rates oRbills are computed from rollingver twele 1-month
bills during each yeaThe real rate is computed from the anrii:ill rate and the percent
change in the CPI according Egjuation 5.2

Table5.2 shavs the &erages, standarddations, and theirfst-order serial correlations
for the full 80-year history (1926—2005) as well as fariaus subperiodS.he frst-order
serial correlation measures the relationship between the interest rate in one year with the
rate in the preceding yedf this correlation is posie, then a high rate tends to be fol-
lowed by another high rate, whereas if it igatve, a high rate tends to be folled by a
low rate.

The discussion of equilibrium real rates of interest in Section 5.1 suggests that we should
start with the series of real rat&hie arerage real rate for the full 80-year period, .72%, is
quite diferent from the werage wer the 40-year period 1966—-2005, which is 1.2%9¢é.
see that the real rate has been steadily rising, reachinglafe2.28% for the generation
of 1981-2005The standard deation of the real ratewer the whole period, 3.97%,as
driven by much higherariability in the early year3.he real rate ws far more stable in the
period of 1981-2005, with a standardridéion of only 2.35%.

We can attrilute a good part of these trends to policies of the Federal ReBeard.

Since the early 1980s, the Fed has adopted aypafimaintaining a lar rate of inflation
and a stable real rate. Some badi¢hat the higher el of real rates in recent years may
also be attribtable to increased produgty of capital, particularly imestments in infor
mation technology when applied to a better educated labor force.

1+r(nominal)
1+ inflation
1+r(nominal)
1+ inflation
= r.(rea) =r_(nominal) —i_

*1+r(rea) =

= In[1+r(real] = In( ) =In[1+r(nominal)] — In(1+ inflation)
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In the same @in, we

obsenre that aerage rates of 20

inflation in the years 1966 — T-bill rate
through 2005 were higher 159 — Inflation rate
than in the early twentieth 10 4

century because of deflation

in the early period. In line & 5+

with modern Fed policies, 8

the standard deation of e 07 'A[ DA ' ' ' '
the rate of inflation moder _51?26 193 1946 1956 1966 1976 1986 1996
ated signiicantly to a leel

of 1.62% from 1981 through -10

2005. Of course, no one can
rule out more ®reme tem-
porary fluctuations as a resul*
of possible seere shocks t0  FJGURE 5.2 Interest and inflation rates, 1926-2005
the economy

We have seen that fluctua-
tions in short-term interest
rates are determined bg-
ation in real interest rates
and the epected short-term

rate of inflation. In recent 121 —
years, for which there has e ominal wealth index

S 10+ 191 Real wealth index
been less ariability in the 12

104

real rate, inflation has been g s

the drving force. This is
clear in Figure5.2, where
we see that short-term inter
est rates he tracled infla-
tion quite closely since the

6
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2
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T T T T T T T
925 1935 1945 1955 1965 1975 1985 1995 2005

Wealth Index
o
1

2_
1950s. Indeed, the correla-
tion between thd-bill rate 0 . . . . . . .
and the inflation rate is .41 1965 1970 1975 1980 1985 1990 1995 2000 2005

for the full 80-year history

.69 for the later 40 years, pjGURE 5.3 Nominal and real wealth indexes for investments in Treasury
and 0.72 for the most recen  pills, 1966-2005 (inset figure is for 1925-2005)
generation, 1981-2005.

Figure5.3 shavs the
progression of the nominal and realwe of $1 inested inT-bills at the bginning of 1926,
accumulated to 2009.he progression of thealue of a $1 imestment is called aealth
index. The wealth inde in a current year is obtained by compounding the portfaioes
from the end of the pwous year by I+ r, the gross rate of return in the current year
Deviations of the curg of the nominal wealth inden Figure5.3from a smoothxgonen-
tial line are due toariation aer time in the rate of returithe lines inFigure5.3, which
grow quite smoothlyclearly demonstrate that short-term interest rate risk (real as well as
nominal) is smalleen for long-term horizons. It certainly is less yisky an order of mag-
nitude than imestments in stocks, as we will soon see.

One important lesson from this history is thieef of inflation when compoundeder
long periodsThe aerage inflation rate as 3.02% between 1926 and 2005, and 4.29%




124 PART Il Portfolio Theory and Practice

between 1966 and 200bhese rates may not seem impresshut are sufcient to reduce
the terminal alue of $1 inested in 1966 from a nominahiue of $10.08 in 2005 to a real
(constant purchasing per) value of only $1.63.

5.4 RISK AND RISK PREMIUMS

Holding-Period Returns

You are considering viesting in a stock-indefund. The fund currently sells for $100 per
shareWith an irvestment horizon of 1 yeahe realized rate of return on youvéstment
will depend on &) the price per share at yeagnd andk) the cash didends you will col-
lect over the year

Suppose the price per share at ye@nd is $110 and cashvidiends oer the year
amount to $4The realized return, called thelding-period return, HPR (in this case, the
holding period is 1 year), is deéd as

_ Ending price of a share Beginning price+ Cash diidend

HPR — -
Beginning price

(5.10)

In our case we ha

$110— $100+ $4 _
$100

This defnition of the HPR assumes thevidiend is paid at the end of the holding period.
To the «tent that diidends are receed earlier the HPR ignores reiestment income
between the receipt of the payment and the end of the holding pEni@ghercent return
from dividends is called theividend yield, and so the didend yield plus the capital gains
yield equals the HPR.

HPR = .14, or 14%

Expected Return and Standard Deviation

There is considerable uncertainty about the price of a share piderdl income 1 year
from now, however, so you cannot be sure about youergual HPRWe can quantify our
beliefs about the state of the economy and the stockemiarkerms of three possible sce-
narios with probabilities as presented in colurribrough E ofSpreadsheet 5.1

How can we ealuate this probability distriliion? Throughout this book we will char
acterize probability distrilttions of rates of return in terms of theipected or mean return,
E(r), and their standard diation, o. The pected rate of return is a probability-weighted
average of the rates of return in each scenario. Cailigighe probability of each scenario
andr(s) the HPR in each scenario, where scenarios are labeled oxédiday s, we may
write the e&pected return as

E(r) = p()r (s) (5.11)
S
Applying this formula to the data i8preadshedi.1, we ind that the epected rate of
return on the indefund is
E(r) = (0.30X 34%)+ (.5X 14%)+ [0.20 X (—16%)] = 14%

Spreadshedi.1 shavs that this sum can bevauated easily in Excel, using the SUM-
PRODUCT function, whichifst calculates the products of a series of number pairs, and
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A | B | c D | E | F | G | H

1

2
| 3 |Rates of return expressed as decimals
1 4 | Purchase Price = $100 T-bill Rate = 0.06

5
| 6 | Squared Squared
| 7 | State of the Year-end Cash Deviations Excess Deviations
8 Economy Probability Price Dividends HPR from Mean Returns from Mean
| 9 [Boom 0.3 129.50 4.50 0.34 0.040 0.28 0.040
110 [ Normal growth 0.5 110.00 4.00 0.14 0.000! 0.08 0.000
11 |Recession 0.2 80.50 3.50 -0.16 0.090 -0.22 0.090
|12 | Expected value (mean) SUMPRODUCT(B9:B11, E9:E11) = 0.14
| 13 | Standard deviation of HPR SUMPRODUCT(B9:B11, F9:F11)A.5 = 0.1732
| 14 | Risk premium SUMPRODUCT(B9:B11, G9:G11) = 0.08

15 [ Standard deviation of excess return SUMPRODUCT(B9:B11, H9:H11)20.5 =0.1732

SPREADSHEET 5.1

eXcel

Please visit us at

Distribution of HPR on the stock-index fund www.mhhe.com/bkm

then sums the products. Here, the number pair is the probability of each scenario and the
rate of return.

The standard dgation of the rate of returns{ is a measure of risk. It is deéd as the
square root of theariance, which in turn is thexpected alue of the squared dations
from the expected returnThe higher the ®atility in outcomes, the higher will be thees
age \alue of these squareduiations.Therefore, @riance and standardwlation measure
the uncertainty of outcomes. Symbolically

o= p(s)[r(9 —E(M)]° (5.12)

Therefore, in ourxample
02 = 0.3(34— 14F + .5(14— 14¥ + 0.2(~16 — 14F = 300,
and
o =+/300=17.32%

Clearly, what would trouble potential irestors in the indefund is the danside risk of
a—16% rate of return, not the upside potential of a 34% rate of r@tuenstandard dea-
tion of the rate of return does not distinguish between thesgithiveats both simply as
deviations from the mears long as the probability disttition is more or less symmetric
about the means is an adequate measure of risk. In the special case where we can assume
that the probability distriltion is normal—represented by the well-lumo bell-shaped
cune—E(r) ando are perfectly adequate to characterize the digtab.

Excess Returns and Risk Premiums

How much, if aiything, should you ivest in the indefund? First, you must ask Wwanuch
of an epected revard is ofered for the risk imolved in irvesting mong in stocks.

We measure the veard as the diérence between thexpected HPR on the inde stock
fund and theisk-free rate, that is, the rate you can earn byvieg mong in risk-free
assets such asbills, mong market funds, or the bankVe call this diference theisk
premium on common stocks. If the risk-free rate in thxraraple is 6% per yeaand the
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expected inde fund return is 14%, then the risk premium on stocks is 8% per Hear
difference in ap particular period between tlaetual rate of return on a rigkasset and the
risk-free rate is calledxcessreturn. Therefore, the risk premium is thepected alue of
the ecess return, and the standardidgon of the &cess return is an appropriate measure
of its risk. (SeeSpreadsheet 5fbr these calculations.)

The dgree to which imestors are willing to commit funds to stocks dependsign
aversion. Financial analysts generally assumeestors are riskveerse in the sense that,
if the risk premium were zero, peopl®wd not be willing to imest ay money in stocks.

In theory then, there mustwhys be a posite risk premium on stocks in order to induce
risk-averse investors to hold thexesting supply of stocks instead of placing all their mone
in risk-free assets.

Although this sample scenario analysis illustrates the concepts behind theicprantif
tion of risk and return, you may stillomder hav to get a more realistic estimate Eff)
ando for common stocks and other types of securities. Here, history has insighesr.to of
Analysis of the historical record of portfolio returnswaser, males use of aariety of
important statistical tools and concepts, and soinsetfirn to a preparatory discussion.

You invest $27,000 in a corporate bond selling for $900 per $1,000 par value. Over the coming
year, the bond will pay interest of $75 per $1,000 of par value. The price of the bond at year’s
end will depend on the level of interest rates that will prevail at that time. You construct the
following scenario analysis:

CONCEPT Interest Rates Probability Year-End Bond Price
CHECK .
High 2 $850
3 Unchanged .5 915
Low 3 985

Your alternative investment is a T-bill that yields a sure rate of return of 5%. Calculate the HPR
for each scenario, the expected rate of return, and the risk premium on your investment. What
is the expected end-of-year dollar value of your investment?

5.5 TIME SERIES ANALYSIS OF PAST RATES OF RETURN

Time Series versus Scenario Analysis

In a forward-looking scenario analysis we determine a set ofartescenarios and associ-

ated ivestment outcomes (rates of return), assign probabilities to each, and conclude by
computing the risk premium (theward) and standard diation (the risk) of the proposed
investment. In contrast, asset and portfolio return histories come in the form of time series
of past realized returns that do napkcitly provide investors’original assessments of

the probabilities of those obsex returns; we obseswvonly dates and associated HPRs.
We must infer from this limited data the probability distritons from which these returns
might haze been dnan or, at least, some of its characteristics suchxas@ed return and
standard déation.

Expected Returns and the Arithmetic Average

When we use historical data, we treat each obsiervas an equally Iy “scenarid. So
if there aren obsenations, we substitute equal probabilities of magnitudddt/eachp(s)
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in Equation5.11 The epected returni(r), is then estimated by the arithmetieeage of

the sample rates of return:

ZOEDWN-CICEES WRIC

= arthmetic average of rates of retumn

EXAMPLE 5.6 Avrithmetic Average and Expected Return

(5.13)

Spreadshedi.2 presents a (short) time series of annual holding-period returns for the S&P
500 inde over the period 2001-200%Ve treat each HPR of the= 5 obserations in

the time series as an equallyeix annual outcome during the sample years and assign it
an equal probability of 1/5, or .2. Column BSpreadshedi.2 therefore uses .2 as prob-
abilities, and Column C sha the annual HPR#&pplying Equation5.13 (using Exceb
SUMPRODUCT function) to the time series Bpreadshedi.2 demonstrates that adding

up the products of probability times HPR amounts to taking the arithnvetiage of the

HPRs (compare cells C10 and C11).

Example5.6 illustrates the logic for the wide use of the arithmetierage in inest-
ments. If the time series of historical returasly represents the true underlying probabil-
ity distribution, then the arithmetiozarage return from a historical period pides a good

forecast of the westment expected HPR.

The Geometric (Time-Weighted) Average Return

We saw that the arithmetic\eerage pruoides an unbiased estimate of #xpected rate of
return. But what does the time series tell us abouathe&l performance of the portfolio
over the full sample period? Column F $preadshedi.2 shavs the wealth inde from
investing $1 in an S&P 500 indéund at the bginning of 2001 The \alue of the wealth
index at the end of 2005, $1.0275, is the termirzdilig of the $1 westment, which implies

a5-year holding-period return (HPR) of 2.75%.

A [ B [ C [ D E [ F
L1
2
| 3| Implicitly Assumed Squared Gross HPR = | Wealth
4 Period Probability = 1/5 HPR (decimal) Deviation 1+ HPR Index*
5 2001 2 —-0.1189 0.0196 0.8811 0.8811
| 6 | 2002 2 -0.2210 0.0586 0.7790|  0.6864
7 2003 2 0.2869 0.0707 1.2869| 0.8833
| 8] 2004 2 0.1088 0.0077 1.1088|  0.9794
9 2005 .2 0.0491 0.0008 1.0491 1.0275
| 10| Arithmetic average AVERAGE(C5:C9) = 0.0210
| 11| Expected HPR SUMPRODUCT(B5:B9, C5:C9) = 0.0210
112 | Standard deviation =~ SUMPRODUCT(B5:B9, D5:D9)A.5 = 0.1774 Check:
| 13| STDEV(C5:C9) = 0.1983 1.0054/5=
14 Geometric average return GEOMEAN(E5:E9) —1 = 0.0054| 1.0275
15 [*The value of $1 invested at the beginning of the sample period (1/1/2001).

SPREADSHEET 5.2 eXcel

Please visit us at
Time series of HPR for the S&P 500  www.mhhe.com/bkm
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Portfolio Theory and Practice

An intuitive measure of performancees the sample period is thex@d) annual HPR
that would compound er the period to the same terminallue as obtained from the
sequence of actual returns in the time series. Denote this rgfesdyhat

Terminal value= (1 +r)) X (1 +7r,) X -+ X (1+r5) = 1.0275
(1 + g)" = Terminal \alue= 1.0275 (cell F9 in Spreadsheet 5.2) (5.19)
g = Terminal walue/" — 1 = 1.0273% — 1 = .0054= .54% (cell E14)

where 1+ g is the geometric\erage of the gross returns {1r) from the time series
(which can be computed with ExcelGEOMEAN function) and is the annual HPR that
would replicate theifal value of our imestment.

Practitioners of imestments also calilthetime-weighted (as opposed to dollaveighted)
average return, to emphasize that each past returrvescan equal weight in the process
of averaging.This distinction is important becauseéstment managers ofterperience
significant changes in funds under management\asiars purchase or redeem shares.
Rates of return obtained during periods when the fundgs laroduce layer dollar prois
than rates obtained when the fund is snVa#. discuss this distinction further in the chap-
ter on performancevaluation.

EXAMPLE 5.7 Geometric versus Arithmetic Average

The geometric \'erage inExample5.6 (.54%) is substantially less than the arithmetic
average (2.10%)This discrepanc sometimes is a source of confusion. It arises from the
asymmetric déct of positve and ngative rates of returns on the terminalue of the
portfolio.

Obsenre the returns in years 2002 (—.2210) and 2003 (.286%).arithmetic @erage
return oer the 2 years is (—.2210 .2869)/2= .03295(3.295%). Havever, if you had
invested $100 at the gmning of 2002, you wuld have only $77.90 at the end of the year
In order to simply breakven, you vould then hee needed to earn $21.10 in 2003, which
would amount to a whopping return of 27.09% (21.10/77.9@)y is such a high rate
necessary to breaken, rather than the 22.10% you lost in 2002? Because your base for
2003 vas much smaller than $100; thevkr base means that it &ka greater subsequent
percentage gain to just breakea. Exen a rate as high as the 28.69% realized in 2003
yields a portfolio alue in 2003 of $77.9& 1.2869= $100.25, barely greater than $100.
This implies a 2-year annually compounded rate (the geomegiage) of only .12%,
significantly less than the arithmeticexage of 3.295%.

The lager the swings in rates of return, the greater the discrefmtereen the arith-
metic and geometricvarages, that is, between the compound rate earszdle sample
period and thewerage of the annual returns. If returns come from a normal disonib
the diference gactly equals half theariance of the distriltion, that is,

Geometric serage= Arithmetic average— /2 o (5.15)
(A warning: to usdequation 5.15you must gpress returns as decimals, not percentages.)

Variance and Standard Deviation

When thinking about risk, we are interested in theliilood of deiations from thesxpected
return. In practice, we usually cannot directly obsespectations, so we estimate the
variance by eeraging squared dimtions from ourestimate of the epected return, the
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arithmetic &erager. AdaptingEquation5.12for historic data, we again use equal proba-
bilities for each obseation, and use the samphegage in place of the unobsableE(r).

Variance = expectedvalue of squared deviations
a? =2 p(s) [r(9 —E(M)]?

Using historical data with obserations, weestimate variance as

o’ :%i[r(s) -7]? (5.16)

EXAMPLE 5.8 Variance and Standard Deviation

Take another look aSpreadshedi.2. Column D shws the square detions from the
arithmetic &erage, and cell D12 gs the standard diation as the square root of the sum
of products of the (equal) probabilities times the squareiiens (.1774).

The \ariance estimate froequation5.16 is dovnward biased, heever. The reason is
that we hge talen deiations from the sample arithmetieesage,r, instead of the unkmn,
true expected alue,E(r), and so hee introduced a bit of estimation errdhis is sometimes
called adegrees of freedom bias.We can eliminate the bias by multiplying the arithmetic
awerage of squared dations by thedctorn/(n — 1). The \ariance and standardwigtion
then become

2_(_n 1g 2 1 ¢ a2
i C S (CRUE Y (ER
(5.17)

_ L S -2
U—Jn_lélr(S) ]

Cell D13 shavs that the unbiased estimate of the standaritien is .1983, which is a bit
higher than the .1774alue obtained in cell D12.

The Reward-to-Volatility (Sharpe) Ratio

Finally, it is worth noting that imestors presumably are interested in thpeetedexcess
return the can earn eer theT-bill rate by replacing-bills with a risky portfolio as well
as the risk thewould thereby incuwWhile theT-bill rate is not ixed each period, we still
know with certainty what rate we will earn if we purchase a bill and hold it to maturity
Other irvestments typically entail accepting some risk in return for the prospect of earning
more than the saf&bill rate. Irvestors price riskassets so that the risk premium will be
commensurate with the risk of thatpectedexcess return, and hence #’best to measure
risk by the standard dition of excess, not total, returns.

The importance of the tradefddetween revard (the risk premium) and risk (as mea-
sured by standard diation or SD) suggests that we measure the attraction ofvastin
ment portfolio by the ratio of its risk premium to the SD of ksess returns.

Risk premium

D of excess return (518)

Sharpe ratio (for portfoliosy S

This revard-to-\wlatility measure {fst proposed byilliam Sharpe and hence called the
Sharperatio) is widely used towaluate the performance ofviestment managers.

129
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EXAMPLE 5.9 Sharpe Ratio

Take another look aBpreadshedi.1. The scenario analysis for the proposegegiment

in the stock-inde fund resulted in a risk premium of 8%, and standaviatien of excess
returns of 17.32%This implies a Sharpe ratio of .46, alwe that is pretty much in line
with past performance of stock-indéunds.We elaborate on this important measure in
future chapters and shothat while it is an adequate measure of the risk—return trade-
off for diversified portfolios (the subject of this chapter), it is inadequate when applied
to individual assets such as shares of stock that may be held as pageofdieersified
portfolios.

Using the annual returns for years 2003-2005 in Spreadsheet 5.2,

S4B 2. Compute the arithmetic average return.
CHECK

4

b. Compute the geometric average return.
c. Compute the standard deviation of returns.
d. Compute the Sharpe ratio assuming the risk-free rate was 6% per year.

56 THE NORMAL DISTRIBUTION

The bell-shapedormal distribution appears naturally in mguapplications. Br example,
heights and weights of the population are well described by the normalwdistritin fact,
mary variables that are the end result of multiple random influencesxhilbié a normal
distribution. By the same logic, if returxgectations implicit in asset prices are rational,
actual rates of return realized should be normally digieith around thesepectations.

To see why the normal cuevis “normal, consider a n&spaper stand that turns a prof
of $100 on a good day and breaksmeon a bad dawith equal probabilities of .S hus,
the mean daily prdfis $50 dollarsWe can hild a tree that compiles all the possible out-
comes at the end of wiperiod. Here is aavent tree shaving outcomes after 2 days:

Two good days, profit = $200

One good and one bad day, profit = $100

Two bad days, profit=0
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1 | 1 1
-3c -2 -1c 0 +1c +20 +30

=50 -30 -10 10 30 50 70

FIGURE 5.4 The normal distribution

Notice that 2 days can produce thrededént outcomes and, in generatays can pro-
ducen + 1 possible outcome3he most lilely 2-day outcome is “one good and one bad
day” which can happen in twways (frst a good dayor first a bad day)The probability of
this outcome is .5. Less Bky are the tw extreme outcomes (both good days or both bad
days) with probability .25 each.

What is the distribtion of profts at the end of marnbusiness days?dF example, after
200 days, there are 201 possible outcomes and, again, the midrange outcomes are the more
likely because there are more sequences that lead to theaafple, while there is only
one sequence that results in 200 conseeuiad days, there are an enormous number of
sequences that result in 100 good days and 100 badTdeeyprobability distribtion will
eventually tale on the appearance of the bell-shaped normal distify with midrange
outcomes most lidy, and etreme outcomes least &ky.°

Figure5.4is a graph of the normal curwith mean of 10% and standard/id¢ion of
20%.The graph shes the theoretical probability of rates of return witharigus ranges
given these parameteis.smaller SD means that possible outcomes cluster more tightly
around the mean, while a higher SD implies mortusgié distrilutions.The likelihood of
realizing any particular outcome when sampling from a normal distidn is fully deter
mined by the number of standardvidgions that separate that outcome from the mean.
Put diferently, the normal distribtion is completely characterized byaywarameters, the
mean and SD.

Investment management i&rfmore tractable when rates of return can be well approxi-
mated by the normal distution. First, the normal distriltion is symmetric, that is, the
probability of aly positve deviation abae the mean is equal to that of ayatve devia-
tion of the same magnitudadbsent symmetrymeasuring risk as the standardidéon
of returns is inadequate. Second, the normal digtdb belongs to a specigrhily of

5As a historical footnote, early descriptions of the normal digtidh in the eighteenth century were based on the
outcomes of a “binomial tree” likthe one we ha dravn for the nevspaper stand xéended out to manperiods.
This representation is used in practice to priceyn@ption contracts, as we will see in Chapter 1. & nice
demonstration of he the binomial distribtion quickly approximates the normal, gotw.j cu.edu/math/isep/
Quincunx/Quincunx.html.
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distributions characterized as “stableecause of the follwing propertyWhen assets with
normally distriluted returns are méd to construct a portfolio, the portfolio return also is
normally distriluted.Third, scenario analysis is greatly simigd when only tw param-
eters (mean and SD) need to be estimated to obtain the probabilities of future scenarios.
How closely must actual return distutions ft the normal cure to justify its use in
investment management? Clearllge normal cur@ cannot be a perfect description of
reality. For example, actual returns cannot be less thdi®0%, which the normal distri-
bution would not rule out. But this does not mean that the normaleccamnot still be
useful.A similar issue arises in mgrother contets. For example, shortly after birth,
a babys weight is typically ealuated by comparing it to a normal ceref nevborn
weights.This may seem surprising, because a normal digtoib admits alues from
minus to plus inhity, and surely no baby is born with agaéve weight.The normal
distribution still is useful in this application because the SD of the weight is small rela-
tive to its mean, and the &khood of a ngative weight would be too trial to matter
In a similar spirit, we must identify criteria to determine the adegoat¢he normality
assumption for rates of return.

EXAMPLE 5.10 Normal Distribution Function in Excel

Suppose the monthly rate of return on the S&P 500 is approximately normally distrib-
uted with a mean of 1% and standardidi&on of 6%.What is the probability that the
return on the indein ary month will be ngatve? We can use Excel’kuilt-in func-

tions to quickly answer this questiohhe probability of observing an outcome less than
some cutdfaccording to the normal disttibion function is gien as NORMDIST (cutdf
mean, standard diation, TRUE). In this case, we ant to knev the probability of an out-
come belw zero, when the mean is 1% and the standaritien is 6%, so we compute
NORMDIST(0, 1, 6,TRUE) = .4338.We could also use Excslhuilt-in standard normal
function and ask for the probability of an outcome 1/6 of a standaidtid@ belav the
mean.This would be the same: NORMSDIST(/6) = .4338.

CONCEPT
CHECK What is the probability that the return on the index in Example 5.10 will be below —15%?

S

5.7 DEVIATIONS FROM NORMALITY

To assess the adequyaaf the assumption of normality we focus orwvidéons from nor
mality that would invalidate the use of standardviion as an adequate measure of risk.
Ouir first criterion is symmetnA measure of asymmetry callsklew uses the ratio of the

’In fact, the standard diation is 511 grams while the mean is 3,958 grainsegative weight vould therefore
be 7.74 standard diations belav the mean, and according to the normal distidn would have probability of
only 4.97x 107%. The issue of rgatve birth weight clearly ist'apractical concern.
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averagecubed deviations from the mean, called

133

the third moment, to the cubed standardiale
tion to measure gnasymmetry or “s@wness”
of a distrilution.

Elr(s) — EMI°
3

Skew = (5.19)

g
Cubing deiations maintains their sign (for
example, the cube of a gative number is nga-
tive). Thus, if the distribtion is “skewed to the
right;” as is the dark cuesin Figure5.5A, the
extreme positre values, when cubed, will domi-

Probability

— Positively skewed

nate the third moment, resulting in a pasiti
measure of gw. If the distrilution is “slewed
to the left, the cubed ®treme negative values
will dominate, and the s will be negative.
When the distribtion is positvely skewed
(the slew is greater than zero), the standal

.030 A
-~ Negatively skewed
025 - —- Normal
020
Skew = .75
T T 066 T T n
-.40 -.20 .00 .20 40 .60

Rate of Return

FIGURE 5.5A Normal and skewed distributions
(mean = 6%, SD = 17%)

deviation overestimates risk, becausgtreme
positive deviations from &pectation (which are

not a source of concern to thevéistor) ngertheless increase the estimate ofatility.
Corversely and more important/yhen the distribtion is ngatively skewed, the SD will

underestimate risk.

Another potentially important da&tion from normality concerns the &khood of
extreme \alues on either side of the mean at tkgedse of a smaller fraction of moderate

deviations. Graphically speaking, when the tails of a

distribution are “at; there is more probability mass
in the tails of the distriltion than predicted by the
normal distrilution, at the epense of “slender shoul-
ders, that is, less probability mass near the cent
of the distrilution. Figure5.5B superimposes a &f-
tailed” distribution on a normal with the same meal
and SDAIlthough symmetry is still preseed, the SD
will underestimate the lidihood of atreme eents:
large losses as well as d¢gr gains.

Kurtosisis a measure of the gieee of &t tails. In
this case, we use thepectation of deiations from
the mean raised to tHeurth power and standardize
by dividing by the fourth paer of the SD, that is,

Elr(s) — EMOI* _

a?

Kurtosis= 3 (5.20)
We subtract 3 from the ratio iBquation5.20 because
the ratio for a normal distrilion would be 3.Thus,
the kurtosis of a normal disttition is deined as zero,
and aw kurtosis abwe zero is a sign

.60
Normal —=— Fat-tailed
.50
2
‘2
@
[a)]
2
5
©
Q
4
o Kurtosis
107 =.35
T T -OC T T T
-.6 -4 -2 0 2 4 .6 .8

Rate of Return

FIGURE 5.5B Normal and fat-tailed distribu-

tions (mean = .1, SD = .2)

of fatter tails than wuld be obsemd
in a normal distribtion. The kurto-
sis of the distribition inFigure5.5B,
which has visibledt tails, is .36.

CONCEPT
CHECK

6

Estimate the skew and kurtosis of the five rates in
Spreadsheet 5.2.
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5.8 THE HISTORICAL RECORD OF RETURNS ON EQUITIES

AND LONG—=TERM BONDS

We took a long road to reach this sectionf hov we are in a position to deg useful
insights from the historical record/e examine the time series af/é broadly drersified
risky portfolios. The World portfolio of lage stocks includes the matkindex portfolios
of large stocks in 40 countries, weighted by the raadapitalization (total maek value)
of the country indees.The rates of return on this (and ¥verld bond) portfolio are based
on dollar wealth indees, that is, theinclude gains/losses from changes in th&ug of
the foreign currencies relaé to the U.S. dollaiThus, the picture we present is from the
standpoint of a U.S. uestor

U.S. lage stocks mak up a signitant part, approximately 40%, of théorld portfo-
lio of large stocksAlong with theWorld lamge equities, we shworesults for a portfolio
of large U.S. stocks, speimélly, the S&P 500 inde The riskier portfolio composed of
smaller U.S. stocks shws up net. Finally, we present statistics for éwong-term bond
portfolios. “World bonds” aerages the return on long-termvgonment bond indes of
16 countries, weighted by the GDP of these countries. Here, too,Tté&sury bonds
male up a signitant, although somehat smallerfraction of the portfolio returns.

Average Returns and Standard Deviations

Table 5.3 compiles the werage rates of return and their standardiad®ns wer gen-
erational periods of 25 years, as well as summaries forubelb period of 80 years
and the recent 40 years since 196igure5.6 presents frequegndistributions of those
returns As we hae seen,werages and standardviigtions of rav annual returns should
be interpreted with caution. First, standardidgons of total returns are fatted by
variation in the risk-free rate and thus do not measure the true source of risk,,namely
the uncertainty surroundinexcess returns. Second, annual rates that compouwed a
whole year ghibit meaningful amounts of slwness, and estimates of kurtosis also may
be misleading.

Nevertheless, these simple statistics stillei@ much about the nature of returns for
these asset classe@rfexample, the asset classes with highelatility (standard déa-
tion) have provided higher gerage returns, supporting the idea thaestors demand a
risk premium to bear risk. Obsexvfor ekample, the consistently lger aerage return
as well as standard dations of small compared with & stocks, or stock compared to
bond portfolios. Indct, for eery generation, thevarage returns on the stock portfolios
were higher than th&bill rate.

Another feature (also obsed forT-bill and inflation rates) is that the nature of returns
around the wrld and in the U.S. seems tovkachanged since the 1960s. Standaxkdade
tions of stock portfolios hee fallen, particularly for small stocksybhave remained about
the same for bonds.

Other Statistics of the Risky Portfolios

Table5.4 summarizes the essential statistics of the anexaats returns of theite risky
portfolios. The statistics from which we can neakaferences about the nature of the return
distributions—slew, kurtosis, and serial correlation—are computed from Xoess con-
tinuously compounded rates, that is, théedénce between the continuously compounded
rates on the rigkportfolios and the continuously compoundedill rate.
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FIGURE 5.6 Frequency distributions of rates of return for 1926-2005
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Sharpe Ratios

The ravard-to-\olatility (Sharpe) ratios of thévie risky portfolios are of the same order of
magnitudeThe Sharpe ratios of the more recent 40 years, 1966—-2005, awstsirtaer
and generally more uniform across portfolios, in the range of .30 to .34. Notieayeno
that the portfolio of U.S. long-tertbonds has a sigmifantly lover Sharpe measure (.21)
than the other foupossibly for a good reasofilthough the yeato-year rate of return on
these bonds will ary, these bonds may senas “the” risk-free choice forvestors with
long-term horizons. Consider a pension fund that musigea knevn future cash fio to
pay bengtiaries.The only risk-free ghicle to accomplish this objeati would be to inest

in a portfolio of U.S.T-bonds preiding cash flevs that match the pension fuedbliga-
tions. Hence, westors with a long horizon may not demand a risk premium commensurate
with the risk as measured by the standakdatien of short-term returns.

Serial Correlation

In well-functioning capital marts, we would expect excess returns from successiyears
to be uncorrelated, that is, the serial correlationxaess returns should be nearly zero.
Suppose, forxample, that the serial correlation of the annual rate of return on a stock
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Portfolio Theory and Practice

index were ngative and that the indefell last year Investors therefore could predict that
stock prices are more kky than usual to rise in the coming yeBut armed with this
insight, thg would immediately buy shares and bid up stock prices, thereby eliminating
the prospect of an abke-normal return in the coming yed&lve elaborate on this mecha-
nism in the chapter on makeficiengy.

Such a consideration does not apply toTiel rate, whose return is kmm in adwance.
The positve serial correlation of-bill rates (.83 for the last 40 years) indicates that the
short-term rate follas periods in which it predictably tends to rise at. fHowever, this
predictability in the baseline risk-free rate is not a source of abnormébpia., &ces-
sive profts relatve to risk borne)This is a reason why the serial correlation of tibtal
return on risk assets will be “contaminated” by that of the risk-free rate, and why we
instead prefer to measure serial correlation fromwess rates. Indeed, wind that the
serial correlation is practically zero for four of theef portfolios.The serial correlation
for World bond portfolio returns is somvbat high, lnt the fct that it vas ngative for the
most recent years 1981-2005 suggests it is not economicallyicaghif

Skewness and Kurtosis

Skewness and kurtosis are computed from the continuously compoundet@ihaitefore,

if the true underlying distrilition of continuously compounded returns is normal, both
should be zero. Inatt, the skws of the lage stock portfolios are signtantly nejative,
—.62 for theWorld and—.70 to —.80 for the U.SThis nejative slew may result from
“lumpiness” of bad nes (compared with good ns) that produces occasionaltbamge
negative “jumps” in prices. It appears that the muclyéarstandard deation of the small
stock portfolio reduces the rebagi impact of such mgtive jumps, and so the gative
skew of the distrilution is less pronounced (in the range-022 to—.30). Returns on the
World and U.S. geernment bond portfolios are slightly posdly skewed.

Negative slews imply that the standard wation underestimates the actualde of
risk. Take another look aFigure5.5A; it shavs two distributions with identical annual
means (6%) and standardvasions (17%), similar to those of theaess returns of U.S.
large stocks. But the sls of —.75 and .75 suggest a sigoént diference in risk, as is
evident from the magnitude of possible lossEse probability of an annual loss greater
than 40% is signi€antly higher for the rgatively skewed distritution than for the normal
distribution with the same mean and standandat®n.

Concern gpressed in the literature about the presencatdhfls in stock return distri-
butions does not manifest itself in this histoltyappears that obsexd fat tails are lagely
due to older historyThe most recent 40 years shao kurtosis for the Ige stock inde,
and only a smallatue for small stocks.

Estimates of Historical Risk Premiums

The striking obsemtion here, again, is that theesage rcess return as positie for every
generation eer the entire 80-year historiy fact, research sh that this pattern character
izes periods as short as decade®rage gcess returns of lge stocks are sombat lover
in the more recent 40-year history andemll, suggest a risk premium of 6-8B&erage
excess returns for small U.S. stocks, as well as their standeiatiole, were much loer
over the recent 40-year history thareothe full 80-year period.

An often-overlooked fact about the precision of estimates xjpected returns and stan-
dard deiation needs to be claigd. Suppose we obserthe time series of a stock price
over 10 yearsWe compute the 10-year HPR from the price at ttggnméng, P(0), and
at the end of the 10 yeai®(10), byr(10) = P(10)/P(1) — 1. We can then annualize the
10-year return. Notice from this calculation that we obtain tleeage returrsolely from
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the start and ending prices. Prices from more frequent aigersduring the 10-year
period would change neither then&l value of the stock nptherefore, our estimate of its
expected returnThe only vay to increase the precision of this estimate of peeted
annual return wuld be to obtain a sample longer than 10 years. But as we dig deeper into
the past to obtain a longer sample, weehim ask whether the return distriton of more-
distant history is representei of more-recent period$his is precisely the dilemma we
face when we obses\a lage diference between 80-year and 40-year historicatages.

Interestingly this limitation doesot apply to estimates ofaviance and standardwie-
tion. Increasing the number of obsaiens by slicing a 10-year sample into progresgi
shorter interals does increase the accyratthe estimate of the standardid¢ion of annual
returns, gen if the @erall sample period remains 10 yedrkis is because we learn about
volatility by observing fluctuations of returns within the sample period. (In contrast, intra-
period fluctuations do not teach us about the general trend of stock prices, which is the basis
of the estimate ofected return.) &t this reason, estimates of risk (standardadi®en) can
be made more reliable than estimatesxpieted returns by sampling more frequehtly

Our estimate of risk may also sharpen our estimategpeteed return. & example, when
we obsere that broadly deersified portfolios she similar Sharpe ratios, we v@more con-
fidence in the estimates of theipected returns from historicatlerages. Similarlywhen we
obsene that the aerage return of small stocks fell in tandem with their standasidtoan (the
latter was 39% from 1926 to 200%itonly 29% between 1966 and 2005), weehaore con-
fidence that the more recenesages better estimatepected returns for the near future.

A Global View of the Historical Record

As financial markts around the @rld grav and become more transparent, U.Segtors
look to improve diversification by irvesting internationallyForeign irvestors that tradition-
ally used U.S.ihancial markts as a safe Wen to supplement home-countryé@stments
also seek internationahdirsification to reduce riskihe question arises as tosbistorical
U.S. &perience compares with that of stock nedskaround the avld.

Figure5.7 shavs a century-long history (1900-2000) ofeeage nominal and real
returns in stock masks of 16 deeloped countriesWe find the United States in fourth
place in terms of\erage real returns, behind Swed&nstralia, and SoutAfrica. Fig-
ure5.8 shavs the standard @i@tions of real stock and bond returns for these same coun-
tries.We find the United States tied with four other countries for third place in terms of
lowest standard détion of real stock returns. So the United States has done wetipb
abnormally so, compared with these countries.

One interesting feature of thedgures is that the countries with theonst results,
measured by the ratio off@rage real returns to standardsid¢ion, are Italy Belgium,
Germalry, and Japan—the countries mostaiated byVorld War 1l. The top-performing
countries aréustralia, Canada, and the United States, the countries |eastated by the
wars of the twentieth centurgnother perhaps more telling feature, is the insigaift
difference between the real returns in théedént countriesThe diference between the
highest aerage real rate (Sweden, at 7.6%) from trexage return across the 16 countries
(5.1%) is 2.5%. Similarlythe diference between th@erage and the Veest country return
(Belgium, at 2.5%) is 2.6%. Using theegiage standard diation of 23%, the-statistic for
a difference of 2.6% with 100 obseations is

Differenceinmean 2.6

t- Statistic = = =1.3
Standad deviation/</n  23/+/100

8The 10-yeareerage returm(10) is a geometricve@rage We knav from Equatiorb.15 that the arithmetiovar-
age is greater by #2. Any improved accuragin estimatings? will still leave us with the original imprecision in
the geometric\gerage return.
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FIGURE 5.7 Nominal and real equity returns around the world, 1900-2000

Source: Elroy Dimson, Paul Marsh, and Mike Staunton, Triumph of the Optimists: 101 Years of Global Investment Returns (Princeton
University Press, 2002), p. 50. Reprinted by permission of the Princeton University Press.

35

32
B Equities

M Bonds

30

30 1 29

Standard Deviation of Annual Real Return (%)

Can Aus UK. Den US. Swi Neth Spa

re Bel SAf Swe Fra Ita Jap Ger

FIGURE 5.8 Standard deviations of real equity and bond returns around the world, 1900-2000

Source: Elroy Dimson, Paul Marsh, and Mike Staunton, Triumph of the Optimists: 101 Years of Global Investment Returns (Princeton
University Press, 2002), p. 61. Reprinted by permission of the Princeton University Press.
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which is far belav corventional leels of statistical signifance We conclude that the U.S.
experience cannot be dismissed as an outlier case. Hence, using the U.S. stetlsmark
yardstick for return characteristics may be reasonable.

These days, practitioners and scholars are debating whether the historicakth§e a
risk-premium of lage stocks wer T-hills of 8.39% {able5.4) is a reasonable forecast
for the long termThis debate centers aroundotwuestions: First, do economiactors
that prevailed over that historic period (1926—2005) adequately represent those that may
prevail over the forecasting horizon? Second, is the arithmetcage from theailable
history a good yardstick for long-term forecasts?

5.9 LONG—-TERM INVESTMENTS*

Consider an ivestor sging $1 today tward retirement in 25 years, or 300 monthsest-
ing the dollar in a risk stock portfolio (reimesting dvidends until retirement) with an
expected rate of return of 1% per month, this retirement “fundXpeeted to grev almost
20-fold to a terminal @lue of (1+ .01 = $19.79 (preiding total gravth of 1,879%).
Compare this impresg result to an Westment in a 25-yedreasury bond with a risk-
free EAR of 6% (.407% per month) that yields a retirement fund of3:064.29.We
see that a monthly risk premium of just .593% produces a retirement fund that is more than
four times that of the risk-free alternagi Such is the peer of compound interesiVhy;,
then, would anyone imest in Treasuries? Qlously, this is an issue of tradingc@ess
return for risk What is the nature of this return-to-risk tradé&dfhe risk of an imestment
that compounds at fluctuating rategeothe long run is widely misunderstood, and it is
important to igure it out.

We can construct the probability distution of the stock-fund terminalalue from a
binomial tree just as we did earlier for thevspaper stand xeept that instead afdding
monthly profts, the portfolio aluecompounds monthly by a rate dvan from a gven dis-
tribution. For example, suppose we can approximate the portfolio monthly distiibas
follows: Each month the rate of return is either 5.54% or —3.54%, with equal probabilities
of .5.This confguration generates argected return of 1% per monifhe portfolio risk is
measured as the monthly standandaléon: \/.5>< (5.54—1)% + .5% (—3.54—1)? = 4.54%

After 2 months, thewent tree looks li& this:

Portfolio value = $1 x 1.0554 x 1.0554 = $1.1139

Portfolio value = $1 x 1.0554 x .9646 = $1.0180

Portfolio value = $1 x .9646 x .9646 = $.9305

*The material in this and the xiesubsection addresses important and ongoing debates about risk and return,
but is more challenging. It may be skipped in shorter courses without impairing the ability to understand later
chapters.



142

Probability of Outcome

FIGURE 5.9 Probability of investment outcomes after 25 years
with a lognormal distribution (approximated from a binomial tree)
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“Growing” the tree for 300 months

.05 will result in 301 diferent possible
.045 - outcomes.The probability of each
.04 - outcome can be obtained from Exsel’
.035 - BINOMDIST function. From the 301
.03 - possible outcomes and associated
.025 - probabilities we compute the mean
02 - ($19.79) and the standard viion
.015 + Tail = $10,595,634 ($18.09) of the terminalalue. Can
.01 ) we use this standard \dation as a
005 {§ Tail =$0.00002 \ measure of risk to be weighed against
0 . . . . Tttt the risk premium of 19.79 4.29=

40 60 80 100 120 140 160 180 200 15.5(1,550%)? Recalling the fett

Investment Outcome (truncated at $200) of asymmetry on theaﬁdity of stan-

dard deiation as a measure of risk,
we must frst view the shape of the

probability distritution at the end of
the tree.

Figure5.9 plots the probability of
possible outcomes against the termiredlie. The asymmetry of the distuilion is striking.
The highly positie slewness suggests the standardiaigon of terminal @alue will not be
useful in this case. Indeed, the binomial disitiin, when period outcomes compound,
converges to dognor mal, rather than a normadistribution. The lognormal describes the
distribution of a \ariable whosdogarithm is normally distrilited.

Risk in the Long Run and the Lognormal Distribution

When the continuously compounded rate of return on an asset is normallyutsitrith
ewery instant, the &ctive rate of return, the actual HPR, will be lognormally disieial.
We should say at the outset that for short periods of up to 1 month, fikedife between
the normal and lognormal distition is suficiently small to be safely ignorethis is so
because for lo rates of return (either gative or positie),r. = In (1 + r) = r, that is,r,
is very close ta. But when concerned with longer periods, it is important te &dcount
of the fact that it is the continuously compounded rates that are normally dlisttjlwhile
the obsergd HPR is lognormally distrilied.

Suppose that the annuallyontinuously compounded ratg,, is normally distriluted
with an annual geometric mean @fand standard dé@tion o. Remember that the geo-
metric mean is the annual rate that will compound to the obderrminal alue of a
portfolio.

If the continuously compounded rate is normally disiiol, the arithmetic mean,
which gives the gpected annual return, will be ¢gar than the geometric mean byaetly
half the \ariance.Thus, the gpected return of the continuously compounded rate will be
(restatingequation 5.15

m=g+ %o? (5.21)
Therefore, we can write thegected EAR as
1+ E(r) = e+’ (5.22)

The cowenience of wrking with continuously compounded ratesvioecomes adent.
Because the rate of return on amestment compounds at thepected annual rate &fr),



CHAPTER 5 Learning about Return and Risk from the Historical Record

the terminal wlue afterT years will be [1+ E(r)]". We can write the terminalalue in
terms of the continuously compounded rate with an annual meamd standard dée-
tion, o, as

1+ E(r)]T — [eg+1/z<r2]T = @T+%o’T (5.23)

Notice that the mean of the continuously compounded magdnd the ariance ¢2T)
both grav in direct proportion to the uw@stment horizorT. It follows that the standard
deviation graws in time at the rate of/T . This is the source of whaippears to be a
mitigation of irvestment risk in the long run: Because tkpegted return increases with
horizon at a dster rate than the standard/idéon, the &pected return of a long-term,
risky investment becomewer lager relatve to its standard d&tion. This applies to the
long-term ivestment we hae examined with the binomial tree.

EXAMPLE 5.11 Shortfall Risk in the Short Run and the Long Run

Suppose we wish to estimate the probability that anxadietock portfolio praides a

rate of return less than that on risk-fiiebills. This is called a return shoatf. In line with
historical eperience, we will assume the monthly HPR on tlvesiment is dran from

a lognormal distribtion with an &pected continuously compounded ratergf= .96%

and monthly standard diation of o = 4.5%. The monthly risk-free rate is tak to be
.5%.The inde underperforms bills if its return during the month is less than .5%, which is
(.96 — .50)/4.5= .102 standard détions belov its meanThe probability of thiseent if
returns are normally distnilted is .46.

Now consider the probability of shoatf for a 25-year (300-month) horizohhe mean
25-year continuously compounded total return is X9800= 2.88 (i.e., 288%), and
the standard deation is .045x/300=.779(77.99) . At the same time, the monthly
risk-free rate of .5% is equalent to a 25-year continuously compounded total return of
300X .5% = 150%.

Because the 25-year continuously compounded rate is also normallyudéstritve can
easily fnd the probability that the terminaale of the risk portfolio will be belav that
of the risk-free imestmentThe pected total return on the indportfolio exceeds that on
bills by 288%— 150%= 138%, and the standardwi#tion of the 25-year return is 77.9%.
Therefore, stocks auld hare to &ll short of their Bpected return by 138/77:8 1.722
standard déations before thewould underperform billsThe probability of this outcome
is only 3.8%.The far lower probability of a shordil appears to vindicate those who adv
cate that imestment in the stock magkis less riskin the long runAfter all, the agument
goes, 96.2% of the time, the stock fund will outperform the safesiment, while its
expected terminalalue is almost four times higher

A warning:The probability of a shorl is an incomplete measure of/@stment risk.
Such probability does not taknto account theize of potential losses, which for some of
the possible outcomes (ever unlikely) amount to complete ruifhe worst-case sce-
narios for the 25-yearvestment aréar worse than for the 1-monthvestmentWe dem-
onstrate thedld-up of risk aver the long run graphically in Figures 5.10 and 5.11.

A better vay to quantify the risk of a long-termviestment wuld be the mat price of
insuring it against a shoatf. An insurance premium must &lnto account both the prob-
ability of possible losses and the magnitude of these lI0A&eshaev in later chapters o
the fair marlet price of portfolio insurance can be estimated from option-pricing models.
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Despite the lw probability that a portfolio insurance pofisvould hare to pay up (only
3.8% for the 25-year polg, the magnitude and timifgf possible losses auld male
such long-term insurance surprisingly cosBilgr example, standard option-pricing models
suggest that thealue of insurance against shaitfrisk over a 10-year horizonould cost
nearly 20% of the initial alue of the portfolioAnd contrary to ayintuition that a longer
horizon reduces shodtt risk, the alue of portfolio insurance increases dramatically with
the maturity of the contract.oF example, a 25-year policwould be about 50% more
costly, or about 30% of the initial portfolicalue.

The Sharpe Ratio Revisited

The Sharpe ratio (theward-to-\olatility ratio) divides aerage gcess return by its stan-
dard deiation.You should beware, hevever, that the Sharpe ratio has a time dimension,
in that the Sharpe ratio for ygiven portfolio will vary systematically with the assumed
investment holding period.

We have seen that as the holding periodvwggdonger the aerage continuously com-
pounded return gws proportionally to the wrestment horizon (this is approximately true
as well for short-term &fctive rates)The standard deation, havever, grows at a slwer
pace, the square root of timeherefore, the Sharpe ratgrows with the length of the
holding period at the rate of the square root of time. Hence, when comparing Sharpe ratios
from a series of monthly rates to those from a series of annual rates, washustlfiply
the monthly Sharpe ratio by the square root of 12.

EXAMPLE 5.12 Sharpe Ratios

For the long-term riskportfolio (with a monthly gpected return of 1% and standardide
tion of 5%), gven a risk-free rate of .5%, the Sharpe ratio is (B)/5 = .10.Theexpected
annual return wuld be 12% and annual standardidton would be 5% x /12 =16.6%
so the Sharpe ratio using annual retursih be (12— 6)/16.6= .36, similar to alues
we find in the historical record of well-g#rsified portfolios.

Simulation of Long-Term Future Rates of Return

The frequeng distributions inFigure5.6 provide only rough descriptions of the nature of
the return distribtions and areven harder to interpret for long-ternvastmentsA good
way to use history to learn about the disttibn of long-term future returns is to simulate
these future returns from theadlable sampleA popular method to accomplish this task
is calledbootstrapping.

Bootstrapping is a procedure thabals aty assumptions about the return disstibn,
except that all rates of return in the sample history are equa#ylikor example, we
could simulate a 25-year sample of possible future returns by sampling (with replacement)
25 randomly selected returns from owaitable 80-year historyWe compound those 25
returns to obtain one possible 25-year holding-period refthis. procedure is repeated
thousands of times to generate a probability distidim of long-term total returns that is
anchored in the historical frequendistribution.

9By “timing,” we mean that a decline in stock prices is associated with a bad economyxivhéna®me wuld
be most important to anvastor The fact that the insurance palievould pay of in these scenarios contutes
to its marlet value.
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The cardinal decision when embarking on a bootstrappiegise is the choice of ho
far into the past we should go towrabsenrations for “future” return sequencéfe will
use our entire 80-year sample so that we are maghy lik include lav probability eents

of extreme \alue.

One important objecte of this &ercise is to assess the potentidéetf of deviations
from the normality assumption on the probability disttibn of a long-term westment
in U.S. stocks. &r this purpose, we simulate a 25-year distidn of annual returns for
large and small stocks and contrast these samples to similar samplasfrdra normal
distributions that (due to compounding) result in lognormally distal long-term total
returns. Results are shin in Figure5.10. PanelA shaws the frequencdistributions of the
paired samples of Ilge U.S. stocks, constructed by sampling both from actual returns and
from the normal distribtion. Ranel B shws the same frequendistributions for small

U.S. stocksThe boxs insideFigure 5.10shav the statistics of the distuitions.

We first review the results for laye stocks in pandl. Viewing the frequeng distribu-
tions, we see that the tifence between the simulated history and the normal tha
small hut distinct. Despite theery small diferences between theexages of 1-year and
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| Actual* | Normal

Avg. 1-year HPR 12.13
Avg. 25-year HPR 10.24
SD 4.27

Min -11.53

Terminal loss (%) 95

Max 28.88
Probability (loss) .0095
Probability (shortfall) .1044
Skew -.0854
Kurtosis .0040

12.15
10.29
4.32
—-6.67
82
29.32
.0064
.0603
1135
-.0121

*Bootstrapped history

| Actual* | Normal

Avg. 1-year HPR 17.97
Avg. 25-year HPR 12.28
SD 7.28
Min -17
Terminal loss (%) 99
Max 47.03
Probability (loss) .0415
Probability (shortfall) 1178
Skew 11362
Kurtosis .0678

17.95
12.21
7.41
-14.9
98
48.34
.0428
1232
.2000
.0598

*Bootstrapped history

FIGURE 5.10 Annually compounded, 25-year HPRs from bootstrapped history and a normal distribu-

tion (50,000 observations)
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25-year annual returns, as well as between the standaatidies, the small diérences
in skewness and kurtosis combine to produce sigaift diferences in the probabilities of
shortalls and losses, as well as in the potential terminal lagssiAall stocks, shvn in
panel B, the smaller ddrences in stvness and kurtosis lead to almost identigglires
for the probability and magnitude of losses.

What about risk for iestors with other long-term horizonfrgure5.11 compares
25-year to 10-year iestments in laye and small stocksoF an appropriate comparison,
we must account for theadt that the 10-yearmstment will be supplemented with a
15-year ivestment inT-bills. To accomplish this comparison, we bootstrap 15-year sam-
ples from the 80-year history @fhill rates and augment each sample with 10 annual rates
drawn from the history of the rigkinvestment. BnelsA1 andA2 in Figure5.11shav the
comparison for lage stocksThe frequeng distributions reeal a substantial ddrence
in the risks of the terminal portfoli@his difference is clearly manifested in the portfolio
performance statistic¥he same picture arises in panels B1 and B2 for small stocks.

A1: 25 Years in Large Stocks A2: 10 Years in Large Stocks and 15 Years in T-bills
14 14
Avg. 25-year HPR  10.24 1 Avg. 25-year HPR  6.27
12 SD 4.27 12 SD 2.65
10 M > 10 M erminal (7)_57‘5?8
Terminal loss (%) 95 T erminaloss {7,
Max 28.88 ) Prababilt (loss) o12s
8 Probabilty (loss) .0095 g 8 1 Avg, 1year HPR 710
Avg. 1-year HPR 1213 g
6 % 6 L
i
4 1 4 1
N I
0 — T II T T |I|I' — T T T 7T 0 — "l l T T T T T T
-15-10-5 0 5 10 15 20 25 30 35 40 45 -15-10-5 0 5 10 15 20 25 30 35 40 45
B1: 25 Years in Small Stocks B2: 10 Years in Small Stocks and 15 Years in T-bills
14 14
Avg. 25-year HPR  12.28 1 Avg. 25-year HPR ~ 7.01
12 SD 7.28 12 SD 4.44
Min -17.00 Min -10.77
10 Terminal loss (%) 99 > 10 T Terminal loss (%) 94
Max 47.03 Cl:) Max 26.63
8 Probability (loss) .0415 > 8 Probability (loss) .0552
Avg. 1-year HPR 17.97 8- Avg. 1-year HPR 9.40
L 4 1
4 4
0 . I|I|. :
-15-10-5 0 5 10 15 20 25 30 35 40 45 -15-10-5 0 5 10 15 20 25 30 35 40 45

FIGURE 5.11 Annually compounded, 25-year HPRs from bootstrapped history (50,000 observations)




CHAPTER 5 Learning about Return and Risk from the Historical Record 147

Figure5.12 shawvs the trajec-
tories of the wealth indes of
possible outcomes of a 25-yeal
investment in lage stocks, com-
pared with the wealth indeof the
awerage outcome of &bill port-
folio. The outcomes of the stock
portfolio in Figure5.12range from
the worst, through the bottom 1%

0+
0 5 10 15 20 25
5% —— T-bills

Wealth Index
[o0)

and 5% of terminal alue, and up 61

to the mean and median termina

valuesThe bottom 5% still results 4

in a signifcant shortéll relatve 24 oA KL L\ LT T

to the T-bill portfolio. In sum,

the analysis clearly demonstrate: 0 0 5 10 15 20 25
that the notion that uestments Years

in stocks become less nskn the Worst —— 1% 5% Average Median ——— T-bills

long run must be rejected.

Yet ma ractitioners hold
v P FIGURE 5.12 Wealth indexes of selected outcomes of large stock

on t.o the vier . that investment portfolios and the average T-bill portfolio. Inset: Focus on worst, 1%,
risk is less pertinent to long-term 3.4 5% outcomes versus bills.

investors. Atypical demonstration

shavn in the nearby box relies or.
the fact that the standard\dation (or range of likly outcomes) ofinnualized returns is
lower for longetterm horizons. But the demonstration is silent on the rangabfeturns.

Forecasts for the Long Haul

We use arithmetic \@erages to forecast future rates of return becauseatteeunbiased
estimates of xpected rateswer equvalent holding periods. But the arithmeticeaage of
short-term returns can be misleading when used to forecast long-term cuengdairns.
This is because sampling errors in the estimatexpéeed return will hae asymmetric
impact when compounded/er long periods. Posite sampling ariation will compound
to greater upard errors than gative variation.

Jacquier Kane, and Marcdgshaov that an unbiased forecast of total retuveroong
horizons requires compounding at a weightedrage of the arithmetic and geometric
historical aeragesThe proper weight applied to the geometnerage equals the ratio
of the length of the forecast horizon to the length of the estimation peapexdmple, if
we wish to forecast the cumulatireturn for a 25-year horizon from a 80-year histary
unbiased estimateomld be to compound at a rate of

80— 25
Geometric geragex é—ng Arithmetic averagex %

This correction wuld tale about .6% dfthe historical arithmetic\veerage risk premium
on lage stocks and about 2%f dhe arithmetic werage of small stock#\ forecast for
the n&t 80 years wuld require compounding at only the geometvierage, and for lon-
ger horizons at anven laver numberThe forecast horizons that are ke&let for current
middle-aged imestors vould depend on their lifexpectancies.

1%Eric JacquierAlex Kane, andhlan J. Marcus, “Geometric éwithmetic MeansA Reconsideratioh Financial
Analysts Journal, November/December 2003.
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TIME VS. RISK

MANY BEGINNING INVESTORS eye the stock mar-
ket with a bit of suspicion. They view equity investing
as an anxious game of Russian roulette: The longer
they stay in, the greater their chance of experiencing
more losses. In fact, history shows that the opposite is
true. The easiest way to reduce the risk of investing in
equities—and improve the gain—is to increase the
time you hang on to your portfolio.

See for yourself. The demonstration below uses his-
torical data from 1950 through 2005 to compare invest-
ment returns over different lengths of time for small-cap
stocks, large caps, long-term bonds and T-bills.

Time vs. Risk

Range of annualized returns
over 1-year periods,
=" 125%
] 100%
75%

R 50%

| l g 2%

1 1 i -25%
-50%
-75%

Small Large BondsT-bills

cap cap

1-year periods
[ Best

® 3
Average

l Worst O adjust for inflation

Source: CRSP, Federal Reserve

The graph starts out showing results for investments
held over one-year periods. There’s no doubt about

it: Over such short intervals, small-cap stocks are defi-
nitely the riskiest bet.

But what about investing for more than a year? If
you move the slider at the bottom right of the graph,
you can see the range of returns for longer time peri-
ods. Even investing for two years instead of one cuts
your risk significantly. As the length of time increases,
the volatility of equities decreases sharply—so much so
that you may need to click the “zoom in” button to
get a closer view. Over 10-year periods, government
bonds look safer than large-cap equities on the down-
side. Click the “adjust for inflation” box, however, and
you'll see that bond “safety” can be illusory. Inflation
has an uncanny ability to erode the value of securities
that don't grow fast enough.

Now move the slider all the way to the right to see
the results of investing for 20-year intervals. Adjusting
for inflation, the best 20-year gain a portfolio of long-
term Treasury bonds could muster is much lower than
that achieved by small- and large-cap stocks. And con-
trary to popular belief, over their worst 20-year period,
long-term bonds actually lost money when adjusted
for inflation. Meanwhile, small-cap investors still had
gains over a 20-year-period, even when stocks were at
their worst.

Source: Abridged from www.smartmoney.com/university/
Investing101/RiskvsReward/index.cfm?story=timevsrisk, accessed
October 15, 2007.

5.10 MEASUREMENT OF RISK WITH NON-NORMAL

BINNENIEICARIGINN

The realization that rates of return on stock portfolios are not quite normally wtisttib
and that as a result, standardidgons may not adequately measure risk, has preoccupied
practitioners for quite some timAs we hae seen, this concern is indeed well placed.
Three methods to augment the measurement of risk are common in the indalsteyat

Risk (VaR), ConditionalTail Expectations (CTE), and laeer Fartial Standard Deation
(LPSD).We shav these statistics for the bootstrapped distidns, contrasted with those
for the normal distribtion inTable 5.5

Value at Risk (VaR)

Professional imvestors gtensively use a risk measure that highlights the potential loss from
extreme ngative returns, calledalueat risk, denoted byaR (to distinguish it frortVAR
orVar, commonly used to denotanance).TheVaR is another name for tlgeantile of a
distribution. The quantile @) of a distrilution is the alue belav which lie g% of the \al-
ues.Thus the median of the distution is the 50% quantile. Practitioners commonly use
the 5% quantile as théaR of the distritition. It tells us that, with a probability of 5%, we

148
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Large U.S. Stocks Small U.S. Stocks TABLE 5.5
History = Normal History = Normal Risk measures for

Value at Risk non-normal distributions

VaR 1% 0.02% 0.18% -0.63% -0.64%

VaR 5% 1.16 1.27 0.17 0.13

VaR 10% 217 2.26 1.13 1.04

VaR 50% 10.58 10.29 16.41 15.99

Conditional Tail Expectation

CTE 1% -0.28% -0.14% -0.77% -0.76%

CTE 5% 0.46 0.62 -0.33 -0.35

CTE 10% 1.07 1.20 0.16 0.12

CTE 50% 5.07 4.99 5.80 5.49

Lower Partial Standard Deviation

LPSD of 25-year HPR 4.34% 4.23% 7.09% 7.14%

LPSD of 1-year HPR 21.71 21.16 35.45 35.72

Average 1-year HPR 12.13 12.15 17.97 17.95

can &pect a loss equal to or greater thanMhR. For a normal distribtion, which is com-
pletely described by its mean and standakdadien, the 5%/aR alvays lies 1.65 standard
deviations belav the mean, and thus, while it may be awvsnient benchmark, it adds no
information about risk. But if the distuition is not adequately described by the normal,
theVaR does gie useful information about the magnitude of loss we gpeda in a “bad”
(e.g., 5% quantile) scenario.

The frst four lines inTable5.5 shav theVaR from the bootstrapped disuiions and
the paired normal sampleshe VaR \alues prgide important input for mestments in
large stocksThe commonly used 5%aR for lage stocks is a 25-year annual holding-
period return of 1.16%, compared with 1.27% for the paired normal distiibThe dis-
tribution of the portfolio of small stocks is more reasonably approximated by the normal,
as is gident in the similarity of th¥aR \alues.

Conditional Tail Expectation (CTE)

The 5%conditional tail expectation (CTE) provides the answer to the questioAsSum-

ing the terminal alue of the portfoliodlls in the bottom 5% of possible outcomes, what is
its expected @alue?"This value for lage stocks is a 25-year holding-period return of .46%.
Notice the diference from the 5%aR (1.16%)The 5%VaR is in fict the outcome at the
upper boundary of theseorst-case outcomeshis is of course the highest holding-period
return among the 5% avst-case scenarios, and by construction is higher than the CTE.
CTE improves onvaR, as it is more ligk an @pected @lue that accounts for the entire tail

of the distrilution, in particular wrst-case scenarios, and thusvies a fuller sense of
potential losses from Vo-probability ezents.

Lower Partial Standard Deviation (LPSD)

An appropriate measure of risk for non-normal disititms is the standarddation com-
puted solely from @lues belw the epected returnThis is a measure of “dmside risk”
and is called théower partial standard deviation (LPSD). Some practitionersven go
as far as using the LPSD in place of thgulkar standard dgation to compute the Sharpe
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ratio. The LPSD for the laye and small stock portfolios are nefry different from alues

from the normal distribtion because the aks are similar to those from the normal (see
Table5.5). For lage stocks, forxample, assuming &hill rate of 6%, the Sharpe ratio
from the LPSD wuld be (12.13- 6)/21.71= 0.28, compared with 0.29 from the normal
distribution. Therefore, the Sharpe ratios calculated from the LPSD are not economically
different from the corentional Sharpe ratio.

SUM MARY 1. The economys equilibrium l@el of real interest rates depends on the willingness of households
to save, as reflected in the supply caref funds, and on thexgected prafability of business
investment in plant, equipment, andentories, as reflected in the demand eufor funds. It
depends also on gernment iscal and monetary poljc

2. The nominal rate of interest is the equilibrium real rate plusxpeoted rate of inflation. In gen-
eral, we can directly obsexwonly nominal interest rates; from them, we must infpeeted real
rates, using inflation forecasts.

3. The equilibrium &pected rate of return onyasecurity is the sum of the equilibrium real rate of
interest, the xpected rate of inflation, and a security-speaifsk premium.

4. Investors &ce a trade-dbetween risk andx@ected return. Historical data cani our intuition
that assets with W degrees of risk praide lover returns ongrage than do those of higher risk.

5. Assets with guaranteed nominal interest rates arg niskeal terms because the future inflation
rate is uncertain.

6. Historical rates of returnver the twentieth century in deloped capital magts suggest the U.S.
history of stock returns is not an outlier compared to other countries.

7. Investments in risk portfolios do not become safer in the long run. On the confrtrg longer a
risky investment is held, the greater the riSke basis of the gument that stocks are safe in the
long run is thedct that the probability of a shalfbecomes smalleHowever, probability of short-
fall is a poor measure of the safety of aregiment. It ignores the magnitude of possible losses.

8. Historical returns on stockxleibit more frequent laje ngatve deviations from the mean than
would be predicted from a normal distrition. The lover partial standard dtion (LPSD) and
the slewness of the actual distribon quantify the déation from normalityThe LPSD, instead
of the standard deation, is sometimes used by practitioners as a measure of risk.

9. Widely used measures of risk agdue at risk (4R) and conditional taibg@ectations (CTENaR
measures the loss that will beceeded with a spe@d probability such as 5%heVaR does not
add nev information when returns are normally distried.When ngative deiations from the
awerage are lger and more frequent than the normal distidn, the 5%v/aR will be more than
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Related Web sites for 1.65 standard dations belwv the arerage return. Conditional takpectations (CTE) measure the
this chapter are available expected rate of return conditional on the portfolillifig belav a certain alue.Thus, 1% CTE is
at www.mhhe.com/bkm the expected return of all possible outcomes in the bottom 1% of the digtrib
KEY TERMS nominalinterest rate excess return lognormal distrilition
real interest rate risk aversion value at risk (4R)
effective annual rate (EAR) normal distrilution conditional tail &pectation
annual percentage rate (APR) event tree (CTE)
dividend yield skew lower partial standard
risk-free rate kurtosis deviation (LPSD)

risk premium
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1. The Fisher equation tells us that the real interest rate approximately equals the nominal ratePR@BLE M
the inflation rate. Suppose the inflation rate increases from 3% to 5%. Does the Fisher eqlg'E:rS
imply that this increase will result in alfin the real rate of interest? Explain.

2. You've just stumbled on a wedataset that enables you to compute historical rates of return@iz
U.S. stocks all the ay back to 1880What are the acntages and disadmtages in using these
data to help estimate thgpected rate of return on U.S. stock®&othe coming year?

3. You are considering twvalternatie 2-year imestmentsYou can invest in a risk asset with a
positive risk premium and returns in each of the 2 years that will be identically disttiand
uncorrelated, or you canvest in the risik asset for only 1 year and thewest the proceeds in
a risk-free assetWhich of the folloving statements about thiest investment alternate (com-
pared with the second) are true?

Its 2-year risk premium is the same as the second altegnati

The standard deation of its 2-year return is the same.

Its annualized standard\dation is laver.

Its Sharpe ratio is higher

It is relatvely more attractie to irvestors who hae lover degrees of risk gersion.

4. You hare $5,000 to inest for the net year and are considering three altenresti Problems

a. A moneg/ market fund with an eerage maturity of 30 daysfefing a current yield of 6% per
year

b. A 1-year saings deposit at a bankfefing an interest rate of 7.5%.

c. A 20-year U.STreasury bond é€ring a yield to maturity of 9% per year

What role does your forecast of future interest rates play in your decisions?

PoooTw

5. UseFigure 5.1in the text to analyze the &ct of the follaving on the lgel of real interest rates:

a. Businesses become more pessimistic about future demand for their products and decide to
reduce their capital spending.

b. Households are induced toveamore because of increased uncertainty about their future
Social Security beni$.

c. The Federal ResezvBoard undertas open-mamt purchases of U.Sreasury securities in
order to increase the supply of mgne

6. You are considering the choice betweevegting $50,000 in a ceantional 1-year bank CD
offering an interest rate of 5% and a 1-year “Inflation-Plus” Clerofg 1.5% per year plus the
rate of inflation.
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a. Which is the safer wrestment?

b. Which offers the higherxpected return?

c. If you expect the rate of inflation to be 3%er the n&t year which is the better irestment?
Why?

d. If we obsere a risk-free nominal interest rate of 5% per year and a risk-free real rate of 1.5%
on inflation-indeed bonds, can we infer that the meti& expected rate of inflation is 3.5%
per year?

7. Look at Spreadshedi.1 in the text. Suppose you no revise your @pectations rgarding the
stock price as folls:

State of the Economy Probability Ending Price  HPR (including dividends)

Boom 835 $140 44.5%
Normal growth .30 110 14.0
Recession .35 80 —16.5

UseEquationss.11and5.12to compute the mean and standardaten of the HPR on stocks.
Compare your ndsed parameters with the ones in the spreadsheet.
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8. Derive the probability distribtion of the 1-year HPR on a 30-year UT&asury bond with an
8% coupon if it is currently selling at par and the probability distigim of its yield to maturity
a year from nw is as follavs:

State of the Economy Probability YTM
Boom .20 11.0%
Normal growth .50 8.0
Recession .30 7.0

For simplicity, assume the entire 8% coupon is paid at the end of the year rathevehat e
months.

9. What is the standard dation of a randomariableq with the folloving probability distriltion:

Value of q Probability

0 .25
1 .25
2 .50

10. The continuously compounded annual return on a stock is normally distfitvith a mean of
20% and standard dation of 30% With 95.44% coritlence, we shouldxpect its actual return
in ary particular year to be between which pair afuesint: look again at Figure 5.4.

a. —40.0% and 80.0%
b. —30.0% and 80.0%
c. —20.6% and 60.6%
d. —10.4% and 50.4%

11. Using historical risk premiumsver the 1926—1995 period as your guide, whatilek be your
estimate of the>g@ected annual HPR on the S&P 500 stock portfolio if the current risk-free
interest rate is 6%7?

eXcel 12. You can ind annual holding-period returns forveeal asset classes at dieb site \www.
Please visit us at mhhe.com/bkm); look for links to Chapter 5. Compute the means, standasidtams, slew-
www.mhhe.com/bkm ness, and kurtosis of the annual HPR oféastocks and long-terfireasury bonds using only
the 30 years of data between 1976 and 200%: #fwthese statistics compare with those com-
puted from the data for the period 1926—19Wil#ch do you think are the most regmt statis-
tics to use for projecting into the future?
13. During a period of seere inflation, a bond ééred a nominal HPR of 80% per yeahe infla-
tion rate vas 70% per year
a. What was the real HPR on the bongeo the year?
b. Compare this real HPR to the approximatica R — i.

14. Suppose that the inflation rate dgpected to be 3% in the near future. Using the historical data
provided in this chaptemhat would be your predictions for:
a. The Fbill rate?
b. The expected rate of return on & stocks?
c. The risk premium on the stock matR
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15. An economy is making a rapid re@y from steep recession, angsmesses foresee a need for
large amounts of capitalwvestmentWhy would this deelopment dect real interest rates?

Challenge Problems 16 and 17 are more difficult. You may need to review the defini-
Cha"enge tions of call and put options in Chapter 2.

Problems 16. You are &ced with the probability distrition of the HPR on the stock matkndex fund gven
in Spreadshedi.1 of the text. Suppose the price of a put option on a share of the ifuchel
with exercise price of $110 and time tepération of 1 year is $12.

a. What is the probability distriltion of the HPR on the put option?
b. What is the probability distrition of the HPR on a portfolio consisting of one share of the
index fund and a put option?
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¢. In what sense doesiying the put option constitute a purchase of insurance in this case?

17. Take as gren the conditions described in theypoeis problem, and suppose the risk-free interest
rate is 6% per yearou are contemplatingwesting $107.55 in a 1-year CD and simultaneously
buying a call option on the stock matkndex fund with an gercise price of $110 anagration
of 1 yearWhat is the probability distrition of your dollar return at the end of the year?

1. Given $100,000 to irest, what is thexpected risk premium in dollars ofviesting in equities /‘\
versus risk-fred@-bills (U.S.Treasury bills) based on the faNng table? (@BLEMS

Action Probability =~ Expected Return
Invest in equities b $ 50,000

4 —— —$30,000
Invest in risk-free T-bill 1.0 $ 5,000

2. Based on the scenarios bglavhat is the epected return for a portfolio with the folling return
profile?

Market Condition

Bear Normal Bull

Probability 2 3 .5
Rate of return -25% 10% 24%

Use the following scenario analysis for Stocks X and Y to answer CFA Problems 3
through 6 (round to the nearest percent).

Bear Market Normal Market Bull Market

Probability 0.2 0.5 0.3
Stock X -20% 18% 50%
Stock Y -15% 20% 10%

3. What are thexpected rates of return for Stocks X afftl
4. What are the standardwdations of returns on Stocks X ax@

5. Assume that of your $10,000 portfolio, yowast $9,000 in Stock X and $1,000 in Sty¥ckVhat
is the &pected return on your portfolio?

6. Probabilities for three states of the economy and probabilities for the returns on a particular stock
in each state are sha in the table bels.

Probability of
Stock Performance

Probability of  Stock in Given
State of Economy Economic State Performance Economic State
Good 3 Good .6
Neutral -3
Poor A
Neutral .5 Good 4
Neutral 3
Poor -3
Poor 2 Good 2
Neutral 3
Poor 55
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What is the probability that the economy will be neutsadl the stock will eperience poor
performance?

7. An analyst estimates that a stock has the \fiofig probabilities of return depending on the state
of the economy:

State of Economy Probability  Return

Good A 15%
Normal .6 13
Poor .3 7

What is the gpected return of the stock?

STANDARD
&POOR'S

Go to www.mhhe.com/edumarketinsight (bookmark this pagel) and link to Company.
Choose a few companies of interest and record their ticker symbols. Under Excel Analyt-
ics, go to Market Data and find Monthly Adjusted Prices for each firm, which you should
download into a spreadsheet. Calculate the standard deviation, skew, and kurtosis of the
recent history of returns for each firm. How do they compare to the values for the S&P 500?
Try repeating the exercise for other firms. Can you reach any conclusions about the pattern
of these statistics for individual firms versus the diversified market index? Do returns for
the index appear to be better described by the normal distribution than the returns of the
individual firms?

E-Investments

Inflation and Rates

The Federal Reserve Bank of St. Louis has information available on interest rates
and economic conditions. A publication called Monetary Trends contains graphs and
tables with information about current conditions in the capital markets. Go to the
Web site wwwi.stls.frb.org and click on Economic Research on the menu at the top
of the page. Find the most recent issue of Monetary Trends in the Recent Data Pub-
lications section and answer these questions.

1. What is the professionals’ consensus forecast for inflation for the next 2 years?
(Use the Federal Reserve Bank of Philadelphia line on the graph to answer this.)

2. What do consumers expect to happen to inflation over the next 2 years? (Use
the University of Michigan line on the graph to answer this.)

3. Have real interest rates increased, decreased, or remained the same over the last
2 years?

4. What has happened to short-term nominal interest rates over the last 2 years?
What about long-term nominal interest rates?

5. How do recent U.S. inflation and long-term interest rates compare with those of
the other countries listed?

6. What are the most recently available levels of 3-month and 10-year yields on
Treasury securities?
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SOLUTIONS TO CONCEPT CHECKS

1.a 1+R=(1+r)+i) = (1.03)(1.08)= 1.1124

R=11.24%
b. 1+ R= (1.03)(1.10)= 1.133
R=13.3%

2 a EAR=(1+ .01}2— 1= .1268= 12.68%

b. EAR =el?— 1= .1275= 12.75%

Choose the continuously compounded rate for its higher EAR.
3. Number of bonds bought is 27,000/98@0

Year-end

Interest Rates Probability Bond Price HPR End-of-Year Value
High .2 $850 (75 + 850)/900 - 1 = .0278 (75 + 850)30 = $27,750
Unchanged .5 915 .1000 $29,700
Low 3 985 1778 $31,800
Expected rate of return .1089
Expected end-of-year

dollar value $29,940
Risk premium .0589

. Arithmetic return= (1/3)(.2869)+ (1/3)(.1088)+ (1/3)(0.0491)= .1483= 14.83%

a

b. Geometric average= 3/1.2869x 1.108%1.0491—1=.1439=14.39%

c. Standard daation = 12.37%

. Sharpe ratio= (14.83— 6.0)/12.37= .71

5. The probability of a morexéreme bad month, with return belo-15%, is much lover: NORM-
DIST(—15,1,6, TRJE) = .00383Alternatively, we can note that 15% is 16/6 standard detions

belon the mean return, and use the standard normal function to compute NORMSDEZY=
.00383.

6. If the probabilities in Spreadsheet 5.2 represented the true returnutiistrjbive vould use
Equations 5.19 and 5.20 to obtaine®k= 0.0931;Kurtosis= —1.2081. Havever, in this case,
the data in the table represent a (short) historical sample, and correctiogreesdef-freedom
bias is required (in a similar manner to our calculations for standeiatide).You can use Excel
functions to obtain: SKEW(C5:CSj 0.1387;KURT(C5:C9)= —0.2832.
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