Metoda exponenciálního vyrovnávání[1] [R.G.Brown - R.F.Meyer] Je dalším z přístupů, který je řazen (vedle metody klouzavých průměrů) k adaptivním technikám určení trendové složky časové řady . Výchozí úvahou této techniky je, že se k predikci nové hodnoty časové řady : a) berou v úvahu všechna dostupná pozorování časové řady b) starší pozorování jsou z hlediska síly ovlivnění aktuálních předpovědí brána s nižší významností než pozorování nová (aktuální). Váhová struktura, která je při Brownově exponenciálním vyrovnávání uplatněna, je představována geometrickým rozdělením. Váhy jsou tedy stanoveny podle vzorce (1) ^ Je patrné, že váhy splňují podmínku , neboť . Nechť nepřekvapí, že váhová struktura se řídí rozdělením, které je definováno na neomezeném oboru, přestože počet pozorování časové řady, kterým jsou váhy přiřazovány je vždy konečný - z matematického hlediska nepředstavuje tato okolnost žádný problém. Název exponenciální by odpovídal zespojitění situace, neboť obdobou diskrétního geometrického rozdělení je ve spojitém případě rozdělení exponenciální. Název tedy nemá nic společného s exponenciálním průběhem trendu. Podobně jako metoda klouzavých průměrů je i exponenciální vyrovnávání založeno na lokáním vyrovnání časové řady jednoduchou matematickou křivkou (na rozdíl od metody klouzavých průměrů se však vzatá pozorování neváží „symetricky„). Podle typu vyrovnávající křivky rozlišujeme tři základní verze tohoto postupu : 1. Jednoduché (konstantní) exponenciální vyrovnávání (lokálně vyrovnávající křivkou je po částech konstantní funkce). 2. Dvojité (také lineární) exponenciální vyrovnávání (zde je lokálně vyrovnávající křivkou lineární funkce). 3. Trojité (také kvadratické) exponenciální vyrovnání (uplatňuje se parabola 2. stupně lokálně vyrovnávající křivkou kvadratická funkce) Všechny verze exponenciálního vyrovnávání se opírají o následující úvahu : V kterémkoliv bodě (pevně zvoleném okamžiku t ) máme k dispozici jednak : - poslední pozorování analyzované časové řady, tedy - předpověď téhož pozorování (určenou dříve na základě předtím, tj. do času t-1 dostupných pozorování, tedy do hodnoty [ ]včetně). Předpověď pro “opravenou hodnotu“ tedy nyní vytvořme pomocí váženého průměru (2) tzn. že nová předpověď je konstruována jako vážený aritmetický průměr skutečné hodnoty “nového” pozorování a „staré„ předpovědi tohoto pozorování y[t]* (při informaci dostupné do okamžiku t-1 včetně). Hodnota “váhové” konstanty a rozhoduje o tom, které z obou uplatňujících se informací přisoudíme větší význam (resp. v jaké proporci budeme tyto informace brát). Opakovanou substitucí dostáváme ze vztahu (2) výraz atd., až po (3) Při dostatečně velkém n (teoreticky pro n ® ¥ ) dospějeme k nekonečnému součtu (4) , což je vlastně aritmetický průměr (o nekonečném počtu členů) „vyrovnaných hodnot“ s vahami ve tvaru (1) . Výraz (2) , kde je vyrovnávací konstanta lze dále jednoduchou úpravou přepsat na tvar , který bývá nazýván jako chybový či korekční: pro opravu předchozí vyrovnané hodnoty použijeme (jakmile dostaneme pozorování ) příslušně upravenou chybu předpovědi o jeden krok dopředu (konstruovanou v čase t -1) (2´) , kde což lze interpretovat tak, že novou předpověď pro dostaneme jako součet skutečné hodnoty pozorování a určitého (100xa) procentního podílu chyby předpovědi téže veličiny určené na základě informací známých jen do minulého období t-1 (predikce je sestrojená toliko z hodnot [ ]) . Důležitou otázkou je v tomto kontextu volby „vyrovnávající konstanty„ a: zpravidla se omezujeme na rozsah mezi (0,1 – 0,3). Někdy je však vyrovnávací konstanta pojímána jako doplněk do 1, stanoví se tedy . Čím je hodnota blíže k 1 tím váhy přiřazované jednotlivým pozorováním směrem do minulosti klesají pomaleji. O rychlosti klesání dává představu toto srovnání s konstantou : k = 1 2 3 4 5 6 10 Srovnejme: 0,9 0,81 0,729 0,6561 0,59049 0,531441 ………………... 0,34868 0,8 0,64, 0,512 0,4096 0,32768 0,262144 ………………... 0,1342177 0,7 0,49, 0,343 0,2401 0,16807 0,117649 ………………... 0,02709 Zatímco podíl vah u nejčerstvějších (nezpožděných) pozorování je 9/7 = 1,2857 : 1, je u desátých pozorování (tj. se zpožděním 9) tento poměr již 0,3487/ 0282 tj. 12,34/1 0,7 0,49 0,343 0,2401 0,16807 0,117649 0,082354 0,057648 0,040354 0,028248 0,9 0,81 0,729 0,6561 0,59049 0,531441 0,478297 0,430467 0,38742 0,348678 Přirozenou otázkou je, zda existují užitečná vodítka pro určení konstanty a : a) Pravidla vyvozená ze statistických požadavků na odhady obecně : a1) Jedna možnost vychází z volby vyrovnávací konstanty ze vztahu (5) pro n v rozsahu 6-20, odkud pro dostaneme (5A) vyvození: přechod od (5) k (5A): odtud dále a následně □ . n=4: n=6: n=8: n=10: n=14: n=18 a2) Další z možností vychází z variantního modelu (vyrovnání parabolou k-tého řádu), na základě kterého se volí a[0] tak, aby vyhovovalo vztahu (6) ^ a[k] je tzv. ekvivalentní vyrovnávací konstanta. a3) Ještě jiná možnost vychází z nejlépe vyrovnávajícího (pozorované hodnoty časové řady) klouzavého průměru délky . Pak se stanoví jako pro konstantní/jednoduché exponenciální vyrovnávání a stejně tak (7A) pro dvojité exponenciální vyrovnávání (klouzavý průměr) (7B) pro trojité exponenciální vyrovnávání ^2 , kde je délka (počet členů) nejlépe vyrovnávajícího klouzavého průměru . b) Simulační způsob: interval 0,7 - 1 se rozdělí např. na 30 úseků po 0,01, provedou se predikce na několik kroků dopředu, spočte se průměrná nebo střední kvadratická chyba predikce a vyhledá se taková hodnota , při které je tato chyba predikce nejmenší. Poznámka: Výpočtové vzorce (zejména u trojitého exponenciálního vyrovnávání) jsou již natolik (technicky) složité, že je uživatel zpravidla odkázán na některý ze softwarových produktů určených k analýze časových řad, které zpravidla všechny tři verze exponenciálního vyrovnávání obsahují. Proto je daleko vhodnější pořídit si příslušné software (STATGRAPHICS, SPSS, RATS apod.), než pracně počítat hodnoty vyrovnání a předpovědí (rekurentně) tabulkovými procesory, kalkulačkou nebo dokonce ručně. Komparační zhodnocení: čím je vyrovnávací konstanta vzdálenější od 1 (tedy blíže k nule), tím je vyrovnání flexibilnější a provedená následná predikce vykazuje vyšší rozkolísanost. Podobný rys vykazuje také trojité exponenciální vyrovnávání ve srovnání s dvojitým a zejména vůči jednoduchému, které dává velmi rigidní předpovědi (tj. po částech konstantním trendem) . 1. Jednoduché (konstantní) exponenciální vyrovnávání Formulace modelu je založena na představě, že pro dané pevné a hodnoty zpoždění lze uplatnit konstantní trend tvaru (11) pro j = 0, 1, 2, 3, …., kde je (jediný) neznámý parametr. Tato domněnka (o konstantnosti vývoje) není příliš realistická, avšak jednoduchost modelu (11) umožňuje přiblížit postup odhadu parametrů [. ]i u složitějších modelů. Výchozím předpokladem modelu (11) je tedy trend ve tvaru po částech konstantní funkce. Minimalizační kritérium má zde tvar (12) ve kterém se uplatňuje trendový model tvaru [ ]( tedy konstantní trend ). Odhad [ ]parametru [ ]realizovaný váženou metodou nejmenších čtverců (WLS) je pak dán vztahem (13) ověření: Derivací výrazu (12) podle dostaneme: (12A) Upravíme-li krácením a položíme-li derivaci rovnou nule, dostaneme (12A) Pak s využitím toho, že součet řady , obdržíme (13). � . U tohoto typu mohou být vysloveny námitky, že model s konstantním trendem (11) je pro většinu reálných situací stěží použitelný, poněvadž trend časové řady se zpravidla vyvíjí jiným způsobem než po částech konstantní funkcí. (14) vyrovnání pro aktuální období : (15) predikce na t období dopředu : Předpovídané hodnoty na libovolné období dopředu jsou tedy shodné s poslední pozorovanou hodnotou (je zřejmé, že tato zásada není vhodná pro situace, kdy časová řada vykazuje jakýkoliv znatelný trend). Lze ještě užít tzv. chybový vzorec: (14A) Volba vyrovnávací konstanty pro jednoduché exponenciální vyrovnávání: Omezujeme se zde zpravidla na interval a podobně jako pro dvojité se užívá a) fixní volba nebo . (Volba se téměř neužívá.) b) volba , kde je délka klouzavých průměrů adekvátní této řadě (odvozena z požadavku, aby tzv. střední věk vah jednoduchých klouzavých průměrů této délky, tj. a střední věk vah jednoduchého exponenciálního vyrovnávání, tj. byly shodné. Přístup ale není ideální, protože stejně musíme vyjít z vhodné délky klouzavého průměru. c) Jako možné hodnoty se vezmou hodnoty z intervalu a vybere se ta hodnota, která nejlépe predikuje ve smyslu minimální hodnoty SSE. předpovědní interval pro jednoduché exponenciální vyrovnávání V případě, že rozdělení náhodné složky uvažované řady je alespoň přibližně normální, lze v rámci exponenciálního vyrovnávání vedle bodových předpovědí konstruovat také předpovědní intervaly. Jako předpovědní interval pro jednoduché vyrovnávání se doporučuje konstruovat interval ve tvaru (16) , kde libovolné je .... kvantil normovaného normálního rozdělení definováno jako sloužící k převodu na . je střední absolutní chyba vyrovnání, tedy 2. Dvojité (lineární) exponenciální vyrovnávání Formulace modelu je založena na představě, že pro dané pevné a hodnoty zpoždění lze uplatnit lokálně lineární trend tvaru (21) pro j = 0, 1, 2, 3, …. Minimalizační kritérium má v tomto případě tvar (22) ve kterém se uplatňuje lineární trendový model tvaru [ ][.] Výchozím předpokladem modelu (22) je tedy trend ve tvaru po částech lineární funkce. V tomto případě jsou předmětem odhadu dva parametry [ ]- jako odhad parametru [ ]- a [ ]-[ ]jako odhad parametru . Odhad obou parametrů v (22) získáme řešením soustavy normálních rovnic (25A) (25B) ověření platnosti (25A), (25B): Derivací výrazu (22) podle dostaneme (23A) Podobně, derivací výrazu (22) podle dostaneme obdobně: (23B) Upravíme-li (23 A) a položíme-li příslušnou derivaci rovnou nule: (24A) , neboli (24A*) a s využitím toho, že součet řady a součet řady obdržíme a následně vynásobením získáme (25A) . Krátíme-li (23B) výrazem a položíme-li levostrannou derivaci rovnou nule: (24B) . Výrazy s neznámými přemístíme v rovnici nalevo (24B*) a s využitím toho, že součty řad , máme , což po vynásobení dává (25B). �. Máme tedy soustavu dvou normálních rovnic pro výpočet parametrů , (25A) (25B) kterou můžeme vyjádřit v maticovém tvaru (26) , takže (27) , kde determinant matice soustavy (27) je roven . Takže (28) , načež po roznásobení determinantem matice (29) . Odtud máme výsledné výrazy pro odhadované parametry (30A) (30B) Přímý (alternativní nematicový) výpočet parametrů ze soustavy (25A), (25B): (25A) (25B) Vyjděme z (25A), (25B) a vyjádřeme z obou těchto vztahů např. : (31A) (31B) Porovnáme obě strany a máme , odečteme , a dostaneme výsledný výraz pro Pro výpočet druhého parametru nyní užijeme vztah (31A): a postupnými substitucemi dostaneme tedy tedy tedy tedy tedy tedy tedy �. Pokud pracujeme s konečným počtem pozorování, dostaneme soustavu normálních rovnice ve tvaru: (35A) (35B) Jejím řešením dostaneme odhady parametrů ve tvaru (35A) (35B) . Srovnání výsledných odhadů s ( ), ( ) dostaneme takto: Vyčíslíme výrazy bez ypsilonových členů s využitím toho, že platí (61) , (62) , (63) Výraz ve jmenovatelích (35A) (35B) je rovný Potom dle (35A) a podle (35B) Ta je srovnatelná s (25A), (25B) , protože pokud n je dostatečně velké, lze nahradit (36A) (36B) . tj. (37A) (37B) , což po vynásobení první rovnice a druhé rovnice dává přesně (25A) (25B) . � . Zavedeme-li pomocné veličiny (51a) (51b) , nebo též lze zapsat výsledné odhady parametrů také jako (26A) ^ (26B) ^ V případě dvojitého a trojitého exponenciálního vyrovnávání je užitečné definovat dvě tzv. "vyrovnávací statistiky" : viz CIPRA se záměnou gama za beta: (16a) jednoduchá vyrovn. statistika (16b) dvojitá vyrovnávací statistika Pro tyto vyrovnávací statistiky platí následující vztahy : (17a) [ ] (17b) [ ] ověření (17a),(17b): Rozvedením prvních dvou členů definičního výrazu (16a) dostaneme: [ ], přičemž[ ]jsme užili dosazení[ ] , z čehož [] Definiční výraz (16b) lze podobně dekomponovat jako [ ]□[.] se stejnou substitucí indexů j a k. Výpočet obou těchto statistik se provádí rekurentně počínaje ^ . Má přitom platit (26A) ^ tj. ^ (26B) ^ tj. ^ tj. ^ □ . ověření (18a): Z (26A), (26B) můžeme naopak vyjádřit obě vyrovnávací statistiky: a tedy a tedy neboli a následně porovnáním tj a následně srovnejme s (26A) [ ] a s (26B) [ ] , takže si to plně odpovídá.[] vyrovnání pro aktuální období : (24) ^ predikce na t období dopředu je dána vztahy (25) neboli (25a) ^ Model dvojitého exponenciálního vyrovnávání (21) je pro řadu situací dobrým predikčním nástrojem, pokud se při volbě vyrovnávací konstanty řídíme některým z výše uvedených pravidel. Při výpočtu statistik postupujeme rekurentně, přičemž jejich počáteční hodnoty pro získáme ze vztahů : (26A) [ ] (26B) [ ][ ][] Počáteční hodnoty odhadů [ ] získáme prostou lineární regresí tak, že několik (cca 6-10) počátečních pozorování řady proložíme regresní přímkou. [ ]je příslušná úrovňová konstanta, [ ]je parametr sklonu regresní přímky. (22) Derivací výrazu (22) podle a jeho anulováním dostaneme: krátíme výrazem � . Výrazy s neznámými přemístíme nalevo což zapíšeme jako Protože dle (52) , u neznámé máme člen Dále dle (53) u neznámé máme Tedy (12B) Volba vyrovnávací konstanty : omezujeme se zde zpravidla na interval a podobně jako pro jednoduché se užívá a) fixní volba , kde je délka klouzavých průměrů adekvátní b) pro danou řadu (vyplývá opět z porovnání středních věku vah jednoduchých klouzavých průměrů a vah dvojitého exp. vyrovnávání). c)Jako vhodné hodnoty se vyšetří hodnoty z intervalu a vybere se ta hodnota, která nejlépe predikuje ve smyslu míry SSE. Jako předpovědní interval se doporučuje konstruovat ve tvaru , kde pro libovolné je definováno jako Výpočetní postup (zde pro dvojité exponenciální vyrovnávání) je tedy následující: Nejprve se určí dvojice počátečních parametrů , a to nejčastěji prostou lineární regresí tak, že několik (cca 5-9) počátečních pozorování řady proložíme regresní přímkou: [ ]je regresí spočtená úrovňová konstanta, [ ]je parametr sklonu regresní přímky. Poté následuje dle výrazu (26A) výpočet počáteční jednoduché vyrovnávací statistiky [][ ]a dle výrazu (26B) výpočet počáteční dvojité vyrovnávací statistiky [] . (26A) [ ] (26B) [ ][ ][] Následně postupně konstruujeme posloupnosti jednoduchých a dvojitých vyrovnávacích statistik a dle rekurentních vztahů (17a) a (17b). (17a) [] (17b) [ ] Posloupnosti obou parametrů a , které slouží k výpočtům vyrovnaných, resp. předpovídaných hodnot pomocí dvojitého exponenciálního vyrovnání nakonec obdržíme ze vztahů (26A), (26B) , . Predikce (pro každé pevné t) konstruujeme (při znalosti obou parametrů pro dané t) již snadno pomocí predikčního schématu vycházejícího z (21), tj.: pro . 3. Trojité (kvadratické) exponenciální vyrovnávání je třetím užívaným typem exponenciálního vyrovnávání, které se uplatňuje především u časových řad vyznačujících se ve svém dosavadním vývoji úseky se zřetelnou akcelerací nebo naopak decelerací průběhu v čase. Minimalizační kritérium má u toho typu vyrovnání tvar (31) ve kterém se uplatňuje trendový model tvaru (32) [ ] Zde máme co do činění již se třemi konstantami coby s odhady trojice neznámých parametrů kvadratické funkce [ ]. Odhady těchto parametrů se opět obdrží vyvozením ze soustavy (tří) normálních rovnic. Ve výrazech se tentokrát uplatňují již tři vyrovnávací statistiky : jednoduchá vyrovnávací statistika dvojitá vyrovnávací statistika (33) s vlastností trojitá vyrovnávací statistika Pomocí nich se dají vyjádřit jak vyrovnané, tak předpovídané hodnoty : vyrovnání pro aktuální období : (34) predikce na t období dopředu : (35) Predikce pomocí trojitého exponenciálního vyrovnání jsou (zejména při nízké volbě konstanty - tj. blízké 0,7) značně citlivé na chování posledních 2-3 pozorovaných hodnot řady. Vykazují-li tato pozorování zřetelný odklon oproti předchozímu průběhu časové řady, poskytne kvadratické vyrovnání zpravidla nepoužitelné předpovědi (tyto se vychylují buď příliš nahoru nebo příliš dolů podle směru vychýlení právě posledních nejčerstvějších pozorování). Při určování počátečních odhadů [ ]se v tomto případě doporučuje volit delší úsek (až 1/2 počtu všech pozorování). Vyrovnání se zde provádí (pomocí prosté metody nejmenších čtverců) kvadratickým trendem. Derivací výrazu (31) podle a jeho anulováním dostaneme: neboli (41A) (41A) upravíme dále na Po vyčíslení sumací máme Derivací výrazu (31) podle a jeho anulováním dostaneme: neboli (41B) (41B) upravíme dále na Po vyčíslení sumací máme Derivací výrazu (31) podle a jeho anulováním dostaneme: neboli (41C) (41C) upravíme na Po vyčíslení sumací máme Nyní můžeme standardně postupovat tak, že řešíme soustavu rovnic pro neznámé parametry , a . Její maticové schéma je následující: No ale, jak patrno, výpočet parametrů (založený na inverzi této matice) nebude nic příjemného: v principu přes determinant a vygenerování matice algebraických doplňků. Výsledek-vzorec pro parametry e nicméně obsažen v Brownově monografii. Poznámka: Při výpočtech součtů konvergentních nekonečných řad, které se vyskytují v normálních rovnicích u různých verzí exponenciálního vyrovnávání, lze užitečně uplatnit poznatky odvozené z teorie mocninných řad. Máme-li pro argument definovánu funkci resp. mocninnou řadu (51) , pak výpočet derivací této funkce (do čtvrté derivace včetně) vede k těmto výsledkům: (52) (53) (54) (55) Všimněme si, že sumace derivovaných prvků mocninné řady (výrazy v součtech v (51,52,53,54) se získají velmi prostým způsobem tím, že derivujeme funkci . Platí to pro první, druhou i třetí (případně i vyšší) derivaci. Vezmeme-li za argument z vyrovnávací konstantu - to je přípustné, neboť její hodnoty rovněž leží v intervalu (0,1) - dostaneme : (61) , (62) , (63) , což vypočteme z rozvoje Dále máme ještě □ . Pro informaci ještě připojme součty tří dalších mocninných řad typu : . . Uvedené vztahy se aktivně uplatňují při výpočtu výrazů, které vedou v jednotlivých typech exponenciálního vyrovnávání k určení odhadů parametrů . Holtova vyrovnávací metoda[2] Jistým zobecněním dvojitého exponenciálního vyrovnávání je tzv. Holtova metoda, ve které se uplatňují dvě vyrovnávací konstanty pro vyrovnání úrovně/interceptu pro vyrovnání směrnice/sklonu lineární přímky téže řady (71) Vyhlazení úrovně je tedy definováno jako konvexní kombinace poslední pozorované hodnoty v čase a odhadu této hodnoty vzatého v předchozím čase z tehdy dostupných pozorování. (72) Pro vyrovnání, resp. predikci zde platí předpisy: (73) (74) pro Jako volby počátečních hodnot se zde doporučují: (75A) (75B) Za pozornost stojí, že Holtova metoda byla nejprve navržena jako ad hoc postup na základě prosté logické úvahy. Teprve později bylo prokázáno, že Brownovo dvojité exponenciální vyrovnávání se zvolenou vyrovnávací konstantou je speciálním případem Holtova metody , jejíž vyrovnávací konstanty jsou pak (76) , , potom , pak , odtud ________________________________ [1] Postup všech typů exponenciálního vyrovnávání je zevrubně popsán v monografii: Brown,R.,G.: Smoothing, forecasting and prediction of discrete time series. London, Prentice-Hall 1963. popř. v článku Brown,R.,G.,Meyer, R.,F.“: The fundamental theory of exponential smoothing. Operations Research 9/1961 str. 673-684. [2] Postup je popsán v textu: Holt, C.,C: Forecasting seasonal and trends by exponentially weighted moving averages . Res. mem. No 52. Carnegie Institute of Technology. Pittsburg 1957.